
Linear-Size Constant-Query IOPs for Delegating Computation

Eli Ben-Sasson
eli@starkware.co

StarkWare

Alessandro Chiesa
alexch@berkeley.edu

UC Berkeley

Lior Goldberg
lior@starkware.co

StarkWare

Tom Gur
tom.gur@warwick.ac.uk

University of Warwick

Michael Riabzev
michael@starkware.co

StarkWare

Nicholas Spooner
nick.spooner@berkeley.edu

UC Berkeley

Abstract

We study the problem of delegating computations via interactive proofs that can be probabilistically
checked. Known as interactive oracle proofs (IOPs), these proofs extend probabilistically checkable
proofs (PCPs) to multi-round protocols, and have received much attention due to their application to
constructing cryptographic proofs (such as succinct non-interactive arguments).

We prove that a rich class of NEXP-complete problems, which includes machine computations
over large fields and succinctly-described arithmetic circuits, has constant-query IOPs with O(T)-size
proofs and polylog(T)-time verification for T -size computations. This is the first construction that
simultaneously achieves linear-size proofs and fast verification, regardless of query complexity.

An important metric when using IOPs to delegate computations is the cost of producing the proof.
The highly-optimized proof length in our construction enables a very efficient prover, with arithmetic
complexity O(T log T). Hence this construction is also the first to simultaneously achieve prover
complexity O(T log T) and verifier complexity polylog(T).

Keywords: interactive oracle proofs; probabilistically checkable proofs; delegation of computation

Contents
1 Introduction 1

1.1 Our results . 2
1.2 Limitations of prior work . 5
1.3 Open questions . 6

2 Technical overview 8
2.1 Our starting point . 8
2.2 Checking succinctly-represented linear relations . 9
2.3 Checking bounded-space computations in polylogarithmic time . 11
2.4 Checking succinct satisfiability in polylogarithmic time . 12
2.5 Oracle reductions . 13

3 Roadmap 15

4 Preliminaries 16
4.1 Codes and polynomials . 16
4.2 Interactive oracle proofs . 17

5 Oracle reductions 18
5.1 Definitions . 18
5.2 Reed–Solomon oracle reductions . 20

6 Trace embeddings 22
6.1 Bivariate embeddings . 23
6.2 Successor orderings . 24

7 A succinct lincheck protocol 27
7.1 Properties of the Lagrange basis . 28
7.2 Efficient linear independence via the tensor product . 29
7.3 Proof of Lemma 7.4 . 30
7.4 Extension to block-matrix lincheck . 32

8 Probabilistic checking of interactive automata 34
8.1 Staircase matrices . 35
8.2 Proof of Lemma 8.2 . 37

9 Reducing machines to interactive automata 41
9.1 Matrix permutation check protocol . 42
9.2 Proof of Lemma 9.2 . 44

10 Proofs of main results 47
10.1 Checking satisfiability of algebraic machines . 47
10.2 Checking satisfiability of succinct arithmetic circuits . 48

Acknowledgments 50

References 50

1 Introduction

Checking computations faster than they can be run is a central goal in the theory of computation. The
study of proof protocols that enable fast verification has produced powerful tools for complexity theory and
cryptography, and has even led to applications to real-world problems such as delegation of computation. For
applications, it is crucial that the underlying complexity-theoretic objects are efficient.

An influential line of work began with probabilistically checkable proofs (PCPs) [BFLS91]. These are
non-interactive proofs for membership in a language, which admit fast probabilistic verification based on
local queries to the proof. While the most prominent application of PCPs is to hardness of approximation
[FGLSS96], seminal works of Kilian [Kil92] and Micali [Mic00] showed that PCPs can also be used to
obtain computationally-sound schemes for delegation of computation that are asymptotically efficient.

The application of PCPs to delegation of computation singles out particular design objectives, distinct
from those that arise from hardness of approximation. The relevant complexity measures for PCPs in the
context of delegation are: query complexity, verifier time, and prover time. The latter two are self-explanatory,
since the proof must be produced and validated; the former arises because, in existing delegation schemes
based on PCPs, communication complexity depends linearly on the query complexity of the underlying PCP.
Note that the running time of the prover is not typically considered in the context of PCPs, because one
considers only the existence of a valid PCP string and not how it is constructed. For delegation schemes, on
the other hand, the time required to generate the proof is often a barrier to practical use.

An ideal PCP for delegation would have constant query complexity, (poly)logarithmic verifier time, and
linear prover time. This naturally implies that the proof length must also be linear, since it is a lower bound
on the prover’s running time in most applications. State-of-the-art PCPs achieve constant query complexity
and polylogarithmic verifier time, but only quasilinear (O(N logcN)) proof length [Mie09]. While the proof
length is asymptotically close to optimal, c is a fairly large constant, and moreover the construction uses gap
amplification techniques that are not believed to be concretely efficient. The only construction of PCPs with
linear proof length has query complexity O(N ε) and a verifier that runs in non-uniform polynomial time
[BKKMS13]; the running time of the prover is not specified. Clearly, these parameters are a long way from
those desired of PCPs for fast verification of computation.

In light of these apparent barriers, Ben-Sasson et al. [BCS16] have demonstrated how to obtain
computationally-sound delegation schemes from interactive oracle proofs (IOPs). This is a natural gener-
alization of PCPs independently introduced by [BCS16; RRR16] (also generalizing the “interactive PCP”
model studied in [KR08]). An IOP is an interactive protocol consisting of multiple rounds, where in each
round the verifier sends a challenge and the prover responds with a PCP oracle to which the verifier can make
a small number of queries. The proof length of an IOP is the total length of all oracles sent by the prover, and
the query complexity is the total number of queries made to these oracles. The study of IOPs explores the
tradeoff between a new efficiency measure, round complexity, and other efficiency measures. Viewed in this
way, a PCP is an IOP with optimal round complexity.

The work of [BCS16] justifies why exploiting the tradeoff between round complexity and other efficiency
measures is potentially advantageous for constructing computationally-sound delegation schemes. In particu-
lar, if we could obtain IOPs with constant round complexity that otherwise match the parameters of an ideal
PCP (constant query complexity, polylogarithmic verifier time, linear prover time), then we would obtain
delegation schemes that have the same asymptotic efficiency as those derived from an ideal PCP. Thus, for
the purposes of verifiable delegation schemes, it suffices to construct such “ideal” IOPs.

A recent line of works has leveraged this tradeoff to establish a number of results that we do not know
how to achieve via PCPs alone [BCGV16; BCGRS17; Ben+17; BBHR18b; BBHR18a; BCRSVW19; RR19].

1

Two of these constructions are particularly relevant for us: [BCGRS17] achieves IOPs for Boolean circuit
satisfiability (CSAT) with linear proof length, unspecified polynomial prover time, and constant query and
round complexity,1 and [BCRSVW19] achieves logarithmic-round IOPs for arithmetic circuit satisfiability
with Õ(N logN) prover time,2 linear proof length, and logarithmic query complexity.

However, these IOPs do not have sublinear verifier time (see Section 1.2). The state-of-the-art for IOPs
with polylogarithmic verifier time is [BBHR18a], which achieves O(N logN) proof length, Õ(N log2N)
prover time, and logarithmic query and round complexity. Our goal in this paper is to make progress towards
constructing ideal IOPs by giving a construction that simultaneously achieves the state of the art in all
of these metrics: linear proof length, Õ(N logN) prover time, constant query and round complexity, and
polylogarithmic verifier time.

1.1 Our results

In this work we construct IOPs for algebraic computations over large fields that are “almost” ideal; namely, we
achieve linear proof length, O(N logN) (strictly quasilinear) prover arithmetic complexity, constant query
and round complexity, and polylogarithmic verifier time. Our new IOP protocols match the state-of-the-art
proof length and prover complexity of [BCRSVW19], while at the same time achieving an exponential
improvement in verifier time for a rich class of computations. We focus on arithmetic complexity as the
natural notion of efficiency for IOPs for algebraic problems.3

The arithmetic complexity of our prover is tightly connected to the proof length. That is, the proof
consists of a constant number of Reed–Solomon codewords of size O(N), and the running time of the prover
is dominated by the time required to produce these encodings. In particular, if there were a linear-time
encoding procedure for the Reed–Solomon code, our prover would run in linear time, and thereby achieve
optimal prover efficiency without any other changes to the scheme itself.

Small fields. All of our results are stated over large fields. Computations over small fields (e.g. F2) can
be handled by moving to an extension field, which introduces an additional logarithmic factor in the proof
length and prover time (the same is true of [BBHR18a; BCRSVW19]). Even with this additional logarithmic
factor, our construction matches the state of the art for prover complexity (but not proof length) for succinct
boolean circuit satisfiability, while improving verifier time to polylogarithmic.

1.1.1 Delegating bounded-space algebraic computation

Rank-one constraint satisfiability (R1CS) is a natural generalization of arithmetic circuits that is widely used
across theoretical and applied constructions of proof systems (see [Bow+18]). An R1CS instance is specified
by matrices A,B,C over a finite field F, and is satisfied by a vector w if Aw ◦ Bw = Cw, where ◦ is the
element-wise (Hadamard) product. Arithmetic circuits reduce in linear time to R1CS instances.

Many problems of interest, however, involve R1CS instances where the matrices A,B,C have some
structure. For example, many applications consider computations that involve checking many Merkle
authentication paths — in this case a hash function is invoked many times, within the same path and across
different paths. It would be valuable for the verifier to run in time that is related to a succinct representation
of such instances, rather than to the (much larger) explicit representation that “ignores” the structure. In light

1Subsequent to this work, [RR19] showed how to achieve such IOPs for CSAT where the proof length is (1 + ε)N for any ε > 0.
Their verifier runs in time Õ(N).

2Here the Õ notation hides poly(log logN) factors.
3In terms of bit operations, the prover runs in time O(N ′ log2 N ′ poly(log logN ′)) = Õ(N logN), where N ′ = N/ log |F| =

Θ(N/ logN) is the size of the instance measured in field elements.

2

of this motivation, we introduce a notion of succinctly-represented R1CS instances that capture a rich class of
bounded-space algebraic computations. (Later in the paper we refer to these as algebraic automata.)

Definition 1.1 (informal). A succinct R1CS instance is specified by matricesA = [A0|A1], B = [B0|B1], C =
[C0|C1] ∈ Fk×2k over F, and a time bound T , and is satisfied by a vector z ∈ FkT if


A0 A1

A0 A1

.
A0 A1

 z ◦


B0 B1

B0 B1

.
B0 B1

 z =


C0 C1

C0 C1

.
C0 C1

 z

The relation Succinct-R1CS consists of pairs (x, z) s.t. x is an instance of succinct R1CS satisfied by z.

The size of an instance is O(k2 + log T), but the size of the described computation is kT . Note that
Succinct-R1CS is a PSPACE-complete relation, while the (regular) R1CS relation is merely NP-complete.

To obtain some intuition about the definition, consider the problem of repeated application of an arithmetic
circuit C : Fn → Fn. Suppose that we want to check that there exists z such that CT (z) = 0n, where
CT = C(C(· · · C(·))) is the circuit that applies C iteratively T times. The circuit CT has size Ω(|C| · T),
and if the verifier were to “unroll” the circuit then it would pay this cost in time. However, the R1CS
instance corresponding to CT is of the above form, with k = O(|C|), where (roughly) the matrices A0, B0, C0

represent the gates of C and A1, B1, C1 represent the wires between adjacent copies of C. (The condition that
the output of CT is zero is encoded separately as a “boundary constraint”; see Definition 8.1 for details.)

Our first result gives a constant-round IOP for satisfiability of succinct R1CS where the verifier runs in time
poly(k, log T), the prover has arithmetic complexity O(kT log kT), and the proof length is O(kT log |F|)
(linear in the computation transcript). In the theorem statement below we take k = O(1) for simplicity.

Theorem 1 (informal). There is a universal constant ε0 ∈ (0, 1) such that, for any computation time bound
T (n) and large smooth field family F(n), there is a 4-round IOP for succinct R1CS over F(n), with proof
length O(T (n) log |F(n)|), 4 queries, and soundness error ε0. The prover uses O(T (n) log T (n)) field
operations and the verifier uses poly(n, log T (n)) field operations.

As in prior work (e.g., [BS08]), “large smooth field” refers to a field of size Ω(N), whose additive or
multiplicative group has a nice decomposition (see Definitions 10.2 and 10.3). For example, ensembles of
large enough binary fields have this property, as well as prime fields with smooth multiplicative groups.

1.1.2 Delegating unbounded-space algebraic computation

While algebraic automata capture a useful class of computations, they are restricted to space-bounded compu-
tation (recall Succinct-R1CS ∈ PSPACE). In particular, they do not capture general NEXP computations
unless PSPACE = NEXP. Our second result shows that a NEXP-complete algebraic problem, namely a
succinct version of the arithmetic circuit satisfiability problem over large fields, has efficient IOPs.
Succinct SAT. In more detail, first recall the NP-complete problem of arithmetic circuit satisfiability,
denoted ASAT, in which the goal is to decide whether an arithmetic circuit C : Fk → F over a finite field F
has a satisfying assignment or not. Then, to capture NEXP, we follow Papadimitriou and Yannakakis [PY86]
and consider a succinct version of the arithmetic circuit satisfiability problem, denoted Succinct-ASAT.4 In

4Informally, Papadimitriou and Yannakakis [PY86] showed that if a language L is NP-complete under a local reduction, then its
succinct version Succinct-L is NEXP-complete. A reduction is local if each bit of the reduction’s output can be computed from a
poly-logarithmic number of bits of the input, in poly-logarithmic time (which is typically the case for NP-completeness reductions).

3

this variant of the problem, we consider the satisfiability of circuits of size N that are represented by circuit
descriptors of size O(logN). These descriptors are themselves circuits that, given a gate index g, return the
type of gate g (addition or multiplication), its left input gate, and its right input gate.

Definition 1.2 (informal). The relation Succinct-ASAT consists of pairs
(
(F,m,H, I, o,D), w

)
, where F is

a finite field, m ∈ N, H is a succinctly-represented subset of Fm representing the gates of the circuit, I is a
subset of H representing the input gates, o ∈ H is the output gate, D : H → ({+, "} ×H ×H) ∪ {F} is a
circuit descriptor of an arithmetic circuit C, and the witness w : I → F is such that C(w) = 0.

Our second result is an IOP for Succinct-ASAT that has linear proof length and constant query complexity.
We stress that the verifier in this IOP runs in (poly)logarithmic time in the size N of the circuit.5

Theorem 2 (informal). There is a universal constant ε0 ∈ (0, 1) such that there is a 5-round IOP for
Succinct-ASAT over large smooth fields with proof length O(N), 5 queries, and soundness error ε0. The
prover uses O(N logN) field operations and the verifier uses poly(|D|, logN) field operations.

As in prior work (e.g., [BS08]), “large smooth field” refers to a field of size Ω(N), whose additive or
multiplicative group has a nice decomposition (see Definition 10.2). For example, ensembles of large enough
binary fields have this property. A round consists of a verifier message followed by a prover (oracle) message.

The single logarithmic factor in the prover’s arithmetic complexity solely comes from the use of a constant
number of Fast Fourier transforms over domains of size Θ(N). This prover time matches the best prover
times of protocols for non-succinct arithmetic circuit satisfiability (which is merely NP-complete).

We remark that standard query reduction techniques do not preserve linear proof length here. Nevertheless,
they can be modified in a straightforward way to preserve it, at the cost of an additional round of interaction.
In particular, the number of queries in Theorem 2 can be reduced to 2 at the cost of an additional round.

Algebraic machines. We prove Theorem 2 by designing an IOP for the algebraic machine relation. This is
a natural algebraic analogue of the bounded accepting problem for nondeterminstic random-access machines,
where the transition function is an arithmetic (rather than Boolean) circuit. There is a simple linear-size
reduction from Succinct-ASAT to the satisfiability problem for algebraic machines: the machine holds the
values of the wires in its memory, and checks that each gate is correctly evaluated.

Theorem 3 (informal). There is a universal constant ε0 ∈ (0, 1) such that, for any computation time bound
T (n) and large smooth field F(n), there is a 5-round IOP for the satisfiability problem of T (n)-time algebraic
machines over F(n), with proof length O(T (n) log |F(n)|), 5 queries, and soundness error ε0. The prover
uses O(T (n) log T (n)) field operations and the verifier uses poly(n, log T (n)) field operations.

For simplicity, we have stated Theorem 3 for machines whose description is a constant number of
field elements, or Θ(log |F|) bits. The proof length is linear in the size of the computation trace, which is
N := Θ(T log |F|) bits. We stress that the number of queries is 5, regardless of the machine.

On the power of machines. In the linear-length regime, the choice of computational model supported by a
proof protocol is important, because reductions between problems typically introduce logarithmic factors.
For example, it is not known how to reduce a random-access machine, or even a Turing machine, to a circuit
of linear size. Indeed, the linear-size sublinear-query PCP of [BKKMS13] only works for circuit but not
machine computations. We thus view Theorem 3 as particularly appealing, because it achieves linear length
for a powerful model of computation, algebraic machines, which facilitates linear-size reductions from many

5This is because the verifier runs in time polynomial in the size of the circuit descriptor D, which in turn is logarithmic in the size
of the circuit C that it describes.

4

other problems. Notably, while Theorem 3 implies Theorem 2, we do not know whether the converse holds.
We view the identification of a model which is both highly expressive and amenable to efficient probabilistic
checking using IOPs as a contribution of this work.

rounds circuit type prover time verifier time proof length queries
[Mie09] 1 succinct boolean N polylog(N) ∗ polylog(N) N polylog(N) O(1)

[BKKMS13] 1 boolean poly(N) † poly(N) † Oε(N) N ε

[BCGRS17] 3 boolean poly(N) poly(N) O(N) O(1)

[BBHR18a] O(logN) succinct arithmetic ♦ Õ(N log2N) ‡ polylog(N) O(N logN) O(logN)

[BCRSVW19] O(logN) arithmetic ♦ Õ(N logN) ‡ poly(N) O(N) O(logN)

this work 5 succinct arithmetic ♦ Õ(N logN) ‡ polylog(N) O(N) 5

Table 1: Comparison of PCP/IOP constructions for circuit satisfiability problems for a (fixed) constant
soundness. Here N is the size of the circuit in bits, which means that, for arithmetic circuits, N implicitly
includes a factor of log |F|. For succinct problems, the circuit size N is exponential in the size of its
description.
∗: [Mie09] shows a poly(N) bound; this tighter bound is due to [BCGT13b].
♦: The size of the underlying field must grow as Ω(N) to achieve the stated efficiency. Problems over
smaller fields (e.g. boolean circuits) incur a multiplicative cost of logN in prover time and proof length.
†: The specified time is for non-uniform computation (each input size receives poly(N) advice bits).
‡: The notation Õ hides poly(log logN) factors, which arise because here we consider the bit complexity
of the prover (rather than the arithmetic complexity).

1.2 Limitations of prior work

There are relatively few works that explicitly deal with prover complexity for PCP and IOP constructions.
We present a comparison of the relevant parameters for each construction in Table 1. Since we are concerned
with logarithmic factors, it is not sufficient to specify only a complexity class (NP or NEXP) for each one.
Instead, for each proof system we give a canonical expressive language for which the given parameters are
achieved. In particular, the first three proof systems are for boolean circuit problems, and the latter three
are for arithmetic circuit problems. For purposes of comparison, all of the parameters for both boolean and
arithmetic constructions are presented in terms of bit complexity.

Our construction also achieves asymptotically optimal proof length and query complexity, which are
more well-studied metrics. There are two natural approaches that one could take to achieve such a result:
(1) start from a construction with constant query complexity and reduce proof length; or (2) start from a
construction with linear proof length and reduce query complexity. We summarize prior works that have
followed these approaches, and highlight the limitations that arise in each case.

Approach (1). The first approach has been studied extensively [BFLS91; PS94; HS00; BSVW03; GS06;
BGHSV06], leading to PCPs for NEXP with proof length N polylog(N) and query complexity O(1) [BS08;
BGHSV05; Din07; Mie09]. Later works have reduced the logarithmic factors in the proof length [BCGT13b;
BCGT13a], but attempts to achieve linear length have failed. Recent work has obtained IOPs with proof length
O(N logN) but at the cost of increasing query complexity from O(1) to O(logN) [Ben+17; BBHR18a].

Approach (2). The second approach has received much less attention. Insisting on linear proof length
significantly restricts the available techniques because many tools introduce logarithmic factors in proof

5

length. For example, one cannot rely on arithmetization via multivariate polynomials and standard low-
degree tests, nor rely on algebraic embeddings via de Bruijn graphs for routing; in addition, query-reduction
techniques for interactive PCPs [KR08] do not apply to the linear proof length regime. The state-of-the-art in
linear-length PCPs is due to [BKKMS13], and the construction is based on a non-uniform family of algebraic
geometry (AG) codes (every input size needs a polynomial-size advice string). In more detail, [BKKMS13]
proves that for every ε ∈ (0, 1) there is a (non-uniform) PCP for the NP-complete problem CSAT (Boolean
circuit satisfiability) with proof length 2O(1/ε)N and query complexity N ε, much more than our goal of O(1).

By leveraging interaction, [BCGRS17] obtains IOPs for CSAT with proof length O(N) and query com-
plexity O(1). This is a natural starting point for our goal of achieving polylogarithmic-time verification,
because we are “only” left to extend this result from CSAT to its succinct analogue, Succinct-CSAT. Unfor-
tunately, the construction in [BCGRS17] uses AG codes and such an extension would, in particular, require
obtaining a succinct representation of a dense asymptotically good family of AG codes over a small field,
which is out of reach of current techniques. More generally, we do not know of any suitable code over small
fields, which currently seems to prevent us from obtaining linear-size IOPs for Succinct-CSAT.

We now consider arithmetic circuit satisfiability defined over fields F that are large (of size Ω(N)). In
this regime, [BCRSVW19] obtains IOPs for ASAT with proof length O(N) and query complexity O(logN).
The arithmetization, following [BS08], is based on the Reed–Solomon code and uses the algebraic structure
of large smooth fields. Testing is done via FRI [BBHR18b], a recent IOP of proximity for the Reed–Solomon
code with linear proof length and logarithmic query complexity. The construction in [BCRSVW19], which
we will build upon, falls short of our goal on two fronts: verifier time is linear in the size of the circuit rather
than polylogarithmic, and query complexity is logarithmic rather than constant.

