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Abstract. The functionality of classically-instructed remotely prepared
random secret qubits was introduced in (Cojocaru et al 2018) as a way
to enable classical parties to participate in secure quantum computation
and communications protocols. The idea is that a classical party (client)
instructs a quantum party (server) to generate a qubit to the server’s side
that is random, unknown to the server but known to the client. Such task
is only possible under computational assumptions. In this contribution
we define a simpler (basic) primitive consisting of only BB84 states, and
give a protocol that realizes this primitive and that is secure against the
strongest possible adversary (an arbitrarily deviating malicious server).
The specific functions used, were constructed based on known trapdoor
one-way functions, resulting to the security of our basic primitive being
reduced to the hardness of the Learning With Errors problem. We then
give a number of extensions, building on this basic module: extension to
larger set of states (that includes non-Clifford states); proper considera-
tion of the abort case; and verifiablity on the module level. The latter is
based on “blind self-testing”, a notion we introduced, proved in a limited
setting and conjectured its validity for the most general case.
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1 Introduction

In the coming decades, advances in quantum technologies may cause major shifts
in the mainstream computing landscape. In the meantime, we can expect to see
quantum devices with high variability in terms of architectures and capacities,
the so-called noisy, intermediate-scale quantum (NISQ) devices [Pre18] (such
as those being developed by IBM, Rigetti, Google, IonQ) that are currently
available to users via classical cloud platforms. In order to be able to proceed to
the next milestone for the utility of these devices in a wider industrial base, the
issues of privacy and integrity of the data manipulation must be addressed.

Early proposals for secure and verifiable delegated quantum computing based
on simple obfuscation of data already exist [AS03, Chi05, ABEM17, BFK09,
DKL11, MF12, MPDF13, GMMR13, MDK15, FK17]. However, these schemes
require a reliable long-distance quantum communication network, connecting all
the interested parties, which remains a challenging task.

For these reasons, there has recently been extensive research focusing on
the practicality aspect of secure and verifiable delegated quantum computa-
tion. One direction is to reduce the required communications by exploiting
classical fully-homomorphic-encryption schemes [BJ15, DSS16, ADSS17], or by
defining their direct quantum analogues [Lia15, OTF15, TKO+16, LC17]. Dif-
ferent encodings, on the client side, could also reduce the quantum commu-
nication [MPDF13, GMMR13]. However, in all these approaches, the client
still requires some quantum capabilities. While no-go results indicate restric-
tions on which of the above properties are jointly achievable for classical clients
[AGKP14, YPDF14, ACGK17, NS17], recent breakthroughs based on post-
quantum secure trapdoor one-way functions, paved the way for developing en-
tirely new approaches towards fully-classical client protocols for emerging quan-
tum servers. The first such procedures were proposed in [Mah18a] allowing a
classical client to securely delegate a universal quantum computation to a re-
mote untrusted server. The key technical idea was the ability to perform a CNOT
quantum gate that is controlled by an encrypted classical bit. To achieve this a
classical primitive of trapdoor claw-free functions pair was used. It was later fol-
lowed by the work of [Bra18], where the construction achieved stronger security
guarantee and based on more standard cryptographic assumptions. Building on
this, a single device certifiable randomness was achieved in [BCM+18], where the
randomness is information theoretical, but the certification is based on the com-
putational limitations of quantum devices. Finally, using post-hoc verification of
quantum computations [FHM18], and the above ideas to generate a single qubit
“blind measurement device”, [Mah18b] gave the first protocol achieving classical
client verification of universal quantum computation.

All these constructions, while they used similar techniques, proved the desired
properties in a monolithic way. An alternative approach was taken in [CCKW18]
where the idea was to replace the quantum channel (that is used in many differ-
ent protocol implementing blind and/or verifiable quantum computation) with
a module running between a classical client and a quantum server. It was shown
then how a classical client could use this module (referred to as QFactory) to
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achieve secure delegated universal quantum computing, but potentially also,
other functionalities such as multi-party quantum computation. However, the
security proof was made in a weak “honest-but-curious” model, and the full
proof of security was left as an open question. In this paper, we extend the secu-
rity proof to a fully malicious adversary. All our proofs are made using reductions
to hardness assumptions (namely LWE), and the simplicity of the main protocol
suggests that an extention to a composable model such as Universal Compos-
ability [Can00] or Abstract Cryptography (AC) [MR11] should be possible (but
left as a future work).

Concurrently with our work, [GV19] also took this modular approach. Tech-
nically they followed closely the ideas from [Mah18a, Mah18b, BCM+18], but
the basic primitive they derive (in a verifiable version) is the one we introduced
in [CCKW18]. They gave protocols for a verifiable version of the secret single
qubit generation, while they also gave a proof in the AC model. Their AC proof
relies on a strong hypothesis that they call “measurement buffer” that forces the
adversary to give the state that he is supposed to measure to the simulator, en-
forcing (essentially) a trusted measurement. They also state that the stand-alone
proof does not require this assumption. To our view, this assumption is very high
price for moving to the AC framework, which is why in our current work we do
not focus on composability while we work towards resolving this issue as part
of the future work we mentioned. Moreover, in [GV19] they do not investigate
a crucial “abort” case of the protocol, which is related to the properties of the
functions required for the protocol implementation. Specifically, properties such
as two-regularity can only be achieved probabilistically, causing the security of
the protocol to fail whenever the function property is not satisfied. This means
that they need to use a familly of functions that is secure only under the assump-
tion that SIVPγ is hard for a superpolynomial γ, while the standard assumption
is that SIVPγ is secure only for a polynomial γ ([Bra18]).

Following the modularity of [CCKW18], we present a universal yet minimal
functionality module that is fully secure and verifiable at the module level and
could be used as a black box in other client-server applications to replace the
need for a reliable long-distance quantum communication network. The price
one has to pay is a reduction from information-theoretic security (achievable
using quantum communication) to post-quantum computational security via our
modules. The ultimate vision would be to develop a hybrid network of classical
and quantum communication channels, depending on the desired security level
and the technology development of NISQ devices allowing classical or quantum
links [WEH18].

1.1 Our Contributions

In [CCKW18] was defined a classical client - quantum server functionality of
delegated pseudo-secret random qubit generator (PSRQG) that can replace the
need for quantum channel between parties in certain quantum communication
protocols, with the only trade-off being that the protocols would become compu-
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tationally secure (against quantum adversaries). However, the proof of security
was done in a weak model called “honest-but-curious”. In this paper:

1. We present a new protocol called Malicious 4-states QFactory in Section 3
that achieves the functionality of classically instructed remote secret gener-
ation of the states {|0〉 , |1〉 , |+〉 , |−〉} (known as the BB84 states), given 2
cryptographic functions: 1) a trapdoor one-way function that is quantum-
safe, two-regular and collision resistant and 2) a homomorphic, hardcore
predicate. The novelty of this new protocol reflects in both simplicity of
construction and proof, as well as enhanced security, namely the protocol is
secure against any arbitrarily deviating adversary. The target output qubit
set is one of the four BB84 states, states that form the core requirement of
any quantum communication protocol.
Then, in Subsection 3.3, we present the security of the Malicious 4-states
QFactory against any fully malicious server, by proving that the basis of
the generated qubits are completely hidden from any adversary, using the
properties of the two functions, the security being based on the hardness of
the Learning with Errors problem.

2. While the above-mentioned results do not depend on the specific function
used, the existence of such functions (with all desired properties) makes the
functionality a practical primitive that can be employed as described in this
paper. In Section 4, we describe how to construct the two-regular, collision
resistant, trapdoor one-way family of functions and the homomorphic, hard-
core predicate. Furthermore, we prove using reductions in Subsection 4.2
that the resulting functions maintain all the required properties.

3. In order to demonstrate the modular construction of the basic Malicious 4-
states QFactory, we also present in Section 5, a secure and efficient extension
to the functionality of generating 8 states, called the Malicious 8-states QFac-
tory protocol (where the security refers to the fact that the basis of the new
state is completely hidden). The set of output states

{
|+θ〉 | θ ∈ {0, π4 , ...,

7π
4 }
}

(no longer within the Clifford group) are used in various protocols, including
protocols for verifiable blind quantum computation.

4. While the protocol introduced in Section 3 requires (for the security proof) a
family of functions having 2 preimages with probability super-polynomially
close to 1, we also define in Section 7 a protocol named Malicious-Abort
4-states QFactory, that is secure when the functions have 2 preimages with
only a constant (greater than 1/2) probability. Indeed, even if the parameters
used for the first category of functions are implicitly used in some protocols
[Mah18a], the second category of functions is strictly more secure and more
standard in the cryptographic literature [Bra18]. The Malicious-Abort 4-
states QFactory protocol is proven secure also for this second category of
functions, assuming that the classical Yao’s XOR lemma also applies for
one-round protocols (with classical messages) with quantum adversaries.

5. With a simple construction in Section 6, we extend our basic module, in a
“blind-measurement” device, where the server performs a single qubit mea-
surement in either the Z or X basis, but he is ignorant of the measurement
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basis (while the client knows). This type of blind measurement was the basis
for the paper of [Mah18b], where a classical-client verification of quantum
computation protocol was first given. Here we see how our module can also
offer this type of functionality.

6. The Malicious 8-states QFactory can be further extended in order to offer
a notion of verification for QFactory in Section 8, the new protocol being
called Verifiable QFactory. We demonstrate that this notion of verifiability
of QFactory is suitable, by showing that it is sufficient to obtain verifiable
blind quantum computation. Such protocol would be the first classical client,
verifiable and blind quantum computation protocol.
We introduce in Subsection 8.2 a novel framework called blind self-testing,
which differs from the standard self-testing by replacing the non-locality
assumptions for such tests with blindness conditions. We describe how this
technique can be used to prove the verifiability of QFactory. Note however,
that the security of the Verifiable QFactory Protocol 8.2 is conjectured, while
we expect that the full proof would follow using the most general case of the
novel notion of blind self-testing that we introduced. Finally, we prove how
a (much simpler) i.i.d. blind self-testing is achievable.

1.2 Overview of the protocols and proofs

The Protocol. The general idea is that a classical client communicates with a
quantum server instructing him to perform certain actions. By the end of the
interaction, the client obtains a random value B = B1B2 ∈ {00, 01, 10, 11}, while
the server (if he followed the protocol) ends up with the state HB1XB2 |0〉, i.e.
with one of the BB84 states. Moreover, the server, irrespective of whether he
followed the protocol or how he deviated, cannot guess the value of the (basis)
bit B1 any better than making a random guess (more details in Subsection 3.3).

This module is sufficient to perform (either directly or with simple extensions)
multiple secure computation protocols including blind quantum computation.

To achieve such a task, we require three central elements. Firstly, the quan-
tum operations performed by the server should not be repeatable, in order to
avoid letting the (adversarial) server run multiple times these operations and
obtain multiple copies of the same output state. That would (obviously) com-
promise the security since direct tomography of a single qubit is straightforward.
This can be achieved if the protocol includes a measurement of many qubits,
where the probability of getting twice the same outcome would be exponentially
small. The second element is that the server should not be able to efficiently
classically simulate the quantum computation that he needs to perform. This is
to stop the server from running everything classically and obtaining the explicit
classical description of the output state. This is achieved using techniques from
post-quantum cryptography and specifically the Learning-With-Errors problem.
Lastly, the computation has to be easy to perform for the client, since she needs
to know the output state. This asymmetry (easy for client/ hard for server)
can be achieved only in the computational setting, where the client has some
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extra trapdoor information. The protocol requires the following cryptographic
primities defined formally in Definition 8:

– F : a family of 2-regular, collision resistant, trapdoor one-way functions (that
can be constructed from a family of injective, homomorphic, trapdoor one-
way functions G);

– d0(tk): a hardcore predicate of the index of the functions in F . More precisely,
every function fk ∈ F has an associated hardcore bit d0 that is hard to guess
given only k, but easy to compute given the trapdoor tk;

– h: a predicate such that h(x)⊕ h(x′) = d0 for any x, x′ with fk(x) = fk(x′)

Given these functions, the protocol steps are: The client sends the descriptions of
the functions fk (from the family F) and h. The server’s actions are described by
the circuit given in Figure 1 (see Section 3), classically instructed by the client:
prepares one register at ⊗nH |0〉 and second register at |0〉m; then applies Ufk
using the first register as control and the second as target; measures the second
register in the computational basis, obtains the outcome y. Through these steps
server produces a superposition of the 2 preimages x and x′ of y for the function
fk, i.e. |x〉+ |x′〉. Next, server is instructed to apply the unitary corresponding to
function h (targeting a new qubit |0〉) and to measure all but this new qubit in
the Hadamard basis (the measurement outcomes will be denoted as b), which will
be the output of the protocol. This last step intuitively magnifies the randomness
of all the qubits to this final output qubit.

Then, it can be proven that, in an honest run, this output state is:

|out〉 = HB1XB2 |0〉 , where

B1 = h(x)⊕ h(x′) = d0(tk) =: d0

B2 = (d0 × (b · (x⊕ x′)))⊕ h(x)h(x′)

Therefore, the client can efficiently obtain the description of the output state,
namely B1 and B2 by inverting y, to obtain the 2 preimages x and x′ using his
secret trapdoor information tk.
Security. Informally speaking the desired security property of the module is to
prove that the server cannot guess better than randomly the basis bit B1 of what
the client has, no matter how the server deviates or what answers he returns.
In other words, we prove that given that the client chooses k randomly, then no
matter which messages y and b the server returns, he cannot determine B1.

Specifically, using the properties of the 2 cryptographic functions, we show
that the basis of the output state is independent of the messages sent by server
and essentially, the basis is fixed by the client at the beginning of the protocol.

Here it is important to emphasize that the simplicity of our modular con-
struction allow us to make a direct reduction from the above security property to
the cryptographic assumptions of our primitives functions F , d0 and h. Indeed,
from the expression above, we can see that at the end of the interaction the
client has recorded as the basis bit the expression B1 = h(x) ⊕ h(x′) = d0(tk),
which is a hardcore bit and is therefore hard to guess given only k.
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The Primitive Construction. In order to use this module in practise, it is
crucial to have functions that satisfy our cryptographic requirements, and ex-
plore the choices of parameters that ensure that all these properties are jointly
satisfied. Building on the function construction of [CCKW18] we gave specific
choices that achieve these properties. The starting point is the injective, trapdoor
one-way family of functions Ḡ from [MP12], where the hardness of the function
is derived from the Learning With Errors problem.

More precisely, to sample a function fk, we first sample a matrix K ∈ Zm×nq

using the construction of [MP12] (that provides an injective and trapdoor func-
tion), a uniform vector s0 ∈ Znq , an error e0 ∈ Zmq according to a small Gaussian3

and a random bit d0, and we compute

y0 = Ks0 + e0 + d0 ×
(
q
2 0 . . . 0

)T
(1.1)

The hardcore property of d0 will directly come from the fact that under LWE
assumption, no adversary can distinguish a LWE instance Ks0 + e0 from a
random vector, so it is not possible to know if we added or not a constant
vector. The function fK,y0 will then be defined as follow:

fK,y0(s, e, c, d) = Ks+ e+ c× y0 + d×
(
q
2 0 . . . 0

)T
(1.2)

Note that c and d are bits, and the error e is chosen in a bigger space4 than
e0 to ensure that the function fK,y0 has two preimages with good probability.
Moreover, if we define h(s, e, c, d) = d, it is easy to see that for all preimages
x, x′ with f(x) = f(x′), we have:

h(x)⊕ h(x′) = d0

The Extended Protocol. In order to use the above protocol for applications
such as blind quantum computing [BFK09], we need to be able to produce
states taken from the (extended) set of eight states {|+θ〉 , θ ∈ {0, π4 , ...,

7π
4 }}.

Importantly, we still need to ensure that the bits corresponding to the basis
of each qubits produced, remain hidden. Here we prove how given two states
produced by the basic protocol described previously, which we denote as |in1〉
and |in2〉, we can obtain a single state from the 8-states set, denoted |out〉,
ensuring that no information about the bits of the basis of |out〉 is leaked5.

To achieve this, we need to find an operation (see Figure 2 in Section 5.1),
that in the honest case maps the indices of the inputs to those of the output using
a map that satisfies certain conditions. This relation (inputs/output) should be
such that learning anything about the basis of the output state implies learning
non-negligible information for the basis of (one) input. This directly means, that

3 but big enough to make sure the function is secure
4 but small enough to make sure the partial functions f(·, ·, c, ·) are still injective
5 Note that one of the input states is exactly the output of the basic module, while the

second comes from a slightly modified version (essentially rotated in the XY-plane
of the Bloch sphere).
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any computationally bounded adversary that can break the basis blindness of
the output, can use this to construct an attack that would also break the basis
blindness of at least one of the inputs, i.e. he would break the security guarantees
of the basic module that was proven earlier.
Other Properties. To further demonstrate the utility of our core module, as a
building block for other client-server protocols, one might wish to expand further
the desired properties of the basic functionality. First we give a direct use of our
gadget, to construct a “blind-measurement” device. Such device is essential for
(non-blind) verification schemes based on post-hoc verification method [FHM18]
and directly relates our work with that of [Mah18b]. Next, to obtain the verifia-
bility of the module (i.e. imposing an honest behaviour on the server) we propose
a generalization of the self-testing, where the non-locality condition is replaced
by the blindness property and the analysis is done in the computational setting.
Finally, to further improve the practicality of the black box call of the QFactory
we also present the security against abort scenario that could be achieved based
on a quantum version of Yao’s XOR Lemma. However, these additional proper-
ties require stronger basic assumptions that we leave as an open question to be
removed or proven correct separately.

