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Abstract

We construct a new polynomial commitment scheme for univariate and multivariate
polynomials over finite fields, with logarithmic size evaluation proofs and verification
time, measured in the number of coefficients of the polynomial. The underlying tech-
nique is a Diophantine Argument of Knowledge (DARK), leveraging integer representa-
tions of polynomials and groups of unknown order. Security is shown from the strong
RSA and the adaptive root assumptions. Moreover, the scheme does not require a
trusted setup if instantiated with class groups. We apply this new cryptographic com-
piler to a restricted class of algebraic linear IOPs, which we call Polynomial IOPs,
to obtain doubly-efficient public-coin interactive arguments of knowledge for any NP
relation with succinct communication. With linear preprocessing, the online verifier’s
work is logarithmic in the circuit complexity of the relation.

There are many existing examples of Polynomial IOPs (PIOPs) dating back to
the first PCP (BFLS, STOC’91). We present a generic compilation of any PIOP
using our DARK polynomial commitment scheme. In particular, compiling the PIOP
from PLONK (GWC, ePrint’19), an improvement on Sonic (MBKM, CCS’19), yields a
public-coin interactive argument with quasi-linear preprocessing, quasi-linear (online)
prover time, logarithmic communication, and logarithmic (online) verification time in
the circuit size. Applying the Fiat-Shamir transform results in a SNARK, which we
call Supersonic.

Supersonic is also concretely efficient with 10KB proofs and under 100ms verifi-
cation time for circuits with 1 million gates (estimated for 120-bit security). Most
importantly, this SNARK is transparent : it does not require a trusted setup. We ob-
tain zk-SNARKs by applying a hiding variant of our polynomial commitment scheme
with zero-knowledge evaluations. Supersonic is the first complete zk-SNARK system
that has both a practical prover time as well as asymptotically logarithmic proof size
and verification time. This version of the paper includes a new security proof. The
original proof had a significant gap that was discovered by Block et al. (CRYPTO
2021). The new security proof closes the gap and shows that the original protocol with
a slightly adjusted parameter is still secure. Towards this goal, we introduce the notion
of almost-special-sound protocols which likely has broader applications.

1 Introduction

Since the landmark discoveries of interactive proofs (IPs) [GMR85] and probabilistically
checkable proofs (PCPs) [BFLS91, ALM+92] in the 90s, there has been tremendous de-
velopment in the area of proof systems whereby a prover establishes the correct performance
of an arbitrary computation in a way that can be verified much more efficiently than per-
forming the computation itself. Such proof systems are succinct if they also have a low
communication cost between the prover and the verifier, i.e., the transcript of the protocol
is much smaller than a witness to the computation. There are also zero knowledge variants
of these efficient proof systems, beginning with ZK-IPs [BGG+88] and ZK-PCPs [Kil92], in
which the computation may involve secret information and the prover demonstrates correct
performance without leaking the secrets. As a toy example, one could prove that a chess
position is winning for white without actually revealing the winning moves themselves. Gen-
eral purpose zero-knowledge proofs [GMW91] can be very expensive in terms of proof size
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and verification time even for computations that would be easy to perform given the secret
inputs (e.g., by proving that one decrypted a file properly without leaking the key or the
plaintext). The same techniques that are used to build efficient proof systems for expensive
computations are also useful for making zero-knowledge proofs more practical.

In recent years, there has been a surge of industry interest in verifiable outsourced compu-
tation [WB15] (such as trustless cloud computing) as well as zero-knowledge proofs. In par-
ticular, blockchains use efficient zero-knowledge proofs as a solution for balancing privacy and
publicly-verifiable integrity: examples include anonymous transactions in ZCash [BCG+14,
Zca, HBHW19] and verifying Ethereum smart contracts over private inputs [Ebe]. In these
applications, zero-knowledge proofs are posted to the blockchain ledger as a part of transac-
tions and nodes must verify many proofs in the span of a short period of time. Therefore,
succinctness and fast verification are necessary properties for the deployment of such proof
systems. Verifiable computation is also being explored as a scaling solution for blockhain
transactions [But16], and even as a way to entirely eliminate the need for maintaining his-
torical blockchain data [Lab18].

Following this pragmatic interest, there has also been a surge of research focused on
obtaining proof systems with better concrete efficiency characteristics: succinctness (the
proof size is sublinear in the original computation length T ), non-interactivity (the proof is
a single message), prover-scalability (proof generation time scales linearly or quasi-linearly in
T ), and verifier-scalability (verification time is sublinear in T ). Proof systems that achieve all
of these properties for general NP statements are called SNARGs (“succinct non-interactive
arguments”). The proof is called an argument when it is only sound assuming the prover
is computationally bounded, i.e., computationally sound as opposed to statistically sound.
Succinct statistically sound proofs are unlikely to exist [GVW02, Wee05].

Currently, there are numerous constructions that achieve different tradeoffs between proof
size, proof time, and verification time, but also under different trust models as well as
cryptographic assumptions. Some constructions also achieve better efficiency by relying on
a preprocessing model in which a one-time expensive setup procedure is performed in order
to generate a compact verification key VK, which is later used to verify proof instances
efficiently. Somewhat unfortunately, the best performing proof systems to date (considering
proof size and verification time) require a trusted preprocessing. These are the pairing-based
SNARKs extending from GGPR [GGPR13, SBV+13, BCI+13, BCG+13, Gro16], which have
been implemented in numerous libraries [BCG+13, Bow16], and even deployed in live systems
such as the ZCash [Zca] cryptocurrency. The trusted setup can be performed via multi-party
computation (MPC) by a committee of parties, such that trust in only one of the parties is
sufficient. This has been done on two occasions for the ZCash blockchain, involving elaborate
“ceremonies” to engender public trust in the process [Wil16].

A proof system is called transparent if it does not involve any trusted setup. Re-
cent progress has yielded transparent proof systems for special types of computations: zk-
STARKs [BBHR19] generate zero-knowledge proofs of size O(log2 T ) for a uniform computa-
tion1, and the GKR protocol produces interactive proofs with communication O(d log T ) for
computations expressed as low-depth circuits of total size T and depth d [GKR08]. In both
cases, non-interactivity can be achieved in the random oracle model with the Fiat-Shamir
heuristic [FS87, CCH+19]. These transparent proof systems perform significantly worse
than SNARKs based on preprocessing. For computations expressed as an arithmetic circuit
of 1-million gates, STARKs [BBHR19] report a proof size of 600KB, whereas preprocess-
ing SNARKs achieve 200 bytes [Gro16]. Bulletproofs [BBB+18, BCC+16a] is a transparent
zero-knowledge proof system whose proofs are much smaller than those of STARK, but these
proofs have a verification time that scales linearly in the size of the circuit; for an arithmetic
circuit of one million gates the verification time is close to 1 minute, more than 1,000 times
more expensive than verifying a STARK proof for the same computation.

Another thread of research has produced proof systems that remove trust from the circuit
preprocessing step, and instead have a universal (trusted) setup: a one-time trusted setup
that can be reused for any computation [MBKM19, XZZ+19, GWC19]. All of these systems
build SNARKs by combining an underlying reduction of circuit satisfiability to probabilistic
testing of polynomials (with degree at most linear in the circuit size) together with polynomial
commitment schemes. In a polynomial commitment scheme, a prover commits to a µ-variate

1A uniform computation is expressed as a RAM program P and a time bound T on the running time of
the program. A uniform computation depends on the size of P ’s description but not on the time bound T .
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polynomial f over F of total degree at most d with a message that is much smaller than
sending all the coefficients of f . The prover can later produce a non-interactive argument
that f(z) = y for arbitrary z ∈ Fµ and y ∈ F. The trusted portion of the universal SNARK
is entirely confined to the polynomial commitment scheme’s setup. These constructions use
variants of the Kate et al. commitment scheme for univariate polynomials [KZG10], which
requires a trusted setup.

1.1 Summary of Contributions

Following the observations of the recent universal SNARK constructions [GWC19, MBKM19,
XZZ+19], SNARKs can be built from polynomial commitment schemes where all the trust
is confined to the setup of the commitment scheme. The main technical contribution of our
work is thus a new polynomial commitment scheme without trusted setup (i.e., a transpar-
ent polynomial commitment scheme), which we can use to construct transparent SNARKs.
The observation that transparent polynomial commitments imply transparent SNARKs was
also implicit in the recent works that build transparent SNARKs from multi-round classi-
cal PCPs, and specifically interactive oracle proofs of proximity (IOPPs) [BBHR18]. As a
secondary contribution, we present a framework that unifies all existing approaches to con-
structing SNARKs from polynomial commitments using the language of interactive oracle
proofs (IOPs) [RRR16, BCS16]. We view polynomial commitment schemes as a compiler
for Polynomial IOPs, and re-characterize the results of prior works as providing a variety of
Polynomial IOPs for NP.

New polynomial commitment scheme We construct a new polynomial commitment
scheme for µ-multivariate polynomials of total degree d with optional zero-knowledge argu-
ments of knowledge for correct evaluation that have O(µ log d) size proofs and are verifiable
in O(µ log d) time. The commitment scheme requires a group of unknown order: two can-
didate instantiations are RSA groups and class groups of an imaginary quadratic order.
Using RSA groups, we can apply the scheme to obtain universal preprocessing SNARKs
with constant-size setup parameters, as opposed to the linear-size parameters from previous
attempts. Using class groups, we can remove the trusted setup from trusted-setup SNARKs
altogether, thereby making them transparent. Our polynomial commitment scheme lever-
ages the power of integer commitments and Diophantine Arguments of Knowledge [Lip03];
accordingly, we classify this tool (and others of its kind) as a DARK proof system.

Polynomial IOP formalism All SNARK constructions can be viewed as combining an
underlying information-theoretic statistically-sound protocol with a “cryptographic com-
piler” that transforms the underlying protocol into a succinct argument at the cost of
computational soundness. We define a Polynomial IOP as a refinement of algebraic lin-
ear IOPs [IKO07, BCI+13, BBC+19], where in each round of interaction the prover provides
the verifier with oracle access to a multivariate polynomial function of bounded degree. The
verifier may then query this oracle to evaluate the polynomial on arbitrary points of its
choice. The existing universal and transparent SNARK constructions provide a variety of
statistically-sound Polynomial IOPs for circuit satisfiability (or RAM programs, in the case
of STARKs); these are then cryptographically compiled using some form of a polynomial
commitment, typically using Merkle trees or pairing groups.

The linear PCPs underlying GGPR and its successors (i.e., based on QAPs and R1CS)
can also be transformed into Polynomial IOPs.2 This transformation helps highlight the fun-
damental paradigm shift between constructions of non-transparent non-universal SNARKs
that combine linear PCPs and linear-only encodings versus the more recent ones based on
polynomial commitments: given the lack of efficient3 linear function commitment schemes,
the compilation of linear PCPs necessarily involves a trusted preprocessing step that pres-
elects the verifier’s linear PCP queries, and hides them inside a linear-only encoding. This
linear-only encoding forces the prover to homomorphically output an (encoded) linear tran-
formation of the query, upon which the verifer performs several homomorphic checks (e.g.,

2This observation was also implicit in the paper by Ben-Sasson et al. introducing the system
Aurora [BCR+19].

3Lai and Malavota [LM19] provide a n-dimensional linear-map commitment based on bilinear pairings,
extending techniques in functional commitments [LRY16], but verifying claimed evaluations of the committed
function on query points takes O(n).
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using pairings). The shift towards Polynomial IOPs, which can be compiled more directly
with efficient polynomial commitments, avoids the involvement of a trusted party to place
hidden queries in the preprocessing. The only potential need for non-transparent setup is in
the instantiation of polynomial commitment itself.

The precise definition of Polynomial IOPs as a central and standalone notion raises the
question about its exact relation to other IOP notions. We present a univariate Polynomial
IOP for extracting an indicated coefficient of a polynomial. Furthermore, we present a
univariate Polynomial IOP for proving that the inner product between the coefficient vectors
of two polynomials equals a given value. This proof system is of independent interest.
Together with an offline pre-processing phase during which the correctness of a multivariate
polynomial is ascertained, these two tools enable us to show that any algebraic linear IOP
can be realized with a multivariate Polynomial IOP.

Polynomial IOP compiler We present a generic compilation of any public-coin Poly-
nomial IOP into a doubly-efficient public-coin interactive argument of knowledge using an
abstract polynomial commitment scheme. We prove that if the commitment scheme’s evalu-
ation protocol has witness-extended emulation, then the compiled interactive argument has
this knowledge property as well. If the commitment scheme is hiding and the evaluation is
honest-verifier zero knowledge (HVZK), then the compiled interactive argument is HVZK
as well. Finally, public-coin interactive arguments may be cryptographically compiled into
SNARKs using the Fiat-Shamir transform.

New SNARK without Trusted Setup The main practical outcome of this work is a
new transparent proof system (Supersonic) for computations represented as arbitrary arith-
metic circuits, obtained by cryptographically compiling the Polynomial IOPs underlying
Sonic [MBKM19], PLONK [GWC19], andMarlin[CHM+19] using the DARK polynomial com-
mitment scheme. Supersonic improves the proof size by an order of magnitude over STARKs
without compromising on verification time. For one million gates, Supersonic’s proofs are just
7.8KB and take around 75ms to verify. Using the notation Oλ(·) to hide multiplicative fac-
tors dependent on the security parameter λ, STARKs have size and verification complexity
Oλ(log

2 T ) whereas Supersonic has size and verification complexity Oλ(log T ). (The addi-
tional multiplicative factors dependent on λ are actually better for Supersonic as well.) As a
caveat, while the prover time in Supersonic is asymptotically on par with STARKs (i.e., quasi-
linear in T ), the concrete efficiency is much worse due to the use of heavy-weight “crypto
operations” over 1200 bit class group elements in contrast to the light-weight FFTs and hash
functions in STARKs. Furthermore, Supersonic is not quantum-secure due to its reliance on
groups of unknown order, whereas STARKs are a candidate quantum-secure SNARK.

New Security Proof (Added June 2022) The original security proof in the version
of the paper published at EUROCRYPT 2020[BFS20] had a significant gap which was dis-
covered by [BHR+21]. It implicitly assumed that the prover could only encode integer
polynomials. While the protocol does ensure that the last message is an integer, i.e. a
constant degree integer polynomial, this isn’t necessarily guaranteed in the prior rounds.
The prover could possibly start by committing to a polynomial with rational coefficients,
i.e. f(X) = g(X)

N
∈ Q[X] for g(X) ∈ Z[X] and N ∈ Z. In each step of the protocol, the

prover computes a random linear combination of two halves of the polynomial. It is possible
that for some random challenge this random linear combination of two rational polynomials
results in an integer polynomial. This would break the assumption that was made in the
flawed security proof. The extractor described in the EUROCRYPT version extracted a
rational polynomial, not an integer one.

It is easy to show (see Lemma 10) that the polynomial commitment is still binding, for
polynomials with rational coefficients. Unfortunately, the binding property only holds if the
rational polynomial has bounded coefficients, i.e. bounded numerators and denominators.
Using the old extractor we would get extremely loose bounds which then translate to super-
quadratic prover and setup times. However, taking the view of the adversary, it does not
seem likely that the prover could start with a polynomial with a very large denominator
and end up with an integer in the last round with high probability. Taking a closer look
at the protocol, in a convincing proof the final prover message is an integer equivalent
to f̃(α1, . . . , αµ) = g̃(α1,...,αµ)

N
where f̃ and g̃ are multi-linear polynomials with the same
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coefficients as f and g respectively and α1, . . . , αµ are the verifier’s random challenges. This,
however, implies that g̃(α1, . . . , αµ) ≡ 0 mod N . The probability of this event over random
challenges can be bounded with an analysis akin to the famous Schwartz-Zippel lemma, but
generalized for composite N . In a separate paper [BF22] we carefully analyze this probability
and show that if N is too large, this probability is negligible. This in turn implies bounds on
f . This insight gives confidence that DARK might be sound but it does not directly yield a
security proof.

Critically, DARK is not special-sound, meaning there isn’t an extractor that can compute
a witness from any forking transcript tree. But on the other hand, DARK has a special
structure that we can still exploit. First, in DARK every message is a commitment. Given
a transcript tree, if the messages below the i+1th level have all been opened to polynomials
that have bounded norm, then it is possible to extract openings of the commitments at the
ith level. The problem is that the norm grows, and the extracted opening at level i are no
longer guaranteed to be small enough to continue to level i−1. We can call these two bounds:
if all openings below level i satisfy bound A, then we can extract a polynomial at level i
that satisfies bound B. However, there are two other key properties that ultimately allow
us to get around this issue. (a) Given openings to the last µ − i commitments in a DARK
transcript to rational polynomials, if the ith commitment satisfies bound B then “rerunning
the protocol” as the prover using the same round challenges starting from the ith opened
commitment should either recover the same openings of the last µ− i commitments or break
the commitment scheme by giving an opening of one of these commitments to a distinct
message. (b) If the ith opened message does NOT satisfy the bound A, then if we were to
rerun the honest protocol on this message as above on uniformly *random* round challenges
then the probability it gives a valid transcript is negligible. The probability analysis relies
on the Composite Schwartz Zippel Lemma [BF22].

We generalize this to the notion of Almost Special Sound(ASS) protocols and replace the
bounds A and B with arbitrary predicates A and B. We prove (Theorem 7) that all protocols
with this ASS structure are knowledge sound, just like special sound protocols, where the
knowledge error is dependent on the probability that a random completion of a transcript
starting from a message that fails predicate A results in a valid transcript. Intuitively, this
captures the fact that once the adversary has a message that fails the desired extraction
predicate it will fail with overwhelming probability over fresh challenges to complete the
proof transcript successfully. We also show that if the commitment scheme is computationally
unique, i.e. it is hard for a prover to produce two commitments to the same message, then
the Fiat-Shamir transform of ASS protocols is secure (Theorem 8) We provide the proof as
a self-contained document in the appendix.

1.2 Related Work

Arguments based on hidden order groups Fujisaki and Okamoto [FO97] proposed
homomorphic integer commitment schemes based on the RSA group. They also provide
protocols to prove that a list of committed integers satisfy modular polynomial equations as
opening a commitment bit by bit. Damg̊ard and Fujisaki [DF02] patched the soundness proof
of that protocol and were the first to suggest using class groups of an imaginary quadratic
order as a candidate group of unknown order. Lipmaa drew the link between zero-knowledge
proofs constructed from integer commitment schemes and Diophantine complexity [Lip03],
coining the term Diophantine Arguments of Knowledge. Recently, Couteau et al. study
protocols derived from integer commitments specifically in the RSA group to reduce the
security assumptions needed; in the process they develop proofs for polynomial evaluation
modulo a prime π that is not initially known to the verifier, in addition to a proof showing
that an integer X lies in the range [a, b] by showing that 1 + 4(X − a)(b −X) decomposes
as the sum of 3 squares [CPP17].

Pietrzak [Pie19] developed an efficient proof of repeated squaring, i.e., proving that
x2T = y with O(log T ) proof size and verification time in order to build a conceptually
simple verifiable delay function [BBBF18] based on the RSW time-lock puzzle [RSW96].
Wesolowski [Wes19] improves on this result by proposing a single-round protocol to prove
correct repeated squaring in groups of unknown order with a constant size proof. Boneh et
al. [BBF19] observe that this protocol generalizes to arbitrary exponents (PoE) and develop
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a proof of knowledge of an integer exponent (PoKE), as well as a zero-knowledge variant4.
They use both PoE and PoKE to construct efficient accumulators and vector commitment
schemes.

Transparent polynomial commitments Whaby et al. constructed a transparent poly-
nomial commitment scheme [WTs+18] for multilinear polynomials by combining a ma-
trix commitment of Bootle et al. [BCC+16b] with the inner-product argument of Bünz et
al. [BBB+18]. For polynomials of degree d it has commitments of size O(

√
d) and evaluation

arguments with O(
√
d) communication. Zhang et al. [ZXZS19] and Kattis et al. [KPV19]

recently and independently showed how to build a polynomial commitment from FRI (Fast
Reed Solomon IOPP) [BBHR18, BSGKS19] The commitment is transparent, has O(λ) size
commitments and evaluation arguments with O(log2 d) communication.

Polynomial IOP formalism In concurrent work Chiesa et al. [CHM+19] introduce an
information theoretic framework called algebraic holographic proofs (AHP). They also show
that with a polynomial commitment scheme an AHP can be compiled to a preprocessing
SNARK. The AHP framework is essentially equivalent to our Polynomial IOP framework.
In other concurrent work, Chiesa, Ojha, and Spooner show interesting connections between
algebraic holographic proofs and recursive proof composition. In the same work, the authors
develop an AHP-based transparent SNARK called Fractal [COS19].

2 Technical Overview

This technical overview provides an informal description of our key technical contribution:
a polynomial commitment scheme with logarithmic evaluation proofs and verification time.
The commitment scheme relies on four separate tools.

1. Integer encoding of polynomials Given a univariate polynomial f(X) ∈ Zp[X]
the prover first encodes the polynomial as an integer. Interpreting the coefficients of f(X)
as integers in [0, p), define f̂(X) to be the integer polynomial with these coefficients. The
prover computes f̂(q) ∈ Z for some large integer q ≥ p. This is an injective map from
polynomials with bounded coefficients to integers and is also decodable: the coefficients
of f(q) can be recovered from the base-q expansion of f̂(q). For example, suppose that
f(X) = 2X3 + 3X2 + 4X + 1 ∈ Z5[X] and q = 10. Then the integer f̂(10) = 2341 encodes
the polynomial f(X) because its coefficients appear in the decimal expansion of f̂(10).

Note that this encoding is also additively homomorphic, assuming that q is sufficiently
large. For example, let g(X) = 4X3+1X2+3 such that ĝ(10) = 4103. Then f̂(10)+ ĝ(10) =
6444 = (ĝ+ f̂)(10). The more homomorphic operations we want to permit, the larger q needs
to be. The encoding additionally permits multiplication by polynomials (f̂(q) · qk is equal
to the encoding of f(X) ·Xk).

2. Succint integer commitments The integer x← f̂(q) ∈ Z encoding a degree d poly-
nomial f(X) lies between qd and qd+1; in other words, its size is (d+1) log2 q bits. The prover
commits to x using a succinct integer commitment scheme that is additively homomorphic.
Specifically, we use scalar multiplication in an additive group (G,+) of unknown order: the
commitment is the single group element x ·G for a base element G ∈ G specified in the setup.
(Note that if the order n of G is known then this is not an integer commitment; x · G could
be opened to any integer x′ ≡ x mod n.)

3. Evaluation protocol The evaluation protocol is an interactive argument to convince
a verifier that C is an integer commitment to f̂(q) such that f(z) = y at a provided point
z ∈ Zp. The protocol must be evaluation binding : it should be infeasible for the prover to
succeed in arguing that f(z) = y and f(z) = y′ for y ̸= y′. The protocol should also be an
argument of knowledge, which informally means that any prover who succeeds at any point
x must “know” the coefficients of the committed f .

4In this paper we will use additive notation so technically integer exponentiation refers to a scalar mul-
tiplied with a group element. Despite this, we will continue to use the term PoE to refer to Wesolowski’s
protocol.
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As a warmup, we first describe how a prover can efficiently convince a verifier that C
is a commitment to an integer polynomial of degree at most d with bounded coefficients.
Assume for now that d = 2k− 1. The protocol uses a recursive divide-and-combine strategy.
In each step we split f(X) into two degree d′ = ⌊d

2
⌋ polynomials fL(X) and fR(X). The

left half fL(X) contains the first d′ + 1 coefficients of f(X) and the right half fR(X) the
second, such that f(X) = fL(X) +Xd′+1fR(X). The prover now commits to fL and fR by
computing CL ← f̂L(q) · G and CR ← f̂R(q) · G. The verifier checks the consistency of these
commitments by testing CL + qd

′+1 · CR = C. The verifier then samples random α ∈ Zp and

computes C′ ← CL+α ·CR, which is an integer commitment to f̂L(q)+α · f̂R(q). The prover
and verifier recurse on the statement that C′ is a commitment to a polynomial of degree at
most d′, thus halving the “size” of the statement. After log2(d+1) rounds, the commitment
C′ exchanged between prover and verifier is a commitment to a polynomial of degree 0, i.e.,
to a scalar c ∈ Zp. So C′ is of the form ĉ · G where ĉ is some integer congruent to c modulo
p. The prover sends ĉ to the verifier directly. The verifier checks that Gĉ = C′ and also that
ĉ < q.5

To also show that f(z) = y at a provided point z, the prover additionally sends yL =
fL(z) mod p and yR = fR(z) mod p in each round. The verifier checks consistency with the
claim, i.e., that yL+zd

′+1yR = y, and also computes y′ ← yL+α ·yR mod p to proceed to the
next round. (The recursive claim is that C′ commits to f ′ such that f ′(z) = y′ mod p.) In
the final round of recursion, the value of the constant polynomial in z is the constant itself.
So in addition to testing C = ĉ · G and ĉ < q, the verifier also checks that ĉ ≡ y mod p.

4. Outsourcing large scalar multiplications for efficiency The evaluation protocol
requires communicating only 2 group elements and 2 field elements per round. However, the
verifier needs to check that CL + qd

′+1 · CR = C, and näıvely performing the scalar multi-
plication requires Ω(d · log q) work. To reduce this workload, we employ a recent technique
for proofs of exponentiation (PoE) in groups of unknown order due to Wesolowski [Wes19]
in which the prover computes this scalar multiplication (also referred to as exponentiation
when using a multiplicative group) and the verifier verifies it in essentially constant time.
This outsourcing reduces the total verifier time (i.e., of the entire protocol) to a quantity
that is logarithmic in d.

3 Preliminaries (Assumptions and Commitments)

We present the preliminaries on the computational assumptions in groups of unknown orders
and our definitions. The preliminaries on proof systems are found in the new security proof
in Appendix A.

3.1 Assumptions

The cryptographic compilers make extensive use of groups of unknown order, i.e., groups for
which the order cannot be computed efficiently. Concretely, we require groups for which two
specific hardness assumptions hold. The binding property of the polynomial commitment
and the evaluation protocol, rely on the most basic assumption in groups of unknown order.
The assumption states that it is hard to compute the order of random group elements.
This assumption is implied by the famous RSA Assumption [RSA78] which states that it is
hard to take random roots (technically scalar divisions) of random elements. Secondly, our
proofs of exponentiation which are used to make the verifier efficient, rely on the much newer
Adaptive Root Assumption [Wes19] which is the dual of the Strong RSA Assumption and
states that it is hard to take random roots of arbitrary group elements. The assumption, is
also used to show that the commitment scheme is computationally unique, that is given a
message an adversary can only output a single valid commitment to the message. Both of
these assumptions hold in generic groups of unknown order [DK02, BBF19].

Assumption 1 (Random Order Assumption). The random order assumption states that an
efficient adversary cannot compute a multiple of the order of a given random group element.

5In the full scheme, the verifier actually checks that ĉ < B for a bound B < q that depends on the field
size p and the polynomial’s maximum degree d

7



Specifically, it holds for GGen if for any probabilistic polynomial time adversary A:

Pr

a · G = 0 :

G, N ← GGen(λ)

G,
$← G

a ∈ Z← A(G, N,G)

 ≤ negl(λ) .

Assumption 2 (RSA assumption, [RSA78, CPP17]). The RSA assumption states that an
efficient adversary cannot compute a random root (co-prime with the order of the group)
for a given random group element. Specifically, it holds for GGen if for any probabilistic
polynomial time adversary A:

Pr

 ℓ · U = G :

G, N ← GGen(λ)

G
$← G, ℓ

$← [N ]
U ∈ G← A(G,G)

 ≤ negl(λ) .

Assumption 3 (Adaptive Root Assumption). The Adaptive Root Assumption holds for
GGen if there is no efficient adversary (A0,A1) that succeeds in the following task. First,
A0 outputs an element W ∈ G and some st. Then, a random prime ℓ in Primes(λ) is chosen
and A1(ℓ, st) outputs W

1/ℓ ∈ G. For all efficient (A0,A1):

Pr

ℓ · U = W ̸= 1 :

G $← GGen(λ)

(W, st)
$← A0(G)

ℓ
$← Primes(λ)

U← A1(ℓ, w, st)

 ≤ negl(λ).