Comparison with [Ben+17; BBHR18a]. The techniques that we use in this work to achieve linear proof
length could be applied to the protocols of [Ben+17; BBHR18a], which would yield linear-size proofs
there. In this modified protocol, however, in order to verify time-T computations the verifier must read
O(log T) field elements from the proof (see e.g. [BBHR18a, Lemma B.9]); in our protocol, the number
of field elements the verifier reads is a universal constant. This is because the query complexity of these
protocols depends linearly on the size of the description of the transition function of the machine (e.g., for
Succinct-ASAT, this would be the size of the circuit descriptor).

1.3 Open questions

We highlight four problems left open by our work.

Optimal arithmetic complexity. The prover in our construction has strictly quasilinear arithmetic com-
plexity and produces a proof of linear size. A natural question is whether the arithmetic complexity of the
prover can be reduced to linear. To do so with our construction would require a breakthrough in encoding
algorithms for the Reed–Solomon code. A promising direction may be to build IOPs based on codes with
linear-time encoding procedures [Spi96; GI05; BCGGHJ17].

All fields. The question of whether it is possible to simultaneously achieve linear-length proofs and
polylogarithmic-time verifier for Succinct-ASAT over any field F remains open. Progress on this question
motivates the search for arithmetization-friendly families of good codes beyond the Reed–Solomon code.
For example, the case of F = F2, which corresponds to boolean circuits, motivates the search for succinctly-
represented families of good algebraic-geometry codes over constant-size fields with fast encoding algorithms.

Zero knowledge. Zero knowledge, while not a goal of this work, is a desirable property, because zero
knowledge PCP/IOPs lead to zero knowledge succinct arguments [IMSX15; BCS16]. Straightforward
modifications to the protocol, similar to [BCRSVW19], achieve a notion of zero knowledge wherein the

6

simulator runs in time polynomial in the size of the computation being checked, which is meaningful for
nondeterministic problems since it does not have access to the witness.

There is a stronger notion of zero knowledge for succinct languages where the simulator runs in polyloga-
rithmic time (in time polynomial in the size of the instance). This gap was precisely the subject of a work on
designing succinct simulators for certain tests [BCFGRS17]. Whether low-degree tests with the parameters
we require have succinct simulators remains an intriguing problem that we leave to future research.

Round complexity. Our protocol has 5 rounds. Round complexity can be reduced to 4 at the cost of
increased (constant) query complexity. Reducing round complexity beyond this while preserving linear proof
length and polylogarithmic time verification, or finding evidence against this possibility, remains open.

7

2 Technical overview

We discuss the main ideas behind our results. Recall that Succinct-ASAT is the satisfiability problem for
succinctly-represented arithmetic circuits over the field F; this problem is NEXP-complete for any field F
[PY86]. Our goal is to construct an IOP for Succinct-ASAT, over a large field F, with proof length that is
linear in the size of the circuitN and strictly quasilinear (O(N logN)) prover arithmetic complexity; crucially,
the running time of the verifier is polylogarithmic in the size of the circuit (more precisely, polynomial in the
size of the circuit descriptor). Additionally, we strive to optimize the query and round complexity of this
IOP. We stress that no prior work achieves non-trivial linear-length PCPs or IOPs wherein the verifier runs in
polylogarithmic time in the size of the circuit.

The rest of this section is organized as follows. In Section 2.1 we discuss our starting point, which is
a construction of [BCRSVW19]. In Section 2.2 we discuss our approach to overcoming the limitations of
prior work by describing a new protocol for checking succinctly-represented linear relations; this achieves
an exponential improvement over the prior state of the art. In Section 2.4 we discuss how to overcome the
challenges that arise when attempting to build on this exponential improvement to checking the computation
of algebraic automata, and then of algebraic machines (which capture Succinct-ASAT as a special case). In
Section 2.5 we describe a modular framework, which we call oracle reductions, in which we prove our results.

2.1 Our starting point

The starting point of our work is [BCRSVW19], which obtains IOPs for ASAT (arithmetic circuit satisfiability)
with proof length O(N) and query complexity O(logN), and in which the prover uses O(N logN) field
operations and the verifier uses O(N). More precisely, this prior work obtains IOPs for an NP-complete
problem that has a linear-time reduction from ASAT. The problem is denoted R1CS and captures the
satisfiability of rank-1 constraint systems: given matrices A,B,C over a finite field F, the problem asks
whether there exists a witness vector w, where some entries are fixed to known values, for which the following
R1CS equation holds: (Aw) ◦ (Bw) = Cw, where “◦” denotes entry-wise product.

Our goal in this paper is to achieve an IOP for Succinct-ASAT, the succinct analogue of ASAT. This
entails an exponential improvement in the running time of the verifier, from linear in the circuit size to
polylogarithmic in the circuit size. Moreover, we need to achieve this improvement with proof length O(N)
and query complexityO(1) (and a prover that usesO(N logN) field operations). At a high level, our strategy
towards this goal is to prove that there exists a class of succinctly-representable R1CS instances such that:
(i) there exists a linear time reduction from Succinct-ASAT to R1CS that produces an instance in this class;
and (ii) design an IOP protocol with the aforementioned parameters for R1CS instances in this class.

The ideas behind our results are better understood if we first briefly recall the IOP of [BCRSVW19]. The
prover sends to the verifier four oracles πw, πA, πB, πC that are purported encodings of w,Aw,Bw,Cw.
The verifier must now check two sub-problems: (a) if πw encodes w then πA, πB, πC respectively encode
Aw,Bw,Cw; and (b) if πA, πB, πC encode wA, wB, wC then wA ◦ wB = wC .

As usual, there is a tension in selecting the encoding used to obtain the oracles πw, πA, πB, πC . One
needs an encoding that allows for non-trivial checking protocols, e.g., where the verifier makes a small
number of queries. On the other hand, the encoding must have constant rate so that proof length can be linear.

The encoding used relies on univariate polynomials: denote by RS [L, ρ] ⊆ FL the Reed-Solomon code
over a subset L of a field F with rate parameter ρ ∈ (0, 1] (that is, the set of all functions f : L→ F of degree
less than ρ|L|). Also, denote by f̂ the unique univariate polynomial of degree less than ρ|L| whose evaluation
on L equals f . Given a subset H ⊆ F (the domain of the encoding), a Reed–Solomon codeword f encodes

8

x ∈ FH if f̂(a) = xa for all a ∈ H; for each x, there is a unique encoding fx of x of minimal rate. We can
now restate the aforementioned sub-problems in terms of the Reed–Solomon code.

• Lincheck: given a subset H ⊆ F, Reed–Solomon codewords f, g ∈ RS [L, ρ] that encode x, y ∈ FH
respectively, and a matrix M ∈ FH×H , check that Mx = y.
• Rowcheck: given a subset H ⊆ F and Reed–Solomon codewords f, g, h ∈ RS [L, ρ] that encode
x, y, z ∈ FH respectively, check that x ◦ y = z.

The IOP in [BCRSVW19] is obtained by combining sub-protocols for these sub-problems, a lincheck protocol
and a rowcheck protocol. The latter is a simple reduction from the rowcheck problem to testing membership
in the Reed–Solomon code, and is implied by standard PCP tools. The former, however, is a novel (and
non-trivial) reduction from the lincheck problem to testing membership in the Reed–Solomon code.

While on the one hand the verifier in the rowcheck protocol runs in time that is polylogarithmic in |H|
(which is good) the verifier in the lincheck protocol runs in time that is linear in |H| (which is much too slow).
In other words, if we simply invoked the IOP in [BCRSVW19] on the circuit described by an instance of
Succinct-ASAT, the verifier would run in time that is linear in the circuit size, which is exponentially worse
than our goal of polylogarithmic time. This state of affairs in the starting point of our work.

Next, in Section 2.2, we discuss how to obtain a succinct lincheck protocol that, for suitable linear relations,
is exponentially more efficient. After that, in Section 2.4, we discuss how to build on our succinct lincheck
protocol to reduce Succinct-ASAT to testing membership in the Reed–Solomon code, while achieving verifier
time that is polylogarithmic in circuit size.

Throughout, we present our contributions as oracle reductions from some computational task to testing
membership in the Reed–Solomon code. Loosely speaking, these are are reductions in the setting of the IOP
model (and therefore, in particular, allow interaction in which the prover sends PCP oracles). This abstraction
allows us to decouple IOP protocol-design from the low-degree test that we invoke at the end of the protocol.
See Section 2.5 for details.

2.2 Checking succinctly-represented linear relations

Following the above discussion, we now temporarily restrict our attention to devising a lincheck protocol,
which reduces checking linear relations defined by matrices M ∈ FH×H to testing membership in the
Reed–Solomon code, in which the verifier runs in time that is polylogarithmic in |H|. This is not possible
in general, however, because the verifier needs to at least read the description of the matrix M . We shall
have to consider matrices M that have a special structure that can be exploited to obtain an exponential
improvement in verifier time. This improvement is a core technical contribution of this paper, and we refer
to the resulting reduction as the succinct lincheck protocol. We start by describing the ideas behind the
(non-succinct) lincheck protocol of [BCRSVW19].

Definition 2.1 (informal). In the lincheck problem, we are given a subset H ⊆ F, Reed–Solomon codewords
f, g ∈ RS [L, ρ] encoding vectors x, y ∈ FH , and a matrix M ∈ FH×H . The goal is to check that x = My.

A simple probabilistic test for the claim “x = My” is to check that 〈r, x −My〉 = 0 for a random
r ∈ FH . Indeed, if x 6= My, then Prr∈FH [〈r, x−My〉 = 0] = 1/|F|. However, this approach would require
the verifier to sample, and send to the prover, |H| random field elements (too many).

A natural derandomization is to choose ~r using a small-bias generator over F, rather than uniformly at
random. A small-bias generator G over F is a function with the property that for any nonzero z ∈ FH , it
holds with high probability over ρ ∈ {0, 1}` that 〈z,G(ρ)〉 6= 0. Now the verifier needs to send only ` bits to
the prover, which can be much smaller than |H| log |F|.

9

A natural choice (used also, e.g., in [BFLS91, §5.2]) is the powering construction of [AGHP92], which
requires sending a single random field element (` = log |F|), and incurs only a modest increase in soundness
error. In this construction, we define a vector ~r(X) ∈ F[X]H of linearly independent polynomials in X ,
given by (1, X,X2, . . . , X |H|−1). The small-bias generator is then G(α) := ~r(α) for α ∈ F. If z is nonzero
then h(X) := 〈~r(X), z〉 is a nonzero polynomial and so Prα∈F[〈G(α), z〉 = 0] ≤ deg(h)/|F|. The verifier
now merely has to sample and send α ∈ F, and the prover must then prove the claim “h(α) = 0” to the
verifier. Rearranging, this is the same as testing that 〈~r(α), x〉 − 〈~r(α)M,y〉 = 0. The problem is thus
reduced to checking inner products of known vectors with oracles.

In the setting of Reed–Solomon codewords, if fu is an encoding of u and fv is an encoding of v, then
fu · fv is an encoding of u ◦ v, the pointwise product of u and v. Hence, to check that 〈u, v〉 = c, it suffices
to check that the low-degree polynomial fu · fv sums to c on H , since 〈u, v〉 =

∑
h∈H fu(h)fv(h). This can

be achieved by running the univariate sumcheck protocol ([BCRSVW19]) on the codeword fu · fv. This
protocol requires the verifier to efficiently determine the value of fu · fv at a given point in L.

The inefficiency. The foregoing discussion tells us that, to solve the lincheck problem, the verifier must
determine the value of the Reed–Solomon encodings of ~r(α) ◦ x and ~r(α)M ◦ y at a given point in L. The
encodings of the vectors x and y are provided (as f and g). Hence it suffices for the verifier to evaluate
low-degree extensions of ~r(α) and ~r(α)M at a given point, and then perform a field multiplication.

This last step is the computational bottleneck of the protocol. In [BCRSVW19], the verifier evaluates
the low-degree extensions of ~r(α) and M>~r(α) via Lagrange interpolation, which requires time Ω(|H|). To
make our verifier efficient, we must evaluate both low-degree extensions in time polylog(|H|). In particular,
this requires that M be succinctly represented, since computing the low-degree extension of ~r(α)M in
general requires time linear in the number of nonzero entries in M , which is at least |H|.

The lincheck protocol in [BCRSVW19] chooses the linearly independent polynomials ~r(X) to be the
standard (or coefficient) basis (1, X, . . . ,X |H|−1). For this basis, however, we do not know how to efficiently
evaluate the low-degree extension of ~r(α). This problem must be addressed regardless of the matrix M .

A new basis and succinct matrices. We leverage certain algebraic properties to overcome the above
problem. There is another natural choice of basis for polynomials, the Lagrange basis (LH,h(X))h∈H ,
where LH,h is the unique polynomial of degree less than |H| with LH,h(h) = 1 and LH,α(γ) = 0 for all
γ ∈ H \ {h}. We observe that the low-degree extension of ~r(α) = (LH,h(α))h∈H ∈ FH has a simple form
that allows one to evaluate it in time polylog(|H|) provided that H is an additive or multiplicative subgroup
of F. In other words, the Lagrange basis yields a small-bias generator over F whose low-degree extension
can be computed efficiently.

It remains to find a useful class of succinctly-represented matrices M for which one can efficiently
evaluate a low-degree extension of ~r(α)M ∈ FH . The foregoing discussion suggests a natural condition:
if we can efficiently compute a low-degree extension of a vector v ∈ FH then we should also be able to
efficiently compute a low-degree extension of the vector vM . If this holds for all vectors v, we say that the
matrix M is (algebraically) succinct. For example, the identity matrix satisfies this definition (trivially), and
so does the matrix with 1s on the superdiagonal for appropriate choices of F and H (see Section 8.1).

In sum, if we choose the Lagrange basis in the lincheck protocol and the linear relation is specified
by a succinct matrix, then, with some work, we obtain a lincheck protocol where the verifier runs in time
polylog(|H|). To check satisfiability of succinctly-represented arithmetic circuits, however, we need to
handle a more general class of matrices, described next.

Succinct lincheck for semisuccinct matrices. We will relax the condition on a matrix M in a way that
captures the matrices that arise when checking succinctly-described arithmetic circuits, while still allowing
us to obtain a lincheck protocol in which the verifier runs in time polylog(|H|).

10

We show that the matrices that we consider are semisuccinct, namely, they can be decomposed into a
“large” part that is succinct and a “small” part that has no special structure.6 This structure should appear
familiar, because it is analogous to how a succinctly-described circuit consists of a small arbitrary component
(the circuit descriptor) that is repeatedly used in a structured way to define the large circuit. Another analogy
is how in an automaton or machine computation a small, and arbitrary, transition function is repeatedly
applied across a large computation.

Specifically, by “decompose” we mean that the matrix M ∈ FH×H can be written as the Kronecker
product of a succinct matrix A ∈ FH1×H1 and a small matrix B ∈ FH2×H2 ; we write M = A ⊗ B.
(Succinctly representing a large operator like M via the tensor product of simpler operators should be a
natural idea to readers familiar with quantum information.) In order for the product to be well-defined, we
must supply a bijection Φ: H → H1 × H2. If this bijection satisfies certain algebraic properties, which
preserve the succinctness of the matrix A, we call it a bivariate embedding.

We obtain a succinct lincheck protocol for semisuccinct matrices.

Lemma 2.2 (informal). There is a linear-length oracle reduction from the lincheck problem for semisuccinct
matrices to testing membership in the Reed–Solomon code, where the verifier runs in polylogarithmic time.

Next, we discuss how to obtain a reduction from algebraic automata (succinct R1CS) to testing member-
ship in the Reed–Solomon code, where the verifier runs in time that is polylogarithmic in the circuit size, by
building on our succinct lincheck protocol for semisuccinct matrices.

2.3 Checking bounded-space computations in polylogarithmic time

An instance of the algebraic automaton relation is specified by three k × 2k matrices (A,B,C) over F, and
a time bound T . A witness f : [T]→ Fk is valid if

∀ t ∈ [T − 1] Af(t, t+ 1) ◦Bf(t, t+ 1) = Cf(t, t+ 1) , (1)

where f(t, t+1) := f(t)‖f(t+1) is the concatenation of the consecutive states f(t) ∈ Fk and f(t+1) ∈ Fk.
We use the term “algebraic automata” since one can think of A,B,C as specifying the transition relation

of a computational device with k algebraic registers, and f as an execution trace specifying an accepting
computation of the device. The relation is PSPACE-complete: it is in NPSPACE because it can be checked by
a polynomial-space Turing machine with one-directional access to an exponential-size witness, and recall that
NPSPACE = PSPACE; also, it is PSPACE-hard because given an arithmetic circuit specifying the transition
relation of a polynomial-space machine, we can find an equisatisfiable R1CS instance in linear time.

If we view the execution trace f as a vector f = f(1)‖ · · · ‖f(T) ∈ FTk, then we can rewrite the
condition in Eq. (1) via the following (possibly exponentially large) R1CS equation:
A0 A1

A0 A1

.
A0 A1

 f ◦


B0 B1

B0 B1

.
B0 B1

 f =


C0 C1

C0 C1

.
C0 C1

 f

where A0, A1 ∈ Fk×k are the first half and second half of A respectively; and likewise for B and C. We thus
see that algebraic automata are equivalent to Succinct-R1CS.

6We actually need to handle matrices that are the sum of semisuccinct matrices, but we ignore this in this high-level discussion.

11

The matrices in the above R1CS equation have a rigid block structure that we refer to as a staircase.
Given the discussions in Sections 2.1 and 2.2, in order to achieve polylogarithmic verifier time, it suffices to
show that staircase matrices are semisuccinct (or, at least, the sum of few semisuccinct matrices).

So let S(M0,M1) be the staircase matrix of two given k×k matricesM0,M1 over F. Namely, S(M0,M1)
is the Tk × Tk matrix with M0-blocks on the diagonal and M1-blocks on the superdiagonal. Observe that:
1. we can write the matrix with M0-blocks on the diagonal as I ⊗M0, where I is the T × T identity matrix;
2. we can write the matrix with M1-blocks on the superdiagonal as I) ⊗M1, where I) is the T × T matrix

with 1s on the superdiagonal.
Under an appropriate mapping from [Tk] into a subset of F, we prove that both of these matrices are
semisuccinct. This tells us that S(M0,M1) is the sum of two semisuccinct matrices:

S(M0,M1) :=


M0 M1

M0 M1

.
M0 M1

M0

 = I ⊗M0 + I) ⊗M1 ∈ FTk × FTk .

(Note that the above is not exactly the matrix structure we want, because of the extra M0 block; we handle
this technicality separately.) We obtain the following lemma.

Lemma 2.3 (informal). There is a linear-length oracle reduction from the algebraic automaton relation to
testing membership in the Reed–Solomon code, where the verifier runs in time poly(k, log T).

2.4 Checking succinct satisfiability in polylogarithmic time

We outline our construction of a linear-length IOP for succinct circuit satisfiability (Succinct-ASAT) over a
large smooth field F. Informally, our strategy is as follows. First, we note that there is a simple linear-size
reduction (see Section 10.2) from Succinct-ASAT to satisfiability of an algebraic automaton augmented with
a permutation constraint; we refer to the latter as an algebraic machine. Then, we prove that checking such
an instance can be reduced to checking an algebraic automaton without the permutation constraint, which
can be achieved as described in the previous section. In the remainder of this section we discuss the main
technical challenges that arise in this approach.

An instance of the algebraic (R1CS) machine relation is specified by two algebraic (R1CS) automata
(A,A′). A witness (f, π), where f : [T]→ Fk is an execution trace and π : [T]→ [T] is a permutation, is
valid if: (1) f is a valid witness for the automaton A, and (2) f ◦ π is a valid witness for the automaton
A′. The algebraic machine relation is NEXP-complete, as Succinct-ASAT reduces to it in linear time (see
Section 10.2).
Execution traces for machines. Before we discuss how we reduce from the algebraic machine relation, we
briefly explain why the above relation is a natural problem to consider, and in particular why it has anything to
do with (random-access) machines. Recall that a random-access machine is specified by a list of instructions,
each of which is an arithmetic operation, a control-flow operation, or a read/write to memory. One way to
represent the execution trace for the machine is to record the state of the entire memory at each time step; for
a time-T space-S computation, such an execution trace has size Θ(TS) (much more than linear!). Yet, the
machine can access only a single memory location at each time step. Thus, instead of writing down the state
of the entire memory at each time step, we could hope to only write the state of the accessed address — this
would reduce the size of the trace to Θ(T logS). The problem then is that it is no longer possible to check
consistency of memory via local constraints because the same address can be accessed at any time.

12

Classical techniques of Gurevich and Shelah [GS89] tell us that one can efficiently represent an execution
trace for a machine via two execution traces that are permutations of one another. Informally, sorting the
execution trace by time enables us to check the transition relation of the machine; and sorting the execution
trace by the accessed addressed (and then by time) enables us to locally check that memory is consistent. (One
must ensure that, for each location, if we write some value to memory and then read the same address, we
retrieve that same value.) The transition relation and memory consistency can each be expressed individually
as automata. This view of machines immediately gives rise to the algebraic machine relation above.

Checking the algebraic machine relation. We have discussed how to check automata in Section 2.3, so it
remains to check that the traces are permutations of one another. Historically this has been achieved in the
PCP literature using algebraic embeddings of routing networks; e.g., see [BCGT13a]. The problem is that
this increases the size of the representation of the execution trace by at least a logarithmic factor. We instead
use an interactive permutation test from the program checking literature [Lip89; BK95]. The test is based on
the observation that u ∈ FT is a permutation of v ∈ FT if and only if the multi-sets given by their elements
are equal, which is true if and only if the polynomials pu(X) =

∏T
i=1(X − ui) and pv(X) =

∏T
i=1(X − vi)

are equal. Thus it suffices to evaluate each polynomial at a random point and check equality.
These polynomials require time Θ(T) to evaluate, which in our setting is exponential. Therefore the

prover must assist the verifier with the evaluation. We show that evaluating this polynomial can be expressed
as an algebraic automaton, and can therefore be checked again using the protocol from Section 2.3.

The reader may believe that by now we have reduced checking an algebraic machine to checking
three instances of algebraic automata. Recall, however, that the algebraic automaton relation is PSPACE-
complete, whereas the algebraic machine relation is NEXP-complete. What happened? The answer lies in
the randomness used in the permutation automaton. In order to check that u is a permutation of v, the prover
must first commit to u and v before the verifier chooses his evaluation point α, and then the prover sends the
trace of the automaton that evaluates pu(α), pv(α). This trace depends on the choice of α, and so we use
interaction. This is captured by the interactive automaton relation (Definition 8.1), which is NEXP-complete;
it can be checked in essentially the same way as the automaton relation described in Section 2.3.

