
1

Integrita: Protecting View-Consistency in Online
Social Network with Federated Servers

Sanaz Taheri-Boshrooyeh, Alptekin Küpçü, Öznur Özkasap
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Abstract—Current designs of Online Social Networks (OSN) deploy a
centralized architecture where a central OSN provider handles all the
users’ read and write requests over the shared data (e.g., Facebook wall
or a group page). The historical incidents demonstrate that such cen-
tralization is leveraged for censorship and violating view-consistency;
a corrupted provider deliberately displays different views of the shared
data to different users. Integrita provides a data-sharing mechanism that
protects view-consistency by replacing the centralized architecture with
the federated-server model consisting of N providers, N − 1 of which
can be fully malicious and colluding. The state of the shared data is
modeled by an append-only data structure, stored at the server-side,
which contains the history of all the operations performed by the users.
The consistency of the users’ views towards the shared data depends
on their accessibility to the intact log of operations. Integrita guarantees
that the servers cannot manipulate the log without being detected by
the users. Unlike the state-of-the-art, Integrita accomplishes this neither
by using storage-inefficient data replication nor by requiring users to
exchange their views. Every user, without relying on the presence of
other users, can verify whether his operation has been added to the
log and is visible to the rest of the users. We introduce and achieve a
new level of view-consistency, named q-detectable consistency, where
any inconsistency between users’ views cannot remain undetected for
more than q operations, where q is a function of the number of the
servers. This level of consistency is stronger than what centralized
counterparts offer. Also, our proposal reduces the storage overhead
imposed by replication-based solutions by the multiplicative factor of 1

N
.

Furthermore, the application of Integrita is not limited to OSNs and can
be integrated into any log-based systems, e.g., version control systems.

Index Terms—View consistency, q-Detectable Consistency, Strong
Consistency, Malicious Adversary, Collaborative Data Sharing, History
Integrity, Log-based System.

1 INTRODUCTION

Motivation: Online Social Networks (OSNs) enable various
methods of data sharing, e.g., via users’ walls or social
groups. Using a personal wall, a user may share her per-
sonal information (e.g., thoughts, images, and videos) with
her social connections, e.g., friends or followers. The content
of the wall can be updated by the user or her connections,
e.g., by posting a message on the wall and commenting.
A similar data-sharing paradigm appears in the context of
social networking groups like Facebook groups where the
group pages serve as a shared board on which members can
post their content.

In the current designs of OSNs with a central provider,
users’ read and write operations over the shared data go
through the central OSN server, who is supposed to be
trusted and serves users as expected. However, no technique
is deployed to enforce such trustworthiness of the OSN
server. A corrupted server may add arbitrary content to the
shared data and make users accept them as authentic, or
hide some content from some users. As a historical example,
in 2012, several bloggers claimed that Sina Weibo, a Chinese
OSN, aimed to practice censorship by serving different
views of the walls to their followers via hiding some of their
posts [22]. Given such historical incidents, it is vital to tackle
view-consistency of the shared data with a practical solution
rather than trusting the service provider.

Problem Statement: To formalize the problem of
view-consistency, we use the term shared object to indicate
a collaborative data-sharing environment (such as a
Facebook-like wall or a group-page) with a defined
set of users with read/write access. Users can modify
the object by inserting or deleting a post. The current
content of each object is the result of a sequence of
insertion and deletion of posts. For example, the content
of a shared object after the following operations ∆ =
{insert(post1), insert(post2), delete(post1), insert(post3)}
would be {post1, post3}. The view of a user towards
an object, at any point in time, is defined as the
sequence of operations seen by that user, e.g.,
view = {insert(post1), insert(post2)} is the view of a user
from ∆ who has not yet fetched the last two operations. We
assume that no concurrent operations/edits from any two
users happen on the shared object; operations performed by
the users are collectively sequential. This assumption has
been similarly sought by Frientegrity [21], which addresses
view-consistency in a centralized OSN. Users are said to
have a consistent view of the shared object if the following
two conditions are met: First, operations served to the users
are only generated by the authorized users. This can be
immediately addressed by deploying digital signatures.
The second criteria regards the history integrity of an object,
which is less recognized and studied in the literature. That
is, all the users get to see an identical and intact log of
operations, i.e., no operation is dropped or misplaced.
For instance, the following sequence of operations
∆′ = {insert(post1), delete(post1), insert(post3)} is
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inconsistent w.r.t. ∆ since insert(post2) is dropped from
the original sequence.

Related Work: The view-consistency problem is ad-
dressed in the literature by two types of solutions:
communication-based solutions that are sought by the cen-
tralized architectures, and replication-based solutions de-
ployed by the distributed designs. We elaborate on each
solution type next.

In a centralized architecture with non-communicating
users, the best achievable level of view-consistency is fork-
consistency [55], first defined by [41]. The fork-consistency
is a weaker form of view-consistency in which a corrupted
provider can split users into disjoint sets (fork them) and
serve each set with a distinct view. However, the provider
is forced to serve each set with a consistent view of the
operations performed by the users of the same set. Iden-
tification of the forked views can only happen through
users’ communication. That is, the users must regularly
communicate their views of the object (e.g., a wall) with
all the other authorized users (e.g., friends) to catch any
inconsistency. This approach would not be practical consid-
ering that a user of an OSN like Facebook has 338 friends on
the average1. Hence, each user needs to communicate with
almost 338*338= 114244 other users to monitor the view
consistency of her wall and her friends’ walls. Addressing
view consistency using communication-based solution is
sought in the context of secure OSNs [21], [23], and cloud
computing [11], [10], [39], [8].

The replication-based solutions are deployed in peer-to-
peer distributed OSNs [43], Authenticated Data Structures
(ADS) [25], [26], [45], [52], [27], [44], Byzantine fault-tolerant
protocols [37], [13], cloud storage [30], [49], [1], [53], [57] as
well as certificate transparency [36], [35], [18]. The idea is
to designate multiple entities for the storage of the object
and let all the read and write requests go through all
of the storage providers. In specific, the shared object (or
some authenticated-metadata associated with it) must be
replicated on N entities considering N − 1 of them may act
maliciously. Having only one honest repository suffices to
always retrieve the intact content of the object. Replication-
based solutions are not efficient concerning the storage
overhead, where N copies of the object must be stored in
the OSN.