Lemma 1. The RSA Assumption for GGen implies the Random Order Assumption

Proof. Given an efficient adversary AOrder for the random order assumption that succeeds
with non-negligible probability ϵ we will construct an efficient adversary ARSA for the RSA
assumption. On input G,G, ℓ to ARSA we will forward G,G to AOrder. AOrder outputs a
such that a · G = 0 with non-negligible probability ϵ. ARSA computes a′ ← a

gcd(a,ℓk)
for

k = ⌈logℓ(a)⌉. The probability that ℓ is not co-prime to the order of G is bounded by
log2 |G|
|Primes(λ)| which is negligible in λ. Otherwise ℓ is co-prime with the order of G and a is a

multiple of the order of G we have that a′ is still a multiple of the order of G. Now ARSA

computes w ← ℓ−1 mod a′ and outputs U← w · G. Now we have ℓ ·U = G so ARSA succeeds
with probability ϵ− negl(λ).

Lemma 2. The Adaptive Root Assumption for GGen implies the Random Order Assump-
tion

Proof. Given an efficient adversary AOrder for the random order assumption we will construct
an efficient adversary AAR = (A0,A1) for the Adaptive Root assumption. On input G to A0

we will sample a random group element G from G and forward it to AOrder. AOrder outputs
a such that a · G = 0 with non-negligible probability ϵ. And we set the output of A0 to
be (G, a). The adaptive root game then samples a random prime ℓ. A1 on input (a, g, ℓ)
computes a′ ← a

gcd(a,ℓk)
for k = ⌈logℓ(a)⌉. Note that since ℓ is co-prime to the order of G

and thus also the order of G and a is a multiple of the order of G we have that a′ is still a
multiple of the order of G. If we don’t abort then we compute ℓ−1 mod a and U = ℓ−1 · G.
Finally A1 outputs U, which by construction is such that ℓ · U = G.

Groups of unknown order. We consider two candidate groups of unknown order. Both
have their own upsides and downsides.

RSA Group. In the multiplicative group Z∗n of integers modulo a product n = p · q of
large primes p and q, computing the order of the group is as hard as factoring n. The
Adaptive Root Assumption does not hold for Z∗n because −1 ∈ Z∗n can be easily computed
and has order two. This can be resolved though by working instead in the quotient group
Z∗n/{x |x2 = 1} ∼= QRn. The downside of using an RSA group, or more precisely, the group
of quadratic residues modulo an RSA modulus, is that this modulus cannot be generated in
a publicly verifiable way without exposing the order, and thus requires a trusted setup.

Class Group. The class group of an imaginary quadratic order is defined as the quotient
group of fractional ideals by principal ideals of an order of a number field Q(

√
∆), with ideal
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multiplication. A class group Cℓ(∆) is fully defined by its discriminant ∆, which needs to
satisfy only public constraints such as ∆ ≡ 1 mod 4 and −∆ must be prime. As a result,
∆ can be generated from public coins, thus obviating the need for a trusted setup. A
group element can be represented by two integers strictly smaller (in absolute value) than
−∆, which in turn is on the same order of magnitude as RSA group elements for a similar
security level. We refer the reader to Buchmann and Hamdy’s survey [BH01] and Straka’s
accessible blog post [Str19] for more details.

Working in Cℓ(∆) does present an important difficulty: there is an efficient algorithm due
to Gauss to compute square roots of arbitrary elements [BS96], and by repetition, arbitrary
power of two roots. Despite this, the random order and the adaptive root assumption still
hold in class groups. Computing power of two roots does not directly enable one to compute
the order of a random element or compute random (large prime) roots of a chosen element.
The new security proof only relies on the random order assumption for extraction and the
adaptive root assumption for the PoEs. It, therefore, holds even for adversaries that can
compute square (or other small) roots of elements.

3.2 Commitment Schemes

In defining the syntax of the various protocols, we use the following convention with respect
to public values (known to both the prover and the verifier) and secret ones (known only
to the prover). In any list of arguments or returned tuple (a, b, c; d, e) those variables listed
before the semicolon are public, and those variables listed after it are secret. When there is
no secret information, the semicolon is omitted.

Definition 1 (Commitment scheme). A commitment scheme Γ is a tuple Γ = (Setup,Commit,
Open) of PPT algorithms where:

• Setup(1λ)→ pp generates public parameters pp;

• Commit(pp;x)→ (C; r) takes a secret message x and outputs a public commitment C
and (optionally) a secret opening hint r (which might or might not be the randomness
used in the computation).

• Open(pp, C, x, r)→ b ∈ {0, 1} verifies the opening of commitment C to the message x
provided with the opening hint r.

A commitment scheme Γ is binding if for all PPT adversaries A:

Pr

b0 = b1 ̸= 0 ∧ x0 ̸= x1 :

pp← Setup(1λ)
(C, x0, x1, r0, r1)← A(pp)
b0 ← Open(pp, C, x0, r0)
b1 ← Open(pp, C, x1, r1)

 ≤ negl(λ)

We now extend the syntax to polynomial commitment schemes. The following definition
generalizes that of Kate et. al. [KZG10] to allow interactive evaluation proofs. It also
stipulates that the polynomial’s degree be an argument to the protocol, contrary to Kate et
al. where the degree is known and fixed.

Definition 2. (Polynomial commitment) A polynomial commitment scheme is a tuple of
protocols Γ = (Setup,Commit,Open,Eval) where (Setup, Commit,Open) is a binding com-
mitment scheme for a message space R[X] of polynomials over some ring R, and

• Eval(pp, C, z, y, d, µ; f(X))→ b ∈ {0, 1} is an interactive public-coin protocol between
a PPT prover P and verifier V . Both P and V have as input a commitment C, points
z, y ∈ R, and a degree d. The prover additionally knows the opening of C to a secret
polynomial f(X) ∈ R[X] with deg(f(X)) ≤ d. The protocol convinces the verifier that
f(z) = y. In a multivariate extension of polynomial commitments, the input µ > 1
indicates the number of variables in the committed polynomial and z ∈ Rµ.

A polynomial commitment scheme is correct if an honest committer can successfully
convince the verifier of any evaluation. Specifically, if the prover is honest then for all
polynomials f(X) ∈ R[X] and all points z ∈ R,

Pr

b = 1 :

pp← Setup(1λ)
(C; r)← Commit(pp, f(X))
y ← f(z)
d← deg(f(X))
b← Eval(pp, c, z, y, d; f(X), r)

 = 1 .
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A polynomial commitment scheme is evaluation binding if no efficient adversary can
convince the verifier that the committed polynomial f(X) evaluates to different values y0 ̸=
y1 ∈ R in the same point z ∈ R. However, our applications require a stronger property
called knowledge soundness.

Knowledge soundness Any successful prover in the Eval protocol must know a polyno-
mial f(X) such that f(z) = y and C is a commitment to f(X). More formally, since Eval
is a public-coin interactive argument we define this knowledge property as a special case of
witness-extended emulation (Definition 8).

Define the following NP relation given pp← Setup(1λ):

REval(pp) =

{
⟨(C, z, y, d), (f(X), r)⟩ : f ∈ R[X] and deg(f(X)) ≤ d and f(z) = y

and Open(pp, C, f(X), r) = 1

}
The correctness definition above implies that if Γ = (Setup,Commit,Open,Eval) is correct
then Eval is a correct interactive argument for REval(pp), with overwhelming probability over
the randomness of Setup. We say that Γ has witness-extended emulation if Eval has
witness-extended emulation as an interactive argument for REval(pp).

It is easy to see that witness-extended emulation implies evaluation binding when the
Setup,Commit, and Open part of Γ form a binding commitment scheme. If the adversary
succeeds in Eval on both (C, z, y0, d0) and (C, z, y1, d1) for y0 ̸= y1 or d0 ̸= d1 then the
emulator obtains two distinct witnesses f(X) ̸= f ′(X) such that C is a valid commitment
to both. This would contradict the binding property of the commitment scheme.

3.3 Proofs of Exponentiation

Wesolowski [Wes19] introduced a simple yet powerful proof of correct exponentiation (“PoE”)
in groups of unknown order. A prover can efficiently convince a verifier that a large scalar
multiplication in such a group was done correctly. For instance, the prover wishes to convince
the verifier that W = Ux for known group elements U,W ∈ G and exponent x ∈ Z, and the
verifier wants to verify this with much less work than performing the scalar multiplication.
To do this, the verifier samples a large enough prime ℓ at random and the prover provides
him with Q← Uq where q = ⌊x

ℓ
⌋. The verifier then simply computes the remainder r ← (x

mod ℓ) and checks that QℓUr = W. The protocol is an argument for the relation RPoE =
{⟨(U,W, x),∅⟩ : Ux = W}. The proof verification uses just O(λ) group operations. When
x is x = qd the verifier can compute r ← x mod ℓ using just log(d) ℓ-bit multiplications.

PoE(U,W, x) :

1. V samples ℓ
$← Primes(λ) and sends ℓ to P

2. P computes quotient q and remainder r such that x = qℓ+ r and
r ∈ {0, . . . , ℓ− 1}

3. P computes Q← q · U and sends it to V
4. V computes r ← (x mod ℓ) and checks that ℓ · Q+ r · U = W
5. if check passes then return 1 else return 0

Lemma 3 (PoE soundness [Wes19]). PoE is an argument system for relation RPoE with
negligible soundness error, assuming the Adaptive Root Assumption (Assumption 3) holds
for GGen.

Lemma 4 (PoE random oracle soundness [Wes19]). The Fiat-Shamir transform of PoE,
replacing the verifier message ℓ with ℓ← H(u,w, x) and H is an argument system for relation
RPoE with negligible soundness error, assuming that H is modeled as a random oracle and
that the Adaptive Root Assumption (Assumption 3) holds for GGen.

4 Polynomial Commitments from Groups of Unknown

Order

4.1 Information-Theoretic Abstraction

Before we present our concrete polynomial commitment scheme based on groups of unknown
order, we present the underlying information theoretic protocol that abstracts the concrete
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cryptographic instantiations. The purpose of this abstraction is two-fold: first, it provides
an intuitive stepping stone from which presenting and studying the concrete cryptographic
protocol is easier; and second, it opens the door to alternative cryptographic instantiations
that provide the same interface but based on alternative hardness assumptions.

Let [[∗]] : Zp[X] → S be a homomorphic commitment function that sends polynomials
over a prime field to elements of some set S. Moreover, let S be equipped with operations
∗+ ∗ : S× S→ S and ∗ · ∗ : Zp[X]× S→ S that accommodate two homomorphisms for [[∗]]:

• a linear homomorphism: a · [[f(X)]] + b · [[g(X)]] = [[af(X) + bg(X)]]
• a monomial homomorphism: Xd · [[f(X)]] = [[Xdf(X)]].

For now, assume both prover and verifier have oracle access to the function [[∗]] and to the
operations ∗ · ∗ and ∗ + ∗. (Later on, we will instantiate this commitment function using
groups of unknown order and an encoding of polynomials as integers.)

The core idea of the evaluation protocol is to reduce the statement that is being proved
from one about a polynomial f(X) of degree d and its evaluation y = f(z), to one about a
polynomial f ′(X) of degree d′ = ⌊d

2
⌋ and its evaluation y′ = f ′(z). For simplicity, assume that

d+1 is a power of 2. The prover splits f(X) into fL(X) and fR(X) such that f(X) = fL(X)+
Xd′+1fR(X) and such that both halves have degree at most d′. The prover obtains a random
challenge α ∈ Zp from the verifier and proceeds to prove that f ′(X) = fL(X) + α · fR(X)
has degree d′ and that f ′(z) = y′ = yL + αyR with yL = fL(z) and yR = fR(z).

The proof repeats this reduction by using f ′(X), z, y′ and d′ as the input to the next
recursion step. In the final step, f(X) = f is a constant and the verifier checks that f = y.

The commitment function binds the prover to one particular polynomial for every com-
mitment held by the verifier. In particular, at the start of every recursion step, the veri-
fier is in possession of a commitment [[f(X)]] to f(X). The prover provides commitments
[[fL(X)]] and [[fR(X)]], and the verifier checks their soundness homomorphically by testing
[[f(X)]] = [[fL(X)]]+Xd′+1·[[fR(X)]]. From these commitments, the verifier can also compute
the commitment to f ′(X) homomorphically, via [[f ′(X)]] = [[fL(X)]] + α · [[fR(X)]]. In the
last step, the verifier checks that the constant polynomial f matches the commitment by
computing [[f ]] outright.

4.2 Integer Polynomial Encoding

We propose using integer commitments in a group of unknown order as a concrete instanti-
ation of the homomorphic commitment scheme required for the abstract protocol presented
in Section 4.1. At the heart of our protocol is thus an encoding of integer polynomials with
bounded coefficients as integers, which also has homomorphic properties. Any commitment
scheme which is homomorphic over integer polynomials is automatically homomorphic over
Zp[X] polynomials as well (by reducing integer polynomials modulo p). Polynomials over
Zp[X] can be lifted to integer polynomials in a canonical way by choosing representatives in
[0, p). Therefore, from here on we will focus on building a homomorphic integer encoding
of integer polynomials, and how to combine this with a homomorphic integer commitment
scheme.

Strawman encoding In order to encode integer polynomials over an odd prime field Fp,
we first lift them to the ring of polynomials over the integers by choosing representatives
in [0, p). In the technical overview (Section 2) we noted that a polynomial f ∈ Z[X] with
positive coefficients bounded by q can be encoded as the integer f(q). The coefficients of
f can be recovered via the base q decomposition of f(q). This encoding is an injective
mapping from polynomials in Z[X] of degree at most d with positive coefficients less than
q to the set [0, qd+1). The encoding is also partially homomorphic. If f is encoded as f(q)
and g is encoded as g(q) where coefficients of both g, f are less than q/2, then the base-q
decomposition of f(q) + g(q) gives back the polynomial f + g. By choosing a sufficiently
large q ≫ p it is possible to perform several levels of homomorphic operations on encodings.

What goes wrong? Unfortunately, this simple encoding scheme does not quite work yet
for the protocol outlined in Section 2. The homomorphic consistency checks ensure that
if [[fL(X)]] is a homomorphic integer commitment to the encoding of fL ∈ Z[X], [[fR(X)]]
is a homomorphic integer commitment to the encoding of fR ∈ Z[X], and both fL, fR are
polynomials with q/2-bounded integer coefficients, then [[f(X)]] is an integer commitment
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to the encoding of fL +Xd′fR. (Moreover, if fL(z) = yL mod p and fR(z) = yR mod p then
f(z) = yL + zd

′
yR mod p).

However, the validity of [[fL(X)]] and [[fR(X)]] are never checked directly. The verifier
only sees the opening of the commitment at the bottom level of recursion. If the interme-
diate encodings use integer polynomials with coefficients larger than q/2, or even rational
coefficients the homomorphism is not necessarially preserved. Furthermore, even if [[f(X)]]
is a commitment to f ∗(q) with positive q-bounded coefficients, an adversarial prover could
find an integer polynomial g∗ that does not have positive q-bounded coefficients such that
g∗(q) = f ∗(q) and g∗ ̸≡ f ∗ mod p (i.e, g∗ with coefficients greater than q or negative coeffi-
cients). The prover could then commit to g∗L(q) and g∗R(q), and recurse on g∗L(q) + αg∗R(q)
instead of f ∗L(q) + αf ∗R(q). This would be non-binding. (For example f ∗(X) = q − 1 and
g∗(X) = X − 1, or f ∗(X) = q + 1 and g∗(X) = X + 1).

Inferring coefficient bounds So what can the verifier infer from the opened commitment
[[f ′]] at the bottom level of recursion? The opened commitment is an integer f ′ = fL + αfR.
From f ′, the verifier can infer a bounds coefficients of the polynomial f(X) = fL+XfR, given
that fL and fR were already committed in the second to last round. The bound holds with
overwhelming probability over the randomness of α ∈ [0, 2λ). This is reasoned as follows: if
f ′0 ← fL + α0fR and f ′1 ← fL + α1fR but fL and fR are not bounded rational polynomials,
then there is a negligibly small probability that f ′ would have passed the bound check.

What about negative coefficients? As shown above, the verifier can infer a bound on
the absolute values of fL and fR, but still cannot infer that fL and fR are both positive
integers. Moreover, if fR > 0 and fL < 0, then it is still possible that fL+ qfR > 0, and thus
that there is a distinct g ̸= f with q-bounded positive coefficients such that g(q) = f(q). For
example, say fR = q/2 and fL = −1 then fL + qfR = q2/2− 1, and fL + αfR = q/2− α > 0
for every α ∈ [0, 2λ). Yet, also q2/2− 1 = g(q) for g(X) = (q/2− 1)X + q − 1.

It turns out that we also can’t ensure that fL and fR but only that they are bounded
rational polynomials. We show that the same encoding works even for rational polynomials
in Appendix A.

Ensuring injectivity How can we ensure the encoding scheme is injective over polyno-
mials with either positive/negative coefficients bounded in absolute value? Fortunately, it
is a fact that if |fL| < q/2 and |fR| < q/2 then at least one coefficient of g must be larger
than q/2. In other words, if the prover had committed instead to f ∗L and f ∗R such that

g(X) = f ∗L +Xf ∗R then the verifier could reject the opening of f̂ ∗L + αf̂ ∗R with overwhelming
probability based on its size.

More generally, for every integer z in the range B = (− qd+1

2
, q

d+1

2
) there is a unique degree

(at most) d integer polynomial h(X) with coefficients whose absolute values are bounded by
q/2 such that h(q) = z. We prove this elementary fact below and show how the coefficients
of h can be recovered efficiently from z (Fact 1). If the prover is committed to h(q) at level
i of the protocol, there is a unique pair of integers polynomial hL and hR with coefficients
of absolute value bounded by q/2 such that hL(q) + q

d+1
2 hR(q) = h(q), and if the prover

recurses on any other h∗L and h∗R with larger coefficients then the verifier’s bound check at
the bottom level of recursion will fail with overwhelming probability.

Final encoding scheme Let Z(b) := {x ∈ Z : |x| ≤ b} denote the set of integers with
absolute value less than or equal to b. Define Z(b)[X] := {f ∈ Z[X] : ||f ||∞ ≤ b}, the set of
integer polynomials with coefficients from Z(b). (For a polynomial g ∈ Z[X] the norm ||g||∞
is the maximum over the absolute values of all individual coefficients of g.)

• Encoding. For any integer q, the function Enc : Z(b)[X]→ Z maps h(X) 7→ h(q). A
polynomial f(X) ∈ Zp[X] is first mapped to Z(p− 1)[X] by replacing each coefficient
of f with its unique integer representative from [0, p) of the same equivalence class
modulo p.

• Decoding. Decoding works as follows. Define the partial sum Sk :=
∑k

i=0 fiq
i with

S−1 := 0. Assuming |fi| < q/2 for all i, observe that for any partial sum Sk we have

|Sk| < qk+1

2
. Therefore, when Sk < 0 then Sk mod qk+1 > qk+1/2 and when Sk ≥ 0
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then Sk mod qk+1 < qk+1/2. This leads to a decoding strategy for recovering Sk from
y ∈ Z. The decode algorithm sets Sk to y mod qk+1 if this value is less than qk+1/2
and to qk+1− (y mod qk+1) otherwise. Two consecutive partial sums yield a coefficient
of f(X): fk =

Sk−Sk−1

qk
∈ Z(b). These operations give rise to the following algorithm.

Dec(y ∈ Z) :
1. for each k in [0, ⌊logq(|y|)⌋] do:
2. Sk−1 ← (y mod qk)
3. if Sk−1 > qk/2 then Sk−1 ← qk − Sk−1 end if
4. Sk ← (y mod qk+1)
5. if Sk > qk+1/2 then Sk ← qk+1 − Sk end if
6. fk ← (Sk − Sk−1)/q

k

7. return f(X) =
∑⌊logq(|y|)⌋

k=0 fkX
k

Fact 1. Let q be an odd integer. For any z in the range B = (− qd+1

2
, q

d+1

2
) there is a unique

degree (at most) d integer polynomial h(X) in Z( q−1
2
)[X] such that h(q) = z.

Proof. Given any degree (at most) d integer polynomial f ∈ Z( q−1
2
), by construction we

see that Dec(Enc(f)) = f . Therefore, Enc is an injective map from degree (at most) d
polynomials in Z( q−1

2
)[X] to B. Furthermore, the cardinality of both the domain and range

of this map is qd+1. This shows that the map is surjective. In conclusion, the map is
bijective.

4.3 Concrete Polynomial Commitment Scheme

We now instantiate the abstract homomorphic commitment function [[∗]]. To this end we
sample a group of unknown order G, and sample a random element G from this group.
Lift the field polynomial f(X) ∈ Zp[X] to an integer polynomial with bounded coefficients,

i.e., f̂(X) ∈ Z(p − 1)[X] such that f̂(X) mod p = f(x). We encode f̂(X) as an integer
by evaluating it at a “large enough” integer q. Finally, we use scalar multiplication in
G to commit to the integer. Therefore, [[f(X)]], corresponds to f̂(q) · G. This commitment
function inherits the homomorphic properties of the integer encoding for a limited number of
additions and multiplications-by-constant. The monomial homomorphism for Xd is achieved
by raising the group element to the power qd. To maintain consistency between the prover’s
witness polynomials and the verifier’s commitments, the prover operates on polynomials with
integer coefficients f̂(X), ĝ(X), etc., without ever reducing them modulo p.

The Setup,Commit and Open functionalities are presented formally below. Note that the
scheme is parameterized by p and q.

• Setup(1λ) : Sample G $← GGen(λ) and G
$← G. Return pp = (λ,G,G, q).

• Commit(pp; f(X) ∈ Zp[X]) : Compute C← f̂(q) · G and return (C; f(X), f̂(X)).

• Open(pp,C, f(X), f̂(X)) : Check that f̂(X) ∈ Z(q/2)[X] and f̂(q) ·G = C and f(X) =
f̂(X) mod p.

Evaluation protocol Using the cryptographic compilation of the information theoretic
protocol we get an Eval protocol with logarithmic communication. In every round, however,
the verifier needs to check consistency between [[fL(X)]], [[fR(X)]] and [[f(X)]]. This is done by
checking that CL+ qd

′+1 ·CR = C. This naive check is highly inefficient as the exponent qd
′+1

has O(d) bits. To resolve this inefficiency, we utilize a proof of exponentiation (PoE) [Pie19,
Wes19] to outsource the computation to the prover. The PoE protocol is an argument
that a large scalar multiplication in a group of unknown order was performed correctly.
Wesolowski’s PoE [Wes19] is public coin, has constant communication and verification time,
and is thus particularly well-suited here.

We now specify subtleties that were previously glossed over. Instead of presenting a
protocol for univariate degree d polynomials we present one for µ-linear polynomials. This
is more general as for any univariate polynomial f(X) there exists a µ = ⌈log2(d+1)⌉-linear
polynomial f̂ with the same coefficients such that f̂(X,X2, . . . , X2(µ−1)

) = f(X). By the
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same argument, we can use a multi-linear polynomial commitment and evaluation scheme
for arbitrary multivariate polynomials where the degree in each variable is a power of 2. For
non-power-of-2 multivariate polynomials, it is possible to round up to the next power of 2
and prove correctness using a PoE proof.

The coefficients of f(X1, . . . , xµ) grow by a factor of 2λ in every recursion step, but
eventually, the transmitted constant f has to be tested against some bound because if it is
too large it should be rejected. However, the function interface provides no option to specify
the allowable size of coefficients. We therefore define and use a subroutine EvalB, which
takes an additional argument b and which proves, in addition to what Eval proves, that all
coefficients fi of f(X1, . . . , Xµ) satisfy |fi| ≤ b. Importantly, b grows by a factor for 2λ, the
challenge space, in every recursion step. This subroutine is also useful if commitments were
homomorphically combined prior to the execution of EvalB. The growth of these coefficients
determines a lower bound on q: q needs to be significantly larger than b for security. Exactly
which factor constitutes “significantly” is determined by the knowledge-soundness proof.

In the final round we check that the constant f satisfies |f | ≤ b and the protocol’s
correctness is guaranteed if b = (p− 1) · 2λµ, where µ = log(d+1) are the number of rounds.
However, q needs to be even larger than this value in order for extraction to work (and hence,
for the proof of witness-extended emulation to go through). The precise value of q depends
on the number of rounds µ, and is defined in Theorem 1 and is 2O(µλ).

We now present the full, formal Eval protocol below.

Eval(pp,C ∈ G, z⃗ ∈ Zµ
p , y ∈ Zp; f(X1, . . . , Xµ) ∈ Zp[X1, . . . , Xµ], ) : // f is µ-linear

1. P computes f̂(X1, . . . , Xµ) ∈ Z(p)[X1, . . . , Xµ] such that f̂ mod p ≡ f

2. P and V run EvalB(pp,C, z⃗, y, µ, p− 1; f, f̂)

EvalB(pp,C ∈ G, z⃗ ∈ Zµ
p , y ∈ Zp, µ ∈ N, b ∈ Z; f ∈ Zp[X1, . . . , Xµ], f̂ ∈ Z(b)[X1, . . . , Xµ])

1. if µ = 0:
2. P sends f̂ ∈ Z to the verifier. // f̂ is a constant

3. V checks that |f̂ | ≤ b
4. V checks that f̂ ≡ y mod p
5. V checks that f̂ · G = C
6. V outputs 1 if all checks pass, 0 otherwise.
7. else :
8. P and V compute µ′ ← µ− 1
9. P computes f̂L(X1, . . . , X

′
µ) and f̂R(X1, . . . , X

′
µ) such that f̂ = f̂L +Xµf̂R

10. P computes fL, fR analogously for f
11. P computes yL ← fL(z1, . . . , z

′
µ) mod p and yR ← fR(z1, . . . , z

′
µ) mod p

12. P computes CL ← f̂L(q, q
2, . . . , q(2

µ′−1)) · G and CR ← f̂R(q, q
2, . . . , q(2

µ′−1)) · G
13. P sends yL, yR,CL,CR to V . // See Section 4.5 for an optimization

14. V checks that y = yL + zµ · yR mod p, outputs 0 if check fails.

15. P and V run PoE(CR,C− CL, q
(2µ

′
)) // Showing that CL + q(2

µ′
) · CR = C

16. V samples α
$← [0, 2λ) and sends it to P

17. P and V compute y′ ← yL + α · yR mod p, C′ ← CL + α · CR, b
′ ← b · 2λ.

18. P computes f ′ ← fL + α · fR ∈ Zp[X1, . . . , Xµ′ ]

19. P computes f̂ ′ ← f̂L + α · f̂R ∈ Z[X1, . . . , Xµ′ ] // f̂ ′ and f ′ are µ′-linear

20. P and V run EvalB(pp,C′, z⃗′ = (z1, . . . , z
′
µ), y

′, µ′, b′; f ′, f̂ ′)

4.4 Security Analysis

The new security analysis is in a self-contained document in the appendix. We, briefly,
restate the main lemmas and theorems but refer the reader to the appendix for more details.

We show in Lemma 10 that the DARK polynomial commitment scheme is binding.

Lemma 5. The polynomial commitment scheme is correct for µ-linear polynomials in Zp[X].

The proof of this lemma is in Appendix C.2. Next is the main security theorem, which
states that the evaluation protocol has witness-extended emulation.

Theorem 1. Let CSZµ,λ = 8µ2 + log2(2µ)λ. Let EBLµ,λ = λ · µ and CBp,µ,λ = λ · µ+ log2 p.
Let com be the DARK commitment scheme as described in Lemma 10. There exists a pair
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of predicates ϕ such that the µ-round DARK polynomial commitment evaluation protocol
Eval′ with λ-bit challenges, a group of unknown order GGen, and log q ≥ 4(λ+1+CSZµ,λ)+
EBLµ,λ + CBp,µ,λ + 1 is (2(µ), 3µ

2λ
, com, ϕ)-almost-special-sound .6

As a corollary, under the adaptive root assumption for GGen, the DARK polynomial com-
mitment scheme with the same parameters has witness-extended-emulation (Definition 8).