We hence obtain the following lemma.

Lemma 2.4 (informal). There is a linear-length oracle reduction from the algebraic machine relation
(hence, Succinct-ASAT) to testing membership in the Reed–Solomon code, where the verifier runs in time
poly(k, log T).

2.5 Oracle reductions

Many results in this paper describe IOPs that reduce a computational problem to membership in (a subcode
of) the Reed–Solomon code. We find it useful to capture this class of reductions via a precise definition. This
lets us prove general lemmas about such reductions, and obtain our protocols in a modular fashion.

We thus formulate a new notion that we call interactive oracle reductions (in short, oracle reductions).
Informally, an oracle reduction is a protocol that reduces from a computational problem to testing membership
in a code (in this paper, the code is the interleaved Reed–Solomon code). This is a well-understood idea in
constructions of PCPs and IOPs. Our contribution is to provide a formal framework for this technique.

We illustrate the notion of oracle reductions via an example. Consider the problem of testing proximity to
the vanishing Reed–Solomon code, which plays an important role in a PCP of Ben-Sasson and Sudan [BS08]
and several other PCPs/IOPs. Informally, the goal is to test whether a univariate polynomial f , provided as
an oracle, is zero everywhere on a subset H of F.

13

We describe an oracle reduction that maps the foregoing problem to the problem of testing membership
in the Reed–Solomon code of the related polynomial g := f/ZH . Observe that f is divisible by ZH if and
only if f is zero everywhere in H , and so g is in the Reed–Solomon code if and only if f satisfies the desired
property. But what exactly is g? In the oracle reduction framework, we refer to g as a virtual oracle: an
oracle whose value at any given point in its domain can be determined efficiently by making a small number
of queries to concrete oracles. In this case, so long as the domain L we choose for g does not intersect H ,
a verifier can evaluate g at any point α ∈ L with only a single query to f . To test that g is low degree, the
verifier can invoke any low-degree test on g, and simulate queries to the virtual oracle g via queries to f .

The two main parameters in an oracle reduction are the proof length, which is simply the total length of
the oracles sent by the prover, and the locality, which is the number of queries one would have to make to the
concrete oracles to answer a single query to any virtual oracle (in this paper, locality always equals the number
of rounds). Using the perspective of oracle reductions, our main theorems (Theorems 1 and 2) follows by
combining two main sub-components: (1) a linear-length 3-local oracle reduction from the Succinct-ASAT
problem to proximity testing to the Reed–Solomon code (discussed in Section 2.4); and (2) a linear-length
3-query IOP for testing proximity to the Reed–Solomon code from [BCGRS17] (see Lemma 10.1).

14

3 Roadmap

Fig. 1 below provides a diagram of the results proved in this paper. The remaining sections in this paper are
organized as follows. In Section 4 we recall useful notions and definitions. In Section 5 we define oracle
reductions, and prove how to create IOP protocols from RS oracle reductions and RS proximity tests. In
Section 6 we define and construct trace embeddings. In Section 7 we describe our succinct lincheck protocol.
In Section 8 we describe an oracle reduction from R1CS automata to testing proximity to the Reed–Solomon
code, proving Theorem 1. In Section 9 we describe an oracle reduction from R1CS machines to testing
proximity to the Reed–Solomon code. In Section 10 we prove Theorem 2 and Theorem 3.

Theorem 1:
IOP for succinct R1CS

Theorem 2:
IOP for succinct arithmetic circuits

Theorem 3:
IOP for algebraic machines

[BCGRS17]:
linear-size constant-query
IOP of proximity for RS

with polylog verifier

[BCRSVW19]:
univariate sumcheck

Lemma 7.4:
succinct lincheck

Lemma 8.2:
(interactive) algebraic automata

Lemma 9.2:
algebraic machines

Corollary 5.10: create IOP protocol from
RS oracle reduction and RS proximity test

Figure 1: Diagram of the results in this paper.

15

4 Preliminaries

Given a relation R ⊆ S × T , we denote by L(R) ⊆ S the set of s ∈ S such that there exists t ∈ T with
(s, t) ∈ R; for s ∈ S, we denote byR|s ⊆ T the set {t ∈ T : (s, t) ∈ R}. Given a set S and strings v, w ∈
Sn for some n ∈ N, the fractional Hamming distance ∆(v, w) ∈ [0, 1] is ∆(v, w) := 1

n |{i : vi 6= wi}|. We
denote the concatenation of two vectors u1, u2 by u1‖u2, and the concatenation of two matrices A,B by
[A|B]. All fields F in this paper are finite, and we denote the finite field of size q by Fq. We say that H is a
subgroup in F if it is either a subgroup of (F,+) (an additive subgroup) or of (F \ {0},×) (a multiplicative
subgroup); we say that H is a coset in F if it is a coset of a subgroup in F (possibly the subgroup itself).

4.1 Codes and polynomials

The Reed–Solomon code. Given a subset S of a field F and rate ρ ∈ (0, 1], we denote by RS [S, ρ] ⊆ FS
all evaluations over S of univariate polynomials of degree less than ρ|S|. Namely, a word c ∈ FS is in
RS [S, ρ] if there is a polynomial of degree less than ρ|S| that, for every a ∈ S, evaluates to ca at a. We denote
by RS [S, (ρ1, . . . , ρn)] :=

∏n
i=1 RS [S, ρi] the interleaving of Reed–Solomon codes with rates ρ1, . . . , ρn.

Representations of polynomials. We frequently move from univariate polynomials over F to their evalu-
ations on subsets of F, and back. We use plain letters like f, g, h, π to denote evaluations of polynomials,
and “hatted letters” f̂ , ĝ, ĥ, π̂ to denote corresponding polynomials. This bijection is well-defined only if the
size of the evaluation domain is larger than the degree. If f ∈ RS [S, ρ] for S ⊆ F and ρ ∈ (0, 1], then f̂ is
the unique polynomial of degree less than ρ|S| whose evaluation on S equals f . Likewise, if f̂ ∈ F[X] with
deg(f̂) < ρ|S|, then fS := f̂ |S ∈ RS [S, ρ] (but we drop the subscript when the subset is clear from context).

Vanishing polynomials. Let F be a finite field, and S ⊆ F. We denote by ZS the unique non-zero monic
polynomial of degree at most |S| that is zero everywhere on S; ZS is called the vanishing polynomial of S.
In this work we use efficiency properties of vanishing polynomials for sets S that have group structure.

If S is a multiplicative subgroup of F, then ZS(X) = X |S| − 1, and so ZS(X) can be evaluated at any
α ∈ F in O(log |S|) field operations. More generally, if S is a γ-coset of a multiplicative subgroup S0

(namely, S = γS0) then ZS(X) = γ|S|ZS0(X/γ) = X |S| − γ|S|.
If S is an (affine) subspace of F, then ZS is called an (affine) subspace polynomial. In this case, there

exist coefficients c0, . . . , ck ∈ F, where k := dim(S), such that ZS(X) = Xpk +
∑k

i=1 ciX
pi−1

+ c0 (if S
is linear then c0 = 0). Hence, ZS(X) can be evaluated at any α ∈ F in O(k log p) = O(log |S|) operations.
Such polynomials are called linearized because they are Fp-affine maps: if S = S0 + γ for a subspace
S0 ⊆ F and shift γ ∈ F, then ZS(X) = ZS0(X−γ) = ZS0(X)−ZS0(γ), and ZS0 is an Fp-linear map. The
coefficients c0, . . . , ck can be derived from a description of S (any basis of S0 and the shift γ) in O(k2 log p)
field operations (see [LN97, Chapter 3.4] and [BCGT13a, Remark C.8]).

Lagrange polynomials. For F a finite field, S ⊆ F, a ∈ S, we denote by LS,a the unique polynomial of
degree less than |S| such that LS,a(a) = 1 and LS,a(b) = 0 for all b ∈ S \ {a}. Note that

LS,a(X) =

∏
b∈S\{a}(X − b)∏
b∈S\{a}(a− b)

=
L′S(X)

L′S(a)
,

where L′S(X) is the polynomial ZS(X)/(X − a). For additive and multiplicative subgroups S and a ∈ S,
we can evaluate LS,a(X) at any α ∈ F in polylog(|S|) field operations. This is because an arithmetic circuit
for L′S can be efficiently derived from an arithmetic circuit for ZS [SY10].

16

4.2 Interactive oracle proofs

The information-theoretic protocols in this paper are Interactive Oracle Proofs (IOPs) [BCS16; RRR16],
which combine aspects of Interactive Proofs [Bab85; GMR89] and Probabilistically Checkable Proofs
[BFLS91; AS98; ALMSS98], and also generalize the notion of Interactive PCPs [KR08].

A k-round public-coin IOP has k rounds of interaction. In the i-th round of interaction, the verifier sends
a uniformly random message mi to the prover; then the prover replies with a message πi to the verifier. After
k rounds of interaction, the verifier makes some queries to the oracles it received and either accepts or rejects.

An IOP system for a relationR with round complexity k and soundness error ε is a pair (P, V), where
P, V are probabilistic algorithms, that satisfies the following properties. (See [BCS16; RRR16] for details.)

Completeness: For every instance-witness pair (x,w) in the relation R, (P (x,w), V (x)) is a k(n)-round
interactive oracle protocol with accepting probability 1.

Soundness: For every instance x /∈ L(R) and unbounded malicious prover P̃ , (P̃ , V (x)) is a k(n)-round
interactive oracle protocol with accepting probability at most ε(n).

Like the IP model, a fundamental measure of efficiency is the round complexity k. Like the PCP model,
two additional fundamental measures of efficiency are the proof length p, which is the total number of
alphabet symbols in all of the prover’s messages, and the query complexity q, which is the total number of
locations queried by the verifier across all of the prover’s messages.

We say that an IOP system is non-adaptive if the verifier queries are non-adaptive, namely, the queried
locations depend only on the verifier’s inputs and its randomness. All of our IOP systems will be non-adaptive.

4.2.1 IOPs of proximity

An IOP of Proximity extends an IOP the same way that PCPs of Proximity extend PCPs. An IOPP system
for a relationR with round complexity k, soundness error ε, and proximity parameter δ is a pair (P, V) that
satisfies the following properties.

Completeness: For every instance-witness pair (x,w) in the relationR, (P (x,w), V w(x)) is a k(n)-round
interactive oracle protocol with accepting probability 1.

Soundness: For every instance-witness pair (x,w) with ∆(w,R|x) ≥ δ(n) and unbounded malicious prover
P̃ , (P̃ , V w(x)) is a k(n)-round interactive oracle protocol with accepting probability at most ε(n).

Efficiency measures for IOPPs are as for IOPs, except that we also count queries to the witness: if V makes
at most qw queries to w and at most qπ queries to prover messages, the query complexity is q := qw + qπ.

17

5 Oracle reductions

We define interactive oracle reductions (henceforth just oracle reductions), which, informally, are reductions
from computational problems to the problem of testing membership of collections of oracles in a code.

The main result in this section is Lemma 5.4 (and an implication of it, Corollary 5.10), which enables the
construction of IOPs by modularly combining oracle reductions and proximity tests. The ideas underlying
oracle reductions are not new. Essentially all known constructions of PCPs/IPCPs/IOPs consist of two parts:
(1) an encoding, typically via an algebraic code, that endows the witness with robust structure (often known
as arithmetization); and (2) a procedure that locally tests this encoding (often known as low-degree testing).

Oracle reductions provide a formal method of constructing proof systems according to this framework.
We use them to express results in Sections 7 to 9, which significantly simplifies exposition. Additionally,
expressing our results as oracle reductions enables us to consider the efficiency of the oracle reduction itself
as a separate goal from the efficiency of the low-degree test. In particular, future improvements in low-degree
testing will lead immediately to improvements in our protocols.

This section has two parts: in Section 5.1 we define oracle reductions; then in Section 5.2, we introduce
a special case of oracle reductions where the target code is the Reed–Solomon (RS) code. For this special
case we give additional lemmas: we show that it suffices to prove a weaker soundness property, because
it generically implies standard soundness; also, we show that all such oracle reductions admit a useful
optimization which reduces the number of low-degree tests needed to a single one.

5.1 Definitions

Informally, an oracle reduction is an interactive public-coin protocol between a prover and a verifier that
reduces membership in a language to a promise problem on oracles sent by the prover during the protocol.

In more detail, an oracle reduction from a language L ⊆ X to a relationR′ ⊆ X ′ × Σs is an interactive
protocol between a prover and a verifier that both receive an instance x ∈ X , where in each round the verifier
sends a message and the prover replies with an oracle (or several oracles), as in the IOP model. Unlike in an
IOP, the verifier does not make any queries. Instead, after the interaction the verifier outputs a list of claims
of the form “(x,Π) ∈ R′”, which may depend on the verifier’s randomness, where x′ ∈ X ′ and Π is a
deterministic oracle algorithm that specifies a string in Σs as follows: the i-th entry in Σs is computed as
Ππ1,...,πr(i), where πj is the oracle sent by the prover in the j-th round. The reduction has the property that
if x ∈ L then all claims output by the verifier are true, and if instead x /∈ L then (with high probability over
the verifier’s randomness) at least one claim is false.

We refer to each oracle algorithm Π(j) as a virtual oracle because Π(j) represents an oracle that is derived
from oracles sent by the prover. We are interested in virtual oracles Π(j) where, for each i, the number of
queries Ππ1,...,πr(i) makes to the oracles is small. For simplicity, we also assume that the algorithms are
non-adaptive in that the queried locations are independent of the answers to the queries.

A crucial property is that virtual oracles with small locality compose well, which allows us to compose
oracle reductions. For this we need an oracle reduction of proximity (Definition 5.3), which we can view as
an oracle reduction from a relationR ⊆ X × Σs to another relationR′ ⊆ X ′ × Σs′ . Then we can construct
an oracle reduction from L toR′ by composing an oracle reduction A from L toR′ with an oracle reduction
of proximity B fromR′ toR′′. Such a reduction may output virtual oracles of the form ΠΠA

B where ΠB is a
virtual oracle output by B and ΠA is a virtual oracle output by A. This can be expressed as a standard virtual
oracle with access to the prover messages, and if ΠA and ΠB have small locality then so does ΠΠA

B .
We now formalize the foregoing discussion, starting with the notion of a virtual oracle. Since the virtual

oracles in this work are non-adaptive, we specify them via query (“pre-processing”) and answer (“post-

18

processing”) algorithms. The query algorithm receives an index i ∈ [s] and computes a list of locations to
be queried across oracles. The answer algorithm receives the same index i, and answers to the queries, and
computes the value of the virtual oracle at location i. In other words, the answer algorithm computes the
value of the virtual oracle at the desired location from the values of the real oracles at the queried locations.

Definition 5.1. A virtual oracle Π of length s over an alphabet Σ is a pair of deterministic polynomial-time
algorithms (Q,A). Given any oracles π1, . . . , πr of appropriate sizes, these algorithms define an oracle
Π ∈ Σs given by Π[π1, . . . , πr](i) := A(i, (πj [k])(j,k)∈Q(i)) for i ∈ [s]. Π is `-local if maxi∈[s] |Q(i)| ≤ `.

Observe that the definition of a virtual oracle given above is equivalent to saying that Π is an algorithm
with non-adaptive query access to π1, . . . , πr. Where convenient we will use this perspective.

We now define the notion of an oracle reduction. Since in this work we primarily deal with relations,
rather than languages, we define our reductions accordingly.

Definition 5.2. An oracle reduction from a relationR to a relationR′ with base alphabet Σ is an interactive
protocol between a prover P and verifier V that works as follows. The prover P takes as input an instance-
witness pair (x,w) and the verifier V takes as input the instance x. In each round, V sends a message
mi ∈ {0, 1}∗, and P replies with an oracle πi ∈ Σ∗i over an alphabet Σi = Σsi; let π1, . . . , πr be all
oracles sent.7 After the interaction, V outputs a list of instances (x(1), . . . ,x(m)) and a list of virtual oracles
(Π(1), . . . ,Π(m)) over alphabets Σ′1, . . . ,Σ

′
m respectively, where Σ′i = Σs′i .

We say that the oracle reduction has soundness error ε and distance δ if the following conditions hold.

• Completeness: If (x,w) ∈ R then, with probability 1 over the verifier’s randomness, for every j ∈ [m] it
holds that

(
x

(j),Π(j)[π1, . . . , πr]
)
∈ R′ where (x(j),Π(j))j∈[m] ← (P (x,w), V (x)).

• Soundness:8 If x /∈ L(R) then for any prover P̃ , with probability 1−ε over the verifier’s randomness, there
exists j ∈ [m] such that ∆(Π(j)[π1, . . . , πr],R′|x(j)) > δ where (x(j),Π(j))j∈[m] ← (P (x,w), V (x)).

An oracle reduction is public coin if all of the verifier’s messages consist of uniform randomness. All
of the oracle reductions we present in this paper are public coin. Note that we can always choose the base
alphabet Σ to be {0, 1}, but it will be convenient for us to use a larger base alphabet.

This above definition can be viewed as extending the notion of linear-algebraic CSPs [BCGV16], and
indeed Lemma 5.4 below gives a construction similar to the “canonical” PCP described in that work.

It will be useful to compose oracle reductions. As in the PCP setting, for this we will require an object
with a stronger proximity soundness property.

Definition 5.3. An oracle reduction of proximity is as in Definition 5.2 except that, for a given proximity
parameter δ0 ∈ (0, 1), the soundness condition is replaced by the following one.

• Proximity soundness: If (x,w) is such that ∆(w,R|x) > δ0 then for any prover P̃ , with probability 1− ε
over the verifier’s randomness, there exists j ∈ [m] such that ∆(Π(j)[π1, . . . , πr],R′|x(j)) > δ(δ0) where
(x(j),Π(j))j∈[m] ← (P (x,w), V (x)).

In the PCPP literature the foregoing soundness property is usually known as robust soundness, and the
condition is expressed in terms of expected distance. The definition given here is more convenient for us.

Efficiency measures. There are several efficiency measures that we study for an oracle reduction.
7Sometimes it is convenient to allow the prover to reply with multiple oracles πi,1, πi,2, . . .; all discussions extend to this case.
8This is analogous to the “interactive soundness error” εi in [BCRSVW19].

19

• An oracle reduction has r rounds if the interactive protocol realizing it has r rounds.
• An oracle reduction has m virtual oracles and locality ` if the verifier outputs at most m virtual oracles
{Π(j) = (Qj , Aj)}j∈[m], and it holds that maxi∈[s] | ∪mj=1 Qj(i)| ≤ `. Note that the answer to a single
query may consist of multiple symbols over the base alphabet Σ, but we count the query only once.
• An oracle reduction has length s =

∑r
i=1 si|πi| over the base alphabet. Its length in bits is s log |Σ|.

Other efficiency measures include the running time of the prover and of the verifier.
Oracle reductions combine naturally with proofs of proximity to produce IOPs. The following lemma is

straightforward, and we state it without proof.

Lemma 5.4. Suppose that there exist:
(i) an r-round oracle reduction from R to R′ over base alphabet Σ with soundness error ε, distance δ,

length s, locality `, and m virtual oracles;
(ii) an r′-round IOPP forR′ over alphabet Σ with soundness error ε′, proximity parameter δ′ ≤ δ, length s′,

and query complexity (qw, qπ).
Then there exists an (r +mr′)-round IOP forR with soundness error ε+ ε′, length s+ s′ ·m over Σ, and
query complexity (qw · `+ qπ) ·m.

5.2 Reed–Solomon oracle reductions

In this work we focus on a special class of oracle reductions, in which we reduce to membership in the
Reed–Solomon code, and where the virtual oracles have a special form. These reductions coincide with
“RS-encoded IOPs” [BCRSVW19, Definition 4.6], which we recast in the language of virtual oracles.

We first define the notion of a rational constraint, a special type of virtual oracle that is “compatible”
with the (interleaved) Reed–Solomon code.

Definition 5.5. A rational constraint is a virtual oracle Π = (Q,A) over a finite field F where Q(α) =
((1, α), . . . , (r, α)) and A(α, β1, . . . , βr) = N(α, β1, . . . , βr)/D(α), for two arithmetic circuits (without
division gates) N : F

∑
i si → F and D : F→ F.

A Reed–Solomon (RS) oracle reduction is a reduction from some relation to membership in the Reed–
Solomon code, where additionally every oracle is a rational constraint.

Definition 5.6. A Reed–Solomon (RS) oracle reduction over a domain L ⊆ F is an oracle reduction, over
the base alphabet F, from a relationR to the interleaved Reed–Solomon relation

R∗RS :=
{

(~ρ, f) s.t. ~ρ ∈ (0, 1]∗, f : L→ F is a codeword in RS [L, ~ρ]
}

where every virtual oracle output by the verifier is a rational constraint, except for a special instance (~ρ0,Π0),
which the verifier must output. Π0, over alphabet F

∑
i si , is given by Π0(α) = (π1(α), . . . , πr(α)) (i.e., it is

a stacking of the oracles sent by the prover).

In this work we will assume throughout that L comes a family of subgroups (of a family of fields) such
that there is an encoding algorithm for the Reed–Solomon code on domain L with arithmetic complexity
O(|L| log |L|).

Note that Π0 is not a rational constraint because its alphabet is not F. Later we will also refer to the
non-interleaved Reed–Solomon relationRRS := {(ρ, f) : ρ ∈ (0, 1], f ∈ RS [L, ρ]}.

RS oracle reductions have a useful property: if the soundness condition holds for δ = 0, then the
soundness condition also holds for a distance δ > 0 related to the maximum rate of the reduction. Informally,

20

the maximum rate is the maximum over the (prescribed) rates of codewords sent by the prover and those
induced by the verifier’s rational constraints. To define it, we need notation for the degree and rate of a circuit.

Definition 5.7. The degree of an arithmetic circuit C : F1+` → F on input degrees d1, . . . , d` ∈ N, denoted
deg(C; d1, . . . , d`), is the smallest integer e such that for all pi ∈ F≤di [X] there exists a polynomial
q ∈ F≤e[X] such that C(X, p1(X), . . . , p`(X)) ≡ q(X). Given domain L ⊆ F and rates ~ρ ∈ (0, 1]`, the
rate of C is rate(C; ~ρ) := deg(C; ρ1|L|, . . . , ρ`|L|)/|L|. (The domain L will be clear from context.) Note
that if ` = 0 then this notion of degree coincides with the usual one (namely, deg(C) is the degree of the
polynomial described by C), and rate(C) := deg(C)/|L|.

