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Abstract

In this paper we analyze the new AEAD mode called the Multilinear Galois Mode
(MGM) originally proposed in CTCrypt 2017. This mode is currently considered in the
Russian Standardization system as the main contender to be adopted as a standard AEAD
mode. The analysis of the MGMmode was carried out in the paradigm of provable security,
in other words, lower security bounds were obtained for the Privacy and Authenticity
notions. These bounds show that the privacy and authenticity of this mode is provably
guaranteed (under security of the used block cipher) up to the birthday paradox bound.
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1 Introduction

Authenticated encryption with associated data schemes (AEAD), which aim at providing
both privacy and integrity (authenticity) of data, have gained renewed attention in the light of
the recently adopted TLS 1.3 [12] which requires the mandatory usage of such schemes.

The main advantages of the AEAD schemes are their exploitation transparency and simplic-
ity. Indeed, explicitly defined construction and unified interface facilitate correct implementing
and transparent embedding into high-level schemes. Moreover, the usage of one key for provid-
ing both privacy and authenticity eliminates the need for additional key diversification usually
used for producing a couple of independent keys for «generic compositions», meaning making
black-box use of a given symmetric encryption scheme and a given MAC. This feature allows to
claim (in addition to obvious performance improvement) that the AEAD schemes provide more
guaranteed security compared to the generic compositions since their security is held under
fewer assumptions.

In this paper we analyze the new AEAD mode called the Multilinear Galois Mode (MGM)
originally proposed in [10] and later described in [9]. This mode is currently considered in
the Russian Standardization system as the main contender to be adopted as a standard AEAD
mode. The structure of the mode is as follows. The MGM plaintext encryption procedure is quite
similar to encryption in the counter mode (certainly, in the CTR2 mode [13]). The main element
of the MGM authentication procedure is a multilinear function with secret coefficients produced
in the same way as the secret masking blocks used for plaintext encryption. This construction
allows to keep such advantages of the CTR2 mode as parallelization, online, inverse-free and
availability of precomputations.

The analysis of the MGM mode was carried out in the paradigm of provable security, in
other words, lower security bounds were obtained for security notions relevant for AEAD modes
(the Privacy and Authenticity notions).

This paper is structured as follows. Firstly, in Section 2 we introduce preliminaries. In
Section 3 and Section 4 we describe encryption and decryption procedures of the MGM mode
and talk about their design rationales. In Section 5 we remind accompanying security notions
and introduce auxiliary security notions. In Section 6 we provide two theorems about privacy
and authenticity of the MGM mode.

2 Preliminaries

By {0, 1}u we denote the set of u-component bit strings and by {0, 1}∗ we denote the set of
all bit strings of finite length. Let 0u be the string, consisting of u zeros. For bit strings U and
V we denote by U‖V their concatenation. Let |U | be the bit length of the string U . We denote
by |U |u = d|U |/ue the length of the string U in u-bit blocks.

Denote by {0, 1}n×m the set of all m-tuples where elements of an m-tuple are n-bit blocks,
m is called a length of tuple. By {0, 1}n×∗ we denote the set of all tuples of finite length. For
m-tuple X we denote by {X} the set of all elements of X. To reduce expressions in formulas,
for x ∈ {0, 1}n, X, Y ∈ {0, 1}n×∗, we use the natural notations x ∈ X, x /∈ X, and X ∩ Y
instead of x ∈ {X}, x /∈ {X}, and {X} ∩ {Y }.
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For a bit string U and a positive integer l 6 |U | let msbl(U) (lsbl(U)) be the string,
consisting of the leftmost (rightmost) l bits of U . For integers l > 0 and i > 0 let strl(i) be
l-bit representation of i with the least significant bit on the right. For an integer l > 0 and a
bit string U ∈ {0, 1}l let int(U) be an integer i such that strl(i) = U .

Let incr(U) be the function, which takes the input L‖R, where L,R ∈ {0, 1}n/2, and outputs
the string L‖strn/2(int(R) + 1 mod 2n/2). Let incl(U) be the function, which takes the input
L‖R, where L,R ∈ {0, 1}n/2, and outputs the string strn/2(int(L) + 1 mod 2n/2)‖R.

For any set S, define Perm(S) as the set of all bijective mappings on S (permutations on
S), and Func(S) as the set of all mappings from S to S. A block cipher E (or just a cipher)
with block size n and key size k is a permutation family

(
EK ∈ Perm({0, 1}n) | K ∈ {0, 1}k

)
,

where K is a key. If the value s is chosen from a set S uniformly at random, then we denote
s
U←− S.
Hereinafter we denote random variables using tilde (e.g. λ̃) and its specific values with-

out tilde (i.e. λ). Let Λ̃ = (λ̃1, . . . , λ̃m) be an m-tuple of random variables λ̃i : Ω → {0, 1}n,
i = 1, . . . , n, where Ω is a finite probability space. Let Λ be a possible value of m-tuple Λ̃.
By Λ̃ \ {λ̃i1 , . . . , λ̃is} we denote the tuple Λ̃ from which the random variables λ̃i1 , . . . , λ̃is are
ejected. And by Λ \ {λ̃i1 , . . . , λ̃is} denote a possible value of Λ̃ \ {λ̃i1 , . . . , λ̃is}. For ω ∈ Ω, let
Λ̃(ω) denote the m-tuple (λ̃1(ω), . . . , λ̃1(ω)).

By Λ coll we denote a predicate to be equal to true, if there exist coincide elements in Λ,
and false, otherwise. Denote by Λ coll the negation of the predicate Λ coll. For tuple Λ̃, denote
by Λ̃ coll an event {ω ∈ Ω | Λ̃ coll = true}, i.e. the tuple of output values Λ doesn’t contain
coincide elements. By Λ̃ coll denote the negation of the event Λ̃ coll.

Finally, by λ̃ ∈val Λ̃ denote the event {ω ∈ Ω | λ̃(ω) ∈ Λ̃(ω)}.

3 MGM Description

An additional parameter that defines the functioning of the MGM mode is the size s of the
authentication tag (in bits). The value of smust be fixed for a particular protocol, 32 ≤ s ≤ 128.

3.1 MGM Encryption

The MGM encryption algorithm based on a cipher E takes as inputs a key K ∈ {0, 1}k, a
nonce N ∈ {0, 1}n−1, a plaintext P ∈ {0, 1}∗, 0 6 |P | < 2n/2, and associated data A ∈ {0, 1}∗,
0 6 |A| ≤ 2n/2. The length of the associated data A and of the plaintext P must be such that
0 < |A|+ |P | 6 n · 2n/2. The outputs of this algorithm are a ciphertext C ∈ {0, 1}|P | and a tag
T ∈ {0, 1}s that are calculated as follows:

1. The plaintext P and associated data A are divided into sequences of n-bit blocks (perhaps
except last one):

A = A1‖ . . . ‖Ah−1‖A∗h, Aj ∈ {0, 1}n, A∗h ∈ {0, 1}a,
P = P1‖ . . . ‖Pt−1‖P ∗t , Pi ∈ {0, 1}n, P ∗t ∈ {0, 1}c,

where j = 1, 2, . . . , h− 1; i = 1, 2, . . . , t− 1; 1 6 a, c 6 n and h+ t > 0.
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2. Encryption: 
Y1 = EK(0‖N),

Yi = incr(Yi−1), 2 6 i 6 t,

Ci = Pi ⊕ EK(Yi), 1 6 i 6 t− 1,

C∗t = P ∗t ⊕msbc(EK(Yt)).

3. Blocks A∗h ∈ {0, 1}a and C∗t ∈ {0, 1}c are padded if needed:{
Ah = A∗h‖0n−a,
Ct = C∗t ‖0n−c.

4. Authentication tag calculation:

T = msbs

(
EK

(
h∑
i=1

Hi · Ai ⊕
t∑

j=1

Hh+j · Cj ⊕Hh+t+1 ·
(
strn/2(|A|)‖strn/2(|C|)

)))
,

where Hi = EK(Zi), · and ⊕ (
∑

) is multiplication and summation in GF (2n) (here bit-
string are interpreted as field elements in the standard way) and values Zi, i = 1, 2, . . .
are defined as follows: {

Z1 = EK(1‖N),

Zi = incl(Zi−1), 2 6 i 6 h+ t+ 1.

The encryption process is illustrated in Fig. 1.

3.2 MGM Decryption

The MGM decryption algorithm based on a cipher E takes as inputs a key K ∈ {0, 1}k, a
nonce N ∈ {0, 1}n−1, a ciphertext C ∈ {0, 1}∗, 0 6 |C| < 2n/2, and associated data A ∈ {0, 1}∗,
0 6 |A| < 2n/2. The length of the associated data A and of the ciphertext C must be such that
0 < |A| + |C| 6 n · 2n/2. The algorithm outputs a plaintext P ∈ {0, 1}|C| or Error that are
calculated as follows:

1. Ciphertext C and associated data A are divided into sequences of n-bit blocks (perhaps,
except the last one):

A = A1‖ . . . ‖Ah−1‖A∗h, Aj ∈ {0, 1}n, A∗h ∈ {0, 1}a,
C = C1‖ . . . ‖Ct−1‖C∗t , Ci ∈ {0, 1}n, C∗t ∈ {0, 1}c,

where j = 1, 2, . . . , h− 1, i = 1, 2, . . . , t− 1, 1 6 a, c 6 n and h+ t > 0.
2. Blocks A∗h ∈ {0, 1}a and C∗t ∈ {0, 1}c are padded if needed:{

Ah = A∗h‖0n−a,
Ct = C∗t ‖0n−c.
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Figure 1: MGM Encryption Procedure for full block messages.

3. Authentication tag calculation:

T̂ = msbs

(
EK

(
h∑
i=1

Hi · Ai ⊕
t∑

j=1

Hh+j · Cj ⊕Hh+t+1 ·
(
strn/2(|A|)‖strn/2(|C|)

)))
,

where Hi = EK(Zi), · and ⊕ (
∑

) is multiplication and summation in GF (2n), where n is
the block size of the used block cipher, and values Zi, i = 1, 2, . . . are defined as follows:{

Z1 = EK(1‖N),

Zi = incl(Zi−1), 2 6 i 6 h+ t+ 1.

4. Authentication tag verification:
Verify the equality T̂ = T . If T̂ 6= T , then output Error, else go to step 5.

5. Decryption: 
Y1 = EK(0‖N),

Yi = incr(Yi−1), 2 6 i 6 t,

Pi = Ci ⊕ EK(Yi), 1 6 i 6 t− 1,

P ∗t = C∗t ⊕msbc(EK(Yt)).
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4 Rationale

From the operational point of view the MGM mode is designed to be parallelizeable, inverse
free, online and to provide availability of precomputations.