4.5 Optimizations

We present several ideas for optimizing the performance of the Eval protocol.

Precomputation. The prover has to compute powers of G as large as q2
µ−1. While this

can be done in quasi-linear time, this expense can be shifted to a preprocessing phase in
which all elements Gqi , i ∈ {1, . . . , 2µ − 1} are computed. Since for coefficient |fi| ≤ −p−1

2

this allows the computation of Gf(q) in O(λ2µ) group operations as opposed to O(λ2µµ). In
addition to reducing the prover’s workload, this optimization enables parallelizing it. The
computation of the PoE proofs can similarly be parallelized. The prover can express each Q
as a power of G which enables pre-computation of powers of G and parallelism as described
by Boneh et al. [BBF19].

The pre-computation also enables the use of multi-scalar multiplication techniques [Pip80].
Boneh et al. [BBF19] and Wesolowski [Wes19] showed how to use these techniques to reduce
the complexity of the PoE prover. The largest PoE exponent q2

µ−1
has O(λ2µµ) bits. Multi-

scalar multiplication can therefore reduce the prover work to O(λ2µ) instead of O(λ2µµ).
For univariate polynomials of degree d this translates to prover work that is O(λd).

Two group elements per round. In each round the verifier has a value C and receives

CL and CR such that CL+q2
µ′−1 ·CR = C. This is redundant. It suffices that the verifier sends

CR. The verifier could now compute CL ← C−q2µ
′−1

CR, but this is expensive as it involves an

scalar multiplication by qd. Instead, the verifier infers q2
µ′−1 · CR from the PoE: the prover’s

message is Q and the verifier can directly compute q2
µ′−1 ·CR ← ℓ ·Q+ r ·CR for a challenge

ℓ and r ← q2
µ′−1

mod ℓ. From this the verifier infers CL ← C − q2
µ′−1 · CR. The security of

PoE does not require that qd
′+1 · CR be sent before the challenge ℓ as it is uniquely defined

by CR and q2
µ′−1

. The same optimization can be applied to the non-interactive variant of
the protocol.

Similarly the verifier can infer yL as yL ← y− z2
µ′−1

yR. This reduces the communication
to two group elements per round and 1 field element. Additionally the prover sends f which
has roughly the size of µ field elements, which increases the total communication to roughly
2µ elements in G and 2µ elements in Zp.

Evaluation at multiple points The protocol and the security proof extend naturally
to the evaluation in a vector of points z resulting in a vector of values y, where both are
members of Zk

p. The prover still sends CL ∈ G and CR ∈ G in each round and additionally
yL,yR ∈ Zk

p. In the final round the prover only sends a single integer f such that Gf = C
and f mod p = y.

This is significantly more efficient than independent executions of the protocol as the
encoding of group elements is usually much larger than the encoding of elements in Zp.
Using the optimization above, the marginal cost with respect to k of the protocol is a single
element in Zp. If λ = ⌈log2(p)⌉ is 120, then this means evaluating the polynomial at an
additional point increases the proof size by only 15µ bytes.

Joining Evals. In many applications such as compiling polynomial IOPs to SNARKs (see
Section 5) multiple polynomial commitments need to be evaluated at the same point z.
This can be done efficiently by taking a random linear combination of the polynomials
and evaluating that combination at z. The prover simply sends the evaluations of the
individual polynomials and then a single evaluation proof for the combined polynomials.
The communication cost for evaluating m polynomials at 1 point is still linear in m but only
because the evaluation of each polynomial at the point is being sent. The size of the eval

6The CSZµ,λ value can be replaced with values from the table in Lemma 8
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proof, however, is independent of m. Taking a random linear combination does increase the
bound on q slightly, as shown in Theorem 2 which is presented below.

RJE(pp) =

⟨(C1,C2, z, y1, y2, d), (f̂1, f̂2)⟩ :

C1,C2 ∈ G
z, y1, y2 ∈ Zp

f1, f2 ∈ Z(b)[X⃗ = (X1, . . . , Xµ)]
(C1, z⃗, y1, µ) ∈ REval(pp)
(C2, z⃗, y2, µ) ∈ REval(pp)


JoinedEval(pp,C1,C2, z⃗ ∈ Zµ

p , y1 ∈ Zp, y2 ∈ Zp, µ; f̂1 ∈ Z(b)[X⃗], f̂2 ∈ Z(b)[X⃗]) :
Statement: (pp,C1,C2, z, y1, y2, b, d) ∈ RJE

1. V samples α
$← [0, 2λ) and sends it to P

2. P and V compute y′ ← y1 + α · y2 mod p
3. P computes f̂ ′(X⃗, Y )← f̂1(X⃗) + Y f̂2(X⃗) and f ′ = f̂ ′ mod p
4. P and V run EvalB(pp,C1 + q2

µ
C2, (z⃗, α), y

′, µ+ 1; f ′, f̂ ′)a

aThe prover and verifier don’t actually need to compute C1 + q2
µ

C2 as the next prover message can
be computed directly from C1 and C2.

Theorem 2. Let CSZµ,λ,EBLµ,λ and CBp,µ,λ be defined as in theorem 1 . Let log q ≥
4(λ+1+CSZµ+1,λ)+EBLµ+1,λ+CBp,µ+1,λ+1. Under the adaptive root assumption for GGen,
the JoinedEval protocol has witness-extended-emulation (Definition 8) for the relation RJE.

Proof. Security directly follows from Theorem 1 as C1, C2 is a binding virtual commitment
to the µ+ 1-linear polynomial f1 + Y · f2. That is, C = C1 + q2

µ ·C2 can be computed from
C1, C2 thus if C is a binding commitment then so is (C1, C2). We will show that the protocol
has 2-special soundness using the extractor on the µ + 1-linear evaluation protocol. Using
two executions with challenges α and α′ we call the DARK extractor. This returns a witness
polynomials f, f ′ ∈ Zp such that f(z⃗, α) = yL + αyR and f(z⃗, α′) = yL + α′yR. If f ̸= f ′ the
we have a break of the binding property of the commitment scheme as CL + q2

µ
CR is both a

commitment to f and to f ′. Otherwise we get that (α−α′)−1(f(z⃗, α)−f(z⃗, α′)) = fR(z⃗) = yR
and (α′ − α)−1(α′f(z⃗, α)− αf(z⃗, α′)) = fL(z⃗) = yL.

We can additionally combine this optimization with the previous optimization of evalu-
ating a single polynomial at different points. This allows us to evaluate m polynomials at
k points with very little overhead. The prover groups the polynomials by evaluation points
and first takes linear combinations of the polynomials with the same evaluation point and
computes y1 to yk using the same linear combinations. Then it takes another combination
of the joined polynomials. In each round of the Eval protocol the prover sends yL,1 through
yL,k, i.e. one field element per evaluation point and computes yR,1 through yR,k. In the final
step the prover sends f and the verifier can check whether the final y values are all equal to
f mod p. This enables an Eval proof of m, µ-linear polynomials at k points using only 2µ
group elements and (1 + k)µ field elements.

Evaluating the polynomial over multiple fields The polynomial commitment scheme
is highly flexible. For example, it does not specify a prime field Zp. It instead commits to
an integer polynomial with bounded coefficients. That integer polynomial can be evaluated
modulo arbitrary primes which are exponential in the security parameter λ as the soundness
error is proportional to its inverse. Note that q also needs large enough such that the scheme
is secure for the given prime p and linearity µ (see Theorem 1). The second condition,
however, can be relaxed. A careful analysis shows that as long as p is exponential in λ and q
is sufficiently large, the scheme is secure. So as long as log q ≥ 4(λ+1+CSZµ,λ) + EBLµ,λ +
CBb,µ,λ + 1 one can evaluate µ-linear polynomial with coefficients bounded by b over any
exponential prime field.

Additionally, the proof elements CL, CR ∈ G are independent of the field over which the
polynomial is evaluated. This means that it is possible to evaluate a committed polynomial
f(X) ∈ Z(b) over two separate fields Zp and Zp′ in parallel using only 2µ group elements and
sending the evaluations y modulo p · p′. The verifier performs all operations on y modulo
p · p′ as well.
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This property can be used to efficiently evaluate the polynomial modulo a large integer
m by choosing multiple λ bit primes p1, . . . pk such that

∏k
i=1 pi ≥ m and using the Chinese

Remainder Theorem to simulate the evaluation modulo m.

4.6 Performance

The polynomial commitment scheme has logarithmic proof size and verifier time in the
degree d of the committed polynomial. It has highly batchable proofs and it is possible to
evaluate n degree d polynomials at k points using only 2 log2(d + 1) group elements and
(k + 1) log2(d + 1) field elements (see Section 4.5). Note that this means the proof size is
independent of n and linear in k but with a small constant (15 log(d) bytes). We describe
the performance of our scheme for different settings for uni- and multivariate instantiations
in Table 1.

Operation |pp| Prover Verifier Communication

Commit(f(X)) 1 G O(λd log(d))G - 1G
Commit(f(X)) d G O( λd

log(d))G - 1G
f(z) = y ∈ Zp 1 G O(λ log(d)d)G O(λ log(d))G 2 log(d)G +2 log(d)Zp

f(z) = y ∈ Zp d G O(λd)G O(λ log(d))G 2 log(d)G +2 log(d)Zp

f(z) = y ∈ Zk
p d G O(λd)G O(λ log(d))G 2 log(d)G +(k + 1) log(d)Zp

f(z) = y, g(z) = y′ ∈ Zp d G O(λd)G O(λ log(d))G 2 log(d)G +2 log(d)Zp

Table 1: G denotes the size of a group element for communication and a single group
operation for computation. Zp denotes the size of a field element, i.e., λ bits. |pp| is the size
of the public parameters (which is greater than one G when preprocessing is used), and d
the degree of the polynomial. Rows 3-6 are for Eval proofs of different statements.

4.7 Comparison to Other Polynomial Commitment Schemes

4.7.1 Based on Pairings

The polynomial commitment by Kate et al. [KZG10] has evaluation proofs that consist of
only a single element in a bilinear group and verifying an evaluation requires only a single
pairing computation. However, this asymptotically optimal performance comes at the cost
of a trusted setup procedure that outputs a structured reference string whose size is linear
in the degree of the polynomial. Our DARK polynomial commitment scheme requires no
trusted setup but pays for this reduced trust requirement with a proof size and verification
work that scale logarithmically in the degree of the polynomial.

In the multivariate setting, our scheme is logarithmic in the total number of coefficients:
µ log(d) for a µ-variate polynomial of degree d in each variable. The multivariate extension
of Kate et al.’s commitment scheme [ZGK+17] evaluation proofs consist of µ group elements.

4.7.2 Based on Discrete Logarithms

Bulletproofs [BCC+16b, BBB+18] is a proof system based on prime order groups in which the
discrete logarithm is hard. As a core component it relies on an inner product argument which
can be used as a polynomial commitment (see [WTs+18]). The polynomial commitment has
logarithmic evaluation proofs with great constants. Unfortunately, the verifier time is linear
in the size of the polynomial, i.e. (d + 1)µ for a µ- variate degree d polynomial. The more
general version of the commitment [BCC+16b] can also give evaluation proofs with square
root verifier time and square root proof size.

4.7.3 Based on Merkle Trees of Reed-Solomon Codewords

The FRI protocol [BBHR18] is an efficient interactive oracle proof (IOP) that a committed
oracle is close to a Reed-Solomon codeword, meaning that the prover commits to large
sequences of field elements and the verifier queries only a few specific elements rather than
reading the entire sequence. The abstract functionality is cryptographically compiled with
a Merkle tree, which results in constant-size commitments and element queries that are
logarithmic in the length of the codeword, i.e., the size of the oracle. FRI has been used in
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multiple recent zero-knowledge proof systems such as STARK [BBHR19], Aurora [BCR+19],
and Fractal [COS19].

Since this oracle is a Reed-Solomon codeword, it represents the evaluations of a low-degree
polynomial f on an evaluation set S ⊂ F. In order to be used as a polynomial commitment
scheme, the protocol needs to permit querying the polynomial outside of the evaluation set.
DEEP-FRI [BGKS19] shows that this is possible and two recent works [ZXZS19, KPV19]
makes the connection explicit by building a polynomial commitment scheme from FRI. This
FRI-based polynomial commitment scheme have evaluation proofs of size and verifier time
O(λ log2(d)) where λ is the security parameter and d = deg(f). To date, no extension to mul-
tivariate polynomials exists for FRI. The commitment relies only on symmetric cryptography
and is plausibly quantum resistant.

4.7.4 Comparison

In Table 2 we give a comparison between different polynomial commitment schemes in the
literature. In particular, we evaluate the size of the reference string (|pp|), the prover and
verifier time, as well as the size of the evaluation proof (|π|). Column 2 indicates whether
the setup is transparent, i.e., whether the reference string is structured. The symbol GU

denotes a group of unknown order, GB a group with a bilinear map (pairing), and GP a
group with prime (and known) order. Furthermore, MUL refers to scalar multiplications of a
λ bit number in these groups, and H is either the size of a hash output, or the time it takes
to compute a hash, depending on context.

Note that even when precise factors are given, the numbers should be interpreted as
estimates. For example we chose to not display smaller order terms. Note also that the
prover time for the group based schemes could be brought down by a log factor when using
multi-scalar multiplication techniques.

Scheme Transp. |pp| Prover Verifier |π|
DARK (this work) yes O(1) O(dµµ log(d)) MUL 3µ log(d) MUL 2µ log(d) GU

Based on Pairings no dµ GB O(dµ) MUL µ Pairing µ GB

[BCC+16b,
√
·] yes

√
dµGP O(dµ) MUL O(

√
dµ)MUL O(

√
dµ) GP

Bulletproofs yes 2dµGP O(dµ) MUL O(dµ)MUL 2µ log(d) GP

FRI-based (µ = 1) yes O(1) O(λd) H O(λ log2(d)) H O(λ log2(d)) H

Table 2: Comparison table between different polynomial commitment schemes for an µ-
variate polynomial of degree d.

5 Transparent SNARKs via Polynomial IOPs

5.1 Algebraic Linear IOPs

An interactive oracle proof (IOP) [BCS16, RRR16] is a multi-round interactive PCP: in each
round of an IOP the verifier sends a message to the prover and the prover responds with a
polynomial length proof, which the verifier can query via random access. A t-round ℓ-query
IOP has t rounds of interaction in which the verifier makes exactly ℓ queries in each round.
Linear IOPs [BBC+19] are defined analogously except that in each round the prover sends a
linear PCP [IKO07], in which the prover sends a single proof vector π ∈ Fm and the verifier
makes linear queries to π. Specifically, the PCP gives the verifier access to an oracle that
receives queries of the form q ∈ Fm and returns the inner product ⟨π,q⟩.

Bitansky et al. [BCI+13] defined a linear PCP to be of degree (dQ, dV ) if there is an
explicit circuit of degree dQ that derives the query vector from the verifier’s random coins,
and an explicit circuit of degree dV that computes the verifier’s decision from the query
responses. In a multi-query PCP, dQ refers to the maximum degree over all the independent
circuits computing each query. Bitansky et al. called the linear PCP algebraic for a security
parameter λ if it has degree (poly(λ), poly(λ)). The popular linear PCP based on Quadratic
Arithmetic Programs (QAPs) implicit in the GGPR protocol [GGPR13] and follow-up works
is an algebraic linear PCP with dQ ∈ O(m) and dV = 2, where m is the size of the witness.

For the purposes of the present work, we are only interested in the algebraic nature of the
query circuit and not the verifier’s decision circuit. Of particular interest are linear PCPs
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where each query-and-response interaction corresponds to the evaluation of a fixed µ-variate
degree d polynomial at a query point in Fµ. This description is equivalent to saying that
the PCP is a vector of length m =

(
d+µ
µ

)
and the query circuit is the vector of all µ-variate

monomials of degree at most d (in some canonical order) evaluated at a point in Fµ. We call
this a (µ, d) Polynomial PCP and define Polynomial IOPs analogously. As we will explain,
we are interested in Polynomial PCPs where µ ≪ m because we can cryptographically
compile them into succinct arguments using polynomial commitments, in the same way that
Merkle trees are used to compile classical (point) IOPs.

In general, evaluating the query circuit for a linear PCP requires Ω(m) work. However, a
general “bootstrapping” technique can reduce the work for the verifier: the prover expands
the verifier’s random coins into a full query vector, and then provides the verifier with a
second PCP demonstrating that this expansion was computed correctly. It may also help to
allow the verifier to perform O(m) work in a one-time preprocessing stage (for instance, to
check the correctness of a PCP oracle), enabling it to perform sublinear “online” work when
verifying arbitrary PCPs later. We call this a preprocessing IOP. In fact, we will see that
any t-round (µ, d) algebraic linear IOP can be transformed into a (t+ 1)-round Polynomial
IOP in which the verifier preprocesses (µ, d) Polynomial PCPs, at most one for each distinct
query.

We recall the formal definition of public-coin linear IOPs as well an algebraic linear
IOPs. Since we are not interested in the algebraic nature of the decision algorithm, we
omit specifying the decision polynomial. From here onwards we use algebraic linear IOP as
shorthand for algebraic query linear IOP.

Definition 3 (Public-coin linear IOP). Let R be a binary relation and F a finite field. A
t-round ℓ-query public-coin linear IOP for R over F with soundness error ϵ and knowledge
error δ and query lengthm = (m1, ...,mt) consists of two stateful PPT algorithms, the prover
P , and the verifier V = (Q,D), where the verifier consists in turn of a public deterministic
query generator Q and a decision algorithm D, that satisfy the following requirements:

Protocol syntax. For each ith round there is a prover state stPi and a verifier state stVi . For any

common input x and R witness w, at round 0 the states are stP0 = (x,w) and stV0 = x. In the
ith round (starting at i = 1) the prover outputs a single7 proof oracle P(stPi−1)→ πi ∈ Fmi .

The verifier samples public random coins coins i
$← {0, 1}∗ and the query generator computes

a query matrix from the verifier state and these coins: Q(stVi−1, coins i) → Qi ∈ Fmi×ℓ. The
verifier obtains the linear oracle response vector π⊤i Qi = ai ∈ F1×ℓ. The updated prover
state is stPi ← (stPi−1,Qi) and verifier state is stVi ← (stVi−1, coins i, ai) Finally, D(stVt ) returns
1 or 0.

(Querying prior round oracles : The syntax can be naturally extended so that in the ith
round the verifier may query any oracle, whether sent in the ith round or earlier.)

Argument of Knowledge. As a proof system, (P ,V) satisfies perfect completeness, soundness
with respect to the relation R and with soundness error ϵ, and witness-extended emulation
with respect R with knowledge error δ.

Furthermore, a linear IOP is stateless if for each i ∈ [t], Q(stVi−1, coins i) = Q(i, coins i).
It has algebraic queries if, additionally, for each i ∈ [t], the map coins i

Q(i,·)7−−−→ Qi ∈ Fmi×ℓ

decomposes into two maps, coins i
Q0(i,·)7−−−→ Σi

Q1(i,·)7−−−→ Qi, where Σi ∈ Fµi×ℓ is a matrix of
µi < mi rows and ℓ and Q1(i, ·) is described by ℓ µi-variate polynomial functions of degree
at most d = poly(λ): p⃗1, . . . , p⃗ℓ : Fµi → Fmi such that for all k ∈ [ℓ], p⃗k(σi,k) = qi,k, where
σi,k and qi,k denote the kth column of Σi and Qi, respectively.

Definition 4 (HVZK for public-coin linear IOPs). Let View⟨P(x,w),V(x)⟩(V) denote the view
of the verifier in the t-round ℓ-query interactive protocol described in Definition 3 on in-
puts (x,w) with prover algorithm P and verifier V , consisting of all public-coin challenges
and oracle outputs (this view is equivalent to the final state stVt ). The interactive protocol
has δ-statistical honest-verifier zero-knowledge if there exists a probabilistic polyno-
mial time algorithm S such that for every (x,w) ∈ R, the distribution S(x) is δ-close to

7The prover may also output more than one proof oracle per round, however this doesn’t add any power
since two proof oracles of the same size may be viewed as a single (concatenated) oracle of twice the length.
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View⟨P(x,w),V(x)⟩(V) (as distributions over the randomness of P and random public-coin chal-
lenges).

We note that the separation into two maps coins i
Q0(i,·)7−−−→ Σi

Q1(i,·)7−−−→ Qi subtly relaxes
the definition of Bitansky et al., which instead requires that Qi be determined via p⃗1, . . . , p⃗ℓ

evaluated at a random r
$← Fµi . The Bitansky et al. definition corresponds to the special

case that Q0(i, ·) samples a random element of Fµi based on coinsi. The point is that Q0

can also do other computations that do not necessarily sample r uniformly, or even output
a matrix rather than a vector. The separation into two steps is only meaningful when
µi is smaller than mi. The significance to SNARK constructions is that the query can be
represented compactly as Σi, and the prover will take advantage of the algebraic map Q1(i, ·)
to demonstrate that Σi was expanded correctly into Qi and applied to the proof oracle πi.
We first present a standalone definition of Polynomial IOPs, and then explain how it is a
special case of Algebraic Linear IOPs.

Definition 5 (Public coin Polynomial IOP). Let R be a binary relation and F a finite field.
Let X = (X1, . . . , Xµ) be a vector of µ indeterminates. A (µ, d) Polynomial IOP for R over
F with soundness error ϵ and knowledge error δ consists of two stateful PPT algorithms, the
prover P , and the verifier V , that satisfy the following requirements:

Protocol syntax. For each ith round there is a prover state stPi and a verifier state stVi . For

any common input x and R witness w, at round 0 the states are stP0 = (x,w) and stV0 = x.
In the ith round (starting at i = 1) the prover outputs a single proof oracle P(stPi−1) → πi,
which is a polynomial πi(X) ∈ F[X]. The verifier deterministically computes the query

matrix Σi ∈ Fµ×ℓ from its state and a string of public random bits coins i
$← {0, 1}∗, i.e,

V(stVi−1, coins i) → Σi. This query matrix is interpreted as a list of ℓ points in Fµ denoted
(σi,1, . . . ,σi,ℓ). The oracle πi is queried on all points in this list, producing the response
vector (πi(σi,1), . . . , πℓ(σi,ℓ)) = ai ∈ F1×ℓ. The updated prover state is stPi ← (stPi−1,Σi) and
verifier state is stVi ← (stVi−1,Σi, ai). Finally, V(stVt ) returns 1 or 0.

(Extensions: multiple and prior round oracles; various arity. The syntax can be natu-
rally extended such that multiple oracles are sent in the ith round; that the verifier may
query oracles sent in the ith round or earlier; or that some of the oracles are polynomials in
fewer variables than µ.)

Argument of Knowledge. As a proof system, (P ,V) satisfies perfect completeness, soundness
with respect to the relation R and with soundness error ϵ, and witness-extended emulation
with respect R with knowledge error δ.

Furthermore, a Polynomial IOP is stateless if for each i ∈ [t], V(stVi−1, coins i) = V(i, coins i).

Polynomial IOPs as a subclass of Algebraic Linear IOPs In a Polynomial IOP, the

two-step map coins i
V(i,·)7−−−→ (σi,1, . . . ,σi,ℓ)

M7−→ (qi,1, . . . ,qi,ℓ) is a special case of the two-step

map coins i
Q0(i,·)7−−−→ Σi

Q1(i,·)7−−−→ Qi in an algebraic linear IOP. Here M : Fµ → Fm represents the
vector of monomials of degree at most d (in some canonical order) and the map associated
with M is evaluation. Note that there are m =

(
µ+d
d

)
such monomials. Furthermore, for

any qi,k, the inner product πT
i qi,k corresponds to the evaluation at σi,k of the polynomial

πi(X) ∈ F[X], whose coefficient vector (in the same canonical monomial order) is equal to
πi.

5.2 Polynomial IOP Reductions

In this section we show that one can construct any algebraic linear IOP from a (multivariate)
Polynomial IOP. This construction rests on two tools for univariate Polynomial IOPs that
we cover first:

• Coefficient queries. The verifier verifies that an indicated coefficient of a polynomial
oracle has a given value.

• Inner products. The verifier verifies that the inner product of the coefficient vectors of
two polynomial oracles equals a given value.
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5.2.1 Coefficient queries

The following is a (1, d)-Polynomial IOP for the statement fi = a with respect to a
polynomial f(X) =

∑d
j=0 fjX

j.

• Prover : Split f(X) about the term X i into fL(X) (of degree at most i− 1) and fR(X)
(of degree at most d − i − 1) such that f(X) = fL(X) + aX i + X i+1fR(X). Send
polynomials fL(X) and fR(X).

• Verifier : Sample uniform random β
$← Fp and query for yL ← fL(β), yR ← fR(β),

and y ← f(β). Check that y = yL + aβi + βi+1yR mod p and return 0 (abort) if not.
Otherwise output 1 (accept).

The verifier only accepts given proof oracles for polynomials f , fL, and fR in Fp[X] of
degree at most d, i− 1 and d− i− 1 such that f(β) = fL(β) + aβi + βi+1fR(β) for random

β
$← F. Via the Schwartz-Zippel lemma, if f(X) ̸= fL(X) + aX i + X i+1fR(X) then the

verifier would accept with probability at most d/|F|, because the highest degree term in this
equation is X i+1fR(X) and its degree is at most d. This implies that a is the ith coefficient
of f .

Note that this description assumes that the verifier is assured that the proof oracles for
fL and fR have degrees i − 1 and d − i − 1, respectively. If no such assurance is given,
then fL(X) should be shifted by d − i + 1 digits. In particular, the proof oracle should
f ⋆
L(X) = Xd−i+1fL(X), in which case the verifier obtains the evaluation y⋆L = yLβ

d−i+1

along with an assurance that f ⋆
L(X) has degree at most d. The verifier then tests y =

(βd−i+1)−1y⋆L+aβi+βi+1yR. This test admits false positives with probability at most 2d/|F|.

5.2.2 Inner product

The following is an IOP where the prover first sends two degree d univariate polynomial
oracles f, g and proves to the verifier that ⟨f ,gr⟩ = a where f ,g denote the coefficient
vectors of f, g respectively and gr is the reverse of g. This argument is sufficient for our
application to transforming algebraic linear IOPs into Polynomial IOPs. It is also possible to
prove the inner product ⟨f ,g⟩ by combining this IOP together with another one that probes

the relation g(X) = Xdgr(X−1) in a random point z
$← F\{0}, and thereby shows that g

and gr have the same coefficients only reversed. We omit this more elaborate construction
as it is not needed for any of our applications.

• Prover : Sends proof oracles for f(X), g(X), and the degree 2d polynomial product
h(X) = f(X) · g(X) to the verifier.

• Verifier : Chooses β
$← F and queries for y1 ← f(β), y2 ← g(β), and y3 ← h(β). Check

that y1y2 = y3 and return 0 (abort) if not.

• Prover and verifier engage in the 1 round IOP (Section 5.2.1) for proving that the dth
coefficient (i.e., on term Xd) of h(X) is equal to a. (Note that the proof oracles for
this subprotocol can all be sent in the first round, so this does not add an additional
round).

Via Schwartz-Zippel, if h(X) ̸= f(X) · g(X) then the verifier’s check y1y2 = y3 at the
random point β fails with probability at least (|F| − 2d)/|F|. Observe that the middle
coefficient of h(X) is equal to

∑d
i=0 figd−i =

∑d
i=0 fig

r
i = ⟨f ,gr⟩ = a.