An oracle reduction has maximum rate ρ∗ if, for every rational constraint (σ,Π) output by the verifier,
max(rate(N ; ~ρ0), σ + rate(D)) ≤ ρ∗. This expression is motivated by the proof of the following lemma;
see [BCRSVW19, Proof of Theorem 9.1] for details.

Lemma 5.8. Suppose that an RS oracle reduction with maximum rate ρ∗ satisfies the following weak
soundness condition: if x /∈ L(R) then for any prover P̃ , with probability 1 − ε over the verifier’s
randomness, there exists j ∈ [m] such that (ρ(j),Π(j)[π1, . . . , πn]) /∈ RRS. Then the reduction satisfies the
standard soundness condition (see Definition 5.2) with soundness error ε and distance δ := 1

2(1− ρ∗).

This means that for the oracle reductions in this paper we need only establish weak soundness. Also, one
can see that RS oracle reductions have locality r (the number of rounds), since |Q(α)| = r for all α ∈ L.

The following lemma shows that, for RS oracle reductions, it suffices to run the proximity test on a single
virtual oracle. This reduces the query complexity and proof length when we apply Lemma 5.4.

Lemma 5.9. Suppose that there exists an r-round RS oracle reduction from R over domain L, m virtual
oracles, soundness error ε, maximum rate ρ∗, and distance δ. Then there is an r-round oracle reduction from
R to the non-interleaved Reed–Solomon relationRRS with locality r, one virtual oracle, soundness error
ε+ |L|/|F|, maximum rate ρ∗, and distance min(δ, (1− ρ∗)/3, (1− 2ρ∗)/2).

Proof. Implicit in [BCRSVW19, Proof of Theorem 9.1], where it follows from [BKS18].

Combining Lemmas 5.4, 5.8 and 5.9 yields the following useful corollary. We shall invoke it, in
Section 10, on the two main building blocks obtained in this paper in order to prove our main result.

Corollary 5.10. Suppose that there exist:
(i) an r-round RS oracle reduction fromR over domain L, m virtual oracles, length s and rate ρ∗ that

satisfies the weak soundness condition with soundness error ε;
(ii) an r′-round IOP of proximity for RRS with soundness error ε′, proximity parameter δ′ < min((1−

ρ∗)/3, (1− 2ρ∗)/2), length p and query complexity (qw, qπ).
Then there exists an (r + r′)-round IOP for R with soundness error ε + ε′ + |L|

|F| , length s + p and query
complexity qw · r + qπ.

21

6 Trace embeddings

The IOPs that we construct rely on the algebraic structure of univariate polynomials. For example, all prover
messages are (allegedly) Reed–Solomon codewords. Since our proof systems argue the validity of execution
traces, which are two-dimensional “tall and skinny” tables representing the state of a small number of registers
in each step of a long computation, we need to embed such traces into univariate polynomials, in a way
that allows us to efficiently reconstruct the two-dimensional structure and traverse it. Ad-hoc methods for
obtaining such embeddings are ubiquitous in the PCP literature, and typically rely on the algebraic structure
of the underlying field; see, e.g., [PS94; HS00; BS08; BGHSV05; BCGT13b; CZ15] for examples.

We introduce trace embeddings, a notion that abstracts the foregoing methods and encapsulates the
algebraic structure required to instantiate them. Throughout, by “efficient” we mean a function that can be
evaluated in time that is polylogarithmic in the size of its domain (which is the usual notion of efficiency
given an appropriate encoding of the input). Informally, a trace embedding has two components:

1. A bivariate embedding, which encodes a table A ∈ FN×n into a function fA : H → F, with H ⊆ F of
size Nn, whose (univariate) low-degree extension admits efficient extraction of A’s row/column structure.

In more detail, a bivariate embedding (Definition 6.3) is a method of embedding two-dimensional data,
indexed by coordinates (h1, h2) ∈ H1 ×H2 (with H1, H2 ⊆ F), into one-dimensional data, indexed by a
single coordinate h ∈ H (with H ⊆ F), such that (h1, h2) can be efficiently derived from h. Also, the
embedding’s projections to its two coordinates have efficiently-computable low-degree extensions.

2. A successor ordering, which induces a total order on the domain and allows for efficiently moving from
each element to its successor. In more detail, we equip H1 with an ordering γ : [|H1|] → H1 given by
a “first” element 1H1 ∈ H1 and an efficiently-computable low-degree polynomial N . The ordering is
γ(1) := 1H1 and γ(i+ 1) := N(γ(i)) for every i ∈ {1, . . . , |H1| − 1}.

Note the asymmetry in the definition: we requireH1 to have a successor ordering, whereas we require nothing
of H2. This is because in our application H1 will be large (roughly the length of the computation) whereas
H2 will be small (roughly the number of registers in the computation).

For convenience, we first present the formal definition of trace embeddings below, and discuss the
components it uses, as well as their properties, in the following subsections.

Definition 6.1. Let F be a finite field. A trace embedding is a tuple T = (Φ,O, γ) where Φ: H → H1×H2

is an efficient bivariate embedding in F (see Section 6.1), O an efficient successor ordering on H1 (see
Section 6.2), and γ : [|H2|]→ H2 an ordering on H2. Additionally, we require that the vanishing polynomial
ZH1 and its (standard formal) derivative can be evaluated anywhere on F in polylog(|H|) field operations.

Letting N := |H1| and n := |H2|, a trace embedding T induces a bijection T : [N]× [n]→ H defined
as T (i, j) := Φ−1(γO(i), γ(j)) for every i ∈ [N] and j ∈ [n], and γO being the ordering induced by O. In
light of this, we sometimes simply write T : [N]× [n]→ H to refer to a trace embedding (instead of writing
the tuple that defines it), which means that we consider any trace embedding that induces such a bijection.

In the remainder of this section, we give the formal definitions of bivariate embeddings and successor
orderings, and prove the following lemma about the existence and efficient realizability of trace embeddings.

Lemma 6.2. The field F of size pe, for prime p, has trace embeddings of all sizes (N,n) for which either:

(i) Nn divides pe − 1, and N,n are coprime; or
(ii) N = pi and n = pj for all i, j such that i+ j < e.

Moreover, there is a polynomial-time algorithm that, on input a description of F, integers N and 1n, outputs a
description of a trace embedding of size N ×n, if N,n satisfy one of the above conditions (and ⊥ otherwise).

22

6.1 Bivariate embeddings

We define the notion of an (efficient) bivariate embedding, and show that it can be instantiated via the
additive or multiplicative subgroup structure of a finite field. Then in Section 6.1.1, we state some simple
linear-algebraic implications of bivariate embeddings that are used frequently in subsequent sections.

Definition 6.3. Let F be a finite field. A (low-degree) bivariate embedding in F is a tuple (Φ1,Φ2, H,H1, H2)
where H,H1, H2 are subsets of F, Φ1 ∈ F[X] is a polynomial of degree |H2|, Φ2 ∈ F[X] is a polynomial of
degree |H1|, such that the function Φ: H → H1 ×H2 defined as Φ(h) := (Φ1(h),Φ2(h)) is a bijection.

A bivariate embedding Φ: H → H1 ×H2 is efficient if Φ1 and Φ2 can be evaluated at any α ∈ F in
polylog(|H|) field operations.

For notational convenience we refer to a bivariate embedding (Φ1,Φ2, H,H1, H2) with the notation
Φ: H → H1 ×H2, defined as in Definition 6.3, leaving the polynomials Φ1,Φ2 implicit.

The degrees of Φ1,Φ2 will impact the efficiency of our proof system, and so we aim to minimize them.
In particular, the degree choices in the definition are minimal: if Φ1 has degree d > 0 then ZH1(Φ1(X)) has
degree |H1| · d, is not the zero polynomial, and is zero everywhere on H , so d ≥ |H|/|H1| = |H2|; a similar
statement holds for Φ2. Since we achieve these degree bounds in the constructions below, we make these
choices part of the above definition. In particular, ZH1(Φ1(X)) and ZH2(Φ2(X)) are each multiples of ZH .

While for any H,H1, H2 ⊆ F with |H| = |H1| · |H2| there exist (many) bijections H → H1 ×H2, the
aforementioned degree constraints severely limit our choices for these sets. All known constructions use the
group structure of H . It remains an intriguing open question to determine whether other constructions exist.

Efficiency is an even stronger requirement. Since the “truth table” of Φ is of size |H|, it must be that
H has some inherent product structure that we can exploit. In our protocols, H will be an additive or
multiplicative subgroup of F and H1, H2 will be isomorphic to subgroups of H whose product is H .

We now construct efficient bivariate embeddings, over multiplicative and additive subgroups of the field.

Lemma 6.4. Let F be a finite field, and let H,H1, H2 be multiplicative subgroups of F such that |H| =
|H1| · |H2| and gcd(|H1|, |H2|) = 1. Then, there exists an efficient bivariate embedding Φ: H → H1 ×H2.

Proof. Map each h ∈ H to the pair Φ(h) := (h|H2|, h|H1|) ∈ H1×H2. By the Chinese Remainder Theorem,
Φ is an isomorphism. Moreover, the polynomials Φ1(X) := X |H2| and Φ2(X) := X |H1| agree with Φ on H ,
and can be evaluated in O(log(|H1|) + log(|H2|)) = O(log(|H|)) field operations.

Lemma 6.5. Let F be a finite field, and let V,W be additive subgroups of F with respective sizes m,n and
such that V ∩W = {0}. Then there exists an efficient bivariate embedding Φ: V ⊕W → ZW (V)×ZV (W).

Proof. Map each v + w ∈ V ⊕W (with v ∈ V and w ∈ W) to the pair Φ(v + w) := (ZW (v),ZV (w)) ∈
ZW (V)× ZV (W), where ZW and ZV are the vanishing polynomials of V and W . Since ZW is injective
on V and ZV is injective on W , Φ is a bijection. Moreover, the polynomials Φ1(X) := ZW (X) and
Φ2(X) := ZV (X) can be evaluated in O(log2(|W |) + log2(|V |)) = O(log2(|H|)) field operations.

6.1.1 Linear-algebraic properties

We use bivariate embeddings as a natural, and algebraically friendly, way to identify the tensor product space
FH1 ⊗ FH2 with FH . This is expressed via the definitions and propositions below, which we state without
proof. The propositions follow from standard linear algebra and the fact that a bivariate embedding extends
bijections γ1 : H1 → [|H1|] and γ2 : H2 → [|H2|] to a bijection γ : H → [|H1|]× [|H2|].

23

Definition 6.6. Define ⊗Φ : FH1 × FH2 → FH to be the bilinear function that maps u ∈ FH1 and v ∈ FH2

to u⊗Φ v ∈ FH where (u⊗Φ v)(h) := u(Φ1(h)) · v(Φ2(h)) for every h ∈ H .

Proposition 6.7. The function ⊗Φ : FH1 × FH2 → FH is a tensor product.

Definition 6.8. Let Φ: H → H1 × H2 be a bivariate embedding. The Kronecker product of matrices
A ∈ FH1×H1 and B ∈ FH2×H2 with respect to Φ is the matrix A⊗Φ B ∈ FH×H where (A⊗Φ B)(h, h′) :=
A(Φ1(h),Φ1(h′)) ·B(Φ2(h),Φ2(h′)) for every h, h′ ∈ H .

Proposition 6.9. Let A ∈ FH1×H1 and B ∈ FH2×H2 . Then (A ⊗Φ B) is the unique linear map such that,
for every u ∈ FH1 and v ∈ FH2 , (A⊗Φ B)(u⊗Φ v) = (Au)⊗Φ (Bv), under usual matrix multiplication.

6.2 Successor orderings

A successor ordering of a set S is a pair O = (1S , N) where 1S ∈ S is a distinguished first element and
N ∈ F[X] is a degree-1 successor polynomial that induces an ordering by mapping each element of S to
its “successor”. That is, O induces a bijection γO : [|S|] → S given by γO(1) = 1S , γO(2) = N(1S),
γO(3) = N(N(1S)), and so on. We call O efficient if N can be evaluated in polylog(|S|) field operations.

We show that all multiplicative subgroups S of F have efficient successor orderings, by relying on any
isomorphism S ∼= Z|S|. We also show that, for |F| = pe, there exists an additive subgroup S of F of size pi

with an efficient successor ordering, if p is small enough. This relies on “simulating” the field Fpi inside S.

6.2.1 Multiplicative subgroups

The construction for multiplicative subgroups is straightforward. The following lemma gives the construction
of a successor ordering for any multiplicative subgroup of F, that is, of any size dividing |F| − 1.

Lemma 6.10. Let F be a finite field. Every multiplicative subgroup S of F has an efficient successor ordering.

Proof. Choose a generator g of S (note that S is cyclic), and then let 1S := 1F and N(X) := gX .

6.2.2 Additive subgroups

In order to give the construction for additive subgroups, we first need to generalize the definition of successor
ordering given above. That is, we need to be more permissive about the successor polynomials N we allow.

In later sections, we use successor orderings by composing the polynomial N with other polynomials
that enforce correct computation. We must ensure that this composition does not have too large of a degree.
Ideally we would like N to have degree O(1) because then deg(g ◦N) = O(deg g) for any g ∈ F[X]. When
S is a multiplicative subgroup we can achieve this (as N has degree 1), but when S is an additive subgroup
we get deg(N) = Ω(|S|), which would give deg(g ◦N) = Ω(|S| deg g). Since |S| and deg(g) will be each
approximately the computation length T , the degree of the composed polynomial would be Ω(T 2). This
would prevent us from achieving, e.g., IOPs of linear proof length.

To deal with this, we use the fact that the additive N satisfies a useful structural property, to which we
refer as being piecewise polynomial. A function f is a piecewise polynomial of degree d with respect to a
partition (S1, . . . , S`) of S if there exist polynomials (f1, . . . , f`) of degree d such that

∀ i ∈ [`], ∀α ∈ Si , f(α) = fi(α) .

If si is a degree-|S| extension of the indicator for Si in S then
∑`

i=1 si(X)g(fi(X)) has degreeO(|S|+deg g)
and agrees with g ◦N on S. This is an additive rather than multiplicative increase in the degree, and later will
yield a degree bound of O(T) as required. We now define formally the notion of a piecewise polynomial.

24

Definition 6.11. Let F be a finite field and S ⊆ F. A piecewise polynomial on S is a pair F = (S,F) where
S = (S1, . . . , S`) is a partition of S and F = (f1, . . . , f`) ∈ F[X]`. Let si be the unique extension of degree
less than |S| of the indicator for Si in S. The value of F = (S,F) at α ∈ F is F (α) :=

∑`
i=1 si(α)fi(α).

A piecewise polynomial (S,F) has piecewise degree d if maxf∈F deg(f) ≤ d. A piecewise polynomial
is efficient if each si, fi can be evaluated in time polylog(|S|), and ` = polylog(|S|).

The following proposition shows that the special structure of piecewise polynomials allows for composi-
tion with an additive, rather than multiplicative, dependence on |S|.

Proposition 6.12. If F = (S,F) is piecewise polynomial on S with degree d and g ∈ F[X], then there is a
polynomial h of degree |S|+ d · deg(g) that agrees with g ◦ F on S. Moreover, if F is efficient and g can be
evaluated in polylog(|S|) field operations then h can be evaluated in polylog(|S|) field operations.

Proof. Let h(X) :=
∑`

i=1 si(X)g(fi(X)) ∈ F[X], where si is the unique extension of degree less than |S|
of the indicator function of Si in S. Then since the si are indicators for a partition of S,

∀α ∈ S , g(f(α)) = g

(∑̀
i=1

si(α)fi(α)

)
=
∑̀
i=1

si(α)g(fi(α)) = h(α) .

Observe that h has the required degree and can be evaluated in polylog(|S|) field operations.

Now we are ready to formally define a successor ordering.

Definition 6.13. Let F be a finite field and S ⊆ F. A successor ordering on S is a pair O = (1S , N) where
1S ∈ S and N is a piecewise polynomial on S of degree 1 such that S = {α1, . . . , α|S|}, where

α1 := 1S and αi+1 := N(αi) inductively for every i ∈ {1, . . . , |S| − 1}.

Let γO : S → {1, . . . , |S|} be the ordering on S induced by O, i.e., γO(αi) := i for every i ∈ {1, . . . , |S|}.
A successor ordering is efficient if the piecewise polynomial N is efficient.

Note that since a polynomial of degree d has a trivial piecewise representation of degree d, the foregoing
definition also captures the simpler multiplicative case.

Let p be prime. For the field F of size pe, we give constructions of efficient ordered subsets of any size pi

(for 1 ≤ i < e) provided p is small enough relative to i.
The following lemma appears in [BS08; BCGT13b; BBHR18a]. We restate it here in the language of

successor orderings, and for completeness we also provide a proof.

Lemma 6.14. Let F be a finite field of size pe. For every i ∈ {1, . . . , e− 1} there exists an additive subgroup
S in F of size pi with a successor ordering O. If in addition p = O(log |S|) then O is efficient.

Proof. We view F as Fp[ξ]/(f) for some f ∈ Fp[ξ]. To prove the lemma, we first move to the ring Fp[ξ] and
show that there exists a subspace of Fp[ξ] that is isomorphic to a “multiplicative” subset of Fp[ξ].

Claim 6.15. Let S := span{1, ξ, . . . , ξi−1} ⊆ Fp[ξ], and let G := {0, 1, ξ, ξ2, . . . , ξp
i−2} ⊆ Fp[ξ]. Let

g(ξ) ∈ Fp[ξ] be a primitive polynomial of degree i, and let ϕ : Fp[ξ]→ Fp[ξ] be defined as ϕ(f) := f mod g
where division is in the ring Fp[ξ]. Then S = ϕ(G).

Proof of claim. It suffices to show that ϕ is a bijection on G, since S is the image of ϕ (i.e., S = ϕ(Fp[ξ])).
Since g is primitive, g has a root ω ∈ Fpi such that Fpi = {0, 1, ω, ω2, . . . , ωp

i−2}. Since Fp[ξ]/(g(ξ)) is
isomorphic to Fpi via the map ξ 7→ ω, we deduce that |ϕ(G)| = |G|. Thus S = ϕ(G) as claimed.

25

We have that S is isomorphic to S + (f) ⊆ F, and so we can regard S as a subset of F. We now construct a
successor ordering O = (1S , N) on S. We set 1S := 0, and are then left to define the piecewise polynomial
N . We divide S into cosets of S′ := span{1, ξ, . . . , ξi−2} as S =

⋃
c∈Fp cξ

i−1 + S′. These cosets have the
property that if ϕ(ξj) ∈ cξi−1 + S′ then ϕ(ξj+1) = ξ · ϕ(ξj)− c · g(ξ). Note that this is true in F since it is
true in Fp[ξ] and deg(f) > i = deg(g).

Our partition of S consists of the sets {0}, S′ \ {0}, and the set S′ + cξi−1 for all c ∈ Fp \ {0}. The
corresponding polynomial partition is {LS,0, L0(ZS′(X))− LS,0(X)} ∪ {Lc ◦ ZS′}c∈Fp , where

• LS,0 is the unique polynomial of degree less than |S| with LS,0(0) = 1 and LS,0(γ) = 0 for γ ∈ S \ {0};
• Lc is the unique polynomial of degree less than p such that

Lc(c · ZS′(ξi−1)) = 1 and Lc(γ · ZS′(ξi−1)) = 0 for every γ ∈ Fp \ {c} .

By the Fp-linearity of ZS′ , we have that, for every α ∈ S, Lc(ZS′(α)) = 1 if α ∈ S′+ cξi−1 and 0 otherwise.
Hence this is indeed the desired partition. The value of N on a ∈ S should be

N(a) =


1 if a = 0

ξ · a if a ∈ S′ \ {0}
ξ · a− c · g(ξ) if a ∈ S′ + cξi−1

This gives N(0) = 1 = ϕ(1), and N(ϕ(ξj)) = ϕ(ξj+1) for every j ∈ {0, 1, . . . , pi − 2}.
Thus, the polynomial

N(X) := LS,0(X) · 1 + (L0(ZS′(X))− LS,0(X)) · ξ ·X +
∑

c∈Fp\{0}

Lc(ZS′(X)) · (ξ ·X − c · g(ξ))

takes the correct values on S, and has piecewise degree 1.
Finally, observe that N can be evaluated in poly(p, log(|S|)) field operations, which is polylog(|S|))

when p = O(log |S|). Indeed: (1) since S is a subspace, a Lagrange polynomial LS,0 can be evaluated
in polylog(|S|) field operations; (2) Lc is a Lagrange polynomial over the field of size p and thus can be
evaluated in O(log p) field operations; and (3) since S′ is a subspace, the vanishing polynomial ZS′ can be
evaluated in polylog(|S′|) field operations. The dependence on p (rather than log p) in the cost for evaluating
N comes from adding the terms in the sum.

26

7 A succinct lincheck protocol

We describe succinct lincheck, an oracle reduction for checking a useful class of succinctly-represented linear
relations on Reed–Solomon codewords. This oracle reduction is later used to obtain an oracle reduction for
R1CS automata (see Section 8), and can be viewed as a succinct analogue of the univariate lincheck protocol
in [BCRSVW19]. We recall the lincheck relation defined in that work, and for simplicity focus on the special
case of linear relations defined by square constraint matrices.

Definition 7.1. The lincheck relationRLIN consists of pairs
(
(F, L,H, ρ,M), (f1, f2)

)
where F is a finite

field, L,H ⊆ F, ρ ∈ (0, 1), f1, f2 ∈ RS [L, ρ], M ∈ FH×H , and ∀ a ∈ H f̂1(a) =
∑

b∈HMa,b · f̂2(b).

Recall that the protocol for RLIN in [BCRSVW19], which we outlined in Section 2.2, supports any
constraint matrix M ∈ FH×H , and so it cannot run in time o(||M ||) (let alone in our target time of
polylogarithmic in ||M ||) for every matrix M , because the verifier must at least read the description of M .

In this section, we show that, for an expressive family of constraint matrices, we can design a “succinct”
lincheck protocol wherein the verifier runs exponentially faster than in [BCRSVW19]. To this end, we
first observe that the verifier’s expensive work in the lincheck protocol consists of evaluating low-degree
extensions of the two vectors rα := (gh(α))h∈H ∈ FH and sα := rαM ∈ FH ; this involves Ω(||M ||+ |H|)
field operations. Then we show how to perform such evaluations in polylog(|H|) field operations (and
thereby make the verifier exponentially faster) for a class of matrices M that arise from T -time computations.
Informally, we rely on a clever choice of linearly-independent polynomials (gh(α))h∈H and also on special
algebraic properties of the matrices M , related to the algebraic structure of F.