Integrita: In Integrita, we achieve the best of both afore-
mentioned solutions: a method to achieve view-consistency
which is replication-free as well as communication-free, i.e.,
users do not have to directly exchange their views. Integrita
utilizes N federated servers (governed by distinct author-
ities) who might be malicious/Byzantine; act arbitrarily,
collude, and compromise the view-consistency by dropping,
tampering with, and forging operations. Nonetheless, our
approach guarantees that as long as one server is non-
colluding, the view consistency is preserved. We assume
that users shall act honestly and tend to achieve a consistent
view. A similar assumption was sought in prior studies [15].
Note that the sole objective of Integrita is to address view-
consistency but not data privacy. One can address privacy
using well-practiced techniques like encryption [4], [34]. In
summary, Integrita provides the following features:

1. https://www.brandwatch.com/blog/facebook-statistics/

• q-Detectable-Consistency: Integrita introduces a new
level of view-consistency called q-Detectable-Consistency
where the views of the users toward the object can-
not diverge for more than a sequence of q operations
without being detected. That is, if a user performs an
operation, e.g., inserts a post, servers either honestly
serve her post to the rest of users, or their misbehav-
ior gets caught by the post owner within the next q
operations. The value of q depends on the number of
servers and the number of operations applied on the
shared object. Section 6.2 covers a thorough analysis
of this relation. The formal definition and proof of q-
detectable consistency are presented in Section 8. We
also discuss that after a certain number of operations
on the object, the q-detectable consistency level converts
to strong consistency (i.e., misbehavior is immediately
detectable).
• Communication-free: Users do not have to exchange

their views of the shared object to uncover inconsisten-
cies. Instead, each user, independent of other users, can
verify whether her operation is applied on the object
(hence visible to all the other users) or catch the server’s
misbehavior.
• Replication-free: The shared object is not replicated

over the servers, instead, the object is partitioned into
disjoint sets such that each resides at one server2. Our
numerical analysis asserts that using Integrita, an OSN
like Facebook with 2.41 billion monthly active users 3

saves up to 2344 Terabytes of storage per year com-
pared to a replication-based approach deploying 20
servers. In our replication-free solution, we trade strong
consistency with the q-detectable consistency.
• Efficient verification: In Integrita, each read and write

request is associated with a proof of correctness. Due
to the lack of a central entity for the generation of
the proof, users have to individually contact servers
and construct the proof. Despite this, the overhead
of users and servers w.r.t. data transmission, as well
as the communication and computation complexity is
identical to the centralized fork-consistent counterparts
[22], [23] (while Integrita enforces a higher level of
consistency).
• Cross-server communication-free: Servers do not need

to communicate or to coordinate to resolve the users’
read and write requests. Instead, all the communication
happens solely between a user and the servers.

2 RELATED WORK

The problem of view consistency in a collaborative data-
sharing environment has been investigated in centralized

2. Note that each of the N storage providers is modeled as a data-
center that would take care of a portion of the data assigned to it.
While Integrita does not depend on data replication to achieve view-
consistency, this does not contradict with the replication of data for the
sake of availability. Namely, each data-center shall deploy its replication
mechanism to maintain the availability of the data assigned to it.
However, due to Integrita, the amount of data assigned to each data-
center is 1

N
of the data that would be otherwise assigned by using a

replication-based solution.
3. https://www.statista.com/statistics/264810/number-of-monthly-

active-Facebook-users-worldwide/
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OSNs, peer-to-peer (p2p) OSNs, cloud storage platforms,
Byzantine fault-tolerant protocols, and authenticated data
structures. In the following, we elaborate on each one of
these areas and shed light on their shortcomings compared
to Integrita. Later in this section, we also discuss how to
integrate Integrita in each one of the related studies.

Centralized OSN: Among the centralized OSNs, Frien-
tegrity [22] and SPORC [23] address the view-consistency.
However, their solutions do not eliminate the possibility of
having forked views, and in principle, they only guaran-
tee a fork-consistent level that is weaker than q-detectable
consistency. In a fork-consistent system, while a corrupted
provider is able to fork the users into disjoint sets, he is
forced to serve each set with a consistent view of the opera-
tions performed by the users of the same set. This is enabled
since the users embed their views of the object history in
each post that they insert. Thus, as soon as the server forks
the view of two users, he cannot show their operations to
each other without risking detection. Users can detect the
inconsistency of their views by exchanging them out of the
band. The main shortcoming of fork-consistent systems is
that the server’s equivocation remains undetected till the
users happen to contact out of the band. Thus, to ensure
view-consistency, users must regularly communicate their
views of the shared object. This approach would not be
practical. For example, consider Facebook walls as a shared
object to which both the user and her friends have access.
Each Facebook user has 338 friends on the average4. Hence,
each user needs to monitor the view consistency of 338
shared objects (her wall and her friends’) where each wall
is shared among 338 users (friends of each wall owner),
thus on aggregate, she has to communicate with almost
338 ∗ 338 = 114244 other users to monitor the view con-
sistency of her wall and her friends’ walls.

Peer-to-Peer OSNs: In p2p OSNs [50], [28], [38], [9],
[51], [54], [43], [48], [42], [54], there is no central server
running the system; instead, the individual users, called
peers, contribute a part of their computation and storage
power to the system. Social networking services are enabled
in a distributed manner relying on shared resources. As
such, the storage of users’ data is also distributed among the
existing peers. The view consistency in p2p OSNs is usually
addressed through replication or by leveraging users’ trust.
In the latter case, the object owner (e.g., the owner of a
wall) is responsible to store and serve the content of her
wall on her own or replicates it on some trusted peers like
her friends. Subsequently, the view-consistency is guaran-
teed due to the trustworthiness of storage peers [50], [28],
[38], [9], [51], [54]. However, if the storage responsibility
is spread over the p2p network and the storing peers are
untrusted, then view-consistency is met through replication
[43]. In particular, suppose f is the number of potential
dishonest peers. The object (or some units of the object
like a post) should be replicated on f + 1 peers to ensure
that at least one honest peer is among the replicas. Each
requester reads each post from all the f + 1 replicas and
identifies the latest content (e.g., using a version number).
However, such a solution results in storage overhead and
communication complexity which grow linearly by f . Note

4. https://www.brandwatch.com/blog/facebook-statistics/

that other studies in the context of p2p OSNs also utilize
replication but for the sake of data availability [48], [42],
[54]. Namely, the storing nodes are supposed to be trusted
and always serve the intact contents when available.

Byzantine Fault-Tolerant Protocols: In BFT protocols,
a service is to be given to a set of clients while the exe-
cution of the service concerning the sequence of requests
appears identical to all the clients (and this sequence pre-
serves the temporal order of non-concurrent operations).
Enabling consistency, BFT protocols also seek a replication-
based solution [37], [13] where they deploy several servers
each keeping a replica of the state of the intended service.
Byzantine fault-tolerant systems behave correctly when no
more than f out of 3f + 1 replicas fail [37].