Reducing algebraic linear IOPs to Polynomial IOPs

Theorem 3. Any public-coin t-round stateless algebraic linear IOP can be implemented
with a t + 1-round Polynomial IOP with preprocessing. Suppose the original ℓ-query IOP
is (µ, d) algebraic with query length (m1, ...,mt) then the resulting Polynomial IOP has for
each i ∈ [t]: 2ℓ degree mi univariate polynomial oracles, ℓ pre-processed multivariate oracles
of degree d and µ + 1 variables, ℓ degree 2mi univariate polynomial oracles and 2ℓ degree
2mi univariate polynomial oracles. There is exactly one query to each oracle on a random
point in F. The soundness loss of the transformation is negl(λ) for a sufficiently large field
(i.e., whose cardinality is exponential in λ).
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Proof. By definition of a (µ, d) algebraic linear IOP, in each ith round of the IOP there are
ℓ query generation functions p⃗i,1, . . . , p⃗i,ℓ : Fµ → Fmi , where each p⃗i,k is a vector whose jth
component is a µ-variate degree-d polynomial pi,k,j. These polynomials are applied to a seed
matrix σi,k ∈ Fµ (which is identifiable with or derived from the verifier’s ith round public-
coin randomness coins i); this evaluation produces p⃗i,k(σi,k) = qi,k ∈ Fmi for all k ∈ [ℓ]. The
vectors qi,k are the columns of the query matrix Qi ∈ Fmi×ℓ.

Preprocessed oracles For each round i of the original algebraic linear IOP, the prover
and verifier preprocess (µ + 1)-variate degree-d polynomial oracles. For each k ∈ [ℓ], the
vector of polynomials p⃗i,k = (pi,k,1, . . . , pi,k,mi

) ∈ (F[X])mi with X = (X1, . . . , Xµ) is encoded
as a single polynomial in µ + 1 variables as follows. Introduce a new indeterminate Z, and
then define P̃i,k(X, Z) :=

∑mi

j=1 pi,k,j(X)Zj ∈ F[X, Z]. The prover and verifier establish the

oracle P̃i,k, meaning that the verifier queries this oracle on enough points to be reassured
that it is correct everywhere.

The transformed IOP The original algebraic linear IOP is modified as follows.

• Wherever the original IOP prover sends an oracle πi of length mi, the new prover
sends a degree mi − 1 univariate polynomial oracle fπi

whose coefficient vector is the
reverse of πi.

• Wherever the original IOP verifier makes ℓ queries within a round to a particular
proof oracle πi, where queries are defined by query matrix Qi ∈ Fmi×ℓ, consisting of
column query vectors (qi,1, ...,qi,ℓ), the new prover and verifier engage in the following
interactive subprotocol for each k ∈ [ℓ] in order to replace the kth linear query ⟨πi,qi,k⟩:

– Verifier: Run the original IOP verifier to get the public coin seed matrix Σi and
send it to the prover.

– Prover: Derive the query matrix Qi from Σi using the polynomials p⃗i,1, . . . , p⃗i,ℓ.
Send an oracle for the polynomial Fi,k whose coefficient vector is qi,k.

– Verifier: Sample uniform random β
$← F and query both Fi,k and P̃i,k (the kth

preprocessed oracle for round i) at β in order to check that Fi,k(β) = P̃i,k(σi,k, β).
If the check fails, abort and output 0.

– Prover: Compute ai,k = ⟨π,qi,k⟩ and send ai,k to the verifier.
– The prover and verifier run the inner product Polynomial IOP from Section 5.2.2

on the oracles Fi,k and fπi
to convince the verifier that ai,k = ⟨qi,k,πi⟩. If the

inner product subprotocol fails the verifier aborts and outputs 0.

If all substeps succeed, then the verifier obtains correct output of each oracle query; in
other words, the responses are identical in the new and original IOP. These outputs are
passed to the original verifier decision algorithm, which outputs 0 or 1.

Soundness and completeness If the prover is honest then the verifier receives the same
exact query-response pairs (qi,k, ai,k) as the original IOP verifier and runs the same decision
algorithm, and therefore the protocol inherits the completeness of the original IOP. As for
soundness, an adversary who sends a polynomial oracle F ∗i,k whose coefficient vector is not
qi,k, fails with overwhelming likelihood. To see this, note that since qi,k = p⃗i,k(σk), the
check that Fi,k(β) = P̃i,k(σi,k, β) at a random β fails with overwhelming probability by the
Schwartz-Zippel lemma. Similarly, an adversary who provides an incorrect a∗i,k ̸= ⟨πi,qi,k⟩
fails the inner-product IOP with overwhelming probability. Therefore, if the original IOP
soundness error is ϵ then by a union bound the new soundness error is ϵ+ negl(λ). A similar
composition argument follows for knowledge extraction.

Round complexity The prover and verifier can first simulate the t-round original IOP
on the verifier’s public-coin challenges, proceeding as if all queries were answered honestly.
Wherever the original IOP prover would send an oracle for the vector πi the prover sends
fπi

. Then, after the verifier has sent its final public coin challenge from the original IOP,
there is one more round in which the prover sends all Fi,k for the kth query vector in the
ith round and all the purported answers ai,k to the kth query in the ith round. The prover
and verifier engage in the protocol above to prove that these answers are correct. The
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inner product subprotocol for each Fi,k with fπi
can be done in parallel with the check that

Fi,k(β) = P̃i,k(σi,k, β). Therefore, there is only one extra round.

5.3 Compiling Polynomial IOPs

Let Γ = (Setup,Commit,Open,Eval) be a multivariate polynomial commitment scheme.
Given any t-round Polynomial IOP for R over F, we construct an interactive protocol
Π = (Setup,P ,V) as follows. For clarity in our explanation, Π consists of t outer rounds cor-
responding to the original IOP rounds and subrounds where subprotocols may add additional
rounds of interaction between outer rounds.

• Setup: Run pp← Setup(1λ)

• In any round where the IOP prover sends a (µ, d) polynomial proof oracle π : Fµ → F,
in the corresponding outer round of Π, P sends the commitment cπ ← Commit(pp;π)

• In any round where the IOP verifier makes an evaluation query z to a (µ, d) polynomial
proof oracle π, in the corresponding outer round of Π, insert an interactive execution
of Eval(pp, cπ, z, y, µ, d;π) between P and V , where π(z) = y.

If V does not abort in any of these subprotocols, then it receives a simulated IOP tran-
script of oracle queries and responses. It runs the IOP verifier decision algorithm on this
transcript and outputs the result.

Optimization: delayed evaluation As an optimization to reduce round-complexity and
enable batching techniques, all invocations of Eval can be delayed until the final round, and
heuristically could be run in parallel. Delaying the evaluations until the final round does
not affect our analysis. However, our analysis does not consider parallel execution of the
Eval subprotocols. We assume the protocol transcript contains an isolated copy of each Eval
instance and does not interleave messages or re-use randomness.

Theorem 4. If the polynomial commitment scheme Γ has witness-extended emulation, and
if the t-round Polynomial IOP for R has negligible knowledge error, then Π is a public-
coin interactive argument for R that has witness-extended emulation. The compilation also
preserves HVZK if Γ is hiding and Eval is HVZK.

The full proof is provided in Appendix E. HVZK is shown by a straightforward compo-
sition of the simulators for Eval and the original IOP simulator. The emulator E works as
follows. Given the IP adversary P ′, E simulates an IOP adversary P ′O by using the Eval em-
ulator EEval to extract proof oracles (i.e., polynomials) from any commitment that P ′ sends
and subsequently opens at an evaluation point. We argue that P ′O is successful whenever P ′

is successful, with negligible loss. (The only events that cause P ′O to fail when P ′ succeeds
is if EEval fails to extract from a successful Eval or P ′ succesfully opens a commitment incon-
sistently with an extracted polynomial). E then runs the IOP knowledge extractor with P ′O
to extract a witness for the input.

5.4 Concrete Instantiations

We consider examples of Polynomial IOPs to which this compiler can be applied: STARK [BBHR19];
Sonic [MBKM19] and its improvements PLONK [GWC19] and Marlin [CHM+19]; Spar-
tan [Set19], and the popular QAP of Gennaro et al. [GGPR13]. For the purpose of the
following discussion, we refer to the complexity of an NP relation R in various forms:

• R has arithmetic complexity n if the function computing R(x,w) can be expressed as
2-fan-in arithmetic circuit with a total of n gates.

• R has multiplicative complexity n if the function computing R(x,w) can be expressed
an arithmetic circuit with a total of n multiplication gates, where each multiplication
gate has 2 inputs.
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• R has R1CS complexity8 n if the function computing R(x,w) can be expressed as
an R1CS instance (A,B,C, v, w) where A,B,C ∈ Fm×(ℓ+1), (v, w) ∈ Fℓ, and n is the
maximum number of non-zero entries in either A, B, or C.

Theorem 5 provides the main theoretical result of this work, tying together the new
DARK polynomial commitment scheme (Theorem 1), the compilation of HVZK Polynomial
IOPs into zk-SNARKs with preprocessing using polynomial commitments (Theorem 4), and
a concrete univariate Polynomial IOP introduced in Sonic [MBKM19] (Theorem 5.4.1) or
follow-up works.

5.4.1 Sonic

Sonic is a zk-SNARK system that has a universal trusted setup, which produces a Struc-
tured Reference String (SRS) of n group elements that can be used to prove any statement
represented as an arithmetic circuit with at most n gates. The SRS can also be updated
without re-doing the initial setup, for instance, to enable proving larger circuits, or to in-
crease the distribution of trust. The result in Sonic was not presented using the language of
IOPs. Furthermore, the result also relied on a special construction of polynomial commit-
ments (a modification of Kate et al. [KZG10]) that forces the prover to commit to a Laurent
polynomial with no constant term. Given our generic reduction from coefficient queries to
evaluation queries (Section 5.2.1), we re-characterize the main theorem of Sonic as follows:

[MBKM19]’s Theorem (Sonic Bivariate). There exists a 2-round HVZK Polynomial
IOP with preprocessing for any NP relation R (with multiplicative complexity n) that makes
1 query to a bivariate polynomial oracle of degree n on each variable, and 6 queries to degree
n univariate polynomial oracles. The preprocessing verifier does O(n) work to check the
single bivariate oracle.

The number of univariate queries increased from the original 3 in Sonic (with special
commitments) to 6 with our generic coefficient query technique. If we were to compile
the bivariate query directly using our multivariate commitment scheme this would result in
O(n2) prover time (a bivariate polynomial with degree n on each variable is converted to a
univariate polynomial of degree roughly n2). However, Sonic also provides a way to replace
the bivariate polynomial with several degree n univariate polynomials and more rounds of
communication.

[MBKM19]’s Theorem (Sonic Univariate). There is a 5-round HVZK Polynomial IOP
with preprocessing for any NP relation R (with multiplicative complexity n) that makes 39
queries overall to 27 univariate degree 2n polynomial oracles. The total number of distinct
query points is 12. The preprocessing verifier does O(n) work to check 12 of the univariate
degree 2n polynomials.

The recent proof systems PLONK and Marlin improve on Sonic by constructing a different
Polynomial IOP. They achieve the following:

[GWC19]’s Theorem (PLONK). There is a 3-round HVZK Polynomial IOP with pre-
processing for any NP relation R (with arithmetic complexity n) that makes 12 queries overall
to 12 univariate degree n polynomial oracles. The total number of distinct query points is 2.
The preprocessing verifier does O(n) work to check 7 of the univariate degree n polynomials.

[CHM+19]’s Theorem (Marlin). There exists a 4-round HVZK Polynomial IOP with
preprocessing for any NP relation R (with R1CS complexity n) that makes 20 queries at 3
distinct query points to 19 univariate degree polynomial oracles of maximum degree 6n. The
preprocessing verifier does O(n) work to check 9 univariate degree n polynomials.

Combining the Sonic Polynomial IOP with the new transparent polynomial compiler of
Section 4 gives the following result. Similar results are obtained by using PLONK or Marlin
instead.

8The arithmetic complexity and R1CS complexity are similar, but vary because the R1CS constraints
correspond to the wiring of an arithmetic circuit with unrestricted fan-in.
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Theorem 5 (New Transparent zk-SNARK). There exists an O(log n)-round public-
coin interactive argument of knowledge for any NP relation of arithmetic complexity n that
has O(log n) communication, O(log n) “online” verification, quasilinear prover time, and a
preprocessing step that is verifiable in quasilinear time. The argument of knowledge has
witness-extended emulation assuming it is instantiated with a group G for which the Strong
RSA Assumption, and the Adaptive Root Assumption hold.

Proof. We apply the univariate polynomial commitment scheme from Section 4 to the 5-
round Sonic Univariate Polynomial IOP. Denote this commitment scheme by Γ = (Setup,
Commit,Open,Eval)

The preprocessing requires running Commit on 12 univariate degree n polynomials, which
involves a quasilinear number of group operations in the group of unknown order G deter-
mined by Setup. The prover sends a constant number of proof oracles of degree 2n to the
verifier, which also takes a quasilinear number of group operations. Finally, the 39 queries are
replaced with at most 39 invocations of Eval, which adds O(log n) rounds and has O(log n)
communication. By Theorem 1 (Γ has witness extended emulation) and Theorem 4, the
compiled interactive argument has witness-extended emulation.

5.4.2 STARK

The STARK proof system [BBHR19] builds an IOP for uniform computations, specified by
a program P and timebound T on the running time of P . The IOP itself is then compiled
into a concrete proof system using FRI [BBHR18] and Merkle trees. The STARK IOP can
be cast as a univariate Polynomial IOP.

The IOP construction begins with an algebraic intermediate representation (AIR) of the
program P . We present a simplified version of the original STARK AIR language for the
purpose of illustrating how to recast the STARK IOP as a Polynomial IOP. The original AIR
is more complex for efficiency reasons.

The AIR represents a computation as an algebraic execution trace of the program P
for T timesteps. The AIR views the program as a system of n registers and a transition
function. At every timestep each register holds an element of the finite field F. Given a
vector wi ∈ Fn representing the states of the registers at timestep i, the transition function
determines the vector wi+1 ∈ Fn representing the state of the registers at timestep i+1. The
AIR represents the transition function as a system of constraints given by a vector of 2n-
variate polynomialsP , and furthermore specifies a vector B of tuples ([T ], [n],F) representing
“boundary conditions” of the form wi[j] = α for the value of the jth register at timestep i.

Definition 6. The relation RAIR is the set of all instance-witness pairs ((F, T, n,P ,B),W )
satisfying the following description:
Instance. An instance is a tuple (F, T, n,P ,B) where

• F is a finite field.

• T ∈ N is the number of time steps.

• n is the number of registers.

• P : F2n → Fk is a polynomial vector function whose k components (P1, ...,Pk) are each
2n-variate polynomials of degree at most d called the “state transition constraints”.
On input z ∈ F2n: P(z) = (P1(z), ...,Pk(z)) ∈ Fk.

• B ∈ ([T ]× [n]× F)ℓ are ℓ tuples, called the “boundary conditions”.

Witness. A witness is a table W ∈ FT×n where each row i ∈ [T ] represents the full state of
the system at time i, and each column j ∈ [n] tracks the value of register j across time. A
witness W is a valid witness for the instance x = (F, T, n,P ,B) if and only if the following
conditions are satisfied:

• State transition consistency: P(W [i, 1], . . . ,W [i, n],W [i+1, 1], . . . ,W [i+1, n]) = 0
for all i ∈ [T − 1].

• Boundary condition satisfaction: W [i, j] = α for every tuple (i, j, α) ∈ B.

The language LAIR is defined as LAIR = {x = (F, T, n,P ,B) | ∃W (x,W ) ∈ RAIR}.
[BBHR19]’s Theorem (Stark). There is a 2-round univariate Polynomial IOP for RAIR

with preprocessing that makes k+n+2 queries to n+2 polynomials of degree at most T . The
prover has complexity Õ(nT ) and the verifier has complexity O(n log T ). The preprocessing
verifier does O(T ) work.
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STARK Polynomial IOP We sketch how this Polynomial IOP is constructed, omitting
many details (see the STARK paper [BBHR19] for further details).

Let g be a generator of F×. The preprocessing consists of computing the nonzero poly-
nomial z(X) =

∏T−1
i=1 (X − gi) which satisfies z(g1) = z(g2) = · · · = z(gT−1) = 0. The online

interaction is as follows:

1. The prover computing the n polynomials wj(X) of degree at most T − 1 such that
wj(g

i) = w[i, j], and sends n polynomial oracles to the verifier, one for each wj(X).

2. The verifier sends a random weight vector β
$← Fk.

3. The prover computes f(X) = βTP(w1(X), . . . , wn(X), w1(g ·X), . . . , wn(g ·X)). The
prover sends q(X) = f(X)/z(X) to the verifier.

Note that for a valid witness, f(g1) = f(g2) = · · · = f(gT−1) = 0, so z(X) divides f(X).
Note further that q(X) has degree at most d. The verifier’s queries to the proof oracles it
received from the prover are as follows:

• For all boundary constraints of the form (i, j, α) the verifies queries for wj(g
i), and if

wj(g
i) ̸= α then the verifier aborts and rejects.

• For a random point h
$← F, the verifier queries for uj ← wj(h) and vj ← wj(gh) for all

j ∈ [n], as well as for q(h) and z(h). Finally it checks that βTP(u1, . . . , un, v1, . . . , vn) =
q(h) · z(h), and if not it aborts and rejects.

If g instead can be chosen as an element of order T − 1 in F, then the preprocessing phase
can be omitted. In this case z(X) = XT−1− 1 and it can be evaluated by the verifier locally
in O(log T ) time.

5.4.3 Spartan

Spartan [Set19] transforms an arbitrary circuit satisfaction problem into a Polynomial IOP
based on an arithmetization technique developed by Blumberg et al. [BTVW14], which
improved on the classical techniques of Babai, Fortnow, and Lund [BFL91]. Specifically,
satisfiability of a 2-fan-in arithmetic circuit on n gates can be transformed into the expression:∑

x,y,z∈{0,1}logn

G(x, y, z) = 0 (1)

for a multilinear polynomial G on 3 log n variables over F. Furthermore, G decomposes into
the form:

G(x, y, z) = A(x, y, z)F (x) +B(x, y, z)F (y) + C(x, y, z)F (y)F (z)

where A,B,C, and F are all multilinear polynomials. The polynomials A,B,C are derived
from the arithmetic circuit defining the relation R and are input-independent. F is degree 1
with log n variables and is derived from a particular (x,w) ∈ R. The classical LFKN sum-
check protocol is applied in order to prove Expression 1 in a 3 log n round Polynomial IOP,
where the prover’s oracle consist of Z and the low-degree polynomials sent in the sumcheck.
Since the extra low-degree polynomials are constant size they can be read entirely by the
verifier in constant time rather than via oracle access, and hence we ignore them in the total
oracle count. The verifier must also evaluate A,B,C locally, which come from the multi-
linear extension of the circuit. This can be done in O(log n) time for certain circuits with a
succinct representation. The main result in Spartan can be summarized in our framework
as follows:

[Set19]’s Theorem (Spartan). There exists a 3 log n round Polynomial IOP for any NP
relation R computed by any circuit with arithmetic complexity n, which makes three queries
to a log n-linear polynomial oracle.

Applying our multivariate compiler to the Spartan Polynomial IOP we obtain an O(log n)-
round public-coin interactive argument of knowledge for circuits size n, where the verifier’s
work is dependent on the succinctness of the circuit representation (i.e., the complexity of
evaluating the multilinear extension of the circuit). The communication of our multi-linear
PC is linear in the number of variables. With only three queries overall, the communication
is just 6 log n group elements and 6 log n field elements.
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5.4.4 Quadratic Arithmetic Programs

Quadratic Arithmetic Programs (QAPs) can be expressed as linear PCPs [BCI+13, BCG+13].
We review here how to express QAPs as a one round public-coin (1, n) algebraic IOP. (This
captures the satisfiability of any circuit with multiplicative complexity n, which is first
translated to a system of quadratic equations over degree n polynomials.) Each linear query
is computed by a vector of degree n univariate polynomials evaluated at a random point
chosen by the public-coin verifier.

For illustration, we will use the description of the QAP language due to Ben-Sasson et
al. [BCG+13, §E.1]. This language is defined by lengthm+1 polynomial vectors A(X), B(X),
C(X) ∈ (F[X])m+1 such that the ith components Ai(X), Bi(X), Ci(X) are all degree-(n−1)
polynomials over Fp[X] for i ∈ [0,m − 1], and Am = Bm = Cm is the degree-n polynomial
Z(X) that vanishes on a specified set of n distinct points in Fp. There is a length-(m − 1)
witness vector w whose first ℓ components are equal to the instance x ∈ Fℓ, and a degree-n
“quotient” polynomial H(X), such that the following constraint equation is satisfied:

[(1,w⊤, δ1)A(X)] · [(1,w⊤, δ2)B(X)]− (1,w⊤, δ3)C(X) = H(X) · Z(X)

and (1,w⊤)(1, X, ..., Xℓ,0m−ℓ−1) = (1,x⊤)(1, X, ..., Xℓ)
(2)

The deltas δ1, δ2, δ3 ∈ F are used as randomizers for zero-knowledge.

QAP algebraic linear PCP Equation 2 is turned into a set of linear queries by eval-
uating the polynomials at a random point in F. Satisfaction in this random point implies
satisfaction of the polynomial equation with error at most 2n/|F| by the Schwartz-Zippel
lemma. Translated to an algebraic IOP, the prover sends a proof oracle πw containing the
vector (1,w, δ1, δ2, δ3) as well as a proof oracle πh containing the coefficient vector of H(X).
A common proof oracle πz is jointly established containing the coefficient vector of Z(X).

Let α ∈ F be a random point. The verifier makes four queries to πw, computed by
the polynomial vectors A(X), B(X), C(X) and D(X) = (1, X, ..., Xℓ,0m−ℓ−1)⊤, evaluated in
α. The verifier makes one query each to πh and πz, which is the evaluation of H(α) and
Z(α) respectively. The verifier obtains query responses ya, yb, yc, yd, yh, yz and checks that
ya · yb − yc = yhyz and yd = ⟨(1,w⊤), D(α)⟩.

QAP Polynomial IOP Following the compilation in Theorem 3 (Section 5.2.2), the QAP
algebraic linear PCP can be transformed into a 2-round Polynomial IOP. For simplicity,
assume m + 3 < n, where m − 1 is the length of the witness and n is the multiplicative
complexity of the circuit. The preprocessing establishes three bivariate degree-n polynomials
(i.e., encoding A(X), B(X), C(X)) and two univariate degree-n polynomials (i.e., encoding
Z(X) and D(X)). In the 2-round online phase the prover sends a degree-n univariate oracle
for the witness vector (1,w, δ1, δ2, δ3), a degree-n univariate oracle for H(X), four degree-n
univariate oracles encoding linear PCP queries, four degree-2n univariate oracles encoding
polynomial products, and eight degree-2n univariate oracles for opening inner products. The
total number of polynomial oracle evaluation queries is 3 bivariate degree-n, 8 univariate
degree-2n, and 7 univariate degree-n.

Theorem 6 (QAP Polynomial IOP). There exists a 2-round Polynomial IOP with pre-
processing for any NP relation R (with multiplicative complexity n) that makes 7 queries
to univariate degree-n oracles, 8 queries to univariate degree-2n oracles, and 3 queries to
bivariate degree-n oracles.

While theoretically intriguing, compiling the QAP-based IOP with our polynomial com-
mitments of Section 4 is less practical than compiling the Sonic IOP. While the QAP Poly-
nomial IOP has only 15 univariate queries (compared to Sonic’s 39 queries to polynomials of
twice the degree), the 3 bivariate polynomial oracles take quadratic time to preprocess and
open. Unfortunately, our polynomial commitment scheme does not take advantage of the
sparsity of these bivariate polynomials. Furthermore, ignoring prover time complexity, the
size of the bivariate Eval proofs are twice as large as univariate Eval proofs.

6 Evaluation

We now evaluate Supersonic, the trustless-setup SNARK built on the Polynomial IOPs un-
derlying Sonic [MBKM19], PLONK [GWC19], and Marlin [CHM+19], and compiled using
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our DARK polynomial commitment scheme. As explained in Section 4.5, the commitment
scheme has several batching properties that can be put to good use here. It is possible to
evaluate k polynomials of degree at most d using only 2 group elements and (k + 1) field
elements. To take advantage of this we delay the evaluation until the last step of the protocol
(see Section 5.3). We present the proof size for both the compilation of Sonic, PLONK and
Marlin in Table 3. We use 1600 bits as the size of class group elements and λ = 120. The
security of 1600 bit class groups is believed to be equivalent to 3048bit RSA groups and have
120 bits of security [BH01, BJS10]. This leads to proof sizes of 16.5KB for Sonic, 10.1KB
using PLONK and 12.3KB using Marlin for circuits with n = 220 (one million) gates. Using
3048-bit RSA groups the proof sizes becomes 18.4KB for the compilation of PLONK. If 100
bits of security suffice then a 1200 bit class group can be used and the compiled PLONK
proofs are 7.8KB for the same setting. In a 2048-bit RSA group this becomes 12.7KB.

The comparison between the Polynomial IOPs is slightly misleading because for Sonic
n is the number of multiplication gates whereas for PLONK it is the sum of multiplication
and addition gates. For Marlin it is the number of non-zero entries in the R1CS description
of the circuit. A more careful analysis is therefore necessary, but this shows that there are
Polynomial IOPs that can be compiled using the DARK polynomial commitment scheme to
SNARKs of roughly 10 kilobytes in size. These numbers stand in contrast to STARKs which
achieve proofs of 600KB for computation of similar complexity [BBHR19]. We compare
Supersonic to different other proof systems in Table 4. Supersonic is the only proof system
with efficient verifier time, small proof sizes that does not require a trusted setup.

Polynomial IOP Polynomials Eval points |SNARK| concrete size

Sonic [MBKM19] 12 in pp + 15 12
(15 + 2 log2(n))G 15.3 KB

+(12 + 13 log2(n))Zp

PLONK [GWC19] 7 in pp + 7 2
(7 + 2 log2(n))G 10.1 KB

+ (2 + 3 log2(n))Zp

Marlin [CHM+19] 9 in pp + 10 3
(10 + 2 log2(6n))G 12.3 KB
+ (3 + 4 log2(6n))Zp

Table 3: Proof size for Supersonic. Column 2 says how many polynomials are committed to
in the SRS (offline oracles) and how many are sent by the prover (online oracles). Column
3 states the number of distinct evaluation points. The proof size calculation uses |Zp| = 120
and |G| = 1600 for n = 220 gates.

Prover and Verifier cost We use the notation Oλ(·) to denote asymptotic complexity
for a fixed security parameter λ, i.e. how the prover and verifier costs scale as a function
of variables other than λ. The main cost for the Supersonic prover consists of computing
the commitments to the polynomial oracles and producing the single combined Eval proof.
This proof requires calculating the commitments to the polynomials fL(q) and fR(q) in each
round and performing the PoE(CR,C − CL, q

d′+1). Using precomputation, i.e., computing
Gqi for all i and using multi-scalar multiplication, the commitments can be computed in
Oλ(

d
log(d)

) group operations. The same techniques can be used to reduce the number of

group operations for the PoEs to Oλ(d). The total number of group operations is therefore
linear in the maximum degree of the polynomial oracles and the number of online oracles.
Interestingly, the number of offline oracles hardly impacts the prover time and proof size.

The verifier time is dominated by the group operations for scalar multiplications in various
places in the single combined Eval protocol. It consists of 3 λ-bit scalar multiplications in
each round: 1 for combining CL and CR and two for verifying the PoE. In the final round,
the verifier does another λ log2(d+1)-bit scalar multiplication to open the commitment but
this could also be outsourced to the prover using yet another PoE. The total verifier time,
therefore, consists of roughly a scalar multiplication with 3λ log2(d + 1) group operations.
Using 10µs per group operation9, this gives us for λ = 120 and n = 220 a verification time
of around 72ms.