We now motivate the algebraic properties that we use, and then state our result.

Semisuccinct matrices. The lincheck protocol in [BCRSVW19] chooses the linearly independent poly-
nomials (gh(X))h∈H to be the standard basis (1, X,X2, . . . , X |H|−1). We do not know how to efficiently
evaluate the low-degree extension of rα with respect to this basis. But there is another natural choice of basis
for polynomials, the Lagrange basis (LH,h)h∈H . In Section 7.1 we show that the low-degree extension r̂α of
rα with respect to this basis has a simple form that allows one to evaluate r̂α in time polylog(|H|).

The foregoing suggests a natural condition on the matrix M to require: if we can efficiently compute a
low-degree extension of a vector v ∈ FH , then we should also be able to efficiently compute a low-degree
extension of the vector vM ∈ FH . This notion of (algebraic) succinctness is formally captured as follows.

Definition 7.2. Let H ⊆ F and κ : N→ N. A vector v ∈ FH is d-extendable if there is p ∈ F[X] of degree
at most d that agrees with v on H and p can be evaluated at any α ∈ F in polylog(|H|) field operations. A
matrix A ∈ FH×H is κ-succinct if, for every d ≥ |H|−1, vA is κ(d)-extendable whenever v is d-extendable.

The identity matrix trivially satisfies the above definition, and later on we will show that the matrix with
1s on the superdiagonal is also algebraically succinct for certain choices of F and H (see Lemma 8.4).

Unfortunately, Definition 7.2 turns out to be too restrictive for us. But it is a starting point for a more
general notion that suffices. Concretely, the matrices that arise in Section 8 are not themselves succinct, but
they can be decomposed into a part that is succinct and a part that is “small”. This is analogous to a Turing
machine, where a computation is specified by repeated applications of a small transition function.

Definition 7.3. Let Φ: H → H1 ×H2 be a bivariate embedding, and let κ : N→ N. A matrix M ∈ FH×H
is (Φ, κ)-semisuccinct if M = A⊗Φ B for κ-succinct A ∈ FH1×H1 and arbitrary B ∈ FH2×H2 .

In the definition there is an asymmetry between H1 and H2, since we think of H1 as large and H2 as small.

27

To handle semisuccinct matrices we need a slightly different property from the polynomials (gh(X))h∈H .
Namely we need that the vector rα := (gh(α))h∈H can be written as a tensor product of vectors r(1)

α ∈ FH1

and r(2)
α ∈ FH2 such that we can efficiently compute the low-degree extension of r(1)

α . Then, by definition of
the Kronecker product, rαM = (r

(1)
α A)⊗ (r

(2)
α B). Since A is succinct and B is small, we can compute the

LDEs of r(1)
α A and r(2)

α B efficiently, then use Lemma 7.7 to compute the LDE of their tensor product. In
Section 7.2 we show how to construct (gh(X))h∈H from the Lagrange bases on H1 and H2.
A succinct lincheck protocol. The main result of the section is an oracle reduction, with linear length and
locality 2, from lincheck on sums of semisuccinct matrices. The verifier uses poly(|x|) = poly(`, n, logN)
field operations, which is polylogarithmic in the size of the succinct part of the matrix.

Lemma 7.4. Let F be a finite field with an efficient bivariate embedding Φ: H → H1×H2 whereH is a coset
in F. Suppose that M ∈ FH×H has the form M =

∑`
i=1Mi where eachMi ∈ FH×H is (Φ, κ)-semisuccinct.

Setting N := |H1|, n := |H2|, and d := n · (N + κ(N)), there is a 1-round RS oracle reduction of prox-
imity (Protocol 7.12) forRLIN for instances of the form x = (F, L,H, ρ,M) with the following parameters:

length |L| soundness error d/|F| prover time |L| log |L|+ ||M ||
locality 2 distance 1

2(1− ρ− d
|L|) verifier time poly(|x|) .

(Above ||M || denotes the number of non-zero entries in the matrix M ∈ FH×H .)

Organization. In Sections 7.1 and 7.2 we develop algebraic preliminaries. In Section 7.3 we prove Lemma 7.4.
In Section 7.4 we extend Lemma 7.4 to handle a block-matrix lincheck relation. This latter relation is the one
that we actually use in Section 8 to obtain an oracle reduction for interactive R1CS automata.

7.1 Properties of the Lagrange basis

Let F be a finite field and S a subset of F. The Lagrange basis over S are the polynomials LS := (LS,α)α∈S
where LS,α is the unique polynomial of degree less than |S| with LS,α(α) = 1 and LS,α(γ) = 0 for all
γ ∈ S \ {α}. Recall that LS is a basis for the (vector space of) polynomials in F[X] of degree less than |S|.

In this work it will be convenient to consider an unnormalized version of the Lagrange basis. We let
L′S,β := ZS(X)/(X − β), and define the vector of polynomials

rS := (L′S,β)β∈S =

(
ZS(X)

X − β

)
β∈S
∈ F[X]S .

Observe that L′S,β is a polynomial of degree less than |S| that is zero on S \ {β}, and is therefore equal to
LS,β up to a multiplicative (nonzero) constant factor. It follows that rS is also a basis for the vector space of
polynomials of degree less than |S|. The following lemma shows that the unique low-degree extension of
rS ∈ F[X]S , which is a bivariate polynomial r̂S ∈ F[X,Y], has a simple explicit form.

Lemma 7.5. r̂S(X,Y) := (ZS(X)− ZS(Y))/(X − Y) is the unique low-degree extension of rS .

Proof. Observe that r̂S is a polynomial of degree |S| − 1 in Y because X − Y divides ZS(X) − ZS(Y).
Moreover, for every β ∈ S, r̂S(X,β) = ZS(X)/(X − β) = L′S,β(X), which is the β-th entry of rS .

Given a polynomial f ∈ F[X], we define rfS ∈ F[X]S to be the vector of polynomials obtained by
composing each entry of rS with f :

rfS := (L′S,β ◦ f)β∈S =

(
ZS(f(X))

f(X)− β

)
β∈S
∈ F[X]S .

28

r̂S(f(X), Y) rfS

r̂S(f(α), Y) r
f(α)
S

evalY (S)

evalX(α) eval′X(α)

LDE

Figure 2: Commutative diagram showing the relationship between the vector of (univariate) polynomials
rS and the bivariate polynomial r̂S . The function evalY (S) maps a polynomial g(X,Y) to the vector
of polynomials (g(X,β))β∈S . The function evalX(α) maps a polynomial g(X,Y) to the polynomial
g(α, Y). The function eval′X(α) maps a vector of polynomials (gβ(X))β∈S to the vector of polynomials
(gβ(α))α∈S . The function LDE maps a vector (rβ)β∈S ∈ FS to the unique polynomial g of degree less
than |S| such that g(β) = rβ for all β ∈ S.

Note that when f = α ∈ F, this corresponds to evaluating each entry of the vector rS at the point α. Also,
Lemma 7.5 implies that the unique low-degree extension of rfS is r̂S(f(X), Y). The next lemma shows that
for certain sets S we can evaluate this low-degree extension very efficiently.

Lemma 7.6. Let S be a subset of F whose vanishing polynomial ZS and its formal derivative DZS can both
be evaluated at any point in polylog(|S|) field operations. Then, given any α, β ∈ F, the unique low-degree
extension of rαS , which is r̂S(α, Y), can be evaluated at β in polylog(|S|) field operations. In particular, this
holds when the set S is an additive or multiplicative subgroup of F.

Proof. If α − β 6= 0, we can evaluate r̂S(α, β) directly by computing (ZS(α) − ZS(β))/(α − β) in
polylog(|S|) field operations. If instead α − β = 0 then we use a different approach: observing that the
polynomial r̂S(X,X) is the formal derivative of ZS(X), we evaluate r̂S(α, β) by computing r̂S(β, β) =
(DZS)(β). (Note that when S is a multiplicative subgroup then DZS(X) = |S|X |S|−1. And when S is an
additive subgroup, ZS is a linearized polynomial, so its derivative is the coefficient of the linear term.)

7.2 Efficient linear independence via the tensor product

We use the bivariate polynomial introduced in Section 7.1 to find a vector of linearly independent polynomials
that decomposes via the tensor product (see Definition 6.6). We begin by noting that the efficiency of
evaluating low-degree extensions is preserved by tensor products.

Lemma 7.7. Let Φ: H → H1 ×H2 be an efficient bivariate embedding (see Definition 6.3). Let û ∈ F[X]
be a degree-du extension of u ∈ FH1 , and v̂ ∈ F[X] a degree-dv extension of v ∈ FH2 . For every β ∈ F, if
û, v̂ can be evaluated at β in time Tu, Tv, then an extension of u⊗Φ v ∈ FH of degree |H2| · du + |H1| · dv
can be evaluated at β in time O(Tu + Tv + polylog |H|).

Proof. The polynomial û(Φ1(X))v̂(Φ2(X)) ∈ F[X] agrees with the vector u⊗Φ v ∈ FH on H , has degree
|H2| · du + |H1| · dv, and can be evaluated in time O(Tu + Tv + polylog |H|).

We define a vector of polynomials tΦ
H ∈ F[X]H and, for every α ∈ F, the vector of elements t

Φ(α)
H ∈ FH

obtained by evaluating each polynomial. We prove that the polynomials in tΦ
H are linearly independent

(Lemma 7.9), that a low-degree extension of t
Φ(α)
H can be efficiently evaluated (Corollary 7.10), and that a

low-degree extension of t
Φ(α)
H M can be efficiently evaluated when M is semisuccinct (Corollary 7.11).

29

Definition 7.8. Let Φ: H → H1 ×H2 be a bivariate embedding. We define tΦ
H ∈ F[X]H to be the vector of

polynomials given by

tΦ
H := rΦ1

H1
⊗Φ rΦ2

H2
=
(
L′H1,h1

(Φ1(X))
)
h1∈H1

⊗Φ

(
L′H2,h2

(Φ2(X))
)
h2∈H2

.

Moreover, for any α ∈ F, we define t
Φ(α)
H ∈ FH to be the vector of field elements given by

t
Φ(α)
H := r

Φ1(α)
H1

⊗Φ r
Φ2(α)
H2

=
(
L′H1,h1

(Φ1(α))
)
h1∈H1

⊗Φ

(
L′H2,h2

(Φ2(α))
)
h2∈H2

.

Lemma 7.9. Let Φ: H → H1×H2 be a bivariate embedding. Then tΦ
H ∈ F[X]H is a vector of |H| linearly

independent polynomials of degree less than 2|H|. (Note that tΦ
H is not a basis for the space of polynomials

of degree less than 2|H| because it contains only |H| elements.)

Proof. For every h ∈ H there exists c ∈ F such that

(rΦ1
H1
⊗Φ rΦ2

H2
)(h) = c · LH1,Φ1(h)(Φ1(X)) · LH2,Φ2(h)(Φ2(X)) .

This is a polynomial of degree less than 2|H1||H2| = 2|H| that is zero everywhere on H except at h.

Corollary 7.10. Let Φ: H → H1×H2 be an efficient bivariate embedding. For every α ∈ F, a degree-2|H|
extension of t

Φ(α)
H ∈ FH can be evaluated at any β ∈ F in poly(log |H1|, log |H2|) field operations.

Proof. The polynomials Φ1 and Φ2 can be evaluated at α in polylog(|H|) field operations, since Φ is efficient.
By Lemma 7.6, the unique low-degree extensions of r

Φ1(α)
H1

and r
Φ2(α)
H2

can each be evaluated at β in time
polylog(|H|). Note that these polynomials have degrees |H1| and |H2| respectively. Thus, by Lemma 7.7, an
extension of t

Φ(α)
H = r

Φ1(α)
H1

⊗Φ r
Φ2(α)
H2

∈ FH of degree |H2| · |H1|+ |H1| · |H2| = 2|H| can be evaluated at
β in time polylog(|H|) = poly(log |H1|, log |H2|).

Corollary 7.11. Let Φ: H → H1×H2 be an efficient bivariate embedding. Let M be a (Φ, κ)-semisuccinct
matrix, and let d := |H2| · (|H1|+ κ(|H1|)). For every α ∈ F, a degree-d extension of t

Φ(α)
H M ∈ FH can be

evaluated at any β ∈ F in time poly(log |H1|, |H2|).

Proof. The polynomials Φ1 and Φ2 can be evaluated at α in polylog(|H|) field operations, since Φ is efficient.
We can write M = A ⊗Φ B where A ∈ FH1×H1 is κ-succinct and B ∈ FH2×H2 is arbitrary, since M is
(Φ, κ)-semisuccinct (see Definition 7.3). Since A is κ-succinct, we can evaluate a degree-κ(|H1|) extension
of r

Φ1(α)
H1

A at β in time polylog(|H|) (see Definition 7.2). We can evaluate a degree-|H2| extension of

r
Φ2(α)
H2

B at β in time poly(log |H|, |H2|) by direct interpolation. Thus, by Lemma 7.7, we can evaluate a

degree-d extension of t
Φ(α)
H M = (r

Φ1(α)
H1

A)⊗Φ (r
Φ2(α)
H2

B) in time poly(log |H|, |H2|).

7.3 Proof of Lemma 7.4

We describe succinct lincheck, the RS oracle reduction that proves Lemma 7.4. Below we use as a subroutine
the univariate sumcheck protocol from [BCRSVW19], which is an RS oracle reduction (PSUM, VSUM) for
the relationRSUM of instance-witness pairs (xSUM,wSUM) =

(
(F, L,H, ρ, µ) , f

)
such that F is a finite field,

L is a subset of F, H is a coset in F, ρ ∈ (0, 1) is a rate parameter, µ is an element in F, f is a codeword
in RS [L, ρ], and

∑
a∈H f̂(a) = µ. In this (non-interactive) reduction, the prover sends a proof oracle πΣ to

the verifier, and the verifier outputs the rates (ρ0, ρ1, ρ2) = (ρ, ρ− |H|/|L|, (|H| − 1)/|L|) and the virtual
oracles (Π0,Π1,Π2) = (f, πΣ,ΠΣ[f, πΣ]) for some ΠΣ (whose exact form depends on H and µ).

30

Protocol 7.12. Let F be a finite field, and Φ: H → H1×H2 an efficient bivariate embedding in F whereH is
a coset in F; set N := |H1| and n := |H2|. Succinct lincheck is a RS oracle reduction (P, V) that works for
lincheck instances x = (F, L,H, ρ,M) for which the matrix M has the form

∑`
i=1Mi ∈ FH×H and each

matrix Mi ∈ FH×H is (Φ, κ)-semisuccinct.
We describe the interaction between a proverP and verifier V that both receive an input a lincheck instance

x as above, and where the prover P additionally receives a lincheck witness (f1, f2) (see Definition 7.1).
First, the verifier V draws a uniformly random α ∈ F and sends it to the prover P . The element α defines

polynomials p̂(1)
α (Y) and p̂(2)

α (Y) in F[Y] known to both prover and verifier:

• p̂(1)
α (Y), a degree-2nN extension of the vector t

Φ(α)
H ∈ FH (see Definition 7.8). By Corollary 7.10,

p̂
(1)
α (Y) can be evaluated anywhere in poly(logN, log n) field operations.

• p̂(2)
α (Y), a degree-(n · (N + κ(N))) extension of the vector t

Φ(α)
H M ∈ FH . Note that

t
Φ(α)
H M = t

Φ(α)
H ·

(∑̀
i=1

Mi

)
=
∑̀
i=1

t
Φ(α)
H Mi .

Each Mi is (Φ, κ)-semisuccinct so, by Corollary 7.11, a degree-(n · (N + κ(N))) extension of t
Φ(α)
H Mi

can be evaluated anywhere in poly(logN,n) field operations. By linearity, p̂(2)
α (Y), which is a degree-

(n · (N + κ(N))) extension of t
Φ(α)
H M , can be evaluated anywhere in poly(`, logN,n) field operations.

Moreover, the element α and the witness codewords f1, f2 ∈ RS [L, ρ] jointly define the polynomial q̂α(Y)
in F[Y] defined as follows:

q̂α(Y) := p̂(1)
α (Y)f̂1(Y)− p̂(2)

α (Y)f̂2(Y) .

Observe that q̂α(Y) allegedly sums to zero on H , and has degree max{2nN, n · (N + κ(N))}, which is
n · (N + κ(N)) since κ(N) ≥ N . In particular, qα = q̂α|L (the restriction of the polynomial q̂α(Y) to the
domain L) is a codeword in RS [L, ρ′] for the rate parameter ρ′ := ρ+ n·(N+κ(N))

|L| .
Next, the prover P and verifier V assemble the sumcheck instance xSUM = (F, L,H, ρ′, 0), and then

run the univariate sumcheck protocol (an oracle reduction) with P playing the role of P qαSUM(xSUM) and V
playing the role of VSUM(xSUM). This results in P qαSUM(xSUM) sending a proof oracle πΣ and then VSUM(xSUM)
outputting a list of instances and corresponding virtual oracles, as required of an oracle reduction.

Since (PSUM, VSUM) is an RS oracle reduction, we know that the instances output by VSUM are rate param-
eters for the relationRRS over the domain L (see Definition 5.6). In the particular case at hand, VSUM outputs
the rate parameters (ρ′, ρ′ − |H|/|L|, (|H| − 1)/|L|) and corresponding virtual oracles (qα, πΣ,ΠΣ[qα, πΣ]).

Finally, the verifier V outputs the rate parameters (ρ, ρ, ρ1, ρ2) := (ρ, ρ, ρ′ − |H|/|L|, (|H| − 1)/|L|)
and the virtual oracles (Πf1 ,Πf2 ,Π1,Π2) defined as follows:

Πf1 [f1, f2, πΣ] := f1 Πf2 [f1, f2, πΣ] := f2 Π1[f1, f2, πΣ] := πΣ Π2[f1, f2, πΣ] := ΠΣ[qα, πΣ] .

Queries to qα are simulated via queries to f1 and f2.
Note that since (PSUM, VSUM) is an RS oracle reduction then so is (P, V): each of the virtual oracles

output by V are rational constraints, and every oracle sent by the prover appears as some virtual oracle.

31

Since tΦ
H ∈ F[X]H is a vector of linearly independent polynomials, the lincheck condition holds if and

only if a certain polynomial equation in X holds:{
f̂1(a) =

∑
b∈H

Ma,b · f̂2(b)

}
a∈H

←→
∑
a∈H

tΦ
H [a]f̂1(a) ≡

∑
a∈H

tΦ
H [a]

∑
b∈H

Ma,bf̂2(b) .

Rearranging the right-hand side of the polynomial equation yields:∑
a∈H

tΦ
H [a] ·

∑
b∈H

Ma,bf̂2(b) ≡
∑
b∈H

f̂2(b) ·
∑
a∈H

tΦ
H [a]Ma,b ≡

∑
b∈H

f̂2(b) · (tΦ
HM)[b] .

For any choice of α ∈ F, we can evaluate each side of the polynomial equation:

∑
a∈H

p̂(1)
α (a)f̂1(a) =

(∑
a∈H

tΦ
H [a]f̂1(a)

)
(α) ,

∑
b∈H

p̂(2)
α (b)f̂2(b) =

(∑
b∈H

(tΦ
HM)[b]f̂2(b)

)
(α) .

These evaluations are equal if and only if
∑

a∈H q̂α(a) = 0.
Completeness. Suppose that the lincheck condition holds. This implies that f1 is a codeword in RS [L, ρ],
and thus so is its corresponding virtual oracle, Πf1 [f1, f2, πΣ]. Similarly for f2 and Πf2 [f1, f2, πΣ]. Moreover,
for every α ∈ F it holds that

∑
a∈H q̂α(a) = 0, which means that (xSUM, qα) is a valid instance-witness pair

for the sumcheck relation, and so completeness of the sumcheck protocol implies that Π1[f1, f2, πΣ] = πΣ is
a codeword in RS [L, ρ1], and Π2[f1, f2, πΣ] = ΠΣ[qα, πΣ] is a codeword in RS [L, ρ2].
Soundness. Suppose that the lincheck condition does not hold. If either f1 = Πf1 [f1, f2, πΣ] or f2 =
Πf2 [f1, f2, πΣ] is not a codeword in RS [L, ρ], then we are done. So suppose instead that f1, f2 are codewords
in RS [L, ρ], which means that qα ∈ RS [L, ρ′]. In this case there must exist a ∈ H such that f̂1(a) 6=∑

b∈H0
Ma,b · f̂2(b). With probability at least 1− n·(N+κ(N))

|F| , it holds that
∑

a∈H q̂α(a) 6= 0. By soundness
of the sumcheck protocol, either πΣ /∈ RS [L, ρ1] or ΠΣ[qα, πΣ] /∈ RS [L, ρ2]. This means that either
Π1[f1, f2, πΣ] /∈ RS [L, ρ1] or Π2[f1, f2, πΣ] /∈ RS [L, ρ2], and again we are done. (The distance in the
statement of Lemma 7.4 follows via an application of Lemma 5.8.)
Efficiency. The length of the reduction is the same as that of the sumcheck protocol, which is |L|. The
locality is one more than that of the sumcheck protocol (since a query to qα translates to a query to each of f1

and f2), for a total of 3. The running time of the verifier is dominated by the cost of constructing the virtual
oracles Π1 and Π2 each of which requires producing a circuit that answers a query to qα by combining
answers to queries to f1 and f2. This requires producing circuits for evaluating p̂(1)

α and p̂(2)
α on a point in L.

Corollaries 7.10 and 7.11 give the claimed running time.

7.4 Extension to block-matrix lincheck

The lincheck relation in Definition 7.1 is a special case of a relation that we use in the proof of Lemma 8.2
(see Section 8.2), in order to obtain an oracle reduction for interactive R1CS automata. We now describe the
more general relation, and then explain how the ideas discussed so far directly extend to handle it.

