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Abstract. As a fundamental tool in lattice-based cryptosystems, dis-
crete Gaussian samplers play important roles in both efficiency and se-
curity of lattice-based schemes. Approximate discrete rounded Gaussian
sampler, central binomial sampler and bounded uniform sampler are
three types of error samplers that are commonly used in the designs
of various schemes. However, known cryptanalytics about error samplers
concentrate on their standard deviations and no analysis about distinct
structures of distributions have been proposed. In this paper, we address
this problem by considering the dual attack for LWE instances and in-
vestigating Fourier transforms of these distributions. We introduce the
concept of local width which enables us to get a more detailed look of
these distributions and the distinguish advantages. We make an analy-
sis of dual attack for different distributions and provide a novel measure
model to describe the differences. Within this refined framework, we also
propose a novel type of error sampler which can achieve high efficiency,
security as well as flexibility.
Key words: discrete Gaussian sampling, lattice, distinguish advantage
, LWE, dual attack

1 Introduction

With the rapid developments in quantum algorithms and computations, re-
search in lattice-based cryptography has attracted considerable attention be-
cause lattice-based cryptosystems are likely to be effective against quantum
computing attacks in the future. Mathematical and computational properties
of lattices also provide basis for various advanced schemes, such as digital signa-
tures, identity-based and attribute-based encryption, zero-knowledge proof and
fully homomorphic schemes.
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The learning with errors (LWE) problem introduced in Regev’s work [25] is
one of the most popular average-case problems that have been widely studied.
Plenty of lattice-based cryptosystems, such as PKE schemes, KEM schemes and
KEX schemes [3,20,22], are based on LWE problem or its variants such as Ring-
LWE [21, 23] and Modula-LWE [8, 17]. In a LWE/RLWE/MLWE-based cryp-
tosystem, the discrete Gaussian sampler works as a basic module which not only
influences the efficiency of the whole scheme but also directly affects the decryp-
tion failure probability and the securities against known attacks such as primal
attack, dual attack, BKW attack as well as algebraic attack [1,3,4,11,13,14,16].
According to results of [25], a LWE scheme which has a discrete Gaussian er-
ror sampler with large enough width (standard deviation) enjoys the worst case
hardness. However, the scheme is not quite practical because other parameters
should also be quite large in order to match the sampler’s width. As a result, how
to make a good balance between efficiency and security has become a key issue
in designing LWE-based cryptosystems. One common way to achieve security
with smaller parameters is restricting the number of available samples to avoid
BKW attack and algebraic attack where a large number of samples are needed.
Under the condition that only a limited number of samples are available, the
primal attack and dual attack are usually considered [3, 20,22].
In practice, three types of error samplers are commonly used in lattice-based
schemes, namely rounded discrete Gaussian sampler, central binomial sampler
and bounded uniform sampler. The current analysis uses width parameters
(which can also be computed with standard deviations by multiplying a con-
stant) to measure the security of these three error samplers, no attack that deals
with the structures of error distributions has been ever considered according
to [3] In this paper, we study the distributions for sampling errors by means
of Fourier analysis. Fourier transform is a powerful tool in analyzing practical
distributions. For these distributions, the values of their Fourier transform can
be precisely computed in polynomial time. Because the isomorphic property of
Fourier transform, these values can be used to reveal full information of the dis-
tributions. Therefore, some of the natures of these distributions can be viewed
from a different angle. This provides an effective method to measure the differ-
ences brought by practical distributions when used in a LWE scheme instead of
ideal discrete Gaussian distribution.

In this paper, our contribution can be summarized into three aspects. Firstly,
we make use of Fourier transform further by exploring the distinguishing behav-
ior to the components level of the dual lattice vector v. Utilizing this analysis,
we are able to study some unique features of an individual sampler. It is shown
that the distinguish advantage of ideal discrete Gaussian distribution is related
to the length of vectors in the dual lattice and the width s. Differences for
approximate rounded Gaussian distribution, central binormal distribution and
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bounded uniform distribution are displayed. Our results indicate that the dif-
ferences of the distinguish abilities of vectors with the same length in the dual
lattice may be quite large according to the concrete distribution. Secondly, we
make an analysis of dual attack for different distributions and provide a new
measure model to describe the difference between practical distributions and
ideal Gaussian distribution. The results show that the central binomial sampler
used in NewHope shares the same property with ideal Gaussian sampler under
the measure model while the approximate discrete rounded Gaussian sampler
used in Frodo and the bounded uniform sampler used in Saber have gaps com-
pared with the ideal one. Thirdly, we propose a novel type of sampler named
mixed sampler which shares good property with ideal Gaussian and central bi-
nomial distributions. This sampler outputs a convolution distribution of central
binomial distributions and bounded uniform distributions where more flexible
choices in sampling widths are allowed, compared to that for the central bino-
mial sampler. Furthermore, by choosing parameters properly, the mixed sampler
can also achieve better efficiency and security compared with former samplers.

The rest of the paper is organized as follows. In Section 2, we introduce some
background about lattice, discrete Gaussian sampling , LWE problem and dual
attack. Our analysis of the distinguish advantage by using Fourier transform and
their proofs are presented in Section 3. In Section 4, some applications of the
above analysis are described, including a new measure of practical distributions
under dual attack and a new sampler. Finally, we give our conclusion in Section
5.

2 Preliminaries

For x ∈ R, let ⌊x⌋ be the maximum value among all the integers that are smaller
than x, let ⌈x⌋ be the nearest integer to x.

2.1 Lattice

An m-dimensional lattice is a discrete additive subgroup in Rm which can be
represented as the set of linear combination of n linearly independent vectors
{b1, · · · ,bn} , i.e.

L(B) =
{ n∑

i=1

xibi | xi ∈ Z,∀i ∈ [1, n]
}

where B = [b1, · · · ,bn] is called a basis of L which is not unique, n(n ⩽ m) is
the rank of the lattice, a lattice is called full-rank if m = n. The determinant of
L is defined as

det(L) =
√

det(B⊤B).
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The quantity det(L) is invariant regardless of the choice of B. The dual lattice
L∗ is defined as

L∗ = {w ∈ Rm | ∀v ∈ L, ⟨w,v⟩ ∈ Z}.
q-ary lattice As a kind of important lattices in lattice-based cryptography, a
q-ary lattice refers to the lattice such that qZn ⊆ L ⊆ Zn where q is an integer.

Two types of q-ary lattices frequently used in lattice cryptography are defined
as follows with respect to an n×m matrix B ∈ Zn×m

q ,

Lq(B) = {y ∈ Zm | y = B⊤x mod q,x ∈ Zn},
L⊥
q (B) = {y ∈ Zm | By = 0 mod q}.

