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Abstract

Homomorphic encryption (HE) is one of the main tools in secure multiparty computation (MPC),
and the (elliptic-curve) lifted-ElGamal cryptosystem is certainly the most efficient among the existing
HE schemes. However, the combination of MPC with this most efficient HE has rarely appeared in
the literature. This is mainly because the major known techniques for (additively) HE-based MPC are
not available for this scheme due to its typical restriction that only a plaintext in a small range can be
efficiently decrypted.

In this paper, we resolve this problem. By our technique, a Server having a lifted-ElGamal ciphertext
[[m]] with unknown small plaintext m can obtain a ciphertext [[ϕ(m)]] for an arbitrary function ϕ by just
one-round communication with a semi-honest Client (and also two-rounds with a malicious Client) having
a decryption key, where m is kept secret for both parties. This property enlarges much the variations
of MPC based on the most efficient lifted-ElGamal cryptosystem. As an application, we implemented
MPC for exact edit distance between two encrypted strings; our experiment for strings of length 1024
shows that the protocol takes only 45 seconds in LAN environments and about 3 minutes even in WAN
environments. Moreover, our technique is also available with other “lifted-ElGamal type” HE schemes
and admits different keys/schemes for the original and the resulting ciphertexts. For example, we can
securely convert a level-2 (i.e., after multiplication) ciphertext for some two-level HE schemes into a
level-1 (i.e., before multiplication) ciphertext, and securely apply arbitrary functions ϕ(m) to encrypted
plaintexts for some attribute-based HE schemes. This is the first result (even by using communication)
on realizing these two functionalities.

1 Introduction

Secure multiparty computation (MPC ) is a cryptographic technique that enables two or more parties to jointly
evaluate a function for their local inputs while concealing the inputs from each other. Due to increasing
social demands for privacy protection in information technology such as big-data analyses and personalized
services, MPC has been a major research topic in cryptology itself as well as applications to other areas.
Among various solutions to MPC depending on practical situations, one of the major settings is client-
server secure computation using homomorphic encryption (HE), where a Client sends his/her input (e.g., a
search query) to a Server in securely encrypted form and Server (who may also have his/her own input; e.g.,
a database) performs the necessary computations (e.g., determining the search result) in encrypted form,
possibly with some communications to Client (where, of course, Server’s secret input should be kept secret
against Client). This paper focuses on this HE-based client-server model.

For the underlying HE schemes in this scenario, fully homomorphic encryption (FHE ) [10] is an obvi-
ous option, which in principle enables Server to perform arbitrary operations over encrypted data without
communication. However, the existing FHE schemes, though intensively improved in efficiency, are still
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not very efficient so far. On the other hand, additively homomorphic encryption (AHE ) [9, 21] is the most
efficient class among the practical HE schemes, which supports only addition (and scalar multiplication)
over encrypted integers. Despite the restricted functionality, several techniques to achieve MPC using AHE
have been developed as explained below. There is also an intermediate class, such as two-level homomorphic
encryption (2LHE ) [3, 8] which additionally supports a single multiplication over ciphertexts and is still
relatively efficient.

For the known techniques for AHE-based MPC mentioned above, the fundamental underlying idea is
“homomorphic masking” for encrypted values, which is outlined as follows (where [[m]] denotes a ciphertext
with plaintext m):

1. Given a ciphertext [[x]], Server homomorphically generates [[x+ r]] with a random secret value r, and
sends [[x+ r]] to Client.

2. Client decrypts it and obtains x+ r, then generates some ciphertext(s) c depending on x+ r and sends
it to Server. Here the value x is information-theoretically concealed for Client by virtue of the random
secret value r.

3. Server generates the result by using [[x+ r]], c, and the knowledge of r.

This idea has been widely used in AHE-based MPC to realize various kinds of functionalities, e.g., arithmetic
multiplication [13, 14] and division [28]; less-than comparison [16, 29]; and bit-decomposition [22, 23, 24].

However, this technique has the following serious drawback: Among the known AHE schemes, the “lifted”
ElGamal cryptosystem [9] (where the plaintext is placed at the exponent of a group element) over elliptic
curves is certainly the most efficient so far, but the technique above does not work when using the lifted
ElGamal cryptosystem as the underlying AHE. This is because, in the cryptosystem we can decrypt a
ciphertext only when its plaintext is sufficiently small, while the masking value r above must be chosen from
the whole plaintext space for concealing x, therefore Client cannot decrypt [[x+ r]] in general (even if the
original x is small). As a result, the most efficient lifted ElGamal cryptosystem has rarely been applied to
MPC in the literature (except some results mentioned later), and we had to rely on other, less efficient AHE
schemes such as Paillier cryptosystem [21]. We also note that, the known practical 2LHE schemes [3, 8] also
have the same restriction on the decryptable plaintexts, therefore such schemes could not be used in MPC
beyond the functionalities natively supported by 2LHE. To overcome this issue, we must establish a new
methodology in MPC that is also applicable to those “lifted-ElGamal type” schemes.

1.1 Our Contributions

In this paper, we propose a new technique for AHE-based MPC that resolve the serious issue described
above. More precisely, our technique achieves the following functionality even when the underlying scheme
is of lifted-ElGamal type: Given a ciphertext [[m]] with unknown plaintext m and an arbitrary univariate
function ϕ(x), Server can securely obtain a ciphertext [[ϕ(m)]] with one round-trip (i.e., Server → Client →
Server) communication to semi-honest Client having the decryption key. This is also extendible to the case
of malicious Client by adding one more communication round as explained later. A remarkable advantage is
that the execution cost of our protocol is almost independent of the complexity of the function ϕ (precisely,
the communication cost and the number of required homomorphic operations are both independent of ϕ).
We also note that our technique can be also extended to two-input functions ϕ(x, y) (e.g., max/min and
multiplication) under certain condition; see Section 6 for details. On the other hand, the main drawback
of our technique is that the execution cost is proportional to the number of possible plaintexts m that can
appear in the input ciphertext [[m]] for Server (in short, we can handle ciphertexts with sufficiently small
plaintexts only). Here we emphasize however that, despite this drawback, our technique is still applicable
to some practical problems in MPC. For example, based on our technique, we implemented MPC for exact
edit distance of encrypted strings, and our experiment shows that it takes only about 3 min. for strings of
length 1024 even in WAN environments. See Section 7.2 for details of the experiments.

To explain the idea of our proposed technique, we revisit some “exceptional” previous results (e.g.,
[25, 26, 27]) on MPC based on the lifted-ElGamal cryptosystem (which are indeed very rare, as mentioned
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in the last paragraph before this subsection). Their first idea is that, when Client has an input x in a small
range, say [0,K − 1], Client generates encrypted “unary vector” expressing x, that is, a list of ciphertexts
EU(x) = ([[a0]], . . . , [[aK−1]]) where ai = 1 if x = i and ai = 0 if x 6= i. If Client sends EU(x) to Server,
then Server can compute [[ϕ(x)]] by taking the inner product of the plain vector (ϕ(0), . . . , ϕ(K − 1)) and
the encrypted vector EU(x) via the AHE functionality. Moreover, in their results, a recursive function
evaluation is required, therefore Server and Client have to convert (without leaking the value ϕ(x) to Client)
the intermediate ciphertext [[ϕ(x)]] into EU(ϕ(x)) in order to compute the next function. They solved this
problem by using the following trick: Server generates in the previous step a ciphertext [[ϕ(x) + r mod K]]
instead of [[ϕ(x)]] where r is a random secret value. If this is sent to and decrypted by Client, then Client
obtains ϕ(x) + r mod K, but the value of ϕ(x) is still concealed by virtue of r. Moreover, when Client
generates EU(ϕ(x) + r mod K), Server can obtain EU(ϕ(x)) by just cyclically rotating the components in
EU(ϕ(x) + r mod K) by r.

Based on the observation above, our problem can be restated as a problem of securely converting [[m]]
into EU(m) when the ciphertext [[m]] is given from the beginning. This means that, now there is no “previous
step” to modify the construction of [[m]], hence the trick mentioned above is no longer available. To solve the
problem, we introduce another trick as follows. Suppose that the plaintext m is unknown but is guaranteed
to lie in a given range [0,K−1]. The key fact is that, for each a ∈ [0,K−1], if Server generates [[ra · (m− a)]]
with random ra (which is available via the AHE functionality), then the value of ra · (m − a) becomes 0
if m = a, and a random value if m 6= a. By sending these ciphertexts to Client in random order, Client
receives one [[0]] and K − 1 [[random]]’s in random order, which does not leak information on m. Now for
each position of the ciphertext, if Client has received [[0]] (respectively, [[random]]) then Client sends [[1]]
(respectively, [[0]]) to Server. This yields a permutation of the vector EU(m), and now Server can recover
EU(m) from its permuted version, as desired. We note that the vector EU(m) obtained by Server can be
reused for computing two or more functions simultaneously. See Section 3 for more details of our proposed
protocol (with semi-honest Client). Here we note further that, one may feel a relation between our result
and some other primitives such as the oblivious transfer (OT) and the private information retrieval (PIR).
Although there might be some similarity to the techniques used in OT or PIR, we emphasize that the
problem setting is totally different from those primitives, as now not only Server but also even Client do not
know which is “the correct value” (i.e., m) to be retrieved by Client.

Although our explanation above focused on our functionality of computing a function over encrypted data,
our proposed protocol also has the following remarkable advantage: the key pairs, and even the underlying
AHE schemes themselves, for the original ciphertext [[m]] and for the resulting ciphertext [[ϕ(m)]] may be
different. That is, our protocol enables to securely convert a ciphertext in some key/scheme into a ciphertext
in another key/scheme. We investigate in detail the following two applications of this property:

Level reduction for 2LHE ciphertexts. For some 2LHE schemes [3, 8] having a structure similar to the
lifted-ElGamal cryptosystem, our protocol enables to securely convert a level-2 ciphertext [[m]] (i.e.,
after homomorphic multiplication) into a level-1 ciphertext (i.e., before homomorphic multiplication).
This functionality is analogous to the bootstrapping procedure [10] for FHE schemes. Of course,
such a functionality seems never achievable by a stand-alone use of just 2LHE schemes. Our protocol
realizes this functionality by using one-round communication, and this is the first result (even when
communication is allowed) on achieving this functionality. We implemented this protocol and performed
experiments, which show that the conversion in the case m ∈ [0, 28 − 1] takes only 0.08 sec. and 0.23
sec. in LAN and WAN environments, respectively. See Section 7.2 for details.

Computing over attribute-based encryption. In attribute-based encryption (ABE) for predicate P , a
key associated to attribute x can be used to decrypt a ciphertext associated to attribute y if P (x, y) = 1.
ABE is useful for fine-grained access control over encrypted data [12]. Adding homomorphic capabilities
to ABE is a long-standing problem [6]. The most recent progress by Brakerski et al. [6] allows to
construct the so-called targeted homomorphic ABE. However, their constructions perform in the same
level of state-of-the-art (multi-key) FHE schemes [15, 7, 18] at best, which themselves are not very
practical yet. In contrast, here we focus on more efficient pairing-based ABE. We observe that most
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of the existing pairing-based ABE schemes have the form of ElGamal-type ciphertexts; as a result, our
proposed technique for function evaluation over ciphertexts is easily extended to those ABE (as long
as the attributes for keys and ciphertexts are properly controlled). See Section 8 for details.

We also explain an outline of the extension of our proposed protocol from semi-honest Client to malicious
Client. To force malicious Client to reply ciphertexts with correct plaintexts, a known technique used in the
literature (e.g., [13]) is to let Server generate a “flag ciphertext” from Client’s reply in a way that it has
plaintext 0 if Client’s choice of plaintexts is honest, while it has a non-zero plaintext with high probability
if Client is dishonest.

To apply this framework in our situation, as the first step, we replace the encrypted unary vector sent
from Client with an encrypted “unary matrix”, where the plaintexts in the “true” column (corresponding
to the candidate value a ∈ [0,K − 1] with a = m) have to be a small vector ~α (depending on the column)
chosen by Server (instead of the value 1 used in the semi-honest case) and the plaintexts in the other “false”
columns have to be zero vectors ~0. Server wants to verify that each column is either ~α or ~0 without knowing
which is actually chosen (i.e., which is the true column). For the purpose, Server randomly chooses a vector
~w orthogonal to ~α, and homomorphically computes the inner product of ~w and the encrypted column. If
Client is honest, then the resulting plaintext is 0 as ~w · ~α = ~w ·~0 = 0. On the other hand, for false columns,
the vector ~α is concealed from Client by the random masking, therefore the probability that Client can
choose a plaintext vector different from the honest choice ~0 and orthogonal to ~w is significantly small.

However, for the true column, as the honest choice is now ~α, Client can easily deviate from it while
keeping the orthogonality to ~w by just choosing ~0. In order to prevent this, we also introduce dummy
columns containing ciphertexts, say with plaintexts ~β, in a way that the vectors ~β are indistinguishable from
the ~α at the true column, and whenever Client deviates from choosing the ~β at some dummy column, the
flag ciphertext will have non-zero plaintext with high probability. Now malicious Client has to guess the
correct ciphertexts among the indistinguishable ciphertexts in the true and the dummy columns, which will
be difficult if the length of the vector and the number of dummy columns are sufficiently large. See Section
4 for further details. We also note that, when Client is malicious and the underlying scheme involves invalid
ciphertexts that are indistinguishable from valid ciphertexts, such as the 2LHE schemes in [3, 8], we have
to care about the possibility that Client replies an invalid ciphertext in the protocol. For this case, we can
modify (by utilizing the 2LHE functionality) the construction above in a way that the plaintext of the flag
ciphertext will be non-zero with high probability as well when Client does not reply valid ciphertexts. See
Section 5 for details.