9The estimate comes from the recent Chia Inc. class group implementation competition. The com-
petition used a larger 2048bit discriminant but only performed repeated squaring. https://github.com/

Chia-Network/vdfcontest2results

28

https://github.com/Chia-Network/vdfcontest2results
https://github.com/Chia-Network/vdfcontest2results


Scheme Transp. |pp| Prover Verifier |π| n = 220

Supersonic yes O(1) O(n log(n)) MUL 3 log(n) MUL 2 log(n) GU 10.1KB
PLONK [GWC19] no 2n GB O(n) MUL 1 Pairing O(1) GB 720b
Groth16 [Gro16] no 2n GB O(n) MUL 1 Pairing O(1) GB 192b
BP [BBB+18] yes 2n GP O(n) MUL O(n) MUL 2 log(n) GP 1.7KB
STARK yes O(1) O(λT ) H O(λ log2(T )) H O(λ log2(T )) H 600 KB
Virgo[ZXZS19] yes O(1) O(λn) H O(λ log2(n)) H O(λ log2(n)) H 271 KB

Table 4: Comparison table between different succinct arguments. In column order, we
compare by transparent setup, CRS size, prover and verifier time, asymptotic proof size,
and concrete proof for an NP relation with arithmetic complexity 220. Even when precise
factors are given the numbers should be seen as estimates. For example, we chose to not
display smaller order terms. The symbol GU denotes an element in a group of unknown
order, GB one in a group with a bilinear map (pairing), GP one in a prime order group with
known order. Furthermore, MUL refers to scalar multiplication of λ-bit numbers in these
groups, and H is either the size of a hash output or the time it takes to compute a hash. The
prover time for the group based schemes can be brought down by a log factor when using
multi-scalar-multiplication techniques.

7 Conclusion

In this work, we presented the DARK compiler: a polynomial commitment scheme from fal-
sifiable assumptions in groups of unknown order with evaluation proofs that can be verified
in logarithmic time. We also presented Polynomial IOPs, a unifying information-theoretical
framework underlying the information-theoretic foundation of several recent SNARK con-
structions. Polynomial IOPs can be compiled into a concrete SNARK using a polynomial
commitment scheme and the Fiat-Shamir transform. We showed that applying the DARK
compiler to recent Polynomial IOPs yields the first trustless SNARKs (i.e., with a
transparent untrusted setup) that have practical proof sizes and verification
times. In particular, this is the first trustless/transparent SNARK construction that has
asymptotically logarithmic verification time (ignoring the λ-dependent factors, which are
comparable to λ-dependent factors in prior works). Finally, unlike all known SNARKs in bi-
linear groups, the construction does not require knowledge of exponent assumptions. Several
important open questions remain:

• Our polynomial commitment scheme has prover time linear in the total number of co-
efficients, even for zero coefficients. Consequently for a sparse bivariate polynomial of
degree d in each variable the prover time is quadratic in d. A sparse polynomial com-
mitment scheme would directly enable an efficient compilation of simple information
theoretic protocols such as QAPs.

• Assymptotically, Supersonic’s prover time is on par with pairing-based SNARK con-
structions, however, a concrete implementation and performance comparison remains
open.

• This work further motivates the study of class groups and groups of unknown order.
In particular we rely on a recently introduced Adaptive Root Assumption.

• Our polynomial commitment scheme uses a simple underlying information theoretic
protocol that could be compiled using a (partially) homomorphic commitment scheme
over polynomials, or even another type of integer homomorphic commitment scheme.
This leaves open whether there are different ways of instantiating our DARK compiler
under different cryptographic assumptions.
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New Security Proof and Almost-Special-Soundness (Added

June 2022)

Although DARK does not satisfy special soundness, it does satisfy a property that we will call
almost-special-sound, which turns out to be sufficient (i.e., using our new forking lemma we
can prove that such protocols are knowledge sound). Almost-special-soundness is a weaker
property than special soundness, as all protocols that satisfy special soundness also satisfy
almost-special-soundness.

A Preliminaries and Notations

A.1 Integer Polynomials

If f is a multivariate polynomial, then ||f ||∞ denotes the maximum over the absolute values
of all coefficients of f .

Lemma 6 (Evaluation Bound). For any µ-linear integer polynomial f and m ≥ 2:

Px←[0,m)µ [|f(x)| ≤
1

mµ
· ||f ||∞] ≤

3µ

m

Proof. Let f (0) := f . Given a vector x = (x1, .., xµ), for each j ∈ [1, µ] define f
(j)
x to be the

µ − j-variate partial evaluation f
(j)
x := f(x1, ..., xj, Xj+1, ..., Xµ). Then we can rewrite the

lemma statement as:

Px←[0,m)µ [||f (µ)
x ||∞ ≤

1

mµ
· ||f (0)||∞] ≤

3µ

m

We will bound the probability for random x that there exists any j for which ||f (j)
x || <

1
m
· ||f (j−1)

x ||. If no such j exists, then ||f (µ)|| ≥ 1
mµ · ||f (0)||.

For any j, we can write f
(j)
x = g(Xj+1, ..., Xµ)+xj ·h(Xj+1, ..., Xµ) where g, h are µ−j vari-

ate multilinear integer polynomials and ||f (j−1)
x || = max(||g||, ||h||) because the coefficients of

g and h are a partition of the coefficients of f
(j−1)
x . Suppose now that ||f (j)

x || < 1
m
· ||f (j−1)

x ||,
i.e. that ||g + xj · h|| < 1

m
·max(||g||, ||h||) and consider two cases:

Case 1: ||h|| = max(||g||, ||h||). For any integer ∆ ̸= 0, using the triangle inequality:

||g + (xj +∆)h|| = ||g + xjh+∆h|| ≥ ||∆h|| − ||g + xjh|| > (1− 1

m
) · ||h|| ≥ 1

m
· ||h||

The last part of the inequality holds because 1− 1
m
≥ 1

m
for any m ≥ 2.

Case2: ||g|| = max(||g||, ||h||). Using the triangle inequality,

1

m
||g|| > ||g + xj · h|| ≥ ||g|| − ||xj · h||

This implies, for m ≥ 2, that ||h|| > 1
m
· ||g|| because:

||xj · h|| > (1− 1

m
) · ||g|| =⇒ ||h|| > m− 1

xj ·m
· ||g|| ≥ 1

m
||g||

The last step uses that xj ∈ [1,m). For xj = 0, ||g + xjh|| = ||g||. Finally, for any integer
∆, by the triangle inequality:

||g + (xj +∆) · h|| ≥ ||∆h|| − ||g + xj · h|| >
|∆|
m
· ||g|| − 1

m
· ||g|| = |∆| − 1

m
· ||g||

When |∆| ≥ 2 this implies that ||g + (xj +∆) · h|| > 1
m
· ||g||.

In both cases, we conclude that for any choice of (x1, ..., xj−1) for the first j−1 components
of the random x, which define g and h, there are at most three choices of xj such that the

event ||f (j)
x || < 1

m
· ||f (j−1)

x || holds true (i.e., if true for xj, then it is also true for at most
xj + 1 and xj − 1). Thus this event occurs with probability at most 3

m
. Finally, by a union

bound over j, the probability this event occurs for some index j is at most 3µ
m
.
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Lemma 7 (Multilinear Composite Schwartz-Zippel [BF22] ). For all m ≥ 2, any µ-linear
integer polynomial f , and N ∈ Z coprime to f , if either µ = 1 and log2N ≥ λ or µ ≥ 2 and
log2N ≥ 8µ2 + log2(2µ) · λ then:

Px←[0,m)µ [f(x) ≡ 0 mod N ] ≤ 1

2λ
+

µ

m

[BF22] also provide an algorithm for computing tighter values for the MCSZ for concrete
parameters for µ and λ. We present a range of values for different µ and λ = 120.

Lemma 8 (Concrete MCSZ for 120-bit security [BF22]).

Px←[0,m)µ [f(x) ≡ 0 mod N ] ≤ 2−120 +
µ

m

µ λ = 120

1 120
2 156
3 175
4 197
5 212
6 234
7 244
8 260
9 277
10 289

µ λ = 120

11 301
12 315
13 331
14 344
15 354
16 366
17 381
18 391
19 407
20 416

µ λ = 120

21 429
22 437
23 448
24 464
25 472
26 481
27 492
28 506
29 516
30 527

Fact 2. Let q ∈ Z be any positive integer. For any integer E ∈ Z such that |E| ≤ qd+2−q
2(q−1)

there exists a unique degree d integer polynomial f ∈ Z[X] with ||f ||∞ ≤ q/2 such that
f(q) = E.

We extend the integer encoding from Section 4.2 to rational multi-linear polynomials.

Lemma 9 (Rational Encoding of multi-linear polynomials). Let q ∈ Z be any positive
integer. Let q⃗ = [q2

i−1
]µi=1 ∈ Zµ. Consider any βd, βn ∈ N such that βd · βn ≤ q

2
. Let

Z = {z ∈ Z : |z| ≤ βd}, let F = {f ∈ Z[X1, . . . , Xµ] : ||f ||∞ ≤ βn} be a µ-linear polynomial,
and letH = {f/z ∈ Q[X1, . . . Xµ] : f ∈ F∧z ∈ Z}. Then for any h1, h2 ∈ H, if h1(q⃗) = h2(q⃗)
then h1 = h2.

Proof. Let h1 =
f1
z1

and h2 =
f2
z2
. If h1(q⃗) = h2(q⃗) then z1f2(q⃗) = z2f1(q⃗). Since ||z2 · f1||∞ ≤

βd · βn ≤ q
2
and likewise ||z1 · f2||∞ ≤ q

2
. Note that there exist a unique univariate degree

2µ−1 polynomial f̂1 that has the same coefficients as f1 such that for all q f1(q⃗) = f̂1(q). Let
f2 be the univariate degree 2

µ−1 polynomial with the same coefficients as f̂2. It then follows
from Fact 2 that if z1f2(q⃗) = z1f̂2(q) = z2f̂1(q) = z2f1(q⃗) then z1f2 = z2f1, or equivalently,
h1 = h2.

A.2 DARK commitments

We restate the DARK commitment scheme as a commitment scheme to µ-linear polynomials
with bounded rational coefficients. If f is a µ-linear polynomial then it can represent a degree
2µ−1 univariate polynomial f̂ with the same coefficients, as f̂(z) = f(z, z2, . . . , z2

µ−1
). While

the honest prover will commit to the integer representation of a polynomial defined over a
prime field, this representation is useful in the security proof. The extractor will extract
bounded rational polynomials instead of integer ones. Fortunately, we can show that given
sufficiently large parameters, the commitment scheme is still binding.

Given the security parameter λ, the commitment scheme setup selects a group G for
which the random order assumption holds (with λ-bit security) and a random generator
G ∈ G. A parameter q ∈ N determines a commitment message spaceM = {f(X1, . . . , Xµ) :
||f ||∞ ≤ q/2 ∧ ∀i degXi

(fi) ≤ 1}. The commitment to f(X1, . . . , Xµ) ∈ M is f(q⃗) · G for

q⃗ = (q, q2, . . . , q2
µ−1

). Commitments are binding overM because if f(q⃗) · G = f ′(q⃗) · G then
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(f ′(q⃗) − f(q⃗))G = 0. This breaks the order assumption for G unless f ′(q⃗) = f(q⃗), in which
case f ′ = f by Fact 2.

If we expand the valid openings of the commitment scheme to include rational polyno-
mials of the form f/z, where f ∈ Z[X], z ∈ Z, so that (f,D) is an opening of C to f/z iff
z · C = f(q⃗) · G, then the scheme is binding over the message spaceM(βn, βd) = {f(X)/z :
f ∈ Z[X], z ∈ Z, gcd(f, z) = 1, ||f ||∞ ≤ βn, |z| ≤ βd} so long as βn · βd ≤ q

2
. Openings to

rationals are equivalent to what has been previously described as relaxed openings, whereby
C is opened to f by opening z · C to z · f for z ∈ Z [BDFG21].

Lemma 10 (DARK commitment Security). The commitment scheme (Setup,Commit,Vf)
to integer µ-linear polynomials:

• Setup(λ, βn ∈ Z, βd ∈ Z): sample G ← GGen(λ),G ← G, return pp := (G,G, q =
2βnβd)

• Commit(pp, f ∈M(βn, βd)) : return f(q⃗) · G for q⃗ = (q, q2, . . . , qµ−1) ∈ Zµ

• Open(pp, C ∈ G, h = f/N ∈M(βn, βd)): return 1[N · C = f(q⃗) · G]

is binding over the rational polynomial set M(βn, βd) under the random order assumption
(1), i.e. for any polynomial time adversary A

P

[
Open(pp, C, h) = Open(pp, C, h′) = 1

h ̸= h′

∣∣∣∣ (h, h′, C) ∈M(βn, βd)
2 ×G← A(pp)

pp← Setup(λ, βn, βd)

]
< negl(λ)

Proof. To see why this is binding overM(βn, βh), suppose that both h = f
N

and h′ = f ′

N ′ are
valid openings of a commitment C to distinct rational polynomials h, h′ ∈ M(βn, βd). This
implies that N ·C = f(q⃗) ·G and z′ ·C = f ′(q⃗) ·G. Hence, v = z · f ′(q⃗)− z′ · f(q⃗) is a multiple
of the order of G, i.e. v · G = 0. Moreover, by Lemma 9, h(q⃗) ̸= h′(q⃗), which implies v ̸= 0.
This breaks the random order assumption for G. It is important to note that the openings
(f, z) and (f ′, z′) need not be co-prime elements of bounded norm; it suffices that h = f/z
and h′ = f ′/z′ have bounded norm numerators and denominators in reduced fraction form,
i.e. h, h′ ∈M(βn, βd).

A.3 IP Transcript Trees

Let (P, V ) be a µ-round public coin interactive protocol. A µ-round public-coin protocol
(P, V ) consists of µ-rounds of messages between the prover and verifier, where in each round
the prover sends a message to the verifier and the verifier responds with x ← X sampled
uniformly from the challenge space X . At the end of the protocol, the verifier outputs either
accept or reject. By convention, the protocol starts with the prover’s first message and ends
with the prover’s last message. A transcript thus contains µ + 1 prover messages and µ
challenges. We will denote transcripts by a µ× 2 matrix A such that A(0, 0) is the protocol
input x, A(0, 1) is the prover’s first message, and for all i ≥ 1, A(i, 0) is the verifier’s ith
round challenge and A(i, 1) is the prover’s ith round response. We restrict our attention to
protocols in which the verifier’s decision is a deterministic function DV of the transcript,
which is true of the DARK protocol, but is also without loss of generality. An accepting
transcript is an array A such that DV (A) = accept.

A k-ary transcript tree for (P, V ) is a labelling of a µ-depth k-ary tree such that the labels
on every root-to-leaf path forms an accepting (P, V ) transcript. It will be convenient to order
the nodes of the tree according to a depth-first reverse topological sort (aka post-order tree
traversal). This is a topological sorting of the tree with directed edges flowing from leaves
to root which places left subtrees before right subtrees. This ordering associates each node
with an index in [1, N ] where N = size(µ, k) = kµ+1−1

k−1 .
A post-order labelling of the tree is a function L : [1, N ]→ X×M where X is the verifier’s

challenge set andM is the space of prover messages. We can think of the first component
(i.e., the verifier challenge) as a label on the node’s incoming edge and the second component
(i.e., prover’s response) as a label on the node itself. The root has no incoming edge, but the
root label’s first component is the protocol input. For any root-to-leaf path of nodes with
indices {v0, ..., vµ} the labelling L defines the matrix A such that L(vi) = (A(i, 0), A(i, 1))
and A is an accepting transcript. Given a label L(v) for v < N (non-roots) we will use the
notation L(v)0 to denote the first component of the label containing the verifier’s challenge
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L(13):
x, A(0, 1)
v∗ = ⊥

L1(4):
A(1, 1)
v∗ = ⊥

L1(1):
A(2, 1)
v∗ = ⊥

L1(2):
A(2, 1)
v∗ = 1

L1(3):
A(2, 1)
v∗ = 2

L1(8):
A(1, 1)
v∗ = 4

L1(5):
A(2, 1)
v∗ = 4

L1(6):
A(2, 1)
v∗ = 5

L1(7):
A(2, 1)
v∗ = 6

L1(12):
A(1, 1)
v∗ = 8

L1(9):
A(2, 1)
v∗ = 8

L1(10):
A(2, 1)
v∗ = 9

L1(11):
A(2, 1)
v∗ = 10

L(4
)0

L
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) 0

L
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0

L
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0
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) 0
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) 0
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0

L(12)0

L
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) 0

L
(1
0)

0

L
(11)

0

Level 0

Level 1

Level 2

Figure 1: IP transcript tree for µ = k = 3. Nodes and edges are labeled using post-order
labeling. We also indicate v∗ for every node.

and L(v)1 the second component containing the prover’s response. Finally, we define a k-ary
forking transcript tree to be a k-ary transcript tree in which the challenge labels on all edges
sharing a common parent are distinct.

We may refer to the level of a node in the tree. The root of a tree is always at level
0 and the leaves of a depth µ tree are at level µ. The height of node at level ℓ within a
µ-depth tree is µ − ℓ. For each v ∈ [1, N ] let v∗ denote the largest index v∗ < v such that
the node at index v∗ does not belong to the subtree extending from v. Note that for nodes
on the leftmost path of the tree v∗ does not exist so we denote it by ⊥. For each v ∈ [1, N ]
let Lv : [1, v] → X ×M denote the restriction of L to the subset [1, v∗]. Similarly, for any
S ⊆ [1, N ] let LS : S → X ×M denote the restriction of the labelling L to the subset of
node indices S. For any v ∈ [1, N ] let Sv ⊆ [1, N ] denote the indices of all nodes in the
subtree rooted at node v. LSv thus denotes the labelling of the subtree Sv. Note that Lv∗ is
not the same as LSv∗ .

A.4 Path Predicate Forking Lemma

The standard forking lemma for µ-round public coin interactive protocols characterizes the
efficiency of generating a k-ary µ-depth transcript tree for which the challenges labeling
the children within the tree fork, i.e. are distinct. More precisely, the forking lemma says
that given any adversarial prover A that may deviate from the honest protocol but causes
the verifier to accept with probability ϵ, there is a tree generation algorithm that has only
black-box access to A, runs in time t ∈ O(λ

ϵ
· kµ · (µ+ tV )), where tV is the running time of

the verifier’s decision algorithm, and succeeds with probability 1− t · negl(λ) in producing a
transcript tree with the forking property.

Our path predicate forking lemma generalizes the property of the transcript tree that
can be generated by considering arbitrary predicates on partial labelings of the tree. In the
standard forking lemma, the predicate would simply be that new challenges are distinct from
previous challenges. The lemma considers predicates for each node v ∈ [1, N ] at level ℓv of
the form πv : (X ×M)[1,v

∗]×X µ−ℓv → {0, 1}, i.e. each predicate πv takes as input a labelling
function Lv∗ for the partial set of nodes [1, v∗] and a vector of challenges x ∈ X µ−ℓv . The
vector of challenges will represent the leftmost path down the tree starting from v, which by
definition is independent of the partial labeling Lv∗ . We denote the indices of the leftmost
path from v to the leaves as lpathv and the challenge labels along this path assigned by L
as L(lpathv)0. For example in Figure 1 the predicate π8 for node 8 would take as input the
subtree spanned by 4 and the challenge L(5)0. The lemma says that if πv(Lv∗ ,x) = 1 with
overwhelming probability 1− negl(λ) for any post-order labeling L : [1, N ]→ X ×M of the
k-ary µ-depth tree, any node v in the tree, and x sampled randomly, then the transcript
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generation algorithm produces a transcript tree represented by some post-order labeling L
for which πv(Lv∗ , L(lpathv)0) = 1 for all v in the tree. In fact, the lemma is even more general
as it has a weaker requirement that πv(L

∗
v,x) = 1 with overwhelming probability conditioned

on πu(L
∗
u, L(lpathu)0) = 1 for all u ≤ v∗. The standard forking lemma is a special case where

πv checks that the challenge label on v is distinct from the challenge labels on any of its
left siblings. The challenge label L(v)0 on v is the first component of L(lpathv)0 and the
challenge labels on the left sibling(s) of v, assuming v is not the first child, are included in
Lv∗ .

Proof Overview We will begin with a high level overview of the proof. The algorithm is
exactly the same as the recursive tree generation algorithm for the standard forking lemma.
The difference is only in the analysis. The standard forking lemma considers predicates
πv(Lv∗ , x) that are functions only of the challenges assigned by Lv∗ to left sibling nodes
of v and a single (fresh) x ∈ X rather than a vector, and are independently true with
overwhelming probability.

Just as in the standard forking lemma, the analysis is a simple union bound. First, the
tree generation algorithm is transformed to a Monte Carlo algorithm that runs for t ∈ poly(λ)
steps and succeeds with overwhelming probability. The standard forking lemma is based on
the observation that a t-step algorithm makes at most t samples from X and thus the
predicates hold true for all sampled challenges with probability at least 1− t ·negl(λ). In our
case, the analysis is very similar. Let L denote the labelling returned by the Monte Carlo
tree generation algorithm. We begin with the observation that this tree generation algorithm
constructs the labelling in depth-first post-order. In particular, when the transcript tree
generation algorithm visits a node v at heigh hv it has already derived a partial labelling
Lv∗ . It samples a random vector x ∈ X hv and attempts to derive a valid transcript for
lpathv using this challenge vector x. If it succeeds then it sets L(lpathv)0 = x, otherwise the
entire vector x is discarded and it tries again starting from v. Suppose there exists some
v such that πv(Lv∗ , L(lpathv)0) = 0 and let v be the lowest index node with this property.
This would imply that there occurred an event where the algorithm had already constructed
Lv∗ satisfying πu(Lu∗ , L(lpathu)0) = 1 for all u ≤ v∗ and then sampled x ← X hv , setting
L(lpathv)0 = x, such that πv(Lv∗ ,x) = 0. However, by hypothesis this event occurs with
probability negl(λ) over random x. Since the algorithm runs for only t ∈ poly(λ) steps, an
event of this kind occurs with probability at most t · negl(λ).

Thus, we obtain a Monte Carlo algorithm that returns a transcript tree where all the
predicates are satisfied with overwhelming probability.

Lemma 11 (Path Predicate Forking Lemma). Let (P, V ) be a µ-round public-coin protocol
with prover message space M and verifier challenge space X . For each node v ∈ [1, N ] of
a µ-depth k-ary balanced tree on N = size(µ, k) nodes, let hv denote the height of v. Let
{πv : v ∈ [1, N ]} denote a set of predicates, where πv(Lv∗ ,x) is a function of the partial
labelling Lv∗ and challenge vector x ∈ X hv , with the property that for any post-order
labelling function L : [1, N ]→ X ×M and any v ∈ [1, N ]:

Prx←Xhv [πv(Lv∗ ,x) = 1 | ∀u≤v∗πu(Lu∗ , L(lpathu)0) = 1] ≥ 1− δ

Let tV denote the worst-case running time of the verifier’s decision algorithm DV . There
is an algorithm TreeA(z) that, given a security parameter λ ∈ N and oracle access to an
adversarial prover A that causes V to accept with probability ϵ on public input z, runs in
time at most t = 2λ · kµ

ϵ
· (µ+ tV ) and with probability at least 1− t · δ− 2−λ outputs a k-ary

transcript tree with post-order labeling L : [1, N ]→ X×M such that πv(Lv∗ , L(lpathv)0) = 1
for all v ∈ [1, N ].

Proof. We will first describe a Las Vegas tree-finding algorithm that runs in expected poly-
nomial time as we can then transform it to a Monte Carlo algorithm with a finite runtime
and overwhelming success probability.

Tree finding algorithm The tree-finding algorithm Tree(k, z) begins by sampling a ran-
dom tape σ for the adversary. Let A(σ) denote the deterministic10 adversary with fixed
random tape σ. For all i ∈ [0, µ] define Ti(σ, k, z, x1, ..., xi) as follows:

10Any probabilistic adversarial algorithm can be represented by a deterministic algorithm that takes as
input a random tape.
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Algorithm Ti(σ, k, z, x1, ..., xi):

• If i = µ: Simulate the protocol with A(σ) as the prover and fixing the verifier’s
challenges µ ordered challenges to the values x1, ..., xµ. If the verifier outputs 1 during
this simulation then return the protocol transcript tr, and otherwise return fail.

• Else if 0 ≤ i < µ: Sample xi+1 ← X and run Ti(σ, k, y, x1, ..., xi+1). This either returns
fail or a transcript tree denoted tree. If it returns fail, then output fail. Otherwise,
save the pair (xi+1, tree). If i < µ − 1 then tree is a tree of accepting transcripts
that share a common prefix for the first i + 1 rounds, which includes the challenges
x1, ..., xi+1. If i+ 1 = µ then tree is a single accepting transcript. Repeat this process
as many times as needed, each time sampling a fresh x′i+1, running Ti(σ, y, x1, ..., x

′
i+1),

ignoring the runs that fail, saving the succesful challenge/tree pairs until k pairs have
been recorded. Together the transcripts in all k recorded trees form one larger tree
of accepting transcripts that share a commmon prefix trpre for the first i rounds of
messages with fixed challenges x1, ..., xi.

Tree(k, z) repeatedly samples σ and runs T0(σ, k, z) until it outputs a tree of accepting
transcripts.

We now analyze the expected runtime of Tree(k, z) and success probability of returning
an k-ary tree of accepting transcripts given that A succeeds with probability ϵ. T0(σ, k, z)
returns fail iff the first iteration of each subroutine Ti returns fail for i = 1 to µ. The
probability this happens is equal to the probability that Tµ(σ, y, x1, ..., xµ) outputs fail for a
uniformly distributed challenge tuple (x1, ..., xµ). This is equal to the failure probability of
A(σ), i.e. 1− ϵ. Thus, Tree(k, z) calls T0 in expectation 1/ϵ times. Letting t0 be a random
variable for the runtime of T0(σ, z) over random σ, the expected runtime of Tree(k, z) is t0/ϵ.

It remains to analyze the expected runtime E[t0] of T0(σ, z). Each call to Ti(σ, k, z, x1, ..., xi)
for i ∈ [1, µ] that occurs in the execution trace of T0(σ, k, z) is on i.i.d. uniformly distributed
challenges x1, ..., xi. Let ti be a random variable denoting the runtime of Ti(σ, k, z, x1, ..., xi)
over a uniformly distributed challenge prefix xi = (x1, ..., xi) and uniformly distributed σ.
We omit the time to sample a random challenge from the runtime analysis as this will only
affect the runtime up to a constant factor. Since Tµ(σ, k, z,xµ) makes µ calls to the oracle
A and one call to the verifier’s decision algorithm DV its runtime is at most µ + tV , where
tV is the worst case running time of DV .

For i < µ, Ti(σ, k, y,xi) outputs fail iff the first call to each Tj subroutine for j ∈
[i+ 1, µ] returns fail, in which case the runtime is tA. The probability Ti(σ, k, z,xi) outputs
fail for random σ and xi is again equal to the failure probability of A(σ), i.e. 1 − ϵ. If
it does not output fail, then in expectation it runs an additional (k − 1)/ϵ iterations of
Ti+1(σ, k, z,xi, xi+1) sampling a fresh xi+1 for each iteration. Thus, the expected runtime
E(ti) is:

E[(1− ϵ) · tA + (k − 1) · ti+1] ≤ E[ti+1 · k]

This recurrence relation shows:

E[t0] ≤ E[tµ · kµ]

Thus, we have shown that the expected runtime of Tree(k, z) is E[t] ≤ kµ

ϵ
· (µ+ tV ).

By standard techniques11, the Las Vegas algorithm Tree(k, z) may be transformed to a
Monte Carlo algorithm that runs for 2λ · E[t]) steps and succeeds except with probability
1− 2−λ.

Transcript tree property analysis The transcript tree labels returned by Tree(k, z) are
computed in depth-first post-order by the Monte Carlo tree generation algorithm. Let L de-
note this post-order labeling. Consider any node v that is labeled with challenge L(v)0 = x
in the tree. Let i denote the level of v within the tree and let x = (x1, .., xi−1, x, xi+1, ..., xµ)
denote the vector of challenge labels assigned to the path starting from the root to v and
following the left-most path down the tree from v. During the execution of Tree(k, z) the
following event occurred: immediately after x was sampled as a candidate label for v, the

11Run λ independent instances in parallel for 2 · E[t] steps. By Markov, each instance terminates (i.e.,
succeeds) with probability at least 1/2. The probability none succeed is at most 2−λ
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challenges xi+1, ..., xµ were sampled uniformly and independently such that A(σ, k, z,x) suc-
ceeded (i.e., produced a valid transcript). If this event had not occurred (i.e., A(σ, k, z,x)
failed) then x would have been discarded and the process would have been repeated.