2.2 Gaussian Distribution over Lattices
For s > 0, the Gaussian function is defined as

ρs(y) = e−π∥y∥2/s2

for y ∈ Rm where s is called the width. When s = 1, the subscript is usually
omitted for simplicity.
Definition 2.1 (Discrete Gaussian distribution). For s > 0 and c ∈ Rm,
the discrete Gaussian distribution DL+c,s over L+ c is defined as

DL+c,s(x) =
ρs(x)

ρs(L+ c)

where x ∈ L+c and ρs(L+c) =
∑

x∈L+c ρs(x). We call σ = s/
√
2π the standard

deviation for DL+c,s.
It is difficult to calculate the sum ρs(L) directly, but it is related to the sum of
values of a Gaussian function over the dual lattice according to the celebrated
Poisson summation formula.
Lemma 2.1 (Poisson summation formula [5]) For an n-dimensional lat-
tice L, let s > 0 and t ∈ Rn, the following hold:
(1) ρs(L) = sn

det(L)ρ1/s(L
∗),

(2) ρs(L+ t) = sn

det(L)

∑
w∈L∗

e2πi⟨w,t⟩ρ1/s(w).

There is a tail bound for the continuous Gaussian distribution and the discrete
Gaussian distribution also has a similar property which was first proven by
Banaszczyk [5]. The following is a refinement to the bound of Banaszczyk given
in [26].
Lemma 2.2 (Tail bound [26]) For an n-dimensional lattice L and a vector
t ∈ Rn, let s > 0 and c ⩾ 1/

√
2π, we have

Pr
X∼DL+t,s

[∥X∥ > cs
√
n] ⩽ (2πec2)n/2e−πnc2 ρs(L)

ρs(L+ t)
.
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2.3 LWE Problem

LWE was proposed by Regev [25] in 2005 and has been widely used in the
construction of lattice-based cryptography. We first introduce some definitions
in order to describe LWE problems.

Definition 2.2 (LWE distribution). Let n ⩾ 1, q ⩾ 2 and χ be an error
distribution over Zq, given a secret vector s ∈ Zn

q , the LWE distribution Ls,χ

over Zn
q × Zq is sampled by choosing a ∼ U(Zn

q ) and e ∼ χ, and outputting
(a, b = ⟨a, s⟩+ e mod q) .

The LWE problem has a search version and a decision version, which are defined
as follows.

Definition 2.3 (Search-LWE). Given m samples (ai, bi) ∈ Zn
q × Zq that are

independently sampled from Ls,χ with a fixed secret s ∈ Zn
q , the goal of search-

LWE is to find the secret vector s.

In the rest of our discussion, we denote A ∈ Zn×m
q to be the matrix formed by m

columns {ai}mi=1 and b = (b1, b2, · · · , bm)⊤ ∈ Zm
q , where bi = ⟨ai, s⟩+ ei mod q.

Definition 2.4 (Decision-LWE). Given m independent samples (A,b) ∈ Zm×n
q ×

Zm
q that follow either the LWE distribution Ls,χ with a fixed secret s ∈ Zn

q or the
uniform distribution, the goal of decision-LWE is to decide which distribution
the samples follow.

To make LWE more practical in cryptography, variants of LWE problems
(e.g., Ring-LWE and Modulo-LWE) have been investigated. More details of these
variants can be found in [18, 21]. Learning With Rounding (LWR) is another
LWE variant with the determined error and defined as follows.

Definition 2.5 (LWR [7]). For the integer parameters (n, q, p) where n > 1

and q ⩾ p ⩾ 2, given a secret vector s ∈ Zn
q , the LWR distribution over Zn

q ×Zq

is sampled by choosing a ∼ U(Zn
q ) and outputting the sample (a, ⌈p

q ⟨a, s⟩⌋).

Since
q

p
⌈p
q
⟨a, s⟩⌋ = ⟨a, s⟩+ e mod q

where
e =

q

p
(
p

q
⟨a, s⟩ − ⌈p

q
⟨a, s⟩⌋) ∈ (− q

2p
,
q

2p
],

LWR is often viewed as the LWE problem with the error following the bounded
uniform distribution [11]. Accordingly, LWR with structure are also commonly
used in practice, such as Modulo-LWR and Ring-LWR.
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2.4 Dual attack against decisional-LWE
The dual attack is to find a short vector w in the lattice L⊥

q (A) and then make
a distinguish. When (A,b) is a LWE sample, there is a distinguish advantage
as | ⟨w,b⟩ | is small. The cost of obtaining a short vector and its corresponding
distinguish advantage decide the whole complexity under dual attack.

As for the estimation of the complexity of obtaining a short vector, BKZ
is usually used as it is the best performing algorithm in practical experiments.
BKZ algorithm with block size b reduces the lattice basis by making use of SVP
oracles in b dimension lattice iteratively. The cost of BKZ running time de-
pends on the numbers of calls of SVP oracles which is known as polynomial [15].
As the polynomial factor is difficult to estimate, the most popular way is to
adopt a very conservative approach by considering only one SVP oracle call in
the iteration and take the “core-SVP” complexity as the estimation of cost of
BKZ [3, 22] . Among various SVP oracle models, heuristic sieving algorithm is
often considered in predicting the hardness of high dimensional lattice. Accord-
ingly, the complexity is 20.292b+o(b), 20.265b+o(b), 20.2075b+o(b) which responds to
the complexity of best current classical sieving, quantum sieving and the plau-
sible sieving respectively and the factor in the o(b) is ignored in estimation.

As for the lattice L⊥
q (A), the length of vector outputted by BKZ algorithm

with block size b is estimated as l = δm−1q
n
m where δ = ((πb)

1
b

b
2πe )

1
2(b−1) . Since

the sieving algorithm provides 20.2075b vectors, the whole complexity of dual
attack is

2cBb max{1, 1
ϵ2
2−0.2075b},

where cB = 0.292 under classical computation and 0.265 under quantum com-
putation. The distinguish advantage ϵ = e

−π s2l2

q2 according to [19].

3 Fourier Transform and Dual Attack for LWE Instances

The duality in Fourier analysis is a fundamental mathematical thought in which
a function localized in the time domain can be also viewed to spread out across
the frequency domain. It has been shown to be very powerful for lattice theory,
for example, the Fourier transform for discrete Gaussian and the corresponding
Poisson summation formula (discussed in the previous section) are crucial for
the improved transference bounds of lattice by Banaszczyk [5]. In this section,
we will discuss the discrete Flourier transform over the Abelian group Zq and
use it to analyze several probability distributions over Zq. This enables us to
provide a refined framework for dual attacks for some LWE instances.