Cloud Storage Platforms: Similar to the centralized
OSNs, the best level of view-consistency in the context of
cloud storage is fork-consistency [11], [10], [39], [8], [55], due
to the presence of a single corrupted service provider and
non-communicating users. Addressing the fork issue, cloud
storage platforms utilize replication over multiple servers
[29], [37]. In some other studies replication is utilized for
the sake of data availability [30], [49], [1], [53], [57] and the
view-consistency is attempted in the presence of concurrent
operations.

Authenticated Data Structures: In the Authenticated
Data Structures (ADS), a data owner outsources her data
to multiple untrusted repositories. The outsourced data
is modeled by a data structure that enables performing
queries on the data in a verifiable and authenticated manner.
Repositories, on behalf of the data owner, are responsible to
answer queries of users on the data structure and hand them
with a proof of the validity of the answer. The same data
structure is replicated over all the repositories and reposito-
ries need to keep themselves updated with the data owner
in the case of update [25], [26], [45], [52], [44]. As such, one
can assume view consistency of ADSs is guaranteed through
replication, which is not storage efficient.

Certificate Transparency: In public-key cryptography,
parties need to have access to each other’s authentic public
keys. To accomplish this, a centralized certificate authority
(CA) is designated through which users insert and retrieve
each other’s public keys. To ensure that CAs hand on au-
thentic public keys, Certificate transparency (CT) [36], [35],
[18] techniques are developed. CT relies on a set of public,
untrusted, append-only log servers that collect the certifi-
cates issued by CAs and serve the certificates to the users
in a verifiable manner [17]. Moreover, the log servers are
tracked by auditors/monitors. Auditors collect external in-
formation as well as constantly query the log servers to catch
inconsistency. In the nutshell, protecting view-consistency in
CT is done through replication (i.e., multiple log servers)
as well as constant auditing. Replication is not storage
efficient. Also, in collaborative data sharing environments
like Facebook groups, making users to constantly audit the
servers is neither desirable nor effective. Essentially, the
servers know the set of authorized members, hence they
still can answer queries deliberately and partition users’
views (in contrast to the CT systems where auditors can be
arbitrary entities). Some other CT proposals suggest users
exchange their views of the log through gossiping protocols
[12], [32], [46]. This immediately violates the assumption of
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non-communicating users that we set earlier.
Adoption of Integrita: Integrita can be integrated into any
of the studies listed above as long as the following condi-
tions are met in the given context. We refer to this list as
Integrita Adoption Requirements or IAR for short.

1) There is a shared object to be accessed and modified by
a known set of authorized users.

2) All the authorized users are acting honestly and will-
ingly to achieve view consistency.

3) The shared object has an append-only nature.
4) Updates on the object come sequentially but not con-

currently.
5) The system should deploy the federated-server archi-

tecture where the service is run by the collaboration of
multiple independent service providers.

6) The number of deployed servers should be fixed and
known beforehand. This is required to achieve q-
detectable consistency and to have a well-defined tran-
sition point to strong consistency (more details are
provided in section 6.2.4).

Many studies listed above exhibit the aforementioned
features yet sometimes seek additional objectives which
are not covered by Integrita. Thus, we emphasize that the
adoption of Integrita should take place only to achieve view
consistency conditioned on IAR.

Applications that address view consistency by relying on
replication (i.e., deploying replicated storage providers) can
alternatively benefit from Integrita and enjoy its extended
features5. Examples are P2P OSNs [43] as well as OSN
services like [5], [48], [51]6. Centralized OSNs like [22]
and cloud storage providers like [23], [29], [37] can benefit
from Integrita conditioned on utilizing multiple indepen-
dent servers. BFT protocols like [37], [13] and cloud storage
services of [11], [10], [39], [8], [55], [29], [37] also comply with
IAR, though, they additionally deal with the linearization of
concurrent operations, which is out of the scope of Integrita.
The view consistency in CT can be resolved using Integrita
noting that the number of log servers should be preset in
order to achieve q-detectable consistency. Also, note that CT
tackles with the problem of a fraudulent certificate, where
a malicious user (e.g., CA) inserts a certificate to replace an
existing one. Treating such issues are out of the scope of
Integrita.

3 SYSTEM MODEL

Entities: Integrita is comprised of N servers denoted by
S1,...,SN (each operated by a distinct authority so that at
least one of them does not collude with the others) and
a set of users U1, ..., UT . The shared object resides at the
server-side. For the sake of simplicity, users are assumed to
have identical read/write access, though, more fine-grained
access control can be enforced using the technique proposed
by [22].

5. Note that sometimes replication is used for the sake of data
availability, e.g., in the case of ADS, the data is replicated over multiple
servers residing in multiple geographical locations to reduce the users
access delay and allow scalability [40].

6. These are already run on the federated-server architecture hence
the adoption of Integrita is straightforward.

Security Goals: The security goal of Integrita is to achieve
q-detectable consistency; that is, any inconsistency between
users’ views cannot remain undetected for more than q
operations. A formal definition is provided in Section 8.
Adversarial Model. We assume that N − 1 servers are
colluding and may act maliciously by showing users a
different subset of operations. On the other side, users are
honest and tend to achieve a consistent view of the shared
object. The communication channels are authenticated but
not necessarily secure; hence subject to eavesdropping. Note
that data confidentiality is out of the scope of Integrita and
can be addressed by well-studied solutions like encryption.

4 DEFINITIONS AND PRELIMINARIES

Negligible: A function f is called negligible if for all
positive polynomials p, there exists a constant C such that
for every value c > C it holds that f(c) < 1

p(c) .

Signature Scheme A signature scheme [24] Sig consists of
three algorithms; key generation, sign and verify denoted
by Sig = (Gen, Sign, V rfy). A pair of keys (sk, vk) is
generated via SGen where sk is the signature key and vk
is the verification key. The signer signs a message m using
sk by computing η = Signsk(m). Given the verification key
vk, a receiver of signature runs V rfyvk(η,m) to verify.

A signature scheme Sig = (Gen, Sign, V rfy) is said to
be existentially unforgeable under adaptive chosen message
attack [24], [33] if ∀ probabilistic polynomial time adver-
saries A, there exists a negligible function nelg(.) s.t.

Pr[(sk, vk)← Gen(1λ); (m,σ)← ASignsk(.)(vk)

s.t. m /∈ Q and V rfyvk(m,σ) = accept] = negl(λ).
(1)

ASignsk(.) indicates that adversary has oracle access to the
signing algorithm. Q indicates the set of adversary’s queries
to the signature oracle. λ is the security parameter.
Collision-Resistant Hash Function: A hash function family
Π = (Gen,H) is collision-resistant if for all probabilistic
polynomial time adversary A, there exists a negligible func-
tion negl(λ) for which the following holds [16].