In other words, when the transcript tree generation algorithm visits a node v it has already
derived a partial labelling Lv∗ for [1, v∗] where v∗ ≤ v is not in any subtree extending from
v. It samples a random vector x ∈ X hv and attempts to derive a valid transcript for lpathv
using this challenge vector x. If it succeeds then it sets L(lpathv)0 = x, otherwise the entire
vector x is discarded and it tries again starting from v. Suppose there exists some v such that
πv(Lv∗ , L(lpathv)0) = 0 and let v be the lowest index node with this property. This would
imply that there occurred an event where the algorithm had already partially constructed
L such that πu(Lu∗ , L(lpathu)0) = 1 for all u ≤ v∗ and then subsequently sampled x← X hv ,
setting L(lpathv)0 = x, such that πv(Lv∗ , x) = 0. However, by hypothesis this event occurs
with probability δ over random x. The algorithm runs for at most t = 2λ

ϵ
kµ · (µ+ tV ) steps

in total, hence by a union bound the probability that an event of this kind occurs at all is
at most t · δ.

Thus, we obtain a Monte Carlo extraction algorithm that returns a transcript tree where
all the predicates are satisfied with overwhelming probability (for appropriate setting of the
parameters). More precisely, for any security parameter λ ∈ N and for t = 2λ

ϵ
· kµ · (µ+ tV )

the extraction algorithm runs in time at most t and (by a union bound) succeeds in returning
a transcript tree labeling L where, for all v, πv(Lv∗ , L(lpathv)0) = 1 with probability at least
1− t · δ − 2−λ.

A.5 Knowledge Soundness

An NP relation R is a subset of strings x,w ∈ {0, 1}∗ such that there is a decision algorithm
to decide (x,w) ∈ R that runs in time polynomial in |x| and |w|. The language of R,
denoted LR, is the set {x ∈ {0, 1}∗ : ∃w ∈ {0, 1}∗ s.t. (x,w) ∈ R}. The string w is called
the witness and x the instance. An interactive proof of knowledge for an NP relation R
is a special kind of two-party interactive protocol between a prover denoted P and a verifier
denoted V , where P has a private input w and both parties have a common public input x
such that (x,w) ∈ R. Informally, the protocol is complete if P(x,w) always causes V(x) to
output 1 for any (x,w) ∈ R. The protocol is knowledge sound if there exists an extraction
algorithm E called the extractor such that for every x and adversarial prover A that causes
V(x) to output 1 with non-negligible probability, E outputs w such that (x,w) ∈ R with
overwhelming probability given access12 to A.

Definition 7 (Interactive Proof of Knowledge). An interactive protocol Π = (P ,V) between
a prover P and verifier V is a proof of knowledge for a relation R with knowledge error
δ : N→ [0, 1] if the following properties hold, where on common input x and prover witness
w the output of the verifier is denoted by the random variable ⟨P(x,w),V(x)⟩:

• Perfect Completeness: for all (x,w) ∈ R

Pr [ ⟨P(x,w),V(x)⟩ = 1] = 1

• δ-Knowledge Soundness: There exists a polynomial poly(·) and a probabilistic oracle
machine E called the extractor such that given oracle access to any adversarial inter-
active prover algorithm A and any input x ∈ LR the following holds: if

P [⟨A(x),V(x)⟩ = 1] = ϵ(x)

then EA(x) with oracle access to A runs in time poly(|x|)
ϵ(x)

and outputs w such that

(x,w) ∈ R with probability at least 1− δ(|x|)
ϵ(x)

.

An interactive proof is “knowledge sound”, or simply a “proof of knowledge”, if has negligible
knowledge error δ.

12The extractor can run A for any specified number of steps, inspect the internal state of A, and even
rewind A to a previous state.
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Remark 1. Definition 7 places no restriction on the runtime of the adversary, however, it
does not guarantee extraction from an adversary that succeeds with sufficiently small ϵ(x)
such that ϵ(x) ≤ δ(|x|). For R in NP, this definition of knowledge soundness implies the
alternative formulation of Bellare and Goldreich [BG93], which says that the protocol has

knowledge error δ(|x|) if there exists an extractor that succeeds in expected time poly(|x|)
ϵ(x)−δ(|x|) .

An extractor which succeeds with probability p = 1 − δ(|x|)
ϵ(x)

in t = poly(|x|)
ϵ(x)

steps can run

repeatedly (for t steps per iteration) on fresh randomness until it obtains a witness for

the relation, which it can verify efficiently. It will succeed in an expected t
p
= poly(|x|)

ϵ(x)−δ(|x|)
steps. Finally, this has been shown to imply another equivalent formulation which requires
the extractor to run in O(poly(|x|)) steps and succeed with probability ϵ(x)−δ(|x|)

q(|x|) for some
polynomial q. It is easy to see this implies the former because such an extractor can be
repeated, succeeding in expected time q·poly(|x|)

ϵ(x)−δ(|x|) .

Interactive arguments Knowledge soundness holds against unbounded provers. The
DARK protocol does not satisfy knowledge soundness because it relies on the computational
binding property of cryptographic commitments. Interactive proofs that are only secure
against computationally bounded adversaries are called interactive arguments. Adapting
Definition 7 for arguments is more subtle than simply restricting the runtime of the adversary.
The issue comes from the fact that the knowledge soundness definition quantifies the success
of the extractor over all inputs x. For example, there could exist an input x that encodes the
factorization of an RSA modulus which allows the adversarial prover to break the binding
property of commitments that are based on the difficulty of factoring. For this input, the
adversarial prover could succeed while the extractor would fail. This particular problem is
fixed by requiring the adversary to generate the input x. If the trapdoor is exponentially
hard to compute the polynomial time adversary will not be able to embed the trapdoor in x
with non-negligible probability. (See Damg̊ard and Fujisaki [DF02] for a broader discussion
of these issues).

Witness-extended emulation A property called witness-extended emulation [Lin01]
strengthens the knowledge-soundness definition so that the extractor outputs not only a
witness but also a simulated transcript of the messages between the prover and verifier. This
property is helpful for composability. In particular, if the interactive proof is used as a sub-
protocol within a larger protocol, it may be necessary in the security analysis to construct a
simulator that needs to both obtain the adversary’s witness as well as simulate its view in the
subprotocol. Fortunately, Lindell [Lin01] proved that every knowledge sound protocol also
satisfies witness-extended emulation. Groth and Ishai [GI08] further adapt the definition of
witness-extended emulation for interactive arguments with setup (i.e., SRS model). This is
the definition we will use in the present work.

Before presenting the definition we will introduce some useful notations. In the SRS
model, there is a setup algorithm Setup that generates public parameters pp that are com-
mon inputs to the prover P and verifier V . The setup, which may or may not require a
trusted party to sample trapdoor secrets, typically generates these parameters based on a
security parameter λ necessary for computational security. Without loss of generality, the
length of pp ← Setup(λ) is at least λ bits. For any prover algorithm P∗ interacting with a
verifier algorithm V , which may deviate arbitrarily from the honest prover algorithm P , let
Record(P∗, pp, x, st) denote the message transcript between P∗ and V on shared inputs x and
pp and initial prover state st. For tr← Record(P∗, pp, x, st) let Vcheck(tr) denote the verifier’s
decision algorithm to accept or reject the transcript. Furthermore, let ERecord(P∗,pp,x,st) denote
a machine E with a transcript oracle for this interaction that can be rewound to any round
and run again on fresh verifier randomness.

Definition 8 (Witness-extended emulation [GI08, Lin01]). An interactive proof in the SRS
model Π = (Setup,P ,V) satisfies witness-extended emulation for relation R if for every
deterministic polynomial time P∗ there exists an expected polynomial time emulator E such
that for any non-uniform13 adversary A and distinguisher D that runs in time poly(λ) the

13A non-uniform adversary may run a different algorithm for each input length.
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following condition holds:

Pr

D(tr) = 1 :
pp← Setup(1λ)
(x, st)← A(pp)

tr← Record(P∗, pp, x, st)

 ≈λ

Pr

 D(tr) = 1 and
Vcheck(tr) = 1⇒ (x,w) ∈ R :

pp← Setup(1λ)
(x, st)← A(pp)

(tr, w)← ERecord(P∗,pp,x,st)(pp, x)


where X ≈λ Y denotes that |X − Y | ≤ negl(λ).

Lemma 12 (Lindell [Lin01]). Any proof of knowledge for relation R also satisfies witness-
extended emulation for R.

Lemma 13. LetR denote any NP relation. Given a commitment scheme com = (Setup,Commit,Open),
for any pp← Setup(λ) let R′(pp) denote the relation:

R′(pp) = {(x,w) : R(x,w) = 1 ∨ [w = (C, σ1, σ2) ∧ σ1 ̸= σ2 ∧ Open(pp, C, σ1) = Open(pp, C, σ2) = 1]}

Let Π(pp) denote the interactive protocol between P and V parameterized by the setup
parameter pp. If for all pp ← Setup(λ) the protocol Π(pp) is a proof of knowledge (Defi-
nition 7) for R′(pp) then the tuple (Setup,P ,V) as an interactive proof with setup satisfies
witness-extended emulation (Definition 8) for R.

Proof. By Lemma 12 a knowledge sound interactive proof for R′(pp) also satisfies witness-
extended emulation for R′(pp). It remains to show that this implies witness-extended emu-
lation for R. It suffices to show that:

Pr

 D(tr) = 1 and
Vcheck(tr) = 1⇒ (x,w) ∈ R :

pp← Setup(λ)
(x, st)← A(pp)

(tr, w)← ERecord(P∗,pp,x,st)(pp, x)

 ≈λ

Pr

 D(tr) = 1 and
Vcheck(tr)⇒ (x,w) ∈ R′(pp) :

pp← Setup(λ)
(x, st)← A(pp)

(tr, w)← ERecord(P∗,pp,x,st)(pp, x)


The difference between these two probabilities is bounded by the probability, over the

distribution on the right side of the equation, that (x,w) ∈ R′(pp) but (x,w) ̸∈ R. This
event implies that w encodes a break to the commitment scheme with parameters pp. Since
A, P ∗, Setup and E all run in time poly(λ) this occurs with probability at most negl(λ) over
randomly sampled pp← Setup(λ) by the computational binding property of the commitment
scheme. More precisely, supposing that the difference between these two probabilities is ϵ(λ),
then we can use A, P ∗, and E to construct an algorithm A′ which on input pp ← Setup(λ)
simulates (x, st)← A(pp) and (tr, w)← ERecord(P∗,pp,x,st)(pp, x) returning w such that:

Pr

[
w = (C, σ1, σ2) ∧ σ1 ̸= σ2 ∧ Vfpp(C, σ1) = Vfpp(C, σ2) = 1 :

pp← Setup(λ)
w ← A′(pp)

]
= ϵ(λ)

If ϵ(λ) is non-negligible this contradicts the binding property of the commitment scheme.

Zero knowledge We recall the definition of honest verifier zero-knowledge (HVZK) for
interactive proofs. HVZK only considers simulating the view of a verifier that follows the
protocol honestly. The Fiat-Shamir transform compiles public-coin proofs that have HVZK
into non-interactive proofs that have statistical zero-knowledge (for malicious verifiers).

Definition 9 (HVZK for interactive arguments). Let View⟨P(x,w),V(x)⟩ denote the view of the
verifier in an interactive protocol on common input x and prover witness input w. The inter-
active protocol has δ-statistical honest verifier zero-knowledge if there exists a probabilistic
polynomial time algorithm S such that for every (x,w) ∈ R, the distribution S(x) is δ-close
to View⟨P(x,w),V(x)⟩ (as distributions over the randomness of P and V).
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B Almost-Special-Soundness Theorems

Definition 10 (Almost-Special-Soundness). A µ-round public-coin interactive proof for
a relation R with challenge space of size 2λ is (k(µ), δ(·), com, ϕ)-almost-special-sound
if it satisfies the following conditions with respect to some commitment scheme com =
(Setup,Commit,Open) with message space M and opening space W , a pair of predicates
ϕ = (ϕa, ϕb) where ϕa, ϕb : [µ]×M→ {0, 1}, and a negligible function δ : N→ R:

1. The setup for the interactive proof includes generation of the public parameters for the
commitment scheme pp← com.Setup(λ).

2. In any accepting transcript, the prover’s ith round message for i ∈ [1, µ) is a valid
commitment Ci for the scheme com, and the final prover message is a commitment
Cµ together with a valid opening (mµ, oµ) such that com.Open(pp, Cµ,mµ, oµ) = 1 and
ϕa(µ,mµ) = 1.

3. There is a poly(λ) time algorithm Extract(i, ν, Cν , openSubtree) → (m, o) where i ∈
[1, µ] and openSubtree is a list of openings for the commitments on all internal nodes
(excluding the root and leaves) of a k-ary depth µ − i subtree of a transcript tree
rooted at a node ν on the ith level with commitment label Cν . If the challenge labels
on the first two children of any node in the subtree are distinct, and the openings for
all internal (non-root) nodes of the subtree satisfy predicate ϕa (i.e., for any j > i
and node u on the jth level of the transcript tree that is a member of this subtree, its
opening (mu, ou) in openSubtree satisfies ϕa(j,mu) = 1) then the algorithm returns a
valid opening (m, o) for cν such that ϕb(i,m) = 1.

4. Extract(0, x, openTree)→ w takes as inputs openings for the commitments on all nodes
in an entire transcript tree satisfying predicate ϕa (same condition as above for sub-
trees) and returns a witness w for the public input x such that R(x,w) = 1.

5. Extend(i,m, α1, .., αµ−i) is a deterministic poly(λ)-time algorithm that is given an index
i ∈ [µ − 1], a message m in the message space of the commitment scheme com, µ − i
challenges from X , and outputs µ − i messages m′1, ...,m

′
µ−i in the message space of

the commitment scheme.

6. For any i ∈ [µ − 1] and m where ϕa(i,m) = 0, the probability over αi, ..., αµ sampled
uniformly i.i.d. from X that the last message m′µ−i in the list returned by Extend(i,m)
satisfies ϕa(µ,m

′
µ−i) = 1 is bounded by δ(λ).

7. Break(i,m, α1, ..., αµ, C0, ..., Cµ, (mi, oi), ..., (mµ, oµ)) first runs Extend(i,m, αi, .., αµ), which
returns messages m′1, ...,m

′
µ−i. If either ϕb(i,mi) = 0 or ∀j m′j = mi+j−1 then it out-

puts ⊥. Otherwise it outputs an attempted opening (m′, o′) of Cj for some index j ≥ i
where m′ ̸= mj.

8. For any i ∈ [µ − 1], given a valid (accepting) transcript with commitments C =
(C0, ..., Cµ), round challenges r = (α1, ..., αµ), and openings open = ((mi, oi), ..., (mµ, oµ))
to the last µ− i+1 commitments, where ϕb(i,mi) = 1 and ϕa(j,mj) = 1 for all j ∈ [i+
1, µ], either Extend(i,mi, αi+1, ..., αµ) returns mi+1, ...,mµ or Break(i,mi, r,C,open)
returns an opening (m′, o′) of some Cj to a conflicting message m′ ̸= mj ∈ M, which
breaks the binding of the commitment scheme overM.

Short-hand notation: An interactive proof is (k(µ), δ)-almost-special-sound if it is
(k(µ), δ, com, ϕ)-almost-special-sound for some commitment scheme com and some predicate
pair ϕ. We may omit δ and simply write k(µ)-almost-special-soundness if this holds for some
negligible function δ : N→ R.

Remark 2. Any special sound protocol satisfies almost-special-soundness as 3) essentially
captures the special soundness definition. More precisely a k(µ)-special sound satisfies k(µ)-
almost-special-soundness by setting the commitment scheme to be trivial (i.e., identity func-
tion) and the ith round commitment Ci to the prover’s ith round message and setting the
predicates ϕa = 1, ϕb = 0 to be trivial as well (i.e., always return 1 and 0 respectively). The
algorithm Extend can output an arbitrary set of messages because the condition on the al-
gorithm is vacuously true as ϕa(i,m) ̸= 0 for any (i,m). The algorithm Extract(i, ν, Cν , ∗) is
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trivial because Cν is the message itself. The algorithm Break is also trivial as ϕb is always 0.
The algorithm Extract(0, x, openTree)→ w exists by the definition of k(µ)-special soundness.

Theorem 7. If a µ-round interactive proof for a relation R with λ-bit challenges, µ ∈
O(log(λ+ |x|)), and verifier decision algorithm runtime tV ∈ poly(|pp|, |x|, λ) on input x ∈ LR
and parameters pp← com.Setup(λ) is (k(µ), δ, com, ϕ)-almost-special-sound then for δ′(λ) =
2λ(k+1)µ(µ+ tV ) ·max(δ(λ), k ·2−λ)+2−λ it is δ′-knowledge sound for the modified relation:

R′(pp) = {(x,w) : R(x,w) = 1 ∨ w ∈ Lbreak(pp)}

where

Lbreak(pp) = {(C, σ1, σ2) : σ1 ̸= σ2 ∧ Open(pp, C, σ1) = Open(pp, C, σ2) = 1}

Remark 3. δ′(λ) is a negligible function if δ(λ) is negligible, assuming k ∈ O(1), µ ∈
O(log(λ+ |x|)), tV ∈ poly(|x|, λ), and |x| ∈ poly(λ).

By Lemma 13, this theorem has the following corollary:

Corollary 1. An interactive proof with λ-bit challenges that is k(µ)-almost-special-sound
for a relation R and has at most µ ∈ O(log(λ + |x|)) rounds on any instance x ∈ LR has
witness-extended emulation for R.

Proof. Suppose we have a protocol that is (k(µ), δ)-almost-special-sound with challenge space
X of size 2λ for some negligible function δ : N→ R. We will make use of algorithms Extract,
Extend, and Break and their properties that are guaranteed to exist by the definition of
almost-special-soundness (Definition 10).

For any node ν of a (k+1)-ary transcript tree let S∗ν denote the left k-ary subtree rooted
at ν defined by a breadth first search from ν that visits only the first k children of each
node reached (i.e., prunes the rightmost branch from each node of the complete (k + 1)-ary
subtree Sν).

In Definition 11, we define an algorithm TreeExtract(ℓν , ν, Cν , LSν ) that operates on a
labeled subtree of a (k + 1)-ary transcript tree that has depth µ, where ℓν is the level
of ν, Cν = L(ν)1 is the commitment label on ν and LSν is a labeling of the (k + 1)-ary
subtree Sν rooted at ν. If TreeExtract(ℓν , ν, Cν , LSν ) succeeds it returns openSubtree, which
contains openings of all the commitment labels L assigned to nodes in Sν including the
label Cν on node ν. Otherwise it returns ⊥. The TreeExtract algorithm is not guaranteed
to succeed. In particular, the internal calls to Extract are only guaranteed to succeed when
the openings of subtrees satisfy predicate ϕa and the challenge labels are distinct within the
pruned subtrees S∗ν . Definition 11 also defines TreeExtract∗(ℓν , Cν , LS∗

ν
), an algorithm that

only extracts openings of the commitments in LS∗
ν
and returns an opening of Cν . This runs

similarly to TreeExtract, but it is only a function of nodes present in the left k-ary subtree
S∗ν . While it is possible that TreeExtract fails and TreeExtract∗ succeeds, they will always
output the same opening of Cν in the event that both succeed.

Let size(k, µ) = kµ+1−1
k−1 , which is the number of nodes is a k-ary depth µ tree. Given any

µ-round protocol that satisfies (k(µ), δ)-almost-special-soundness, setting N = size(k + 1, µ)
we will define a collection of predicates {πν : ν ∈ [1, N ]} for the nodes of a k-ary transcript
tree with post-order labeling L, such that each πν is a function of the partial labeling Lν∗

and a µ − ℓν-length challenge vector r ∈ X µ−ℓν , where ℓν is the level of node ν in the tree.
Recall that ν∗ < ν is the node of highest index smaller than ν that is not a member of the
subtree of ν, and Lν∗ are the labels of all nodes numbered [1, ν∗]. Let ω denote the parent
node of ν. The predicate πν(Lν∗ , r) is defined as follows:

• If ν has no left-sibling, then πν always returns 1.

• If ν has 0 < i < k left-siblings (i.e., it is neither the first nor last child) then πν(Lν∗ , r) =
1 iff the challenge label L(ν)0 assigned to ν is distinct from the challenge labels assigned
to its i left-siblings. Note that if ν ′ is a left-sibling of ν then ν ′ ∈ [1, ν∗] so L(ν ′) is
included in the input Lν∗ to πν .

• If ν has no right-sibling (i.e., is rightmost child) then let Cω = L(ω)1 denote the commit-
ment label on ω, let (mω, oω) denote the opening of Cω returned by TreeExtract∗(ℓω, ω, Cω, LS∗

ω
)
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if successful, let m′ denote the last message in the output list of Extend(ℓω,mω, r) and
finally:

πν(Lν∗ , r) =


1 if TreeExtract∗(ℓω, ω, Cω, LS∗

ω
) = ⊥

1 if ϕa(ℓω,mω) = 1

1 if ϕa(ℓω,mω) = 0 ∧ ϕa(µ,m
′) = 0

0 otherwise

As remarked above, while TreeExtract operates on the entire (k + 1)-ary subtree of labels
rooted at ω, the algorithm TreeExtract∗ takes as input only the labeling of the right k-ary sub-
tree S∗ω and LS∗

ω
⊆ Lν∗ . By the definition of (k(µ), δ)-almost-special-soundness (Definition 10,

pt. 5), for any ν ∈ [0, N) that has no right-sibling and any Lν∗ :

Pr←Xµ−ℓν [πv(Lv∗ , r) = 1] ≥ 1− δ(λ)

If ν has 0 < i < k left-siblings then by a union bound:

Pr←Xµ−ℓν [πv(Lv∗ , r) = 1] ≥ 1− i

2λ

Let lpath(ν)0 denote the challenge labels L(·)0 along the leftmost branch from ν to a leaf
starting with the label L(ν)0 on ν. By Lemma 11 (Path Predicate Forking Lemma) there is
an algorithm TreeA(z) that, given a security parameter λ ∈ N, an input x ∈ LR, and oracle
access to an adversarial prover A that causes V to accept on input x with probability ϵ,
runs in time at most t = 2λ · (k+1)µ

ϵ
· (µ + tV ), where tV is the worst-case running time of

verifier’s decision algorithm, and returns with probability at least 1− t ·max(δ(λ), k
2λ
)− 2−λ

a (k + 1)-ary transcript tree with post-order labelling L : [1, N ] → X × M such that
πv(Lv∗ , L(lpathv)0) = 1 for all v ∈ [1, N ].

In particular, L defines a (k + 1)-ary transcript tree with the properties:

1. The challenge labels on the first k children of any node are distinct, i.e., if ω has
children ν1, ..., νk+1 ordered from left-to-right, then for any i, j ∈ [1, k] if i ̸= j then
L0(νi) ̸= L0(νj).

2. If ν is the (k + 1)th child of ω and running TreeExtract(ℓω, ω, Cω, LS∗
ω
) at level ℓω

returns an opening of Cω to mω such that ϕa(ℓω,mω) ̸= 1, then the final output of
Extend(ℓω,mω, lpath(ν)0) is a message m′ such that ϕa(µ,m

′) ̸= 1.

By Lemma 14 there is a deterministic extraction algorithm that takes any L with the
above properties and computes a witness w such that (x,w) ∈ R′.

In conclusion, for any adversarial prover that succeeds on input x with probability ϵ(x),

there is a probabilistic extractor that runs in time at most t = 2λ (k+1)µ

ϵ(x)
(µ + tV ) and with

probability at least 1 − t ·max(δ(λ), k
2λ
) − 2−λ returns a witness for R′. Since t ∈ poly(|x|,λ)

ϵ(x)

assuming µ ∈ O(log(λ+|x|)) and tV ∈ poly(|x|, λ), this satisfies the definition of δ′-knowledge
soundness with δ′(λ) = 2λ(k + 1)µ(µ + tV ) · max(δ(λ), k · 2−λ) + 2−λ, which is a negligible
function of λ as long as δ(λ) is negligible.

Definition 11 (Tree Extractor). We define an algorithm TreeExtract(k, ℓ, ν, Cν , LSν ) that
operates on a labeled subtree of a (k + 1)-ary transcript tree that has depth µ, where ℓν is
the level of ν, Cν = L(ν)1 is the commitment label on ν and LSν is a labeling of the (k+1)-ary
subtree Sν rooted at ν. If TreeExtract(ℓν , ν, Cν , LSν ) succeeds it returns openSubtree, which
contains openings of all the commitment labels L assigned to nodes in Sν including the label
Cν on node ν. Otherwise it returns ⊥. The algorithms runs as follows:

• For all leaf nodes ν, return the opening of Cν , which is included in the label on ν.

• For each node ω ∈ Sν on the second to last level with label Cω = L(ω)1, set openLeaves
to include the first k opened leaves of ω, and run Extract(µ − 1, ω, Cω, openLeaves) to
get an opening of Cω.
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• Continue iteratively: once openings for all commitment labels of all subtrees rooted
at the ith level have been computed, for each node ω on the (i + 1)st level with
label Cω = L(ω)1 run Extract(i, ω, Cω, openSubtree∗ω) on the commitment label openings
openSubtree∗ω of the left k-ary subtree S∗ω (excluding node ω), which were computed in
prior iterations.

Finally, TreeExtract∗(ℓν , Cν , LS∗
ν
) denotes the algorithm that only extracts openings of the

commitments in LS∗
ν
and returns an opening of Cν . This runs exactly like TreeExtract except

that it only iterates over nodes that are present in the left k-ary subtree S∗ν .

The TreeExtract algorithm is not guaranteed to succeed. In particular, the internal calls
to Extract are only guaranteed to succeed when the openings of subtrees satisfy predicate ϕa

and the challenge labels are distinct within the pruned subtrees S∗ν . By convention, if any
internal step fails then TreeExtract outputs ⊥. While it is possible that TreeExtract fails and
TreeExtract∗ succeeds, it is easy to see that they output the same opening of Cν assuming
both succeed. Furthermore, while TreeExtract operates on (k + 1)-ary transcript tree, the
internal calls to Extract run on k-ary transcript trees because it is defined for a protocol
that is (k(µ), δ)-almost-special-sound. The reason we always pass the labeling/opening of
the left k-ary subtree (as opposed to an arbitrary k-ary subtree) to Extract is to ensure that
the opening of Cν included in the output of TreeExtract(ℓν , Cν , LSν ) is a function of only the
labels on the left k-ary subtree S∗ν , and in particular is computed independently from any
of the labels in the (rightmost) subtree rooted at the (k + 1)th (rightmost) child of ν. This
fact is used in the proof of Theorem 7.

Definition 12 (Predicate Special Soundness). Let ρ denote any binary predicate that takes
as input any k-ary µ-depth transcript tree. A µ-round public coin interactive proof for a
relation R with λ-bit challenges is (k(µ), ρ)-special sound if there exists a deterministic
extraction algorithm E that takes as input an instance x ∈ LR, any k-ary forking transcript
tree rooted at x with labelling L such that ρ(L) = 1, and returns a witness w such that
(x,w) ∈ R in time poly(λ, kµ).

Setting ρ = 1, i.e. the trivial predicate that is always true, recovers the standard definition
of k(µ)-special soundness. Recall that we defined a forking transcript tree (Section A.3) as
a transcript tree in which the challenge labels on edges that share the same parent node are
distinct.14

Lemma 14. Let Π(pp) denote a (k(µ), δ, com, ϕ)-almost-special-sound protocol for a relation
R and any δ ∈ [0, 1], parametrized by pp← com.Setup(λ). Define the binary predicate ρ as
a function of a (k + 1)-ary µ-depth forking transcript tree given by labelling L, which uses
the algorithms TreeExtract from Definition 11 and Extend from Definition 10 and returns 1
iff the following condition holds:

For any node ω with (k+1)st child ν, if the result of running TreeExtract(ℓω, ω, Cω, LS∗
ω
)

at level ℓω returns an opening of Cω to mω such that ϕa(ℓω,mω) ̸= 1, then the
final output of Extend(ℓω,mω, lpath(ν)0) is a message m′ such that ϕa(µ,m

′) ̸= 1.