For a function f : Zq → C, its Fourier transform f̂ is given by

f̂(k) =

q−1∑
j=0

e−
2πijk

q f(j), (1)
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for each k ∈ Zq. The transform is invertible, so f can be uniquely determined
by f̂ . Among the properties of Fourier transform, the uncertainty principle of
of some remanence to our discussion. Let supp(g) = {j ∈ Zq : g(j) ̸= 0} be the
support of a function g, then the uncertainty principle of Donoho and Stark [10]
for discrete Fourier transform over Zq states that, for any function f : Zq → C,

|supp(f)||supp(f̂)| ≥ q. (2)

The essence of the uncertainty principle is saying that |supp(f)| and |supp(f̂)|
cannot be both small. In our later discussion of dual attack, we hope |supp(f̂)|
is a big integer for certain non-uniform distribution. As we shall see later, some
error distributions for LWE have probability functions f with small |supp(f)|,
and the actual |supp(f̂)| is even bigger than the theoretical estimation in (2).

3.1 Distinguishing Advantage for Discrete Gaussian

Dual attack and primal attack are popular methods for solving LWE problems,
they are especially effective in the case of have only a limited number of samples.
We will focus on the dual attack against LWE.

The aim of dual attack is to solve decision-LWE problem, i.e. to distinguish
whether the m independent samples (A,b) ∈ Zn×m

q ×Zm
q are drawn from LWE

distribution or the uniform distribution.
The procedure of making distinction is to choose a (non-zero) vector v in the

q-ary lattice L⊥
q (A) = {x ∈ Zm

q | Ax = 0 mod q}. It can be seen that ⟨v,X⟩
is uniformly distributed over Zq if X ∼ U(Zm

q ). However, we have ⟨v,X⟩ =

⟨v, e⟩ mod q when X ∼ Ls,χ.
In order to get a numeric distinguish advantage of a distribution over the

uniform distribution, we can use the Fourier transform. Write random variable
X = (x1, · · · ,xn) where components xi are sampled from Zq independently and
have the same probability function f(x). We denote the distribution of ⟨v,X⟩
as f⟨v,X⟩. By using convolution and its transform, we see that

f̂⟨v,X⟩(1) =

n∏
j=1

f̂vjxj
(1) =

n∏
j=1

f̂(vj) (3)

It is obvious that f̂⟨v,X⟩(1) = 0 if X ∼ U(Zn
q ) and v ̸= 0. However, f̂⟨v,X⟩(1) ̸= 0

when xi ∼ χ for some other error distribution χ and for a suitable vector v (i.e.,
f̂(vj) ̸= 0 for all components of v). A positive lower bound of |f̂⟨v,X⟩(1)| can be
regarded as a distinguishing advantage.

An ideal error distribution is the discrete Gaussian for Zq whose definition
is Ds,q(x) =

∑
t∈Z ρs(x+tq)

ρs(Z) , where s is called the width (which is
√
2π times the
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standard deviation). As mentioned in [19], the distinguishing advantage for this
case is

ϵ(∥v∥) = e
−π

s2∥v∥2

q2 . (4)

We include a proof of (4) by showing e
−π

s2∥v∥2

q2 ≤ (D̂s,q)⟨v,X⟩. The following

result also produces a tighter upper bound, namely (D̂s,q)⟨v,X⟩ ≤ 2e
−π

s2∥v∥2

q2 .

Lemma 3.1 For the variable X sampled from discrete Gaussian distribution
Ds,q, we have

D̂s,q(k) =
ρ 1

s
(Z+ k

q )

ρ 1
s
(Z)

.

Moreover, for k = 1, 2, · · · , ⌊q/2⌋,

e
−πs2k2

q2 ⩽ D̂s,q(k) ⩽ 2e
−πs2k2

q2 .

Proof. By definition and the Poisson summation formula,

D̂s,q(k) =

q−1∑
j=0

e−
2πijk

q

∑
t∈Z ρs(j + tq)

ρs(Z)
=

1

ρs(Z)

q−1∑
j=0

∑
t∈Z

e−
2πi(j+tq)k

q ρs(j + tq)

=
1

ρs(Z)
∑
x∈Z

e−2πix k
q ρs(x) =

ρ 1
s
(Z+ k

q )

ρ 1
s
(Z)

.

As for the lower bound of function D̂s,q(k)), we have

ρ 1
s
(Z+

k

q
) = e

−πs2k2

q2 + e
−πs2(q+k)2

q2 + e
−πs2(−q+k)2

q2 + · · ·

= e
−πs2k2

q2 (1 + e−πs2(e−
2πs2k

q + e
2πs2k

q ) + · · · )

≥ e
−πs2k2

q2 (1 + 2e−πs2 + 2e−4πs2 + · · · ) = e
−πs2k2

q2 ρ 1
s
(Z).

On the other hand, lemma 2.4 of [6] states that for any lattice L and any vector
u ∈ Rn,

∑
x∈L+u

|x1|≥t
ρ(x) ≤ 2e−πt2ρ(L) holds. Let L = sZ and t = u = sk

q , then

|x| ≥ t is true for any x ∈ L+ u since k ≤ q
2 . Therefore,

ρ 1
s
(Z+

k

q
) =

∑
x∈L+u

|x|≥t

ρ(x) ≤ 2e−πt2ρ(L) = 2e
− s2k2π

q2 ρ 1
s
(Z),

which gives an upper bound for D̂s,q(k).

We should remark that many recent LWE schemes do not use the discrete
Gaussian but its alternatives. Approximate discrete Gaussian distribution, cen-
tral binormal distribution and bounded uniform distribution are treated as dis-
crete Gaussian with corresponding width (

√
2π times the standard deviation).

See [2].
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(4) indicates that one needs to seek shorter vectors in the dual lattice in order
to achieve bigger distinguish advantage. Let C(ℓ) denote the cost of obtaining
(short) vectors v with length ℓ, then the whole cost for the dual attack against
LWE is C(ℓ)

ϵ2(∥v∥) . This is based on the Chernoff-Hoeffding argument which implies
that ϵ2(∥v∥) many of samples (of v) will increase the advantage close to 1.

Examining (3), it can be seen that that the advantage is not entirely de-
pending on the norm of v. The values f̂(vj) play more role in this matter. We
will also describe an idea to increase the advantage by maximizing |f̂⟨v,X⟩(t)| for
t ∈ Zq later.