Parallelizability of the MGM mode is achieved due to its counter-type structure and the
usage of the multilinear function for authentication. Indeed, both encryption blocks EK(Yi)
and authentication blocks Hi are produced in the counter mode manner, and the multilinear
function determined by Hi is parallelizeable in itself. Additionally, the counter-type structure
of the mode provides the inverse free property.

The online property means the possibility to process message even if it is not completely
received (so its length is unknown). To provide this property the MGMmode uses blocks EK(Yi)
and Hi which are produced basing on two independent source blocks Yi and Zi.

Availability of precomputations for the MGM mode means the possibility to calculate Hi

and EK(Yi) even before data is retrieved. It is holds due to again the usage of counters for
calculating them.

The MGM mode incorporates some mechanisms for advancing cryptographic properties.
Further we note the main ones:
• Different procedures generating the counter values Yi and Zi. The procedures incr and
incl are chosen to minimize intersection (if it happens) between the sets of counter values
{Yi} and {Zi}.
• Multilinear function for authentication. It allows to resist the small subgroup attacks [7].
• Ciphering of the multilinear function output. This procedure allows to resist Ferguson’s

attack [4].
• Ciphering of the nonces (0||N) and (1||N). The aim of this ciphering is to minimize the

number of plaintext/ciphertext pairs of blocks known to an adversary. Small number of
these pairs allows to resist attacks that need substantial amount of such material (e.g.,
linear [8] and differential [2] cryptanalysis, side-channel attacks [11]).

5 Security Notions

We model an adversary using an interactive probabilistic algorithm that has access to one
or more oracles. In the case when we need to bring to attention that the adversary A has access
to some oracle O we use the notation AO. Denote by A ⇒ val the event when an algorithm
A returns a value val as a result of its work. Denote by AdvM

S (A) the measure of the success
of the adversary A in realizing a certain threat, defined by the security notion M, for the
cryptographic scheme S. The formal definition of this measure will be given in each specific
case.

Block cipher. Standard security notions for block ciphers are PRP-CPA («Pseudo Random
Permutation under Chosen Plaintext Attack») and PRF («Pseudo Random Function») (see,
e.g., [1]).

For the PRP-CPA notion an adversary A has access to an oracle EK , where K is chosen
at random, or a random permutation oracle π. The adversary makes queries P ∈ {0, 1}n. The
oracle EK returns EK(P ) and the permutation oracle π returns π(P ). At the end of its work
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the adversary returns 1 or 0.
For an adversary A and a cipher E with parameters n and k define

AdvPRP-CPA
E (A) = Pr

[
K

U←− {0, 1}k : AEK ⇒ 1
]
− Pr

[
π
U←− Perm({0, 1}n) : Aπ ⇒ 1

]
,

where the probabilities are defined over the randomness of A and the choices of K and π.
The PRF notion is defined in the same way as PRP-CPA except for the random permutation

π
U←− Perm({0, 1}n), which is replaced by the random function ρ U←− Func({0, 1}n):

AdvPRF
E (A) = Pr

[
K

U←− {0, 1}k : AEK ⇒ 1
]
− Pr

[
ρ
U←− Func({0, 1}n) : Aρ ⇒ 1

]
.

AEAD mode. Standard security notions for the AEAD modes are Privacy and Authen-
ticity (see, e.g., [14]). Consider them for the abstract AEADE mode, where E is the underlined
cipher with parameters n and k. For simplicity, below we consider the case where a ciphertext
has the same length as a plaintext and an authentication tag of size s can be treated separately
from ciphertext.

In the current paper a block cipher E is assumed to be a family of all permutations
Perm({0, 1}n). This assumption is standard for the cryptographic analysis of block cipher
modes of operation (see, e.g., [5]).

Privacy. An adversary A has access to an encryption oracle E or a random-bits oracle $.
Before starting the work the encryption oracle chooses a permutation π U←− Perm({0, 1}n). The
adversary makes queries (N,A, P ), where N is a nonce, A is an associated data and P is a
plaintext. The random-bits oracle returns (C, T ), where C‖T U←− {0, 1}|P |+s. The encryption
oracle returns (C, T ), C ∈ {0, 1}|P |, T ∈ {0, 1}s, — the result of AEADPerm({0,1}n) encryption
of (N,A, P ) for permutation π. At the end of its work the adversary returns 1 or 0.

For the AEADPerm({0,1}n) mode define

AdvPriv
AEADPerm({0,1}n)

(A) = Pr
[
π
U←− Perm({0, 1}n) : AE ⇒ 1

]
− Pr

[
A$ ⇒ 1

]
,

where the probabilities are defined over the randomness of A, the choices of π and randomness
of the random-bits oracle, respectively. We consider a set of nonce-respecting adversaries, which
choose N unique for each query.

Authenticity. An adversary A has access to an encryption oracle E . Before starting the
work the oracle chooses a permutation π U←− Perm({0, 1}n). The adversary interacts with the
encryption oracle E in the same way as described in the Privacy notion. At the end of its
work the adversary outputs (N,A,C, T ), where N is a nonce, A is an associated data, C is
a ciphertext and T is an authentication tag. The adversary forges if (N,A,C, T ) is a valid
message and the value (C, T ) was not returned by the encryption oracle as a response to the
query (N,A, P ) for some P . As in the Privacy notion, we assume that A is nonce-respecting
to encryption oracle. We remark that nonces used for the encryption queries can be used in its
output.
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For the AEADPerm({0,1}n) mode define

AdvAuth
AEADPerm({0,1}n)

(A) = Pr
[
π
U←− Perm({0, 1}n) : AE forges

]
,

where the probability is defined over the randomness of A and the choice of π.

Auxiliary security notions for MGM mode. For the MGMPerm({0,1}n) mode we consider
an auxiliary mPrivacy notion that extends the adversary’s capabilities provided in the standard
Privacy notion. While in the standard Privacy notion the nonce-respecting adversary makes a
query (N,A, P ), where N ∈ {0, 1}n−1, A,P ∈ {0, 1}∗ : |A| + |P | > 0, in the modified version
the nonce-respecting adversary makes two sequential tied queries instead:

1. The first query consists of a nonce N ∈ {0, 1}n−1 and a parameter l ∈ N denoting the
desired block-length of the response.
In the case of the encryption oracle E the output is a tuple Γ ∈ {0, 1}n×l that consists
of l blocks Γk ∈ {0, 1}n, k = 1, . . . , l, and is used for plaintext encryption in the MGM
mode. In addition the oracle saves the N and l values that will be used for the next query
processing.
The first query processing: 

Y1 = π(0‖N),

Yk = incr(Yk−1), 2 6 k 6 l,

Γk = π(Yk), 1 6 k 6 l.

The random-bits oracle $ returns the tuple Γ ∈ {0, 1}n×l that consists of l random blocks
Γk

U←− {0, 1}n.
2. The second query is a tuple X ∈ {0, 1}n×l that should consist of exactly l blocks
Xk ∈ {0, 1}n, k = 1, . . . , l.
In the case of the encryption oracle E this tuple is used as a direct input for the multilinear
function of the MGM tag computation algorithm that also takes as input the nonce N
from the previous query. In order to prevent trivial attacks we should introduce the
following restriction on the tuple X: Xl 6= 0n. This restriction follows from the presence
of the mandatory non-zero block strn/2(|A|)‖strn/2(|C|). As a response the encryption
oracle returns a tag T ∈ {0, 1}s.
The second query processing:

Z1 = π(1‖N),

Zk = incl(Zk−1), 2 6 k 6 l,

Hk = π(Zk), 1 6 k 6 l,

τ =
l∑

k=1

Hk ·Xk,

T = msbs(π (τ)).
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The random-bits oracle $ returns a random tag T U←− {0, 1}s.
Similarly we introduce an auxiliary mAuthenticity notion: queries to the encryption oracle E

are modified in the same way as for the Privacy notion, and the output of an adversary is a
message (N,X, T ), where N ∈ {0, 1}n−1, T ∈ {0, 1}s, and X ∈ {0, 1}n×∗ is a tuple where the
last block Xl is non-zero. Similarly, the adversary forges if (N,X, T ) is a valid message and the
value T was not returned by the encryption oracle as a response to the tied queries N and X.

Remark 5.1. For the MGMFunc({0,1}n) mode the auxiliary notions are defined in the same
way except for the permutation π

U←− Perm({0, 1}n) which is replaced by the function
ρ
U←− Func({0, 1}n).

It is easy to show (using the reduction) that the proposed modifications cover all adversary’s
capabilities considered in the standard security notions.

Proposition 5.1. For any Privacy-breaking adversary A that makes at most q queries with the
total length of plaintexts and associated data at most σ blocks, there exists an mPrivacy-breaking
adversary A′ such that

AdvPriv
MGMPerm({0,1}n)

(A) = AdvmPriv
MGMPerm({0,1}n)

(A′) ,

where A′ makes at most q couples of tied queries with the total value of X lengths at most σ+ q
blocks.

Proof. Construct an adversary A′ that breaks mPrivacy-security of the MGMPerm({0,1}n) mode
using the adversary A. The A′ is constructed as follows. The adversary A′ starts the adver-
sary A, intercepts A’s queries and processes them by itself. During queries processing the
adversary «simulates» the oracle of the adversary A making the appropriate queries to its
own oracle. Intercepting the query (N,A, P ) from A the adversary A′ makes the following
couple of tied queries to its oracle. The first query consists of the nonce N and the length
parameter l = |A|n + |P |n + 1. Receiving the tuple Γ = (Γ1, . . . ,Γl) as a response to this
query the adversary A′ forms the ciphertext C = P ⊕ msb|P |(Γ1‖ . . . ‖Γ|Pn|). After that the
adversary A′ makes the second query — the tuple X that consists of the blocks of the string
A‖0n−a‖C‖0n−c‖(strn/2(|A|)‖strn/2(|C|)). Note that the tuple X length is exactly l blocks. Re-
ceiving the tag T as a response to the second query the adversary A′ returns the value (C, T )
to the adversary A′. As a result the adversary A′ returns the result of A.