Π(pp) is ((k + 1)(µ), ρ)-special sound for the relation R′(pp) defined in Theorem 7.

Remark 4. The value of δ does not affect ((k + 1)µ, ρ)-special soundness. The value of
δ affects the runtime of the extraction algorithm that is able to generate a transcript tree
satisfying the predicate ρ (in Theorem 7).

Proof. We will argue that, assuming the (k+1)-ary forking transcript tree has property ρ, for
any ω ∈ [1, N ], either TreeExtract(ℓω, ω, Cω, LSω) returns a subtree openSubtree of openings
of the commitment labels in LSω satisfying ϕa (i.e., each opening of a label Cω to mω for a
node ω on level ℓω satisfies ϕa(ℓω,mω) = 1) or else there is an efficient algorithm that uses
openSubtree and L to break the commitment scheme.

14We could have defined predicate special soundness in an even more general way such that the forking
property of the tree is not required, yet can be encapsulated in the predicate. However, this would not be
useful for our present work and less convenient for notational purposes.
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Step 1: Suppose that ω is a node of highest level ℓω for which this fails, i.e. the output of
TreeExtract satisfies ϕa for any node of higher level than ℓω. This means that all the openings
of internal (non-root) nodes of the subtree LSω computed while running TreeExtract on ω
satisfy ϕa. Furthermore, L has the property that all labels on the first k siblings are distinct.

Step 2: By the definition of almost-special-soundness and the hypothesis in Step 1, the al-
gorithm TreeExtract(ℓω, ω, Cω, LSω) succeeds in returning openSubtree consisting of the open-
ings of LSω such that the openings of all internal (non-root) nodes satisfy ϕa, and the opening
(mω, oω) of the subtree root ω satisfies ϕb(ℓω,mω) = 1. The opening (mω, oω) is also identical
to the output of TreeExtract∗(ℓω, ω, Cω, LS∗

ω
).

Step 3: Let ν denote the rightmost child of ω. By hypothesis, if ϕa(ℓω,mω) = 0 then the
final output of Extend(ℓω,mω, lpath(ν)) is a message m′ such that ϕa(µ,m

′) = 0. However,
this implies thatm′ must be distinct from the label L assigns to the leaf node of the rightmost
branch extending from ν. Let v1, ..., vµ denote the nodes along the root-to-leaf path passing
through node ω and ending with its leftmost branch so that lpath(ν) = (L(vℓν )0, ..., L(vµ)0).

For each i ∈ [1, µ] let Ĉi = L(vi)1 and Ĉ = (Ĉ1, ..., Ĉµ). Finally, since ϕb(ℓω,mω) = 1 and

openSubtree contains openings (mℓν , oℓν ), ...(mµ, oµ) of the commitments Ĉℓν , ...Ĉµ that all
satisfy predicate ϕa(i,mi) = 1, if m′ ̸= mµ then by the definition of almost-special-soundness

this implies that Break(ℓω,mω, rpath(ν), Ĉ, (mℓν , oℓν ), ...(mµ, oµ)) outputs a conflicting open-

ing of some commitment label in Ĉ.
Let C1 = L(1)1, the transcript tree root. The extractor runs TreeExtract(0, 1, C1, LS1),

which returns openTree. If every opening in openTree satisfies predicate ϕa then it runs
Extract(0, x, openTree) to obtain witness w satisfying R(x,w) = 1. Otherwise, it uses the
Break algorithm (as described in the previous step) to output conflicting openings of a
commitment, which is a witness for R′(pp).

C DARK is Almost-Special-Sound

C.1 Correctness

Lemma 5. The polynomial commitment scheme is correct for µ-linear polynomials in Zp[X].

Proof. In order to ensure correctness we must ensure that b < q/2 and that |f | ≤ b. To
show this we show that in each recursion step the honest prover’s witness polynomial has
coefficients bounded by b and is µ-linear. We argue inductively that for each recursive call
of EvalB the following constraints on the inputs are satisfied: f(X1 . . . , Xµ) is µ-linear. C
encodes the polynomial, i.e., C = Gf(q⃗) and f(X) ∈ Z(b). Also f(z1, . . . , zµ) = y mod p.

Initially, during the execution of Eval, the prover maps the coefficients of a polynomial
f̃(X1, . . . , Xµ) ∈ Zp to a µ-linear integer polynomial f(X1, . . . , Xµ) with coefficients in Z(p−
1) such that C = Gf(q⃗). Additionally f(z1, . . . , zµ) mod p = f̃(z1, . . . , zµ) = y.

If f is µ-linear then in round i of the protocol the P can compute i−1 linear polynomials
fL and fR such that fL(X1, . . . , Xi−1) +XifR(X1, . . . , Xi−1) = f(X1, . . . , Xi). Consequently
f(z1, . . . , zi) mod p = fL(z1, . . . , zi−1)+zifR(z1, . . . , zi−1) mod p = yL+ziyR mod p = y. The

PoE protocol has perfect correctness so GfL(q)+q
d+1
2 fR(X) = C. Finally f ′ = fL+α·fR ∈ Z(2λ·b)

is an i−1-linear polynomial with coefficients bounded in absolute value by (2λ−1)·b+b = 2λb,
as α ∈ [0, 2λ). This is precisely the value of b′ the input to the next call of EvalB. The value
y′ is also correct: f ′(z1, . . . , zi−1) mod p = fL(z1, . . . , zi−1) + α · fR(z1, . . . , zi−1) mod p =
yL + α · yR mod p = y′

In the final round, the prover sends f , and the verifier checks that |f | < b which is true
by construction.

C.2 Soundness

Security of PoE substitutions We first begin by showing that we can safely replace all
of the PoE evaluations with direct verification checks. Concretely, under the Adaptive Root
Assumption, the Eval protocol is as secure as the protocol Eval′ in which all PoEs are replaced
by direct checks. We show that the witness-extended emulation for Eval′ implies the same
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property for Eval. This is useful because we will later show how to can build an extractor for
Eval′, thereby showing that the same witness-extended emulation property extends to Eval.

Lemma 5. Let Eval′ be the protocol that is identical to Eval but in line 15 of EvalB V directly
checks CL + q(2

µ−1) · CR = C instead of using a PoE. If the Adaptive Root Assumption holds
for GGen, and Eval′ has witness-extended emulation for O(log(λ))-linear polynomials, then
so does Eval.

Proof. We show that if an extractor E ′, as defined in Definition 8, exists for the protocol Eval′

then we can construct an extractor E for the protocol Eval. Specifically, E simulates E ′ and
presents it with a Record′(· · · ) oracle, while extracting the witness from its own Record(· · · )
oracle.

Whenever E ′ queries the Record′ oracle, E queries its Record oracle and relays the response
after dropping those portions of the transcript that correspond to the PoE proofs. Whenever
E ′ rewinds its prover, so does E rewind its prover. When E ′ terminates by outputting a
transcript-and-witness pair (tr′, f), E adds PoEs into this transcript to obtain tr and outputs
(tr, f).

For each PPT adversary (A, P ∗), E will receive a polynomial number of transcripts from
its Record oracle. Any transcript tr of Eval such that A(tr) = 1 and tr is accepting contains
exactly µ PoEs transcripts. So in total E sees only a polynomial number of PoE transcripts
generated by a probabilistic polynomial-time prover and verifier. By Lemma 3 under the
Adaptive Root Assumption, the probability that a polynomial time adversary can break the
soundness of PoE, i.e., convince a verifier on an instance (CR,C − CL, q

(2µ−1)) ̸∈ RPoE, is
negligible. Consequently, the probability that the adversary can break PoE on any of the
polynomial number of executions of PoE is still negligible.

This means that with overwhelming probability all transcripts are equivalent to having
the verifier directly check (CR,C−CL, q

(2µ−1)) ∈ RPoE. By assumption, the witness-candidate
f that E ′ outputs is a valid witness if the transcript tr′ that E ′ also outputs is accepting.
The addition of honest PoE transcripts to tr′ preserves the transcript’s validity. So tr is an
accepting transcript for Eval if and only if tr′ is an accepting transcript for Eval′. Therefore,
E ′ outputs a valid witness f(X) whenever E outputs a valid witness. This suffices to show
that Eval has witness-extended emulation if Eval′ has, and if the Adaptive Root Assumption
holds for GGen.

Theorem 1. Let CSZµ,λ = 8µ2 + log2(2µ)λ. Let EBLµ,λ = λ · µ and CBp,µ,λ = λ · µ+ log2 p.
Let com be the DARK commitment scheme as described in Lemma 10. There exists a pair of
predicates ϕ such that the µ-round DARK polynomial commitment evaluation protocol Eval′

with λ-bit challenges, a group of unknown order GGen, and log q ≥ 4(λ + 1 + CSZµ,λ) +
EBLµ,λ + CBp,µ,λ + 1 is (2(µ), 3µ

2λ
, com, ϕ)-almost-special-sound .15

As a corollary, under the adaptive root assumption for GGen, the DARK polynomial com-
mitment scheme with the same parameters has witness-extended-emulation (Definition 8).

Remark 5. CSZµ,λ is derived from the Multilinear Composite Schwartz Zippel Lemma
(lemma 7). EBLµ,λ is derived from the Evaluation Bound Lemma (lemma 6) and CB refers
to the final round check bound in the DARK protocol. We can also substitute any value for
CSZµ,λ using the table of concrete bounds in Lemma 8 for fixed 120-bit security in place of
the analytical bound from Lemma 7).

Proof. For any βn, βd ∈ R, letM(βn, βd) = {f/N ∈ Q[X] : gcd(f,N) = 1, ||f ||∞ ≤ βn, |N | ≤
βd}. In the relation R(x,w) for the DARK evaluation protocol, the input x = (C, z⃗ =
(z1, . . . , zµ), y) consists of a DARK commitment C, an evaluation point z⃗ ∈ Zµ and a claimed
evaluation y ∈ Z, while the witness w is an opening of C to a rational µ-linear polynomial
h such that h(z⃗) = y mod p. For any parameters βn, βd such that βn · βd ≤ q

2
this is binding

to rational polynomials inM(βn, βd). Setup parameters include p and q.
For reasons that will become clear we will set:

log q = 4(λ+ 1 + CSZµ,λ) + EBLµ,λ + CBp,µ,λ + 1

log2 βn =
1

2
(EBLµ,λ + CBp,µ,λ + log2 q − 1) log2 βd =

1

2
(log2 q − 1− EBLµ,λ − CBp,µ,λ)

15The CSZµ,λ value can be replaced with values from the table in Lemma 8

48



13 (root):
C (input),CL,CR : CL + q2 · CR = C

f̂L, f̂R, NL, NR : f̂/N = f̂L/NL +X2f̂R/NR

f̂L(q) · G = NL · CL, f̂R(q) · G = NR · CR

ϕa(f̂ , N, α
(12)
3 , α

(11)
3 ) = 1

4:

CL,CR,C : C = C
(13)
L + α1C

(13)
R

f̂ , N : f̂(q)G = N · C

1:
C ∈ G

f̂ ∈ Z, f̂ < CBp,µ,λ2 :

f̂ · G = C

2:
C ∈ G
f̂ ∈ Z

3:
C ∈ G
f̂ ∈ Z

8:
C ∈ G

f̂ ∈ Z[X], N ∈ Z

5:
C ∈ G
f̂ ∈ Z

6:
C ∈ G
f̂ ∈ Z

7:
C ∈ G

f̂ ∈ Z[X]

12:
C ∈ G
f̂ , N

9:
C ∈ G
f̂ ∈ Z

10:
C ∈ G
f̂ ∈ Z

11:
C ∈ G
f̂ ∈ Z

α1

α 1

α
2

α
3

α
2

α 1 α
2

α
3

α (12)
3

α 1

α
2

α (11)3

Level 0

Level 1

Level 2

Figure 2: Extraction tree for DARK with µ = 2. The green nodes are the instances for each
node and the red nodes are the computed witnesses. The extraction procedure uses the first
two children of every node to compute a witness. The predicate ϕa is defined and holds for
the rightmost path extending from any node (e.g. for the root the path through nodes 12
and 11). The labeling is incomplete for space reasons but the leftmost path (13,4,1) is fully
labeled. The node ids are in post-order and indicate the extraction order.

so that log2(βn · βd) = log2 q − 1 as desired.

We begin by defining com = (Setup,Commit,Open) and predicates ϕa and ϕb for DARK
special-soundness (Definition 10).

• The commitment setup com.Setup(λ, βn, βd) runs the setup procedure for the DARK
commitment scheme, which samples a group G ← GGen(λ), a generator G ← G, sets
q = 2βnβd, and returns pp = (G,G, q).

• The commitments of com are pairs C = ((CL, yL), (CR, yR) where CL, CR are DARK
commitments and yL, yR ∈ Q. Recall that (f,N) ∈ Z[X1, . . . , Xµ]×Z is an opening of
a DARK commitment C to the µ-linear rational polynomial h = f/N provided that
f(q, . . . , qµ−1) · G = N · C, where q is a parameter of the DARK commitment scheme.
This is binding to rational polynomials in the setM(βn, βd).

We define a valid opening of C = ((CL, yL), (CR, yR)) to a rational µ-linear polynomial
h ∈ Q[X1, . . . , Xµ] as a pair (f,N) ∈ Z[X1, . . . , Xµ] × Z where f = fL + XµfR for
fL, fR ∈ Z[X1, . . . , Xµ−1] such that (fL, N) and (fR, N) are valid openings of the
DARK commitments CL and CR respectively, provided that N · h = f , fL(z⃗) = N ·
yL mod p, fR(z⃗) = N · yR mod p. This also implies that (f,N) is a valid opening
of the homomorphically derived DARK commitment C = CL + q2

µ−1
CR to h and

h(z1, . . . , zµ) = yL + zµyR mod p, i.e. N · C = f(q, . . . , q2
µ−1

) · G and h ∈M(βn, βd).

Additionally, a rational number is also considered a valid (trivial) commitment to itself.
In the DARK protocol the prover’s messages are commitments of the first kind for all
but its last message, which is a single integer.

• We define the numerator bounds B0 ≥ · · · ≥ Bµ ∈ N and denominator bounds D0 ≥
· · · ≥ Dµ such that logBµ = CBp,µ,λ is the verification bound on the prover’s final
integer message in the DARK protocol, Dµ = 1 (i.e., prover’s final message is an
integer), logDi = CSZµ−i,λ and logBi = CSZµ−i,λ + EBLµ−i,λ + CBp,µ,λ.

For i ∈ [µ− 1] and any h ∈ Q[X1, . . . , Xµ−i], we define ϕa(i, h) = 1 if and only if h is
µ− i linear and h ∈M(Bi, Di). In particular, ϕa(µ, h) = 1 iff h ∈ Z and |h| ≤ Bµ.
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• For i ∈ [µ − 1] and an opening h ∈ Q[X1, . . . Xµ−i] define ϕb(i, h) = 1 if and only if h
is µ− i linear and h ∈M(2λ+1BiDi, 2

λ+1D2
i ).

By setting q sufficiently large so that log q ≥ 4(λ+1+CSZµ,λ)+EBLµ,λ+CBp,µ,λ+1, for any
i ∈ [µ], ϕb(i, h) = 1 implies that 2λ+1 · h ∈ M(βn, βd). To see this, the log of the numerator
bound on 2λ+1h is:

2(λ+1)+log(B0D0) = 2(λ+CSZµ,λ+1)+EBLµ,λ+CBp,µ,λ ≤
1

2
(log q−1+EBLµ,λ+CBp,µ,λ) = log βn

And the log of the denominator bound on 2λ+1h is:

2(λ+ 1 + CSZµ,λ) ≤
1

2
(log q − 1− EBLµ,λ − CBp,µ,λ) = log βd

Next, we define the algorithms Extract and Extend.

• Extract(i, ν, Cν , openSubtree) for i < µ operates as follows. Let Cν = (CL, CR). The
node ν has two children. Let α1 denote the label on the edge to the first child and α2 the
label on the edge to the second child. For j ∈ {1, 2}, let Cj = ((Cj,L, yj,L), (Cj,R, yj,R))
denote the commitment label of the ith child with openings (fj, Nj) to hj = fj/Nj

where for i < µ − 1 fj = fj,L + Xµ−i−1fj,R, and hj(z) = yj,L + zµ−i−1 · yj,R mod p.
Set N = (α2 − α1)N1N2, fL = α2N2f1 − α1N1f2, and fR = N1f2 − N2f1. Set f =
fL +Xµ−i · fR. Return (f,N) as the opening for Cν to h = f/N .

• Extract(0, (C, z, y), openTree) simply returns the opening (f,N) for the root level
commitment ((CL, yL), (CR, yR)) to h = f/N , which satisfies N · C = f(q) · G and
h(z) = y, since in a valid transcript tree C = CL + q2

µ−1
CR and yL + zµ · yR = y.

Furthermore, if ϕa(0, h) = 1 then h ∈ M(B0, D0) ⊂M(βn, βd), and hence w = (f,N)
is a witness for x = (C, z, y) such that R(x,w) = 1.

• Extend(i, h, αi+1, ..., αµ) on h ∈ Q[X1, . . . , Xµ−i] returns ⊥ if h is not µ− i linear, and
otherwise sets hi := h and runs the following iterative algorithm: for j = i to µ− 1 set
hj+1 := hj,L+αj+1 ·hj,R where, treating each hj as a µ− j linear polynomial (padding
with zero coefficients), hj,L and hj,R are each µ− j − 1 linear consisting of the left/right
coefficients (i.e. the constant and linear part of Xµ−j) of hj, i.e. hj = hj,L+Xµ−j ·hj,R;
return hi, ..., hµ.

Notes: The runtime is O(λ · 2µ−i).
If hi = hi,L + Xµ−i · hi,R ∈ Z[X1, . . . , Xµ−i] is the prover’s committed polynomial in
the ith round of the (honest) interactive DARK protocol and αi+1, ..., αµ are the last
µ − i round challenges then hµ is the last prover’s message sent to the verifier in the
interactive DARK protocol. Then hµ = hi(αµ, . . . , αi+1)

• Break(i, h, α1, ..., αµ, C0, ..., Cµ, (fi, Ni), ..., (fµ, Nµ))
16 first runs Extend(i, h, αi, .., αµ), which

returns rational polynomials h′i+1, ..., h
′
µ. If ∀j≥i h′j = fj/Nj then it outputs ⊥.

Otherwise, let j ∈ [i, µ) be the first index where h′j+1 ̸= fj+1/Nj+1 and output
(Nj, fj,L+αj+1·fj,R), where fj,L and fj,R are the left/right halves of fj, as the attempted
opening for Cj+1.

Subclaim 1. For i ∈ [µ− 1], if all openings of commitments on children of ν in openSubtree
satisfy ϕa(i+1, ∗) = 1 then the tuple (fL, fR, N) returned by Extract(i, ν, Cν , openSubtree) is
a valid opening for Cν to a rational polynomial h that satisfies ϕb(i, h) = 1

Proof. We will show why this is a correct opening for Cν and bound its norm. Based on the
properties of a valid transcript tree, ∀j∈{1,2}CL +αjCR = Cj,L + q2

µ−i−2
Cj,R and yL +αjyR =

yj,L + zµ−i12yj,R. Furthermore, ∀j∈{1,2}Nj · (CL + αjCR) = fj(q) and hj(z) = N−1j fj(z) =
yL + αjyR mod p by the assumption that (fj, Nj) are valid openings to the two children
commitments Cj. Let Lq(·) : Z[X]2 → Z2 denote the linear operator corresponding to

16For simplicity, we omit the messages hi = fi/Ni from the inputs because it can be computed from the
opening (fi, Ni).
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component-wise evaluation of each polynomial at q⃗. Using linear algebra, the following
holds true if α1 ̸= α2: [

N1 0
0 N2

] [
1 α1

1 α2

] [
CL

CR

]
= Lq

([
f1
f2

])
· G

⇓

(α2 − α1)N1N2

[
CL

CR

]
= Lq

([
α2N2 −α2N1

−N2 N1

] [
f1
f2

])
· G

and [
N1 0
0 N2

] [
1 α1

1 α2

] [
yL
yR

]
= Lz

([
f1
f2

])
mod p

⇓

(α2 − α1)N1N2

[
yL
yR

]
= Lz

([
α2N2 −α2N1

−N2 N1

] [
f1
f2

])
mod p

This shows that N · CL = fL(q) · G, N · CR = fR(q⃗) · G, N · yL = fL(z⃗) mod p, and
N · yR = fR(z⃗) mod p. Furthermore, if f1 and f2 are µ− i linear, then so are fL and fR.

If ∀j||fj||∞ ≤ Bi and ∀j|Nj| ≤ Bi, then |N | ≤ 2λ+1D2
i and ||f ||∞ ≤ 2λ+1BiDi. Thus, if

the openings of the children at level i + 1 satisfy ϕa(i + 1, fj/Nj) = 1 for j ∈ {1, 2}, then
ϕb(i, f/N) = 1.

Subclaim 2 (Key *New* Subclaim). For any i ∈ [µ] and h ∈ Q[X1, . . . , Xµ−i], if ϕa(i, h) = 0
then the probability over uniform i.i.d. αi+1, ..., αµ that hµ returned by Extend(i, h, αi+1, ..., αµ)

satisfies ϕa(µ, hµ) = 1 is at most 3(µ−i)
2λ

.

Let f/N = h for gcd(f,N) = 1 denote the reduced form of h ∈ Q[X1, . . . , Xµ−i]. If
ϕa(i, h) = 0 then either N > Di or ||f ||∞ > Bi while ϕa(µ, hµ) = 1 implies hµ ∈ Z and
|hµ| ≤ Bµ.

Let µ′ = µ− i. Observe that hµ = 1
N
· f(αµ, ..., αi+1).

Case 1 N > Di:
If |N | > Di then since logDi = CSZµ−i, the probability that hµ ∈ Z is:

P(αi+1,...,αµ)←[0,2λ)µ−i [f(αµ, ..., αi+1) ≡ 0 mod N ] ≤ µ− i+ 1

2λ

by the Multilinear Composite Schwartz-Zippel Lemma (Lemma 7).

Case 2 N ≤ Di ∧ ||f ||∞ > Bi:
In this case if |hµ| ≤ Bµ then |f(αµ, ..., αi+1)| ≤ N · Bµ ≤ CSZµ−i,λ · Bµ. Furthermore,

the fact that ||f ||∞ > Bi and logBi = CSZµ−i,λ + EBLµ−i,λ + logBµ imply:

log(CSZµ−i,λ ·Bµ) ≤ logBi − EBLµ−i,λ < log ||f ||∞ − EBLµ−i,λ

Hence by the Evaluation Bound Lemma (Lemma 6):

P[hµ ≤ Bµ] ≤ P[|f(αµ, ..., αi+1)| ≤ Di·Bµ] ≤ P[|f(αµ, ..., αi+1)| ≤
1

2EBLµ−i,λ
·||f ||∞] ≤

3(µ− i)

2λ

Together these imply that if f is µ−i linear but ϕa(i, f/N) = 0 then, since either |N | > Bi

or ||f ||∞ > Bi, the probability over the random challenges that the final element hµ of the
list returned by Extend satisfies ϕa(µ, hµ) = 1 is negligible.

Subclaim 3. For any i ∈ [µ − 1], given a valid (accepting) transcript with commitments
(C0, ..., Cµ), round challenges (α1, ..., αµ), and openings (oi, ..., oµ) of the last µ−i+1 commit-
ments to rational polynomials (hi, , ..., hµ), where ϕb(i, hi) = 1 and ϕa(j, hj) = 1 for all j ∈ [i+
1, µ], then either Extend(i, hi, αi+1, ..., αµ) returns hi+1, ..., hµ or Break(i, hi, (hi, oi), ..., (hµ, oµ))
returns for some j ≥ i a valid opening of Cj to h′j ̸= hj.

Proof. Let (h′i+1, ..., h
′
µ) denote the output of Extend(i, hi, αi+1, ..., αµ) and suppose it is not

equal to (hi+1, ..., hµ). Let j ∈ [i, µ) denote the first index for which hj+1 ̸= h′j+1. This
means that hj = h′j and thus h′j+1 = hj,L + αj+1 · hj,R where hj,L and hj,R are the left/right
halves of hj. Additionally, ϕb(j, hj) = 1 implies h′j+1 ∈M(22λ+2BjDj, 2

λ+1B2
j ) ⊆M(βn, βd).
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(Note that for j ≥ i+ 1, the condition ϕa(j, hj) = 1 also implies ϕb(j, hj) = 1).
Let Cj+1 = ((Cj+1,L, yj+1,L), (Cj+1,R, yj+1,R)) and Cj = ((Cj,L, yj,L), (Cj,R, yj,R)). Let oj =

(fj, Nj) denote the opening of Cj to hj =
fj
Nj

where fj = fj,L + Xµ−jfj,R. Validity of the

opening implies Nj · Cj,L = fj,L(q) · G and Nj · Cj,R = fj,R(q) · G. Furthermore, in a valid
transcript:

Cj+1 = Cj,L + αj+1 · Cj,R = Cj+1,L + q2
µ−j

Cj+1,R

Thus, (Nj, fj,L+αj+1 · fj,R) is a valid opening of Cj+1 to h′j+1 as Nj ·Cj+1 = (fj,L(q)+αj+1 ·
fj,R(q)) · G.

Witness-extended emulation By corollary 1 and if the DARK commitment is binding
then this shows that Eval′ has witness extended emulation for the relation REval(pp) for
polynomials in Fp. The binding property of DARK depends on the random order assump-
tion which is implied by the adaptive root assumption (Lemmas 2 and 10). Further by
Lemma 5 this implies that Eval has witness-extended emulation for the same relation under
the adaptive root assumption.

D Fiat-Shamir Transform of Almost-Special-Sound Pro-

tocols

Recently, [Wik21, AFK21] showed that for µ-round special sound protocols the non-interactive
Fiat-Shamir transform of these protocols only suffers a security loss that is linear in the num-
ber of queries the adversary makes to the random oracle. These proofs do not directly apply
to almost-special-sound protocols. In particular, in a non-interactive protocol, we cannot
guarantee that the challenges on lpath(ν) are mutually independent. An adversary might
grind each challenge and pick one depending on the previous challenges. Concretely, for
DARK the composite Schwartz-Zippel lemma analyzes the probability that f(x1, . . . , xµ) ≡
0 mod N for independently sampled x1, . . . , xµ. If the adversary, can grind challenges, i.e.
try different challenges per prover message, then it can for each challenge xi ensure that

f(x1, . . . , xi, Xi+1, . . . , Xµ) ≡ 0 mod Ni where Ni is a factor of N of size roughly N
1
µ . The

proof of theorem 1 relies on the fact that P(αi+1,...,αµ)←[0,2λ)µ−i [g(αi+1, ..., αµ) ≡ 0 mod N ] = δ
is negligible for sufficiently large N . Analyzing a grinding adversary of the non-interactive
protocol that makes at most T queries to the random oracle corresponds to analyzing the
probability that for any set of T values PS={αi,j}i∈[µ],j∈[T ])←[0,2λ)µ·T∃(j1, . . . , jµ) s.t. [g(α1,j1 , ..., αµ,jµ) ≡
0 mod N ] which using a union bound is less than T µ · δ.

However, what if it is impossible for the adversary to actually grind the prover message.
We know that in almost-special-sound protocols the prover message is a commitment. If that
commitment is unique, i.e. for a given opening there exists only one possible commitment,
then a grinding adversary couldn’t choose a different commitment. We capture this notion
formally and show that even if the commitment is only computationally unique the Fiat-
Shamir transform of these almost-special-sound protocols is secure. The DARK protocol
has precisely this property.