3.2 Distinguishing Advantage for Other Alternatives

The above attack applies for LWE problem with ideal discrete Gaussian dis-
tributions, while when it comes to practical LWE cases, ideal samplers are not
available due to the limitation of precisions and truncations. To achieve high
efficiency, rounded discrete Gaussian distribution, central binomial distribution,
and bounded uniform distribution are used to sample errors in some NIST PQC
candidates. For example, Frodo is based on LWE with rounded discrete Gaus-
sian sampler, NewHope is based on RLWE with central binormal distribution
sampler, Saber is based on LWR problem [3,12,22] and CRYSTALS-KYBER is
based on MLWE where the error distribution can be seen as the convolution of
a central binormal distribution and a bounded uniform distribution [24].

One of the main purposes of this paper is to push the using of Fourier trans-
form further by exploring the distinguishing behavior to the components level
of the dual lattice vector v. To this end, we first calculate Fourier transforms
for the alternative error distributions over Zq explicitly. Let us describe these
distributions.

1. Rounded discrete Gaussian distribution with width s: the probability assign-
ment is depending on a fix integer 0 < R ≤ q

2 , the probability for x ∈ Zq is

f(x) =

{
Ψs(x)∑R

j=−R Ψs(x)
if |x| ≤ R

0 otherwise
, where Ψs(x) =

∫ x+ 1
2

x− 1
2

ρs(t)
s dt.

2. The central binormal distribution B(h): for a positive integerh, a random
variable X is said to be sampled from B(h), if it is the convolution of h

(independent) variables Xi over {−1, 0, 1} with Pr[Xi = 1] = Pr[Xi =

−1] = 1/4, P r[Xi = 0] = 1/2. The width of this distribution is s =
√
hπ.

3. Bounded uniform distribution: for integers 0 ≤ a, b ≤ ⌊ q
2⌋, a general bounded

uniform distribution is simply the uniform distribution for the set {−a,−a+

1, · · · , 0, 1, · · · , b}. The width of this distribution is s =
√

π((a+b+1)2−1)
6 .

The Fourier transforms for these three distributions are summarized in the fol-
lowing result. For the distribution that are consist of the above three distri-
butions (e.g. the error distribution used in CRYSTALS-KYBER), its Fourier
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transforms can be easily obtained according to the convolution property. Let f

be the probability function for the distribution in consideration, then we have

Theorem 3.2 1. For the rounded discrete Gaussian distribution, we have∣∣∣f̂(k)− Ψ̂s(k)
∣∣∣ ≤ 2e−π

(R+1
2
)2

s2 .

2. For the central binormal distribution B(h), we have

f̂(k) = cos2h(
πk

q
).

3. For the bounded uniform distribution U [−a,−a+ 1, · · · , 0, · · · , b] , we have

|f̂(k)|2 =
1− cos 2π(a+b+1)k

q

(a+ b+ 1)2(1− cos 2πk
q )

,

for k = 1, 2, · · · , ⌊q/2⌋ − 1.

Proof. 1. We will use the following estimation for Gaussian distribution [9]: for
x ≥ 0,

2

∫ ∞

x

e−πt2dt ≤ e−πx2

. (5)

Let A =
∑R

j=−R Ψs(j) = 2
∫ 2R+1

2s

0
e−πt2dt. Then f̂(k) = 1

A

∑R
j=−R e−

2πijk
q Ψs(j),

and 1−A ≤ e−π
(R+1

2
)2

s2 . Now

∣∣∣Ψ̂s(k)− f̂(k)
∣∣∣ ≤ ∣∣∣Ψ̂s(k)−Af̂(k)

∣∣∣+ ∣∣∣f̂(k)−Af̂(k)
∣∣∣ ≤

∣∣∣∣∣∣
∑

|j|≥R+1

e−
2πijk

q Ψs(j)

∣∣∣∣∣∣+ (1−A)

≤
∑

|j|≥R+1

Ψs(j) + (1−A) = 2

∫ ∞

2R+1
2s

e−πt2dt+ (1−A) ≤ 2e−π
(R+1

2
)2

s2 .

2. For variable x ∼ B(1), it is easy to calculate that f̂x(k) =
1
2 + 1

2 cos(
2πk
q ) =

cos2(πkq ). So for the variable X ∼ B(h), we have

f̂(k) = f̂h
x (k) = cos2h(

πk

q
)

according to the convolution property of the Fourier transform.
3. Let t = 2πk

q , then

f̂(k) =
1

a + b + 1

(
b∑

x=0

e
−ixt

+
a∑

x=1

e
ixt

)
=

1

a + b + 1

(
e−it(b+1) − 1

e−it − 1
+

eit(a+1) − 1

eit − 1
− 1

)

=
eita − eit(a+1) + e−itb − e−it(b+1)

2(a + b + 1)(1 − cos t)
.
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Therefore

|f̂(k)|2 = f̂(k)f̂(k) =
(eita − eit(a+1) + e−itb − e−it(b+1))(e−ita − e−it(a+1) + eitb − eit(b+1))

4(a + b + 1)2(1 − cos t)2

=
4 − 2eit − 2e−it − 2eit(a+b+1) − 2e−it(a+b+1) + eit(a+b) + e−it(a+b) + eit(a+b+2) + e−it(a+b+2)

4(a + b + 1)2(1 − cos t)2

=
4(1 − cos t) + 2(cos(a + b)t − 2 cos(a + b + 1)t + cos(a + b + 2)t)

4(a + b + 1)2(1 − cos t)2

=
1 − cos(a + b + 1)t

(a + b + 1)2(1 − cos t)
.

The proof is completed.

We would like to emphasis that the contribution of an individual component
of the v in the distinguishing attack. To this end, in order to better compare∏m

j=1 f̂(vj) and ϵ(∥v∥) = e
−πs2∥v∥2

q2 , we define the local width s(k) as follows

Definition 3.1 (Local Width). For a given random variable X over Zq and
its probabilistic function f(x), if 1 ≤ k ≤ ⌊ q

2⌋ and f̂(k) ̸= 0, the local width s(k)

is defined to be

s(k) =
q

k

√
− ln |f̂(k)|

π
.

Let us make some remarks.

– The case of f̂(k) = 0 if not of our interest. According to (4), if there is
a component vj of v such that f̂(vj) = 0, then this v cannot be used in
distinguishing.

– In the definition, we restricted k in between 1 and ⌊ q
2⌋. It can extended to

integers in between (− q
2 ,

q
2 ] if |f̂ | is even function. We also have s(0) = 0.