Note that if the adversary A′ interacts with the encryption oracle E defined by the mPrivacy
notion, then it perfectly simulates for A the encryption oracle E defined by the Privacy notion,
and if it interacts with the random-bits oracle $, then it perfectly simulates A’s random-bits
oracle $. Therefore, for such an adversary:

AdvmPriv
MGMPerm({0,1}n)

(A′) = Pr
[
π
U←− Perm({0, 1}n) : (A′)E ⇒ 1

]
− Pr

[
(A′)$ ⇒ 1

]
=

= Pr
[
π
U←− Perm({0, 1}n) : AE ⇒ 1

]
− Pr

[
A$ ⇒ 1

]
= AdvPriv

MGMPerm({0,1}n)
(A) .

Note that mPrivacy-breaking adversary A′ makes queries with X length one more block
larger than the total length of A and P in the initial query of A′. Intercepting q queries with
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the total length of plaintexts and associated data at most σ blocks, A′ makes at most q couples
of tied queries with the total value of X lengths at most σ + q blocks.

Proposition 5.2. For any Authenticity-breaking adversary A, that makes at most q encryption
queries with the total length of plaintexts and associated data at most σ blocks and outputs a
forgery with the summary length of ciphertext and associated data at most l blocks, there exists
an mAuthenticity-breaking adversary A′ such that

AdvAuth
MGMPerm({0,1}n)

(A) = AdvmAuth
MGMPerm({0,1}n)

(A′) ,

where A′ makes at most q couples of tied encryption queries with the total value of X lengths
at most σ + q blocks and outputs a forgery with the X length at most l + 1 blocks.

The proof of this proposition is same as proof of Proposition 5.1.

6 Security Bounds

Additional notation. For convenience we introduce the following notation:
– Ỹ i = (Ỹ i

1 , . . . , Ỹ
i
li
), Y i

k ∈ {0, 1}n, — the tuple that consists of random function inputs used
as counters during encryption for the i-th query.

– Z̃i = (Z̃i
1, . . . , Z̃

i
li
), Zi

k ∈ {0, 1}n, — the tuple that consists of random function inputs used
as counters during computation of multilinear function coefficients for the i-th query.

– X̃ i = (X̃ i
1, . . . , X̃

i
li
), X i

k ∈ {0, 1}n, — the tuple that consists of message blocks in the i-th
query.

– Γ̃i = (Γ̃i1, . . . , Γ̃
i
li
), Γik = ρ(Y i

k ) ∈ {0, 1}n, — the tuple that consists of random function
outputs used during encryption for the i-th query.

– H̃ i = (H̃ i
1, . . . , H̃

i
li
), H i

k = ρ(Zi
k) ∈ {0, 1}n, — the tuple that consists of random function

outputs used as multilinear function coefficients for the i-th query.
– τ̃i =

∑li
j=1 H̃

i
k · X̃ i

k — the output of multilinear function for the i-th query. Here the bit
strings are interpreted as elements of GF (2n).

– T̃i = msbs(ρ(τ̃i)) — the tag value for the i-th query.

– D̃om
i

=
(

0‖Ñ1, 1‖Ñ1, Ỹ
1

1 , Z̃
1
1 , . . . , Ỹ

1
l1
, Z̃1

l1
, τ̃1, . . . , 0‖Ñi, 1‖Ñi, Ỹ

i
1 , Z̃

i
1, . . . , Ỹ

i
li
, Z̃i

li
, τ̃i

)
—

the tuple that consists of all random variables used during processing of the first i
queries.

6.1 mPrivacy-security of MGM mode

We consider the deterministic computationally unbounded adversary A that makes at most
q couples of tied queries where the sum of the length parameter values for each query is at most
σ blocks. The adversary is determined by 3q functions:
• q functions lAi that define the size parameters chosen by A for each query.
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The first function lA1 is constant, i.e. it is defined by the constant l1, and the next functions
are defined as follows:

li = lAi (Γ1, T1, . . . ,Γ
i−1, Ti−1) :

{0, 1}n×∗ × {0, 1}s × . . .× {0, 1}n×∗ × {0, 1}s︸ ︷︷ ︸
i−1

→ N, i = 2, . . . , q.

These functions must satisfy the following requirement:
q∑
i=1

lAi (Γ1, T1, . . . ,Γ
i−1, Ti−1) = σ, ∀ Γ1, T1, . . . ,Γ

q, Tq.

• q functions NAi that define nonces chosen by A for each query.
The function NA1 is constant, i.e. it is defined by the constant N1, and the next functions
are defined as follows:

Ni = NAi (Γ1, T1, . . . ,Γ
i−1, Ti−1) :

{0, 1}n×∗ × {0, 1}s × . . .× {0, 1}n×∗ × {0, 1}s︸ ︷︷ ︸
i−1

→ {0, 1}n−1, i = 2, . . . , q.

These functions must satisfy the following requirement:

∀ 1 6 i, j 6 q, i 6= j, ∀ Γ1, T1, . . . ,Γ
q, Tq

NAi (Γ1, T1, . . . ,Γ
i−1, Ti−1) 6= NAj (Γ1, T1, . . . ,Γ

j−1, Ti−1).

• q functions XAi that define messages chosen by A for each query:

X i = XAi (Γ1, T1, . . . ,Γ
i−1, Ti−1,Γ

i) :

{0, 1}n×∗ × {0, 1}s × . . .× {0, 1}n×∗ × {0, 1}s︸ ︷︷ ︸
i−1

×{0, 1}n×∗ → {0, 1}n×∗, i = 1, . . . , q.

These functions must satisfy the following requirements:

∀ Γ1, T1, . . . ,Γ
q−1, Tq−1,Γ

q, X i = XAi (Γ1, T1, . . . ,Γ
i−1, Ti−1,Γ

i) ∈ {0, 1}n×li ,
li = lAi (Γ1, T1, . . . ,Γ

i−1, Ti−1) : X i
li
6= 0n ∀ 1 6 i 6 q.

Remark 6.1. Note that there is no need to completely define the considered above functions.
Indeed, during the attack an adversary will obtain only the consistent responses Γi such that
Γi ∈ {0, 1}m×li , where li = lAi (Γ1, T1, . . . ,Γ

i−1, Ti−1).

Lemma 6.1. For any MGMFunc({0,1}n) mPrivacy-breaking adversary A, that makes at most q
couples of tied queries with the total value of X lengths at most σ blocks, the following inequality
holds:

Pr
[
D̃om

q

coll
]
6
σ2 + 8σq + 3q2

2n
,

where the probability is defined over the choice of the function ρ uniformly chosen from the set
Func({0, 1}n).

11



Proof. We have:

Pr
[
D̃om

q

coll
]

= Pr

[
D̃om

q

coll ∩ D̃om
q−1

coll

]
+

+ Pr

[
D̃om

q

coll ∩ D̃om
q−1

coll

]
= Pr

[
D̃om

q

coll ∩ D̃om
q−1

coll

]
+

+ Pr

[
D̃om

q−1

coll

]
.

Note that for Pr

[
D̃om

q−1

coll

]
the same formula will be correct. Therefore, for the probability

Pr
[
D̃om

q

coll
]
the following equality holds

Pr
[
D̃om

q

coll
]

=

q∑
i=2

Pr

[
D̃om

i

coll ∩ D̃om
i−1

coll

]
+ Pr

[
D̃om

1

coll

]
.

Firstly consider the probability Pr

[
D̃om

1

coll

]
.

Pr

[
D̃om

1

coll

]
=

∑
Y 1,Z1:

Dom1\{τ̃1} coll

Pr
[{

Ỹ 1=Y 1

Z̃1=Z1

}]
+

∑
Y 1,Z1:

Dom1\{τ̃1} coll

Pr

[
D̃om

1

coll ∩
{
Ỹ 1=Y 1

Z̃1=Z1

}]
.

Consider the first summand.

∑
Y 1,Z1:

Dom1\{τ̃1} coll

Pr
[{

Ỹ 1=Y 1

Z̃1=Z1

}]
=

∑
Y 1,Z1:

Dom1\{τ̃1} coll

#
{
ρ :

ρ(0‖N1)=Y 1
1

ρ(1‖N1)=Z1
1

}
2n2n

=

=
∑
Y 1,Z1:

Dom1\{τ̃1} coll

1

22n
= #

{
Y 1,Z1:

Dom1\{τ̃1} coll

}
· 1

22n
6

#

 ⋃
b∈{0,1}

{
Y 1:

b‖N1∈Y 1

}
× {Z1} ∪

⋃
b∈{0,1}

{
Z1:

b‖N1∈Z1

}
× {Y 1} ∪

{
Y 1,Z1:

Y 1∩Z1 6=∅

} · 1

22n
6

6 (2l1 · 2n + 2l1 · 2n + l21 · 2n) · 1

22n
=

4l1 + l21
2n

.

Consider the second summand. Note that after additional fixation of tuples Γ1, H1 the
random variable τ̃1 takes the fixed value τ1 =

∑l1
k1=1H

1
k1
·X1

k1
, where X1 = XA1 (Γ1), X1

l1
6= 0n.
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∑
Y 1,Z1:

Dom1\{τ̃1} coll

Pr

[
D̃om

1

coll ∩
{
Ỹ 1=Y 1

Z̃1=Z1

}]
=

∑
Y 1,Z1:

Dom1\{τ̃1} coll

∑
Γ1,H1:

Dom1 coll

Pr
[{

Ỹ 1=Y 1

Z̃1=Z1

}
∩
{

Γ̃1=Γ1

H̃1=H1

}]
=

=
∑
Y 1,Z1:

Dom1\{τ̃1} coll

∑
Γ1,H1:

Dom1 coll

#
{
ρ :

ρ(0‖N1)=Y 1
1

ρ(1‖N1)=Z1
1

ρ(Y 1
k1

)=Γ1
k1

ρ(Z1
k1

)=H1
k1

k1=1,l1

}
2n2n

=
∑
Y 1,Z1:

Dom1\{τ̃1} coll

∑
Γ1,H1:

Dom1 coll

1

2n(2l1+2)
6

6
∑
Y 1,Z1:

Dom1\{τ̃1} coll

∑
Γ1

#
{

H1:
Dom1 coll

}
· 1

2n(2l1+2)
6

6
∑
Y 1,Z1:

Dom1\{τ̃1} coll

∑
Γ1

#

 ⋃
b∈{0,1}

{
H1:

τ1=b‖N1

}
∪
{

H1:
τ1∈Y 1

}
∪
{

H1:
τ1∈Z1

} · 1

2n(2l1+2)
6

6
∑
Y 1,Z1:

Dom1\{τ̃1} coll

∑
Γ1

 ∑
b∈{0,1}

#
{

H1:
τ1=b‖N1

}︸ ︷︷ ︸
=2nl1−n

+ #
{

H1:
τ1∈Y 1

}︸ ︷︷ ︸
=l1·2nl1−n

+ #
{

H1:
τ1∈Z1

}︸ ︷︷ ︸
=l1·2nl1−n

 · 1

2n(2l1+2)
6

6 # {Y 1,Z1}︸ ︷︷ ︸
=22n

·# {Γ1}︸ ︷︷ ︸
=2nl1

·(2 + l1 + l1) · 2nl1−n · 1

2n(2l1+2)
6

(2l1 + 2)

2n
.