The lincheck relation requires checking that v1 = Mv2 where v1, v2 ∈ FH are encoded by Reed–
Solomon codewords f1, f2 ∈ RS [L, ρ] respectively. Later on, we will want to check such conditions for

32

vectors v1 := v
(1)
1 ‖ . . . ‖v

(r)
i and v2 := v

(1)
2 ‖ . . . ‖v

(s)
2 such that each v(i)

1 , v
(j)
2 ∈ FH is individually encoded

by a Reed–Solomon codeword f (i)
1 , f

(j)
2 respectively. We decompose M into several H ×H block matrices

M (i,j), so that v1 = Mv2 if and only if, for all i ∈ [r], it holds that v(i)
1 =

∑s
j=1M

(i,j)v
(j)
2 . The block-matrix

form of the lincheck relation is obtained by re-writing this condition in terms of codewords f (i)
1 , f

(j)
2 .

Definition 7.13. For r, s ∈ N, the block-matrix lincheck relationRr,sLIN consists of instance-witness pairs

(x,w) =
(
(F, L,H, ρ,M), (f1, f2)

)
where F is a finite field, L,H are subsets of F, ρ is a rate parameter in (0, 1), f1 = (f

(1)
1 , . . . , f

(r)
1) and

f2 = (f
(1)
2 , . . . , f

(s)
2) are lists of codewords in RS [L, ρ], M = (M (i,j))i∈[r],j∈[s] is a block matrix with each

M(i,j) ∈ FH×H , and for all i ∈ [r] and a ∈ H it holds that f̂ (i)
1 (a) =

∑s
j=1

∑
b∈HM

(i,j)
a,b f̂

(j)
2 (b).

The succinctness condition that we now consider on the block matrix is that each block M (i,j) is a sum
of semisuccinct matrices. We can then extend Protocol 7.12, in a straightforward way, to obtain an oracle
reduction for the block-matrix lincheck relation Rr,sLIN. Informally, the verifier’s first message contains, in
addition to α ∈ F, random elements β1, . . . , βr ∈ F. We then consider the virtual oracle q induced by the
polynomial

q̂(Y) :=
r∑
i=1

βi

p̂(1)
α (Y)f̂

(i)
1 (Y)−

s∑
j=1

p̂(i,j)
α (Y)f̂

(i)
2 (Y)


where p̂(i,j)

α is defined like p̂(2)
α but with respect to the matrix M (i,j) ∈ FH×H .

The foregoing ideas allow us to extend Lemma 7.4 to the block-matrix lincheck relation, and we obtain
the following lemma, which we state without proof. The verifier uses poly(|x|) = poly(`, r, s, n, logN)
field operations, which is polylogarithmic in the size of the succinct part of the matrix.

Lemma 7.14. Let F be a finite field with an efficient bivariate embedding Φ: H → H1 × H2 where
H is a coset in F. Suppose that M = (M (i,j))i∈[r],j∈[s] is a block matrix where each block has the form

M (i,j) =
∑`

ι=1M
(i,j)
ι and each M (i,j)

ι ∈ FH×H is (Φ, κ)-semisuccinct.
Setting N := |H1|, n := |H2|, and d := n · (N + κ(N)), there is a 1-round RS oracle reduction of

proximity forRr,sLIN for instances of the form x = (F, L,H, ρ,M) with the following parameters:

length |L| soundness error (d+ 1)/|F| prover time |L| log |L|+ ||M||
locality 2 distance 1

2(1− ρ− d
|L|) verifier time poly(|x|) .

(Above ||M|| denotes the total number of non-zero entries across all blocks of the matrix M = (M (i,j))i∈[r],j∈[s].)

33

8 Probabilistic checking of interactive automata

We define the R1CS automata relation, which considers checking algebraic computation that has no external
memory, and show how to reduce it to the lincheck relation (see Definition 7.13), via an oracle reduction.
Combining this reduction with results in Section 7, we obtain an oracle reduction from R1CS automata to
testing proximity to the Reed–Solomon code (see Lemma 8.2 below). This oracle reduction is later used to
obtain an oracle reduction for a relation about R1CS machines (see Section 9), which have external memory.

Informally, we define computation on R1CS automata as follows. Let F be a finite field, T ∈ N be a
computation time, and k ∈ N a computation width. We consider execution traces f : [T]→ Fk that represent
T -time computations in which each state f(t) of the computation is a vector of k elements in F. An R1CS
automaton is specified by matrices A,B,C ∈ Fk×2k that define R1CS time constraints, and a set of boundary
constraints B ⊆ [T]× [k]× F. An execution trace f : [T]→ Fk is accepted by the automaton if:

• f satisfies the R1CS time constraints, namely, for every t ∈ [T −1], letting f(t, t+ 1) be the concatenation
of the consecutive states f(t) ∈ Fk and f(t+1) ∈ Fk, it holds thatAf(t, t+1)◦Bf(t, t+1) = Cf(t, t+1);

• f satisfies the boundary constraints, namely, for every (t, j, α) ∈ B it holds that f(t)j = α.

Intuitively, time constraints enforce that each state in the execution trace is consistent with the prior one.
Boundary constraints enforce that given locations in the execution trace have given values, for example, they
could ensure that the computation started at a certain initial state and halted at a certain final state.

Interactive automata. We shall in fact consider a more general notion of computation that allows interaction
with a prover, which we call interactive R1CS automata. This notion enables an efficient oracle reduction
from R1CS machines, as described in Section 9.

Informally, in interactive R1CS automata, instead of considering execution traces f : [T] → Fk, we
consider prover strategies Pw that output an execution sub-trace wi : [T]→ Fs in each round of a public-coin
protocol of r rounds. By juxtaposing the sub-traces w1, . . . , wr one obtains a trace f : [T] → Frs, which
is then accepted if it satisfies time constraints and boundary constraints similarly as above. Crucially, the
matrices defining time constraints can depend on the verifier’s randomness in the public-coin protocol.

Below we define a universal relation Rr,εR1A that captures computations on r-round interactive R1CS
automata with soundness error ε. We denote the computation time by T , the length of a verifier message by `,
the width of a sub-trace by s, and the width of a trace by k := rs. Given a trace f : [T]→ Fk, we denote by
f(i, j) ∈ F2k the concatenation of the two states f(i) ∈ Fk and f(j) ∈ Fk.

Definition 8.1. The promise relationRr,εR1A = (RYes,LNo) of bounded accepting computation problems on
interactive R1CS automata is defined as follows. An instance x = (F,A,B,C,B, `) consists of a finite field
F, functions A,B,C : Fr` → Fs×2rs defining time constraints, and boundary constraints B ⊆ [T]× [rs]×F.
A witness Pw is a prover strategy for the following game defined by x. Let Vx be the interactive Turing
machine that interacts with Pw for r rounds, where in the i-th round Vx sends a random ai ∈ F`, and Pw
replies with a message wi : [T] → Fs. At the end of the interaction, letting a := (a1, . . . , ar) ∈ Fr` and
f : [T]→ Frs be defined as f(t) := w1(t)‖ . . . ‖wr(t), Vx accepts if the following holds.

• Time constraints: ∀ t ∈ [T − 1], A(a)f(t, t+ 1) ◦B(a)f(t, t+ 1) = C(a)f(t, t+ 1) .

• Boundary constraints: ∀ (t, j, α) ∈ B, f(t)j = α .

A pair (x, Pw) is inRYes if (Pw, Vx) accepts with probability 1. On the other hand, an instance x is in LNo

if for every prover strategy P̃ it holds that (P̃ , Vx) accepts with probability at most ε.

34

In this section we obtain an oracle reduction, with linear length and locality r + 1, from interactive R1CS
automata to testing proximity to the Reed–Solomon code. The verifier uses poly(|x|) = poly(r, s, |B|, log T)
field operations, which is exponentially faster than the computation time T , since the dependence on the T is
polylogarithmic instead of polynomial.

Lemma 8.2. Let F be a finite field,H a coset in F, and L a subset of F with L∩H = ∅. Let T : [T]×[s]→ H
be a trace embedding in F. There is an RS oracle reduction over domain L (Protocol 8.7) for instances x of
Rr,εR1A over F and of computation time T and width k = rs. The reduction has r+ 1 rounds and the following
parameters:

length (r + 4)|L| soundness error ε+ (3sT + 1)/|F| prover time |L| · (log |L|+ |x|)
locality r + 1 distance 1

2(1− 4sT/|L|) verifier time poly(|x|) .

The rest of this section is dedicated to proving Lemma 8.2. Our high-level approach is to first identify a
family of semisuccinct matrices (see Definition 7.3) that can express computation via R1CS automata. We
call this family staircase matrices and, in Section 8.1, prove that they are indeed semisuccinct. Then, in
Section 8.2 we prove Lemma 8.2 by invoking the succinct lincheck protocol in Section 7 (which requires
semisuccinct matrices) on carefully chosen staircase matrices, derived from an interactive automaton.

8.1 Staircase matrices

We introduce the notion of staircase matrices and prove that they are the sum of two semisuccinct matrices.
This requires establishing simple algebraic properties of the identity matrix and a related matrix.

First recall from Definition 7.2 that a matrixA ∈ FS×S is κ-succinct if, for every d ≥ |S|−1 and v ∈ FS ,
a degree-κ(d) extension of vA can be evaluated anywhere in F in time polylog(|S|) whenever a degree-d
extension of v can be evaluated anywhere in F in time polylog(|S|). The identity matrix on a subset S of F
(the matrix I ∈ FS×S with I(α, α) = 1 for all α ∈ S and 0 elsewhere) is trivially κ-succinct for κ(d) := d:
if a degree-d extension of v can be evaluated anywhere in F in time T , then so can a degree-d extension of vI .

We now define the shifted identity matrix, for a given successor ordering, and prove that it is κ-succinct,
where κ depends on algebraic properties of the successor ordering on the subset S that we consider. Recall
from Definition 6.13 that a successor ordering on S ⊆ F is a pair O = (1S , N) where 1S ∈ S and N is a
piecewise polynomial on S of degree 1 such that S = {α1, . . . , α|S|}, where α1 := 1S and αi+1 := N(αi)
inductively for every i ∈ {1, . . . , |S| − 1}.

Definition 8.3. Let F be a field, S a subset of F, and O = (1S , N) a successor ordering on S. The shifted
identity matrix I)O ∈ FS×S has I)O(α,N(α)) = 1 for all α ∈ S such that γO(α) < |S|, and 0 elsewhere.
Under the ordering γO, we can view I)O as the following matrix:

I)O =


0 1

0
. . .
. . . 1

0

 .

Lemma 8.4. Let S be a subset of F whose vanishing polynomial can be computed in polylog(|S|) field
operations and O = (1S , N) be an efficient successor ordering on S (see Definition 6.13). Then I)O is
κ-succinct for κ(d) := |S|+ d.

35

Proof. Let r ∈ FS and d ≥ |S| be such that a degree-d extension r̂ ∈ F[X] of r can be evaluated in T field
operations. We prove that a degree-(|S|+ d) extension r̂)O ∈ F[X] of r)O := rI)O ∈ FS can be evaluated in
O(T + polylog(|S|)) field operations.

Observe that r)O = (0, r1, . . . , r|S|−1) is the right shift of r, so that, for every α ∈ S, we have

r)O(α) = r(N(α))− r(N(1S)) · I[α = 1S]

where I[α = 1S] is the indicator function for 1S on S. Let (S,F) =
(
(S1, . . . , S`), (f1, . . . , f`)

)
be a

piecewise polynomial of piecewise degree 1 that computes N (see Definition 6.11), and let si be the unique
extension of degree less than |S| of the indicator for Si in S. We have that

r(N(α)) = r

(∑̀
i=1

si(α)fi(α)

)
=
∑̀
i=1

si(α)r(fi(α)) .

We deduce that

r̂)O(X) :=

(∑̀
i=1

si(X) · r̂(fi(X))

)
−

(∑̀
i=1

si(1S) · r̂(fi(1S))

)
· LS,1S (X)

is a degree-(|S|+ d) extension of r)O. Note that LS,1S can be evaluated in polylog(|S|) operations, since the
vanishing polynomial of S can be evaluated in polylog(|S|) operations. (See Section 4.1). Hence, taking also
into account thatN is efficient, we conclude that r̂)O can be evaluated inO(T +polylog(|S|)) operations.

The staircase matrix of two matrices M and M ′ is the block matrix whose diagonal consists of blocks of
M and its superdiagonal consists of blocks of M ′. Algebraically, we capture this by considering the matrix
that consists of the sum of two terms: (1) the tensor product of the identity matrix with M ; and (2) the tensor
product of the shifted identity matrix with M ′. We formally define this notion, and then use Lemma 8.4 to
deduce that each of these two terms is semisuccinct. Recall from Definition 7.3 that a matrix M ∈ FH×H is
(Φ, κ)-semisuccinct, where Φ: H → H1 ×H2 is a bivariate embedding and κ : N→ N, if M can be written
as A⊗Φ B for κ-succinct A ∈ FH1×H1 and arbitrary B ∈ FH2×H2 .

Definition 8.5. Let F be a finite field, Φ: H → H1 ×H2 a bivariate embedding in F, and O a successor
ordering on H1. The staircase matrix of two matrices M,M ′ ∈ FH2×H2 is the matrix in FH×H defined as

SΦ,O(M,M ′) := I ⊗Φ M + I)O ⊗Φ M
′

where I and I)O are the identity and shifted identity matrices in FH1×H1 , respectively. Under the appropriate
ordering on H , we can write SΦ,O(M,M ′) as the block matrix:

SΦ,O(M,M ′) =



M M ′

M M ′

M M ′

.
M M ′

M


.

Corollary 8.6. Let F be a finite field, Φ: H → H1 × H2 an efficient bivariate embedding in F, and
O = (1H1 , N) an efficient successor ordering on H1. Then each of the terms in a staircase matrix
SΦ,O(M,M ′) = I ⊗Φ M + I)O ⊗Φ M

′ is (Φ, κ)-semisuccinct for κ(d) := |H1|+ d.

36

8.2 Proof of Lemma 8.2

We show an oracle reduction, with linear length and locality r + 1, from the interactive R1CS automata
relationRr,εR1A to testing proximity to the Reed–Solomon code. Let x = (F,A,B,C,B, `) be an instance of
the relationRr,εR1A, and let Pw be a candidate witness for x. Recall that the witness Pw is a prover strategy
for the r-round public-coin game defined by the verifier Vx determined by x.

In round i of this game, Vx sends a uniformly random ai ∈ F`, and Pw replies with a message
wi : [T]→ Fs. Letting a := (a1, . . . , ar) ∈ Fr` and f : [T]→ Frs be defined as f(t) := w1(t)‖ . . . ‖wr(t),
to check membership in the relationRr,εR1A it suffices to verify the following.

(i) Time constraints: ∀ t ∈ [T − 1] , A(a)f(t, t+ 1) ◦B(a)f(t, t+ 1) = C(a)f(t, t+ 1).
(ii) Boundary constraints: ∀ (t, j, α) ∈ B , f(t)j = α.

Our task now is to specify the prover P and the verifier V of a suitable Reed–Solomon oracle reduction.
Informally, the prover P and verifier V engage in an “encoded” version of the game defined by x. Then,
the verifier uses the prover’s encoded messages to reduce checking the time constraints and the boundary
constraints to membership in the Reed–Solomon code.

The role of staircase matrices (defined in Section 8.1) for these checks can be explained as follows. Let
A(a)1 be the first rs columns of A(a), and A(a)2 the remaining rs columns; similarly for B(a) and C(a).
Viewing f as a vector f(1)‖ · · · ‖f(T) ∈ FkT , we left-multiply the vector f by staircase matrices, obtaining:

fA := S(A(a)1,A(a)2) · f = A(a)f(1, 2)‖ · · · ‖A(a)f(T − 1, T)‖A(a)1f(T) ∈ FsT ,

fB := S(B(a)1,B(a)2) · f = B(a)f(1, 2)‖ · · · ‖B(a)f(T − 1, T)‖B(a)1f(T) ∈ FsT ,

fC := S(C(a)1,C(a)2) · f = C(a)f(1, 2)‖ · · · ‖C(a)f(T − 1, T)‖C(a)1f(T) ∈ FsT .

(For simplicity, we suppress the bivariate embedding and successor ordering used to define a staircase matrix.)
The time constraints are equivalent to checking that fA, fB, fC are consistent with f , which we can do

via our new succinct lincheck protocol from Section 7, and also checking that fA ◦ fB and fC agree on their
first s · (T − 1) entries, which we can do via other (standard) probabilistic checking tools.

We now provide a formal description of the reduction and then discuss its properties.

Protocol 8.7. Let F be a finite field, H a coset in F, and L a subset of F with L∩H = ∅. Let T = (Φ: H →
H1 ×H2,O, γ) be a trace embedding in F with T = |H1| and s = |H2| (see Definition 6.1). We show a
Reed–Solomon oracle reduction over domain L, which works on instances x = (F,A,B,C,B, `) for the
relation Rr,εR1A (see Definition 8.1) that have computation time T and width k = rs. The oracle reduction
is specified by the prover P and verifier V described below. Recall that P and V receive the instance x as
input, while P additionally receives a witness Pw for x.

1. Interaction. The prover P and verifier V engage in an “encoded” version of the r-round game induced
by x. In round i, first V behaves exactly as Vx by sending random elements ai ∈ F`; then P obtains a
message wi : [T]→ Fs from Pw and, instead of sending wi, sends its encoding πwi := π̂wi |L, where π̂wi
is the unique polynomial of degree less than sT such that

∀ t ∈ [T] , ∀ j ∈ [s] π̂wi
(
T (t, j)

)
= (wi(t))[j] .

For each i ∈ [r], the verifier V outputs the rate parameter ρwi := sT/|L| and virtual oracle Πwi := πwi .

37

2. Proof oracles. The prover P uses the verifier randomness a = (a1, . . . , ar) ∈ Fr` to compute the matrices
A(a),B(a),C(a) ∈ Fs×2rs. We view these as 2r block matrices with blocks of size s× s:

A(a) =
(
A

(1)
1 · · · A

(r)
1 A

(1)
2 · · · A

(r)
2

)
,

B(a) =
(
B

(1)
1 · · · B

(r)
1 B

(1)
2 · · · B

(r)
2

)
,

C(a) =
(
C

(1)
1 · · · C

(r)
1 C

(1)
2 · · · C

(r)
2

)
.

Next, P computes the unique polynomials π̂A, π̂B, π̂C of degree less than sT such that

∀h ∈ H π̂A(h) =
(r∑
i=1

SΦ,O(A
(i)
1 , A

(i)
2) · π̂wi |H

)
[h] ,

∀h ∈ H π̂B(h) =
(r∑
i=1

SΦ,O(B
(i)
1 , B

(i)
2) · π̂wi |H

)
[h] ,

∀h ∈ H π̂C(h) =
(r∑
i=1

SΦ,O(C
(i)
1 , C

(i)
2) · π̂wi |H

)
[h] .

Finally, P sends to V the codewords in RS[L, sT/|L|] obtained by restricting the above polynomials to L:

πA := π̂A|L πB := π̂B|L πC := π̂C|L .

The verifier V outputs rate parameters (ρA, ρB, ρC) and virtual oracles (ΠA,ΠB,ΠC) defined as:

ρA := sT/|L| ΠA := πA ,

ρB := sT/|L| ΠB := πB ,

ρC := sT/|L| ΠC := πB .

3. Succinct lincheck. The prover P and verifier V invoke the block-matrix succinct lincheck of Lemma 7.14
on the instance xLIN := (F, L,H, ρ,M) and witness wLIN := ((πA, πB, πC), (πw1 , . . . , πwr)), where

M :=

SΦ,O(A
(1)
1 , A

(1)
2) · · · SΦ,O(A

(r)
1 , A

(r)
2)

SΦ,O(B
(1)
1 , B

(1)
2) · · · SΦ,O(B

(r)
1 , B

(r)
2)

SΦ,O(C
(1)
1 , C

(1)
2) · · · SΦ,O(C

(r)
1 , C

(r)
2)

 .

The verifier V outputs the rate parameters and virtual oracles output by the verifier of this RS oracle
reduction. The maximum rate across these is ρ+d/|L|, where ρ := sT/|L| and d := s·(T+κ(T)) = 3sT ,
since κ(T) = |H1|+ T = 2T by Corollary 8.6.

4. Rowcheck. Define the set HROW := H \ {T (T, 1), . . . , T (T, s)}. The verifier V outputs the rate
parameter ρROW and virtual oracle ΠROW defined as:

ρROW :=
2sT − |HROW|

|L|
and ΠROW(α) :=

πA(α) · πB(α)− πC(α)

ZHROW
(α)

,

38

where ZHROW
(X) := ZH1(Φ1(X))/Z{T (T,1),...,T (T,s)}(X) is (a multiple of) the vanishing polynomial

of HROW because ZH1(Φ1(X)) is (a multiple of) the vanishing polynomial of H . Observe that ZHROW

can be evaluated in poly(log T, s) field operations because: (1) the definition of a trace embedding
(Definition 6.1) requires that ZH1 and Φ1 can each be evaluated in polylog(|H|) = polylog(Ts) field
operations; (2) the denominator can be evaluated in poly(s) field operations. (We also know that H is a
coset in F, a condition inherited from univariate sumcheck, which means that the vanishing polynomial of
H can directly be evaluated in polylog(|H|) field operations. The above reasoning assumes less.)

The above is an RS oracle reduction of proximity over domain L for the rowcheck relationRROW, which
consists of instance-witness pairs (xROW,wROW), where xROW = (F, L,HROW, ρROW) and wROW =
(π1, π2, π3), such that π1, π2, π3 ∈ RS [L, ρ] and, for every α ∈ HROW, π̂1(α) · π̂2(α)− π̂3(α) = 0.

5. Enforce boundary constraints. The verifier V partitions the boundary constraints B into (B1, . . . ,Br)
so that the constraints in Bi apply to the message wi : [T]→ Fs. Namely, for each i ∈ [r], V defines

Bi :=
{

(t, j′, α)
∣∣∣ ∃ j′ ∈ {1, . . . , s} s.t. (t, j′ + s · (i− 1), α) ∈ B

}
.

Let Ei := {T (t, j′) : (t, j′, α) ∈ Bi} be the set of locations in H contained in Bi. Let Bi be the
polynomial of degree less than |Ei| such that Bi(T (t, j′)) = α for every (t, j′, α) ∈ Bi. The verifier
outputs rate parameters (ρB1 , . . . , ρBr) and virtual oracles (ΠB1 , . . . ,ΠBr) where each rate and virtual
oracle is defined as follows:

ρBi :=
sT − |Ei|
|L|

and ΠBi(α) :=
πwi(α)−Bi(α)

ZEi(α)
.

We conclude the proof of Lemma 8.2 by showing its completeness, soundness, and efficiency.