2 Preliminaries

In this paper, y ← A(x) (or A(x; r), when specifying the randomness r) means that an algorithm A with

input x outputs y, and a
R← X means that an element a is chosen from a (finite) set X uniformly at random.

“PPT” means “probabilistic polynomial-time”. The security parameter is usually denoted by λ. We say that
a function ε(λ) is negligible if, for any k > 0, there exists a λ0 satisfying that |ε(λ)| < λ−k for any λ > λ0.

The statistical distance between two random variables X and Y is defined by ∆(X,Y )
def
= 1

2

∑
a |Pr[X =

a] − Pr[Y = a]|. For a, b ∈ Z, we write [a, b]
def
= {a, a + 1, . . . , b − 1, b}. We often write a ciphertext for

plaintext m as [[m]] and write the plaintext for a ciphertext c as Pt[c].

2.1 Homomorphic Encryption with Restricted Plaintext Range

In this paper, we deal with the following class of additively homomorphic encryption (AHE ) schemes includ-
ing the lifted-ElGamal cryptosystem [9].

Definition 1. An AHE scheme Π consists of PPT algorithms Gen, Enc, Dec, Rnd and polynomial-time
computable operators �, � satisfying the following:
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• The key generation algorithm Gen outputs a public key pk and a secret key sk; (pk, sk)← Gen(1λ). Here
the plaintext spaceM is an additive group and contains a subsetMeff ⊆M of effective plaintexts; and
the ciphertext space C contains disjoint subsets Cm for m ∈ M. We define the set of valid ciphertexts

by Cval
def
=
⋃
m∈M Cm ⊆ C. Symbols pk and sk that are obvious from the context may be omitted.

Note: Only the ciphertexts c ∈ Cm with m ∈ Meff are guaranteed to be efficiently decrypted (see
below).

• Given m ∈M, the encryption algorithm Enc outputs an element c ∈ C; c← Encpk(m).

Randomness Condition: We require that Encpk(m; r) for uniform randomness r is uniformly random
over Cm.

• Given sk and c ∈ C, the decryption algorithm Dec outputs either an element ofM or the failure symbol
⊥.

Correctness Condition: We require that, for c ∈ Cm, it holds with probability one thatm← Decsk(c)
when m ∈Meff and ⊥ ← Decsk(c) when m 6∈ Meff .

• (Homomorphic Addition) Given c1 ∈ Cm1
and c2 ∈ Cm2

, the operation c1 �pk c2 yields an element
of Cm1+m2 .

• (Homomorphic Negation) Given c ∈ Cm, the operation �pkc yields an element of C−m. We also

write c1 �pk c2
def
= c1 �pk (�pkc2).

• (Homomorphic Rerandomization) Given c ∈ Cm, the algorithm Rnd outputs a uniformly random
element c′ ∈ Cm; c′ ← Rndpk(c).

When c ∈ Cm (m ∈ M) and k is a non-negative integer of polynomially bounded bit length, we can
generate an element of Ck·m by combining the operator �pk with the standard binary method; we denote

the resulting operation by k �pk c. When k < 0, we write k �pk c
def
= |k| �pk (�pkc) ∈ Ck·m. On the other

hand, for c ∈ C and m′ ∈M, we may simply write m′� c instead of Enc(m′; 0)� c. Similar notations c�m′,
m′ � c, and c�m′ are also used.

Remark 2. Here we do not claim that a party having a secret key sk can obtain no information on the
plaintext for a given ciphertext c with c 6∈

⋃
m∈Meff

Cm. We emphasize that our proposed protocols are
secure even in this situation.

2.2 Two-Level Homomorphic Encryption

In this paper, by a two-level homomorphic encryption (2LHE ) scheme we mean an AHE scheme in which a
single multiplication between encrypted plaintexts is also possible. For some existing schemes [3, 8], the set
of level-1 ciphertexts (i.e., those before multiplication) can be viewed as an AHE scheme, and similarly for
level-2 ciphertexts (i.e., those after multiplication). We formalize this as follows.

Definition 3. A 2LHE scheme Π consists of two AHE schemes Π〈1〉,Π〈2〉 with the same plaintext spaceM
which is a ring, together with a polynomial-time computable operator �〈1〉. We call Π〈i〉 for i ∈ {1, 2} the
level-i part of Π; below we indicate the objects associated to the part Π〈i〉 by superscript “〈i〉”.

More precisely, for a key pair (pk, sk)← Gen(1λ) of Π, pk involves public keys pk〈1〉 for Π〈1〉 and pk〈2〉 for
Π〈2〉, where the two associated plaintext spaces M〈1〉 and M〈2〉 are equal, denoted by M; and sk involves
the corresponding secret keys sk〈1〉 for Π〈1〉 and sk〈2〉 for Π〈2〉. (On the other hand, the subsets of effective

plaintexts M〈1〉eff and M〈2〉eff may be different.) Moreover:

• (Homomorphic Multiplication) Given c1 ∈ C〈1〉m1 and c2 ∈ C〈1〉m2 , the operation c1 �〈1〉pk c2 yields an

element of C〈2〉m1·m2 .
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We also use a notation m′ �〈1〉 c with c ∈ C〈1〉 and m′ ∈ M as an abbreviation of Enc〈1〉(m′; 0) �〈1〉 c,
and similarly for c�〈1〉 m′. In particular, the operation 1 �〈1〉 c yields a conversion of a level-1 ciphertext c
into a level-2 ciphertext with the same plaintext.

2.3 Two-Party Computation in the Malicious Model

In the paper, we deal with a two-party protocol between Server and Client. For the security definition in
the malicious model, we basically follow Section 7.2.3 of [11] with slight notation changes, and perform the
following simplification owing to the specific situation in this paper:

• Only Server obtains an output (Client has no output).

• We only consider one-sided security against possibly malicious Client; see the first paragraph of Section
3.4 for the reason.

• We do not consider any modification of the input by Client. This is because, in our proposed protocols
Client is not supposed to send the input to Server, therefore the input modification is just a part of
Client’s local behavior.

Let F (pp, xS, xC) denote the functionality for Server’s output to be computed, where pp denotes a public
parameter known to both parties and xS and xC denote local inputs for Server and Client, respectively.

For a real protocol execution, let Client’s transcript (with PPT algorithm A) be the list of messages
sent from Server to Client during the protocol; and let Client’s view viewA(pp, xS, xC; rS, rC) consist of the
transcript together with pp, xC, and Client’s internal randomness rC, where rS is Server’s internal randomness.
Let Aout denote Client’s algorithm to make some guess about Server’s secret after the protocol. On the other
hand, let outS,A(pp, xS, xC; rS, rC) denote Server’s output by the protocol, which is defined to be ⊥ when the
protocol is aborted. Then the output pair for the two parties is

outreal,A(pp, xS, xC; rS, rC)
def
= (outS,A(pp, xS, xC; rS, rC),Aout(viewA(pp, xS, xC; rS, rC))) .

On the other hand, an ideal protocol execution with Client’s PPT algorithm B is defined in the following
manner. First, the public parameters and local inputs for two parties are sent to the trusted party (TP).
Secondly, TP asks Client whether aborting the protocol or not. Then:

• If Client’s reply B(reply; pp, xC; rC) is to abort (denoted by abort), then TP tells Server that the
protocol is aborted; now Server outputs ⊥, while Client outputs an object given by B(out; pp, xC; rC).
Hence the output pair is

outideal,B(pp, xS, xC; rC)
def
= (⊥,B(out; pp, xC; rC)) .

• Otherwise (denoted by proceed), TP sends F (pp, xS, xC) to Server; now Server outputs it, while Client
outputs an object given by B(out; pp, xC; rC). Hence the output pair is

outideal,B(pp, xS, xC; rC)
def
= (F (pp, xS, xC),B(out; pp, xC; rC)) .

Now the security against malicious Client is defined as follows. The case of semi-honest Client is its
special case where Client does not deviate from the protocol in the real execution nor abort the protocol in
the ideal execution.

Definition 4. In the setting above, we say that a protocol is secure against malicious Client with statistical
distance at most ε if, for any PPT algorithm A, there exists a PPT algorithm B satisfying that, for any pp,
xS, and xC, the probability distributions for outreal,A(pp, xS, xC; rS, rC) with uniformly random (rS, rC) and
for outideal,B(pp, xS, xC; rC) with uniformly random rC (and uniform internal randomness for the functionality
F ) have statistical distance at most ε.
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3 Our Protocol with Semi-Honest Client

3.1 Setting

Let Π and Π† be AHE schemes with key pairs (pk, sk) and (pk†, sk†), respectively. We will indicate objects
associated to the scheme Π† by superscript ‘†’. We suppose that the plaintext spaces are M = Fp and
M† = Fp† for publicly known primes p and p†, respectively. Let Meff ⊆ M be the subset of effective
plaintexts for Π (see Definition 1). We suppose that 0 ∈Meff .

In the protocol, two parties’ inputs are specified as follows:

Server’s local input: Server has a ciphertext c for Π associated to the key pk, where the plaintext Pt[c]
is supposed to be in a given subset S ⊆ M = Fp. Server also has polynomially many functions
ϕh : S →M† = Fp† , h ∈ [1, L].

Client’s local input: Client has the secret key sk for Π.

Common information: Both parties know pk, pk†, and the cardinality |S| of the subset S. Note that |S|
must be polynomially bounded.

Our protocol has one-sided output for Server, i.e., Client outputs nothing. The functionality F (pp, xS, xC)
for Server’s output is defined as follows, where pp, xS, and xC denote the common information, Server’s local
input, and Client’s local input, respectively:

• Parsing pp, xS, and xC as above, F (pp, xS, xC) is a list of uniformly random ciphertexts c†h (h ∈ [1, L])

for plaintexts ϕh(Pt[c]) in Π† associated to pk†.

We emphasize that the schemes Π and Π†, as well as the key pairs (pk, sk) and (pk†, sk†), may be different.
Therefore, our protocol can be used for converting a ciphertext in one scheme (e.g., a level-2 ciphertext in a
2LHE scheme) into a ciphertext in another scheme (e.g., a level-1 ciphertext in the 2LHE scheme).

3.2 Description of the Protocol

1. [Server → Client] Server executes the following:

(a) For each j ∈ S, choose γj
R← Fp and set cj ← Rnd

(
(γj � c) � (γj · j)

)
.

(b) Send, to Client, all the ciphertexts cj in a uniformly random order.

2. [Client → Server] Let c1, . . . , c|S| denote the ciphertexts for Π sent from Server at the previous step.
Client executes the following:

(a) For each i ∈ [1, |S|], compute mi ← Decsk(ci). If the number of i ∈ [1, |S|] satisfying mi = 0 is
not equal to 1, then abort the protocol.

(b) For each i ∈ [1, |S|], set

ci ←

{
Enc†(1) if mi = 0 ,

Enc†(0) if mi 6= 0 .

(c) Send c1, . . . , c|S| to Server in this order.

3. [Server’s output] Given the |S| ciphertexts sent from Client at the previous step, Server first permutes
the ciphertexts in the reverse way of Step 1b, yielding ciphertexts c̃j (j ∈ S). Then Server executes
the following:

(a) For each h ∈ [1, L], set c†h ← �†j∈S(ϕh(j) �† c̃j) and c†h ← Rnd†(c†h).

(b) Then output the c†h for all h ∈ [1, L].
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3.3 Correctness

Theorem 5. Suppose that both Server and Client honestly execute the protocol. Then the protocol is aborted
with probability at most εcor = (|S| − 1)/p. Conditioned on that the protocol is not aborted, Server’s output
distribution is identical to the distribution of the functionality F (pp, xS, xC).

Proof. For Step 1, we have Pt[cj ] = γj · Pt[c]− γj · j = γj(Pt[c]− j), which is 0 ∈ Meff when j = Pt[c] and

is uniformly random over M = Fp when j 6= Pt[c] as now Pt[c]− j ∈ Fp× and γj
R← Fp. By the hypothesis

Pt[c] ∈ S, the condition j = Pt[c] is satisfied for precisely one j ∈ S. Therefore, for Step 2, the number of i’s
with Pt[ci] = 0 is at least 1, and it exceeds 1 (hence Client aborts) only when some of the remaining |S| − 1
random plaintexts becomes 0, which occurs with probability at most εcor. Moreover, for Step 3 (where the
protocol has not been aborted), the argument above implies that Pt[c̃Pt[c]] = 1 and Pt[c̃j ] = 0 for j 6= Pt[c].
Therefore, for h ∈ [1, L], we have

Pt[c†h] = ϕh(Pt[c]) · 1 +
∑

j∈S\{Pt[c]}

ϕh(j) · 0 = ϕh(Pt[c]) (1)

and the output c†h is a uniformly random ciphertext for the same plaintext by the property of Rnd†. Hence
Theorem 5 holds.

3.4 Security

When Server honestly executes the protocol and the AHE schemes Π and Π† are IND-CPA, it is natural
to expect that the protocol does not leak Client’s secret information (e.g., plaintext for c) to Server, as all
messages sent to Server are encrypted and the condition to abort the protocol is independent of Client’s
secret. Here we do not formalize this argument due to the technical difficulty that, the public keys are
now regarded as fixed values involved in the input for the protocol, while the security of the AHE schemes
is defined with respect to random keys. Nevertheless, when our protocol is included as a subprotocol of
an “ordinary” protocol, the CPA security of the AHE schemes would indeed imply that Client’s secret is
protected against Server during this subprotocol.

On the other hand, we have the following result on the security of our protocol against semi-honest Client.

Theorem 6. There exists a PPT algorithm (simulator) S satisfying that, given Client’s input objects (either
local or common to Server) as input, the output distribution of S is identical to the distribution of Client’s
view during an honest execution of the protocol.