Pr[s← Gen(1λ);A(s) = x, x′|
Hs(x) = Hs(x

′) AND x 6= x′] ≤ negl(λ) (2)

History Tree: A history tree [15] is an append-only tamper-
evident data structure modeled by a variant of the Merkle
hash tree. The leaves of the tree hold data items and
the intermediate nodes and the root node store the hash
of their children. In such a structure, the root essentially
covers the entire content of the tree. New data items can
freely be added as the leaf nodes to the right side of the
tree (appending). For each newly added item, the value of
intermediate nodes and the root shall be recalculated. A
sample history tree consisting of 4 and 5 data items (leaves)
are demonstrated in Figure 1 and Figure 2, respectively. We
use the term of tree digest or τ to refer to the root of a history
tree and we write τi to indicate version-i tree, i.e., the root
of the history tree with i data items.
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H(H(h1||h2)||H(h3||h4))

H(h1||h2)

h1 h2

H(h3||h4)

h3 h4

Fig. 1: A history tree with 4 leaves. his represent the data
items. The colored parts represent the nodes required for the
membership proof of h3.

H(H(H(h1||h2)||H(h3||h4))||H(H(h5)))

H(H(h1||h2)||H(h3||h4))

H(h1||h2)

h1 h2

H(h3||h4)

h3 h4

H(H(h5)))

H(h5)

h5

Fig. 2: A history tree with 5 leaves. his represent the data
items. The sub-trees with no data item are shown by �. The
colored parts represent the nodes required for the incremental
proof between the 2nd and 5th version the history tree.

The history tree exhibits the following properties (that
are fundamental in efficiently preserving view consistency).
• Every tree digest τj uniquely defines a distinct or-

dered sequence of j data items. That is, the roots of
history trees constructed from an identical set of data
items but under different orders, e.g., {h1, h2, h3} and
{h2, h1, h3}, would be different. This is because the
underlying hash function is collision-resistant.
• Proof of membership: Given a tree with j data items

(and the root τj), the membership of a data item hi at a
certain position i (where i <= j) of the tree is efficiently
verifiable in O(log(j)). The proof of membership in-
cludes the sequence of values stored at the siblings of
the nodes (indicating whether it is a left or right sibling)
on the path from the leaf node storing hi to the root τj .
Given the proof, one can recompute the root as τ ′j and
compare against τj . For example, as shown in Figure 1,
the membership proof of h3 as the 3rd data item of a
history tree with tree digest τ4 is h3, h4, H(h1||h2). To
verify the proof, one should reconstruct the tree digest
TD′4 recursively from the values included in the proof.
If τ ′4 equals to τ4, the membership proof is verified.
Throughout the description of the paper, MemVf refers
to the function defined below

True/False = MemV f(τj , {(i, hi), · · · , (k, hk)}, proof))
(3)

MemVf takes a tree digest τj , a set of index and item
pairs as {(i, hi), · · · , (k, hk)}, and a membership proof
proof . The function returns True if the proof can
successfully verify the membership of {hi, · · · , hk} for
the given positions {i, · · · , k} of the history tree with
tree digest τj . We also write {hi, · · · , hk} ∈ τj to
indicate that there exists a proof for which MemVf
returns True.
• Incremental Proof: Given two tree digests τi and τj

where i < j one can check whether they share the same
history regarding h1, · · · , hi. The incremental proof

between version-2 (τ2) and version-5 (τ5) is shown in
Figure 2. Given the proof i.e., h1, h2, H(h3||h4), and h5,
one can reconstruct τ ′2 and τ ′5 as below.

τ ′2 = H(h1||h2)

τ ′5 = H(H(H(h1||h2)||H(h3||h4))||H(H(h5)))

Note that for the calculation of τ ′2 only h1 and h2 are
required, whereas for the τ ′5 all the nodes in the proof
are used. If τ ′2 = τ2 and τ ′5 = τ5, then the consistency
between τ2 and τ5 is successfully verified.
Throughout the paper, we consider IncrV f function as
defined below [15]

True/False = IncrV f(τi, τj , proof) (4)

It takes two tree digests τj and τj where i < j, and
verifies whether proof is a correct incremental proof
between τi and τj or not. We write τi =⇒ τj
to indicate that there exists an incremental proof for
which IncrV f(τi, τj , proof)) returns True.

5 INTEGRITA SYSTEM DESIGN

In the current section, we present our solution to address
the view consistency issue in a collaborative data-sharing
environment. Recall that the system contains a shared
object whose content gets altered by a set of authorized
non-communicating collaborators. The object resides at the
servers side.

The shared object is comprised of smaller data units
called operations. Each operation may contain an image,
text, audio, etc. Users may add or remove operations. The
sequence of users’ activity (addition or deletion operations)
is recorder in the activity log ∆ = {op1, · · · , opj} where
each operation opi∈[1,j] indicates either an insertion oper-
ation or a deletion operation together with the operation’s
content. The activity log has an append-only nature,

Users have a consistent view of the shared object if they
have access to the intact activity log. However, due to the
servers’ misbehavior, this may not be the case. We denote a
user’s view by δi which is a sequence of i operations, i.e.,
δi = {op′1, · · · , op′i}. A view δi is consistent with the activity
log ∆ = {op1, · · · opk} (where i <= k) if it is a prefix of the
activity log, i.e., ∆ = δi||{opi+1, · · · , opk}. This definition
implies the following properties. A solution for the view-
consistency must satisfy all these three properties and vice
versa.

1) Authenticity: A consistent view contains operations
that are made by authorized users.

2) Individual view-consistency: For a user with a consis-
tent view, her past and current views should be also
consistent, i.e., the past view is a prefix of the current
view. To put it formally, for every two views δi and δj
of the same user where i < j, we have δj = δi||δi+1,j

where δi+1,j contains the last j − i activities of the δj .
3) Cross-user view-consistency: For a user with a consis-

tent view, her view at any point in time should share the
same history with the view of every other authorized
user. More precisely, consider δAlicei and δBobj (i < j)
are the views of Alice and Bob, two authorized users.
It should hold that δBobj = δAlicei ||δBobi+1,j where δBobi+1,j

holds the last j − i operations of δBobj .
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5.1 Solution Overview

We address the view-consistency problem by providing a
solution for each of the aspects enumerated above, namely,
authenticity, individual view-consistency, and cross-user
view-consistency.

The authenticity of the log of activities is guaranteed
through digital signatures where each operation shall be
signed by the user who performs the operation. A similar
approach is sought in [22], [21], [23], hence we skip the
details of this part.