Definition 13 (Random Oracle). In our version of the random oracle model, all random
oracle algorithms have black-box access to a shared random function H :M≤u → X where
M≤u consists of all vectors (m1, ...,mi) ∈ Mi for each i ≤ u. H assigns to each of the
|M|u+1−1
|M|−1 unique elements ofM≤u an output independently and uniformly distributed in X .

Random oracles may be assigned indices from a set I, where for any distinct i, j ∈ I the
oracles Hi and Hj are independently distributed random functions. For any k < u and
fixed m = (m1, ...,mk) we will use the notation Hm :M≤u−k → X where Hm(m′1, ...,m

′
i) =

H(m,m′1, ...,m
′
i) for any i ≤ u− k. This is equivalent to a random oracle family indexed by

Mk.

A Q-query random oracle algorithm is an algorithm that makes at most Q queries to the
random oracle.

Definition 14 (Non-interactive Proof of Knowledge in RO). An non-interactive protocol
Π = (P ,V) between a prover P and verifier V in the random oracle model (i.e., with shared
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oracle access to the random function H) is a proof of knowledge for a relation R with
knowledge error δ : N2 → [0, 1] if the following properties hold:

• Perfect Completeness: for all (x,w) ∈ R

P
[
VH(x, π) = 1 : π ← PH(x,w)

]
= 1

• δ-Knowledge Soundness: There exists a polynomial poly(·) and a probabilistic oracle
machine E called the extractor such that given oracle access to any Q-query random
oracle algorithm A and any input x ∈ LR the following holds17: if

P
[
VH(x, π) = 1 : π ← AH(x)

]
= ϵ(x)

then EA(x) outputs w such that (x,w) ∈ R in an expected poly(|x|)
ϵ(x)−δ(|x|,Q)

number of steps.

In the course of running with black-box access to A, EA(x) implements the random
oracle for A, i.e. it intercepts all queries that A makes toH and simulates the response.

Π is called “knowledge sound” or a “proof of knowledge” for R if for all Q polynomial in |x|
the knowledge error δ(|x|, Q) is a negligible function of |x|.

Definition 15 (Non-interactive argument of knowledge in SRS/RO). A non-interactive
proof system Π = (Setup,PH,VH) with setup procedure pp ← Setup(λ) in the random
oracle model, where PH and VH are given shared access to both the random oracle H
and the parameters pp (where |pp| ≥ λ), is an argument of knowledge for relation R with
knowledge error err : N2 → [0, 1] if there exists a polynomial time extractor E such that for
any non-uniform polynomial time adversary A and deterministic Q-query polynomial time
prover P ∗ the following holds:18

P

 (x,w) ∈ R and
VH(pp, x, π) = 1

:

pp← Setup(λ)
(x, st)← A(pp)
π ← P ∗(st)

w ← EP ∗(st)(pp, x)

 ≥ P

 VH(pp, x, π) = 1 :
pp← Setup(λ)
(x, st)← A(pp)
π ← P ∗(st)

−err(λ,Q)

Definition 16 (FS Transform). For any µ-round public-coin interactive proof Π the FS
transform ΠHFS of Π with respect to the random oracle H is a non-interactive proof in
the random oracle model which on public input x simulates the interactive protocol Π by
replacing each ith round public-coin challenge, for i ∈ [1, µ], with H(x,m1, ...,mi), where
m1, ...,mi denote the first i prover messages.

Lemma 5 (FS for special-sound multiround protocols [AFK21, Wik21]). For any µ-round
interactive proof Π = (P ,V) for relation R and its FS transform ΠFS = (PH,VH) with
random oracle H, there exists a random oracle algorithm Tree which given black-box access
to any Q-query deterministic prover algorithm P∗, input x ∈ LR, and k ∈ N makes at
most Q+ µ queries to H and returns a k-ary forking transcript tree for Π in expected time
kµ+Q · (kµ−1) and succeeds with probability ϵ(x)−(Q+1)·κ

(1−κ) where κ = 1− (1− k−1
2λ

)µ and ϵ(x)

is the probability (over H) that P∗ outputs a non-interactive proof for x that VH accepts.
Moreover, the transcript tree satisfies additional properties:

• Every root-to-leaf labelled path (i.e., transcript included in the tree) matches the out-
put of P∗H′

(x) with a partially fresh random oracle H′, and thus has the format of a
valid ΠFS proof with respect to H′.

17The algorithm A may explicitly hardcode a witness or may not have one, so no witness is given to A as
input.

18This definition says that there is overwhelming intersection between the event where the adversary gen-
erates an input x and corresponding proof π that convinces the verifier, and the event where the extractor
succeeds in obtaining a witness from the input x generated by the adversary. This not only ensures that
extraction succeeds with close to the same probability of the adversary’s success over randomly sampled
parameters, but also excludes the pathological case that both the adversary and extractor succeed with
noticeable probability on disjoint sets of inputs. This definition is also equivalent to fixing the transcript
distinguisher in the definition of witness-extended emulation (Definition 8) to be the verifier decision algo-
rithm. In WEE the transcript distinguisher could be arbitrary, which is a stronger property important for
simulation analysis.
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• For any node ν, the labels LSν on the subtree Sν are generated by a (Q + µ)-query
random oracle algorithm independently from all labels Lν∗ , i.e. labels computed on
lower indexed nodes that do not belong to Sν . In particular, if ν is the kth child of ω
then LSν is independent of the labels on the (k − 1)-ary left subtree of ω.

Lemma 5 immediately implies that the FS transform of any k(µ)-special sound protocol
for R is knowledge sound in the RO model. However, we need to work a bit harder to
apply this lemma to almost-special-sound protocols. We will only be able to show compu-
tational knowledge soundness for protocols that are almost-special-sound with respect to a
computationally-unique commitment scheme. The DARK proof system has this property.

Definition 17 (RO relation hardness). LetRH(pp) denote a family of relations parametrized
by a random oracle H and setup pp ← Setup(λ) with security parameter λ where |pp| ≥ λ.
RH(pp) is (Q, ϵ(λ))-hard in the RO model if for any pair of polynomial time random oracle
algorithmsA1,A2 whereA1 makes at most Q queries to a random oracleH′ (possibly distinct
from H) and A2 makes at most Q queries to random oracle H:

P

(x,w) ∈ RH(pp) : pp← Setup(λ)
x← AH′

1 (pp)
w← AH2 (pp, x)

 ≤ ϵ(λ)

Definition 18 (Computationally Unique Commitments). A commitment scheme Γ = (Setup,Commit,Open)
is computationally-unique if for any polynomial time adversary A

Pr

b0 = b1 = 1 ∧ C0 ̸= C1 :

pp← Setup(1λ)
(C0, C1, x, r0, r1)← A(pp)
b0 ← Open(pp, C0, x, r0)
b1 ← Open(pp, C1, x, r1)

 ≤ negl(λ)

Lemma 5. The DARK commitment scheme satisfies computational uniqueness (Defini-
tion 18) under the adaptive root assumption.

Proof. Given two commitments to the same message, we will construct a known order ele-
ment. This element can be used to break the adaptive root assumption. Concretely, assume
there exists an adversary ACU that with non-negligible probability ϵ outputs C and C′ as
well as h(X) = f(X)

N
such that N · C = f(q) · G and N · C′ = f(q) · G. This implies that

N · (C − C′) = 0, i.e. that N is a multiple of the order of C − C′, which by assumption is
a non trivial group element. We can use this to construct an adversary AAR = (A1,A2) for
the adaptive root assumption, where A1 outputs W = C − C′ and A2 while gcd(N, ℓ) ̸= 1
computes N ′ ← N/ gcd(N, ℓk) for k = ⌈logℓ(N)⌉ and computes r ← ℓ−1 mod N ′ and outputs
U ← Wr. If ℓ is co-prime with the order of G and thus W then Uℓ = Wr·ℓ which equals W
if N ′ is a multiple of the order of U. This is the case with overwhelming probability as N
is a multiple of the order of U and ℓ divides the order of U with only negligible probability.
Thus AAR succeeds with probability ϵ− negl(λ). This is a contradiction and shows that Γ is
computationally unique.

Lemma 5. For any µ and Q = poly(λ), the relation RHext(pp, µ, ρ) defined with respect to
any computationally-unique commitment scheme com, predicate ρ :M2×X µ → {0, 1}, and
ext :M×X≤µ →M such that ∀i,m ∈M:

Pα1,...,αµ [ρi(m,mµ, α1, ..., αµ) = 1 : ext(m,α1, ..., αµ) = mµ] ≤ δ

and

RHext(pp, µ, ρ) =


(x = (C,m, o),w = (tr,M)) :

tr = (C1, ..., Cµ)
∀i∈[µ] αi = H(C,C1, ..., Ci−1)
M = ((m1, o1), ..., (mµ, oµ))
com.Open(pp, C,m, o) = 1

∀i∈[µ]com.Open(pp, Ci,mi, oi) = 1
∀i∈[µ]ext(m,α1, ..., αi) = mi

ρ(m,mµ, α1, ..., αµ) = 1


is (Q, δ + negl(λ))-hard in the RO model.
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Proof. Consider any pair of polynomial time random oracle algorithms x ← AH′
1 (pp) and

w ← AH2 (pp, x) that for setup parameter λ make at most Q = poly(λ) queries to their
respective oracles H′ and H. For fixed x let TH(x) = (T1, ..., Tµ) denote a random variable
representing the output tr included in w conditioned on the event that w satisfies at least all
validity criteria other than possibly the last, i.e. ρ(m,mµ, α1, ..., αµ) = 1. Note that TH(x)
is also dependent on the randomness of the oracle H. Presuming this event occurs with
probability at least ϵ(x), we can repeat AH2 (pp, x) on fresh internal randomness (not changing
H) in expectation 1/ϵ(x) times until it outputs w satisfying this event with a particular
assignment tr = (C1, ..., Cµ) to the random variable TH(x). Suppose that for any i ∈ [µ] we
then reprogrammed H to an oracle H∗ by sampling new answers to any subset of the queries
{qj = (C,C1, ..., Cj)}i≤j<µ but keeping all other queries consistent with H. For i = µ we
do not change the oracle and H∗ = H. Define the random variable TH∗(x) in the same way
for the new oracle H∗. Suppose further that repeating the same experiment with AH∗

2 (pp, x)
were to return with probability greater than δ′(x) a vector tr′ = (C ′1, ..., C

′
µ) ̸= tr where the

first distinct index between tr′ and tr is some k ≤ i. For i = µ we just repeat the same
experiment with H. For all i ∈ [µ] let αi = H(C,C1, ..., Ci−1), let mi = ext(m,α1, ..., αi), let
α′i = H∗(C,C ′1, ..., C ′i−1), and let m′i = ext(m,α′1, ..., α

′
i). Since the oracle answers to queries

C and {qj = (C,C1, ..., Cℓ)}1≤ℓ<k have not changed and (C1, ..., Ck−1) = (C ′1, ..., C
′
k−1) it

follows that (α1, ..., αk) = (α′1, ..., α
′
k) and (m1, ...,mk) = (m′1, ...,m

′
k). The result of these

two experiments would thus include openings of the distinct commitments Ck ̸= C ′k to the
same message mk = m′k. By computational uniqueness of the commitment scheme, for
pp ← Setup(λ) and x ← AH′

1 (pp) either δ′(x) or ϵ(x) is negligible in λ, as we have shown
that it is possible to construct and adversary using A1 and A2 that on input pp breaks the
uniqueness of the commitment scheme (Definition 18) in expected time ( 1

ϵ(x)
+ 1

δ′(x)
) ·poly(λ).

We draw two conclusions from this. For pp ← Setup(λ) and x ← AH′
1 (pp), if AH2 (pp, x)

succeeds in returning w satisfying the aforementioned event (i.e., all criteria except the last
predicate) with non-negligible probability then there is a unique vector (C1, ..., Cµ) such that:

(a) P[TH(x) = (C1, ..., Cµ)] ≥ 1− negl(λ)

(b) While this unique vector of high support may depend on H, for all i ∈ [µ] the first
i components (C1, ..., Ci) are independent of the answers to the values H(q) for q ∈
{(C,C1, ..., Cj)}i≤j<µ.

If (a) were false then running the experiment above for case i = µ would succeed with non-
negligible probability δ′ in returning a distinct assignment to TH(x), which contradicts the
computational uniqueness of the commitment scheme as shown above. If (b) were false, then
for some i < µ the experiment would succeed with non-negligible probability δ′ in returning a
distinct assignment to TH(x) where the first index of distinction is k ≤ i, again contradicting
the computational uniqueness of the commitment scheme as shown above.

Finally, (b) implies that (α1, ..., αµ) where αi = H(C,C1, ..., Ci) is uniformly distributed
and hence P[ρ(m,mµ, α1, ..., αµ) = 1] ≤ δ as stated in the hypothesis. Thus, conditioned
on the event that w satisfies at least all validity criteria except the predicate, then its first
component is tr = (C1, ..., Cµ) with probability 1 − negl(λ), in which case it fails the last
criteria (i.e., the predicate) with probability 1−δ. In conclusion, by a union bound it satisfies
all criteria with probability at most δ + negl(λ).

Theorem 8. If Π is a (k(µ), δ, com, ϕ)-almost-special-sound protocol for a relation R and
a computationally-unique commitment scheme com (Definition 18) whose setup runs pp ←
com.Setup(λ) then its FS transform ΠFS is an argument of knowledge for R in the RO model
(Definition 15) with knowledge error:

err(λ,Q) =
(Q+ 1)κ

1− κ
+ 2λ(kµ +Q · (kµ − 1)) · δ + negl(λ)

where κ = 1− (1− k
2λ
)µ.

Proof. Let VH denote the resulting verifier for ΠFS. We will construct an extractor E which
is given black-box access to any deterministic Q-query prover algorithm P∗, where Q is
assumed to be polynomial in λ. E has the power to intercept and respond to the queries P∗
makes to the random oracle, simulating (i.e., reprogramming) the oracle responses. On input
x and parameters pp, E first tests that P∗ outputs a proof π such that VH(pp, x, π) = 1 and

55



otherwise aborts. If this first step succeeds, then E continues by running the tree generation
algorithm from Lemma 5 to generate a (k + 1)-ary forking transcript tree. Given black-box
access to a deterministic Q-query prover algorithm, this tree generation algorithm runs in
expected polynomial time kµ + Q · (kµ − 1) succeeding with probability ϵ(x)−(Q+1)·κ

(1−κ) where

κ = 1−(1− k
2λ
)µ and ϵ(x) is the probability over the randomness of H that P∗ outputs a non-

interactive proof that VH accepts. E will repeat λ iterations of running this tree generation
algorithm for 2(kµ +Q · (kµ − 1)) steps each time, and returns the first trial that succeeds.
By Markov, this results in a new tree generation algorithm that runs in strict polynomial
time 2λ(kµ +Q · (kµ − 1)) with negligible loss 2−λ in its probability of success.

For any (k + 1)-ary transcript tree, there is a polynomial time procedure (Definition 11)
which as shown in Lemma 14 either:

(a) Extracts a witness w such that (x,w) ∈ R

(b) Extracts a break to the binding of the commitment scheme, i.e. an element of Lbreak(pp)
defined in Theorem 7.

(c) Extracts an opening (mω, oω) for the commitment label on some node ω at some level
i with rightmost child ν at level i+ 1 such that ϕb(i,mω) = 1, ϕa(i,mω) = 0, openings
of all commitment labels on the leftmost path lpath(ν) extending down from ν to mes-
sages equal to Extend(i,m, αi, ..., αµ) = (mi, ...,mµ) where (αi, ..., αµ) are the verifier
challenges along this path such that ∀j≥iϕa(j,mj) = 1.

The third extraction event was ruled out (with overwhelming probability) from any tran-
script tree generated via the Path Predicate Forking Lemma, see Theorem 7 and Lemma 11.
In particular, the transcript tree generated there was shown to satisfy a predicate (with over-
whelming probability) that eliminates the possibility that ϕa(i,mω) = 0 yet ϕa(µ,mµ) = 1.
The analysis leveraged the way that transcripts are sampled by that tree generation algo-
rithm. However, we will need to use a slightly different analysis this time.

First, we define the relation for all i ∈ [µ], commitment scheme parameters pp, and
random oracle H∗:

RH∗

ext(pp, µ−i) =


(x = (C,m, o),w = (tr,M)) :

tr = (x, C1, ..., Cµ−i)
∀j∈[µ−i] αj = H∗(C,C1, ..., Cj−1)
M = ((m1, o1), ..., (mµ−i, oµ−i))
∀j∈[µ−i]com.Open(pp, Cj,mj, oj) = 1

Extend(i,m, α1, ..., αµ−i) = (m1, ...,mµ−i)
ϕb(i,m) = 1, ϕa(i,m) = 0, ϕa(µ,mµ−i) = 1


We note that by Lemma 5, in case (c) occurs, there is a (Q + µ)-query polynomial time
algorithm A1 that generates (C,m, o) and transcript prefix y, and an independent (Q+ µ)-
query adversary AH∗

2 which generates the witness (tr,M) such that ((C,m, o), (tr,M)) ∈
RH

∗
y

ext (pp, µ− i) for some i. A1 represents the algorithm that ran the partial tree generation
that created all labels on the left k-ary subtree of ω and also the prefix y labeling the
trunk (i.e., from root to ω) of subtree Sν , and then also ran the tree extraction algorithm
(Definition 11) on this left k-ary subtree of ω. Note that conditioned on event (c), ω is
the first node and index i for which this tree extraction succeeds in producing an opening
(mω, oω) such that ϕb(i,mω) = 1 but ϕa(i,mω) = 0. By Lemma 5 the root-to-leaf path that
includes the prefix y and lpath(ν) matches the output of some AH∗

∗ (x) with partially fresh
random oracle H∗, and there is also a subtree generation algorithm that is a (Q+ µ)-query
algorithm which generated the labels on subtree Sν . AH

∗
2 represents the combination of these

two algorithms and also the subtree extractor that opens the commitments on these labels.
Conditioned on (c), the openings of the commitment labels within this subtree all satisfy
predicate ϕa and the opened messages of the commitment labels lpath(ν)0 along the leftmost
path from ν match the output of Extend(i,m, lpath(v)1) where lpath(ν)1 are the challenge
labels along this path.

Let ρi denote the predicate such that ρi(m,m′, α1, ..., αµ−i) = 1 iff ϕb(i,m) = 1, ϕa(i,m) =
0, and ϕa(µ,m

′) = 1. By the definition of (k(µ), δ, com, ϕ)-almost-special-soundness, for
uniform random β1, ..., βµ−i:

Pβ1,....,βµ−i
[ρ(m,mµ−i, β1, ..., βµ−i) = 1 : Extend(i,m, β1, ..., βµ−i) = (m1, ...,mµ−i)] ≤ δ
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Thus, since Q+ µ is polynomial in λ, by Lemma 5 the relation RH∗
ext(pp, µ− i) is (Q+ µ, δ+

negl(λ))-hard in the RO model for Q = poly(λ). This shows that for any particular index in
the transcript tree, the event of type (c) occurs with probability at most δ + negl(λ) when
running the extractor with polynomial time provers making a polynomial number of queries
to the RO. This experiment may effectively occur times over the course of the tree generation
algorithm, but we can loosely union bound the probability that event (c) ever occurs by the
runtime of the tree generation algorithm. Similarly, we can eliminate event (b) as occurring
with negl(λ) by the computational binding property of the commitment scheme, which does
not require an additional union bound.

Finally, letting ϵ(x, st) denote the probability over the parameters and random oracle
that the verifier accepts the proof π output by P ∗(st) for public input x, we conclude that:

P

 (x,w) ∈ R and
VH(pp, x, π) = 1

:

pp← Setup(λ)
(x, st)← A(pp)
π ← P ∗(st)

w ← EP ∗(st)(pp, x)

 = P

 (x,w) ∈ R :

pp← Setup(λ)
(x, st)← A(pp)
π ← P ∗(st)

w ← EP ∗(st)(pp, x)


≥

∑
x,st

(
ϵ(x, st)− (Q+ 1)κ

1− κ
− 2λ(kµ +Q · (kµ − 1)) · δ − negl(λ)

)
· P [A(pp) = (x, st) : pp← Setup(λ)]

≥ P

 VH(pp, x, π) = 1 :
pp← Setup(λ)
(x, st)← A(pp)
π ← P ∗(st)

− (Q+ 1)κ

1− κ
− 2λ(kµ +Q · (kµ − 1)) · δ − negl(λ)

The first equality holds because EP∗(st)(pp, x) aborts in its first step if the deterministic
P∗(st) outputs π such that VH(pp, x, π) ̸= 1.

Polynomial IOP Compilation

E Proof of Theorem 4 (Polynomial IOP Compilation)

Theorem 4. If the polynomial commitment scheme Γ has witness-extended emulation, and
if the t-round Polynomial IOP for R has negligible knowledge error, then Π is a public-
coin interactive argument for R that has witness-extended emulation. The compilation also
preserves HVZK if Γ is hiding and Eval is HVZK.

The fact that the compilation preserves HVZK is straightforward. We prove this part
first and then move on to proving witness-extended emulation.

HVZK

Proof. Let SEval denote the HVZK simulator for Eval and SIOP denote the HVZK simulator for
the original polynomial IOP. We construct an HVZK simulator S for the compiled interactive
argument as follows. S begins by running SIOP on the input x, which produces a series of
query/response pairs to arbitrarily labeled oracles that are “sent” from the IOP prover to
the verifier. S simulates the view of the honest verifier in the compiled interactive proof
by replacing each distinctly labeled oracle with a fresh Γ commitment to 0, i.e., the zero
polynomial over Fp. By the hiding property of Γ this has negligible distance δ0 from the
commitment sent in the real protocol. (It places this commitment at the location in the
transcript where the commitment to this oracle would be sent in the compiled protocol).
For each query/response pair (z, y) to an oracle, S runs SEval to simulate the view of an
honest-verifier in the Eval protocol opening a hiding polynomial commitment to the value y
at the point z. Let P denote an upper bound on the total number of oracles sent and Q
denote an upper bound on the total number of queries to IOP oracles. If the simulation of
SIOP has statistical distance δ1 from the real IOP verifier’s view, and each simulated Eval
subprotocol has statistical distance δ2 to the real Eval verifier’s view, then the output of S
has statistical distance at most Pδ0+ δ1+Qδ2 from View⟨P (x,w),V (x)⟩. For P,Q < poly(λ) and
δ0, δ1, δ2 < negl(λ) this statistical distance is negligible in λ.
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Witness-extended emulation (knowledge)

Proof. Without loss of generality, assume the original IOP makes at least one query to each
oracle sent. An oracle which is never queried can be omitted from the IOP.

We denote by V the IP verifier for the compiled IP, and VO the verifier for the original
IOP. Given a record oracle Record(P ∗, pp, x, st) for an IP prover P ∗ that produces accepting
transcripts with non-negligible probability, we build an emulator E for the compiled IP.
E begins by constructing an IOP adversary P ′O, which succeeds also with non-negligible
probability on input x. Every successful interaction of P ′O with VO on input x corresponds
to a successful transcript of P ∗ with V on x. In showing how E builds P ′O we also show how
E can obtain this corresponding transcript. E will make use of the emulator EEval for the
commitment scheme Γ.

Finally, E can use the IOP knowledge extractor E
P ′
O

IOP(x) in order to output a witness for
x along with the corresponding transcript.

Constructing P ′O (IOP adversary) P ′O runs as follows on initial state st0 and input x. It
internally simulates the interaction of P ∗ and V , using the record oracle Record(P ∗, pp, x, st).
It begins by running this for the first round on state st0. For every message that P ∗ sends in
this first round, P ′O continues simulation until there is an Eval on this commitment. (There
is guaranteed to be at least one Eval on each commitment, independent of the randomness).
Therefore, denoting by EEval the extractor for the Eval subprotocol between P ∗ and V on a
given commitment and evaluation point, the record oracle can be used to simulate EEval’s
record oracle.

For each message m that P ∗ sends to V at the beginning of the first round, P ′O interprets
m as a commitment, and attempts to extract from it a polynomial by running the PPT
emulator EEval, simulating its record oracle as just described. If it fails in any extraction
attempt it aborts.

If P ′O succeeds in all these extractions, then it uses these extracted polynomials as its
first round proof oracles that it gives to VO. Upon receiving the first public-coin challenge
from the IOP verifier, P ′ uses the query function to derive the corresponding queries to each
of these proof oracles. Before answering, it rewinds P ∗ and V back to the point immediately
after P sent its first messages, and now substitutes random challenge from VO in order to
simulate P ∗ and V on these same queries. It checks that P ∗’s answers are consistent with
the answers it can compute on its own from the extracted polynomials. If any answers
are inconsistent, P ′O aborts. Otherwise, it sends the answers to VO.

At the end of this first round (assuming P ′ has not yet aborted), P ′O has stored an updated
state st′ for P ∗ based on this simulation. It proceeds to the next round and repeats the same
process, using the record oracle Record(P ∗, pp, x, st′). Finally, if P ′ makes it through all
rounds without aborting, then it has a final state stV for VO based on its internal simulation
of P ∗ and V up through the end of the last round. Finally, VO(stV ) outputs Accept or Reject.

Analysis of P ′O success probability We claim that if Record(P ∗, pp, x, st0) outputs an
accepting transcript tr with non-negligible probability, then P ′O succeeds with non-negligible
probability.

Observe that for any accepting tr between P ∗ and V , if P ′O happens to follow the same
exact sequence of query/responses without ever aborting then it succeeds because VO and V
run the same decision algorithm on the final state of query/response pairs. Thus, it remains
only to take a closer look at what events cause P ′O to abort, and bound the fraction of
accepting tr for which this occurs.

As indicated in bold above, there are two kinds of events that cause P ′O to abort:

• It fails to extract from a “commitment” message m sent by P ∗

• After successfully extracting a polynomial f from a commitment, P ∗ answer queries
to f in a way that is inconsistent with f .

The second type of event contradicts the evaluation binding property of Γ, therefore it
occurs with negligible probability.

To analyze the first type of event, let us define “bad commitments” for a parameter D.
We define this as a property of a message m (purportedly a commitment) sent in a transcript
state st.
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Bounding probability of commitment extraction failure The pair (m, st) is a “bad
commitment” if there is less than a 1/D probability that extending the transcript between
P ∗ and V , starting from state st, will contain a successful execution of Eval on m. This
probability is over the randomness of the public-coins of V in the extended transcript.

Let A(tr) denote the event that a transcript tr sampled from Record(P ∗, pp, x, st0) is
accepting. Let B(tr) denote the event that tr contains a “bad commitment” (i.e. some
message m sent in state st such that Bad(m, st) = 1). The conditional probability of event
A(tr) conditioned on event B(tr) is less than 1/D. To see this, fix (m, st) with Bad(m, st) = 1
and consider “sampling” a random tr that contains m at state st. This is done by first
choosing randomly from all partial transcripts that result in (m, st) via brute force, and then
running the transcript normally from state st on random public-coins. No matter how (m, st)
is chosen, the probability that this process produces an accepting transcript is by definition
less than 1/D. (The second part of the transcript following (m, st) contains at least one
execution of Eval on m by hypothesis, and by the definition of B(m, st) = 1 this execution
is accepting with probability less than 1/D).

Assume that P (A(tr)) ≥ 1/poly(λ). Applying Bayes’ law,

P [B(tr)|A(tr)) ≤ P [A(tr)|B(tr)]

P (A(tr))
≤ poly(λ)/D .

In other words, at least a 1 − poly(λ)/D fraction of accepting transcripts do not contain
“bad commitments”. Furthermore, so long as a commitment m is not “bad”, we can invoke
the witness-emulation property of Eval to say that the PPT EΓ emulator extracts a witness
polynomial from each m with overwhelming probability.

Setting D = 2poly(λ) we get that on at least a 1/2 fraction of accepting transcripts, P ′Os
simulation also succeeds (i.e. successfully extracts from each prover commitment message)
with probability at least 1/2. This means that P ′O has a non-negligible success probability
conditioned on the event that tr is an accepting transcript.

In conclusion, if tr is accepting with non-negligible probability, then there is a non-
negligible probability that P ′O succeeds.
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