2 Preliminaries

We assume basic familiarity with quantum notions, a good reference is [NC10].
For a state |+θ〉 = 1√

2
(|0〉+eiθ |1〉), where θ ∈ {0, π4 , ...,

7π
4 }, we use the notation:

θ =
π

4
L

Additionally, as L is a 3-bit string, we write it as L = L1L2L3, where L1, L2, L3

represent the bits of L.
As a result when we refer to the basis of the |+θ〉 state, it is equivalent to referring
to the last 2 bits of L, thus saying that nothing is leaked about the basis of this
state, is equivalent to saying nothing is leaked about the bits L2 and L3.
For a set of 4 quantum states {|0〉 , |1〉 , |+〉 , |−〉}, we denote the index of each
state using 2 bits: B1, B2, with B1 = 0 if and only if the state is |0〉 or |1〉,
and B2 = 0 if and only if the state is |0〉 or |+〉, i.e. HB1XB2 |0〉. We will use
interchangeably the Dirac notation and the basis/value notation.

In the following sections, we will consider polynomially bounded malicious
adversaries, usually denoted by A. The honest clients will be denoted with the
π letter, and both honest parties and adversaries can output some values, that
could eventually be used in other protocols. To denote that two parties πA and A
interact in a protocol, and that πA outputs a while A outputs b, we write (a, b)←
(πA‖πB) (we may forget the left hand side, or replace variables with underscores
“ ” if it is not relevant). We can also refer to the values of the classical messages
send between the two parties using something like Pr [a = accept | (πA‖A)],
and this probability is implicitly over the internal randomness of πA and A.
To specify a two-party protocol, it is enough to specify the two honest parties
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(πA, πB). Moreover, if the protocol is just made of one round of communication,
we can just write y ← A(x) with x the first message sent to A, and y the
messages sent from A. Finally, a value with a tilde, such as d̃, represents a guess
from an adversary.

We are considering protocols secure against quantum adversaries, so we as-
sume that all the properties of our functions hold for a general Quantum Poly-
nomial Time (QPT) adversary, rather than the usual Probabilistic Polynomial
Time (PPT) one. We will denote D the domain of the functions, while D(n) is
the subset of strings of length n. The following definitions are for PPT adver-
saries, however in this paper we will generally use quantum-safe versions of those
definitions and thus security is guaranteed against QPT adversaries.

Definition 1 (One-way). A function family {fk : D → R}k∈K is one-way if:

– There exists a PPT algorithm that can compute fk(x) for any index k, out-
come of the PPT parameter-generation algorithm Gen and any input x ∈ D;

– Any QPT algorithm A can invert fk with at most negligible probability over
the choice of k:

Pr
k←Gen(1n)

x←D
rc←{0,1}∗

[f(A(k, fk(x)) = f(x)] ≤ negl(n)

where rc represents the randomness used by A

Definition 2 (Collision resistant). A family of functions {fk : D → R}k∈K
is collision resistant if:

– There exists a PPT algorithm that can compute fk(x) for any index k, out-
come of the PPT parameter-generation algorithm Gen and any input x ∈ D;

– Any QPT algorithm A can find two inputs x 6= x′ such that fk(x) = fk(x′)
with at most negligible probability over the choice of k:

Pr
k←Gen(1n)
rc←{0,1}∗

[A(k) = (x, x′)such that x 6= x′ and fk(x) = fk(x′)] ≤ negl(n)

where rc is the randomness of A (rc will be omitted from now).

Definition 3 (k-regular). A deterministic function f : D → R is k-regular if
∀y ∈ Im f , we have |f−1(y)| = k.

Definition 4 (Trapdoor Function). A family of functions {fk : D → R} is
a trapdoor function if:

– There exists a PPT algorithm Gen which on input 1n outputs (k, tk), where
k represents the index of the function. We also suppose that it is possible to
derive the index k from the trapdoor tk using a function Pub, i.e. k = Pub(tk)

– {fk : D → R}k∈K is a family of one-way functions;

– There exists a PPT algorithm Inv, which on input tk (which is called the
trapdoor information) output by Gen(1n) and y = fk(x) can invert y (by
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returning all preimages of y6) with non-negligible probability over the choice
of (k, tk) and uniform choice of x.

Definition 5 (Hardcore Predicate). A function hc : D → {0, 1} is a hard-
core predicate for a function f if:

– There exists a PPT algorithm that, for any input x, can compute hc(x);

– Any QPT algorithm A when given f(x), can compute hc(x) with negligible
better than 1/2 probability:

Pr
x←D(n)
rc←{0,1}∗

[A(f(x), 1n) = hc(x)] ≤ 1
2 + negl(n), where rc is the randomness

used by A;

The Learning with Errors problem (LWE) is described in the following way:

Definition 6 (LWE problem (informal)). Given s, an n dimensional vector
with elements in Zq, for some modulus q, the task is to distinguish between a
set of polynomially many noisy random linear combinations of the elements of s
and a set of polynomially many random numbers from Zq.

Regev [Reg05] and Peikert [Pei09] have given quantum and classical reduc-
tions from the average case of LWE to problems such as approximating the
length of the shortest vector or the shortest independent vectors problem in the
worst case, which are conjectured to be hard even for quantum computers.

Theorem 1 (Reduction LWE, [Reg05, Theorem 1.1]). Let n, q be inte-
gers and α ∈ (0, 1) be such that αq > 2

√
n. If there exists an efficient algorithm

that solves LWEq,Ψ̄α , then there exists an efficient quantum algorithm that ap-
proximates the decision version of the shortest vector problem GapSVP and the
shortest independent vectors problem SIVP to within Õ(n/α) in the worst case.

Definition 7 (Function Unitary). For any function f : A → B that can
be described by a polynomially-sized classical circuit, we define the controlled-
unitary Uf , as acting in the following way:

Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 ∀x ∈ A ∀y ∈ B, (2.1)

where we name the first register |x〉 control and the second register |y〉 target.
Given the classical description of this function f , we can always define a QPT
algorithm that efficiently implements Uf .

6 While in the standard definition of trapdoor functions it suffices for the inversion
algorithm Inv to return one of the preimages of any output of the function, in
our case we require a two-regular tradpdoor function where the inversion procedure
returns both preimages for any function output.
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3 The Malicious 4-states QFactory Protocol

3.1 Requirements and protocol

The Malicious 4-states QFactory Protocol described Protocol 3.1 uses a family
of cryptographic functions F and a function h having the following properties
(see Section 4 to see how this family of functions can be constructed from a
family of injective, trapdoor and (pseudo) homomorphic functions):

Definition 8 (2-regular homomorphic-hardcore family). A family F =
{fk : D′ → R}k∈K is said to be a 2-regular homomorphic-hardcore family with
respect to hk : D′ → {0, 1} and d0 : T → {0, 1} (T is the set of trapdoors tk) if:

– it is 2-regular, collision resistant and trapdoor
– for all k, hk can be described by a polynomial classical circuit
– d0 is a hardcore predicate for Pub, i.e. given a random index k = PubF (tk),

it should be impossible to get d0 := d0(tk) with probability better than 1/2 +
negl(n), i.e. for any QPT adversary A:

Pr [A(k) = d0(tk) | (k, tk)← GenF ] ≤ 1

2
+ negl(n) (3.1)

– for all k ∈ K and x, x′ ∈ D′ such that fk(x) = fk(x′), we have:

hk(x)⊕ hk(x′) = d0 (3.2)

Note that in our specific costruction h does not depend on k, so we might omit
the subscript k, and just use h, for simplicity.
We also extend this definition to δ-2-regular homomorphic-hardcore family, when
the function is δ-2-regular, i.e. 2-regular with probability δ (see Definition 15 for
a formal definition).

Protocol 3.1 Malicious 4-states QFactory Protocol: classical delegation of the
BB84 states
Requirements:
Public: A δ-2-regular homomorphic-hardcore family F with respect to {hk} and d0, as
described above. For simplicity, we will represent the sets D′ (respectively R) using n
(respectively m) bits strings: D′ = {0, 1}n, R = {0, 1}m. In this protocol, we require δ
to be negligibly close to 1, see Section 7 for an extensions to a constant δ.
Stage 1: Preimages superposition
– Client: runs the algorithm (k, tk)← GenF (1n).
– Client: instructs Server to prepare one register at ⊗nH |0〉 and second register initi-
ated at |0〉m.
– Client: sends k to Server and the Server applies Ufk using the first register as control
and the second as target.
– Server: measures the second register in the computational basis, obtains the out-
come y. Here, in an honest run, the Server would have a state (|x〉+ |x′〉)⊗ |y〉 with
fk(x) = fk(x′) = y and y ∈ Im fk.
Stage 2: Output preparation
– Server: applies Uhk on the preimage register |x〉+ |x′〉 as control and another qubit
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initiated at |0〉 as target. Then, measures all the qubits, but the target in the { 1√
2
(|0〉±

|1〉)} basis, obtaining the outcome b = (b1, ..., bn). Now, the Server returns both y and
b to the Client.
– Client: using the trapdoor tk computes the preimages of y:

– if y does not have exactly two preimages x, x′ (the server is cheating with over-
whelming probability), defines B1 = d0(tk), and chooses B2 ∈ {0, 1} uniformly at
random

– if y has exactly two preimages x, x′, defines B1 = hk(x)⊕ hk(x′) = d0(tk), and B2

as defined in Theorem 2.

Output: If the protocol is run honestly, the state that the Server has produced is
(with overwhelming probability) the BB84 state |out〉 = HB1XB2 |0〉, having the basis
B1 = hk(x) ⊕ hk(x′) = d0 (see Theorem 2 for the exact value of B2). The output of
the Server is |out〉, and the output of the Client is (B1, B2).

3.2 Correctness of Malicious 4-states QFactory

In an honest run, the description of the output state of the protocol depends on
measurement results y ∈ Im fk and b, but also on the 2 preimages x and x′ of y.

The output state of Malicious 4-states QFactory belongs to the set of states
{|0〉 , |1〉 , |+〉 , |−〉} and its exact description is the following:

Theorem 2. In an honest run, with overwhelming probability the output state
|out〉 of the Malicious 4-states QFactory Protocol (Protocol 3.1) is a BB84 state
whose basis is B1 = hk(x)⊕ hk(x′) = d0, and:

– if d0 = 0, then the state is |hk(x)〉 (computational basis, also equal to
|hk(x′)〉)

– if d0 = 1, then if
∑
i bi · (xi ⊕ x′i) = 0 mod 2, the state is |+〉, otherwise the

state is |−〉 (Hadamard basis).

i.e.

|out〉 = HB1XB2 |0〉 (3.3)

with

B1 = hk(x)⊕ hk(x′) = d0 (3.4)

B2 = (d0 × (b · (x⊕ x′)))⊕ h(x)h(x′) (3.5)

(the inner product is taken modulo 2, and x⊕ x′ is a bitwise xor)

Proof. The operations performed by the quantum server, can be described as:

|0〉 ⊗ |0n〉 ⊗ |0m〉 I2⊗H⊗n⊗I2⊗m−−−−−−−−−−→ |0〉 ⊗
∑
x∈D
|x〉 ⊗ |0m〉

I2⊗Ufk−−−−−→

|0〉 ⊗
∑
x∈D
|x〉 ⊗ |fk(x)〉 fk2-regular−−−−−−−→ |0〉 ⊗

∑
y∈Im(fk)

(|x〉+ |x′〉)⊗ |y〉
I2⊗I2⊗n⊗M⊗mZ−−−−−−−−−−→

|0〉 ⊗ (|x〉+ |x′〉)⊗ |y〉 Ũh⊗I2⊗m−−−−−−→ (|h(x)〉 ⊗ |x〉+ |h(x′)〉 ⊗ |x′〉)⊗ |y〉
I2⊗M⊗nX ⊗I2

⊗m

−−−−−−−−−−→

|out〉 ⊗ |b1〉 ...⊗ |bn〉 ⊗ |y〉 ⇒ |out〉 = Hd0Xd0(b·(x⊕x′))⊕h(x)h(x′) |0〉
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|0〉

Ũh

|out〉

|0〉 H

Ufk

MX ⇒ b

|0〉 H

· · · · · ·

|0〉 H

|0〉 H

|0〉
MZ ⇒ y· · ·

|0〉

Fig. 1. The circuit computed by the Server

where Ũh is a “swapped” Uh, acting on the first register as target and input

register as control: |0〉 |x〉 Ũh−−→ |h(x)〉 |x〉.
The server initially prepares the state |0n〉⊗ |0m〉, where we will call the first

register the preimage register, and the second one the image register.
After applying Ufk we obtain the state

∑
x∈D |x〉 |fk(x)〉. Using the 2-regularity

property of fk, after measuring the second register (in the computational basis)
and obtaining the measurement result y ∈ Im(fk), the state can be expressed as
(|x〉 + |x′〉) ⊗ |y〉, where x and x′ are the 2 unique preimages of y. By omitting
the image register and by initializing another qubit in the |0〉 state and using

the above notation, the input to the unitary Ũh can be written as:

(|x〉+ |x′〉)⊗ |0〉 (3.6)

Ũh is basically Uh acting on the input and the new register, and after we apply
it, we obtain the state:

(|x〉 ⊗ |h(x)〉+ |x′〉 ⊗ |h(x′)〉 (3.7)

As a final step, we measure all but the last qubit of this state in the { 1√
2
(|0〉±|1〉)}

basis (obtaining the measurement result string b), which is equivalent to applying
H⊗n on the input register, and then measuring it in the computational basis.
Thus, after applying the Hadamard gates (which is a Fourier transformation in
Z2), we get:

2n−1∑
b=1

(−1)b·x |b〉 ⊗ |h(x)〉+

2n−1∑
b=1

(−1)b·x
′
|b〉 ⊗ |h(x′)〉
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After obtaining the measurement result b, the remaining state becomes (up to a
global phase):

|out〉 = (−1)b·x |h(x)〉+ (−1)b·x
′
|h(x′)〉

= |h(x)〉+ (−1)b·(x⊕x
′) |h(x′)〉

Therefore, we have:

– if h(x) = h(x′) (i.e. d0 = h(x) ⊕ h(x′) = 0, using Equation 3.2), we have
|out〉 = |h(x)〉 = Hd0Xh(x) |0〉

– if h(x) 6= h(x′) (i.e. d0 = h(x)⊕h(x′) = 1) we have |out〉 = |+〉 iff b·(x⊕x′) =
0 mod 2, and |−〉 otherwise. Thus, |out〉 = Hd0Xb·(x⊕x′) |0〉

Hence, |out〉 = HB1XB2 with B1 = d0 = h(x)⊕ h(x′), and

B2 = (1⊕ h(x)⊕ h(x′))h(x) + (h(x)⊕ h(x′))(b · (x⊕ x′)) mod 2

= h(x) + h(x)2 + h(x)h(x′) + d0(b · (x⊕ x′)) mod 2

= h(x) + h(x) + h(x)h(x′) + d0(b · (x⊕ x′)) mod 2

= h(x)h(x′)⊕ d0(b · (x⊕ x′)) mod 2

It can be noticed that, in an honest run of the protocol, using y and the
trapdoor information of the function fk, the Client obtains x and x′ and thus
can efficiently determine what is the output state that the Server has prepared.
In the next section, we prove that no malicious adversary can distinguish between
the 2 possible bases {|0〉, |1〉} and {|+〉, |−〉} of the output qubit, or equivalently
distinguish whether B1 is 0 or 1.

3.3 Security against Malicious Adversaries of Malicious 4-states
QFactory

In any run of the protocol, honest or malicious, the state that the client believes
that the server has is given by Theorem 2. Therefore, the task that a malicious
server wants to achieve, is to be able to guess, as good as he can, the description
of the output state that the client (based on the public communication) thinks
the server has produced. In particular, in our case, the server needs to guess the
bit B1 (corresponding to the basis) of the (honest) output state.

Note that we want to make sure that the server cannot guess the basis bit B1

(for most applications ([BFK09, FK17]) basis blindness is sufficient as indicated
in [DK16]), and we do not care about the value bit B2 simply because it is not
possible to say that B2 cannot be guessed with probability better than random.
Indeed, even in the honest case, or in the “perfect” case with a quantum channel,
the server can always measure the qubit |out〉 he has to extract the value bit (for
example by measuring it in a random basis (computational or Hadamard) and
outputting the outcome of the measurement, he will succeed with probability
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1
2 ×

1
2 + 1

2 × 1 = 3
4 > 1/2). Additionally, partial blindness of B2 is implicit in our

work, since learning B2 leads to leaking partial information about B1, in the case
that the server possesses the honest output state HB1XB2 |0〉. Optimal bounds
for B2s leakage are not known if the server is malicious and without verification,
is non-trivial and will be studied as a future work.