Thus,

Pr

[
D̃om

1

coll

]
6

4l1 + l21
2n

+
(2l1 + 2)

2n
6
l21 + 6l1 + 2

2n
.

Consider the probability Pr

[
D̃om

i

coll ∩ D̃om
i−1

coll

]
, i = 2, . . . , q.

Pr

[
D̃om

i

coll ∩ D̃om
i−1

coll

]
=

∑
Γ1,...,Γi−1

T1,...,T i−1

Pr

[
D̃om

i

coll ∩ D̃om
i−1

coll ∩
{

Γ̃j=Γj

T̃j=Tj

}i−1

j=1

]
.

Note that after fixation of the values Γj, Tj, j = 1, . . . , i− 1,
1. the random variables l̃j take the fixed values lj = lAj (Γ1, T1, . . . ,Γ

j−1, Tj−1), j = 1, . . . , i.

2. in the tuple D̃om
i

random variables Ñj take the fixed values

Nj = NAj (Γ1, T1, . . . ,Γ
j−1, Tj−1), j = 1, . . . , i, similarly in the tuple D̃om

i−1

the ran-
dom variables Ñ1, . . . , Ñi−1 takes the appropriate fixed values.

3. the random variables X̃j takes the fixed values Xj = XAj (Γ1, T1, . . . ,Γ
j−1, Tj−1,Γ

j),
j = 1, . . . , i− 1.
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Given these facts the following equality holds

∑
Γ1,...,Γi−1

T1,...,T i−1

Pr

[
D̃om

i

coll ∩ D̃om
i−1

coll ∩
{

Γ̃j=Γj

T̃j=Tj

}i−1

j=1

]
=

=
∑

Γ1,...,Γi−1

T1,...,T i−1

∑
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1:
Domi−1 coll

Pr

[
D̃om

i

coll ∩
{

Γ̃j=Γj

T̃j=Tj

}i−1

j=1
∩
{
Ỹ j=Y j

Z̃j=Zj

H̃j=Hj

}i−1

j=1

]
.

Note that after additional fixation of tuples Hj, j = 1, . . . , i− 1, in the tuple D̃om
i−1

the
random variables τ̃j take the fixed values τj =

∑lj
kj=1H

j
kj
·Xj

kj
, j = 1, . . . , i− 1.

The considered sum can be divided into two subsums:

∑
Γ1,...,Γi−1

T1,...,Ti−1

∑
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1:
Domi−1 coll

0‖Ni∨1‖Ni∈Domi−1

Pr

[{
Γ̃j=Γj

T̃j=Tj

}i−1

j=1
∩
{
Ỹ j=Y j

Z̃j=Zj

H̃j=Hj

}i−1

j=1

]

︸ ︷︷ ︸
sum1

+

+
∑

Γ1,...,Γi−1

T1,...,Ti−1

∑
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1:
Domi−1 coll

0‖Ni,1‖Ni /∈Domi−1

Pr

[
D̃om

i

coll ∩
{

Γ̃j=Γj

T̃j=Tj

}i−1

j=1
∩
{
Ỹ j=Y j

Z̃j=Zj

H̃j=Hj

}i−1

j=1

]

︸ ︷︷ ︸
sum2

.
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Consider the first summand sum1.

sum1 =
∑

Γ1,...,Γi−1

T1,...,Ti−1

∑
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1:
Domi−1 coll

0‖Ni∨1‖Ni∈Domi−1

#

{
ρ :

ρ(0‖Nj)=Y j1
ρ(1‖Nj)=Zj1

msbs(ρ(τj))=Tj

ρ(Y jkj
)=Γjkj

ρ(Zjkj
)=Hj

kj

j=1,i−1
kj=1,lj

}
2n2n

=

=
∑

Γ1,...,Γi−1

T1,...,Ti−1

∑
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1:
Domi−1 coll

0‖Ni∨1‖Ni∈Domi−1

2n(2n−
∑i−1
j=1(2lj+3)) · 2(n−s)(i−1)

2n2n
6

6
∑

Γ1,...,Γi−1

T1,...,Ti−1

#

{
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1:
0‖Ni∨1‖Ni∈Domi−1

}
︸ ︷︷ ︸

A

· 1

2n
∑i−1
j=1(2lj+2)+s(i−1)

.

Estimate the cardinality of the set A for the fixed values Γj, Tj, j = 1, . . . , i−1 (consequently,
for the fixed values Nj, X

j, j = 1, . . . , i− 1, and Ni). The set A can be covered by the union of
the following sets:

A ⊂
⋃

b∈{0,1}

i−1⋃
j=1

({
Y j :

b‖Ni∈Y j

}
×
{
Y 1,...,Y j−1,Y j+1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1

}
∪
{

Zj :
b‖Ni∈Zj

}
×
{

Y 1,...,Y i−1

Z1,...,Zj−1,Zj+1,...,Zi−1

H1,...,Hi−1

}
∪

∪
{

Hj :
b‖Ni=τj

}
×
{

Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hj−1,Hj+1,...,Hi−1

})
.

Thus the cardinality of the set A can be estimated in the following way:

#A 6
∑

b∈{0,1}

i−1∑
j=1

(
#
{
Y j : b‖Ni ∈ Y j

}︸ ︷︷ ︸
=lj

·2n
∑i−1
t=1(lt+2)−n+

+ #
{
Zj : b‖Ni ∈ Zj

}︸ ︷︷ ︸
=lj

·2n
∑i−1
t=1(lt+2)−n + #

{
Hj : b‖Ni = τj

}︸ ︷︷ ︸
=2nlj−n

·2n
∑i−1
t=1(lt+2)−nlj

)
=

=

(
i−1∑
j=1

(4lj + 2)

)
︸ ︷︷ ︸

ω1

·2n
∑i−1
j=1(lj+2)−n, ∀Γ1, T1, . . . ,Γ

i−1, Ti−1.
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Thus,

sum1 6
∑

Γ1,...,Γi−1

T1,...,Ti−1

ω1 · 2n
∑i−1
j=1(lj+2)−n · 1

2n
∑i−1
j=1(2lj+2)+s(i−1)

= #
{

Γ1,...,Γi−1

T1,...,Ti−1

}
· ω1

2n
∑i−1
j=1 lj+n+s(i−1)

=

= 2n
∑i−1
j=1 lj · 2s(i−1) · ω1

2n
∑i−1
j=1 lj+n+s(i−1)

=
ω1

2n
.

Consider the second summand sum2.

sum2 =
∑

Γ1,...,Γi−1

T1,...,Ti−1

∑
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1:
Domi−1 coll

0‖Ni,1‖Ni /∈Domi−1

∑
Y i,Zi:

Domi\{τ̃i} coll

Pr

[{
Γ̃j=Γj

T̃j=Tj

}i−1

j=1
∩
{
Ỹ j=Y j

Z̃j=Zj

H̃j=Hj

}i−1

j=1

∩
{
Ỹ i=Y i

Z̃i=Zi

}]

︸ ︷︷ ︸
sum1

2

+

+
∑

Γ1,...,Γi−1

T1,...,Ti−1

∑
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1:
Domi−1 coll

0‖Ni,1‖Ni /∈Domi−1

∑
Y i,Zi:

Domi\{τ̃i} coll

Pr

[
D̃om

i

coll ∩
{

Γ̃j=Γj

T̃j=Tj

}i−1

j=1
∩
{
Ỹ j=Y j

Z̃j=Zj

H̃j=Hj

}i−1

j=1

∩
{
Ỹ i=Y i

Z̃i=Zi

}]

︸ ︷︷ ︸
sum2

2

.

Consider the summand sum1
2.

sum1
2 =

∑
Γ1,...,Γi−1

T1,...,Ti−1

∑
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1:
Domi−1 coll

0‖Ni,1‖Ni /∈Domi−1

∑
Y i,Zi:

Domi\{τ̃i} coll

#

ρ :

ρ(0‖Nj)=Y j1
ρ(1‖Nj)=Zj1
ρ(0‖Ni)=Y i1
ρ(1‖Ni)=Zi1

ρ(Y jkj
)=Γjkj

ρ(Zjkj
)=Hj

kj

msbs(ρ(τj))=Tj

j=1,i−1,
kj=1,lj


2n2n

=

=
∑

Γ1,...,Γi−1

T1,...,Ti−1

∑
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1:
Domi−1 coll

0‖Ni∨1‖Ni∈Domi−1

∑
Y i,Zi:

Domi\{τ̃i} coll

2n(2n−
∑i−1
j=1(2lj+3)−2) · 2(n−s)(i−1)

2n2n
6

6
∑

Γ1,...,Γi−1

T1,...,Ti−1

∑
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1:
Domi−1 coll

0‖Ni,1‖Ni /∈Domi−1

#
{

Y i,Zi:
Domi\{τ̃i} coll

}
︸ ︷︷ ︸

B

· 1

2n
∑i−1
j=1(2lj+2)+2n+s(i−1)

.
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Estimate the cardinality of the set B for the fixed values Γj, Tj, Y
j, Zj, Hj, j = 1, . . . , i− 1

(consequently, for the fixed value Ni and for all fixed values from Domi−1). The set B can be
covered by the union of the following sets:

B ⊂
i−1⋃
j=1

({
Zi:

Zi∩Zj 6=∅

}
∪
{

Zi:
τj∈Zi

})
× {Y i} ∪

i−1⋃
j=1

({
Y i:

Y i∩Y j 6=∅

}
∪
{

Y i:
τj∈Y i

})
× {Zi} ∪

∪
i−1⋃
j=1

lj⋃
kj=1

({
Zi:

Y jkj
∈Zi
}
× {Y i} ∪

{
Y i:

Zjkj
∈Y i
}
× {Zi}

)
∪

∪
i⋃

j=1

⋃
b∈{0,1}

({
Zi:

b‖Nj∈Zi
}
× {Y i} ∪

{
Y i:

b‖Ni∈Y i

}
× {Zi}

)
∪
{

Y i,Zi:
Y i∩Zi 6=∅

}
.