To protect individual view-consistency, we model the
activity log by a history tree where the hashed operations
constitute the leaves of the tree. Each user maintains the
tree digest of the history tree as her local Status and keeps
updating it to the latest version after each read and write
request. The tree digest mirrors the content of the activity
log in an abstract format. Using her local Status, each user
monitors the consistency of her past and present view by
verifying the result of her read and write requests using
membership and incremental proofs.

Tackling cross-user view-consistency is beyond the sim-
ple deployment of a history tree. Prior studies utilizing
history-tree have shown that users can still be forked into
two disjoint groups and only be served by the operations of
users in their own group in a consistent and verifiable man-
ner [21], hence compromising cross-user view-consistency.
In such a situation, unless users communicate and compare
their views, the fork remains undetected [22]. Satisfying
cross-user view-consistency efficiently, namely preventing
and detecting forked views without relying on users’ com-
munication, is one of the core contributions of Integrita.
There are two key methods to our solution for cross-user
view-consistency.

1) Integrita replaces the central storage of the shared ob-
ject (that is the major roadblock for satisfying cross-
user view-consistency) by a federated server architec-
ture that deploys multiple independent providers with
conflicting interests (that is at least one of them will
not collude with the rest) such as political parties of
a country or the ISPs of multiple distinct countries.
Similar setting has been similarly utilized in other
security-concerned systems [31], [14], [2], [47], [6], [7].
The storage of the activity log, which is modeled by a
history tree, is partitioned among the servers using an
algorithmic approach offered by Integrita. All the nodes
of the history tree, namely, tree digest, internal nodes,
and leaves, are indexed (using a proposed indexing
function) and grouped into disjoint sets, and each set
is assigned to a distinct server. We remark that no
replication takes place. The indexing function is public
and users know where to locate a particular node of
the history tree. To obtain a (membership/incremental)
proof, users identify the nodes along a membership
or incremental proof, then fetch them from the corre-
sponding storage servers.
The distributed storage of nodes of the history tree is
one of the keys to preventing malicious servers from
forking users’ views without being detected. The in-
tuition is that when a fork happens, the users under
each fork shall receive membership and incremental

proofs that are different from the other fork. Recall that
proofs in a history tree data structure are a subset of
tree nodes. Thus, when a fork is created, users of each
fork are handed with different (inconsistent) values of
nodes along the proof paths. However, the storage of
nodes is distributed among N servers, one of which
is non-colluding. Once the users of the forked groups
contact the non-colluding server (who is not involved
in the malicious behavior of N − 1 other servers), the
server’s response can only be consistent with the view
of one of those forked groups but not both. Therefore,
the proof for one of the groups fails and the incon-
sistency is revealed. Essentially, the N − 1 malicious
servers can fork users’ views for the operations whose
membership proofs reside at the malicious servers (but
not the non-colluding server). However, our proposed
indexing algorithm assures that for the nodes along the
membership proof of every sequence of q operations,
there will be at least one node that resides at the non-
colluding server. Therefore, no fork can last for more
than q consecutive operations.

2) The distribution of the storage of the activity log alone
does not suffice to achieve a quantifiable and provable
level of view-consistency. In fact, despite the presence of
an honest server in every sequence of q operations, the
dishonest servers, in particular circumstances which are
not avoidable, can bypass the honest server and make
the fork last a bit longer (more than q operations). They
can do so, by exchanging operations, i.e., leaf nodes
from one fork to another fork.
To mitigate this interchangeability mentioned above,
we propose that each newly inserted operation (i.e., a
leaf) as well as the associated root must be signed by
the user who submits the operation. This way, each leaf
is tied to the resultant tree. Hence, malicious servers
have to borrow an operation and it’s associated tree
digest together from one fork to another. However,
since the tree digests are representative of a history of
the operations, they are not exchangeable across forks
(since distinct forks do not share an identical history).
By mitigating the interchangeability of operations, we
can provably guarantee that no fork lasts for more than
q consecutive operations.
Our solution enjoys another significant property due to
which the value of q converges to 1 as the size of the
activity log grows (an extensive analysis of this feature
is supplied in Section 6.2). Having q equal to 1 indicates
that no fork lasts for even 1 operation, thus, the system
enters a strong level of consistency.

5.2 Distributed storage of the shared object

In Integrita, we propose a method to divide the storage of
the shared object among N servers in a non-overlapping
manner. We first present our new indexing mechanism for
the nodes of a history tree. Then, we describe how to utilize
those indices to distribute the storage of nodes among the
servers.

Node Indexing. We define the insertion path of opera-
tion i to be the nodes of the history tree whose values get
altered while inserting that operation into the tree. Figure
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3 illustrates the insertion path of operations 1 − 4, each
with a different color. The index labels Ii,j indicates the jth

node at level i. For a tree with M leaves, i ranges from
0 (indicating the leaves of the history tree) to dlog(M)e
(indicating the root of the history tree). Since the history
tree supports logarithmic path lengths from the root to the
leaves, the insertion path of the ith operation consists of
dlog(i)e+ 1 nodes where the logarithm evaluation is in base
2. For example, the insertion path of op1 is comprised of only
one node I1,1 (dlog(1)e+ 1 = 1) whereas the insertion path
op2 consists of two nodes I1,2 and I2,1 (dlog(2)e + 1 = 2).
The insertion paths of distinct operations may overlap,
e.g., the insertion path of op3, i.e., {I0,3, I1,2, I2,1}, and the
insertion path op4, i.e., {I0,4, I1,2, I2,1}, overlap in I1,2 and
I2,1. However, the value of each of these nodes at the time
of insertion of op3 and op4 are different, e.g., I1,2, on the
insertion path of op3 contains H(h3|| ⊥) whereas its value
changes to H(h3||h4) after the insertion of op4.

Following the above intuition, in Integrita, we distin-
guish among different values of intermediate nodes and
address them based on their location on the insertion path
of each operation. That is, each node is addressed with a
pair of integers (p, l) where l indicates the level of a node
along the insertion path and p represents the operation
number. We write Np,l to indicate the hash value of the
node with address (p, l). Figure 4 demonstrates this new
addressing semantic for operations 1−4. The insertion paths
of op3 and op4 are {N3,0, N3,1, N3,2} and {N4,0, N4,1, N4,2},
respectively. By contrasting Figures 4 and 3, we see that
in the new addressing mode, the node I1,2 is given two
separate index labels N3,1 and N4,1, corresponding to the
values at the insertion of op3 and op4, respectively.