Proof. The argument in the proof of Theorem 5 shows that, among the |S| ciphertexts sent from Server,
which have been perfectly rerandomized (by Rnd) and permuted, precisely one of them have plaintext 0, while
the plaintexts for the remaining ciphertexts are independent and uniformly random overM. This transcript
can be perfectly simulated by PPT S by generating a single ciphertext of 0 and |S|−1 ciphertexts of random
plaintexts and then permuting them, while the other part of Client’s view can be trivially simulated as well.
Hence Theorem 6 holds.

4 Our Protocol with Malicious Client

In this section, we extend the protocol in Section 3 to the case of malicious Client. Note that Server is still
supposed to honestly follow the protocol.

First we observe that, considering a batch execution of our protocol against semi-honest Client (in Section
3) for many, say N input ciphertexts, we do not know any strategy better than just executing N protocols
in parallel; hence the total complexity is proportional to N . On the other hand, for the current case of
malicious Client, our argument below will show that the complexity per one ciphertext of a batch execution
for N ciphertexts can be reduced when N increases. Intuitively, this is because our protocol against malicious
Client uses some dummy ciphertexts, and gathering all theN collections of dummy ciphertexts yields stronger
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security than using the N collections of dummies individually. By this reason, below we consider such a
batch protocol execution.

4.1 Setting

In the same way as Section 3, let (pk, sk) and (pk†, sk†) be key pairs for AHE schemes Π and Π† with
prime-order plaintext spacesM = Fp andM† = Fp† , respectively. We suppose that the setMeff of effective
plaintexts for Π (see Definition 1) is a subset of [0, p† − 1], hence any non-zero element of Meff (which is

invertible in M = Fp) is also invertible in M† = Fp† . Let M†eff denote the set of effective plaintexts for Π†.
Considering a batch protocol execution with N input ciphertexts as discussed above, now two parties’

inputs are specified as follows:

Server’s local input: Server has N ciphertexts c1, . . . , cN for Π associated to the key pk, where each
plaintext Pt[ci] is in a given subset Si ⊆M, and also has polynomially many functions ϕi,h : Si →M†
with i ∈ [1, N ], h ∈ [1, Li].

Client’s local input: Client has the secret keys sk and sk† for Π and Π†.

Common information: Both parties know pk, pk†, N , NS
def
=
∑N
i=1 |Si|, and additional parameters µ and

ν. Note that all of NS , µ, and ν must be polynomially bounded.

Similarly to Section 3.1, our protocol here also has the one-sided output functionality F (pp, xS, xC) for Server
defined as follows:

• Parsing pp, xS, and xC as above, F (pp, xS, xC) is a list of uniformly random ciphertexts c†i,h (for

i ∈ [1, N ], h ∈ [1, Li]) for plaintexts ϕi,h(Pt[ci]) in Π† associated to pk†.

4.2 Description of the Protocol

1. [Server → Client (1)] Server executes the following:

(a) For each i ∈ [1, N ] and each j ∈ Si, choose vectors

~αi,j = (αi,j,1, . . . , αi,j,µ)
R← (Meff \ {0})µ ,

(γi,j,1, . . . , γi,j,µ)
R← (Fp)µ ,

and set ci,j,k ← Rnd
(
(γi,j,k � ci) � (αi,j,k − γi,j,k · j)

)
for each k ∈ [1, µ].

(b) Choose α⊥,1, . . . , α⊥,µ
R←Meff \ {0} and set c⊥,k ← Enc(α⊥,k) for each k ∈ [1, µ].

(c) Send, to Client, all the ciphertexts ci,j,k and c⊥,k in a uniformly random order.

2. [Client → Server (1)] Let c1, . . . , cN (where N
def
= NSµ + µ) denote the ciphertexts for Π sent from

Server at the previous step. Client executes the following:

(a) For each i ∈ [1, N ], compute mi ← Decsk(ci). If the number of i ∈ [1, N ] satisfying mi 6= ⊥ is not
equal to Nµ+ µ, then abort the protocol.

(b) For each i ∈ [1, N ], set

ci ←

{
Enc†(mi) if mi 6= ⊥ ,

Enc†(0) if mi = ⊥ .

(c) Send c1, . . . , cN to Server in this order.
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3. [Server → Client (2)] If the message sent from Client at the previous step does not consist of N valid
ciphertexts for Π† with respect to the key pk†, then Server aborts the protocol. Otherwise, Server first
permutes the N ciphertexts in the reverse way of Step 1c, yielding ciphertexts c̃i,j,k (i ∈ [1, N ], j ∈ Si,
k ∈ [1, µ]) and c̃⊥,k (k ∈ [1, µ]). Then Server executes the following:

(a) For each i ∈ [1, N ] and j ∈ Si, take a vector ~wi,j = (wi,j,1, . . . , wi,j,µ) ∈ (Fp†)µ uniformly at
random subject to the condition

~wi,j · ~αi,j =

µ∑
k=1

wi,j,kαi,j,k = 0 in Fp† . (2)

(b) Choose w⊥,1, . . . , w⊥,µ
R← Fp† .

(c) Set

c†flag ←
(
�†i∈[1,N ],j∈Si,k∈[1,µ](wi,j,k �

† c̃i,j,k)
)
�†
(
�†k∈[1,µ](w⊥,k �

† (c̃⊥,k �
† α⊥,k))

)
. (3)

(d) For h ∈ [1, ν], choose αchk,h
R←M†eff and γchk,h

R← Fp† , and set

c†chk,h ← αchk,h �
† (γchk,h �

† c†flag)

and c†chk,h ← Rnd†(c†chk,h). Then send c†chk,1, . . . , c
†
chk,ν to Client.

4. [Client → Server (2)] Given the ciphertexts c†chk,1, . . . , c
†
chk,ν , for each h ∈ [1, ν], Client computes

mchk,h ← Dec†
sk†

(c†chk,h), and aborts the protocol ifmchk,h = ⊥. Otherwise, Client sendsmchk,1, . . . ,mchk,ν

to Server.

5. [Server’s output] For the message mchk,1, . . . ,mchk,ν sent from Client, Server first checks if mchk,h =
αchk,h for all h ∈ [1, ν]. If this is not satisfied, then Server aborts the protocol. Otherwise, for each
i ∈ [1, N ] and h ∈ [1, Li], Server sets

c†i,h ← �†j∈Si
(
(αi,j,1

−1ϕi,h(j)) �† c̃i,j,1
)

where the inverse of each αi,j,1 is taken in M† = Fp† , and c†i,h ← Rnd†(c†i,h). Then Server outputs all

the c†i,h’s.

Remark 7. Step 3 of our protocol implicitly assumed that Server (without the secret key) can efficiently
verify that an object sent from possibly malicious Client is a valid ciphertext for the AHE scheme Π†. This
is in fact not possible for 2LHE schemes in [3, 8], but we can modify (as in Section 5) our protocol for such
schemes in a way that the verifiability for valid ciphertexts is not needed.

Remark 8. When Π and Π† are the same scheme and the key pairs (pk, sk) and (pk†, sk†) are equal as well,
the ciphertext ci in Step 2b for the case mi 6= ⊥ can be generated by just rerandomizing the corresponding
ciphertext ci instead of encrypting mi from scratch. This slightly improves the Client-side efficiency.

4.3 Correctness with Honest Client

Theorem 9. Suppose that both Server and Client honestly execute the protocol. Then the protocol is aborted
with probability at most εcor = (NS−N)µ · |Meff |/p. Conditioned on that the protocol is not aborted, Server’s
output distribution is identical to the distribution of the functionality F (pp, xS, xC).
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Proof. For Steps 1 and 2, we have Pt[c⊥,k] = α⊥,k ∈Meff . On the other hand, essentially the same argument
as Theorem 5 implies that Pt[ci,Pt[ci],k] = Pt[c̃i,Pt[ci],k] = αi,Pt[ci],k ∈ Meff and Pt[ci,j,k] is uniformly random
over M = Fp when j 6= Pt[ci]. Client aborts in Step 2 only when some of the latter (NS − N)µ random
plaintexts belongs to Meff , which occurs with probability at most εcor.

From now, we assume that Client did not abort in Step 2. Server does not abort in Step 3, as now Client
has honestly sent the valid ciphertexts. On the other hand, the argument above implies that the vector
(Pt[c̃i,j,1], . . . ,Pt[c̃i,j,µ]) is either ~αi,j or the zero vector. In any case, the first term of Eq.(3) has plaintext
0 due to Eq.(2), while the second term of Eq.(3) also has plaintext 0 by the argument above. Hence we

have Pt[c†flag] = 0 and Pt[c†chk,h] = αchk,h ∈M†eff for each h. Therefore, in Step 4, Client does not abort and
sends mchk,h = αchk,h back to Server, which lets Server not abort in Step 5. Finally, an argument similar to

Theorem 5 implies that Server’s output c†i,h is a random ciphertext of ϕi,h(Pt[ci]), where the term ϕh(Pt[c])·1
in Eq.(1) is replaced by αi,Pt[ci],1

−1ϕi,h(Pt[ci]) · αi,Pt[ci],1. Hence Theorem 9 holds.

4.4 Security against Malicious Client

By the same reason as explained in the first paragraph of Section 3.4, here we consider the security against
malicious Client only.

Theorem 10. Suppose that Server honestly executes the protocol. Let

εsec = εsec,1 + εsec,2 + max(εsec,3, εsec,4) + 1/p† ,

where

εsec,1
def
=

(NS −N)µ · |Meff |
p

, εsec,2
def
=

1

|M†eff |ν
,

εsec,3
def
=

1

(|Meff | − 1)µ−1
, εsec,4

def
= N ·

(
(N + 1)µ

µ

)−1

.

Then our protocol is secure against malicious Client with statistical distance at most εsec (see Definition 4
for the terminology).

Proof. Let A be Client’s PPT algorithm in a real protocol execution. We define a PPT algorithm B for
Client in an ideal protocol execution. The internal randomness rC for B consists of two parts rC,1 and rC,2
where rC,1 is the randomness for running A. Given the common part pp of the input and Client’s local input
xC, B proceeds as follows:

1. By using the randomness rC,2, B independently generates (by using pk) Nµ + µ uniformly random
ciphertexts for uniformly random plaintexts in Meff \ {0} and N − (Nµ + µ) uniformly random ci-
phertexts for uniformly random plaintexts in M \Meff . B permutes these ciphertexts uniformly at
random, and then executes Step 2 of A with randomness rC,1 where the permuted ciphertexts csim,i
(i ∈ [1, N ]) are given to A as the message from Server.

2. When the A aborts before outputting a message to Server, B decides that B(reply; pp, xC; rC) = abort

and
B(out; pp, xC; rC) = Aout(pp, xC, rC,1, (msg1))

where msg1 is the list of the csim,i’s. Otherwise, B checks the message returned by A, and if it does

not consist of N valid ciphertexts for Π†, then B decides that

B(reply; pp, xC; rC) = abort

and
B(out; pp, xC; rC) = Aout(pp, xC, rC,1, (msg1)) .
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3. In the other case where A has returned N valid ciphertexts csim,i (i ∈ [1, N ]), B checks if the following
condition is satisfied:

Decsk(csim,i) = Dec†
sk†

(csim,i) 6= ⊥ or (Decsk(csim,i),Dec
†
sk†

(csim,i)) = (⊥, 0) .

We call the case valid if the condition is satisfied for all i ∈ [1, N ], and invalid otherwise.

4. In the invalid case, by using the randomness rC,2, B generates (by using pk†) ν uniformly random

ciphertexts c†sim,chk,h (h ∈ [1, ν]) for uniformly random plaintexts in M†. Then B decides that
B(reply; pp, xC; rC) = abort and

B(out; pp, xC; rC) = Aout(pp, xC, rC,1, (msg1,msg2))

where msg2 is the list of the ciphertexts c†sim,chk,h.

5. On the other hand, in the valid case, by using the randomness rC,2, B generates αsim,chk,h
R←M†eff and

c†sim,chk,h ← Enc†(αsim,chk,h) for h ∈ [1, ν]. B decides that

B(out; pp, xC; rC) = Aout(pp, xC, rC,1, (msg1,msg2))

where msg2 is the list of the ciphertexts c†sim,chk,h. Then B executes Step 4 of A with randomness rC,1
where msg2 is given to A as the message from Server. If A does not return a message consisting of
ν values msim,chk,h (h ∈ [1, ν]), including the case where A aborts the protocol, then B decides that
B(reply; pp, xC; rC) = abort.

6. When the A has returned ν values msim,chk,h (h ∈ [1, ν]), B checks whether msim,chk,h = αsim,chk,h

holds for all h ∈ [1, ν]. If the condition is not satisfied, then B decides that B(reply; pp, xC; rC) = abort.
On the other hand, if the condition is satisfied, then B decides that B(reply; pp, xC; rC) = proceed.

Before comparing the distributions of outreal,A and outideal,B as in Definition 4, we modify the behavior
of Server in the real protocol as follows. We first note that, by the proof of Theorem 9, the ciphertext
ci,j,k in Step 1 of the protocol is a uniformly random ciphertext for plaintext αi,Pt[ci],k if j = Pt[ci] and
for a uniformly random plaintext in M = Fp if j 6= Pt[ci]. Then we modify the protocol in a way that

Server directly generates ci,j,k ← Enc(βi,j,k) where βi,Pt[ci],k ← αi,Pt[ci],k and βi,j,k
R← Fp if j 6= Pt[ci]. (We

note that, though the resulting Server is no longer PPT, this does not matter in the proof.) This does not
change the distribution of outreal,A. Secondly, we modify the protocol in a way that, for each (i, j, k) with

j 6= Pt[ci], βi,j,k is chosen as βi,j,k
R← Fp \Meff instead of βi,j,k

R← Fp. This yields a statistical distance for
the distribution of outreal,A at most |Meff |/p per each (i, j, k), hence at most (NS −N)µ · |Meff |/p = εsec,1

in total. Summarizing, the statistical distance between the distributions of outreal,A in the original and the
modified protocols is at most εsec,1.