Definition 9 (4 states basis blindness). We say that a protocol (πA, πB)
achieves basis-blindness with respect to an ideal list of 4 states
S = {SB1,B2

}(B1,B2)∈{0,1}2 if:

– S is the set of states that the protocol outputs, i.e.:

Pr [|φ〉 = SB1B2 ∈ S | ((B1, B2), |φ〉)← (πA‖πB)] ≥ 1− negl(n)

– and no information is leaked about the index bit B1 of the output state of the
protocol, i.e for all QPT adversary A:

Pr
[
B1 = B̃1 | ((B1, B2), B̃1)← (πA‖A)

]
≤ 1/2 + negl(n)

Theorem 3 (Malicious 4-states QFactory is secure). Protocol 3.1 satisfies
4-states basis blindness with respect to the ideal list of states
S = {HB1XB2 |0〉}B1,B2 = {|0〉 , |1〉 , |+〉 , |−〉}.

Proof. The advantage of our construction is that this theorem is now a direct
application of the definition of the family F (Definition 8). Indeed, let us suppose
that there exists a QPT adversary A such that:

Pr
[
B1 = B̃1 | ((B1, B2), B̃1)← (πA‖A)

]
≥ 1/2 +

1

poly(n)

where πA (respectively πB) is the honest Client (respectively Server) of Pro-
tocol 3.1. From Theorem 2, we notice that the value of B1 is always equal to
d0(tk). Moreover, our adversary is just a one-round adversary, so we can rewrite
the previous equation as:

Pr [d0(tk) = A(k) | (k, tk)← GenF ] ≥ 1/2 +
1

poly(n)

But d0 is a hardcore predicate, so this contradicts Equation 3.1. So no QPT
adversary A can guess the basis B1 with probability better than 1/2 + negl(n).

Remark 1. In the run of the Malicious 4-states QFactory protocol, the adver-
sary/server has no access to the abort/accept bit, specifying whether the Client
wants to abort the protocol after receiving the image y from the server (the
abort occurs when y does not have exactly two preimages). So that’s why this
first protocol is correct with overwhelming probability only when δ > 1−negl(n).
See Section 7 to see how we address this issue for constant δ.
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4 Function Implementation

4.1 General construction of 2-regular homomorphic-hardcore family

To complete the construction of Malicious 4-states QFactory, we must find func-
tions F , h, and d0 satisfying the properties described in Definition 8. We first ex-
plain a general method to construct a 2-regular function from an injective homo-
morphic function (the generalisation to δ-2-regularity from pseudo-homomorphic
functions is treated in Section I), and we give in the next section a candidate
that achieves the two other properties required in our definition (homomorphic-
hardcore predicate) whose security is based on the cryptographic problem LWE.

Lemma 1. It is possible to construct a family of functions F : {fk′ : D ×
{0, 1} → R}, h′k′ and d0 that are a 2-regular homomorphic-hardcore family (Def-
inition 8) from a family of functions G = {gk : D → R}k that is:

– injective

– trapdoor

– homomorphic 7

and such that there exists a homomorphic hardcore predicate hk : D → {0, 1} for
all gk ∈ G.

Proof. Because G is homomorphic, there exist 2 operations ” +D ” acting on D
and ” +R ” acting on R such that:

gk(z1 +D z2) = gk(z1) +R gk(z2) ∀k ∀z1, z2 ∈ D (4.1)

The function h : D → {0, 1} is homomorphic, so:

h(z1)⊕ h(z2) = h(z2 +D z1) ∀z1, z2 ∈ D (4.2)

and because we are working modulo 2 it is easy to see that:

h(z1)⊕ h(z2) = h(z2 −D z1) ∀z1, z2 ∈ D, (4.3)

where ”−D” is the inverse of the operation ”+D”.

Then, the functions F , h′k, d0 are constructed as follow. First, to generate a
private key, we generate a private key of G, and we pick a random element z0:

7 We only require G to be homomorphic with good probability for a single application
of the operation +D and this would result in F being 2-regular with good probability,
as proven in Section I.
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GenF (1n)

1 : (k, tk)←$GenG(1n)

2 : z0 ←$D
3 : y0 = gk(z0)

4 : t′k′ = (tk, z0)

5 : k′ = (k, y0)

6 : return (k′, t′k′)

And then we define fk′ : D × {0, 1} → R as:

fk′(z, c) = gk(z) +R c · y0

We also define h′k′ : D × {0, 1} → R as:

h′k′(z, c) = hk(z)

and d0 : T ′ → {0, 1} (where T ′ is the sets of trapdoors t′k′) as

d0(tk, z0) = hk(z0)

Now we need to check the properties of F , h′k′ and d0:

– the 2-regularity of F comes directly from the injectivity of G: for any y ∈
Im fk, we have one preimage (g−1(y), 0) and one preimage (g−1(y)− z0, 1).
The past two formula also show the trapdoor property using the fact that G is
a trapdoor family (more details can be found in Theorem 6.1, in [CCKW18]).

– the collision-resistant property comes from the homomorphicity , injectivity,
and one-wayness of G: if we find a collision, we can write a reduction that
breaks the one-wayness of G. Indeed by injectivity two different preimages
have a different c, i.e. fk(z, 0) = fk(z′, 1). So gk(z) = gk(z′) + gk(z0), i.e.
z0 = z− z′. So it means that from a collision we can find z0, which is absurd
because gk is one way.

– h′k′ is equal to hk, so it is possible to compute it efficiently
– d0(t′k′) = hk(z0), and hk is a hardcore predicate, so d0 is also hardcore
– The last condition is respected, because if fk(z, 0) = fk(z′, 1),

h′k′(z, 0)⊕ h′k′(z′, 1) = hk(z)⊕ hk(z′)

= hk(z −R z′)
= hk(z0)

= d0(t′k′) = d0

4.2 Construction of δ-2-regular homomorphic-hardcore family F

We will now give an explicit implementation of a family G that is injective,
trapdoor, (pseudo) homomorphic with a homomorphic-hardcore predicate d0,
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and then we will rely on a construction similar to Lemma 1 to produce a family
F , h, and d0 with the properties described in Definition 8 needed by Protocol 3.1
and Protocol 7.1. Note that we defined in a previous work [CCKW18] a similar
construction, but without the additional homomorphic-hardcore property.

The starting point is the injective, trapdoor one-way family of functions
Ḡ = {ḡK : Znq ×Em → Zmq }K8 from [MP12] (where E defines the set of integers
bounded in absolute value by some “big-enough” value µ which will be defined
later, and additions are matrix additions modulo q, where q is an even integer).

ḡK(s, e) = Ks+ e

Then, to sample a function from the family F = {fk : Znq × Em × {0, 1} ×
{0, 1} → Zmq }, we will first sample a random matrixK ∈ Zm×nq with the trapdoor
matrix R using the construction from [MP12], as well as a uniform random vector
s0 ∈ Znq , a random small error vector e0 ∈ Zmq sampled according to a “small-
enough” Gaussian distribution Dmα′q on integers and a (uniform) random bit

d0 ∈ {0, 1}. Now, after defining the constant vector v =
(
q
2 0 . . . 0

)T
, and

y0 := Ks0 + e0 + d0 ×


q
2
0
...
0

 = Ks0 + e0 + d0 × v

the trapdoor is set to tk := (R, s0, e0, d0), and the public index is k = (K, y0).
We can already note at that step that d0 is a hardcore-predicate:

Lemma 2. The function d0(tk) := d0 is a hardcore predicate of k, i.e. for all
QPT adversaries A,

Pr[A(k) = d0(tk)] ≤ 1

2
+ negl(n)

The proof of Lemma 2 is in Section A.
Now, we can define fk : Znq × Em × {0, 1} × {0, 1} → Zmq as follow:

fk(s, e, c, d) = Ks+ e+ c× y0 + d× v

and h : Znq × Em × {0, 1} × {0, 1→ {0, 1} as:

h(s, e, c, d) = d

The intuition behind this construction is more or less the same as the general
construction presented in Subsection 4.1. Moreover, the first two terms As + e
are useful for the security, the c × y0 term is needed to ensure the 2-regularity
(the two images will differ by (s0, e0, 1, d0)), and the last term d × v is mostly
useful to provide the hardcore property. More precisely:

8 The bar on top of Ḡ denotes the version where there is not yet the hardcore bit d0
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– This function cannot have more than 2 preimages because the partial func-
tions f(·, ·, c, ·) are injective (because ḡK is injective)

– h is the homomorphic-hardcore predicate required by Definition 8. Indeed,
if there is a collision, i.e. if fk(s, e, 0, d) = fk(s′, e′, 1, d′), it is easy to see that
d⊕d′ = d0 (q is even, and operations are modulo q), i.e. that h(x)⊕h(x′) = d0

– finally, for an appropriate choice of parameters (see Lemma 3), this function
is 2-regular with good probability. Indeed, if for a random element (s, e, 0, d)
there exists (s′, e′, 1, d′) with fk(s, e, 0, d) = fk(s′, e′, 1, d′), then e = e′ + e0.
But e0 is sampled from a set significantly smaller than E, so with good
probability e′ = e− e0 will belong to E.

Note on the parameters: α′ is chosen to make sure that the sampled
elements are small compared to µ (the upper bound on E), but such that the
noise is still big enough for security. On the contrary, µ must stay small enough
to ensure that the function does not have more than two preimages. Our previous
work provides a set of parameters having all the required constraints:

Lemma 3 (from [CCKW18]). The family of functions F is δ-2-regular with
good (constant greater than 1/2) probability, trapdoor, one-way and collision
resistant (all these properties are true even against a quantum attacker), as-
suming that there is no quantum algorithm that can efficiently solve SIVPγ for
γ = poly(n), for the following choices of parameters:

q = 25dlog(n)e+21

m = 23n+ 5n dlog(n)e
µ = 2mn

√
23 + 5log(n)

α′ =
µ

m
√
mq

(4.4)

Moreover, we can find another set of parameters such that this probability δ is
negligibly close to one assuming that SIVPγ is secure for a superpolynomial γ
(depending on the value of δ, you may choose Protocol 3.1 (δ ∼ 1) or Protocol 7.1
(δ > 1/2)).

We can now formalize the above intuitions:

Theorem 4. The family F defined above with appropriate parameters such as
the one defined in Lemma 3 is a δ-2-regular homomorphic-hardcore family.

Proof. The proofs that hk(x)⊕hk(x′) = d0, and that gK is injective and one-way
can be found in Section A, the Lemma 3 ensures that the family is δ-2-regular,
the hardcore property comes from Lemma 2, and the other properties are trivial
to check.

5 The Malicious 8-states QFactory Protocol

In order to use the Malicious 4-states QFactory Protocol functionality for ap-
plications such as blind quantum computing [BFK09], we need to be able to
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produce states taken from the set {|+θ〉 , θ ∈ {0, π4 , ...,
7π
4 }}, always ensuring

that the bases of these qubits remain hidden. Here we prove how by obtaining
two states of Malicious 4-states QFactory Protocol, we can obtain a single state
from the 8-states set, while no information about the bases of the new output
state is leaked.

To achieve this, we need to find an operation, that in the honest case maps
the correct inputs to the outputs, in such a way, that the index of the output
state corresponding to the basis, is directly related with the bases bits of the
input states. This relation should be such that learning anything about the basis
of the output state implies learning non-negligible information about the input.
This directly means, that any computationally bounded adversary that breaks
the 8-states basis blindness of the output, also breaks the 4-states basis blindness
of at least one of the inputs.9

Protocol 5.1 Malicious 8-states QFactory

Requirements: Same as in Protocol Protocol 3.1
Input: Client runs 2 times the algorithm GenF (1n), obtaining (k1, t1k), (k2, t2k). Client
keeps t1k, t

2
k private.

Protocol:
– Client: runs Malicious 4-states QFactory algorithm to obtain a state |in1〉 and a
”rotated” Malicious 4-states QFactory to obtain a state |in2〉 (by a rotated Malicious
4-states QFactory we mean a Malicious 4-states QFactory, but where the last set of
measurements in the |±〉 basis (Figure 1) is replaced by a set of measurements in the∣∣∣±π

2

〉
basis).

– Client: records measurement outcomes (y1, b1), (y2, b2) and computes and stores the
corresponding indices of the output states of the 2 Malicious 4-states QFactory runs:
(B1, B2) for |in1〉 and (B′1, B

′
2) for |in2〉.

– Client: instructs Server to apply the Merge Gadget (Figure 2) on the states |in1〉,
|in2〉.
– Server: returns the 2 measurement results s1, s2.
– Client: using (B1, B2), (B′1, B

′
2), s1, s2 computes the index L = L1L2L3 ∈ {0, 1}3 of

the output state.
Output: If the protocol is run honestly, the state that the Server has produced is:

|out〉 = X(s2+B2)·B1ZB
′
2+B2(1−B1)+B1[s1+(s2+B2)B

′
1]R(

π

2
)B1R(

π

4
)B
′
1 |+〉 (5.1)

5.1 Correctness of Malicious 8-states QFactory

We prove the existence of a mapping M (which we will call Merge Gadget),
from 2 states |in1〉 and |in2〉, where |in1〉 ∈ {|0〉 , |1〉 , |+〉 , |−〉} and |in2〉 ∈

9 Here it is worth pointing out that a similar result (in a more complicated method) was
achieved in [DK16]. That technique however, is applied in the information theoretic
setting.
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{|+〉 , |−〉 , |+y〉 , |−y〉} to a state |out〉 =
∣∣+L·π4

〉
, where L = L1L2L3 ∈ {0, 1}3.

Namely, as defined in Protocol 5.1, M is acting in the following way:

M(|in1〉 , |in2〉) = MX,2MX,1∧Z2,3∧Z1,2

[∣∣+π
4

〉
⊗ |in1〉 ⊗ |in2〉

]
(5.2)

∣∣∣+π
4

〉
• |±〉 s1

|in1〉 Z • |±〉 s2

|in2〉 Z |out〉

Fig. 2. Merge Gadget

Theorem 5. In an honest run, the Output state of the Malicious 8-states QFac-
tory Protocol is of the form

∣∣+L·π4

〉
, where L = L1L2L3 ∈ {0, 1}3.

Proof. In an honest run, using the Merge Gadget (Figure 2) we get:

M(|in1〉 , |in2〉) = MX,2MX,1∧Z2,3∧Z1,2

[∣∣+π
4

〉
⊗ |in1〉 ⊗ |in2〉

]
(5.3)

Using the correctness of Malicious 4-states QFactory (Thereom 2), we have
that:

|in1〉 = HB1XB2 |0〉 (5.4)

|in2〉 = R(
π

2
)B
′
1ZB

′
2 |+〉 (5.5)

Thus:

|out〉 = MX,2MX,1∧Z2,3∧Z1,2

[∣∣+π
4

〉
⊗HB1ZB2 |+〉 ⊗R(

π

2
)B
′
1ZB

′
2 |+〉

]
(5.6)

Which is then equivalent to:

|out〉 = R[π(B′2 +B2 +B1 · (s1 +s2))+
π

2
(B′1 +(B2 +s2) ·B1)+

π

4
B1] |+〉 (5.7)

As a result, we obtain:

L1 = B′2 ⊕B2 ⊕ [B1 · (s1 ⊕ s2)]

L2 = B′1 ⊕ [(B2 ⊕ s2) ·B1] (5.8)

L3 = B1 (5.9)

It can also be noticed that, in an honest run of Malicious 8-states QFactory,
the client can efficiently determine L: using b1, b2, y1, y2 and the trapdoors t1k, t

2
k,

he first obtains (B1, B2) and (B′1, B
′
2), and after receiving s1, s2, he determines

the description of the state prepared by the server.
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5.2 Security against Malicious Adversaries of Malicious 8-states
QFactory

In any run of the protocol, honest or malicious, the state that the client believes
that the server has, is given by Theorem 5.
Therefore, as in the case of Malicious 4-states QFactory, the task that a malicious
server wants to achieve, is to be able to guess, as good as he can, the index of
the output state that the client thinks the server has produced. In particular,
in our case, the server needs to guess the bits L2 and L3 (corresponding to the
basis) of the (honest) output state.

Definition 10 (8 states basis blindness). Similarly, we say that a protocol
(πA, πB) achieves basis-blindness with respect to an ideal list of 8 states S =
{SL1,L2,L3

}(L1,L2,L3)∈{0,1}3 if:

– S is the set of states that the protocol outputs, i.e.:

Pr [|φ〉 = SL1,L2,L3 ∈ S | ((L1, L2, L3), |φ〉)← (πA‖πB)] = 1

– and if no information is leaked about the “basis” bits (L2, L3) of the output
state of the protocol, i.e for all QPT adversary A:

Pr
[
L2 = L̃2 and L3 = L̃3 | ((L1, L2, L3), (L̃2, L̃3))← (πA‖A)

]
≤ 1/4+negl(n)

Theorem 6. Malicious 8-states QFactory satisfies 8-state basis blindness with

respect to the ideal set of states S = {
∣∣+πL/4

〉
}L∈{0,...,7} = {|+〉 ,

∣∣+π
4

〉
, ..,
∣∣∣+ 7π

4

〉
}.