Assume that f̂(vj) ̸= 0 for all j, then

m∏
j=1

∣∣f̂(vj)∣∣ = e
−π

s2(v1)v2
1+s2(v2)v2

2+···+s2(vm)v2
m

q2 .

This is close to ϵ(v) = e
−πs2∥v∥2

q2 if all s(k) are close to the given width s.
– It is observed that (in the examples below), for certain distributions over Zq,

there is a large subset S ⊂ Zq ∩ (− q
2 ,

q
2 ] such that s(k) < s for k ∈ S. If we

are able to find a vector v in the dual lattice with vj ∈ S, then
∏m

j=1

∣∣f̂(vj)∣∣
gives us a greater advantage than ϵ(v). This idea will be developed in the
later discussion.

With these Fourier transforms, we can provide more precise analysis of LWE.
To this end, some comparisons between widths and local widths of the relevant
distributions are presented.
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Theorem 3.3 1. For the central binormal distribution B(h), we have

s(k)2 ≥ s2 + 2πh

(
kπ

q

)2(
1

12
+

1

45

(kπ
q

)2
+

17

2520

(kπ
q

)4)
,

for k = 1, 2, · · · , ⌊ q
2⌋ − 1 where s =

√
hπ.

2. For the bounded uniform distribution U [−a,−a+1, · · · , 0, · · · , b] with a+b ≥
7, we have

s(k)2 +
5(16qk − 3q2)

8k2
< s2,

for k ∈ {1, 2, · · · , ⌊q/2⌋} with exceptions that k ≥ 3q
16π and for any integer

ℓ, |dkπq − ℓπ| ≥ π
24 . Here s =

√
π (a+b+1)2−1

6 .

Proof. 1. Now consider the central binormal distribution B(h). By theorem 3.2,
f̂(k) = cos2h(πkq ). Write t = kπ

q . Then

s(k)2 − s2 =
−q2

k2
ln |f̂(k)|

π
− hπ =

2πh

t2
(− ln cos t− t2

2
).

The result follows by noticing that for any x ∈ (0, π
2 ),

− ln cosx− x2

2
=

∫ x

0

tan θdθ − x2

2
=

∫ x

0

(
θ +

θ3

3
+

2θ5

15
+

17θ7

315
+ · · ·

)
dθ − x2

2

=
x4

12
+

x6

45
+

17x8

2520
+ · · · .

2. For the error distribution U [−a,−a + 1, · · · , 0, 1, · · · , b], we have |f̂(k)|2 =
1−cos

2π(a+b+1)k
q

(a+b+1)2(1−cos 2πk
q )

. Let t = 2kπ
q and d = a+ b+ 1.

s2 − s(k)2 = π
(a+ b+ 1)2 − 1

6
+

q2

k2
ln |f̂(k)|

π
=

4π

t2
ln

(
e

t2(d2−1)
24

√
1− cos dt

d2(1− cos t)

)

=
2π

t2
ln

(
e

t2(d2−1)
12

1− cos dt

d2(1− cos t)

)
.

Under the assumption, we have d ≥ 8, t ≥ 3π
8 and |dt − 2ℓπ| ≥ π

12 for any
integer ℓ. Write t = 3π

8 +∆. Then

e
t2(d2−1)

12 = e
(d2−1)( 3π

8
)2

12 e
(d2−1)(t+3π

8
)∆

12 ≥ e
(d2−1)( 3π

8
)2

12 e
(64−1)( 3π

4
)∆

12

> e
23(d2−1)

200 e12∆.

On the other hand, since sin∆ ≤ ∆ and 1− cos∆ ≤ ∆,
1− cos dt

d2(1− cos t)
≥

1− cos π
12

d2(1− cos 3π
8 cos∆+ sin 3π

8 sin∆)

=
1− cos π

12

d2(1− cos 3π
8 + cos 3π

8 (1− cos∆) + sin 3π
8 sin∆)

>
1

20d2(1 + 2∆)
.
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Thus

s2 − s(k)2 ≥ 2π

t2
ln

(
e

23(d2−1)
200

20d2
e2∆

1 + 2∆
e10∆

)
≥ 20π∆

t2
=

5(16qk − 3q2)

8k2
.

Next, we calculate and analyze local widths for three lattice-based cryptogra-
phy schemes. These schemes are Frodo based on LWE with approximate discrete
rounded Gaussian sampler, NewHope based on RLWE with central binormal
distribution sampler, and Saber based on LWR problem. The experiments show
similar behaviors as described in theorem 3.3, but the actual computation results
are more precise than the theoretical estimation. The result for comparing width
for rounded Gaussian is quite complicated and was not included in theorem 3.3.
But our experiment shows that an improved analysis can be made.

Frodo. As one of the candidates in the second round of NIST PQC stan-
dardization, Frodo scheme is based on the LWE problem and the noise follows
rounded Gaussian distribution. We take one of the two recommended sets of
parameters as an example, that is

(n, q, σ) = (640, 32768, 2.8),

the explicit error distribution is given by

Table 1. The Error Distribution in Frodo

standard deviation 0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10 ±11 ±12

2.8 9288
65536

8720
65536

7216
65536

5264
65536

3384
65536

1918
65536

958
65536

422
65536

164
65536

56
65536

17
65536

4
65536

1
65536

The calculation result of s(k) for the above parameters is shown in Figure
1 where s0 = σ

√
2π = 7.02. We see that the value of s(k) gets below s0 when

k > q/3 with a decreasing tendency (most of the time). This is suggestive that
finding a suitable vector in the dual lattice to utilize local width may result a
bigger distinguish advantage.

NewHope. NewHope is based on the hardness of RLWE problem and its
error follows central binormal distribution. We use the following recommended
set of parameters as an example

(n, q, σ) = (512, 12289, 2).

with the error e ∼ B(8). The calculation result of s(k) for the above parameters
is shown in Figure 2. It is seen that the width s0 = 2

√
2π ≈ 5.01 is the lower

bound of s(k) for all k ⩽ q/2. When k gets bigger, s(k)− s0 becomes bigger as
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Figure 1. Comparison between local width s(k) and given width s0 in Frodo.

Figure 2. Comparison between local width s(k) and given width s0 in NewHope.
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Figure 3. Comparison between local width s(k) and given width s0 in Saber.

predicted by theorem 3.3. This means that using e−πs20∥v∥
2/q2 as an advantage

is quite conservative.
Saber. Saber scheme is based on the hardness of Mod-LWR problem. It is al-

ways treated as the normal LWE problem with the bounded uniform distribution
as noise sampling. We consider the following parameters

(n, q, σ) = (768, 8192, 2.29)

with the error e ∼ U [−3,−2,−1, 0, 1, 2, 3, 4]. The calculation result of s(k) for the
above parameters is shown in Figure 3 . We see that the value of s(k) is smaller
than s0 when l ≥ q

5 . This is better than the theoretical estimation presented in
theorem 3.3. As is shown in the above figure, there is a large gap between s(k)

and s0 when k is bigger than certain value for the bounded uniform distribution.