From now, we compare the distributions of outreal,A for the modified protocol and outideal,B. For the
modified protocol, the argument above shows that the distribution of the ciphertexts sent from Server
to Client in Step 1c (which is independent of Client’s randomness) is identical to the distribution of the
ciphertexts csim,i (i ∈ [1, N ]) in Step 1 of B. Now we divide the situation in the modified protocol into the
following two disjoint cases:

(R1) Client in Step 2 does not return N valid ciphertexts for Π† (including the case where Client aborts
the protocol);

(R2) Otherwise, i.e., Client in Step 2 returns N valid ciphertexts for Π†.

We also divide the situation in Step 2 of the algorithm B into two disjoint cases (I1) and (I2) in a similar
way. We write outreal,A|E to denote the conditional distribution of outreal,A conditioned on a case E, and
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write outideal,B|E similarly. Now the argument above implies that the probabilities of Case (R1) and of Case
(I1) are equal, so are (R2) and (I2). Hence it follows that

∆(outreal,A, outideal,B) ≤ max
x=1,2

∆(outreal,A|Rx, outideal,B|Ix) .

In Case (R1), the modified protocol is aborted before Server sends a message in Step 3. Now Client’s
transcript has the same distribution as (msg1) appeared in Step 2 of B for Case (I1), therefore the conditional
distributions outreal,A|R1 and outideal,B|I1 are identical to each other. Hence we have

∆(outreal,A, outideal,B) ≤ ∆(outreal,A|R2, outideal,B|I2) .

To evaluate the statistical distance in the right-hand side, we note that the conditional distribution of
ciphertexts csim,i (i ∈ [1, N ]) in Step 3 of B conditioned on Case (I2) is identical to the conditional distribution

of ciphertexts ci (i ∈ [1, N ]) sent from A to Server in Step 2 of the modified protocol conditioned on Case
(R2). Now let π denote the permutation for ciphertexts applied in Step 1c of the modified protocol. Namely,
π is a bijection from the index set

{(i, j, k) | i ∈ [1, N ], j ∈ Si, k ∈ [1, µ]} ∪ {(⊥, k) | k ∈ [1, µ]}

to the index set [1, N ]. Now the ciphertexts sent from Server to Client in Step 1c satisfy that, ci (i ∈ [1, N ])
is a uniformly random ciphertext for plaintext given by

Pt[ci] =



αi,Pt[ci],k
R←Meff \ {0}

if π−1(i) = (i,Pt[ci], k) with i ∈ [1, N ], k ∈ [1, µ] ,

α⊥,k
R←Meff \ {0}

if π−1(i) = (⊥, k) with k ∈ [1, µ] ,

βi,j,k
R← Fp \Meff

if π−1(i) = (i, j, k) with i ∈ [1, N ], j ∈ Si \ {Pt[ci]}, k ∈ [1, µ] .

In particular, the distributions of the ci’s for the first two cases are identical to each other, and those for the
third case are also identical to each other. Let I and J denote the sets of the indices i in the first two cases
and the third case above, respectively. We moreover divide the set I into subsets I1, . . . , IN and I⊥ where

Ii
def
= {π(i,Pt[ci], k) | k ∈ [1, µ]} for i ∈ [1, N ]

and
I⊥

def
= {π(⊥, k) | k ∈ [1, µ]} .

We also define
I ′

def
= {i ∈ I | Pt[ci] 6= Pt[ci]} and J ′

def
= {i ∈ J | Pt[ci] 6= 0} .

Now we subdivide Case (R2) into two disjoint subcases; (R-valid) I ′ = J ′ = ∅; and (R-invalid) I ′ 6= ∅ or
J ′ 6= ∅. Note that Case (R-valid) corresponds precisely to the valid case in the algorithm B, called (I-valid);
similarly Case (R-invalid) corresponds to the invalid case in B, called (I-invalid). Hence we have

∆(outreal,A, outideal,B) ≤ max
x=valid,invalid

∆(outreal,A|R−x, outideal,B|I−x) .

We show that the conditional distributions outreal,A|R−valid and outideal,B|I−valid are identical. Indeed, the

same argument as Theorem 9 implies that c†chk,h (h ∈ [1, ν]) in Step 3 of the modified protocol for Case

(R-valid) is a uniformly random ciphertext for plaintext αchk,h
R← M†eff . These objects have distributions

identical to c†sim,chk,h and αsim,chk,h in Step 5 of B for Case (I-valid). In particular, the pair (msg1,msg2)
in Step 5 of B has a conditional distribution identical to Client’s transcript in the modified protocol. It

13



also follows that, the conditional probabilities that Step 4 of A does not return ν values (including the case
where A aborts the protocol) are equal for Cases (R-valid) and (I-valid). Moreover, when the A returns ν
values, the conditional distribution of the values msim,chk,h in Step 6 of B (conditioned on the αsim,chk,h’s and

c†sim,chk,h’s) is also identical to the conditional distribution of the values mchk,h in Step 4 of A in the modified

protocol (conditioned on the αchk,h’s and c†chk,h’s). This implies that, the conditional probability that the
protocol is not aborted, which is equivalent to mchk,h = αchk,h for all h ∈ [1, ν] in the modified protocol
and to msim,chk,h = αsim,chk,h for all h ∈ [1, ν] in B, respectively, is also equal in the two cases. Moreover,
when the protocol is not aborted, the same argument as Theorem 9 implies that Server’s conditional output
distribution in the modified protocol is identical to the distribution of F (pp, xS, xC). Summarizing the
arguments, it follows that outreal,A|R−valid and outideal,B|I−valid are identical, as desired. Hence we have

∆(outreal,A, outideal,B) ≤ ∆(outreal,A|R−invalid, outideal,B|I−invalid) .

In order to evaluate the right-hand side, we further subdivide Case (R-invalid) into the following two
disjoint subcases:

(R-success) Pt[c†flag] = 0;

(R-failure) Pt[c†flag] ∈ (Fp†)×.

Then we have

∆(outreal,A, outideal,B)

≤ Pr[ R-success | R-invalid ] + ∆(outreal,A|R−failure, outideal,B|I−invalid) .
(4)

We first consider the second term in the right-hand side of Eq.(4). In this case, each c†chk,h is a perfectly

random ciphertext independent of αchk,h due to the property of Rnd† and the choice γchk,h
R← Fp† , therefore

the conditional distribution of Client’s transcript is identical to that of (msg1,msg2) in B for Case (I-invalid).

Moreover, this property of c†chk,h implies that Client in Step 4 can correctly choose mchk,h = αchk,h for all
h ∈ [1, ν] (hence preventing Server to abort) with probability at most εsec,2. Hence we have

∆(outreal,A|R−failure, outideal,B|I−invalid) ≤ εsec,2 .

In order to evaluate the first term in the right-hand side of Eq.(4), we consider the two disjoint cases
J ′ = ∅ and J ′ 6= ∅. From now, we abbreviate “R-invalid” and “R-success” into “R-i” and “R-s”, respectively.
We have

Pr[ R-s | R-i ] = Pr[ R-s ∧ J ′ = ∅ | R-i ] + Pr[ R-s ∧ J ′ 6= ∅ | R-i ]

= Pr[J ′ = ∅ | R-i ] · Pr[ R-s | R-i ∧ J ′ = ∅] + Pr[J ′ 6= ∅ | R-i ] · Pr[ R-s | R-i ∧ J ′ 6= ∅]
= Pr[J ′ = ∅ | R-i ] · Pr[ R-s | I ′ 6= ∅ = J ′] + Pr[J ′ 6= ∅ | R-i ] · Pr[ R-s | J ′ 6= ∅] .

(5)

Write ~Pi,j
def
= (Pt[c̃i,j,1], . . . ,Pt[c̃i,j,µ]). For the second term in the right-hand side of Eq.(5), we assume

that J ′ 6= ∅, and take an element i = π(i, j, k) ∈ J ′, hence j 6= Pt[ci] and Pt[ci] = Pt[c̃i,j,k] 6= 0. In particular,
~Pi,j ∈ (Fp†)µ is a non-zero vector. Moreover, as j 6= Pt[ci] and hence Client’s view is independent of the

vector ~αi,j by the construction of the modified protocol, distributions of ~Pi,j and ~αi,j are independent as

well. Among the |Meff \ {0}|µ choices of ~αi,j , at most |Meff \ {0}| of them is linearly dependent with ~Pi,j ,
which occurs with probability at most |Meff \ {0}|−(µ−1) ≤ (|Meff | − 1)−(µ−1) = εsec,3. On the other hand,

when ~Pi,j and ~αi,j are linearly independent, for the uniformly random vector ~wi,j ∈ (Fp†)µ orthogonal to

~αi,j , the inner product ~wi,j · ~Pi,j takes a uniformly random value over Fp† . Now one of the terms in Eq.(3)

has perfectly random plaintext, so does c†flag as well, therefore Pt[c†flag] = 0 holds with probability 1/p†.
Summarizing, we have

Pr[ R-s | J ′ 6= ∅] ≤ εsec,3 +
1

p†
.
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For the first term in the right-hand side of Eq.(5), we assume that I ′ 6= ∅ = J ′. We define the following
three disjoint events:

(E1) I ′ ∩ I⊥ 6= ∅;

(E2) I ′ ∩ I⊥ = ∅ and ∅ 6= I ′ ∩ Ii∗ 6= Ii∗ for some i∗ ∈ [1, N ];

(E3) None of the above is satisfied, i.e., I ′ is the disjoint union of at least one sets Ii1 , . . . , Iiδ with 1 ≤ i1 <
· · · < iδ ≤ N .

Then we have

Pr[ R-s | I ′ 6= ∅ = J ′] =

3∑
x=1

Pr[Ex | I ′ 6= ∅ = J ′] · Pr[ R-s | I ′ 6= ∅ = J ′ ∧ Ex] .

In the case E1, we can take an element i = π(⊥, k) ∈ I ′ ∩ I⊥, hence Pt[c̃⊥,k] = Pt[ci] 6= Pt[ci] = α⊥,k.
Now Pt[c̃⊥,k �† α⊥,k] ∈ (Fp†)×, while w⊥,k is uniformly random over Fp† . This implies that one of the

terms in Eq.(3) has perfectly random plaintext, so does c†flag as well, therefore Pt[c†flag] = 0 holds with

probability 1/p†. On the other hand, in the case E2, we can take elements i1 = π(i∗,Pt[ci∗ ], k1) ∈ I ′ ∩ Ii∗
and i2 = π(i∗,Pt[ci∗ ], k2) ∈ Ii∗ \ I ′. Now we have

Pt[c̃i∗,Pt[ci∗ ],k1 ] = Pt[ci1 ] 6= Pt[ci1 ] = αi∗,Pt[ci∗ ],k1

and
Pt[c̃i∗,Pt[ci∗ ],k2 ] = Pt[ci2 ] = Pt[ci2 ] = αi∗,Pt[ci∗ ],k2 6= 0 .

This implies that ~Pi∗,Pt[ci∗ ] and ~αi∗,Pt[ci∗ ] are linearly independent, therefore the same argument as the case

J ′ 6= ∅ above implies that Pt[c†flag] is uniformly random and becomes 0 with probability 1/p†. Hence we have

Pr[ R-s | I ′ 6= ∅ = J ′] ≤
2∑

x=1

Pr[Ex | I ′ 6= ∅ = J ′] · 1

p†
+ Pr[E3 | I ′ 6= ∅ = J ′]

≤ 1

p†
+ Pr[E3 | I ′ 6= ∅ = J ′] .

Finally, we evaluate the probability Pr[E3 | I ′ 6= ∅ = J ′]. When |I ′| is not a multiple of µ, the event E3

never occurs. From now, we consider the case that |I ′| = δµ for an integer δ ≥ 1. Now the cases for different
choices of δ are disjoint; we evaluate the maximal probability of the event for various choices of δ. We recall
that the distributions of ciphertexts ci with i ∈ I are identical to each other. Therefore, from Client’s view,
the permutation π is perfectly random subject to the condition that π maps the set

{(i,Pt[ci], k) | i ∈ [1, N ], k ∈ [1, µ]} ∪ {(⊥, k) | k ∈ [1, µ]}

onto I. Now for each (i1, . . . , iδ), π maps the subset {(iρ,Pt[ciρ ], k) | ρ ∈ [1, δ], k ∈ [1, µ]} onto the subset I ′

of I with probability

(
(N + 1)µ

δµ

)−1

. As there are

(
N

δ

)
choices of (i1, . . . , iδ), the event E3 occurs for this

δ with probability f(δ)/((N + 1)µ)! where

f(δ)
def
=

(
N

δ

)
(δµ)!((N + 1− δ)µ)! .
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Now we have f(N + 1− δ) = (δ/(N + 1− δ)) · f(δ), which implies that f(δ) is not the maximum value of f
if δ > (N + 1)/2. Moreover, for 2 ≤ δ ≤ (N + 1)/2, we have (as N + 1− δ ≥ δ − 1)

f(δ − 1) =
δ

N + 1− δ
((δ − 1)µ)!

(δµ)!

((N + 2− δ)µ)!