Following our new addressing mechanism, we define
and distinguish three types of nodes of the history tree.
• Tree digest: The root of the tree after the insertion

of each operation is called the tree digest. In Figure
4, nodes N1,0, N2,1, N3,2, N4,2 all represent the tree
digests, which are the roots of the tree at the insertion
time of op1, op2, op3, and op4, respectively. A node with
the address (p, l) is a tree digest if Equation 5 below
holds:

l = dlog(p)e (5)

• Full node: A full node is a node whose left and right
sub-trees are full, i.e., insertion of further operations
will not alter the value of a full node. In Figure 4, the
nodes N1,0, N2,0, N3,0, N4,0, N4,1 and N4,2 are full. A
node with the address (p, l) is a full node if Equation 6
below is met:

p mod 2l = 0 (6)

• Temporary node: Nodes whose left or right sub-trees
are not full are called temporary nodes. We call them
temporary since the insertion of further operations will
change their hash values. For example, nodes N3,2 and
N3,1 in Figure 4 are temporary as there is an empty
node in their right sub-trees corresponding to H(op4).
In general,Np,l is a temporary node if Equation 7 below
holds:

p mod 2l 6= 0 (7)

h1 = H(op1)

I0,1

H(h1||h2)

I1,1

h1 = H(op1)

I0,1

h2 = H(op2)

I0,2

H(H(h1||h2))||H(h3|| ⊥))

I2,1

H(h1||h2)

I1,1

h1 = H(op1)

I0,1

h2 = H(op2)

I0,2

H(h3|| ⊥)

I1,2

h3 = H(op3)

I0,3

H(H(h1||h2))||H(h3||h4))

I2,1

H(h1||h2)

I1,1

h1 = H(op1)

I0,1

h2 = H(op2)

I0,2

H(h3||h4)

I1,2

h3 = H(op3)

I0,3

h4 = H(op4)

I0,4

Fig. 3: Insertion paths of op1, op2, op3, and op4. Each
insertion path is indicated by a distinct color.

Assignment of nodes to the servers. The index of
the storage server of a node with the address (p, l) is
determined by function F defined in Equation 8:

F (p, l) = [L(p, l) mod N ] (8)

where L is defined as in Equation 9 and N is the total
number of servers. L can be seen as a deterministic
labeling function that converts node addresses (p, l) to
an integer value.

L(p, l) = 1 + l +
i−1∑
j=1

(dlog(j)e+ 1) (9)

For example, in a system with 4 servers, the storage
of N1,0, N3,1, N4,2, . . . are given to the first server S1.
Nodes N2,0, N3,2, . . . are given to S2, then S3 gets
to serve N2,1, N4,0 . . ., and S4 stores N3,0, N4,1, . . ..
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h1 = H(op1)

N1,0

H(h1||h2)

N2,1

h1 = H(op1) h2 = H(op2)

N2,0

H(H(h1||h2))||H(h3|| ⊥))

N3,2

H(h1||h2)

h1 = H(op1) h2 = H(op2)

H(h3|| ⊥)

N3,1

h3 = H(op3)

N3,0

H(H(h1||h2))||H(h3||h4))

N4,2

H(h1||h2)

h1 = H(op1) h2 = H(op2)

H(h3||h4)

N4,1

h3 = H(op3) h4 = H(op4)

N4,0

Fig. 4: Insertion paths of op1, op2, op3, and op4. Each
insertion path is indicated by a distinct color. Each node
is addressed with a pair of integers (p, l) as Np,l where i
indicates the operation number and l stands for the level of
node on the insertion path.

This results in two main observations. First, the as-
signment of the nodes circulates across the servers;
that is {N1,0 → S1, N2,0 → S2, N2,1 → S3, N3,0 →
S4, N3,1 → S1, N3,2 → S2, . . .}, where → indicates
the assignment and the pattern of S1, S2, S3, S4 recurs
throughout the assignment. The first observation im-
plies the second observation; that is, the labels of nodes
assigned to each server are N distant. This is due to the
fact that the storage of nodes is assigned to the servers
with a round-robin pattern; hence the labels of two
consecutive nodes received by a server are N distant.
For example, consider the sequence of nodes stored
at server S1, i.e., N1,0, N3,1, N4,2, . . . whose labels are
L(1, 0) = 1, L(3, 1) = 5, L(4, 2) = 9, . . ., respectively;

N5,3

N4,2

N2,1

N1,0 N2,0

N4,1

N3,0 N4,0

N5,2

N5,1

N5,0 ⊥

⊥

Fig. 5: 5th version of the shared object’s activity log. The
temporary nodes are shown in red.

the difference between the label of each node and its
preceding node is N , i.e., L(3, 1)− L(1, 0) = 5− 1 = 4
and L(4, 2) − L(3, 1) = 9 − 5 = 4. In Section 8, we
discuss how we enforce q-detectable-consistency using
this circular storage distribution.

Fetching proofs in a distributed manner. In Integrita, there
is no central entity holding a global view of the history
tree associated with the activity log. As such, unlike the
centralized system where one entity, i.e., the server, would
create the membership and incremental proofs and shares
with users, in Integrita, the user herself is responsible to
determine the nodes along the proof path and fetch them
from the corresponding storage providers (using Equation
8). Once the nodes are fetched, the correctness of the proof
can be verified as described in Section 4 (more details can
be also found in [20], [19]).

Identifying the nodes that are required for a membership
or incremental proof is straightforward and exemplified in
Section 4. However, due to the storage efficiency (explained
in Section 7.1), Integrita makes a subtle change to that
procedure. That is, in Integrita, the nodes of the tree that are
temporary (with a non-full right or left sub-trees) never get
stored at the server-side. Instead, if the value of a temporary
node is required as part of a proof, it can be reconstructed
from the full nodes with the highest level in it’s left and it’s
right sub-trees. For example, consider node N5,2 in Figure 5,
which is a temporary node. The full nodes with the highest
level in its left and right are N5,0 and ⊥, respectively. It is
easy to verify that N5,2 can be calculated by only having
these two values, i.e., N5,2 = H(H(N5,0|| ⊥)|| ⊥). As such,
if node N5,2 is needed to construct a proof, the user should
instead fetch N5,0 from its corresponding storage server, i.e.,
SF (5,0) = S3 where F is defined in Equation 8 and the total
number of servers is 4.

6 INTEGRITA CONSTRUCTION

Integrita consists of four decentralized protocols, namely,
Create object, Update Status, Read, and Write, which are run
between a user and the servers. Through Create Object
protocol, a user initiates the shared object and communicates
necessary information about the object with the authorized
users. A user runs Update Status protocol to fetch the root
of the latest version of the history tree. A user inserts an
operation to the history tree through the Write protocol. In
the context of social networks, an operation may correspond
to adding a photo to a profile, removing a video from
the profile, or commenting on some post. Users engage
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in the Read protocol to read a subset of operations from
the servers in a decentralized manner. The communication
channel between the users and the servers are assumed to
be authenticated.