4 Applications of the distinguish advantage analysis for
LWE instances

In the above discussion, the distinguish advantage can be revealed completely by
the Fourier transform of error distribution which is shown to be not only related
to the length of vectors in the dual lattice, but also relevant to the components
of vectors. For the distributions in Frodo and Saber analyzed above, those k

with corresponding s(k) smaller than s0 is quite large (for example, k ≈ q/3 in
Frodo and k ≈ q/5 in Saber). If we can assume the outputted vectors of lattice
reduction algorithm distribute uniformly on the sphere, there is little influence
on the estimation for LWE instances under dual attack model as the proportion
of short vectors which has a component larger than k is small. However, we can
see different properties of the three distributions do exist compared with the
ideal Gaussian distribution when looking at the Fourier transform. So a new
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measure to describe the difference against distinguish attack between practical
distributions and ideal Gaussian distribution can be naturally established based
on the Fourier transform.

4.1 Analysis of dual attack for different distributions

In this subsection, we make a analysis of dual attack for three practical distri-
butions, known as rounded Gaussian, bounded uniform and central binormal
distribution. Let C(ℓ) denote the cost of obtaining (short) vectors v with length
ℓ in an n dimensional lattice, the whole complexity of dual attack is the trade-
off between the cost of finding short vectors and the number of vectors needed
which is decided by the corresponding distinguish advantage, i.e.

C(ℓ)

ϵ2(ℓ)

where ϵ(ℓ) = e−πs2ℓ2/q2 .
As it is shown in Section 3, there are underestimations of distinguish advan-

tage for some vectors for bounded uniform distribution and rounded Gaussian
distribution, a natural idea is to use the vectors of bigger advantages to make
a distinguish, therefore less number of vectors are needed and it may have an
influence on hardness of LWE instances.

Accordingly, let Cℓ be the set of vectors with length ℓ in the dual lattice, we
prefer vectors denoted as w such that ϵ(w) is close to

ϵ′(ℓ) = max
(v1,··· ,vn)∈Cl

|f̂(v1)| · · · |f̂(vn)|.

In this case, ϵ′(ℓ) would be much larger than ϵ(ℓ) for some lengths ℓ. It is easy
to see that vectors with large components are likely to be chosen. The tradeoff
between ϵ′(ℓ) and the cost of obtaining such vectors denoted as C ′(ℓ) would
give the final result. However, little research of investigating the components of
lattice vectors has been reported and we pose it as an open question.

Since there are little results of the cost of finding vectors with large compo-
nents which is an important factor in estimating the hardness of LWE instances,
we make further discussion based on the following assumption. We use param-
eter β to describe the complexity of finding vectors with large components and
the assumptions are listed as follows.
Assumption 1. The cost of obtaining a short vector v with length ℓ such that
its distinguish advantage is roughly ϵ′(ℓ) in an n dimension lattice is C(ℓ) · 2βn
where β > 0.
Remark 4.1. If β = 0, the assumption means that the extra overheads can be
regarded as negligible when compared to the cost of finding short vectors, i.e.
the cost is C(ℓ) · poly(n).
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Figure 4. Complexities of parameters in Frodo under dual attack and unbalanced
model.
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Figure 5. Complexities of parameters in NewHope under dual attack and unbalanced
model.

Based on Assumption 1, we can further discuss the differences by using the
three practical distributions with parameter β. For simplicity, we call this mea-
sure model as “unbalanced” model where the core hardness in estimating BKZ
complexity is taken as 2(0.292+β)b and the distinguish advantage is taken as ϵ′(ℓ).
The ϵ′(ℓ) is calculated according to the local width. Here we give analysis of pa-
rameters in Frodo, NewHope and Saber under unbalanced model.

We show the relationship between complexity (the log of complexity is shown
in the ordinate C) and the parameter β (it is shown in the abscissa β). We remark
that the complexity under dual attack is calculated under the model introduced
in Section 2.4 where the core hardness in estimating BKZ complexity is taken
as 20.292b.

From the experiment, it is seen that different distribution performs quite
differently. For example, the result of Frodo in Figure 4 shows the complexity
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Figure 6. Complexities of parameters in Saber under dual attack and unbalanced
model.

varies from 2120 to 2140 with β varies from 0 to 0.05, the result of Saber in Figure
6 shows the complexity varies from 2150 to 2200 with β varies from 0 to 0.1, while
the complexity of central binormal distribution shown in Figure 5 is always larger
than 2112 for any β ⩾ 0. Let βZ denote the point of intersection where the
complexity under unbalanced model equals to that under ideal model. As the
complexity increases with β increasing, the less βZ is, the stronger assumptions
the distribution seems to be security against.
The discussion of results.

– It is clear that the complexity of dual attack against ideal Gaussian distri-
bution is always no more than results for any β ⩾ 0 since the upper bound of
distinguish advantage among all vectors is used, that is βZ(Ideal Gaussian) =
0. As for the parameters in NewHope where the error follows binormal dis-
tribution, it is shown that βZ(NewHope) = 0.

– We can see that βZ(Frodo) = 0.05 and βZ(Saber) = 0.1 from experiments.
It means that the hardness of parameters in Frodo (Saber) would be lower
than the present result if the assumption of β < βZ(Frodo) = 0.05(β <

βZ(Saber) = 0.1) is true.

It should be noted that the analysis does not mean the distributions used in
Frodo and Saber are not secure unless algorithms that satisfy the assumptions
can be found. And if algorithms that satisfy the assumptions are proven non-
existent, then it is seen that the two distribution can provide the same security
of ideal Gaussian distribution against distinguish attack. The results provide an
alternative value to measure the security against distinguish attack provided by
practical distributions compared with ideal ones. However, since the existence
of those algorithms is unknown and the central binormal distribution share the
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same result with ideal Gaussian distribution under the strongest assumption, a
natural question arises that can we find some other practical distributions that
also have this good property?