((N + 1− δ)µ)!
f(δ)

=
δ

N + 1− δ
(N + 1− δ)µ+ 1

(δ − 1)µ+ 1
· · · (N + 1− δ)µ+ µ

(δ − 1)µ+ µ
f(δ)

≥ δ

N + 1− δ
· 1 · · · 1 · N + 2− δ

δ
f(δ) =

N + 2− δ
N + 1− δ

f(δ) ≥ f(δ) .

This implies that the maximum value of f(δ) is attained at δ = 1. Therefore, we have

Pr[E3 | I ′ 6= ∅ = J ′] ≤ f(1)

((N + 1)µ)!
= N · µ!(Nµ)!

((N + 1)µ)!
= εsec,4

and hence

Pr[ R-s | I ′ 6= ∅ = J ′] ≤ 1

p†
+ εsec,4 .

Now Eq.(5) becomes

Pr[ R-s | R-i ] ≤ Pr[J ′ = ∅ | R-i ]

(
εsec,4 +

1

p†

)
+ Pr[J ′ 6= ∅ | R-i ]

(
εsec,3 +

1

p†

)
≤ max

(
εsec,3 +

1

p†
, εsec,4 +

1

p†

)
= max(εsec,3, εsec,4) +

1

p†
.

By Eq.(4) and the arguments above, we have

∆(outreal,A, outideal,B) ≤ max(εsec,3, εsec,4) +
1

p†
+ εsec,2

as desired. This completes the proof of Theorem 10.

4.5 Parameters for Batch Executions

The complexity of our proposed protocol against malicious Client is almost proportional to the parameter µ
and is also dependent slightly on the other parameter ν. Table 1 shows examples of the parameters µ and ν
that make the bound εsec in Theorem 10 at most 2−128 for various numbers N of Server’s input ciphertexts.
Here we consider the case of 10-bit encrypted values, i.e., |Si| = 210 = 1024. We assume the use of the

lifted-ElGamal cryptosystem, where the spaces Meff and M†eff of effective plaintexts have to be fairly small

for keeping decryption efficiency. Here we take |Meff | = |M†eff | = 10000. On the other hand, the orders
p, p† of plaintext spaces (i.e., orders of the underlying groups) are significantly longer than 128 bits for the
sake of security of the cryptosystems. Accordingly, we can ignore the terms εsec,1 and 1/p† in εsec. Then a
calculation shows that, when N is not very large, the term εsec,4 is dominant in εsec; and as N increases, the
value of µ satisfying the bound is decreased and hence the communication overhead per one input ciphertext
is reduced. On the other hand, the value of µ satisfying the bound is lower bounded due to the term εsec,3

(precisely, µ ≥ 11 in the current case), and when N is large, εsec,3 becomes dominant rather than εsec,4

and hence the lower bound for µ is attained. This argument shows that, a batch execution of our protocol
improves the efficiency, but the efficiency improvement is saturated when N attains a certain threshold.

5 Our Protocols over 2LHE Schemes

In this section, we describe a way of modifying our protocol with malicious Client (in Section 4) to resolve
the problem of invalid ciphertexts mentioned in Remark 7 when the level-1 part of the 2LHE scheme in [3]
is used as the AHE scheme Π†. A similar idea might be also applicable to another 2LHE scheme in [8].
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Table 1: Examples of parameters µ and ν for our proposed protocol against malicious Client to attain the
bound εsec ≤ 2−128 in Theorem 10

N 1 10 100 1000 10000

µ 66 28 18 13 11

ν 10 10 10 10 10

5.1 The 2LHE Scheme

Here we summarize some properties of the 2LHE scheme in [3] relevant to our protocol construction (see
Appendix A for the other details). The plaintext space for the scheme isM = Fp with (large) prime p. The

set C〈1〉 of level-1 ciphertexts is the union of disjoint subsets C〈1〉m,m′ parameterized by two elements m,m′ of

M; and C〈1〉m = C〈1〉m,m is the set of valid level-1 ciphertexts for plaintext m, hence C〈1〉val =
⋃
m∈M C

〈1〉
m,m. On

the other hand, any level-2 ciphertext is valid; C〈2〉 = C〈2〉val =
⋃
m∈M C

〈2〉
m . Now the level-1 homomorphic

operations are extended also to invalid ciphertexts as follows: given c1 ∈ C〈1〉m1,m′1
and c2 ∈ C〈1〉m2,m′2

, we have

c1 �〈1〉 c2 ∈ C〈1〉m1+m2,m′1+m′2
and �〈1〉c1 ∈ C〈1〉−m1,−m′1

, and Rnd〈1〉(c1) outputs a uniformly random element of

C〈1〉m1,m′1
. Moreover, the homomorphic multiplication operation is also extended to invalid ciphertexts in the

following manner:

C〈1〉m1,m′1
�〈1〉 C〈1〉m2,m′2

⊆ C〈2〉m1·m′2
for any m1,m

′
1,m2,m

′
2 ∈M . (6)

5.2 The Modified Protocol

The setting here is the same as Section 4.1 (in particular, Client may be malicious) except that now the
level-1 part Π†〈1〉 of the 2LHE scheme Π† in Section 5.1 plays the role of Π† in the original setting. Then
we modify Step 3 of the protocol in Section 4.2 in the following manner:

• At the beginning of the step, if the message sent from Client at the previous step does not consist of

N elements in the union of C†〈1〉m,m′ over all m,m′ ∈M† = Fp† , then Server aborts the protocol.

• At Step 3c, we rename the original ciphertext c†flag as c††flag, and then newly define c†flag by choosing

ŵi,j,k
R← Fp† for each i ∈ [1, N ], j ∈ Si, and k ∈ [1, µ], choosing ŵ⊥,k

R← Fp† for each k ∈ [1, µ], and
setting

c†flag ← (c††flag �
†〈1〉 1) �†〈2〉

(
�†〈2〉i∈[1,N ],j∈Si,k∈[1,µ](ŵi,j,k �

†〈2〉 Val(c̃i,j,k))
)

�†〈2〉
(
�†〈2〉k∈[1,µ](ŵ⊥,k �

†〈2〉 Val(c̃⊥,k))
) (7)

where we define
Val(c)

def
= (c�†〈1〉 1) �†〈2〉 (−1 �†〈1〉 c) . (8)

Hence c†flag is now a level-2 (rather than level-1) ciphertext, therefore the following procedures relevant

to the objects αchk,h, c†chk,h, and c†chk,h are proceeded by using the level-2 part of Π† instead of the
level-1 part.

Intuitively, this modification intends to let the ciphertext c†flag (originally used for detecting Client’s dishonest
choice of plaintexts) also play the role of checking if Client’s ciphertexts are valid. In more detail, for any

c ∈ C†〈1〉m,m′ , Eq.(6) implies that Val(c) ∈ C†〈2〉m−m′ . In other words, we have Pt[Val(c)] = 0 if and only if c is
valid. This implies that, if some of the ciphertexts c̃i,j,k and c̃⊥,k is invalid, then at least one of the terms

in Eq.(7) has a uniformly random plaintext, so does c†flag, therefore Pr[Pt[c†flag] = 0] = 1/p†. On the other

hand, if all of c̃i,j,k and c̃⊥,k are valid, then Pt[c†flag] = Pt[c††flag] and hence this additional procedure does
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not affect the result of the protocol. Owing to this property, essentially the same arguments as our original
protocol imply the following results.

Theorem 11. Suppose that both Server and Client honestly execute the protocol. Then the protocol is aborted
with probability at most εcor, where εcor is the same as in Theorem 9. If the protocol is not aborted, then the
output distribution for Server is identical to the distribution of the functionality F (pp, xS, xC).

Theorem 12. Suppose that Server honestly executes the protocol. Then our protocol is secure against
malicious Client with statistical distance at most εsec (see Definition 4 for the terminology), where εsec is the
same as in Theorem 10.

5.3 An Improved Protocol for Binary Plaintexts

Here we consider the setting of Section 5.2 (i.e., Π† is the 2LHE scheme in [3] and Client may be malicious)
and suppose moreover that Si = {0, 1} for every i; i.e., each input ciphertext for Server has plaintext 0 or
1. In this case, by using the two-level functionality of Π†, we can construct a more efficient protocol. We
note that the same idea is also applicable to any other case with |Si| = 2 by using a homomorphic affine
transformation that maps Si onto {0, 1}.

We recall some settings for readers’ convenience. Server has N ciphertexts c1, . . . , cN for AHE scheme Π
with plaintexts in {0, 1}. Server’s goal is, roughly speaking, to obtain level-1 ciphertexts (in the scheme Π†)
of plaintexts ϕi,h(mi) for i ∈ [1, N ] and h ∈ [1, Li] (without having the secret keys sk, sk† held by Client)
where ϕi,h is a function {0, 1} →M† = Fp† and mi denotes the unknown ciphertext of ci. Now the protocol
is described as follows.

1. [Server → Client (1)] Server executes the following:

(a) For each i ∈ [1, N ], j ∈ {0, 1}, and k ∈ [1, µ], choose αi,j,k
R←Meff \ {0} and γi,j,k

R← Fp, and set
ci,j,k ← Rnd

(
(γi,j,k � ci) � (αi,j,k − γi,j,k · j)

)
.

(b) For each i ∈ [1, N ], send, to Client, two collections

(ci,0,k)k∈[1,µ] and (ci,1,k)k∈[1,µ]

of ciphertexts in an independent and uniformly random order (i.e., swapping them with probability
1/2).

2. [Client → Server (1)] For each i ∈ [1, N ], let (ci,0,k)k∈[1,µ] and (ci,1,k)k∈[1,µ] denote the i-th pair of two
collections of ciphertexts for Π sent from Server at the previous step. Client executes the following:

(a) For each i ∈ [1, N ], j ∈ {0, 1}, and k ∈ [1, µ], compute mi,j,k ← Decsk(ci,j,k). If, for each i ∈ [1, N ],
there exists an index j0 = j0(i) ∈ {0, 1} satisfying that mi,j0,k 6= ⊥ and mi,1−j0,k = ⊥ for any
k ∈ [1, µ], then proceed the protocol; otherwise abort the protocol.

(b) For each i ∈ [1, N ], j ∈ {0, 1}, and k ∈ [1, µ], set

ci,j,k ←

{
Enc†〈1〉(mi,j,k) if mi,j,k 6= ⊥ ,

Enc†〈1〉(0) if mi,j,k = ⊥ .

(c) For each i ∈ [1, N ], send two collections (ci,0,k)k∈[1,µ] and (ci,1,k)k∈[1,µ] to Server.

3. [Server → Client (2)] If the message sent from Client at the previous step does not consist of N pairs

of two collections (ci,0,k)k∈[1,µ] and (ci,1,k)k∈[1,µ] (i ∈ [1, N ]) of elements in the union of C†〈1〉m,m′ over all

m,m′ ∈ M†, then Server aborts the protocol. Otherwise, Server first permutes the two collections in
each of the N pairs in the reverse way of Step 1b, yielding collections (c̃i,0,k)k∈[1,µ] and (c̃i,1,k)k∈[1,µ]

of (possibly invalid) level-1 ciphertexts in the scheme Π† for i ∈ [1, N ]. Then Server executes the
following:
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(a) Choose ui,j,k
R← Fp† for each i ∈ [1, N ], j ∈ {0, 1}, and k ∈ [1, µ], and set

c†flag,1 ← �†〈2〉i∈[1,N ],j∈{0,1},k∈[1,µ](ui,j,k �
†〈2〉 Val(c̃i,j,k))

where Val(·) is defined as in Eq.(8).

(b) Choose v
(0)
i,k , . . . , v

(4)
i,k

R← Fp† for each i ∈ [1, N ] and k ∈ [1, µ], and set

c†flag,2 ← �†〈2〉i∈[1,N ]
k∈[1,µ]

(
v

(0)
i,k �†〈2〉

(
Chk

(0)
i,k,k(v

(1)
i,k , v

(2)
i,k ) �†〈1〉 Chk(1)

i,k,k(v
(3)
i,k , v

(4)
i,k )
))

where we define, for i ∈ [1, N ], k, k′ ∈ [1, µ], and u, u′ ∈ Fp† ,

Chk
(0)
i,k,k′(u, u

′)
def
=
(
u�†〈1〉 (c̃i,0,k �

†〈1〉 αi,0,k)
)
�†〈1〉 (u′ �†〈1〉 c̃i,1,k′) ,

Chk
(1)
i,k,k′(u, u

′)
def
= (u�†〈1〉 c̃i,0,k) �†〈1〉

(
u′ �†〈1〉 (c̃i,1,k′ �

†〈1〉 αi,1,k′)
)
.

(c) Choose w
(0)
i,k , . . . , w

(4)
i,k

R← Fp† for each i ∈ [1, N ] and k ∈ [2, µ], and set

c†flag,3 ← �†〈2〉i∈[1,N ]
k∈[2,µ]

(
w

(0)
i,k �†〈2〉

(
Chk

(0)
i,1,k(w

(1)
i,k , w

(2)
i,k ) �†〈1〉 Chk(1)

i,1,k(w
(3)
i,k , w

(4)
i,k )
))

.

(d) Set c†flag ← c†flag,1 �
†〈2〉 c†flag,2 �

†〈2〉 c†flag,3.

(e) For h ∈ [1, ν], choose αchk,h
R←M†〈2〉eff and γchk,h

R← Fp† , and set

c†chk,h ← αchk,h �
†〈2〉 (γchk,h �

†〈2〉 c†flag)

and c†chk,h ← Rnd†〈2〉(c†chk,h). Then send c†chk,1, . . . , c
†
chk,ν to Client.

4. [Client → Server (2)] Given the c†chk,1, . . . , c
†
chk,ν , for each h ∈ [1, ν], Client computes mchk,h ←

Dec
†〈2〉
sk†

(c†chk,h), and aborts the protocol if mchk,h = ⊥. Otherwise, Client sends mchk,1, . . . ,mchk,ν

to Server.