Thus the cardinality of the set B can be estimated in the following way:

#B 6
i−1∑
j=1

(
# {Zi:Zi∩Zj 6=∅}︸ ︷︷ ︸

=(li+lj−1)

+ # {Zi:τj∈Zi}︸ ︷︷ ︸
=li

)
· 2n +

i−1∑
j=1

(
# {Y i:Y i∩Y j 6=∅}︸ ︷︷ ︸

=(li+lj−1)

+ # {Y i:τj∈Y i}︸ ︷︷ ︸
=li

)
· 2n+

+
i−1∑
j=1

lj∑
kj=1

(
#
{
Zi:Y jkj

∈Zi
}︸ ︷︷ ︸

=li

·2n + #
{
Y i:Zjkj

∈Y i
}︸ ︷︷ ︸

=li

·2n
)

+

+
i∑

j=1

∑
b∈{0,1}

(
# {Zi:b‖Nj∈Zi}︸ ︷︷ ︸

=li

·2n + # {Y i:b‖Nj∈Y i}︸ ︷︷ ︸
=li

·2n
)

+
∑
Zi

# {Y i:Y i∩Zi 6=∅}︸ ︷︷ ︸
l2i

=

=
i−1∑
j=1

(4li + 2lj − 2 + 2lilj) · 2n + 4ili · 2n + l2i · 2n =

=

(
i−1∑
j=1

(4li + 2lj + 2lilj − 2) + 4ili + l2i

)
︸ ︷︷ ︸

ω1
2

·2n, ∀ Γj, Tj, Y
j, Zj, Hj, j = 1, . . . , i− 1.

Therefore,

sum1
2 6

∑
Γ1,...,Γi−1

T1,...,Ti−1

∑
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1:
Domi−1 coll

0‖Ni,1‖Ni /∈Domi−1

ω1
2 · 2n ·

1

2n
∑i−1
j=1(2lj+2)+2n+s(i−1)

6

6 #
{

Γ1,...,Γi−1

T1,...,Ti−1

}
·#
{
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1

}
· ω1

2

2n
∑i−1
j=1(2lj+2)+n+s(i−1)

=

= 2n
∑i−1
j=1 lj · 2s(i−1) · 2n

∑i−1
j=1(lj+2) · ω1

2

2n
∑i−1
j=1(2lj+2)+n+s(i−1)

=
ω1

2

2n
.
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Consider the summand sum2
2.

sum2
2 =

∑
Γ1,...,Γi−1

T1,...,Ti−1

∑
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1:
Domi−1 coll

0‖Ni,1‖Ni /∈Domi−1

∑
Y i,Zi:

Domi\{τ̃i} coll

∑
Γi,Hi:

Domi coll

Pr

[{
Γ̃j=Γj

T̃j=Tj

}i−1

j=1
∩
{
Ỹ j=Y j

Z̃j=Zj

H̃j=Hj

}i
j=1

∩ {Γ̃i=Γi}

]

Note that after additional fixation of the values Γi, H i the random variables τ̃i takes the
fixed values τi =

∑li
ki=1H

i
ki
·X i

ki
, где X i = XAi (Γ1, T1, . . . ,Γ

i−1, Ti−1,Γ
i).

Therefore,

sum2
2 =

∑
Γ1,...,Γi−1

T1,...,Ti−1

∑
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1:
Domi−1 coll

0‖Ni,1‖Ni /∈Domi−1

∑
Y i,Zi:

Domi\{τ̃i} coll

∑
Γi,Hi:

Domi coll

#

ρ :

ρ(0‖Nj)=Y j1
ρ(1‖Nj)=Zj1 ,
ρ(Y jkj

)=Γjkj

ρ(Zjkj
)=Hj

kj

, j=1,i,
kj=1,lj

,
msbs(ρ(τj))=Tj

j=1,i−1


2n2n

=

=
∑

Γ1,...,Γi−1

T1,...,Ti−1

∑
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1:
Domi−1 coll

0‖Ni,1‖Ni /∈Domi−1

∑
Y i,Zi:

Domi\{τ̃i} coll

∑
Γi,Hi:

Domi coll

2n(2n−
∑i−1
j=1(2lj+3)−(2li+2)) · 2(n−s)(i−1)

2n2n
6

6
∑

Γ1,...,Γi−1

T1,...,Ti−1

∑
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1:
Domi−1 coll

0‖Ni,1‖Ni /∈Domi−1

∑
Y i,Zi:

Domi\{τ̃i} coll

#
{

Γi,Hi:
Domi coll

}
︸ ︷︷ ︸

C

· 1

2n
∑i−1
j=1(2lj+2)+n(2li+2)+s(i−1)

.

Estimate the cardinality of the set C for the fixed values Γj, Tj, Y
j, Zj, Hj, j = 1, . . . , i− 1

(consequently, for the fixed value Ni and all values from Domi−1), Y i, Zi. The set C can be
covered by the union of the following sets:

C ⊂
⋃
Γi

({
Hi:

τi∈Domi−1

}
∪
{

Hi:
τi∈Zi

}
∪
{

Hi:
τi∈Y i

}
∪
⋃

b∈{0,1}

{
Hi:

τi=b‖Ni

})
.
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Thus the cardinality of the set C can be estimated in the following way:

#C 6
∑
Γi

(
#
{

Hi:
τi∈Domi−1

}
︸ ︷︷ ︸

=
∑i−1
j=1(2lj+3)·2nli−n

+ #
{

Hi:
τi∈Zi

}︸ ︷︷ ︸
=li·2nli−n

+ #
{

Hi:
τi∈Y i

}︸ ︷︷ ︸
=li·2nli−n

+
∑

b∈{0,1}

#
{

Hi:
τi=b‖Ni

}︸ ︷︷ ︸
2nli−n

)
=

=
i−1∑
j=1

(2lj + 3) · 22nli−n + (2li + 2) · 22nli−n =

=

(
i−1∑
j=1

(2lj + 3) + (2li + 2)

)
︸ ︷︷ ︸

ω2
2

·22nli−n, ∀ Γj, Tj, Y
j, Zj, Hj, j = 1, i− 1, Y i, Zi.

Thus,

sum2
2 6

∑
Γ1,...,Γi−1

T1,...,Ti−1

∑
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1:
Domi−1 coll

0‖Ni,1‖Ni /∈Domi−1

∑
Y i,Zi:

Domi\{τ̃i} coll

ω2
2 · 22nli−n

2n
∑i−1
j=1(2lj+2)+n(2li+2)+s(i−1)

6

6 #
{

Γ1,...,Γi−1

T1,...,Ti−1

}
·#
{
Y 1,...,Y i−1

Z1,...,Zi−1

H1,...,Hi−1

}
·# {Y i,Zi} · ω2

2

2n
∑i−1
j=1(2lj+2)+3n+s(i−1)

=

= 2n
∑i−1
j=1 lj · 2s(i−1) · 2n

∑i−1
j=1(lj+2) · 22n · ω2

2

2n
∑i−1
j=1(2lj+2)+3n+s(i−1)

=
ω2

2

2n
.

Pr

[
D̃om

i

coll ∩ D̃om
i−1

coll

]
= sum1 + sum1

2 + sum2
2 6

ω1 + ω1
2 + ω2

2

2n
6

6

∑i−1
j=1(4lj + 2)

2n
+

∑i−1
j=1(4li + 2lj + 2lilj − 2) + 4ili + l2i

2n
+

∑i−1
j=1(2lj + 3) + (2li + 2)

2n
=

=
2li
∑i−1

j=1 lj + l2i + 8
∑i−1

j=1 lj + 8ili + 3i− 2li − 1

2n
6

6
2li
∑i−1

j=1 lj + l2i + 8
∑i−1

j=1 lj + 8ili + 3i

2n
, i = 2, . . . , q.
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Therefore,

Pr
[
D̃om

q

coll
]

=

q∑
i=2

Pr

[
D̃om

i

coll ∩ D̃om
i−1

coll

]
+ Pr

[
D̃om

1

coll

]
6

6
q∑
i=2

2li
∑i−1

j=1 lj + l2i + 8
∑i−1

j=1 lj + 8ili + 3i

2n
+
l21 + 6l1 + 2

2n
6
∣∣∣ i−1∑
j=1

lj = 0 for i = 1
∣∣∣ 6

6
q∑
i=1

2li
∑i−1

j=1 lj + l2i + 8
∑i−1

j=1 lj + 8ili + 3i

2n
=

=

q∑
i=1

2li
∑i−1

j=1 lj + l2i
2n

+

q∑
i=1

8
∑i−1

j=1 lj + 8ili

2n
+

q∑
i=1

3i

2n
6

6
σ2

2n
+

q∑
i=1

8(q − i)li + 8ili
2n

+
3q2

2n
=
σ2 + 8σq + 3q2

2n
.

Lemma 6.2 ([3] PRP/PRF switching lemma). For any block cipher E and any adversary A
making at most q′ queries we have

AdvPRF
E (A) 6 AdvPRP-CPA

E (A) +
q′(q′ − 1)

2n+1

Corollary 6.3. For any adversary A making at most q′ queries we have

AdvPRF
Perm({0,1}n) (A) 6

(q′)2

2n+1
.

Theorem 6.4. For any mPrivacy-breaking adversary A, that makes q couples of tied queries
with the total value of X lengths at most σ blocks, the following inequality holds

AdvmPriv
MGMPerm({0,1}n)

(A) 6
3(σ + 3q)2

2n

Proof. Construct an adversary A′ that breaks PRF-security of the cipher Perm({0, 1}n) using
the adversary A. The A′ is constructed as follows. The adversary A′ starts the adversary A, in-
tercepts A’s queries and processes them by itself. During queries processing the adversary «sim-
ulates» the encryption oracle E : implements the oracle functionality according to the definition
of the mPrivacy notion, making the appropriate queries to its own oracle (random permutation
π or random function ρ) for each block processing. Note that if the adversary A′ interacts
with the oracle π, then it simulates for A the encryption oracle E for the MGMPerm({0,1}n)

mode, and if it interacts with the oracle ρ, then it implements the encryption oracle E for
the MGMFunc({0,1}n) mode. As a result the adversary A′ returns the result of A. For such an
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adversary:

AdvPRF
Perm({0,1}n) (A′) =

= Pr
[
π
U←− Perm({0, 1}n) : (A′)π ⇒ 1

]
− Pr

[
ρ
U←− Func({0, 1}n) : (A′)ρ ⇒ 1

]
=

= Pr
[
π
U←− Perm({0, 1}n) : AE ⇒ 1

]
− Pr

[
ρ
U←− Func({0, 1}n) : AE ⇒ 1

]
=

=
(

Pr
[
π
U←− Perm({0, 1}n) : AE ⇒ 1

]
− Pr

[
A$ ⇒ 1

])
−

−
(

Pr
[
ρ
U←− Func({0, 1}n) : AE ⇒ 1

]
− Pr

[
A$ ⇒ 1

])
=

= AdvmPriv
MGMPerm({0,1}n)

(A)−AdvmPriv
MGMFunc({0,1}n)

(A) .