Sketch Proof (The full proof can be found in Section B.). We prove this result
by reduction showing that, if there exists a QPT adversary A that is able to
break the 8-states basis blindness property of Malicious 8-states QFactory (de-
termine the indices L2 and L3 with probability 1

4 + 1
poly1(n) for some polynomial

function poly1), then we can construct a QPT adversary A′ that can break the
4-states basis blindness of the Malicious 4-states QFactory protocol (determine
the basis bit with probability 1

2 + 1
poly2(n) , for some polynomial poly2(·)).

6 Blind Measurement Gadget

In this section we show how our basic module can be used to achieve another
task, that of blind-measurement. The task is the following: we want a classical
client to instruct a quantum server to measure one of his qubits in either the
Pauli X or Z basis, in a way that the server is not aware of which of the two
bases was actually used. We give below a gadget that achieves this task using
a single output of the Malicious QFactory 4-states. We note also, that other
blind-measurements, between different sets of bases, are also possible using our
module, but we focus on this one since it is this type of measurement needed
for post-hoc verification [FHM18] and thus is the basis for classical verification
protocols such as that of [Mah18b].
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The following gadget Fig. 3 achieves the desired task. Note, that we consider
a general state |ψ〉 where the measurement is performed on the first of its qubits
(thus the second wire in the figure represents all the non-measured qubits).
Depending on the value ofB1, the actual outcome is Z orX and the measurement
outcome is obtained from either s1 or s2. See details in Section D.

|in〉 = HB1XB2 |0〉 • H s1

Z H s2
|ψ〉

Fig. 3. Blind Measurement Gadget

7 Malicious-abort 4-states QFactory: treating abort case

In this section, we will discuss an extension of Malicious 4-states QFactory, whose
aim is to achieve basis blindness even against adversaries that try to exploit the
fact that Malicious 4-states QFactory can abort when there is only one preimage
associated to the y returned by the server. One may think that we could just
send back this accept/abort bit to the server, but unfortunately it could leak
additional information on the hardcore bit d0 (which corresponds to the basis
B1 of the produced qubit) to the server, and from an information theory point
of view, as soon as the probability of acceptance is small enough, we cannot
guarantee that this bit remains secret. On the other hand, for honest servers,
the probability of aborting is usually non-negligible, so we cannot neglect this
case.

We stress out that it is also possible to guarantee that for honest servers
this probability goes negligibly close to 1 by making an appropriate choice of
parameters for the function. In that case the initial protocol of Malicious QFac-
tory defined Section 3 is secure, but this comes (as far as we know), at the cost
of using a function with is “less” secure. More specifically, instead of having
a reduction to GapSVP with a polynomial γ, the reduction usually goes to
GapSVP with a super-polynomial γ. Such function parameters have been used
implicitly in other works [Mah18a] ([Bra18] later removed this assumption), and
for now they are believed to be secure (the best known polynomial algorithm
cannot break GapSVP with a γ smaller than exponential), but these assump-
tions are usually not widely accepted in the cryptography community, and that’s
why we aim to remove this non-standard assumption.

The solution we propose in this section uses the assumption that the classical
Yao’s XOR Lemma also applies for one-round protocols (with classical messages)
against quantum adversary. This lemma roughly states that if you cannot guess
the output bit of one round with probability better than η, then it’s hard to
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guess the output bit of t independents rounds with probability much better
than 1/2 + ηt. As far as we know, this lemma has been proven only in the
classical case (see [GNW11] for a review of this theorem as well as the main
proof methods), and other works [VW08] even extend this lemma to protocols,
and also to quantum setting [She10, KSd04]. Unfortunately, these works focus
on communication and query complexity and are not really usable in our case.

Note also that we are also working on some other proof methods to get rid
of this last assumption and to improve the efficiency of the protocol by avoiding
repetition (see Section K for more details).

In the following, we will call “accepted run” a run of Malicious 4-states
QFactory such that the y received from the server has 2 preimages (“probability
of success” also refers to the probability of this event when the server is honest),
and otherwise we call it an “aborted run”.

7.1 The Malicious-Abort 4-state QFactory Protocol

In a nutshell, the solution we propose is to run several instances of Malicious 4-
states QFactory, by remarking that we do not need to discard the aborted runs.
Indeed, it is easy to see that in these cases, the produced qubits will always be
in the same basis (denoted by 0). The idea is then to implement on the server
side a circuit that will output a qubit having as basis the XOR of all the basis
of the accepted runs (without even leaking which runs are accepted or not), and
check on client’s side that the number of accepted runs is high enough (this will
happen with probability exponentially close to 1 for honest servers). If it is the
case, the client will just output the XOR of the basis of the accepted run, and
otherwise (i.e. if the server is malicious), he will just pick a random bit value.

Unfortunately, in practice things are a bit more complicated, and in order
to be able to write the proof of security we need to divide all the t runs into nc
“chunks” of size tc, and test them individually. Here is a more precise (but still
high level) description of the protocol and proof’s ideas:

– firstly, we run t = nc × tc parallel instances of Malicious 4-states QFactory,
without revealing the abort bit for any of these instances;

– then the key point to note is that for honest servers, if yi has only one
preimage then the output qubit produced by the server at the end of the
protocol will be either |0〉 or |1〉, but cannot be |+〉 or |−〉 (with one preimage
we do not have a superposition). In other words, the basis is always the
{|0〉 , |1〉} basis (denoted as 0) so we do not really need to abort. Therefore,
at the end, (for honest runs) the basis of the output qubits will be equal for
all i ∈ [[0, t]] to βi = d0,i · ai, where ai = 1 iff yi has two preimages, and
ai = 0 otherwise. Of course, this distribution will be biased against 0, but it
is not a problem. See Lemma 4 for proof.

– then, it also appears that from t qubits in the basis β1, . . . , βt, we have a way
to produce a single qubit belonging to the set {|0〉 , |1〉 , |+〉 , |−〉} whose basis
B1 is the XOR of the basis of the t qubits, i.e. B1 = ⊕ti=1βi (see Lemma 5).
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– Then, the client will test every chunk, by checking if the proportion of ac-
cepted runs in every chunk is greater than a given value pc. If all chunks have
enough accepted runs, then the client just computes and outputs the good
value for the basis (which is the XOR of the hardcore bit of all the accepted
runs) and value bits. However, if at least one chunk doesn’t have enough ac-
cepted runs (which shouldn’t happen if the server is honest), then the client
just outputs random values for the basis and value bit, not correlated with
server’s qubit (equivalent to saying that a malicious server can always throw
the qubit and pick a new qubit, not correlated with client’s one).

– Correctness: if the probability to have two preimages for an honest server
is at least a constant pa greater than 1/2 (the parameters we proposed in
[CCKW18] have this property), and if t is chosen high enough, the fraction
of accepted runs will be close to pa, and we can show that the probability
to have a fraction of accepted runs smaller than a given constant pb <
pa is exponentially (in t) close to 0 (cf Lemma 6). So with overwhelming
probability, all the chunks will have enough accepted runs, i.e. honest servers
will have a qubit corresponding to the output of the client.

– Soundness: to prove the security of this scheme, we first prove Lemma 8
that it is impossible for any adversary to guess the output of one chunk
with a probability bigger than a constant η < 1 (otherwise we have a direct
reduction that breaks the hardcore bit property of gK). Now, using the
quantum version of Yao’s XOR Lemma that we conjecture at Conjecture 1,
we can deduce that no malicious server is able to guess the XOR of the tc
chunks/instances with probability better than 1/2 + ηtc + negl(n), which
goes negligibly close to 1/2 when tc = Ω(n).

So putting everything together, the parties will just run t = nc · tc Malicious
4-states QFactory in parallel, the client will then check if

∑
i ai is higher than

pc · tc for all the nc chunks, and if so he will set B1 = ⊕ti=1di · ai (server has
a circuit to produce a qubit in this basis as well). Otherwise B1 will be set to
a uniformly chosen random bit (it is equivalent to say that a malicious server
can destroy the qubit, and this is also unavoidable even with a real quantum
communication), and we still have correctness with overwhelming probability for
honest clients.

The exact algorithm is described in Protocol 7.1, while the security result is
shown in Theorem 7 (and the proofs can be found in Appendix J).

7.2 Correctness and security of Malicious-Abort 4-state QFactory

Now, we will formalize and prove the previous statements.

Conjecture 1 (Yao’s XOR Lemma for one-round protocols (classical messages)
against quantum adversary).
Let n be the security parameter, let fn : Xn × Yn → {0, 1} be a (possibly non-
deterministic) family of functions (usually not computable in polynomial time),
and let χn be a distribution on Xn efficiently samplable. If there exists δ(n) such

26



that |δ(n)| ≥ 1
poly(n) and such that for all polynomial (in n) quantum adversary

An : Xn → Yn × {0, 1},

Pr
[
β̃ = fn(x, y) | (y, β̃)← An(x), x← χn

]
≤ 1− δ(n)

then, for all t ∈ N∗, there is no QPT adversary A′n : X tn → Ytn×{0, 1} such that:

Pr

[
β̃ =

t⊕
i=1

fn(xi, yi) | (y1, . . . , yt, β̃)← A′n(x1, . . . , xt),∀i, xi ← χn

]

≥1

2
+ (1− δ(n))t + negl(n)

Lemma 4 (Aborted runs are useful). If πA4
and πB4

are following the
Malicious 4-states QFactory protocol honestly, and if y has not 2 preimages,
then the output qubit produced by πB4

is in the basis {|0〉 , |1〉}.

See proof in Section J.

∣∣+π/2

〉
• |±〉 s1,1

|in1〉 Z • |±〉 s1,2

∣∣+π/2

〉
• |±〉 s2,1

|in2〉 Z • |±〉 s2,2

...
...

...∣∣+π/2

〉
• |±〉 st,1

|int〉 Z • |±〉 st,2

|+〉 Z Z Z |out〉

Fig. 4. The XOR gadget circuit Gad⊕ (run on server side)

Lemma 5 (Gadget circuit Gad⊕ computes XOR). If we denote by bi the
basis of |ini〉 (equal to 0 if the basis is 0/1, and 1 if the basis is +/−), and if
we run the circuit Gad⊕ (inspired by measurement based quantum computing)
represented Figure 4 on these inputs, then basis of |out〉 is equal to ⊕ti=1bi.

See proof in Section J.
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We will now describe here the protocol of Malicious-Abort 4-states QFactory:

Protocol 7.1 Malicious-Abort 4-states QFactory Protocol

Requirements:
Public: The family of functions F and h described above, such that the probability of
having two pre-images for a random image is greater than a constant pa > 1/2.
This protocol is based on the constants tc ∈ N (number of repetitions per chunk),
nc ∈ N (number of chunks), pa ∈ (1/2, 1] (lower bound on probability of accepted run
in the honest protocol), pc ∈ (1/2, 1] < pa (fraction of the runs per chunk that must be
accepted). These constants can be chosen to have overwhelming probability of success
for honest players, and negligible advantage for an adversary trying to guess the basis.
Stage 1: Run multiple QFactories
– Client: prepares t = nc × tc public keys/trapdoors:(

(k(i,j), tk(i,j))← GenF (1n)
)
i∈[[1,nc]],j∈[[1,tc]]

The Client then sends the public keys k(i,j) to the Server, together with h.
– Server and Client: follow Protocol 3.1 t times, with the keys sent at the step before.
Client receives ((y(i,j), b(i,j)))i,j , and sets for all i, j: a(i,j) = 1 iff |f−1(y(i,j))| = 2,

otherwise a(i,j) = 0, and B
(i,j)
1 and B

(i,j)
2 like in Protocol 3.1 when a(i,j) = 1 (otherwise

B
(i,j)
1 = 0 and B

(i,j)
2 = h(f−1(y)). Server will get t outputs

∣∣in(i,j)〉.
Stage 2: Combine runs and output
– Server: applies circuit Figure 4 on the t outputs |int〉, and outputs |out〉.
– Client: checks that for all chunks i ∈ [[1, nc]] the number of accepted runs is high
enough, i.e.

∑
j a

(i,j) ≥ pctc.

– If at least one chunk does not respect this condition, then picks two random bits
B1 (the basis bit) and B2 (the value bit) and outputs (B1, B2), corresponding to
the description of the BB84 state HB1XB2 |0〉.

– If all chunks respect this condition, then sets B1 :=
⊕

i,j B
(i,j)
1 (the final basis is

the XOR of all the basis), and B2 will be chosen to match the output of Figure 4.

Lemma 6 (Probability of correctness of Malicious-Abort 4-states QFac-
tory for one chunk). If the probability to have an accepted run in Malicious
4-states QFactory with honest parties is greater than a constant pa > 1/2, i.e.

Pr
[
|f−1
k (y)| = 2 | (πA4

‖πB4
)
]
≥ pa

(where πA4
and πB4

are the honest protocols of Malicious 4-states QFactory) then
the probability to have at least pbtc accepted runs (with pb < pa, pb considered as
a constant) is exponentially (in tc) close to 1:

Pr

[∑
i

ai ≥ pbtc | (πtcA4⊕c‖π
tc
B4⊕c)

]
≥ 1− 1

e2(pa−pb)2tc
= 1− negl(tc )

(where πtcA4⊕c and πtcB4⊕c are the (honest) parties of the Protocol 7.1 restricted
on one chunk of size tc, or, equivalently tc parallel repetitions of Protocol 3.1)
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See proof in Section J.

Lemma 7 (Correctness of Protocol 7.1). The protocol Protocol 7.1 is cor-
rect with overwhelming probability as soon as t = poly(n) and tc = Ω(n), i.e.

Pr
[
|out〉 = HB1ZB2 | ((B1, B2), |out〉)← (πA‖πB)

]
≥ 1− negl(n)

See proof in Section J.

Definition 11. For any public key k and image y, we define a(k, y) = 1 iff
|f−1
k (y)| = 2, and a(k, y) = 0 otherwise.

Then, for all tc ∈ N and pc ∈ [0, 1], we define βtc,pc(k
(1), . . . , k(tc), y(1), . . . , y(tc))

as the (randomized) function that outputs a random bit if
∑
i a(k(i), y(i)) < pc ·

tc, and outputs otherwise ⊕i(a(k(i), y(i)) · d(i)
0 ), where d

(i)
0 is the hardcore bit

corresponding to k(i) := (K(i), gK(i)(z
(i)
0 )), i.e. d

(i)
0 = h(z

(i)
0 ).

Lemma 8 (Solving one chunk is difficult). Let pc ∈ ( 1
2 , 1]. Then, there

exists no polynomial adversary A such that:

Pr
[
B̃1 = βtc,pc(k

(1), . . . , k(tc), y(1), . . . , y(tc)) |

(y(1), . . . , y(tc), B̃1)← A(k(1), . . . , k(tc))
]
> η

with η = 1
2

(
1 + 1

2pc

)
, where the randomness is over the randomness of β, A,

and over the choice of (k(i))i and (y(i))i.

See proof in Section J.

Theorem 7 (Malicious-Abort QFactory is correct and secure). Assum-
ing Conjecture 1, and by ensuring that the probability of the family F to have two
preimages for any image is bigger than a constant pa > 1/2, then there exists a
set of parameters pc, tc and nc such that Protocol 7.1 is correct with probability
exponentially close to 1 and basis-blind, i.e. for any QPT adversary A:

Pr
[
B̃1 = B1 | ((B1, B2), B̃1)← (πA4⊕‖A)

]
≤ 1

2
+ negl(n)

More precisely, we need tc ∈ (1/2, pc) to be a constant, and both tc and nc need
to be polynomial in n and Ω(n).

See proof in Section J.

8 Verifiable QFactory

In the previous protocols, Malicious 4-states QFactory and Malicious 8-states
QFactory, the produced qubits came with the guarantee of basis-blindness (Defi-
nition 9 and Definition 10). While this property refers to the ability of a malicious

29



adversary to guess the honest basis bit(s), it tells nothing about the actual state
that a deviating server might produce. For a number of applications, and most
notably for verifiable blind quantum computation [FK17], the basis-blindness
property is not sufficient. What is required is a stronger property, verification,
that ensures that the produced state was essentially prepared correctly, even in
a malicious run.

8.1 Verifiable QFactory Functionality

There are two issues with trying to define a verification property for QFactory.
The first is that the adversarial server can always abort, therefore the verifica-
tion property can only ensure that the probability of non-aborting and cheat is
negligible. The second issue is that, since the final state is in the hands of the
server, the server can always apply a final deviation on the state10. This is not
different from what happens in protocols that do have quantum communication.
In that case, the adversarial receiver (server) can also apply a deviation on the
state received before using the state in any subsequent protocol. This deviation
could even be the server replacing the received state with a totally different
state.