The main protocols of Integrita rely on the following
sub-protocols, which are essentially remote procedure calls
(RPC) available at each server Sj where j ∈ [1, N ]; namely,
Sj .Push, Sj .Pull, and Sj .GetStatus. Each main protocol
is a different orchestration of these RPC calls to a subset of
storage servers.

6.0.1 Setup
Authorized users (with read and write access to the shared
object) are each associated with a signature key pair.
FList = {(Uj , vkUj )}j∈[1,T ] shall contain the username
Uj and the signature verification key vkUj of each user
where T is the total number of authorized users. FList is
publicly available to the servers and the authorized users.
Moreover, the content that users operation on the object
are all encrypted using symmetric key encryption where
the key ek is given to the authorized users. For more fine-
grained access control one can deploy the method proposed
by [22], [56] or by leveraging attribute-based encryption
similar to [3]. We assume that the users exchange FList
and the encryption key out of band; however, this can be
outsourced to the server-side utilizing the method proposed
by [22]. Also, for the ease of explanation, we assume that
the set of authorized users is static, which can be extended
to a dynamic version by deploying the proposal of [22]. In
this paper, we rather focus only on view-consistency issues.

Each server has a signature key pair and a unique index
in the range of [1, N ]. We write Si to indicate the server with
index i. Servers publish the ordered list SList = {Si}i=1:N ,
where each server Si’s signature verification key is accessi-
ble through Si.vk. Besides, the definition of the hash func-
tion H to be used in the history tree is publicly available.
Each server also sets up a database DB to store the parts
of the shared object’s activity log (history tree) for which it
is responsible. Also, each server has a local Status variable
that reflects the address (p, l) (as demonstrated in Figure 4)
of the latest node of the history tree stored (or seen) by that
server.

Notation: Throughout our description, we distinguish
between the data generated or operation performed by a
server and a user using S and U subscript. That is, we
write σUi to indicate a signature generated by the ith user.
Likewise, SignUi(.), and V erifyUi(.) mean the execution
of Sign and V erify algorithms using the signature key and
verification key of the ith user, respectively. Following the
same pattern, we have σSi , SignSi(.), and V erifySi(.) for
the ith server.

6.1 Server-side Remote Procedure Calls

Each server Sj where j ∈ [1, N ] is available to the
users through three RPCs namely, Sj .Push, Sj .Pull, and
Sj .GetStatus. During the main protocols, the user may
contact any of the servers to push or pull a node of the
history tree. Each server has a local Status variable that
reflects the address (p, l) of the latest node of the history
tree that is pushed to that server.

1) Sj .Push(Ui, (p, l), in = (Np,l, op, σUi)): The details of
the Push RPC is shown in Algorithm 1. This function
is invoked by a user to upload a single node of the
history tree to the corresponding storage server. Ui
indicates the calling user, (p, l) represents the address of
the intended node (recall our addressing convention in
Section 5.2), and in is the metadata about the intended
node.

Algorithm 1 Sj .Push(Ui, (p, l) , in = (Np,l, op, σUi ))

1: if Ui /∈ FList then
2: Return “Reject”
3: if F (p, l) 6= j then
4: Return “Reject”
5: if L(p, l)− L(Sj .Status.p, Sj .Status.l) 6= N then
6: Return “Reject”
7: if Np,l is a leaf node then
8: if H(op) 6= Np,l OR V erifyUi ( Np,l||p, σUi ) 6= accept

then
9: Return “Reject”

10: if Np,l is a tree digest then
11: if V erifyUi ( Np,l||p, σUi ) 6= accept then
12: Return “Reject”
13: Insert (Ui, (p, l), in) into DB
14: if Sj .Status.p 6= p then
15: Remove the user signature σUi ∀ τi ∈ Sj .DB \ τ1
16: Sj .Status=(p, l);
17: if Np,l is a tree digest then
18: Return SignSj (Np,l||p)
19: else
20: Return “Accept”

Firstly, the server needs to perform several checks:
• The request is issued by an authorized user, which is
Ui ∈ FList (lines 1-2).
• The server is responsible for the storage the intended

node (lines 3-4).
• The node is the next node that the server expects to

receive (lines 5-6). Each server expects to receive a
sequence of nodes whose labels are N distant. That
is, L(p, l) which is the label of the inserted node
must equal to L(Sj .Status.p, Sj .Status.l)+N where
F (Sj .Status.p, Sj .Status.l) is the label of the last
seen node by the server. This is due to the fact that
the storage of nodes are assigned to the servers with
a circular pattern; hence the labels of two consecutive
nodes received by a server are N distant (see Section
5.2).

Once all the checks are passed successfully, the server
validates the metadata in. in has three parts:
• Np,l represents the hash value of the node. This

parameter is non-empty except for the temporary
nodes. That is, if the user is pushing a node with the
address of (p, l) that belongs to a temporary node,
then the user leaves Np,l empty. Recall from Section
5.2 that the temporary nodes are never saved at the
server-side.
• op: This field is non-empty only for the leaf nodes.
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op represents an operation of the activity log. The
operation op can be deletion or insertion of a opera-
tion, e.g., op = Insert||post. Recall that in the history
tree of the activity log, the leaves are the hash of the
operations. Thus, if the inserted node is a leaf node,
then the following should hold Np,l = H(op) (see
Figure 4).
• σUi is the user-generated signature over Np,l||p. This

field is set by the user if the inserted node is a leaf or
a tree digest.

The server performs necessary verification over the
content of in depending on the type of the node (lines 7-
12). Upon successful verification, the server inserts the
node and the associated metadata in to the database
(line 13).
If the inserted node belongs to an operation that is
newer than the last operation seen by the server (line
14), the server can erase the signatures that belong to
the older tree digests. This will save storage for the
server. Erasing the signatures will not affect provable
view-consistency. This is formally proven in Section 8.
The server updates its Status variable (line 16) to reflect
the address of the most recent node. Finally, if the
inserted node is a tree digest, the server must sign the
node (lines 17-18) and respond to the user accordingly
(this signature is indeed a commitment from the server
on the correct receipt of the tree digest). Otherwise, the
server only acknowledges that the push operation is
done (lines 19-20).

2) Sj .Pull(p, l): Algorithm 2 demonstrates the Pull pro-
cedure. This function gets the address (p,l) of a node
and returns the information associated with that node.
Initially, the server checks whether the calling user is
authorized (line 1) as well as whether there is any
record associated with that node in the database (line
3). If any of those fails, the algorithm outputs ⊥ (lines
2 and 4). Otherwise, the server retrieves the record
corresponding to the node from the DB (line 5). If the
requested node is a tree digest, then the server gener-
ates a signature σSj over Np,l||p (lines 6-7), otherwise
leaves σSj empty (lines 8-9). Finally, the server sends
the record and the signature (if any) to the user (line
10).