Completeness. Suppose that (x, Pw) ∈ RYes, and consider the honest prover strategy P described above.
We argue that every pair (ρ,Π) output by the verifier V belongs to the Reed–Solomon relation RRS (see
Definition 5.6). We separately consider each step in the reduction. In Item 1, for every i ∈ [r], the virtual
oracle Πwi = πwi indeed has rate ρwi = sT/|L|. In Item 2, the virtual oracles (ΠA,ΠB,ΠC) indeed
have rates (ρA, ρB, ρC) = (sT/|L|, sT/|L|, sT/|L|). In Item 3, the constructed instance-witness pair
(xLIN,wLIN) satisfies the lincheck relation, and thus we rely on the completeness of the succinct lincheck
protocol. In Item 4 and in Item 5, the constructed polynomials in the numerator are divisible by the
denominator if and only if the rowcheck condition and boundary conditions hold respectively.

Soundness. Suppose that x ∈ LNo. Suppose first that the oracles sent by the prover in Item 1 and Item 2
belong to the prescribed code:

π̃w1 ∈ RS [L, ρ1] , . . . , π̃wr ∈ RS [L, ρr] , π̃A ∈ RS [L, ρA] , π̃B ∈ RS [L, ρB] , π̃C ∈ RS [L, ρC] .

Indeed, if any of the above conditions does not hold, then the weak soundness condition is immediately
fulfilled by the violating oracle (see Lemma 5.8). Note that all the rates above equal sT/|L|.

Let f̃ : [T] → Frs be the computation trace induced by the oracles sent by the prover, that is, f̃(t) :=
w̃1(t)‖ . . . ‖w̃r(t) for every t ∈ [T], where each w̃i is the sub-trace encoded in π̃wi . By Definition 8.1, we
know that, with probability at least 1 − ε over the verifier’s randomness a = (a1, . . . , ar) ∈ Fr`, either f̃
does not satisfy some time constraint or some boundary constraint. We analyze each of these two cases.

• A time constraint is violated, i.e., there exists t such that A(a)f̃(t, t+1)◦B(a)f̃(t, t+1) 6= C(a)f̃(t, t+1).

39

If the rowcheck condition is violated, then the interpolations π̂A, π̂B, π̂C of π̃A, π̃B, π̃C are such that there
exists α ∈ HROW for which π̂A(α) · π̂B(α)− π̂C(α) 6= 0, which means that π̂Aπ̂B − π̂C is not divisible
by ZHROW

, and thus it is not the case that ΠROW[π̃A, π̃B, π̃C] ∈ RS [L, ρROW].

Otherwise, it must be the case that the lincheck condition is violated, which means that with probability at
least 1− 3sT+1

F , one of the instances output by the lincheck verifier is not the prescribed code.

• A boundary constraint is violated, i.e., there exists (t, j, α) ∈ B such that f̃(t)j 6= α.

Let i ∈ [r] and j′ ∈ {1, . . . , s} be such that j = j′ + s · (i − 1), which means that (t, j′, α) ∈ Bi
(see Item 5); note that f̃(t)j = w̃i(t)j′ . Suppose that ΠBi [π̃wi] ∈ RS [L, ρBi] (otherwise we are done).
Then, by definition of ΠBi [π̃wi], the interpolation of ΠBi [π̃wi] times the polynomial ZEi equals π̂wi −Bi,
where π̂wi is the interpolation of π̃wi . Using the fact that ZEi vanishes at T (t, j′), we conclude that
f̃(t)j = w̃i(t)j′ = π̂wi(T (t, j′)) = Bi(T (t, j′)) = α, which is a contradiction.

Efficiency. The oracle reduction in Protocol 8.7 adds a single round of interaction to the r-round interactive
automaton at hand, and thus the round complexity is r + 1. The length of the reduction is determined by the
r + 1 oracles that are sent in the interaction phase and the 3 oracles sent in the lincheck protocol; each oracle
is of length |L|, and thus the total length is (r + 4)|L|. In each round there is one probe to the virtual oracles,
and hence the locality is r + 1. The distance follows by invoking Lemma 5.8 with respect to the maximum
rate of 4sT/|L| for the lincheck reduction, yielding distance 1

2(1− 4sT/|L|). Finally, the prover and verifier
time complexity follows immediately from the time complexity of the lincheck and rowcheck protocols.

40

9 Reducing machines to interactive automata

We define the R1CS machines relation, which is about checking algebraic computation with external memory.
We then show how to reduce it, via an oracle reduction of linear length and locality 3, to testing proximity to
the Reed-Solomon code (see Lemma 9.2 below). This reduction builds on the results from Section 8.

Loosely speaking, the R1CS machines relation asserts that a machines’s execution trace and memory
trace satisfy a rank-1 constraint system, i.e., each pair of consecutive rows in one of the traces satisfies an
R1CS equation. Additionally, the relation ensures that the execution and memory traces are consistent by
checking that they are permutations of each other.9 The relation also includes boundary constraints to ensure,
e.g., that the machine starts its computation in a valid initial state and halts in an accepting final state.

In the following, we denote the computation time by T , the computation width by k, and the number
of constraints in an R1CS matrix by m. Given a trace f : [T] → Fk, we denote by f(i, j) ∈ F2k the
concatenation of f(i) and f(j). We formally define the R1CS machines relationRR1M as follows.

Definition 9.1. The relation RR1M of bounded accepting computations on R1CS machines consists of
pairs (x,w) defined as follows. An instance x = (F, (A,B,C) , (A′, B′, C ′) ,B) consists of a finite field
F, matrices A,B,C ∈ Fm×2k defining time constraints, matrices A′, B′, C ′ ∈ Fm×2k defining memory
constraints, and a set of boundary constraints B ⊆ [T] × [k] × F. A witness w = (f, π) consists of an
execution trace f : [T]→ Fk and permutation π : [T]→ [T]. A pair (x,w) is inRR1M if the following holds.

• Time constraints: ∀ t ∈ [T − 1], Af(t, t+ 1) ◦Bf(t, t+ 1) = Cf(t, t+ 1) .

• Memory constraints: ∀ t ∈ [T − 1], A′f(π(t), π(t+ 1)) ◦B′f(π(t), π(t+ 1)) = C ′f(π(t), π(t+ 1)) .

• Boundary constraints: ∀ (t, j, α) ∈ B, f(t)j = α .

The main result of this section is an oracle reduction, with linear length and locality 3, from R1CS
machines to testing proximity to the Reed–Solomon code. The verifier uses poly(|x|) = poly(m, k, log T)
field operations, which is exponentially faster than the computation time T , since the dependence on the T is
polylogarithmic instead of polynomial.

Lemma 9.2. Let F be a finite field, H a coset in F, and L ⊆ F with L ∩H = ∅. Let T : [N]× [n]→ H be
a trace embedding in F. There is an RS oracle reduction over domain L (Protocol 9.6) for instances x of
RR1M over F, with computation time T = N − 1, width k ≤ n/2, and m ≤ n− 2 constraints. The reduction
has 3 rounds of interaction and the following parameters:

length 6|L| soundness error (kT + 3Nn+ 1)/|F| prover time |L| · (log |L|+ |x|)
locality 3 distance 1

2(1− 4Nn/|L|) verifier time poly(|x|) .

As discussed in Section 2.4, the main technical tool is a matrix permutation check protocol, which checks
that two matrices are row permutations of one another. Our high-level strategy for proving Lemma 9.2 is to
use the foregoing interactive protocol to check consistency between the execution and memory traces of an
R1CS machine, and then check each of the traces via the oracle reduction for interactive R1CS automata.

Organization. In Section 9.1 we describe the matrix permutation check protocol, and explain how to
represent it via an R1CS equation. In Section 9.2 we prove Lemma 9.2 by using the foregoing sub-protocol
and the oracle reduction for interactive R1CS automata in Section 8.

9The use of permutations to express machine computations dates back at least to the seminal work of Babai, Fortnow, Levin, and
Szegedy [BFLS91], and originates in the study of nearly-linear time reductions among different computation models [GS89; Rob91].

41

9.1 Matrix permutation check protocol

We describe a protocol for checking that two matrices over a (sufficiently large) finite field F are row
permutations of one another. The protocol leverages interaction with a prover to avoid more expensive tools
that establish equivalence under permutations, such as sorting or routing networks. Since we ultimately wish
to express the protocol via an interactive R1CS automaton (see Section 9.2), we present the protocol as a
distribution over R1CS matrices. We note, however, that this protocol can also be formalized in other ways.

For notational convenience, we view a T×k matrix over F as a function f : [T]→ Fk. Then f ′ : [T]→ Fk
is a permutation of f if there is a permutation π : [T]→ [T] such that f ′(t) = f(π(t)) for all t ∈ [T].
From permutation to identity testing. Checking that two matrices are row permutations of one another
can be expressed as a polynomial identity testing problem, as the permutation condition is an equality problem
between multi-sets over vectors. We can encode each vector v ∈ Fk as a univariate polynomial qv(Y) :=∑k

j=1 Y
jvj , and encode a multi-set of vectors S = {v(t)}t∈[T] as a bivariate polynomial qS(X,Y) :=∏T

t=1(X − qv(t)(Y)). Then, two multi-sets S and S′ are equal if and only if qS(X,Y) ≡ qS′(X,Y).
This suggests a probabilistic protocol to check the permutation condition. The verifier sends to the prover

two random elements α, β ∈ F. Then, the prover has to convince the verifier that qS(α, β) = qS′(α, β). This
suffices since if qS(X,Y) ≡ qS′(X,Y), then qS(α, β) = qS′(α, β) with probability 1 over α, β; if instead
qS(X,Y) 6≡ qS′(X,Y), then qS(α, β) 6= qS′(α, β) with probability at least 1− kT/|F| over α, β.

Intuitively, evaluation at β plays the role of a hash function: if two vectors v, u ∈ Fk are not equal then,
with probability at least 1 − k/|F| over β, it holds that qv(β) 6= qu(β). This “collapses” all vectors in S
and S′ to single field element such that, with high probability, distinct vectors hash to distinct elements.
Evaluation at α plays the role of another hash function, except that this time it is with respect to the vectors
of all hashes, namely (qv(β))v∈S and (qu(β))u∈S′ . After these two hash function evaluations, only two
elements need to be compared, namely qS(α, β) and qS′(α, β).

Probabilistic checks for multi-set equality like the above ones are familiar techniques from program check-
ing [Lip89; BK95], and have been recently applied to check machine computations (see, e.g., [ZGKPP18]).
From identity testing to a protocol. We need to design a protocol that enables a prover to convince the
verifier that a function f ′ : [T]→ Fk is a permutation of another function f : [T]→ Fk. The discussion so
far tells us that it suffices for the verifier to learn the random evaluation of bivariate polynomials related to f
and f ′, but does not tell us what protocol to run.

Towards this end, consider the bivariate polynomials {χt(X,Y)}t∈[T] defined as follows:

χt(X,Y) :=
t∏
i=1

X − k∑
j=1

Y jf(i)j

− t∏
i=1

X − k∑
j=1

Y jf ′(i)j

 . (2)

Observe that χT ≡ 0 if and only if there exists a permutation π such that f ′(t) = f(π(t)) for all t ∈ [T].
For any choice of α, β ∈ F, we consider an auxiliary trace g : [T+1]→ F3 that “incrementally computes”

χT (α, β) as follows. The first and second columns of g are defined so that g(1)1 = g(1)2 = 1F and, for
1 < t ≤ [T + 1], g(t)1 and g(t)2 respectively contain the first and second terms of χt−1(α, β):

g(t)1 :=

t−1∏
i=1

α− k∑
j=1

βjf(i)j

 = g(t− 1)1 ·

α− k∑
j=1

βjf(t− 1)j

 ,

g(t)2 :=
t−1∏
i=1

α− k∑
j=1

βjf ′(i)j

 = g(t− 1)2 ·

α− k∑
j=1

βjf ′(t− 1)j

 .

42

Note that g(t)1 and g(t)2 can be derived from g(t− 1)1 and g(t− 1)2 respectively. The third column of g is
the difference of the first two columns: for every t ∈ [T + 1] we define g(t)3 = g(t)1 − g(t)2 = χt−1(α, β).
Observe that, if χT 6≡ 0 then g(T + 1)3 = χT (α, β) = 0 with probability at most kT/|F|.

We can summarize the above via a statement that involves local constraints among adjacent variables.

Lemma 9.3. Given f, f ′ : [T]→ Fk, define the probability

µ(f, f ′) := Pr
α,β←F


∃ g : [T + 1]→ F3 such that
• g(1)1 = g(1)2 = 1 and g(T + 1)3 = 0

• ∀ t ∈ [T] , g(t+ 1)1 = g(t)1 · (α−
∑k

j=1 β
jf(t)j)

• ∀ t ∈ [T] , g(t+ 1)2 = g(t)2 · (α−
∑k

j=1 β
jf ′(t)j)

• ∀ t ∈ [T + 1] , g(t)3 = g(t)1 − g(t)2

 .

Then the following conditions hold.

• Completeness: if f ′ is a permutation of f then µ(f, f ′) = 1.

• Soundness: if f ′ is not a permutation of f then µ(f, f ′) ≤ kT/|F|.

The protocol via an R1CS equation. We re-write Lemma 9.3 in the language of R1CS equations, so that
in Section 9.2 we can embed the matrix permutation check protocol in an interactive R1CS automaton.

For functions a : [T]→ Fk and b : [T ′]→ Fk′ , we denote by a‖b : [max(T, T ′)]→ Fk+k′ the function
defined as (a‖b)(t) := a(t)‖b(t), where we pad a or b via all-zero rows if T 6= T ′. We construct a distribution
of R1CS matrices such that: if f ′ is a permutation of f , then there exists an auxiliary trace g such that f‖f ′‖g
satisfies the constraints of the R1CS matrices, and otherwise, with high probability, there is no auxiliary trace
g that makes f‖f ′‖g satisfy the constraints of the R1CS matrices.

Lemma 9.4. Let T, k, n ∈ N with n ≥ 2k. Let 0 : [T] → Fn−2k always output zeros. There exists a
polynomial-time samplable distribution D over tuples of matrices (Ap, Bp, Cp) ∈ (F3×4n)3, where drawing
a sample from D requires two random elements in F, such that for every f, f ′ : [T]→ Fk the probability

µ(f, f ′) := Pr
(Ap,Bp,Cp)←D

[
∃ g : [T + 1]→ Fn with g(1)1 = g(1)2 = 1 and g(T + 1)3 = 0 s.t.

letting h := f‖f ′‖0‖g , ∀ t ∈ [T] , Aph(t, t+ 1) ◦Bph(t, t+ 1) = Cph(t, t+ 1)

]
,

satisfies the following conditions.

• Completeness: if f ′ is a permutation of f , then µ(f, f ′) = 1.

• Soundness: if f ′ is not a permutation of f , then µ(f, f ′) ≤ kT/|F|.

Proof. We construct (Ap, Bp, Cp) so that, for h := f‖f ′‖0‖g with g(1)1 = g(1)2 = 1 and g(T + 1)3 = 0,

{Aph(t, t+ 1) ◦Bph(t, t+ 1) = Cph(t, t+ 1)}t∈[T] −→ {g(t)3 = g(t)1 − g(t)2 = χt−1(α, β)}t∈[T] .

Viewing h(t, t+1) as a vector u(1)‖v(1)‖0n−2k‖w(1)‖u(2)‖v(2)‖0n−2k‖w(2) ∈ F4n, for u(1), u(2), v(1), v(2) ∈
Fk and w(1), w(2) ∈ F2k, we choose the matrices to enforce the following rank-1 constraints:

w
(1)
1 ·

α− k∑
j=1

βju
(2)
j

 = w
(2)
1 ,

43

w
(1)
2 ·

α− k∑
j=1

βjv
(2)
j

 = w
(2)
2 ,

w
(2)
1 − w

(2)
2 = w

(2)
3 .

Note that Ap, Bp, Cp are 3× 4n matrices over F, as claimed.

9.2 Proof of Lemma 9.2

We provide an oracle reduction from checking the R1CS machines relation to testing proximity to the
Reed-Solomon code. We rely on two ingredients: (a) the matrix permutation check protocol (Lemma 9.4),
and (b) the oracle reduction from the R1CS automata relation to testing the Reed-Solomon code (Lemma 8.2).

Observe that checking membership in the relationRR1M amounts to checking that: (1) the execution trace
f satisfies the time constraints; (2) the memory trace f ′ satisfies the memory constraints; (3) the memory trace
f ′ is a permutation of the execution trace f ; and (4) the execution trace f satisfies the boundary constraints.
We “program” an automaton to check time constraints and memory constraints, and additionally program
the (interactive) automaton to check the permutation condition via the matrix permutation check protocol in
Section 9.1. This latter is the only place wherein we use the interactivity of the automata.

We now elaborate on this plan, by first describing the reduction from machines to interactive automata,
and then describing the oracle reduction induced by it.

From machines to interactive automata. Let x = (F, (A,B,C) , (A′, B′, C ′) ,B) be an instance for the
relationRR1M (see Definition 9.1), in which the time constraints are matrices A,B,C ∈ Fm×2k, the memory
constraints are matrices A′, B′, C ′ ∈ Fm×2k, and the boundary constraints are a set B ⊆ [T]× [k]× F.

Below we describe how to construct an instance x′ = (F,A,B,C,B′, ` = 2) for the relationR2,ε
R1A with

ε := Nn/|F| (see Definition 8.1). After that we describe how to transform a witness for x into one for x′.

• Instance reduction. First we split each matrixM ∈ {A,B,C,A′, B′, C ′} into halvesM1,M2 ∈ Fm×k by
putting the first k columns into M1 and other k into M2. Now let Ap(α, β), Bp(α, β), Cp(α, β) ∈ F3×4n

be the matrices obtained from the distribution D in Lemma 9.4 with randomness α, β ∈ F.

We now define the function A : F2 → Fn×4n.

A(α, β) :=

A1 0m×k 0m×n−2k 0m×n A2 0m×k 0m×n−2k 0m×n

0m×k A′1 0m×n−2k 0m×n 0m×k A′2 0m×n−2k 0m×n

Ap(α, β)

0(n−2m−3)×4n

We similarly define the functions B,C : F2 → Fn×4n.10

Observe that we have constructed the functions above so that, given a trace h : [T + 1]→ F2n parsed as the
concatenation of traces f : [T]→ Fk, f ′ : [T]→ Fk, g : [T +1]→ Fn (discarding columns as appropriate),
if

∀ t ∈ [T] , A(α, β)h(t, t+ 1) ◦B(α, β)h(t, t+ 1) = C(α, β)h(t, t+ 1) ,

10The functions A,B,C are actually supposed to be from Fr` to Fn×2rn where r is the number of rounds and ` is the number of
field elements sent by the verifier in each round (see Definition 8.1). But here the verifier’s first message is empty and its second
message has two field elements. So, given that r = 2, we find it more convenient to take A,B,C to be functions from F2 to Fn×4n.

44

then we know that f satisfies time constraints, f ′ satisfies memory constraints, and h satisfies the constraints
in Lemma 9.4 induced by the randomness α, β.

We define the boundary constraints B′ ⊆ [T + 1]× [4n]× F to be the union of the boundary constraints B
in x and the boundary constraints from the matrix permutation check (in Lemma 9.4). More precisely,
(t, j, α) ∈ B′ if and only if (t, j, α) ∈ B or (t, j, α) ∈ {(1, n+ 1, 1), (1, n+ 2, 1), (T + 1, n+ 3, 0)}.
Note that transforming x into x′ can be performed in linear time.

• Witness reduction. Suppose that x has a valid witness w = (f, π), namely, (x,w) ∈ RR1M. Let
f ′ : [T]→ Fk be the memory trace obtained by permuting f according to π: for every t ∈ [T], we define
f ′(t) := f(π(t)). Let P

w
′ be the prover strategy for the game defined by x′ that works as follows:

1. the prover sends (f‖f ′‖0) : [T]→ F2n, the padded concatenation of the execution and memory traces;
2. the prover receives two elements α, β ∈ F from the verifier;
3. the prover uses α, β to construct an auxiliary trace g : [T + 1] → Fn such that µ(f, f ′) = 1 (as

guaranteed by Lemma 9.4);
4. the prover sends g.

Observe that the foregoing is a (standard, polynomial-time) reduction fromRR1M toR2,ε
R1A =: (RYes,LNo).

Claim 9.5. If (x,w) ∈ RR1M, then (x′, P
w
′) ∈ RYes. If instead x 6∈ L(RR1M), then x′ ∈ LNo.

Proof. Suppose that (x,w) ∈ RR1M. Then (x′, P
w
′) ∈ RYes because by construction the R1CS automaton

defined by x′ runs the permutation check on f, f ′ (which always passes), time constraints check on f (which
always passes), and memory constraints check on f ′ (which always passes).

Suppose instead that x 6∈ L(RR1M). We argue that x′ ∈ LNo. Consider a candidate prover strategy
P
w
′ . We need to argue that P

w
′ wins the game defined by x′ with probability at most ε = kT/|F|. Let

(f‖f ′) : [T]→ F2k be the first message sent by P
w
′ . If f does not satisfy the time constraints in x or f ′ does

not satisfy the memory constraints in x, then the prover loses with probability 1, because the R1CS automaton
x
′ checks both of these conditions. So suppose that f and f ′ satisfy the time and memory constraints

respectively. This means that f ′ is not a permutation of f (for otherwise x would have been in the language
ofRR1M), and so we can use the soundness condition of Lemma 9.4. Indeed, we know that, with probability
at least 1− kT/|F| over the verifier’s choice of α, β ∈ F, the second message g : [T + 1]→ F3 of the prover
does not satisfy the permutation check constraints, in which case the prover loses.

Protocol 9.6. Let F be a finite field, H a coset in F, and L ⊆ F with L ∩H = ∅. Let T : [N]× [n]→ H be
a trace embedding in F with N = T + 1 and n ≥ 2k. We need to construct an oracle reduction (P, V) that
works for instances x = (F, (A,B,C) , (A′, B′, C ′) ,B) of computation time T and width k.

The oracle reduction is straightforward: we reduce the R1CS machine to an interactive R1CS automaton
and then invoke the oracle reduction (P ′, V ′) from Lemma 8.2. (Note that the hypothesis in Lemma 9.2 is
the same as in Lemma 8.2, so that we can indeed invoke the latter.)

In more detail, the prover P and verifier V each transform the given instance x for the relation RR1M

into the instance x′ for the relationR2,ε
R1A = (RYes,LNo), following the instance reduction described above.