By the law of total probability we have

AdvmPriv
MGMFunc({0,1}n)

(A) = Pr
[
AE ⇒ 1 ∩ D̃om

q

coll
]

+

+
(

Pr
[
AE ⇒ 1 ∩ D̃om

q

coll
]
− Pr

[
A$ ⇒ 1

])
6

6 Pr
[
D̃om

q

coll
]

+
(

Pr
[
AE ⇒ 1 ∩ D̃om

q

coll
]
− Pr

[
A$ ⇒ 1

])
.

Consider the difference Pr
[
AE ⇒ 1 ∩ D̃om

q

coll
]
− Pr

[
A$ ⇒ 1

]
.

Note that the output of the adversary A is determined by the values Γ1, T1, . . . ,Γ
q, Tq. By

definition,

Pr
[
AE ⇒ 1 ∩ D̃om

q

coll
]

=
∑

Γ1,...,Γq

T1,...,Tq :
A⇒1

Pr

[
D̃om

q

coll ∩
{

Γ̃j=Γj

T̃j=Tj

}q
j=1

]
=

=
∑

Γ1,...,Γq

T1,...,Tq :
A⇒1

∑
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq :
Domq coll

Pr

[{
Γ̃j=Γj

T̃j=Tj

}q
j=1
∩
{
Ỹ j=Y j

Z̃j=Zj

H̃j=Hj

}q
j=1

]
=

∑
Γ1,...,Γq

T1,...,Tq :
A⇒1

∑
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq :
Domq coll

1

2n(2σ+2q)+sq
6

6
∑

Γ1,...,Γq

T1,...,Tq :
A⇒1

#

{
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq

}
· 1

2n(2σ+2q)+sq
=

∑
Γ1,...,Γq

T1,...,Tq :
A⇒1

1

2nσ+sq
.

Similarly,

Pr
[
A$ ⇒ 1

]
=

∑
Γ1,...,Γq

T1,...,Tq :
A⇒1

Pr

[{
Γ̃j=Γj

T̃j=Tj

}q
j=1

]
=

∑
Γ1,...,Γq

T1,...,Tq :
A⇒1

1

2nσ+sq
.

Therefore, the following inequality holds:

Pr
[
AE ⇒ 1 ∩ D̃om

q

coll
]
− Pr

[
A$ ⇒ 1

]
6 0.
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Consequently, we have

AdvmPriv
MGMFunc({0,1}n)

(A) 6 Pr
[
D̃om

q

coll
]
.

Thus, using Corollary 6.3 and Lemma 6.1 we obtain the desirable bound:

AdvmPriv
MGMPerm({0,1}n)

(A) 6 AdvmPriv
MGMFunc({0,1}n)

(A) + AdvPRF
Perm({0,1}n) (A′) 6

6 Pr
[
D̃om

q

coll
]

+
(2σ + 3q)2

2n+1
6
σ2 + 8σq + 3q2

2n
+

4σ2 + 12σq + 9q2

2n+1
6

3(σ + 3q)2

2n
.

The second inequality follows from the fact that a PRF-breaking adversary A′ makes at
most q′ = 2σ + 3q queries to simulate the encryption oracle.

6.2 mAuthenticity-security of MGM mode

The adversary for the mAuthenticity notion is defined by the same functions as for the
mPrivacy notion, and by additional functions that defines the adversary’s output, a forgery
(N,X, T ). For the adversary that makes q couples of tied queries to the encryption oracle, the
output of these functions depends on 2q variables:

N = NA(Γ1, T1, . . . ,Γ
q, Tq) : {0, 1}n×∗ × {0, 1}s × . . .× {0, 1}n×∗ × {0, 1}s → {0, 1}n−1.

X = XA(Γ1, T1, . . . ,Γ
q, Tq) : {0, 1}n×∗ × {0, 1}s × . . .× {0, 1}n×∗ × {0, 1}s → {0, 1}n×∗.

T = TA(Γ1, T1, . . . ,Γ
q, Tq) : {0, 1}n×∗ × {0, 1}s × . . .× {0, 1}n×∗ × {0, 1}s → {0, 1}s.

These functions satisfy the following requirement (non-trivial forgery):

(N,X, T ) /∈
{

(Ni, X
i, Ti)

}q
i=1

, ∀ Γ1, T1, . . . ,Γ
q, Tq.

Lemma 6.5. For any mAuthenticity-breaking adversary A, that makes at most q couples of
tied encryption queries with the total value of X lengths at most σ blocks and outputs a forgery
with the X length at most l blocks, the following inequality holds

AdvmAuth
MGMFunc({0,1}n)

(A) 6
8ql + 2σ(l + 4) + 5q + 2l + 2

2n
+ Pr

[
D̃om

q

coll
]

+
2

2s
.

Proof. We have

AdvmAuth
MGMFunc({0,1}n)

(A) = Pr
[
AE forges

]
= Pr

[
AE forges ∩ D̃om

q

coll
]

+

+ Pr
[
AE forges ∩ D̃om

q

coll
]
6 Pr

[
AE forges ∩ D̃om

q

coll
]

+ Pr
[
D̃om

q

coll
]
.

Note that after fixation of the values Γj, Tj, j = 1, . . . , q

1. the random variables l̃j take the fixed values lj = lAj (Γ1, T1, . . . ,Γ
j−1, Tj−1), j = 1, . . . , q.

2. in the tuple D̃om
q

the random variables Ñj take the fixed values
Nj = NAj (Γ1, T1, . . . ,Γ

j−1, Tj−1), j = 1, . . . , q.
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3. the random variables X̃j take the fixed values
Xj = XAj (Γ1, T1, . . . ,Γ

j−1, Tj−1,Γ
j), j = 1, . . . , q.

4. the random variables X̃, Ñ , T̃ take the fixed values X = XA(Γ1, T1, . . . ,Γ
q, Tq),

N = NA(Γ1, T1, . . . ,Γ
q, Tq), T = TA(Γ1, T1, . . . ,Γ

q, Tq). Without loss of generality we
assume that the length of the tuple X is exactly l blocks. The tuple X with the length
less then l can be filled up by all-zero blocks since for such a filling the tag will be the
same.

Then,

Pr
[
AE forges ∩ D̃om

q

coll
]

=
∑

Γ1,...,Γq

T1,...,Tq :
N /∈{N1,...,Nq}

Pr

[
AE forges ∩ D̃om

q

coll ∩
{

Γ̃j=Γj

T̃j=Tj

}q
j=1

]

︸ ︷︷ ︸
sum1

+

+
∑

Γ1,...,Γq

T1,...,Tq :
N∈{N1,...,Nq}

Pr

[
AE forges ∩ D̃om

q

coll ∩
{

Γ̃j=Γj

T̃j=Tj

}q
j=1

]

︸ ︷︷ ︸
sum2

.

Case 1. Consider the first summand sum1.
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sum1 =
∑

Γ1,...,Γq

T1,...,Tq :
N /∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq :
Domq coll

Pr

[
AE forges ∩

{
Γ̃j=Γj

T̃j=Tj

}q
j=1
∩
{
Ỹ j=Y j

Z̃j=Zj

H̃j=Hj

}q
j=1

]
6

6
∑

Γ1,...,Γq

T1,...,Tq :
N /∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq :
Domq coll

1‖N∈Domq

Pr

[{
Γ̃j=Γj

T̃j=Tj

}q
j=1
∩
{
Ỹ j=Y j

Z̃j=Zj

H̃j=Hj

}q
j=1

]
+

+
∑

Γ1,...,Γq

T1,...,Tq :
N /∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq :
Domq coll

1‖N /∈Domq

Pr

[
AE forges ∩

{
Γ̃j=Γj

T̃j=Tj

}q
j=1
∩
{
Ỹ j=Y j

Z̃j=Zj

H̃j=Hj

}q
j=1

]
6

6
∑

Γ1,...,Γq

T1,...,Tq :
N /∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq :
Domq coll

1‖N∈Domq

Pr

[{
Γ̃j=Γj

T̃j=Tj

}q
j=1
∩
{
Ỹ j=Y j

Z̃j=Zj

H̃j=Hj

}q
j=1

]

︸ ︷︷ ︸
sum1

1

+

+
∑

Γ1,...,Γq

T1,...,Tq :
N /∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq :
Domq coll

1‖N /∈Domq

∑
Z:

Z∩Domq 6=∅ ∨
1‖N∈Z

Pr

[{
Γ̃j=Γj

T̃j=Tj

}q
j=1
∩
{
Ỹ j=Y j

Z̃j=Zj

H̃j=Hj

}q
j=1

∩ {Z̃=Z}

]

︸ ︷︷ ︸
sum2

1

+

+
∑

Γ1,...,Γq

T1,...,Tq :
N /∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq :
Domq coll

1‖N /∈Domq

∑
Z:

Z∩Domq=∅
1‖N /∈Z

∑
H:

τ∈Domq∨
τ=1‖N∨
τ∈Z

Pr

[{
Γ̃j=Γj

T̃j=Tj

}q
j=1
∩
{
Ỹ j=Y j

Z̃j=Zj

H̃j=Hj

}q
j=1

∩
{
Z̃=Z
H̃=H

}]

︸ ︷︷ ︸
sum3

1

.+

+
∑

Γ1,...,Γq

T1,...,Tq :
N /∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq :
Domq coll

1‖N /∈Domq

∑
Z:

Z∩Domq=∅
1‖N /∈Z

∑
H:

τ /∈Domq

τ 6=1‖N
τ /∈Z

Pr

[
AE forges ∩

{
Γ̃j=Γj

T̃j=Tj

}q
j=1
∩
{
Ỹ j=Y j

Z̃j=Zj

H̃j=Hj

}q
j=1

∩
{
Z̃=Z
H̃=H

}]

︸ ︷︷ ︸
sum4

1

.
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Consider the first summand sum1
1. By the same reasoning as in the proof of Lemma 6.1

(case of estimating cardinality of the set A) we obtain the following estimation:

sum1
1 =

∑
Γ1,...,Γq

T1,...,Tq :
N /∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq :
Domq coll

1‖N∈Domq

1

2n(2σ+2q)+sq
6

∑
Γ1,...,Γq

T1,...,Tq :
N /∈{N1,...,Nq}

#

{
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq :
1‖N∈Domq

}
︸ ︷︷ ︸

=(2σ+q)·2n(σ+2q−1)

· 1

2n(2σ+2q)+sq
6

6 2nσ+sq · (2σ + q) · 2n(σ+2q−1) · 1

2n(2σ+2q)+sq
=

(2σ + q)

2n
.