Here, we define the strongest notion of verifiable QFactory possible, which
exactly captures the idea of being able to recover the ideal state from the real
state without any knowledge of the (secret) index of the ideal state. In Section E
we show that this notion is sufficient for any protocol that includes communi-
cation of random secret qubits of the form

∣∣+Lπ/4

〉
which includes a verifiable

quantum computation protocol. Furthermore, in Section F we show that it is
possible to relax slightly the definition of verifiable QFactory.

Definition 12 (Verifiable QFactory). Consider a party that is given a state
uniformly chosen from a set of eight states S = {ρL |L ∈ {0, 1, ..., 7}} or an
abort bit, where S is basis-blind i.e. given a state sampled uniformly at random
from S, it is impossible to guess the last two bits of the index L of the state within
the set S with non-negligible advantage. We say that this party has a Verifiable
QFactory if, it aborts with small probability and when he does not abort, there
exists an isometry Φ, that is independent of the index L, such that:

Φ(ρL)
ε
≈
∣∣+Lπ/4

〉 〈
+Lπ/4

∣∣⊗ σjunk (8.1)

where the state σjunk is independent of the index L.

It is worth stressing, that if the security setting is computational (as in this
work), the basis-blindness and the approximate equality above involve a QPT
distinguisher, while the isometry Φ needs to be computable in polynomial time.

10 However that deviation needs to be independent of anything that is secret.
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8.2 Blind Self-Testing

Before giving a verifiable QFactory protocol, we define a new concept of blind
self-testing, that will be essential in proving the security of the former. Self-
testing is a technique developed [MY03, MMMO06, vDMMS07, MHYS12, Mck14]
that ensures that given some measurement statistics, classical parties can be
certain that some untrusted quantum state (and operations), that two or more
quantum parties share, is essentially (up to some isometry) the state that the
parties believe they have. In high-level, we are going to use a test of this kind in
order to certify that the output of Verifiable QFactory is indeed the desired one.

Existing results, that we will call non-local self-testing, only deal with how
to exploit the non-locality (the fact that the quantum state tested is shared
between non-communicating parties) to test the state and operations. Naturally,
the correctness is up to a local isometry (something that the servers can apply,
while preserving the non-communication condition).

Here, instead of testing a single non-local state, we test a family of states,
where the non-locality property is replaced by the blindness property - the fact
that server is not aware (is blind) of which state from the possibly known family
of states he is actually given in each run of the protocol. To see how this is
closely related, one can imagine the usual non-local self-testing of the singlet
state, where one quantum side (Alice) actually performs a measurement (as
instructed). From the point of view of the other quantum side (Bob), he has a
single state that, in the honest run, is one of the BB84 states, while he is totally
oblivious about the basis of this state (if that was not the case, it would lead
to signalling the basis choice of Alice’s measurement). However, this is, by no
means the most general case. Here we introduce the concept of blind self-testing
formalising the above intuition.

We give here the most general case of blind self-testing and we conjecture
that it holds. In Section G we list three simpler scenarios (of increasing com-
plication) that lead to the most general case given here, following similar steps
with the extension of simple i.i.d. self-testing to fully robust and rigid self-testing
in existing literature [MMMO06, MHYS12, HYN12, RUV13, CGJV17]. In Ap-
pendix H, we provide the security proof of the first case, while full analysis of
the most general blind self-testing goes beyond the scope of this work.
Protocol 8.1 Blind self-testing: The general case

– Server prepares a single state ρtot (consisting of N qubits in the honest run). This
state has a corresponding index consisting of N 3-bit indices Li (Li ∈ {0, ..., 7} ∀i ∈
{1, ..., N}), and the server is basis blind with respect to each of these N indices, i.e.
(being computationally bounded) he cannot determine with non-negligible advantage
the two basis bits of any index Li. On the other hand, client knows the indices Li’s.
– The client, randomly chooses a fraction f of the qubits to be used as tests and an-
nounces the set of corresponding indices T = {i1, · · · , ifN} ⊂ {1, 2, ..., N} to the server.
– For each test qubit ij ∈ T , the client chooses a random measurement index Mij ∈
{000, · · · , 111} and instructs the server to measure the corresponding qubit in the{∣∣∣+Mijπ/4

〉
,
∣∣∣−Mijπ/4〉} basis.

– The server returns the test measurement results {c(ij)}.
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— For each fixed pair (L,M), the client gathers all the test positions that correspond
to that pair and from the relative frequencies, the client obtains an estimate for the
probability pL,M (where by convention we have that pL,M corresponds to the +1 out-
come, while 1− pL,M to the −1).
– If |pL,M − cos2((L−M)π/8)| ≥ ε2 for any pair (L,M) the client aborts.
Output: If the client does not abort (and this happens with non-negligible probabil-
ity), then there exists an index-independent polynomial isometry Φ = Φk1 ⊗ · · ·Φkl ,
given by products of the isometries in Fig. 5, that is applied to a random subset of
non-tested qubits i, such that:

Φ(Trall but k1,··· ,kl qubitsρtot)
ε(ε1,ε2)≈

(∣∣∣+Lk1π/4

〉
k1

⊗ · · · ⊗
∣∣∣+Lkl

π/4

〉
kl

)
⊗ σjunk(8.2)

|+〉 H • H •

|Ψ(L)〉 X ′ −iY ′

Fig. 5. The isometry of the blind self-testing. Note that the controlled gates are con-
trolled in the X-basis, i.e. ∧U12(a |+〉+b |−〉)1⊗(|ψ〉)2 = a |+〉1⊗|ψ〉2+b |−〉1⊗U |ψ〉2.

In this most general setting, we make no assumption on the state ρtot produced
by server and want to recover the full tensor product structure of the resulting
states given by Eq. (8.2). In the self-testing literature, Azuma-Hoeffding, quan-
tum de-Finetti theorems and rigidity results [Hoe63, AZU67, CFS02, BH13] were
used to uplift the simple i.i.d. case and prove security in the general setting.

8.3 The Verifiable QFactory Protocol

In this section we introduce a protocol for the final version of our functionality,
Verifiable QFactory. Here, we give the protocol, show the correctness and the
security, namely that the protocol achieves the verification property from Defi-
nition 12, based on the conjectured security of the most general blind self-testing
given in Protocol 8.1. The basic idea is the following: repeat the Malicious 8-
states QFactory multiple times, then the client chooses a random fraction of the
output qubits and uses them for a test and next instructs the server to measure
the test qubits in random angles and, finally, the client checks their statistics.
Since the server does not know the states (or to be more precise, the basis bits),
he is unlikely to succeed in guessing the correct statistics unless he is honest.
(up to some trivial relabelling). The output qubits and the measurement angles,
need to be from the set of 8-states, which is one of the reasons we wanted to
give the 8-states extension of our Malicious 4-states QFactory. 11.

11 This is actually related with Bell’s theorem as one can see later from the similarity
with self-testing results.
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Protocol 8.2 Verifiable QFactory

Requirements: Same as in Protocol Protocol 3.1
Input: Client runs N times the algorithm (k(i), t

(i)
k ) ← GenF (1n), where i ∈

{1, · · · , N} denotes the ith run. He keeps the t
(i)
k ’s private.

Protocol:
– Client: runs N times the Malicious 8-states QFactory Protocol 5.1.
– Client: records measurement outcomes y(i), b(i) and computes and stores the corre-
sponding index of the output state L(i).
– Client: instructs the server to measure a random fraction rf of the output states,

each in a randomly chosen basis of the form {
∣∣∣+M(i)π/4

〉
,
∣∣∣−M(i)π/4

〉
}. Here M (i) is

the index of the measurement instructed.
– Server: returns the measurement outcomes c(i).
– Client: for each pair (L,M) collects the results c(j) for all j’s that have the specific
pair and with the relative frequency obtains an estimate for the probability p(L,M).
– Client: aborts unless all the estimates of the probabilities p(L,M) are ε-close to the

ideal one i.e. p(L,M)
ε
≈ |
〈
+Mπ/4

∣∣+Lπ/4〉|2.
Output: Probability of non-abort and being far from the ideal state12 is negligible ε′:

p(non-abort ∧∆(ρ
L(i1)···L(iN(1−f)) , ρideal) ≥ t(n)) ≤ ε′ (8.3)

where i1, ..., iN(1−f) refer to the unmeasured qubits and where

Φ(ρideal) = ⊗N(1−f)
k=1

∣∣∣+L(ik)π/4

〉〈
+
L(ik)π/4

∣∣∣⊗ σjunk (8.4)

and σjunk is a constant density matrix, ε, ε′ are negligible functions and t(·) is a non-
negligible function.
Moreover, in an honest run, the probability of aborting is negligible and the output is:

ρhonest = ⊗N(1−f)
k=1

∣∣∣+L(ik)π/4

〉〈
+
L(ik)π/4

∣∣∣ (8.5)

Theorem 8 (correctness). If Protocol 8.2 is run honestly, it aborts with neg-
ligible probability and the output (non-measured) qubits are exactly in a product

state of the form
∣∣∣+L(ik)π/4

〉〈
+L(ik)π/4

∣∣∣. Therefore, the trivial isometry (the

identity) suffices to recover the state of Eq. (8.1), and where there is no junk
state.

Proof. In an honest run, each of the outputs of different Malicious 8-states QFac-
tory runs, are of the correct form, therefore measuring any of those outputs in
the {

∣∣±Mπ/4

〉
} basis returns the correct statistics with high probability. Hence,

the protocol does not abort, while the remaining states are also prepared cor-
rectly.

12 The distance ∆ used here depends on the setting. In our case it is understood as a
QPT distinguisher.
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Theorem 9 (security). Protocol 8.2 is a Verifiable QFactory (Definition 12),
i.e. the probability of accepting the tests and having a state far from the ideal is
negligible irrespective of the deviation of the adversary, assuming that the self-
testing Protocol 8.1 is correct.

Sketch of Proof. The outputs of the 8-states QFactory are basis blind, and sat-
isfying the measurement statistics too, leading exactly to the requirements of
the definition of general blind self-testing in Protocol 8.1. It follows that there
exists an isometry such as that requested by Eq. (8.4).

See also in Section G and Section H, where we explain how this task is very
similar with self-testing results, and provide the first step for our self-testing
result.
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Supplementary Material

A Function Construction proofs

A.1 Proof of Theorem 4, homomorphicity

To prove that gK is homomorphic, we notice that:

gK(s1, e1, d1) + gK(s2, e2, d2) = ḡK(s1, e1) + d1 · v + ḡK(s2, e2) + d2 · v mod q

= ḡK(s1 + s2 mod q, e1 + e2) + (d1 + d2) · v mod q

= gK(s1 + s2 mod q, e1 + e2, d1 ⊕ d2)

where for the last equality we used the fact that if d1, d2 ∈ {0, 1}, then d1 · q2 +
d2 · q2 mod q = (d1 ⊕ d2) · q2 mod q.

We make the following remark: the proof is constructed for the case when ḡ
is perfectly homomorphic, but it also holds in the case when ḡ is homomorphic
with high probability, resulting in g being homomorphic with the same high
probability.

A.2 Proof of Theorem 4, one-wayness

To prove the one-wayness of g, we are going to reduce it to the one-wayness
of ḡ.

Thus, we assume there exists a QPT adversary A that can invert g with
probability P and we construct a QPT adversary A′ inverting ḡ with the same
probability P .

InvertA′,K(y)

1 : d←$ {0, 1}
2 : y′ ← y + d · v
3 : (s′, e′, d′)← AK(y′)

4 : return (s′, e′)
A.3 Proof of Theorem 4, injectivity

To prove this, we will use the injectivity property of the function ḡ.

gK(s, e, d) = ḡK(s, e) + d · v

Assume there exist 2 tuples (s1, e1, d1) and (s2, e2, d2) such that g(s1, e1, d1) =
g(s2, e2, d2). To prove that g is injective we must show that (s1, e1, d1) = (s2, e2, d2).
This is equivalent to:

ḡK(s1, e1) + d1 · v = ḡK(s2, e2) + d2 · v
ḡK(s1, e1)− ḡK(s2, e2) + (d1 − d2) · v = 0 (A.1)
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Now, if d1 = d2, then we have that ḡ(s1, e1) − ḡ(s2, e2) = 0, and because ḡ is
injective, this would imply that s1 = s2 and e1 = e2 and thus g would also be
injective.
Let us suppose that d1 6= d2 and we will prove that this is impossible. Without
loss of generality we can assume that d1 = 0 and d2 = 1.

Thus, we want to show that it is impossible to have (s1, e1) and (s2, e2) such
that:

ḡK(s1, e1)− ḡK(s2, e2) = v (A.2)

Equation is equivalent to:

Ks1 + e1 −Ks2 − e2 =


q
2
0
...
0

 mod q (A.3)

This can be rewritten as:

K1,1(s1,1 − s2,1) + ...+K1,n(s1,n − s2,n) + (e1,1 − e2,1) =
q

2
mod q (A.4)

Ki,1(s1,1 − s2,1) + ...+Ki,n(s1,n − s2,n) + (e1,i − e2,i) = 0 mod q (A.5)

∀ i = 2, ...,m and where s1,i and s2,i are the i-th elements of s1 and s2 respec-
tively and e1,i and e2,i are the i-th elements of e1, respectively e2.

Now, as the function ḡK : Znq × Em → Zmq , where K ← Zm×nq is injective,
the following function is also injective:
ḡ1K1

: Znq ×Em−1 → Zm−1
q , where K1 ← Zm−1×n

q and where ḡ and ḡ1 have the
exact same definition:

ḡ1K1
(s, e) = K1s+ e mod q

More specifically, the only difference between the 2 functions is the change of
dimension from m to m− 1, but as the injectivity proof from [MP12] holds for
any m = Ω(n), then ḡ1 is also injective (if we want an exact argument, it is also
possible to imagine that instead of taking K directly, we add one more line on
top of K and e, use the lower part to recover s0, and then use classic algebra to
recover d).

Now, consider the matrix K1 obtained from K by removing the first line. As
shown above, ḡ1K1

is an injective function, thus from Equation A.5, we get that:

s1 = s2 (A.6)

e1,i = e2,i ∀ i = 2, ..,m (A.7)
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Now as s1 = s2, from Equation A.4, we obtain e1,1 − e2,1 = q
2 .

However, from the domain of ḡ, we have that: |e1,1 − e2,1| < 2µ < q
2 (where for

the last inequality we used Lemma 3). Contradiction.
A.4 Proof of Lemma 2

To prove that h is a hardcore predicate of gK , we must prove that for any
QPT adversary A, we have:

Pr s←$Znq
e←$Em

d←$ {0,1}

[A(1λ,K, gK(s, e, d)) = h(s, e, d)] ≤ 1
2 + negl(λ) (A.8)

Using the definitions of the 2 functions, we can express it as:

Pr s←$Znq
e←$Em

d←$ {0,1}

[A(1λ,K,Ks+ e+ d · v) = d] ≤ 1
2 + negl(λ) (A.9)

This is equivalent to prove that the distributions D1 = {K,Ks + e} and D2 =
{K,Ks+ e+ v} are indistinguishable13, or equivalently:

{Ki, 〈Ki, s〉+ ei}mi=1

c
≈ {Ki, 〈Ki, s〉+ ei + vi}mi=1 (A.10)

Using the decisional LWE assumption we already know that when ui are uniform
chosen from Zq, we have 14:

{Ki, 〈Ki, s〉+ ei}mi=1

c
≈ {Ki, ui}mi=1 (A.11)

Then, as v is a fixed vector, we also have that:

{Ki, 〈Ki, s〉+ ei + vi}mi=1

c
≈ {Ki, ui}mi=1

c
≈ {Ki, 〈Ki, s〉+ ei}mi=1 (A.12)

which completes the proof.
Note also that we can easily notice the homomorphicity property of the

defined function h:

h(s1, e1, d1)⊕ h(s2, e2, d2) = d1 ⊕ d2

= h(s1 + s2 mod q, e1 + e2 mod q, d1 ⊕ d2) (A.13)

B Malicious 8-states QFactory - Proof of Theorem 6

Proof. We prove the following:
If there exists a QPT adversary A that is able to break the 8-states basis blind-
ness property of Malicious 8-states QFactory (determine the indices L2 and L3

with probability 1
4 + 1

poly1(n) for some polynomial function poly1), then we can

13 It is also easy to write an explicit reduction
14 this holds because the parameters (fully given in [CCKW18, Lemma 6.9]) of the

function are chosen to make y0 indistinguishable from a random vector by a direct
reduction to LWE
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construct a QPT adversary A′ that can break the 4-states basis blindness of the
Malicious 4-states QFactory protocol (determine the basis bit with probability
1
2 + 1

poly2(n) , for some polynomial poly2(·)).

The input to A′ should be consisting only of the F family index, k, and
the description of h. Next we show how to construct A′ to determine the corre-
sponding index B1 or B′1 of the output state (of one of the 2 Malicious 4-states
QFactory runs), by using as a subroutine A that acts as follows: receives as input
2 function indices k(1) and k(2), runs Malicious 8-states QFactory and then A is
able to output the correct basis bits L2 and L3, with probability 1

4 + 1
poly1(n) .