4.2 A New Sampler

In this section, we propose a new sampler denoted as “Mixed Sampling” that has
the same property with central binormal distribution. It is denoted as “mixed
distribution” and we firstly present the definition.
Definition 4.1 (Mixed distribution). Let k1, k2 be positive integers, {X1, · · · , Xk1}
is a sequence of independent and identically distributed variables where Xi ∼
B(1), {Y1, · · · , Yk2

} is a sequence of independent and identically distributed
variables where Yi ∼ U [−1, 0, 1], the variable X following “mixed distribution”
denoted as Φ(k1, k2) is the convolution of {Xi}k1

i=1 and {Yi}k2
i=1, i.e.

X = X1 + · · ·+Xk1
+ Y1 + · · ·+ Yk2

.

As for the “mixed distribution” Φ(k1, k2), we calculate the expectation and
variance.

Lemma 4.1 Let X ∼ Φ(k1, k2), then

E[X] = 0, D[X] =
k1
2

+
2k2
3

.

Proof. Since X ∼ Φ(k1, k2), then it could be express of the following form,

X =

k1∑
i=1

(bi − b′i) +

k2∑
i=1

ui.

where bi, b
′
i ∼ U [0, 1] and Pr[b = 0] = Pr[b = 1] = 1/2, ui ∼ U [−1, 0, 1] and

Pr[ui = j] = 1/3 for j = −1, 0, 1. Therefore we have

E[X] = 2k1E[bi] + k2E[ui] = 0,

D[X] = 2k1D[bi] + k2D[ui] =
k1
2

+
2k2
3

.

4.2.1 The lower bound of local width In this subsection, we prove that the
mixed distribution with properly chosen parameters provides claimed security
under dual attack where the local width takes the original width s0 =

√
2πσ as

a lower bound.

Theorem 4.2 Let q be an integer and the variable X ∼ Φ(k1, k2), if k1 ⩾ k2,
for j = 1, 2, · · · , ⌊q/2⌋, we have

s(j) ⩾ s0,

where s0 =
√

2πD[X] =
√
(k1 + 4k2/3)π.
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Proof. Let f be the probability function for X, then from theorem 3.2 we see
that for j = 1, 2, · · · , ⌊q/2⌋,

|f̂(j)| =

(
|1 + 2 cos 2πj

q |
3

)k2

cos2k1
πj

q
.

This gives that s(j) = q
j

√
− ln |f̂(j)|

π . Therefore we need to prove(
|1 + 2 cos 2πj

q |
3

)k2

cos2k1
πj

q
⩽ e

−π2j2
(k1+

4k2
3

)

q2 (6)

Write y = πj
q . Notice that for any θ ∈ [0, π

2 ), eθ
2

cos2 θ ≤ 1, so(
|1 + 2 cos y|

3

)k2

cos2k1 y =

(
|1 + 2 cos 2y|

3

)k2 (
ey

2

cos2 y
)k1

e−k1y
2

≤
(
|1 + 2 cos 2y|

3
ey

2

cos2 y

)k2

e−k1y
2

To prove (6), it suffices to show for y ∈ [0, π
2 ),

|1 + 2 cos 2y|
3

cos2 y ≤ e−
7
3y

2

. (7)

This inequality is trivial for y = π
3 . For y ∈ [0, π

3 ) ∪ (π3 ,
π
2 ), we let

h(y) =
7

3
y2 + ln

|1 + 2 cos 2y|
3

+ 2 ln cos y.

The derivative and second derivative of h are

h′(y) =
14

3
y − 4 sin 2y

1 + 2 cos 2y
− 2 tan y; h′′(y) =

14

3
− 16 + 8 cos 2y

(1 + 2 cos 2y)2
− 2

cos2 y
.

To get (7), we just need to show h(y) ≤ 0. Two cases need to be considered.
Case I: y ∈ [0, π

3 ). In this case, h(y) = 7
3y

2 + ln 1+2 cos 2y
3 + 2 ln cos y and

h(0) = 0. Notice that h′′(y) = 14
3 − 12

(1+2 cos 2y)2 − 4
(1+2 cos 2y) −

2
cos2 y ≤ 0, as h′′

is decreasing on [0, π
3 ). Together with the fact that h′(0) = 0, this implies that

h′ ≤ 0 on [0, π
3 ).

Therefore, we must have h(y) ≤ 0 on [0, π
3 ).

Case II: y ∈ (π3 ,
π
2 ). In this case, h(y) = 7

3y
2 + ln −1−2 cos 2y

3 + 2 ln cos y.
Simple calculation shows 0.231 > h′(1.335) > 0.23 and h′(1.35) < −0.49. Since
h′′(y) < 14

3 − 2
cos2 y < 14

3 − 2
cos2 π

3
< 0, h′(y) is strictly decreasing on (π3 ,

π
2 ). This

means that h′(y) has only one zero y0 on the interval (π3 ,
π
2 ), and 1.335 < y0 <

1.35. This also implies that h(y0) is the maximum value of h on (π3 ,
π
2 ).

It is noted that h(1.335) < −0.094. By Lagrange’s mean value theorem, there
is a ξ ∈ (1.335, y0) such that h(y0) = h(1.335) + h′(ξ)(y0 − 1.335). Thus

h(y) ≤ h(y0) < h(1.335) + h′(1.335)(1.35− 1.335) < −0.094 + 0.231 · 0.015 < 0.
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4.2.2 Mixed Sampling Algorithm and Efficiency Analysis. Mixed sam-
pling could be implemented by using the central binomial distribution and the
uniform distribution on {−1, 0, 1} as the underlying modules. The algorithm is
listed below.

Mixed sampling algorithm
Input: The parameter (k1, k2).
Output: The value of variable following the distribution Φ(k1, k2).
1: Set a random number generated by a 2 bits random source and output an integer a that

subjects to a central binomial distribution. For example, when the random number input is
00/01/10/11 respectively, the output is −1/0/0/1.
2: Repeat the central binomial distribution sampling k1 times, then calculate the sum of k1

values. That is, let the i-th (i = 1, · · · , k1) output is ai, then calculate A = a1+a2+· · ·+ak1
.

3: Take a random number generated by f = ⌈log2(3k2)⌉ bits random source. If the value of
the random number in binary is greater than 3k2 , then enter a random number generated
by the f bits random source again until the value is not greater than 3k2 . Let the random
number be expressed as a k2 ternary string, then count the number of 0, 2 which is denoted
respectively as b0, b2, output B = b2 − b0;
4: Output the value S = A+B mod q.

Theorem 4.3. The mixed sampling algorithm outputs a sample distributed as
Φ(k1, k2) correctly and the expectation of bits used to output a sample is

2k1 +
⌈k2 log2 3⌉2⌈k2 log2 3⌉

3k2
.