Consider the second summand sum2
1. By the same reasoning as in the proof of Lemma 6.1

(case of estimating cardinality of the set B) we obtain the following estimation:

sum2
1 =

∑
Γ1,...,Γq

T1,...,Tq :
N /∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq :
Domq coll

1‖N /∈Domq

∑
Z:

Z∩Domq 6=∅ ∨
1‖N∈Z

1

2n(2σ+2q)+n+sq
=

=
∑

Γ1,...,Γq

T1,...,Tq :
N /∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq :
Domq coll

1‖N /∈Domq

#
{

Z:
Z∩Domq 6=∅ ∨

1‖N∈Z

}
︸ ︷︷ ︸
64ql+σ(l+1)−q+l

· 1

2n(2σ+2q)+n+sq
6

6 2nσ+sq · 2n(σ+2q) · (4ql + σ(l + 1)− q + l) · 1

2n(2σ+2q)+n+sq
=

4ql + σ(l + 1)− q + l

2n
.

Consider the third summand sum3
1. By the same reasoning as in the proof of Lemma 6.1

(case of estimating cardinality of the set C) we obtain the following estimation:

sum3
1 =

∑
Γ1,...,Γq

T1,...,Tq :
N /∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq :
Domq coll

1‖N /∈Domq

∑
Z:

Z∩Domq=∅
1‖N /∈Z

∑
H:

τ∈Domq∨
τ=1‖N∨
τ∈Z

Pr

[{
Γ̃j=Γj

T̃j=Tj

}q
j=1
∩
{
Ỹ j=Y j

Z̃j=Zj

H̃j=Hj

}q
j=1

∩
{
Z̃=Z
H̃=H

}]
=

=
∑

Γ1,...,Γq

T1,...,Tq :
N /∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq :
Domq coll

1‖N /∈Domq

∑
Z:

Z∩Domq=∅
1‖N /∈Z

#

{
H:

τ∈Domq∨
τ=1‖N∨
τ∈Z

}
︸ ︷︷ ︸

6(2σ+3q+l+1)·2nl−n

· 1

2n(2σ+2q)+n(l+1)+sq
6

6 2nσ+sq · 2n(σ+2q) · 2n · (2σ + 3q + l + 1) · 2nl−n · 1

2n(2σ+2q)+n(l+1)+sq
=

2σ + 3q + l + 1

2n
.
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Consider the forth summand sum4
1. We have:

sum4
1 =

∑
Γ1,...,Γq

T1,...,Tq :
N /∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq :
Domq coll

1‖N /∈Domq

∑
Z:

Z∩Domq=∅
1‖N /∈Z

∑
H:

τ /∈Domq

τ 6=1‖N
τ /∈Z

Pr

[{
Γ̃j=Γj

T̃j=Tj

}q
j=1
∩
{
Ỹ j=Y j

Z̃j=Zj

H̃j=Hj

}q
j=1

∩
{

Z̃=Z
H̃=H

msbs(ρ(τ))=T

}]
=

=
∑

Γ1,...,Γq

T1,...,Tq :
N /∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Zq

H1,...,Hq :
Domq coll

1‖N /∈Domq

∑
Z:

Z∩Domq=∅
1‖N /∈Z

∑
H:

τ /∈Domq

τ 6=1‖N
τ /∈Z

1

2n(2σ+2q)+n(l+1)+sq+s
6

6 2nσ+sq · 2n(σ+2q) · 2n · 2nl · 1

2n(2σ+2q)+n(l+1)+sq+s
=

1

2s
.

Thus,

sum1 6
2σ + q

2n
+

4ql + σ(l + 1)− q + l

2n
+

2σ + 3q + l + 1

2n
+

1

2s
=

=
4ql + σ(l + 5) + 3q + 2l + 1

2n
+

1

2s
.

Case 2. Consider the summand sum2.
Note that after additional fixation of the values Hj, j = 1, . . . , q, in the tuple D̃om

q

the
random variables τ̃j take the fixed values τj =

∑lj
kj=1H

j
kj
·Xj

kj
, j = 1, . . . , q.

Suppose N = Nu for some u, 1 6 u 6 q. We will consider only the case lu < l since in this
case new l− lu blocks Zu

k appear and these blocks may collide with values from Domq. By Zadd
we denote the tuple (Zu

lu+1, . . . , Z
u
l ), by Ẑu — the tuple Zu‖Zadd, and by D̂om

q
— the tuple

Domq‖Zadd.
Note that after additional fixation of the values Hu

k , k = (lu+1), . . . , l, the random variable
τ̃ takes the fixed value τ =

∑l
k=1H

u
k ·Xk, j = 1, . . . , q. Denote by Ĥu the set consisting of lu

blocks of Hu and l − lu blocks Hu
k = ρ(Zu

k ), k = (lu + 1), . . . , l.
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Thus,

sum2 =
∑

Γ1,...,Γq

T1,...,Tq :
N∈{N1,...,Nq}

Pr

[
AE forges ∩ D̃om

q

coll ∩
{

Γ̃j=Γj

T̃j=Tj

}q
j=1

]
6

6
∑

Γ1,...,Γq

T1,...,Tq :
N∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Ẑu,...,Zq

H1,...,Hq :
Domq coll

Zadd∩Domq 6=∅

Pr

[{
Γ̃j=Γj

T̃j=Tj

}q
j=1
∩
{

Ỹ j=Y j

Z̃j=Zj , j 6=u
H̃j=Hj

}q
j=1

∩ { ˜̂Zu=Ẑu}

]

︸ ︷︷ ︸
sum1

2

+

+
∑

Γ1,...,Γq

T1,...,Tq :
N∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Ẑu,...,Zq

H1,...,Ĥu,...,Hq :

D̂om
q
coll

τ∈D̂om
q

Pr

[{
Γ̃j=Γj

T̃j=Tj

}q
j=1
∩
{

Ỹ j=Y j

Z̃j=Zj , j 6=u
H̃j=Hj , j 6=u

}q
j=1

∩
{ ˜̂
Zu=Ẑu˜̂
Hu=Ĥu

}]

︸ ︷︷ ︸
sum2

2

+

+
∑

Γ1,...,Γq

T1,...,Tq :
N∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Ẑu,...,Zq

H1,...,Ĥu,...,Hq :

D̂om
q
coll

τ /∈D̂om
q

Pr

[
AE forges ∩

{
Γ̃j=Γj

T̃j=Tj

}q
j=1
∩
{

Ỹ j=Y j

Z̃j=Zj , j 6=u
H̃j=Hj , j 6=u

}q
j=1

∩
{ ˜̂
Zu=Ẑu˜̂
Hu=Ĥu

}]

︸ ︷︷ ︸
sum3

2

.

Consider the first summand sum1
2.

sum1
2 =

∑
Γ1,...,Γq

T1,...,Tq :
N∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Ẑu,...,Zq

H1,...,Hq :
Domq coll

Zadd∩Domq 6=∅

2n(2n−(2σ+3q)) · 2(n−s)q

2n2n
6

6
∑

Γ1,...,Γq

T1,...,Tq :
N∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Zu−1,
Zu+1,...,Zq

H1,...,Hq

∑
Ẑu:

Zadd∩Domq 6=∅

1

2n(2σ+2q)+sq
6

6
∑

Γ1,...,Γq

T1,...,Tq :
N∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Zu−1,
Zu+1,...,Zq

H1,...,Hq

#
{

Ẑu:
Zadd∩Domq 6=∅

}
︸ ︷︷ ︸

D

· 1

2n(2σ+2q)+sq
.
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Estimate the cardinality of the set D.

D ⊂
⋃

j∈{1,...,q}\{u}

{
Ẑu:

Zadd∩Zj 6=∅

}
∪

q⋃
j=1

{
Ẑu:

τj∈Zadd

}
∪

q⋃
j=1

lj⋃
kj=1

{
Ẑu:

Y jkj
∈Zadd

}
∪

q⋃
j=1

⋃
b∈{0,1}

{
Ẑu:

b‖Nj∈Zadd

}
.

Thus, the cardinality of the set D can be estimated in the following way:

#D 6
∑

j∈{1,...,q}\{u}

#
{

Ẑu:
Zadd∩Zj 6=∅

}
︸ ︷︷ ︸

=lj+(l−lu)−1

+

q∑
j=1

#
{

Ẑu:
τj∈Zadd

}
︸ ︷︷ ︸

=l−lu

+

+

q∑
j=1

lj∑
kj=1

#
{

Ẑu:
Y jkj
∈Zadd

}
︸ ︷︷ ︸

=l−lu

+

q∑
j=1

∑
b∈{0,1}

#
{

Ẑu:
b‖Nj∈Zadd

}
︸ ︷︷ ︸

l−lu

=

= (σ − lu) + (q − 1)(l − lu)− (q − 1) + q(l − lu) + σ(l − lu) + 2q(l − lu) =

= 4q(l − lu) + σ(l − lu) + σ − lu − q + 1− l + lu 6 4ql + σ(l + 1)− q + 1− l.

Thus,

sum1
2 6

∑
Γ1,...,Γq

T1,...,Tq :
N∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Zu−1,
Zu+1,...,Zq

H1,...,Hq

(4ql + σ(l + 1)− q + 1− l) · 1

2n(2σ+2q)+sq
6

6 2nσ+sq · 2n(σ+2q)−n · (4ql + σ(l + 1)− q + 1− l)
2n(2σ+2q)+sq

=
4ql + σ(l + 1)− q + 1− l

2n
.