Before we describe A′, we need to define the following 3 values:
P2 = probability that A guesses correctly L2;
P3 = probability that A guesses correctly L3;
P⊕ = probability that A guesses correctly L2 ⊕ L3;

Now, given that A is able to produce both L2 and L3 with probability
1
4 + 1

poly1(n) , this implies that max(P2, P3, P⊕) ≥ 1
2 + 1

poly2(n) for some poly-

nomial poly2(·) (see proof in Section C).
We will construct A′ such that if P3 is the maximum, then A′ can determine
B1 (break the basis blidness of the first Malicious 4-states QFactory run) and if
P2 or P⊕ is the maximum, then A′ can determine B′1 (break the basis blidness
of the the second ”rotated” Malicious 4-states QFactory run). You can find the
reduction in next page:
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A′(k, h, 1n)

1 : // k
(1)

corresponds to the input for the first run of Malicious 4-states QFactory

2 : // - with the output index (B1, B2), while k corresponds to

3 : // the input for the second run - with the output index (B
′
1, B

′
2)

4 : (k(1), t
(1)
k )←$GenF (1n)

5 : // As the probability P of successfully guessing L2 and L3 is
1

4
+

1

poly1(n)

6 : // We know that max(P2, P3, P⊕) ≥
1

2
+

1

poly2(n)

7 : if P3 = max(P2, P3, P⊕)

8 : // we break the basis-blindness of the first Malicious 4-states QFactory by determining B1

9 : (y(1), y(2), b(1), b(2), s1, s2), (L̃2, L̃3)← A(k, k(1), h)

10 : // (y
(1)
, y

(2)
, b

(1)
, b

(2)
, s1, s2) represents the classical communication received from A

11 : // during the run of Malicious 8-states QFactory, and

12 : // (L̃2, L̃3) - are the guesses of A for the indices of the outcome

13 : B̃1 ← L̃3

14 : return B̃1// as B1 = 1⊕ L3 as seen in Eq. 5.9 and

15 : // we have success probability ≥
1

2
+

1

poly2(n)

16 : else

17 : // we break the basis-blindness of the second Malicious 4-states QFactory by determining B
′
1

18 : (y(1), y(2), b(1), b(2), s1, s2), (L̃2, L̃3)← A(k(1), k, h)

19 : // (y
(1)
, y

(2)
, b

(1)
, b

(2)
, s1, s2) represents the classical communication received from A

20 : // during the run of Malicious 8-states QFactory, and

21 : // (L̃2, L̃3) - are the guesses of A for the indices of the outcome

22 : (z(1), z′(1))← InvF (y(1), t
(1)
k )

23 : B1 ← h(z(1))⊕ h(z′(1))

24 : B2 ← [b(2)n +
∑

(z
(2)
i ⊕ z

′(2)
i ) · b(2)i ]B1 + h(z(2))(1−B1) mod 2

25 : if P2 = max(P2, P3, P⊕)

26 : // Then B
′
1 = L2 ⊕ B1 · (B2 ⊕ s2) as seen in Eq. 5.8

27 : B̃′1 ← L̃2 ⊕ [B1 · (B2 ⊕ s2)]

28 : return B̃′1

29 : if P⊕ = max(P2, P3, P⊕)

30 : B̃′1 ← L̃2 ⊕ L̃3 ⊕B1 ⊕ [B1 · (B2 ⊕ s2)]

31 : return B̃′1
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C Probability of guessing two predicates

Lemma 9 (Implication of guessing two predicates).
Let (a, b) ∈ {0, 1}2 be two bits sampled uniformly at random. Let f be any
function of (a, b) (eventually randomized). Then if A is an adversary such that
Pr[A(f(a, b)) = (a, b)] ≥ 1/4 + 1

poly(n) (where the probability is taken over the

choice of a and b, the randomness of f and A), then either:

– A is good to guess a, i.e.:

P1 = Pr
[
ã = a | (ã, b̃)← A(f(a, b))

]
≥ 1/2 + 1/poly(n)

– A is good to guess b, i.e.:

P2 = Pr
[
b̃ = b | (ã, b̃)← A(f(a, b))

]
≥ 1/2 + 1/poly(n)

– A is good to guess the XOR of a and b, i.e.:

P⊕ = Pr
[
ã⊕ b̃ = a⊕ b | (ã, b̃)← A(f(a, b))

]
≥ 1/2 + 1/poly(n)

Proof. Let’s denote by:

– e1 = Pr
[
ã 6= a and b̃ 6= b | (ã, b̃)← A(f(a, b))

]
– e2 = Pr

[
ã = a and b̃ 6= b | (ã, b̃)← A(f(a, b))

]
– e3 = Pr

[
ã 6= a and b̃ = b | (ã, b̃)← A(f(a, b))

]
– e4 = Pr

[
ã = a and b̃ = b | (ã, b̃)← A(f(a, b))

]
Now, let us assume that the probability to do a correct guess is good, i.e. e4 ≥
1
4 + 1

poly(n) . Because the probability of guessing correctly a (resp b) is bad, we

have e2 + e4 ≤ 1
2 + negl(n) (resp. e3 + e4 ≤ 1

2 + negl(n)), so e2 ≤ 1
4 + negl(n)

(resp. e3 ≤ 1
4 +negl(n)). So e2+e3 ≤ 1

2−
1

poly(n) , and because e1+e2+e3+e4 = 1,

we get e1 + e4 ≥ 1
2 + 1

poly(n) . But e1 + e4 is exactly the probability to guess the

XOR, i.e.

Pr
[
ã⊕ b̃ = a⊕ b | (ã, b̃)← A(f(a, b))

]
≥ 1

2
+

1

poly(n)

D Proofs for blind measurement gadget Figure 3

Assume the server has a state |Ψ〉AE , where A is single qubit Hilbert space.
We say that the server performed a Z measurement if with probability pZ,Ψ (m)
he obtains the outcome m and his remaining (non-measured) state is at

∣∣ΨZm〉E .

Similarly for X measurement, we have pX,Ψ (m) and
∣∣ΨXm 〉E . Note, that the state

|Ψ〉AE can be written in either basis:
∑
m ψ

X
m |m〉A

∣∣ΨXm 〉E or
∑
m ψ

Z
m |m〉A

∣∣ΨZm〉E ,

where |ψXm |2 = pX,Ψ (m) and |ψZm|2 = pZ,Ψ (m).
As notation, let us call pu(m) = 1/2 the unbiased distribution.
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Lemma 10 (Correctness). Following Figure 3 results in measuring the first
qubit of the state |Ψ〉AE in the X-basis when B1 = 0 and in the Z-basis when
B1 = 1.

Proof. To check that Figure 3 does the desired functionality (in the honest run),
we check separately the cases for different values of B1.

Case B1 = 0: The output state is |s1〉 |s2〉
∣∣ΨXs2⊕B2

〉
E

, while the probability to
obtain p(s2) = pX,Ψ (s2 ⊕B2) and s1 occurs with probability 1/2 = pu(s1).

Case B1 = 1: The output state is |s1〉 |s2〉
∣∣ΨZs1⊕B2

〉
E

, while the probability to
obtain p(s1) = pZ,Ψ (s1 ⊕B2) and s2 occurs with probability 1/2 = pu(s2).

We can see that the remaining state is indeed the correct one (provided
one “corrects” the measurement outcomes by adding the B2 bit). Similarly the
probabilities are the desired ones, with only subtlety, that the relevant measure-
ment outcome varies. If the measurement performed was X it is s2 that is the
important measurement bit, while if the measurement was Z it is the bit s1.

Lemma 11 (Security). An adversarial server cannot find out the basis of the
measurement, irrespective of the state that he wants to measure or his deviation,
with any non-negligible probability.

Sketch Proof. The key idea is that an adversary that could succeed in this task,
could use this strategy to break the (assumed) blindness of the input, and works
by contradiction constructing the corresponding reduction.

Consider a QPT adversary A, that for some fixed state |Φ〉AE , participates
at the given blind-measurement protocol (but can deviate as he wishes) and
succeeds in guessing the basis of the measurement that is to be performed with
non-negligible probability 1

p(n) . Then we construct another QPT adversary A′
that succeeds in breaking the security of the basic QFactory protocol with same
(non-negligible) probability 1

p(n) .

A′(k)

1 : Run Malicious 4-states QFactory with input k and A as Server;

2 : A obtains |in〉 = HB1XB2 |0〉
3 : Apply Blind Measurement Gadget (Figure 3) on input |in〉 and |Φ〉AE
4 : return A(|Φ〉AE)// succeeds with prob

1

p(n)

E Replacing a quantum channel with verifiable QFactory
and Verifiable Quantum Computation

Here we prove that the verifiable QFactory can be used to replace any protocol
that has a quantum channel where the honest parties send random secret qubits
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of the form
∣∣+Lπ/4

〉
. We show this, with a simple reduction: if there exist a QPT

adversary A that can break the protocol with the verifiable QFactory states ρL
with non-negligible probability 1

p(n) , then there exist a QPT adversary A′ that

can break the security of the initial protocol that has quantum communication
of the form

∣∣+Lπ/4

〉
, with the same probability of success.

A′(
∣∣+Lπ/4

〉
)

1 : Prepare σjunk// junk does not depend on θ

2 : γ ←
∣∣+Lπ/4

〉 〈
+Lπ/4

∣∣⊗ σjunk

3 : γ′ ← Φ−1 (∣∣+Lπ/4

〉 〈
+Lπ/4

∣∣⊗ σjunk

)
= ρL// Φ is a QPT isometry

4 : return A(ρL)// succeeds with prob
1

p(n)

One of the most important possible applications of Verifiable QFactory is the
classical client verifiable blind quantum computation. In particular, the verifiable
blind quantum computation protocol of [FKD18] requires quantum communica-
tion in the beginning of the protocol and consists of strings of states of the form∣∣+Lπ/4

〉
sent from the client to the server. According to our proof above, this

means that the protocol of [FKD18] is as secure as a classical client protocol
that replaces the quantum channel with verifiable QFactory.

F Strong Blindness

We prove here that for our purposes, it is possible to slightly relax Definition 12.
In particular, given that the set of states S = {ρL |L ∈ {0, 1, ..., 7}} is basis-
blind, and that there exists an index-independent isometry Φ that maps a state
ρL to a state ε-close to

∣∣+Lπ/4

〉 〈
+Lπ/4

∣∣⊗σ(L), then we can prove that the junk
state σ(L) has to be independent of L and thus satisfies Definition 12.

This property is (trivially) related with what we call “strong blindness”,
since it essentially means that basis blindness (along with the existence of some
isometry) guarantees that the only information that the server can learn from L
is exactly the information he can learn in an honest run.

Definition 13 (8-states Strong Blindness). Consider a party that is given a
state uniformly chosen from a set of eight states S = {ρL |L ∈ {0, 1, ..., 7}}. We
say that S is strongly blind if the information the party can learn about the index
L is bounded by the information that one can obtain from the state

∣∣+Lπ/4

〉
.

Lemma 12 (8-states strong blindness from isometry and weak blind-
ness). Consider a party that is given a state uniformly chosen from a set of
eight states {ρL}, where the set is basis blind. Assume also that there exists an
isometry Φ, that is independent of the index L, such that

Φ(ρL)
ε
≈
∣∣+Lπ/4

〉 〈
+Lπ/4

∣∣⊗ σ(L) (F.1)
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where the state σ(L) is a general junk state. Then we can show that σ(L) should
have negligible dependence on L, and therefore, by applying the inverse of the
isometry, it satisfies 8-states strong blindness.

Proof. We prove this by contradiction. Assume that the state σ(L) does not
have negligible dependence on L. This means that one can guess L with non-
negligible advantage from a random guess, i.e. there exists some measurement
such that when applied to σ(L) the measurement outcome is L with probability
PrL(σ(L)) = 1

8 + 1
poly(n) , for some polynomial poly.

From the 8 state basis blindness condition, we have that:

σ(L) + σ(L⊕ 100)
ε
≈ σ(L′) + σ(L′ ⊕ 100) ∀ L,L′ ∈ {0, 1, ..., 7}, (F.2)

where ⊕ refers to bitwise xor.
Then, from this condition, we also deduce that: PrL⊕100(σ(L)) = 1

8 −
1

poly(n) .

Now, consider the 2 bases: {L,L ⊕ 100} and {L ⊕ 010, L ⊕ 110}. We will show
next how to construct a distinguisher between these 2 basis. The idea is to use
the information about the index L obtained from σ(L) and then perform an
optimal quantum measurement on the

∣∣+Lπ/4

〉
state given the prior knowledge

that we obtained from σ(L). This will lead to guessing information about the
basis bit with non-negligible probability.

Without loss of generality, we suppose PrL⊕010 ≥ PrL⊕110.
Then we get:

Pr (Lor L⊕ 010) = PrL + PrL⊕010 = PrL⊕100 +
2

poly(n)
+ PrL⊕010 ≥

PrL⊕100 + PrL⊕110 +
2

poly(n)
= Pr (L⊕ 100 or L⊕ 110)(F.3)

Then, to distinguish between the 2 bases, we will make a measurement on the∣∣+Lπ/4

〉
state (first register), in the basis {L ⊕ 011, L ⊕ 111}. The resulting

distinguishing probability is:

Prsuccess =
2 +
√

2

4
·
(

1

2
+

1

poly(n)

)
+

(
1− 2 +

√
2

4

)
·
(

1

2
− 1

poly(n)

)
=

1

2
+

1

poly′(n)
(F.4)

which, given the basis blindness assumption, reaches a contradiction.

G Blind self-testing intermediate scenarios

Here we introduce a number of scenarios that takes us from a very simple setting
for blind self-testing to the general case of Protocol 8.1.
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Protocol G.1 Blind Self-Testing: The independent identically distributed case
(Scenario 1)

– The server chooses eight states {|Ψ(000)〉 , |Ψ(001)〉 , · · · , |Ψ(111)〉}, such that they
are basis blind15, i.e.

∆(ρL + ρL⊕100, ρL′ + ρL′⊕100) ≤ ε1 ∀ L,L′ ∈ {0, 1, ..., 7} (G.1)

where ρL := |Ψ(L)〉 〈Ψ(L)| ∀L ∈ {0, 1, ..., 7}.
– The client chooses randomly N indices, {L1, · · · , LN}, where each Li ←
{000, · · · , 111} and sends the set of states {|Ψ(L1)〉 , |Ψ(L2)〉 , · · · , |Ψ(LN )〉} to the
server, while keeping the indices Li secret.
– The client, randomly chooses a fraction f of the qubits to be used as tests and an-
nounces the set of corresponding indices T = {i1, · · · , ifN} ⊂ {1, 2, ..., N} to the server.
– For each test qubit ij ∈ T , the client chooses a random measurement index
Mij ∈ {000, · · · , 111} and instructs the server to measure the corresponding qubit

in the
{∣∣∣+Mijπ/4

〉
,
∣∣∣−Mijπ/4〉} basis.

– The server returns the test measurement results {c(ij)}.
– For each fixed pair (L,M), the client gathers all the test positions that correspond
to that pair and from the relative frequencies, the client obtains an estimate for the
probability pL,M (where by convention we have that pL,M corresponds to the +1 out-
come, while 1− pL,M to the −1).
– If, for any pair (L,M) :

|pL,M − cos2((L−M)π/8)| ≥ ε2 (G.2)

the client aborts.
Output: If the client does not abort (and this happens with non-negligible probability),
then there exist an index-independent isometry Φ, given below in Fig. 5, such that

Φ(|Ψ(L)〉)
ε(ε1,ε2)≈

∣∣+Lπ/4

〉
⊗ |Ψ(000)〉 (G.3)

In Scenario 1, we make a number of assumptions. Firstly, the server actually
knows the classical description of all eight possible states. This is done to simplify
things (see scenario 2b), but has one disadvantage. The server can compute
ρL + ρL⊕100 and unless ∆(ρL + ρL⊕100, ρL′ + ρL′⊕100) ≤ ε1 where ∆ is the trace
distance, the server could guess the basis (with non-negligible advantage) by
performing a minimum error measurement between these two mixed states. The
measurement itself is likely to be of polynomial complexity, therefore it seems
impossible to guarantee computational basis blindness in this setting (unless,
of course, the states are also information theoretically close). For this reason,
and to simplify the first exposition to blind self-testing, we give the proof by

15 The distance represents either trace-distance in the information theoretic security
setting or QPT distinguisher in the computational security setting.
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assuming that Eq. G.1 is close in trace-distance in Section H. Now we proceed
with the other scenarios of blind self-testing, so that the relevance of this notion
for verifiable QFactory becomes apparent.

Protocol G.2 Blind self-testing: The independent non-identically distributed
case (Scenario 2a)

– The server chooses N eight-plets of states
{|Ψ(000)〉i , |Ψ(001)〉i , · · · , |Ψ(111)〉i}i∈{1,··· ,N}, such that they are basis blind,
i.e.