Proof. Since the variable X could be expressed as

X =

k1∑
i=1

bi +

k2∑
i=1

ui,

where bi follows the distribution that

Pr[bi = −1] = Pr[bi = 1] =
1

4
, P r[bi = 0] =

1

2
,

and ui ∼ U [−1, 0, 1]. Therefore the sampling of
∑k1

i=1 bi is obtained by repeating
the central binormal module k1 times and the number of bits is 2k1. As for the
variable

∑k2

i=1 ui, let Y be the random value outputted by step 4, we have

Pr[Y ⩽ 3k2 ] =
3k2

2⌈log2 3k2⌉ .
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Therefore the expectation times of step 4 is

2⌈k2 log2 3⌉

3k2
.

In summary, we can prove the conclusion in the theorem.

Comparison with other samplings. We make a comparison of the variance,
sampling bits and the lower bound of local width among different sampling meth-
ods, including mixed sampling, approximate discrete rounded Gaussian sampling
and central binormal sampling.

As for approximating discrete Gaussian sampling, although there are many
different algorithms to approximate DGS, such as Knuth-Yao method and reject
sampling, the common feature is that they approximate probabilities by sampling
uniformly within a certain integer N whose bits can be denoted as log2 N . Under
the observations from experiments which is shown in Appendix I, we need N =

O(eπs
2/4) to make s(k) ≈ s0 for k < q/2 which can provide security under the

strongest assumption as it is with central binormal sampling, thus the number
of random source bits required is approximately

πs2 log2 e

4
.

The comparison among different samplings is shown in Table 4.

Table 4. Comparison among different samplings.

sampling algorithm bits variance lower bound of local width

discrete Gaussian sampling (πs2 log2 e)/4 s2/(2π) s

mixed sampling 2k1 + f ′2f
′
/3k2 k1/2 + 2k2/3

√
(k1 + 4k2/3)π

central binormal sampling 2k k/2
√
kπ

* f = ⌈log2(3k)⌉, f ′ = ⌈log2(3k2)⌉.

– In terms of the selection range of sampling variance, it is wide for DGS as we
can set arbitrary width. And the sampling width has only a limited number of
values to select for the central binomial distribution since the parameter k is
a positive integer. The selection of mixed sampling parameters is also discrete
and depends on the selection of parameters (k1, k2). It is more flexible when
compared with central binomial distribution.
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– In terms of sampling efficiency, the efficiency of mixed sampling is higher than
that of central binomial distribution and approximated discrete Gaussian
sampling under appropriate selection and it is shown in Figure 7.

Figure 7. Efficiency comparison of sampling algorithms

– *The abscissa “s” denotes the sampler’s width and longitudinal axis is the bits in the sampling
algorithm. The square symbol denotes the width and bits under proper choice of parameters
(k1, k2) in mixed sampling.

– *Let y be the bits of sampling, then

y =


1.1331s2, when it is discrete sampling;
0.6366s2, when it is binormal sampling;
0.4442s2 + 3.9269s − 23.7935, when it is mixed sampling.

5 Conclusion

In this paper, we introduce a refined framework on the distinguish advantage
of LWE instances by using Fourier transform. We use the proposed framework
to analyze the practical parameters used in NIST PQC candidates where the
structure of error distribution plays different roles. Furthermore, a novel type of
error sampler with higher efficiency, security as well as flexibility is described.
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A Approximate discrete Gaussian sampling

As for approximating discrete Gaussian sampling, the common way is to approx-
imate probabilities by sampling uniformly within a certain integer N whose bits
can be denoted as log2 N . The question we are concerned with is the relationship
between the size of N and the lower bound of the local width. As shown in our
analysis, the local width of discrete Gaussian approximates the given width for
any k ⩽ q/2. Given a small N to approximate a distribution with a large vari-
ance, it would have a larger statistical distance with DGS which can be reflected
by the gap between local width and the initial given width.
Let X ∼ Ds,q, p0, p1, · · · , pq−1 be the corresponding probability when the value
takes 0, 1, · · · , q − 1 module q, if we approximate the distribution by sampling
with N points, the practical probability would be shown as

p0 + ϵ0, p1 + ϵ1, · · · , pq−1 + ϵq−1,

where |ϵi| ⩽ min{ 1
2N , e−πi2/s2} if p0, p1, · · · , pq−1 are chosen properly. We have

f̂(k) =

q−1∑
x=0

(px + ϵx)e
−2πikx/q

=

q−1∑
x=0

pxe
−2πikx/q + ϵ0 +

q−1∑
x=1

ϵxe
−2πikx/q.

As is shown in Theorem ??, we have

e−πs2k2/q2 ⩽
q−1∑
x=0

pxe
−2πikx/q ⩽ 2e−πs2k2/q2 .

Let δ = ϵ0 +
∑q−1

x=1 ϵxe
−2πikx/q, there would be the dominant term if δ >

e−πs2k2/q2 and therefore have an effect on the local width. We construct sev-
eral experiments to discuss the relationship between N and the range of local
width and have the following observations.

– Observation 1: When approximating the DGS with p0, p1, · · · , pq−1 by
using N points, if

N = O(eπs
2k2/q2),

where k ∈ [1, 2, · · · , ⌊ q
2⌋ − 1], then for j ∈ [1, 2, · · · , k],

s(j) ≈ s0.

As for the Observation 1, we design the following experiment. For the discrete
Gaussian distribution with s0 = 6 and q = 8192, we select

N = eπs
2/16, e9πs

2/100, e4πs
2/25, eπs

2/4
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sampling points respectively for approximate DGS. It is shown in Figure 8
that the value which the local width deviates considerably from the initial
width corresponds to

0.25q, 0.3q, 0.4q, 0.5q.

Figure 8. Contrast between local width and given width under different points ap-
proximation of N

– Observation 2: To ensure that s(j) ≈ s0 for j < q/2, , we need that

N = O(eπs
2/4).

We construct the following experiment. For Gaussian distribution with dif-
ferent widths

s0 = 3, 4, 5, 6

we take
N = 10e9π/4, e4π, e25π/4, e9π

sampling points respectively to reveal the relationship between local width
and initial width. The result is shown in Figure 9. The local width begins to
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deviate from the initial width near q/2 and the deviation is different when
compared with the given width.
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Figure 9. Comparison between the local width of approximating different DGS and
given width

In summary, given a fixed N , the range of variance selection is very large, but
approximating too large variance with fewer points will cause the local width to
fluctuate which may result insecurity risks. In order to ensure that the local width
is always near the initial width, at least eπs2/4 points are needed to approximate
and the number of random source bits required is approximately

πs2 log2 e

4
.