Remark 6.2. Note that the other cases lu = l and lu > l are covered by the case lu < l, since
for these cases the set Zadd is empty and sum1

2 = 0.
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Consider the second summand sum2
2.

sum2
2 =

∑
Γ1,...,Γq

T1,...,Tq :
N∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Ẑu,...,Zq

H1,...,Ĥu,...,Hq :

D̂om
q
coll

τ∈D̂om
q

Pr

[{
Γ̃j=Γj

T̃j=Tj

}q
j=1
∩
{

Ỹ j=Y j

Z̃j=Zj , j 6=u
H̃j=Hj , j 6=u

}q
j=1

∩
{ ˜̂
Zu=Ẑu˜̂
Hu=Ĥu

}]
=

=
∑

Γ1,...,Γq

T1,...,Tq :
N∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Ẑu,...,Zq

H1,...,Ĥu,...,Hq :

D̂om
q
coll

τ∈D̂om
q

#

{
ρ :

ρ(0‖Nj)=Y j1
ρ(1‖Nj)=Zj1

msbs(ρ(τj))=Tj

,
ρ(Y jkj

)=Γjkj

ρ(Zjkj
)=Hj

kj

, ρ(Zuk )=Hu
k ,

j=1,q
kj=1,lj
k=lu+1,l

}
2n2n

=

=
∑

Γ1,...,Γq

T1,...,Tq :
N∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Ẑu,...,Zq

H1,...,Ĥu,...,Hq :

D̂om
q
coll

τ∈D̂om
q

2n(2n−(2σ+3q)−(l−lu)) · 2(n−s)q

2n2n
6

6
∑

Γ1,...,Γq

T1,...,Tq :
N∈{N1,...,Nq}

#

{
Y 1,...,Y q

Z1,...,Ẑu,...,Zq

H1,...,Ĥu,...,Hq :

τ∈D̂om
q

}
︸ ︷︷ ︸

E

· 1

2n(2σ+2q)+n(l−lu)+sq
.

Estimate the cardinality of the set E for the fixed values Γj, Tj, j = 1, . . . , q (consequently,
for the fixed values Nj). Denote by X̂u ∈ {0, 1}n×l the tuple (Xu

1 , . . . , X
u
lu
, 0n, . . . , 0n). The set

E can be covered by the union of the following sets:

E ⊂
⋃

Y 1,...,Y q

Z1,...,Ẑu,...,Zq

H1,...,Hu−1,
Hu+1,...,Hq

({
Ĥu:

τ∈D̂om
q
\{τ̃u}

}
∪
{
Ĥu:
τ=τu

})
=

⋃
Y 1,...,Y q

Z1,...,Ẑu,...,Zq

H1,...,Hu−1,
Hu+1,...,Hq

({
Ĥu:

τ∈D̂om
q
\{τ̃u}

}
∪
{

Ĥu:∑l
k=1H

u
k (Xk−X̂u

k )=0

})
.

Thus, the cardinality of the set E can be estimated in the following way:

#E 6
∑

Y 1,...,Y q

Z1,...,Ẑu,...,Zq

H1,...,Hu−1,
Hu+1,...,Hq

(
#
{

Ĥu:
τ∈D̂om

q
\{τ̃u}

}
︸ ︷︷ ︸
6(|D̂om

q
|−1)·2nl−n

+ #
{

Ĥu:∑l
k=1H

u
k (Xk−X̂u

k )=0

}
︸ ︷︷ ︸

=2nl−n

)
=

= 2n(σ+2q−lu) · (2σ + 3q + l − lu) · 2nlu+n(l−lu)−n 6 (2σ + 3q + l) · 2n(σ+2q)+n(l−lu)−n,

∀ Γj, Tj, j = 1, . . . , q.
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Thus,

sum2
2 6

∑
Γ1,...,Γq

T1,...,Tq
N∈{N1,...,Nq}

(2σ + 3q + l) · 2n(σ+2q+l)+n(l−lu)−n

2n(2σ+2q+l)+n(l−lu)+sq
6 #

{
Γ1,...,Γq

T1,...,Tq

}
· 2σ + 3q + l

2nσ+n+sq
=

= 2nσ+sq · 2σ + 3q + l

2nσ+n+sq
=

2σ + 3q + l

2n
.

Consider the third summand sum3
2.

sum3
2 =

∑
Γ1,...,Γq

T1,...,Tq :
N∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Ẑu,...,Zq

H1,...,Ĥu,...,Hq :

D̂om
q
coll

τ /∈D̂om
q

Pr

[{
Γ̃j=Γj

T̃j=Tj

}q
j=1
∩
{

Ỹ j=Y j

Z̃j=Zj , j 6=u
H̃j=Hj , j 6=u

}q
j=1

∩
{ ˜̂

Zu=Ẑu˜̂
Hu=Ĥu

msbs(ρ(τ))=T

}]
=

=
∑

Γ1,...,Γq

T1,...,Tq :
N∈{N1,...,Nq}

∑
Y 1,...,Y q

Z1,...,Ẑu,...,Zq

H1,...,Ĥu,...,Hq :

D̂om
q
coll

τ /∈D̂om
q

1

2n(2σ+2q)+n(l−lu)+sq+s
6

6 2nσ+sq · 2n(σ+2q+(l−lu)) · 1

2n(2σ+2q)+n(l−lu)+sq+s
=

1

2s
.

Thus,

sum2 6
4ql + σ(l + 1)− q + 1− l

2n
+

2σ + 3q + l

2n
+

1

2s
=

4ql + σ(l + 3) + 2q + 1

2n
+

1

2s
.

Finally, the desirable bound is:

AdvmAuth
MGMFunc({0,1}n)

(A) 6 sum1 + sum2 + Pr
[
D̃om

q

coll
]
6

6
8ql + 2σ(l + 4) + 5q + 2l + 2

2n
+ Pr

[
D̃om

q

coll
]

+
2

2s
.

Theorem 6.6. For any adversary A, that makes at most q couples of tied encryption queries
with the total value of X lengths at most σ blocks and outputs a forgery with the X length at
most l blocks, the following inequality holds:

AdvmAuth
MGMPerm({0,1}n)

(A) 6
3(σ + 3q + l + 2)2

2n
+

2

2s
.

Proof. Construct an adversary A′ that breaks PRF-security of the cipher Perm({0, 1}n) us-
ing the adversary A. The A′ is constructed as follows. The adversary A′ starts the adversary
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A, intercepts A’s queries and processes them by itself. During queries processing the adver-
sary «simulates» the encryption oracle E : implements the oracle functionality according to
the definition of the mAuthenticity notion, making the appropriate queries to its own oracle
(random permutation π or random function ρ) for each block processing. Note that if the ad-
versary A′ interacts with the oracle π, then it simulates for A the encryption oracle E for the
MGMPerm({0,1}n) mode, and if it interacts with the oracle ρ, then it implements the encryption
oracle E for the MGMFunc({0,1}n) mode. At the end of A’s work the adversary A′ receives a
forgery (N,X, T ) and checks the validity of this forgery according to the mAuthenticity notion,
making the appropriate queries to its own oracle for blocks processing. As a result the adversary
A′ returns 1 if the forgery is valid and returns 0, otherwise. For such an adversary:

AdvPRF
Perm({0,1}n) (A′) =

= Pr
[
π
U←− Perm({0, 1}n) : (A′)π ⇒ 1

]
− Pr

[
ρ
U←− Func({0, 1}n) : (A′)ρ ⇒ 1

]
=

= Pr
[
π
U←− Perm({0, 1}n) : AE forges

]
− Pr

[
ρ
U←− Func({0, 1}n) : AE forges

]
=

= AdvmAuth
MGMPerm({0,1}n)

(A)−AdvmAuth
MGMFunc({0,1}n)

(A) .

Using Corollary 6.3, Lemma 6.5 we obtain the desirable bound:

AdvmAuth
MGMPerm({0,1}n)

(A) 6 AdvmAuth
MGMFunc({0,1}n)

(A) + AdvPRF
Perm({0,1}n) (A′) 6

6
8ql + 2σ(l + 4) + 5q + 2l + 2

2n
+

2

2s
+ Pr

[
D̃om

q

coll
]

+
(2σ + 3q + l + 2)2

2n+1
6

6
8ql + 2σl + 8σ + 5q + 2l + 2

2n
+

2

2s
+
σ2 + 8σq + 3q2

2n
+

+
3ql + 2σl + 4σ + 6q

2n
+

(2σ + 3q)2 + (l + 2)2

2n+1
6

6
11ql + 4σl + 12σ + 11q

2n
+

3σ2 + 14σq + 8q2 + l2 + 4l + 4

2n
+

2

2s
6

6
3(σ + 3q + l + 2)2

2n
+

2

2s
.

The second inequality is due to that a PRF-breaking adversary A′ for the Perm({0, 1}n)
makes at most 2σ + 3q queries to simulate the encryption oracle and at most l + 2 queries to
process the last forgery query.

6.3 Security bounds

Theorem 6.7. For any Privacy-breaking adversary A, that makes at most q queries with the
total length of plaintexts and associated data at most σ blocks, the following inequality holds:

AdvPriv
MGMPerm({0,1}n)

(A) 6
3(σ + 4q)2

2n
.

Proof. The proof of the theorem follows from Theorem 6.4 and Proposition 5.1.
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Theorem 6.8. For any Authenticity-breaking adversary A, that makes at most q encryption
queries with the total length of plaintexts and associated data at most σ blocks and outputs a
forgery with the summary length of ciphertext and associated data at most l blocks, the following
inequality holds:

AdvAuth
MGMPerm({0,1}n)

(A) 6
3(σ + 4q + l + 3)2

2n
+

2

2s
.

Proof. The proof of the theorem follows from Theorem 6.6 and Proposition 5.2.

Bound comparison. Compare the lower bounds for Authenticity of the GCM mode sup-
posed to be used in TLS 1.3 and the MGM mode considered in the current paper.

The best bound for Authenticity of GCM can be found in [5]:

l + 1

2s
· δn(σ + q + 2),

where l is the maximal summary block-length of plaintext and associated data, σ is the total
block-length of plaintexts, q is the number of messages, n is the block bit-size, s is the tag
bit-size, and

δn(x) :=
1

(1− x
2n

)x/2
.

Assuming that σ+ q+ 2 6 264, we have that 1 6 δn(σ+ q+ 2) 6 2 for n = 128, and we get
an upper bound

2(l + 1)

2s
.

The specification of TLS 1.3 [12] recommends to encrypt at most 224 full-size records (l = 212

blocks). For n = 128 and s = 64 we obtain the following upper bounds for probabilities of
breaking integrity: ≈ 2−51 for GCM and ≈ 2−54 for MGM.

7 Conclusion

In the current paper we provide the lower security (upper insecurity) bounds in the Privacy
and Authenticity notions for the new MGM mode which is currently considered as a contender
for the standard AEAD mode in Russia. The obtained bounds show that the privacy and
authenticity of this mode is provably guaranteed (under security of the used block cipher) up
to the birthday paradox bound.

The aim of our future work is the analysis of the mode for an INT-CTXT notions where an
adversary has a capability to make several forgery queries.

We thank Igor B. Oshkin for useful discussions and comments during this work.
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