∆(ρi,L + ρi,L⊕100, ρi,L′ + ρi,L′⊕100) ≤ ε1 ∀ i ∈ {1, ..., N} ∀ L,L′ ∈ {0, ..., 7} (G.4)

where ρi,L := |Ψ(L)〉i 〈Ψ(L)|i.
– The client chooses randomly N indices, {L1, · · · , LN}, where each Li ←
{000, · · · , 111} and sends the set of states {|Ψ(L1)〉1 , |Ψ(L2)〉2 , · · · , |Ψ(LN )〉N} to the
server, while keeping the indices Li secret.
– The client, randomly chooses a fraction f of the qubits to be used as tests and an-
nounces the set of corresponding indices T = {i1, · · · , ifN} ⊂ {1, 2, ..., N} to the server.
– For each test qubit ij ∈ T , the client chooses a random measurement index
Mij ∈ {000, · · · , 111} and instructs the server to measure the corresponding qubit

in the
{∣∣∣+Mijπ/4

〉
,
∣∣∣−Mijπ/4〉} basis.

– The server returns the test measurement results {c(ij)}.
– For each fixed pair (L,M), the client gathers all the test positions that correspond to
that pair and from the relative frequencies, the client obtains an estimate for the prob-
ability pL,M (where by convention we have that pL,M corresponds to the +1 outcome,
while 1 − pL,M to the −1). Note, that each pL,M involves (in general) the statistics
from different states.
– If |pL,M − cos2((L−M)π/8)| ≥ ε2 for any pair (L,M) the client aborts.
Output: If the client does not abort (and this happens with non-negligible probabil-
ity), then there exists an index-independent isometry Φ, given below in Fig. 5, that if
applied to a random non-tested qubit i, is acting in the following way:

Φ(|Ψ(L)〉i)
ε(ε1,ε2)≈

∣∣+Lπ/4

〉
⊗ |Ψ(000)〉i (G.5)

We note that Scenario 2a is similar with scenario 1 with the crucial difference
that different sets of eight states are used for each of the N qubits. It is not hard
to see that very similar analysis with the one of Scenario 1 will apply, if instead
of N different sets, one has N copies of the same state, but replaces that state
with the average state defined to be ρL(average) :=

∑N
i=1 ρi,L. The result will

then hold with high probability using Hoeffding inequalities [Hoe63].
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Protocol G.3 Blind self-testing: The independent non-identically distributed
case (Scenario 2b)

– The server prepares N states |Ψ(L)〉i , i ∈ {1, · · · , N}, L ∈ {0, ..., 7}. For each of
these states, the server is basis blind, i.e. (being computationally bounded) he cannot
determine the two basis bits of the index L. On the other hand, the client does know
the index L for each of the N states.16

– The client, randomly chooses a fraction f of the qubits to be used as tests and an-
nounces the set of corresponding indices T = {i1, · · · , ifN} ⊂ {1, 2, ..., N} to the server.
– For each test qubit ij ∈ T , the client chooses a random measurement index
Mij ∈ {000, · · · , 111} and instructs the server to measure the corresponding qubit

in the
{∣∣∣+Mijπ/4

〉
,
∣∣∣−Mijπ/4〉} basis.

– The server returns the test measurement results {c(ij)}.
— For each fixed pair (L,M), the client gathers all the test positions that correspond to
that pair and from the relative frequencies, the client obtains an estimate for the prob-
ability pL,M (where by convention we have that pL,M corresponds to the +1 outcome,
while 1 − pL,M to the −1). Note, that each pL,M involves (in general) the statistics
from different states.
– If |pL,M − cos2((L−M)π/8)| ≥ ε2 for any pair (L,M) the client aborts.
Output: If the client does not abort (and this happens with non-negligible probabil-
ity), then there exist an index-independent polynomial isometry Φ, given below in Fig.
5, that if applied to a random non-tested qubit i is acting in the following way:

Φ(|Ψ(L)〉i)
ε(ε1,ε2)≈

∣∣+Lπ/4

〉
⊗ |Ψ(000)〉i (G.6)

The crucial difference in scenario 2b, is that the server prepares only one state
(not eight). In the previous scenarios, it was the client choosing which index L is
used, and thus, unless the states |Ψ(L)〉 leaked information about the (basis bits
of the) index, the server was blind. Here we impose this by requiring explicitly
that the server prepares a state that he is basis-blind with respect to its index.
There are two consequences of these differences.
First, now that the state is prepared on the server side, the client does not need to
have any quantum ability, and his part in the protocol is purely classical. Second,
since the state is prepared in the server’s side, it is clear that we can no longer be
in the information-theoretic setting, since, with unbounded computation power,
he would be able to recover the exact label L. On the positive side, the issue we
had in scenario 1, that the server could perform minimum error measurements
is no longer valid, since the server does not know the classical description of the
two states (ρi,L + ρi,L⊕100; ρi,L′ + ρi,L′⊕100) that he needs to distinguish and
thus cannot find the corresponding minimum error measurement. Finally, some
care is needed to specify how the client can possibly know the index L while the
server (that prepares the state) he does not. One way to achieve this is given

16 This can be achieved either by having the client have exponential capacity, or by
having the server prepare the states using some choice made by the client that has
kept some side trapdoor information too.

49



in Malicious 8-states QFactory. Actually, scenario 2b corresponds exactly to the
setting of Verifiable QFactory, provided that whatever deviation the server does
in one round of Malicious 8-states QFactory is restricted (and independent) to
other rounds.

Finally, we can generalise further (Protocol 8.1 removing the assumption of
tensor produce states.

H Proof of Scenario 1: i.i.d. blind self-testing

Given the protocol G.1 (Scenario 1), we can assume that there exist eight un-
trusted, binary observables O′M , with ±1 eigenvalues, where we define O′0 :=
X ′, O′010 := Y ′. Each of these observable are of polynomial size, i.e. can be
performed by a QPT party. The corresponding ideal observables are denoted
without prime and we have OM =

∣∣+Mπ/4

〉 〈
+Mπ/4

∣∣ − ∣∣−Mπ/4

〉 〈
−Mπ/4

∣∣. We
denote ρL the set of the eight (untrusted) states, and as defined in scenario 1 we
consider the pure states (a purification in general) |Ψ(L)〉.

We can see that index independent isometry in Figure 5 gives us:

Φ(|+〉 |Ψ(L)〉) := |+〉 (I +X ′)

2
|Ψ(L)〉+ |−〉 (−iY ′) (I −X ′)

2
|Ψ(L)〉 (H.1)

and we want to show that the state in Eq. (H.1) is
ε
≈
∣∣+Lπ/4

〉
⊗ |Ψ(000)〉 using

the constrains coming from the basis blindness property and the measurement
statistics of the test qubits. In this first exposition to the blind self-testing, we
are going to prove the correctness up to ε, while the details of the robustness
of this result (the explicit dependence of the final ε on ε1, ε2 appearing in the
constraints) is left for future work.

Theorem 10. If Protocol G.1 does not abort (with non-negligible probability)
then the isometry given by Fig. 5 satisfies the condition of Eq. (G.3).

To prove this theorem we first need two lemmas.

Lemma 13. For any set of (eight) states {|Ψ(L)〉} as from scenario 1, that is ba-
sis blind, i.e. |(ρL+ρL⊕100)−(ρL′+ρL′⊕100)| ≤ ε1, all eight states belong (approx-
imately) in a 2-dimensional subspace spanned by the vectors {|Ψ(000)〉 , |Ψ(100)〉}.

Proof. The binary observables O′M have ±1 eigenvalues, and can therefore be
written as O′M = (+1)P+

M + (−1)P−M where P±M are the projections on the +1
and −1 eigenspace, respectively. It follows trivially that (O′M )2 = I and that the

corresponding projections are P+
M =

I+O′M
2 and P−M =

I−O′M
2 .

Moreover, if the protocol does not abort (and this happens with non-negligible
probability), we also have the constraints on the expectation values of the observ-

ables coming from Eq. (G.2). From 〈Ψ(L)|O′L |Ψ(L)〉
ε2≈ 1 and 〈Ψ(L)|O′L⊕100 |Ψ(L)〉

ε2≈
−1, we get that O′L |Ψ(L⊕ 100)〉 ≈ − |Ψ(L⊕ 100)〉 and thus
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P+
L |Ψ(L)〉 ≈ |Ψ(L)〉 , P−L |Ψ(L)〉 ≈ 0

P−L |Ψ(L⊕ 100)〉 ≈ |Ψ(L⊕ 100)〉 , P+
L |Ψ(L⊕ 100)〉 ≈ 0

which means that 〈Ψ(L⊕ 100)|Ψ(L)〉 ≈ 0. The space spanned by two vectors
{|Ψ(L)〉 , |Ψ(L⊕ 100)〉} is two dimensional and for all L the state 1/2(ρL +
ρL⊕100) is the identity in that subspace. Now from the basis blindness condi-

tion we have that 1/2(ρL + ρL⊕100)
ε1≈ 1/2(ρ000 + ρ100), which means that all

states |Ψ(L)〉 belong to that (fixed) 2-dimensional subspace. We will denote the
projection on this 2-dimensional subspace as PΨ .

Lemma 14. The states given in Protocol G.1 are approximately of the form

|Ψ(L)〉
ε
≈ cos

(
Lπ

8

)
|Ψ(000)〉+ eiφ sin

(
Lπ

8

)
|Ψ(100)〉 (H.2)

with φ being a constant (independent of L). Furthermore, the untrusted operator
Y ′ acts in the following way:

Y ′ |Ψ(100)〉 = e−iφ |Ψ(000)〉 (H.3)

Proof. From Lemma 13 we know we can express all states in the following form:

|Ψ(L)〉 ≈ eif2(L)(a0(L) |Ψ(000)〉+ eif1(L)a1(L) |Ψ(100)〉) (H.4)

where a0(L), a1(L), f1(L) are functions to be determined and f2(L) is an overall
complex phase that we could ignore, but we keep it here to remind that we can
use this to simplify the final expressions. From the statistics of the measurements
of the X ′ observable, we get (directly) that a0(L) ≈ | cos Lπ8 | , a1(L) ≈ | sin Lπ

8 |.

|Ψ(L)〉 ≈ | cos
Lπ

8
| |Ψ(000)〉+ eif1(L)| sin Lπ

8
| |Ψ(100)〉 (H.5)

where we dropped the global phase eif2(L). Now for L 6= 000, 100, from
〈Ψ(L)|Ψ(L⊕ 100)〉 ≈ 0, we obtain that:

f1(L⊕ 100) = (f1(L) + π) mod 2π (H.6)

and we can express the states grouped in four orthogonal bases:

|Ψ(000)〉 ; (H.7)

|Ψ(001)〉 = | cos
π

8
| |Ψ(000)〉+ eif1(001)| sin π

8
| |Ψ(100)〉 ;
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|Ψ(010)〉 =
1√
2

(
|Ψ(000)〉+ eif1(010) |Ψ(100)〉

)
;

|Ψ(011)〉 = | sin π
8
| |Ψ(000)〉+ eif1(011)| cos

π

8
| |Ψ(100)〉 ;

|Ψ(100)〉 ;

|Ψ(101)〉 = | sin π
8
| |Ψ(000)〉 − eif1(001)| cos

π

8
| |Ψ(100)〉 ;

|Ψ(110)〉 =
1√
2

(
|Ψ(000)〉 − eif1(010) |Ψ(100)〉

)
;

|Ψ(111)〉 = | cos
π

8
| |Ψ(000)〉 − eif1(011)| sin π

8
| |Ψ(100)〉

(H.8)

where we used some identities such as | cos(3π/8)| = | sin(π/8)|, etc. Now, we
have three parameters to fix, namely f1(001), f1(010), f1(011). For notational
simplicity, we will use c := | cosπ/8| ; s := | sinπ/8|.

Then, we will use the statistics that we have from Eq. (G.2), when measuring
in a different than the X ′ basis. Expressing |Ψ(001)〉 in the Y ′ basis we get:

|Ψ(001)〉 =
1√
2

(
c+ sei(f1(001)−f1(010))

)
|Ψ(010)〉+

1√
2

(
c− sei(f1(001)−f1(010))

)
|Ψ(110)〉 (H.9)

From Eq. (G.2) and the probability of obtaining the result 010 when having
the state |Ψ(001)〉 we obtain:

1√
2
|
(
c+ sei(f(001)−f(010))

)
| ≈ c (H.10)

that is possible only if ei(f(001)−f(010)) = 1, i.e. we have:

f1(001) = f1(010) mod 2π (H.11)

Similarly, by expressing |Ψ(011)〉 in the Y ′ basis we get:

|Ψ(011)〉 =
1√
2

(
s+ cei(f1(011)−f1(010))

)
|Ψ(010)〉+

1√
2

(
s− cei(f1(011)−f1(010))

)
|Ψ(110)〉 (H.12)

From Eq. (G.2) and the probability of obtaining the result 010 when having the
state |Ψ(011)〉, we have:
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1√
2
|
(
s+ cei(f(011)−f(010))

)
| ≈ c (H.13)

that is possible only if ei(f(011)−f(010)) = 1, i.e. we get:

f1(011) = f1(010) mod 2π (H.14)

Setting f(001) := φ, we use Eqs. (H.6, H.11, H.14) and Eq. (H.7) becomes:

|Ψ(000)〉 ; (H.15)

|Ψ(001)〉 = cos
π

8
|Ψ(000)〉+ eiφ sin

π

8
|Ψ(100)〉 ;

|Ψ(010)〉 = cos
2π

8
|Ψ(000)〉+ eiφ sin

2π

8
|Ψ(100)〉 ;

|Ψ(011)〉 = cos
3π

8
|Ψ(000)〉+ eiφ sin

3π

8
| |Ψ(100)〉 ;

|Ψ(100)〉 ;

|Ψ(101)〉 = − cos
5π

8
|Ψ(000)〉 − eiφ sin

5π

8
|Ψ(100)〉 ;

|Ψ(110)〉 = − cos
6π

8
|Ψ(000)〉 − eiφ sin

6π

8
|Ψ(100)〉 ;

|Ψ(111)〉 = − cos
7π

8
|Ψ(000)〉 − eiφ sin

7π

8
|Ψ(100)〉 ;

(H.16)

where we used cos 5π
8 = − sin π

8 ; sin 5π
8 = cos π8 ; − cos 6π

8 = 1√
2
; sin 6π

8 = 1√
2
;

cos 3π
8 = sin π

8 ; sin 3π
8 = cos π8 ; − cos 7π

8 = cos π8 and sin 7π
8 = sin π

8 . By noting
that each state is invariant if multiplied by a global phase (an overall minus sign
in our case) we get the expression:

|Ψ(L)〉 = cos

(
Lπ

8

)
|Ψ(000)〉+ eiφ sin

(
Lπ

8

)
|Ψ(100)〉 (H.17)

as required for Lemma 14. The action of the observable Y ′ projected on the
subspace that all |Ψ(L)〉 belong to, is:

PΨY
′PΨ = |Ψ(010)〉 〈Ψ(010)| − |Ψ(110)〉 〈Ψ(110)| (H.18)

and given that

|Ψ(010)〉 =
1√
2

(
|Ψ(000)〉+ eiφ |Ψ(100)〉

)
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|Ψ(110)〉 =
1√
2

(
− |Ψ(000)〉+ eiφ |Ψ(100)〉

)
(H.19)

we get:

PΨY
′PΨ = e−iφ |Ψ(000)〉 〈Ψ(100)|+ eiφ |Ψ(100)〉 〈Ψ(000)|

Y ′ |Ψ(100)〉 = e−iφ |Ψ(000)〉 (H.20)

p

Proof of Theorem 10. We can now prove Theorem 10. If the protocol does not
abort, it means that the condition on the test measurement statistics is sat-
isfied, and the above Lemmas hold. We substitute Eq. (H.2) in the isometry,

note that (I+X′)
2 |Ψ(000)〉 = 1 = (I−X′)

2 |Ψ(100)〉 and (I+X′)
2 |Ψ(100)〉 = 0 =

(I−X′)
2 |Ψ(000)〉 and use Eq. (H.3) to get the desired result:

Φ(|+〉 |Ψ(L)〉) = |+〉 (I +X ′)

2
|Ψ(L)〉+ |−〉 (−iY ′) (I −X ′)

2
|Ψ(L)〉

= |+〉 cos

(
Lπ

8

)
|Ψ(000)〉+ |−〉 (−iY ′)eiφ sin

(
Lπ

8

)
|Ψ(100)〉

= |+〉 cos

(
Lπ

8

)
|Ψ(000)〉+ |−〉 eiφ sin

(
Lπ

8

)
(−ie−iφ) |Ψ(000)〉

=

(
cos

(
Lπ

8

)
|+〉 − i sin

(
Lπ

8

)
|−〉
)
|Ψ(000)〉

=
∣∣+Lπ/4

〉
|Ψ(000)〉 (H.21)

I Generalisation to pseudo-homomorphic functions

I.1 Notation and remarks about the generalisation

Note that later on, we will do a slight abuse of notation, and if K is a set of keys,
we will denote by k ← K the sampling of a key in K. Note that this sampling
may not be uniform, and depends on a fixed distribution.