5. [Server’s output] For the message mchk,1, . . . ,mchk,ν sent from Client, Server first checks if mchk,h =
αchk,h for all h ∈ [1, ν]. If this is not satisfied, then Server aborts the protocol. Otherwise, for each
i ∈ [1, N ] and h ∈ [1, Li], Server sets

c†i,h ← �†〈1〉j=0,1((αi,j,1
−1ϕi,h(j)) �†〈1〉 c̃i,j,1)

where the inverse of αi,j,1 is taken modulo p†, and c†i,h ← Rnd†〈1〉(c†i,h). Then Server outputs all the

c†i,h’s.

We analyze the behavior of this protocol. The main difference of the protocol from the protocol in
Section 5.2 is at the construction of c†flag. It is intended that, if Client (as well as Server) honestly executes

the protocol then Pt[c†flag] = 0; while if Client does not choose the plaintexts in Step 2 honestly then we will

have Pt[c†flag] = 0 only with a sufficiently small probability.

First, we focus on the construction of c†flag,1. The argument in Section 5.2 implies that Pt[Val(c̃i,j,k)] = 0

if and only if c̃i,j,k is a valid level-1 ciphertext. Hence, Pt[c†flag,1] = 0 if all c̃i,j,k are valid. On the other hand,

if some c̃i,j,k is invalid, then the plaintext for ui,j,k �†〈2〉 Val(c̃i,j,k) becomes uniformly at random over Fp† ,
therefore Pt[c†flag] becomes uniformly random as well (whatever the plaintexts for c†flag,2 and c†flag,3 are). In

this case, the conditional probability that Pt[c†flag] = 0 is 1/p†.
From now, we suppose that all ciphertexts c̃i,j,k are valid. We focus on the components in the construc-

tions of c†flag,2 and c†flag,3 relevant to any fixed index i ∈ [1, N ]. Write m̃i,j,k = Pt[c̃i,j,k]. We prepare the
following lemma:
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Lemma 13. In the current situation, the following two conditions are equivalent:

1. Either (m̃i,0,k, m̃i,1,k) = (αi,0,k, 0) for any k ∈ [1, µ], or (m̃i,0,k, m̃i,1,k) = (0, αi,1,k) for any k ∈ [1, µ].

2. Both of the following properties hold:

(a) For each k ∈ [1, µ], we have (m̃i,0,k, m̃i,1,k) = (αi,0,k, 0) or (m̃i,0,k, m̃i,1,k) = (0, αi,1,k).

(b) For each k ∈ [2, µ], we have (m̃i,0,1, m̃i,1,k) = (αi,0,1, 0) or (m̃i,0,1, m̃i,1,k) = (0, αi,1,k).

Proof. It is straightforward to verify that Condition 1 implies the two properties in Condition 2. We con-
sider the converse direction. By Condition 2a for k = 1, we have either (m̃i,0,1, m̃i,1,1) = (αi,0,1, 0) or
(m̃i,0,1, m̃i,1,1) = (0, αi,1,1) (we note that at most one of them is satisfied, since the values αi,j,k are non-
zero). Now if (m̃i,0,1, m̃i,1,1) = (αi,0,1, 0), then Condition 2b implies that m̃i,1,k = 0 for any k ∈ [2, µ], and
then Condition 2a implies that m̃i,0,k = αi,0,k for any k ∈ [2, µ]. Hence it is in the former case of Condition
1. Similarly, if (m̃i,0,1, m̃i,1,1) = (0, αi,1,1), then Condition 2b implies that m̃i,1,k = αi,1,k for any k ∈ [2, µ],
and then Condition 2a implies that m̃i,0,k = 0 for any k ∈ [2, µ]. Hence it is in the latter case of Condition
1. Therefore Lemma 13 holds.

Based on Lemma 13, we evaluate the probability that Pt[c†flag] = 0 when (c̃i,j,k are valid ciphertexts but)
Client did not honestly choose the plaintexts m̃i,j,k for c̃i,j,k in Step 2 of the protocol. First we note that,
for any index i ∈ [1, N ], if Pt[ci] = 0, then there is an index j0 ∈ {0, 1} with the property that ci,j0,k is
a uniformly random ciphertext of αi,0,k 6= 0 and ci,1−j0,k is a uniformly random ciphertext of a uniformly
random plaintext for every k ∈ [1, µ]. Now the condition (m̃i,0,k, m̃i,1,k) = (αi,0,k, 0) will be satisfied for
every k ∈ [1, µ] if and only if Client honestly sets the plaintexts for ci,j0,k and ci,1−j0,k to be αi,0,k and 0,
respectively, for every k ∈ [1, µ]. On the other hand, the condition (m̃i,0,k, m̃i,1,k) = (0, αi,1,k) will be satisfied
only when Client sets the plaintext for ci,1−j0,k to be αi,1,k. As the ciphertext ci,1−j0,k received by Client
is independent of αi,1,k, Client can succeed the aforementioned choice for all of ci,1−j0,k (k ∈ [1, µ]) with
probability at most (|Meff |−1)−µ. The situation is similar in the other case where Pt[ci] = 1. Summarizing,
when Client did not honestly choose the plaintexts in Step 2, the probability that Condition 1 in Lemma 13
is satisfied for any i ∈ [1, N ] with probability at most (|Meff | − 1)−µ.

From now, we consider the other case where Condition 1 in Lemma 13 (hence Condition 2 as well, by the
lemma) is not satisfied for some i ∈ [1, N ]. First we suppose that Condition 2a in the lemma is not satisfied

for some k ∈ [1, µ]. In this case, at least one of the two terms c̃i,0,k�†〈1〉αi,0,k and c̃i,1,k in Chk
(0)
i,k,k(v

(1)
i,k , v

(2)
i,k )

has a non-zero plaintext; as v
(1)
i,k and v

(2)
i,k are uniformly random over Fp† , it follows that now the plaintext

for Chk
(0)
i,k,k(v

(1)
i,k , v

(2)
i,k ) becomes 0 with probability 1/p†. The same property also holds for Chk

(1)
i,k,k(v

(3)
i,k , v

(4)
i,k ).

Moreover, when both Chk
(0)
i,k,k(v

(1)
i,k , v

(2)
i,k ) and Chk

(1)
i,k,k(v

(3)
i,k , v

(4)
i,k ) have non-zero plaintexts, the plaintext for

the term
v

(0)
i,k �†〈2〉

(
Chk

(0)
i,k,k(v

(1)
i,k , v

(2)
i,k ) �†〈1〉 Chk(1)

i,k,k(v
(3)
i,k , v

(4)
i,k )
)

is uniformly random over Fp† , therefore (whatever the other terms in c†flag,1, c†flag,2, and c†flag,3 are) Pt[c†flag] = 0

with probability 1/p†. Hence, in the current case, the conditional probability that Pt[c†flag] = 0 is at most

1/p† + 1/p† + 1/p† = 3/p†.
Similarly, when Condition 2b in the lemma is not satisfied for some k ∈ [2, µ], by focusing on the term

w
(0)
i,k �†〈2〉

(
Chk

(0)
i,1,k(w

(1)
i,k , w

(2)
i,k ) �†〈1〉 Chk(1)

i,1,k(w
(3)
i,k , w

(4)
i,k )
)

in c†flag,3 instead, it follows that the conditional probability that Pt[c†flag] = 0 is at most 3/p† as well.

Therefore, when Condition 1 in Lemma 13 is not satisfied, the conditional probability that Pt[c†flag] = 0 is

at most 3/p†.
By the previous three paragraphs, when all ciphertexts c̃i,j,k are valid but Client did not honestly choose

the plaintexts, the conditional probability that Pt[c†flag] = 0 is at most (|Meff | − 1)−µ + 3/p†. This bound
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is larger than the bound for the conditional probability (evaluated above) for the case of invalid ciphertexts

c̃i,j,k. Hence, the probability that a malicious Client can set Pt[c†flag] = 0 is at most (|Meff | − 1)−µ + 3/p†.
Owing to the property, essentially the same arguments as Theorem 9 and Theorem 10 imply (by using the
fact |Si| = 2) the following results.

Theorem 14. Suppose that both Server and Client honestly execute the protocol. Then the protocol is aborted
with probability at most εcor = Nµ · |Meff |/p. If the protocol is not aborted, then the output distribution for
Server is identical to the distribution of the functionality F (pp, xS, xC).

Theorem 15. Suppose that Server honestly executes the protocol. Let εsec = εsec,1 + εsec,2 + εsec,3, where

εsec,1
def
=

Nµ · |Meff |
p

, εsec,2
def
=

1

|M†eff |ν
, εsec,3

def
=

1

(|Meff | − 1)µ
+

3

p†
.

Then our protocol is secure against malicious Client with statistical distance at most εsec (see Definition 4
for the terminology).

In this protocol, the number (two) of communication rounds is the same as our protocol in Section 5.2.
In the first round, Server sends and receives 2Nµ+ µ ciphertexts in the protocol in Section 5.2 (specialized
to the current case Si = {0, 1}), while the number is reduced to 2Nµ (i.e., dummy ciphertexts c⊥,k are not
used) in the current protocol. Moreover, the term εsec,4, which was dominant (when N is not very large)
in the bound for the statistical distance in Theorem 10, has been removed from the bound in the current
Theorem 15; as a result, the parameter µ can be smaller than the case of Section 5.2. This shows that, from
the viewpoint of communication costs, the current protocol is more efficient than the one in Section 5.2.

6 Extensions to Two-Input Functions

Our proposed protocols natively support univariate (one-input) functions ϕ(x) = ϕi,h(x) only. In this section,
we investigate some possible ways of extending our protocols to two-input functions ϕ(x, y) for encrypted
values x, y held by Server. Here we suppose that x ∈ Ix and y ∈ Iy for some known subsets Ix, Iy ⊆M. We
write [[z]] to denote a ciphertext with plaintext z.

First we consider an easy case where, there exist a univariate function ψ(z) and constants α, β, γ for
which we have

ϕ(x, y) = ψ(αx+ βy + γ) for any x ∈ Ix and y ∈ Iy . (9)

In this case, given ciphertexts [[x]] and [[y]], Server can homomorphically generate [[αx+ βy + γ]] and then
obtain [[ψ(αx+ βy + γ)]] = [[ϕ(x, y)]] by applying our proposed protocol. A simple but useful application
of this technique is secure comparison of encrypted integers x, y; Server wants to obtain [[χ]] where χ = 1 if
x ≥ y and χ = 0 if x < y. This is achieved by using the relation χ = sign(x − y) where sign is defined by

sign(z)
def
= 1 if z ≥ 0 and sign(z)

def
= 0 if z < 0.

The technique above also yields a generic (though not very efficient) solution for this problem. Namely,
we suppose (by shifting the domain Iy of y if necessary) that Iy ⊆ [0,K − 1] for an integer K. Then Server
can obtain [[ϕ(x, y)]] by using the relation ϕ(x, y) = ψ(K · x + y) for x ∈ Ix and y ∈ Iy where ψ is defined

by ψ(z)
def
= ϕ(bz/Kc, z mod K).

Besides the simplest case in Eq.(9), some other two-input functions can be evaluated more efficiently
than the generic case in the last paragraph. For example, suppose that x ∈ [0, Nx − 1] and y ∈ [0, Ny − 1]
for some integers Nx and Ny. Then Server can obtain a ciphertext [[xy]] for the product of x and y from
ciphertexts [[x]] and [[y]] in the following manner:

1. Server homomorphically generates [[x+ y]].

2. From [[x]], [[y]], and [[x+ y]], Server obtains [[x2]], [[y2]], and [[(x+ y)2]] simultaneously by using our
proposed protocol.
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3. Finally, Server homomorphically computes

2−1 � ([[(x+ y)2]] � [[x2]] � [[y2]]) = [[xy]]

where the inverse of 2 is taken in the plaintext space Fp.

As x+ y ∈ [0, Nx +Ny − 2], this procedure has to handle only Nx +Ny + (Nx +Ny − 1) = 2Nx + 2Ny − 1
ciphertexts (for semi-honest Client) for our proposed protocol, while the generic technique above has to
handle NxNy ciphertexts. Therefore, the technique here is much more efficient than the generic case.

When a 2LHE scheme can be used as the scheme Π†, another strategy also works as follows. Given
ciphertexts [[x]] and [[y]] for the scheme Π, Server first obtains (by using our protocol) a level-1 ciphertext
[[δ(x, a)]]†〈1〉 for each a ∈ Ix and a level-1 ciphertext [[ϕ(a′, y)]]†〈1〉 for each a′ ∈ Ix in the scheme Π†, where
δ(x, a) denotes the Kronecker Delta (i.e., it takes 1 if x = a and takes 0 if x 6= a). Then Server can locally
compute the following:

�†〈2〉a∈Ix

(
[[δ(x, a)]]†〈1〉 �†〈1〉 [[ϕ(a, y)]]†〈1〉

)
= [[

∑
a∈Ix

δ(x, a) · ϕ(a, y)]]†〈2〉

= [[ϕ(x, y)]]†〈2〉 .

We also note that, when the values ϕ(x, y) of ϕ are not too large, from the two ciphertexts [[δ(x, a)]]† and
[[ϕ(a, y)]]† appeared in the last paragraph, Server can also obtain [[δ(x, a) · ϕ(a, y)]]† by using the techniques
described above without homomorphic multiplication functionality for Π†. Hence, by homomorphically
adding them, Server can obtain the [[ϕ(x, y)]]†.