Also, the prover P transforms a witness w = (f, π) for x into a witness P
w
′ for x′, following the witness

reduction described above. Then, letting the prover P and V engage in an oracle reduction with P playing
the role of P ′(x′, P

w
′) and V playing the role of V ′(x′). Finally, the verifier V outputs whatever V ′ outputs.

Completeness. If (x,w) ∈ RR1M, then (x′, P
w
′) ∈ RYes, and completeness of the oracle reduction

(P ′, V ′) for automata implies completeness of the oracle reduction (P, V) for machines.

45

Soundness. If x 6∈ L(RR1M), then x ∈ LNo, and so we obtain the soundness guarantee of the oracle
reduction (P ′, V ′).

Efficiency. The prover P runs in time poly(|x|+ T) and the verifier V runs in time poly(|x|) because the
respective running times in the oracle reduction (P ′, V ′) are poly(|x′|+N) and the verifier V runs in time
poly(|x′|) and it holds that |x′| = O(|x|) and N = O(T). (Also, x′ can be efficiently derived from x.)

The locality of (P, V) is 3 because the locality of (P ′, V ′) is r + 1 when the interactive automaton has r
rounds, which in the case of x′ is r = 2. The length of (P, V) is 6|L|.

46

10 Proofs of main results

In Section 10.1 we prove Theorem 3, and in Section 10.2 we prove Theorem 2.

10.1 Checking satisfiability of algebraic machines

In Section 9 we obtained an oracle reduction from the R1CS machine relation to testing proximity to the
Reed–Solomon code. We now combine this oracle reduction with a linear-size IOP of proximity for the
Reed–Solomon code of [BCGRS17] to obtain our main result. We first recall this latter result.

Lemma 10.1 ([BCGRS17, Theorem 5.1]). Fix a rate parameter ρ ∈ (0, 1) and a proximity parameter
δ ∈ (0, (1− ρ)/2). Let F be a finite field, L0 a subgroup of F that itself has a subgroup of size Θ(|L0|α) for
some α ∈ (0, 1), and let L be a coset of L0. There exists a 2-round IOPP system for RS [L, ρ] with linear
proof length, qw = 1, qπ = 2, distance parameter δ, constant soundness error, and constant query complexity.
The prover uses O(|L| polylog |L|) field operations and the verifier uses polylog(|L|) field operations. The
verifier’s first message is empty.

The result in [BCGRS17] is stated with soundness 1/2 and some constant query complexity; applying query
reduction to the protocol’s second round yields the same result but with 3 queries and constant soundness.

Next we introduce our definition for large smooth fields, which captures the properties that we use to
construct suitable trace embeddings. When a field is (T (n), k(n), ρ(n))-smooth according to the definition
below, we can use the algorithm of Lemma 6.2 to construct a trace embedding of size T (n)×O(k(n)) in
time poly(log T (n), k(n)). For example, the family {Fp2n}n∈N is (pn, O(n), O(1))-smooth; the same is
true of fields with smooth multiplicative subgroups in the sense of [BS08]. The additional, and somewhat
technical, conditions in the definition ensure the existence of a subgroup L0 of F of size Θ(k(n) · T (n)) with
a suitable coset L, so that we can invoke Lemma 10.1 with rate parameter ρ(n).

Definition 10.2. A family of fields {F(n)}n∈N is (T (n), k(n), ρ(n))-smooth if there exists α ∈ (0, 1) and a
family {H1(n), H2(n), L0(n)}n∈N, such that H1(n), H2(n), L0(n) are subgroups of F(n), where for all n:

• |H1(n)| = T (n), k(n) ≤ |H2(n)| = O(k(n)), and |H1(n) ∩H2(n)| = 1;
• L0(n) has a subgroup of size Θ(|L0(n)|α);
• if H(n) is the smallest subgroup of F(n) containing H1(n) and H2(n) then L0(n) contains H(n) with
ρ(n) ≥ |H(n)|/|L0(n)| = Ω(ρ(n)).

Note that if {F(n)}n∈N is (T (n), k(n), ρ(n))-smooth then it is also (T (n), ck(n), c′ρ(n))-smooth for any
constants c ∈ (0, 1], c′ > 1.

The above condition suffices for the construction to be feasible, but for prover efficiency we require much
more structure. The following condition guarantees the existence of a fast Fourier transform which runs in
time O(n log n); it is a usual notion of smoothness for integers. Again, ensembles of binary fields or fields
with smooth multiplicative subgroups satisfy this definition. Crucially for us, if our field family satisfies the
following condition then the prover time in Lemma 10.1 can be reduced to O(|L| log |L|).

Definition 10.3. A family of fields {F(n)}n∈N is (T (n), k(n), ρ(n))-very smooth if it is (T (n), k(n), ρ(n))-
smooth and there exists a constant c such that the prime factors of |L0(n)| are all at most c for all n.

To give the formal statement of our main theorem, we first define a parameterized version of the R1CS
machine relation.

47

Definition 10.4. The relationRR1M[F(n), T (n), k(n)] consists of pairs (x,w) ∈ RR1M such that F = F(n),
T = T (n) and k ≤ k(n).

We derive our main result (informally stated in Theorem 3) by combining Lemma 9.2 and Lemma 10.1.
We assume that F(n) is uniformly specified via a primitive element, and also via the factorization of |F(n)|
and |F(n)∗| so that we can efficiently construct any (additive or multiplicative) subgroup of F(n).

Theorem 10.5. Let F = {F(n)}n∈N be a (T (n) + 1, 2k(n), ρ(n))-smooth field family with T (n) ≥ n,
k(n) = poly(n); let S(n) := k(n)T (n)/ρ(n). There exists a universal constant ε0 such that there exists
a 5-round IOP for RR1M[F(n), T (n), k(n)] with a proof length of O(S(n)) field elements, 5 queries, and
soundness error ε0. The verifier uses poly(n, log T (n)) field operations.

Moreover, if F is very smooth then the prover uses O(S(n)(logS(n) + n)) field operations.

Proof. Let x be an instance of the R1CS machine relation RR1M[F(n), T (n), k(n)] (see Definition 9.1).
Since F(n) comes from a smooth family, we can use Lemma 6.2 to efficiently construct a trace embedding
T : H(n) → H1(n) ×H2(n) with |H1(n)| = T (n) + 1 and 2k(n) ≤ |H2(n)| = O(k(n)); these choices,
from the theorem’s hypothesis, are compatible with Lemma 9.2.

Moreover, let L0(n) be as guaranteed by the smoothness condition, and let L(n) be a coset of L0(n)
which is not L0(n) itself. Since H(n) ⊆ L0(n), we have L(n) ∩H(n) = ∅ (as required by Lemma 9.2).

By Lemma 9.2, there exists a 3-round RS oracle reduction over domain L fromRR1M. By Lemma 10.1,
and the smoothness condition, there exists a 2-round IOP of proximity for RRS over L. Applying Corol-
lary 5.10 to these components yields a 5-round IOP forRRS with the stated parameters.

10.2 Checking satisfiability of succinct arithmetic circuits

In this section we prove our result for the relation Succinct-ASAT, which consists of succinctly-represented
arithmetic circuits that are satisfiable. We begin by defining this relation.

Definition 10.6. Let m ∈ N, E : Fm → Fm be an arithmetic circuit, o ∈ Fm, and T ∈ N. We define HE,o,T

to be the set {a1, . . . , aT } ⊆ Fm, where a1 := o and, for all i ∈ {1, . . . , T − 1}, ai+1 := E(ai). In other
words, E enumerates the set HE,o,T as o, E(o), E(E(o)), and so on.

Definition 10.7. The relation Succinct-ASAT consists of pairs
(
(F,m,E, o, T, I,D), w

)
, where F is a

finite field, m ∈ N, E : Fm → Fm is an arithmetic circuit for enumerating gates, o ∈ Fm is the label
of the output gate, T ∈ N is the number of gates, I is a subset of HE,o,T representing the input gates,
D : Fm → ({+, "}×HE,o,T ×HE,o,T)∪ {F} is an arithmetic circuit that describes an arithmetic circuit C,
and the witness w : I → F is such that C(w) = 0.

We define a parameterized version of Succinct-ASAT.

Definition 10.8. The relation Succinct-ASAT[F(n), T (n), k(n)] consists of pairs (x,w) ∈ Succinct-ASAT
such that F = F(n), T = T (n) and |E|+ |D| ≤ k(n).

Next we give the formal statement of Theorem 2.

Theorem 10.9. There exist universal constants ε0 ∈ (0, 1), c ∈ N such that for any (T (n) + 1, ck(n), O(1))-
very smooth field family with T (n) ≥ n, there is a 5-round IOP for Succinct-ASAT[F(n), T (n), k(n)] with
a proof length of O(S) field elements for S := T · k(n), 5 queries, and soundness error ε0. The prover uses
O(S logS) field operations and the verifier uses poly(|E|, |D|, k(n)).

48

Above, |E|, |D| are the number of gates in E,D respectively. Note that C has T gates whose names are
in Fm, and hence the number of field elements needed to represent C is Θ(T ·m), because the representation
includes for each gate inHE,o,T ⊆ Fm the names of the gates to which that gate is connected. In particular, the
proof length in Theorem 10.9 is linear in the number of field elements to represent C when |E|, |D| = O(m).

The proof of Theorem 10.9 is a direct implication of the following lemma.

Lemma 10.10. There exists a universal constant c ∈ N such that there is a polynomial-time reduction from
Succinct-ASAT[F(n), T (n), k(n)] toRR1M[F(n), T (n), ck(n)]. The size of theRR1M instance is linear in
the size of the Succinct-ASAT instance.

Proof sketch. We begin by describing the witness reduction. Let
(
(F,m,E, o, T, I,D), w

)
∈ Succinct-ASAT.

The witness w assigns a value to every wire of C.
• The first part of the witness for the algebraic machine is a function f : [3T] × [k] → F, where k =
c(|E| + |D|), as follows. For each gate g ∈ HE,o,T , ordered by E starting from o, we add three rows
corresponding to g, labelled l, r, o respectively. These rows include the gate label g and the labels and
values of the input wires.
• The second part of the witness f ′ lists, for each gate g ordered by E starting from o, all the rows in which

it appears in f : first the unique row labelled o corresponding to g, then all rows labelled l where g is a left
input, then all rows labelled r where g is a right input.

The label l, r, o determines uniquely, for each row, to which gate it belongs in f ′. Hence f ′ is a permutation
of f ; this permutation π is the last part of the witness. The whole witness consists of O(T · (|E|+ |D|)) field
elements.

Now we discuss the instance reduction. The time constraints check that f is ordered correctly according
to E, each gate g is correctly evaluated according to D, and that the left, right and output entries for g are all
present. The memory constraints check that f ′ is ordered correctly according to E, and that the assignment
of the g-wire in each row is consistent with the value of the gate g. Clearly the size of this constraint system
is linear in |E|+ |D|.

Finally, we have a boundary constraint that checks that the output of C is 0.

49

Acknowledgments

We thank Michael Forbes for helpful discussions. This work was supported in part by: the UKRI Fu-
ture Leaders Fellowship MR/S031545/1, and donations from the Ethereum Foundation and the Interchain
Foundation.

References
[AGHP92] Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. “Simple Construction of Almost k-wise

Independent Random Variables”. In: Random Structures and Algorithms 3.3 (1992), pp. 289–304.

[ALMSS98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. “Proof verification
and the hardness of approximation problems”. In: Journal of the ACM 45.3 (1998). Preliminary
version in FOCS ’92., pp. 501–555.

[AS98] Sanjeev Arora and Shmuel Safra. “Probabilistic checking of proofs: a new characterization of NP”. In:
Journal of the ACM 45.1 (1998). Preliminary version in FOCS ’92., pp. 70–122.

[BBHR18a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and post-
quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046. 2018.

[BBHR18b] Eli Ben-Sasson, Iddo Bentov, Ynon Horesh, and Michael Riabzev. “Fast Reed–Solomon Interactive
Oracle Proofs of Proximity”. In: Proceedings of the 45th International Colloquium on Automata,
Languages and Programming. ICALP ’18. 2018, 14:1–14:17.

[BCFGRS17] Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev, and Nicholas
Spooner. “Zero Knowledge Protocols from Succinct Constraint Detection”. In: Proceedings of the
15th Theory of Cryptography Conference. TCC ’17. 2017, pp. 172–206.

[BCGGHJ17] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi, and Sune K.
Jakobsen. “Linear-Time Zero-Knowledge Proofs for Arithmetic Circuit Satisfiability”. In: Advances
in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of
Cryptology and Information Security. 2017, pp. 336–365.

[BCGRS17] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner. “In-
teractive Oracle Proofs with Constant Rate and Query Complexity”. In: Proceedings of the 44th
International Colloquium on Automata, Languages and Programming. ICALP ’17. 2017, 40:1–40:15.

[BCGT13a] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. “Fast Reductions from RAMs
to Delegatable Succinct Constraint Satisfaction Problems”. In: Proceedings of the 4th Innovations in
Theoretical Computer Science Conference. ITCS ’13. 2013, pp. 401–414.

[BCGT13b] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. “On the Concrete Efficiency of
Probabilistically-Checkable Proofs”. In: Proceedings of the 45th ACM Symposium on the Theory of
Computing. STOC ’13. 2013, pp. 585–594.

[BCGV16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. “Quasilinear-Size Zero Knowl-
edge from Linear-Algebraic PCPs”. In: Proceedings of the 13th Theory of Cryptography Conference.
TCC ’16-A. 2016, pp. 33–64.

[BCRSVW19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P.
Ward. “Aurora: Transparent Succinct Arguments for R1CS”. In: Proceedings of the 38th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques. EUROCRYPT ’19.
Full version available at https://eprint.iacr.org/2018/828. 2019, pp. 103–128.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In: Proceed-
ings of the 14th Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60.

50

https://eprint.iacr.org/2018/828

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. “Checking computations in
polylogarithmic time”. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing.
STOC ’91. 1991, pp. 21–32.

[BGHSV05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. “Short PCPs
Verifiable in Polylogarithmic Time”. In: Proceedings of the 20th Annual IEEE Conference on Compu-
tational Complexity. CCC ’05. 2005, pp. 120–134.

[BGHSV06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. “Robust PCPs
of Proximity, Shorter PCPs, and Applications to Coding”. In: SIAM Journal on Computing 36.4
(2006), pp. 889–974.

[BK95] Manuel Blum and Sampath Kannan. “Designing Programs That Check Their Work”. In: Journal of
the ACM 42.1 (1995). Preliminary version in STOC ’89., pp. 269–291.

[BKKMS13] Eli Ben-Sasson, Yohay Kaplan, Swastik Kopparty, Or Meir, and Henning Stichtenoth. “Constant Rate
PCPs for Circuit-SAT with Sublinear Query Complexity”. In: Proceedings of the 54th Annual IEEE
Symposium on Foundations of Computer Science. FOCS ’13. 2013, pp. 320–329.

[BKS18] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. “Worst-Case to Average Case Reduc-
tions for the Distance to a Code”. In: Proceedings of the 33rd ACM Conference on Computer and
Communications Security. CCS ’18. 2018, 24:1–24:23.

[BS08] Eli Ben-Sasson and Madhu Sudan. “Short PCPs with Polylog Query Complexity”. In: SIAM Journal
on Computing 38.2 (2008). Preliminary version appeared in STOC ’05., pp. 551–607.

[BSVW03] Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. “Randomness-efficient low degree
tests and short PCPs via epsilon-biased sets”. In: Proceedings of the 35th Annual ACM Symposium on
Theory of Computing. STOC ’03. 2003, pp. 612–621.

[Bab85] László Babai. “Trading group theory for randomness”. In: Proceedings of the 17th Annual ACM
Symposium on Theory of Computing. STOC ’85. 1985, pp. 421–429.

[Bow+18] Sean Bowe et al. Implementation Track Proceeding. Tech. rep. https://zkproof.org/
documents.html. ZKProof Standards, 2018.

[CZ15] Alessandro Chiesa and Zeyuan Allen Zhu. “Shorter arithmetization of nondeterministic computations”.
In: Theoretical Computer Science 600 (2015), pp. 107–131.

[Din07] Irit Dinur. “The PCP theorem by gap amplification”. In: Journal of the ACM 54.3 (2007), p. 12.

[FGLSS96] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. “Interactive proofs
and the hardness of approximating cliques”. In: Journal of the ACM 43.2 (1996). Preliminary version
in FOCS ’91., pp. 268–292.

[GI05] Venkatesan Guruswami and Piotr Indyk. “Linear-time encodable/decodable codes with near-optimal
rate”. In: IEEE Transactions on Information Theory 51.10 (2005). Preliminary version appeared in
STOC ’03., pp. 3393–3400.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The knowledge complexity of interactive proof
systems”. In: SIAM Journal on Computing 18.1 (1989). Preliminary version appeared in STOC ’85.,
pp. 186–208.

[GS06] Oded Goldreich and Madhu Sudan. “Locally testable codes and PCPs of almost-linear length”. In:
Journal of the ACM 53 (4 2006). Preliminary version in STOC ’02., pp. 558–655.

[GS89] Yuri Gurevich and Saharon Shelah. “Nearly linear time”. In: Logic at Botik ’89, Symposium on Logical
Foundations of Computer Science. 1989, pp. 108–118.

[HS00] Prahladh Harsha and Madhu Sudan. “Small PCPs with Low Query Complexity”. In: Computational
Complexity 9.3–4 (2000). Preliminary version in STACS ’01., pp. 157–201.

51

https://zkproof.org/documents.html
https://zkproof.org/documents.html

[IMSX15] Yuval Ishai, Mohammad Mahmoody, Amit Sahai, and David Xiao. On Zero-Knowledge PCPs:
Limitations, Simplifications, and Applications. Available at http://www.cs.virginia.edu/
˜mohammad/files/papers/ZKPCPs-Full.pdf. 2015.

[KR08] Yael Kalai and Ran Raz. “Interactive PCP”. In: Proceedings of the 35th International Colloquium on
Automata, Languages and Programming. ICALP ’08. 2008, pp. 536–547.

[Kil92] Joe Kilian. “A note on efficient zero-knowledge proofs and arguments”. In: Proceedings of the 24th
Annual ACM Symposium on Theory of Computing. STOC ’92. 1992, pp. 723–732.

[LN97] Rudolf Lidl and Harald Niederreiter. Finite Fields. Second Edition. Cambridge University Press,
1997.

[Lip89] Richard J. Lipton. “New Directions In Testing”. In: Proceedings of a DIMACS Workshop in Distributed
Computing And Cryptography. 1989, pp. 191–202.

[Mic00] Silvio Micali. “Computationally Sound Proofs”. In: SIAM Journal on Computing 30.4 (2000). Prelim-
inary version appeared in FOCS ’94., pp. 1253–1298.

[Mie09] Thilo Mie. “Short PCPPs verifiable in polylogarithmic time with O(1) queries”. In: Annals of Mathe-
matics and Artificial Intelligence 56 (3 2009), pp. 313–338.

[PS94] Alexander Polishchuk and Daniel A. Spielman. “Nearly-linear size holographic proofs”. In: Pro-
ceedings of the 26th Annual ACM Symposium on Theory of Computing. STOC ’94. 1994, pp. 194–
203.

[PY86] Christos H. Papadimitriou and Mihalis Yannakakis. “A Note on Succinct Representations of Graphs”.
In: Information and Control 71.3 (1986), pp. 181–185.

[RR19] Noga Ron-Zewi and Ron D. Rothblum. Local Proofs Approaching the Witness Length. Cryptology
ePrint Archive, Report 2019/1062. 2019. URL: https://eprint.iacr.org/2019/1062.

[RRR16] Omer Reingold, Ron Rothblum, and Guy Rothblum. “Constant-Round Interactive Proofs for Del-
egating Computation”. In: Proceedings of the 48th ACM Symposium on the Theory of Computing.
STOC ’16. 2016, pp. 49–62.

[Rob91] J. M. Robson. “An O(T log T) reduction from RAM computations to satisfiability”. In: Theoretical
Computer Science 82.1 (1991), pp. 141–149.

[SY10] Amir Shpilka and Amir Yehudayoff. “Arithmetic Circuits: A survey of recent results and open
questions”. In: Foundations and Trends in Theoretical Computer Science 5.3-4 (2010), pp. 207–388.

[Spi96] Daniel A. Spielman. “Linear-time encodable and decodable error-correcting codes”. In: IEEE Trans-
actions on Information Theory 42.6 (1996). Preliminary version appeared in STOC ’95., pp. 1723–
1731.

[ZGKPP18] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Papaman-
thou. “vRAM: Faster Verifiable RAM with Program-Independent Preprocessing”. In: Proceedings of
the 39th IEEE Symposium on Security and Privacy. S&P ’18. 2018, pp. 908–925.

[Ben+17] Eli Ben-Sasson et al. “Computational integrity with a public random string from quasi-linear PCPs”. In:
Proceedings of the 36th Annual International Conference on Theory and Application of Cryptographic
Techniques. EUROCRYPT ’17. 2017, pp. 551–579.

52

http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
https://eprint.iacr.org/2019/1062

	Abstract
	Contents
	1 Introduction
	1.1 Our results
	1.2 Limitations of prior work
	1.3 Open questions

	2 Technical overview
	2.1 Our starting point
	2.2 Checking succinctly-represented linear relations
	2.3 Checking bounded-space computations in polylogarithmic time
	2.4 Checking succinct satisfiability in polylogarithmic time
	2.5 Oracle reductions

	3 Roadmap
	4 Preliminaries
	4.1 Codes and polynomials
	4.2 Interactive oracle proofs

	5 Oracle reductions
	5.1 Definitions
	5.2 Reed–Solomon oracle reductions

	6 Trace embeddings
	6.1 Bivariate embeddings
	6.2 Successor orderings

	7 A succinct lincheck protocol
	7.1 Properties of the Lagrange basis
	7.2 Efficient linear independence via the tensor product
	7.3 Proof of lem:univariate-lincheck
	7.4 Extension to block-matrix lincheck

	8 Probabilistic checking of interactive automata
	8.1 Staircase matrices
	8.2 Proof of lem:autorelationiop

	9 Reducing machines to interactive automata
	9.1 Matrix permutation check protocol
	9.2 Proof of lemma:oracle-reduction-for-machines

	10 Proofs of main results
	10.1 Checking satisfiability of algebraic machines
	10.2 Checking satisfiability of succinct arithmetic circuits

	Acknowledgments
	References