Moreover, in order to have a function usable in practice, we would like to
be able to create the uniform superposition on all the elements of the input set.
However, in practice, it may not be possible to have an exact superposition on
all the elements of this input set. Therefore we will consider in the following that
the function g has an input set Z that is a bit bigger, but so that we can create
an exact uniform superposition on all the elements of this set, and in order to
deal with the fact that Z is not the initial input set, we will say that g(z) = ⊥
as soon as z does not belong to the initial input set of g. Note that we may also
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abuse notation for simplicity, and also write g(z) = ⊥ when z does not even
belong to Z and when g is not defined on a given input z.

We will also need to extend some notions to this new notion. For example,
we will say that a function g : Z → Y ∪ ⊥ is injective when for all y ∈ Y,
|f−1(y)| ≤ 1.

I.2 Definition

Definition 14 ((η, Z, Z0, D)-homomorphic family of functions). Let us
consider a family of functions {gk : Z → Y ∪ ⊥}k∈K, as well as two symmetric
binary group relations ∗ and ?, with ∗ acting on a set containing Z and Z0, ?
acting on Y ∪⊥, and so that ∀y ∈ Y,⊥ ? y = ⊥. We say that {fk}k∈K is an (η,
Z, Z0, D)-homomorphic function if D is a distribution on Z0 and

Pr
k←K

z0←DZ0
z ←$Z

[z ∗ z0 ∈ Z and gk(z) ? gk(z0) = gk(z ∗ z0) 6= ⊥] ≥ η

Note that we do require that z is sampled uniformly from Z, but z0 is sampled
from a distribution D on Z0 that may not be uniform.

Definition 15 (δ-2-regular family of functions). Let us consider a family
of functions {fk : X → Y ∪⊥}k∈K. For a fixed k, Y(2) will be the set of y having

two preimages: Y(2)
fk

= {y ∈ Y, |f−1
k (y)| = 2}. Then, this family of functions is

said to be δ-2-regular if

Pr
k ←$K
x←$X

[fk(x) ∈ Y(2)
fk

] ≥ δ

Lemma 15 ((η, Z, Z0)-homomorphy to δ-2-regularity). Given a family
of functions {gk : Z → Y ∪ ⊥}k∈K that is both injective and an (η, Z, Z0)-
homomorphic family of functions, then it’s possible to build a family {fk′ : Z ×
{0, 1} → Y ∪ ⊥}k′∈K′ that is δ-2-regular, with δ = η.

Proof. Let’s do the following construction. To sample a key k′ ∈ K′, we first
sample a key k from K, as well as an z0 ←D Z0, and we define k′ = (k, y0 :=
fk(z0)). Then, we define fk′(z, 0) = gk(z) and fk′(z, 1) = gk(z)?y0, also denoted
later as fk′(z, c) = gk(z) ? (c · y0) for simplicity. Now, we remark that:

Pr
k′ ←$K′
x←$X

[fk′(x) ∈ Y(2)
f ′k

] (I.1)

= Pr
k ←$K
z0←DZ0
z ←$Z

c←$ {0,1}

[gk(z) ? (c · gk(z0)) ∈ Y(2)
f ′k

] (I.2)

=
1

2
×
(

Pr
k ←$K
z0←DZ0
z ←$Z

[gk(z) ∈ Y(2)
f ′k

] + Pr
k ←$K
z0←DZ0
z ←$Z

[gk(z) ? gk(z0) ∈ Y(2)
f ′k

]
)

(I.3)
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≥1

2
×
(

Pr
k ←$K
z0←DZ0
z ←$Z

[gk(z) ∈ Y(2)
f ′k

and z ∗ z−1
0 ∈ Z and gk(z) = gk(z ∗ z−1

0 ) ? gk(z0) 6= ⊥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C1

]

(I.4)

+ Pr
k ←$K
z0←DZ0
z ←$Z

[gk(z) ? gk(z0) ∈ Y(2)
f ′k

and z ∗ z0 ∈ Z and gk(z) ? gk(z0) = gk(z ∗ z0) 6= ⊥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C2

]
)

(I.5)

=
1

2
×
(

Pr
k ←$K
z0←DZ0
z ←$Z

[gk(z) ∈ Y(2)
f ′k
|C1]× Pr

k ←$K
z0←DZ0
z ←$Z

[C1] (I.6)

+ Pr
k ←$K
z0←DZ0
z ←$Z

[gk(z) ? gk(z0) ∈ Y(2)
f ′k
|C2]× Pr

k ←$K
z0←DZ0
z ←$Z

[C2]
)

(I.7)

Now, remark that when z0 ∗ z ∈ D and gk(z0) ? gk(z) = gk(z0 ∗ z) 6= ⊥, then

y := gk(z) ? gk(z0) ∈ Y(2)
f ′k

. Indeed:

– y ∈ Y because gk(z) ? gk(z0) 6= ⊥ and the ? operator is defined on Y ∪ ⊥
– there are at least two preimages mapping to y, because y = fk(z, 1) =
gk(z) ? gk(z0) = gk(z ∗ z0) = fk(z ∗ z0, 0).

– there are at most two preimages mapping to y: indeed gk is injective, so both
partial functions f(·, 0) and f(·, 1) are injective, so it’s not possible to have
more than two preimages mapping to y.

So Pr k ←$K
z0←DZ0
z ←$Z

[gk(z)?gk(z0) ∈ Y(2)
f ′k
|C2] = 1. Similarly, Pr k ←$K

z0←DZ0
z ←$Z

[gk(z) ∈ Y(2)
f ′k
|C1] =

1. So we can rewrite the above equation as:

Pr
k′ ←$K′
x←$X

[fk′(x) ∈ Y(2)
f ′k

] (I.8)

≥1

2
×
(

Pr
k ←$K
z0←DZ0
z ←$Z

[C1] + Pr
k ←$K
z0←DZ0
z ←$Z

[C2]
)

(I.9)

Now, remember that {gk}k is (η, Z, Z0)-homomorphic, so Pr k ←$K
z0←DZ0
z ←$Z

[C2] ≥ η.

By symmetry, we also have Pr k ←$K
z0←DZ0
z ←$Z

[C1] ≥ η. Indeed:

Pr
k ←$K
z0←DZ0
z ←$Z

[z ∗ z−1
0´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

ẑ

∈ Z and gk(z) = gk(z ∗ z−1
0 ) ? gk(z0) 6= ⊥] (I.10)

= Pr
k ←$K
z0←DZ0
z ←$Z

[ẑ ∈ Z and z ∈ Z and ẑ = z ∗ z−1
0 and gk(z) = gk(ẑ) ? gk(z0) 6= ⊥]

(I.11)
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= Pr
k ←$K
z0←DZ0
ẑ ←$Z

[ẑ ∈ Z and z ∈ Z and ẑ = z ∗ z−1
0 and gk(z) = gk(ẑ) ? gk(z0) 6= ⊥]

(I.12)

= Pr
k ←$K
z0←DZ0
ẑ ←$Z

[ẑ ∗ z0 ∈ Z and gk(ẑ ∗ z0) = gk(ẑ) ? gk(z0) 6= ⊥] (I.13)

= Pr
k ←$K
z0←DZ0
z ←$Z

[C2] (I.14)

≥η (I.15)

So Prk′ ←$K′
x←$X

[fk′(x) ∈ Y(2)
f ′k

] ≥ η, which concludes the proof.

J Proof of the Malicious-Abort QFactory

In this section we moved some of the proofs of the security and correctness of
Protocol 7.1, which are summarised in Theorem 7.

Proof of Lemma 4. The function fk cannot have more than two preimages by
assumption, and in the Malicious 4-states QFactory protocol the output y is
in the image of fk. So it means that y has exactly one preimage x. So after
measuring the last register, the states will be in the state |0〉 ⊗ |x〉 ⊗ |y〉. Then,
we apply Uh, so the states becomes |d〉 ⊗ |x〉 ⊗ |y〉 with d ∈ {0, 1}. We remark
that the first qubit is not entangled with the measured qubits, so the output
qubit will be |d〉, which is indeed in the basis {|0〉 , |1〉}.

Proof of Lemma 5. The entire analysis of the circuit will be performed only with
respect to the basis of the states of the circuit. Let us first examine the first part

of the circuit, where we apply ∧Z between
∣∣+π

2

〉
and |in1〉 = HB1

(1)

ZB2
(1)

(with

B1
(1) the basis of |in1〉) and then measure the first qubit in the |±〉 basis, and

we denote the result state V1.
The result of this operation is:

- if B1
(1) = 0, V1 = R(π(B

(1)
2 + s1,1 + 1))

∣∣+π
2

〉
∈ {
∣∣+π

2

〉
,
∣∣−π

2

〉
}

- if B1
(1) = 1, V1 = XB

(1)
2 |0〉 ∈ {|0〉 , |1〉}

In other words, the state V1 belongs to the basis B0 = {
∣∣+π

2

〉
,
∣∣−π

2

〉
}, if B1

(1) = 0

and to the basis B1 = {|0〉 , |1〉} if B1
(1) = 1.

Now, we can think of the circuit as having t states Vi ∈ {|0〉 , |1〉 ,
∣∣+π

2

〉
,
∣∣−π

2

〉
},

where every Vi has the basis B1
(i). Then, to compute the output state |out〉 of

Gad⊕, for every i ∈ {1, ..., t} we have to apply CZ between Vi and |+〉 and then
measure the first qubit in the |±〉 basis.
So let us do this step first for V1. The result is a state W1 = Xs1,2HV1, thus we
obtain that:
W1 belongs to the basis B0 = {

∣∣+π
2

〉
,
∣∣−π

2

〉
}, if B1

(1) = 0 and to the basis
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B2 = {|+〉 , |−〉} if B1
(1) = 1.

Next we do the same operations between V2 and W1, the result being a state W2,
then between V3 and W2 and so on, therefore, the outcome state is |out〉 = Wt.
We will prove by induction that the state Wt ∈ {|+〉 , |−〉 ,

∣∣+π
2

〉
,
∣∣−π

2

〉
}, where

the basis of Wt is given by B1 = B1
(1) ⊕ ...⊕B1

(t).
As we have proved already for the basis case t = 1, we now prove the induction
step. Suppose that Wn ∈ {|+〉 , |−〉 ,

∣∣+π
2

〉
,
∣∣−π

2

〉
} with basis B1 = B1

(1) ⊕ ...⊕
B1

(n).
To obtain Wn+1 we have to apply ∧Z between Vn+1 and Wn and then measure
the first qubit. Then after computing this, we obtain that the basis of Wn+1

is B1 if the basis of Vn+1 is B1
(n+1) = 0 and the basis of Wn+1 is 1 ⊕ B1 if

the basis of Vn+1 is B1
(n+1) = 1. In other words, the basis of Wn+1 is given by

B1 = B1
(1) ⊕ ...⊕B1

(n) ⊕B1
(n+1), which concludes the proof.

Proof of Lemma 6. In the honest case, all runs are independents, so let us define
{Ai}ti=1 as the (binary) random variables whose values are 1 iff the i-th run has
two preimages associated with yi. We know that for all i, E(Ai) ≥ pa > pb. So
let us define ε = E(Ai)− pb > pa − pb. Using Chernoff inequality we have

Pr

[
1

t

t∑
i=1

Ai < E(Ai)− ε

]
≤ e−2ε2t ≤ e−2(pa−pb)2t = negl(t)

(because pa − pb is constant)

Proof of Lemma 7. The Lemma 6 gives that the probability to have more than
pctc accepted runs for a given chunk is 1 − negl(tc ), i.e. if tc = Ω(n), this
probability is negl(n). So for nc chunks, the probability to have one fail is (1−
negl(n))nc = 1 − negl(n) as soon as nc = poly(n), which is the case because
t = tc × nc = poly(n). Then, when all the chunks are accepted, the correctness
of the output values is assured by Lemma 5.

Proof of Lemma 8. By contradiction, let us assume that there is an adversary
A such that (we omit the parameters for readability)

Pr
[
B̃1 = β

]
> η

Then, if we define ai := a(k(i), y(i)),

η < Pr
[
B̃1 = β

]
= Pr

[∑
i

ai < pctc

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

α

×1

2
+ Pr

[∑
i

ai ≥ pctc

]
× Pr

[
B̃1 = β |

∑
i

ai ≥ pctc

]
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= α× 1

2
+ (1− α)× Pr

[
B̃1 = β |

∑
i

ai ≥ pctc

]

≤ α× 1

2
+ (1− α) = 1− α

2

so α ≤ 2(1− η).

Now, we remark that we can bound also (1−a)×Pr
[
B̃1 = β |

∑
i ai ≥ pctc

]
.

Indeed, if this value is too big then we can construct an adversary that could
break the hardcore bit property of gK . To do that, we define an adversary A′
taking as input a k, and whose goal is to define the hardcore bit d0 associated
with k. This adversary will pick tc − 1 public keys/trapdoors (k(i), tk(i)), and
hide k in the middle of these trapdoors. Then, A′ calls A with these tc keys,

and outputs d̃0 := B̃1 ⊕i a(i)d
(i)
0 , with B̃1 the output of A, and a(i) computed

by using the y(i) provided by A. We know that d̃0 = d0 when the guess of A′
was right, when

∑
i ai ≥ pctc, and when the y corresponding to the function k

has two preimages. But this even occurs with probability greater than (1−α)×
Pr
[
B̃1 = β |

∑
i ai ≥ pctc

]
×pc, and because d0 is a hardcore bit, this probability

is bounded by 1/2 + negl(n), or equivalently:

(1− α)× Pr

[
B̃1 = β |

∑
i

ai ≥ pctc

]
≤ 1

2pc
+ negl(n)

Now, let’s come back to our probability to guess β:

Pr
[
B̃1 = β

]
= α× 1

2
+ (1− α)× Pr

[
B̃1 = β |

∑
i

ai ≥ pctc

]

≤ α× 1

2
+

1

2pc
+ negl(n)

≤ 1− η +
1

2pc
+ negl(n)

But on the other side, Pr
[
B̃1 = β

]
> η, so

η < 1− η +
1

2pc
+ negl(n)

η <
1

2

(
1 +

1

2pc

)
+ negl(n)
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Because η and pc are constants17 that do not depend on n, this equality is also
true without the negl(n):

η <
1

2

(
1 +

1

2pc

)
which is absurd because η = 1

2

(
1 + 1

2pc

)
.

Proof of Theorem 7. The proof of correctness is made Lemma 7, and the secu-
rity is a direct application of Conjecture 1: after using Lemma 8: this theorem
provides a η such that it’s not possible to solve one chunk with probability better
than η < 1, so δ(n) := 1−η is a constant (and δ(n) ≥ 1

poly(n) ). Therefore Conjec-

ture 1 tells us that no adversary can get the XOR of nc chunks with probability
better than 1

2 +ηnc+negl(n). But tc = Ω(n) and η is a constant, so no adversary
can get the XOR of nc chunks with probability better than 1

2 + negl(n), i.e. no
adversary can find B1 with probability better then 1

2 + negl(n).

K Discussion about dealing with the abort case without
Yao’s XOR Lemma

The proof of security we have when we cannot assume that abort arrives with
negligible probability defined in Section 7 has two drawbacks: first it relies on
the conjecture that Yao’s XOR Lemma is valid for one-round protocols (classi-
cal messages) with quantum adversary, but it also complicate the protocols by
adding replication. We are also working on a second method that runs this time
just one instance of Malicious 4-states QFactory, and will leaks the abort bit to
the server. The specificity of this method is that the hash function will be send
after receiving the y, and will be a 2-universal hash function (we just chose the
function corresponding to the XOR of a random subset of hardcore bits that is
easy to implement on server side as well). We also require that the δ-2-regular
trapdoor family of functions needs to have a polynomial number of homomorphic
hardcore bits (we can easily extend our courstruction to have such requirements
by just adding q/2 · (d0,1, . . . , d0,t, 0, . . . , 0)T ). This setting will bring us back
very close to the requirements needed by the leftover hash lemma [IALL89].
The advantage of this method is that we have a quantum equivalent of this
lemma [TSSR10], but unfortunately this lemma is valid (and expressed) in the
information theoretic framework. Because our familly will never be information
theoretically secure, but only computationally secure, we need an intermediate
step to turn our information theoretically secure argument into a computation-
ally secure one. Usually, this is done by introducing lossy functions [PW07], and
then using some indistinguishable property between injective and lossy functions

17 note that if we give them a dependence on n, we can make sure that η− 1
2

(
1 + 1

2pc

)
is non negligible, but for simplicity we will keep them constant
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to finish the proof. Unfortunately, our protocol has a non standard shape, and
it’s not yet clear how to define a in the lossy case to make sure an adversary
cannot exploit a to distinguish between lossy and non lossy.

We also point out that we can also create some constructions where the
abort bit is independent of the secret, by first sending a function whose goal is
to create the superposition, and after receiving the y, if y has two preimages, we
send a single element with no noise As0 + q/2 ·d0 that will be used like if it were
another raw in the y0. This problem is still supposed to be difficult, and because
the second message does not have noise, it cannot lead to an abort, to the abort
is independent of the secret. But the proof of security for this construction is
also a work in progress.

Finally, a way to boost the probability of success from polynomial to expo-
nential without leaking the abort bit could be to consider “abort” cases as just
errors in the transmission channels, and then to use error correcting code to
correct them, but again, this approach is a work in progress.
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