7 Experimental Results

7.1 Secure Computation of Exact Edit Distance

Based on our proposed protocol (against semi-honest Client), we implemented a secure protocol to compute
the edit distance between two (character-wise) encrypted strings held by Server. Our computation is based
on the standard technique using dynamic programming; that is, given two strings a = a1a2 · · · aL and b =
b1b2 · · · bL (of equal lengths), we recursively construct a matrix (D[i][j])i,j in a way that D[0][i] = D[i][0] = i
and

D[i][j] = min{D[i− 1][j] + 1, D[i][j − 1] + 1, D[i− 1][j − 1] + e(i, j)} (10)

where e(i, j) = 1 if ai 6= bj and e(i, j) = 0 if ai = bj . Then the value of D[L][L] becomes the edit
distance between a and b. Now note that, when each character is encoded by an integer, e(i, j) is in fact
a univariate function of ai − bj , therefore the value of e(i, j) can be securely computed from ciphertexts
[[ai]] and [[bj ]] by using our proposed protocol. On the other hand, for integers A, B, and C, we have

min{A,B,C} = min{min{A,B}, C} and min{A,B} = A − ReLU(A − B) where ReLU(x)
def
= max{0, x}.

Hence the value of Eq.(10) can also be securely computed by a combination of our proposed protocol
and the additively-homomorphic functionality of the underlying cryptosystem. Moreover, it is known that
D[i−1][j]−D[i][j−1] ∈ [−2, 2], D[i−1][j]−D[i−1][j−1] ∈ [−1, 1], and D[i][j−1]−D[i−1][j−1] ∈ [−1, 1].
Therefore, the encrypted input values for ReLU to compute Eq.(10) are all within a significantly small range,
which makes our protocol more efficient.

Table 2 shows the experimental results on the execution times for our protocol of edit distance compu-
tation. Here, the string lengths L varied as L = 128, 256, 512, and 1024. Our protocol is based on the
elliptic-curve lifted-ElGamal cryptosystem using the standard elliptic curve secp256k1 with 128-bit security.
Our experiments were performed over a real network environment (instead of using the value of theoretically
simulated network specifications) and mainly used Wide Area Network (WAN) rather than Local Area Net-
work (LAN). In our experiments over WAN, we used MacBook Pro Core i5 2.3GHz and a desktop PC Core
i7 8700 3.2GHz for implementing Client and Server, respectively.
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Table 2: Experimental results on online total execution times (sec.) for secure two-party computation of exact
edit distance (here “SS” and “HE” stand for Secret Sharing and Homomorphic Encryption, respectively)

Protocols Primitive Network String Length L
128 256 512 1024

[19], §V-C SS WAN (simulated) 41.8 84.9 174.5 367.0
Ours HE WAN (real) 8.68 24.36 58.38 203.41

LAN (real) 1.81 4.27 13.22 44.72

Table 3: Experimental results on total execution times (sec.) for secure conversion from level-2 into level-1
ciphertexts in 2LHE scheme

Network Plaintext Bit-Length log2 |S|
(real) 8 9 10 11 12 13 14 15 16
LAN 0.08 0.10 0.13 0.24 0.35 0.57 1.11 1.98 3.74
WAN 0.23 0.39 0.68 1.52 2.18 3.89 8.02 16.16 32.89

Table 2 also shows a comparison with previous work. Here we emphasize that our protocol is for com-
puting exact edit distance, while most of the previous results dealt with approximate edit distance in order
to improve the efficiency. Moreover, many existing results supposed to use LAN, in contrast to our present
work using WAN. Among such situations, in a recent paper [19], experimental results on secure two-party
computation of the exact edit distance over WAN are reported. The values shown in Table 2 are quoted from
Table VI of that paper. The protocol in [19] is based on the 2-out-of-2 secret sharing (SS); and the estimated
execution times in that paper are based on theoretical simulation of network environment (instead of using
a real network) where it is noted that they assumed WAN environment in their simulation. Although a fair
comparison between our result and theirs is difficult due to the difference of computer/network environments,
we can still say that our experimental results on the protocol execution times are at least comparable to
their results (and it might be considerable for some practical applications). We also note that, the protocol
in [19] adopted the so-called client-aided model for SS-based MPC where, in addition to the execution times
in Table 2, some other party also performs somewhat heavy pre-computation (e.g., 2262 sec. for L = 1024)
to provide certain auxiliary inputs for the protocol. In contrast, our protocol here does not need any such
heavy pre-computation.

As a reference, Table 2 also shows our experimental results using a real LAN environment instead of
WAN, where Client and Server were both implemented by using Xeon Platinum 8280 2.7GHz.

7.2 Level Reduction for Ciphertexts in 2LHE Schemes

As mentioned at the end of Section 3.1, our proposed protocol can be used for securely converting a level-2
ciphertext for a 2LHE scheme into a level-1 ciphertext with the same plaintext by using just one-round
computation (for semi-honest Client; and two-rounds for malicious Client). Of course, there seems no hope
to achieve such a “level reduction” functionality by a stand-alone use of 2LHE schemes without fully (or
somewhat) homomorphic property. We also implemented this level reduction protocol (with semi-honest
Client). Table 3 shows the experimental results on the execution times of our protocol. Here, the sizes of the
plaintext range |S| for the original level-2 ciphertext held by Server varied from 28 to 216. We used the 2LHE
scheme by Attrapadung et al. [3]; precisely, we used a publicly available library [17] for this 2LHE scheme
based on BLS12-381 curves with 128-bit security, and developed the interfaces by C++ (Clang 7.0). The
computer and the network environments for both LAN and WAN settings are the same as our experiment in
Section 7.1. We note that, our protocol with semi-honest Client is correctly executable as long as the subset
Meff of effective plaintexts satisfies 0 ∈Meff ; here we set Meff = {0} for the sake of efficiency.

The experimental results show that the time complexity of the implemented protocol is almost propor-
tional to |S| (especially for larger |S|), hence exponential in the bit length log2 |S|, which is consistent to the
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protocol construction. Although our protocol is not very practical when |S| is large, it is significantly efficient
for smaller |S|; e.g., when |S| = 28, it took only 0.23 sec. even in WAN environments. We also emphasize
that, such efficient results are still obtained even though the 2LHE scheme used here is pairing-based and
hence is less efficient than the lifted-ElGamal cryptosystem.

8 Computing over ABE Ciphertexts

Recall that our proposed protocols in this paper are applicable to any underlying encryption scheme that
has all necessary properties common to the lifted-ElGamal cryptosystem (Definition 1). In this section, we
explore a further extension of our protocols to MPC over ciphertexts of attribute-based encryption (ABE)
schemes. The key observation is that, many pairing-based ABE schemes in the literature have ciphertext
structures similar to the ElGamal cryptosystem, therefore such schemes can be equipped with the additively
homomorphic functionality by slight modifications (as long as the ciphertexts have some linear structure in
their exponents). The resulting schemes, which we call additively homomorphic ABE (AH-ABE ) schemes,
can then be used as the underlying scheme for our protocols (with some necessary adjustment to ABE
settings).

Here one may be curious that, while MPC usually supposes a situation where no fully trusted party
exists (otherwise such a party might be able to generate all parties’ outputs with trust), the design of ABE
frequently assumes a practical system operation where each user’s secret key is generated by a trusted third
party (TTP) having the master secret key. For this viewpoint we note that, even if there is a TTP to
generate secret keys, it is practically not obvious that this TTP can also work with MPC between some
users by the following reasons. First, when the TTP is a kind of official key issuance center, the center may
not be given the authority to do other work such as the support to users’ MPC. Secondly, in contrast to the
secret key generation which might be not frequently requested per each user, MPC between users may occur
very frequently and ubiquitously, therefore resolving all demands for MPC will easily exceed the capacity of
just the single TTP. Hence it is certainly meaningful in practice to combine MPC with ABE.

8.1 Additively Homomorphic ABE: Definition

We first briefly describe the standard ABE definition for generic predicates (see e.g. [2]), followed by our
definition for AH-ABE. In the following, for a PPT algorithm A, we denote by [A(x)] the set of all possible
outputs of A(x).

Predicate Family. Let P = { Pκ : Xκ × Yκ → {0, 1} | κ ∈ K } be a predicate family where Xκ and Yκ
denote “key attribute” and “ciphertext attribute” spaces, respectively. The index or “parameter” κ denotes
a list of some parameters such as the universes of attributes and/or bounds on some quantities, hence its
domain K will depend on that predicate. We will often omit κ when the context is clear.

Definition 16. An ABE scheme Π for predicate P consists of PPT algorithms Setup, Gen, Enc, Dec with
the following properties.

• Given security parameter 1λ and an index κ ∈ K, the setup algorithm Setup generates a pair of a
public key pk and a master secret key msk; (pk,msk)← Setup(1λ, κ).

• Given msk and a key attribute x ∈ Xκ, the key generation algorithm Gen generates a secret key sk;
sk← Gen(msk, x). We suppose that sk contains x.

• Given pk, a ciphertext attribute y ∈ Yκ, and a plaintext m ∈ M, the encryption algorithm Enc
generates a ciphertext c; c← Encpk,y(m). We suppose that c contains y.

• Given sk associated to x ∈ Xκ and a ciphertext c, the decryption algorithm Dec outputs either a
plaintext m̃ ∈M or ⊥; m̃ or ⊥ ← Decsk(c).
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The standard correctness is as follows: for all λ ≥ 1, κ ∈ K, (pk,msk) ∈ [Setup(1λ, κ)], x ∈ Xκ, y ∈ Yκ,
sk ∈ [Gen(msk, x)], m ∈ M, c ∈ [Encpk,y(m)], if P (x, y) = 1, then Decsk(c) = m. We consider the standard
security notions, namely, selective or adaptive IND-CPA; we refer to e.g. [2]. We will also require the following
public verifiability as defined in [32], in order to deal with malicious Client where validity of ciphertexts have
to be checked by Server.

Definition 17. We say that an ABE scheme Π for predicate P is publicly verifiable, if there exists a PPT
algorithm Verify that takes as inputs a public key pk, a possible ciphertext c ∈ {0, 1}∗, a ciphertext attribute
y ∈ Yκ, and outputs 0 or 1 as follows: for all λ ≥ 1, κ ∈ K, (pk,msk) ∈ [Setup(1λ, κ)], y ∈ Yκ, and c ∈ {0, 1}∗,
we have

Verify(pk, c, y) = 1 if and only if c ∈ [Encpk,y(m)] for some m ∈M.

We also say that such a c is a valid ciphertext with attribute y.

Definition 18. An AH-ABE Π for predicate P is a publicly verifiable ABE scheme albeit with the cor-
rectness below with a set of effectively decryptable plaintexts Meff ⊆M, together with an additional PPT
algorithm Rnd, and polynomial-time computable operators �, � as follows:

• Given pk and a valid ciphertext c ∈ [Encpk,y(m)], the rerandomization algorithm Rnd outputs a uni-
formly random c̃ ∈ [Encpk,y(m)]; c̃← Rndpk(c).

• Given pk, c1 ∈ [Encpk,y(m1)], and c2 ∈ [Encpk,y(m2)] with a common attribute y, the homomorphic
addition c1 �pk c2 yields an element of [Encpk,y(m1 +m2)].

• Given pk and c ∈ [Encpk,y(m)], the homomorphic negation �pkc yields an element of [Encpk,y(−m)].

The correctness condition is as follows: for any m ∈ M, a uniformly random ciphertext c ∈ [Encpk,y(m)]
satisfies the following except for negligible probability:

Decsk(c) =

{
m if m ∈Meff and P (x, y) = 1 ,

⊥ otherwise.

8.2 Protocols for Computing over AH-ABE: Settings

Due to the homomorphic functionality and the correctness condition regarding effective plaintexts for AH-
ABE mentioned above, our proposed protocol in Section 3 with semi-honest Client is extended to the current
case of AH-ABE. The points to be taken care of are the followings. In the protocol, the attributes for keys
and ciphertexts are regarded as non-secret information. The key pair (pk, sk) for Server’s input ciphertext
should satisfy the relation P (x, y) = 1. Moreover, the error probability of the protocol is slightly increased
from the original due to the non-perfect correctness in the formulation of AH-ABE, but the increase is
negligible as well as the error probability for the underlying AH-ABE schemes.

For the sake of simplicity, here we only consider the case of semi-honest Client. When considering
malicious Client, the case of a single input ciphertext (i.e., N = 1) has no special difficulty owing to the
public verifiability of AH-ABE. On the other hand, in the case of batch execution for N ≥ 2 input ciphertexts
with non-identical attributes, a new difficulty arises as true ciphertexts and dummy ciphertexts generated by
Server with different attributes can be easily distinguished by Client. To avoid this issue, a batch execution
has to be performed only for a set of ciphertexts with the same attribute.

A concrete description of the current setting is as follows. Let Π and Π† be AH-ABE schemes for
predicates P and P †, respectively, and let (pk, sk) and (pk†, sk†) be their key pairs. We suppose that the
plaintext spaces areM = Fp andM† = Fp† for publicly known primes p and p†, respectively. LetMeff ⊆M
be the subset of effective plaintexts for Π. We suppose that 0 ∈ Meff . Moreover, as mentioned above, we
do not consider attribute hiding, which is inherited from the similar setting for the underlying AH-ABE.
Hence, we simply let the attributes of Server’s input and output ciphertexts be included in the common
information. Now two parties’ inputs are specified as follows:
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Server’s local input: Server has a valid ciphertext c with ciphertext attribute y in the scheme Π associated
to the key pk, where the plaintext for c is supposed to be in a given subset S ⊆ M = Fp. Server also
has a polynomially bounded number of functions ϕh : S →M† = Fp† with h ∈ [1, L].

Client’s local input: Client has the secret key sk associated to key attribute x in the scheme Π. This
attribute must satisfy P (x, y) = 1.

Common information: Both parties know pk, pk† (including their indices κ, κ†), x, y, the cardinality |S|
of the subset S, and the attribute y† ∈ Y†

κ†
of Server’s output ciphertexts. Note that |S| must be

polynomially bounded.

Our protocol has one-sided output for Server, i.e., Client outputs nothing. Let pp, xS, and xC be the common
information, Server’s local input, and Client’s local input, respectively. The functionality F (pp, xS, xC) for

Server’s output is defined as a list of uniformly random valid ciphertexts c†h ∈ [Enc†
pk†,y†

(ϕh(m))] for h = [1, L].

8.3 Our Protocol for Computing over ABE: Construction

Our protocol for computing over AH-ABE (with semi-honest Client) follows exactly the same procedure as
the protocol with AHE in Section 3.2. The difference is only that ciphertext/key attributes are also taken
into account in the description. A concrete description of the protocol is as follows:

1. [Server → Client] Server executes the following:

(a) For j ∈ S, choose γj
R← Fp and set cj ← Rnd

(
(γj � c) � Encpk,y(γj · j)

)
.

(b) Send, to Client, all the ciphertexts cj in a uniformly random order.

2. [Client → Server] Let c1, . . . , c|S| denote the ciphertexts for Π sent from Server at the previous step.
Client executes the following:

(a) For each i ∈ [1, |S|], compute mi ← Decsk(ci). If the number of i ∈ [1, |S|] satisfying mi = 0 is
not equal to 1, then abort the protocol.

(b) For each i ∈ [1, |S|], set

ci ←

{
Enc†

pk†,y†
(1) if mi = 0 ,

Enc†
pk†,y†

(0) if mi 6= 0 .

(c) Send c1, . . . , c|S| to Server in this order.

3. [Server’s output] Given the |S| ciphertexts sent from Client at the previous step, Server first permutes
the ciphertexts in the reverse way of Step 1b, yielding ciphertexts c̃j (j ∈ S). Then Server executes
the following:

(a) For each h ∈ [1, L], set c†h ← �†j∈S(ϕh(j) �† c̃j) and set c†h ← Rnd†(c†h).

(b) Then output the c†h for all h ∈ [1, L].

Correctness. Correctness of the protocol above follows from essentially the same argument as Section 3.3
for the AHE case. The only obvious difference is that we use the correctness of AH-ABE here, instead of
AHE as previously; consequently, the error probability is affected with negligible increase, as the correctness
condition for AH-ABE allows negligible decryption error probability.

Security. Security also follows from the argument in Section 3.4; that is, security against Client is
information-theoretic and statistical, while security against Server is computational and is based directly
on IND-CPA of ABE here. Note that, for the latter, either selectively or adaptively secure ABE is fine, as
the protocol setting above do not consider key queries by Server.
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8.4 Constructions for AH-ABE

First we give a construction of an AH-ABE scheme with equality predicate (P (x, y) = 1 if and only if x = y);
i.e., the setting of identity-based encryption (IBE). We start with the Boneh–Boyen IBE [5] already having an
ElGamal-like structure, and simply define its “lifted” version. We set Y = X = {0, 1}∗. Let e : G×G→ GT

be a symmetric bilinear pairing over cyclic groups G = 〈g〉 and GT of exponentially large prime order p.
Let T = e(g, g). The scheme is described as follows, where M = Fp and Meff is a subset of M with only
polynomially many elements:

• Setup(1λ): Pick α, b1, b2
R← Fp. Set msk← α and pk← (g, gb1 , gb2 , Tα).

• Gen(msk, x): Pick r
R← Fp. Set d1 = gr, d2 = gα+r(b1+b2x). Output sk← (d1, d2).

• Encpk,y(m): Pick s
R← Fp. Set c0 = Tm(Tα)s, c1 = gs(b1+b2y), and c2 = gs. Output c← (c0, c1, c2).

• Decsk(c): Search for an m̃ ∈Meff satisfying T m̃ = c0 ·e(c1, d1) ·e(c2, d2)−1. If such an m̃ is found, then
output m̃. Otherwise, output ⊥.

• Homomorphic addition and negation can be done by

(c0, c1, c2) � (c′0, c
′
1, c
′
2) = (c0c

′
0, c1c

′
1, c2c

′
2) ,

�(c0, c1, c2) = (c−1
0 , c−1

1 , c−1
2 ) .

• Rnd(c): Output c� Encpk,y(0).

• Verify(pk, c, y): Parse c = (c0, c1, c2). Check if e(g, c1)
?
= e(gb1+b2y, c2). If this holds, output 1.

Otherwise, output 0.

The technique above for constructing an AH-ABE scheme (with equality predicate) from the Boneh–
Boyen IBE is also extendible to many other ABE schemes (with various predicates) in the literature. More
precisely, we provide a generic conversion from a class of pairing-based ABE constructions that admits a
specific structure to AH-ABE schemes. In the following, for a vector ~v = (v1, . . . , vn), we denote g~v =
(gv1 , . . . , gvn). As usual, we use a symmetric bilinear pairing e : G×G→ GT over cyclic groups G = 〈g〉 and
GT of prime order p. Let T = e(g, g).

Base ABE Template. We assume a base ABE scheme with the following template construction. Let n
be some integer.

• Setup(1λ, κ): Pick α
R← Fp and ~b = (b1, . . . , bn)

R← (Fp)n. Set msk← α and pk← (g, g
~b, Tα).

• Encpk,y(M): Let w be an integer that can depend on y. Pick a vector ~s = (s0, s1, . . . , sw)
R← (Fp)w+1.

Set
c0 = M · (Tα)s0 , c1 = gfy(~s,~b) , c2 = g~s ,

where fy(~s,~b) is a vector of linear combinations of monomials sibj for i ∈ [0, w], j ∈ [1, n], of which
coefficients can depend on y. Note that these coefficients are publicly known. Then output c ←
(c0, c1, c2).

Note that we do not pose any requirements for Gen and Dec for a base ABE scheme.
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AH-ABE from Base ABE Template. From any ABE scheme Π in the form of the template construction
described above, we can construct an AH-ABE scheme Π̃ for the same predicate as follows. Algorithms Setup
and Gen are exactly the same as those of Π. The other algorithms are as follows.

• Π̃.Encpk,y(m): Output Π.Encpk,y(Tm).

• Π̃.Decsk(c): Search for an m̃ ∈ Meff with T m̃ = Π.Decsk(c). If such an m̃ is found, then output m̃.
Otherwise, output ⊥.

• Homomorphic addition in Π̃ is done by

(c0, c1, c2) � (c′0, c
′
1, c
′
2) = (c0 · c′0, c1 · c′1, c2 · c′2) (11)

where · is the component-wise multiplication.

• Homomorphic negation in Π̃ is done by

�(c0, c1, c2) = (c−1
0 , c−1

1 , c−1
2 ) (12)

where the inverse is taken in the component-wise manner.

• Π̃.Rnd(c): Output c� Π̃.Encpk,y(0).

• Π̃.Verify(pk, c, y): Parse c = (c0, c1, c2), c1 = (u1, . . . , u`) for some `, and c2 = (v1, . . . , vw). Let aι,i,j
be the coefficient of monomial sibj in the ι-th polynomial in the vector fy(~s,~b). For each ι ∈ [1, `],
check if

e(g, uι)
?
=

w∏
i=0

n∏
j=1

e(gaι,i,jbj , vi) . (13)

If this holds for every ι, then output 1. Otherwise, output 0.

Proposition 19. Suppose that Π is a secure ABE scheme for predicate P . Then Π̃ is a secure AH-ABE
scheme for predicate P in the same sense and is, in particular, publicly verifiable.

Proof. We note that the encryption algorithm in Π̃ is essentially the same as Π except the expressions m
and Tm of plaintexts. As the additional functionalities in AH-ABE which were not in ABE are all publicly
available, these do not affect the security, therefore the security of Π̃ is trivially reduced to the security of Π.

Due to the linearity of the exponents in c with respect to the variables si, the operators in Eq.(11) and
Eq.(12) in fact realize the homomorphic addition and negation, respectively. The required property for the
algorithm Rnd also holds obviously. It remains to prove the correctness of Verify. For each i ∈ [0, w], put
vi = gsi for the uniquely determined si ∈ Fp. Then for each ι ∈ [1, `], the right-hand side of Eq.(13) is

w∏
i=0

n∏
j=1

e(gaι,i,jbj , gsi) =

w∏
i=0

n∏
j=1

T aι,i,jbjsi = T
∑w
i=0

∑n
j=1 aι,i,jsibj = T fy(~s,~b)ι

where fy(~s,~b)ι denotes the ι-th polynomial in the vector fy(~s,~b). This implies that, Eq.(13) holds for every

ι ∈ [1, `] if and only if c1 = (gfy(~s,~b)1 , . . . , gfy(~s,~b)`) = gfy(~s,~b), or equivalently, c is a valid ciphertext with
attribute y and randomness ~s. This completes the proof of Proposition 19.

Applicability. The ABE template introduced above covers many ABE constructions (for many predicates)
in the literature. First, for concreteness, we can see that the additively homomorphic IBE scheme described
above is obtained by applying our conversion to the Boneh–Boyen IBE [5]. Moreover, although we do not
go into detailed descriptions, it is seen that ABE schemes of [12, 20, 30, 4, 31] in fact conform our base
ABE template and hence can be all converted to AH-ABE. We note also that, while the argument above
assumed symmetric pairing, more efficient schemes with asymmetric pairing can be obtained as well by
folklore methods or a generic method in [1].
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Appendix

A Detail for a 2LHE Scheme

Here we describe in detail the construction of the 2LHE scheme in [3] (with slight modifications that are
not essential). Here e : G1 ×G2 → GT is a nondegenerate, Type 3 bilinear pairing with multiplicative cyclic
groups G1 = 〈g1〉, G2 = 〈g2〉, and GT of the same prime order p. Given elements h1 ∈ G1 and h2 ∈ G2 as
below, for m1,m2, ρ, σ ∈ Fp, we write

[m1,m2; ρ, σ]〈1〉
def
= (g1

ρ, g1
m1h1

ρ, g2
σ, g2

m2h2
σ) ∈ G1

2 ×G2
2 .

We set
C〈1〉m,m′

def
= {(1, [m,m′; ρ, σ]〈1〉) | ρ, σ ∈ Fp} for m,m′ ∈ Fp

and write C〈1〉m = C〈1〉m,m. On the other hand, given elements z1, z2, z3, z4 of GT as below, for m, ρ, σ, τ ∈ Fp,
we write

[m; ρ, σ, τ ]〈2〉
def
= (z1

ρ+σ−τ , z2
ρ, z3

σ, z1
mz4

τ ) ∈ GT
4 .

We set
C〈2〉m

def
= {(2, [m; ρ, σ, τ ]〈2〉) | ρ, σ, τ ∈ Fp} for m ∈ Fp .

Then the construction of the scheme is as follows.
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• Gen(1λ): Choose G1 = 〈g1〉, G2 = 〈g2〉, GT and e as above. Choose s1, s2
R← F×p and set h1 ← g1

s1

and h2 ← g2
s2 . Compute z1 ← e(g1, g2), z2 ← e(g1, h2), z3 ← e(h1, g2), z4 ← e(h1, h2), and output

(pk, sk) where
pk← (G1,G2,GT, g1, g2, e, h1, h2, z1, z2, z3, z4) , sk← (s1, s2) .

We setM = Fp, and setM〈1〉eff andM〈2〉eff to be any subsets ofM with polynomially bounded numbers

of elements. Moreover, we set C〈1〉 =
⊔
m∈M C

〈1〉
m and C〈2〉 =

⊔
m∈M C

〈2〉
m .

• Enc〈1〉(m) = (1, [m,m; ρ, σ]〈1〉) with ρ, σ
R← Fp.

• Enc〈2〉(m) = (2, [m; ρ, σ, τ ]〈2〉) with ρ, σ, τ
R← Fp.

• Dec〈1〉(1, (c1, c2, c3, c4)): Search an m ∈ M〈1〉eff satisfying c−s11 c2 = g1
m. If such an m is found then

output the m; otherwise output ⊥.

• Dec〈2〉(2, (c1, c2, c3, c4)): Search an m ∈M〈2〉eff satisfying cs1s21 c2
−s1c3

−s2c4 = z1
m. If such an m is found

then output the m; otherwise output ⊥.

• (i, (c1, c2, c3, c4)) �〈i〉 (i, (c′1, c
′
2, c
′
3, c
′
4)) for i ∈ {1, 2}: Output (i, (c1c

′
1, c2c

′
2, c3c

′
3, c4c

′
4)).

• �〈i〉(i, (c1, c2, c3, c4)) = (i, (c1
−1, c2

−1, c3
−1, c4

−1)) for i ∈ {1, 2}.

• Rnd〈i〉(i, c) for i ∈ {1, 2}: Output (i, c) �〈i〉 Enc〈i〉(0).

• (1, (c1, c2, c3, c4)) �〈1〉 (1, (c′1, c
′
2, c
′
3, c
′
4)): First we define

(x1, x2)× (y1, y2)
def
= (e(x1, y1), e(x1, y2), e(x2, y1), e(x2, y2))

for (x1, x2) ∈ G1
2 and (y1, y2) ∈ G2

2. Then the operator outputs (2, (c1, c2)× (c′3, c
′
4)).

The argument in [3] shows that the scheme correctly satisfies the conditions for a 2LHE scheme in Definition

3. We note that, for invalid ciphertexts (i.e., elements of C〈1〉m,m′ with m 6= m′), we have

C〈1〉m1,m′1
�〈1〉 C〈1〉m2,m′2

⊆ C〈2〉m1·m′2
for any m1,m

′
1,m2,m

′
2 ∈M .
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