Algorithm 2 Sj .Pull(Ui, (p, l))

1: if Ui /∈ FList then
2: Return ⊥
3: if DB.get((p, l)) =⊥ then
4: Return ⊥
5: record = DB.get(p, l)
6: if Np,l is tree digest then
7: σSj = SignSj (Np,l)
8: else
9: σSj =⊥

10: Return (record, σSj )

3) Sj .GetStatus(): Once this procedure is called, the server
sends its signed Status to the user (Algorithm 3).

Algorithm 3 Sj .GetStatus ()

1: σSj = SignSj (Sj .Status)
2: Return (Sj .Status, σSj )

6.2 Main Protocols
6.2.1 Create object
During this protocol, the shared object gets initialized and
the necessary information is communicated among the au-
thorized users. The protocol is visualized in Figure 6.

User: One of the authorized users Ui, e.g., the admin of
a Facebook-like group page, runs this protocol. She inserts
the very first operation op to the object’s activity log. The
content of the initial operation must uniquely represent the
object, e.g., the title of the group page together with its
creation date and time. The group administrator proceeds
as illustrated in steps 1-4 of Figure 6. Next, she submits N1,1

to the corresponding storage server SF (1,1) by invoking its
Push function (step 5).

Server: The procedure of the Push function is shown in
Algorithm 1 and discussed in Section 6.1. Once the function
is executed, and since the attempted node N1,1 is a tree
digest, the server signs N1,1||1 and returns the signature
σF (1,1) back to the user (step 6).

Users: The group administrator updates her own Sta-
tus (step 7) and also communicates her Status information
with all the authorized users, e.g., group members (step
8). Notice that Status is a local variable comprised of the
following components Status = (v, τv, σ) where v reflects
the last version of the shared object seen by the user, τv
is the corresponding tree digest, and σ is the server-side
signature over τv||v. Note that for the initial operation, the
group administrator sets the parameters as follows v = 1,
τv = N1,1 and σ = σF (1,1). All the other users initialize their
Status variable according to the group administrator’s (step
9).

6.2.2 Update Status
In this protocol, demonstrated in Figure 7, the user inter-
acts with N servers to find out and fetch the tree digest
corresponding to the latest version of the activity log. To
identify the latest version, one should find the index of the
last operation inserted to the activity log. As such, the user
collects the Status variable of all the servers by invoking
their GetStatus function and determines the maximum
and the minimum node addresses among those (steps 1-2).
Identifying the minimum node address helps user to verify
the consistency among the servers outputs. The outputs
are consistent if the gap between the label of the max
and min addresses, i.e., L(pmax, lmax) − L(pmin, lmin), is
at most N . This is because the servers get to serve nodes
of the activity log (history tree) in a circular manner; hence,
the difference between the labels of the nodes seen by the
servers is upper-bounded by N . If the constraint is satisfied,
the user accepts pmax as the most up-to-date version of the
activity log and pulls the corresponding tree digest from
the respective storage server (steps 4-5). Since the user is
pulling a tree digest, the output of the Pull invocation will
contain two signatures, one generated by the user (who has
generated the pthmax operation), and the server generated
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Authorized Users Uj Group Administrator Ui SF(1,1)

1.post = Encek(Title||Date||Time)

2.op = insert||post
3.N1,1 = H(op)

4.σUi
= SignUi

(N1,1||1)

5.SF(1,1).Push(Ui, (1, 1),N1,1, op, σUi
)−−−−−→

7.StatusUi
= (1,N1,1, σSF(1,1)

)
6.σSF(1,1)←−−−−−−

8.StatusUi←−−−−−−
9.StatusUj

= StatusUi

Fig. 6: Create object protocol.

signature (recall Algorithm 2). Accordingly, the user verifies
the associated signatures (steps 6-7). If any failure happens,
the user aborts. Next, the user checks whether her local
Status variable, i.e., τv is consistent with τp∗ . This can be
done through an incremental proof between τv and τp∗
(steps 9-14). To this end, the user identifies the nodes along
the incremental proof (step 9) and downloads them from the
corresponding storage servers (step 10-11). Next, for each
node on the path, she authenticates the associated signatures
(step 12) and aborts in case the authentication fails. Once
the proof is obtained, she verifies whether the proof can
correctly assert the consistency between τv and τp∗ (step 14).
If the verification does not pass, the user aborts. Otherwise,
she updates her Status value (step 15).

6.2.3 Read

During the Read protocol, which is illustrated in Figure 8,
the user reads a certain range R = [x, y] of operations, i.e.,
opx, · · · , opy (line 1). At first, the user updates her Status
variable through Update Status protocol (line 2) to learn
the latest version of the activity log. Next, she specifies
the nodes along the membership proofs of the intended
operations (line 3) and contacts the corresponding storage
servers to fetch the nodes (lines 4-6). The leaf nodes of the
proof should be appropriately signed by the issuing users
(line 7). Also, the user should ensure that a leaf node is
the hash of the corresponding operation (line 8). If any
verification fails, the user aborts. Ultimately, the user verifies
the correctness of the membership proofs of the operations
against τ∗ (line 10). If the result of the membership proof is
false, then the user aborts (line 13).

6.2.4 Write

In this protocol, illustrated in Figure 9, a user interacts with
the servers to insert her operation to the object. The user
initially runs Update Status protocol to fetch the latest tree
digest τ∗ corresponding to the latest version of the object
(line 1) also determines the index of the next operation (line
2).

The user sets her operation (line 3) and signs it (line
4). She identifies the nodes along the insertion path of
her operation together with their siblings (line 5) and then
fetches the values from the corresponding storage servers
(lines 6-11). For the leaf nodes, the signature of the user
who has generated that operation (line 9) as well as the
computed hash values (line 10) must be checked. If anything
goes wrong, the user aborts. Next, she recomputes the
hash values of the nodes along the insertion path of her
operation (line 12) and then attempts to submit them to
the corresponding servers by invoking their Push functions
(lines 13-20). She builds the necessary metadata in for the
submission of each node as explained below:

1) If the node is a leaf node (line 14), the user needs to
submit the operation oppc , the hash of the operation, as
well as the signature σ.

2) For a full node (line 15), only the hash value of the node
is needed for the metadata.

3) For a temporary node (line 16), no metadata is required
(all the fields of in are empty). The corresponding
server only gets contacted to be informed about the
insertion of the new operation.

If the response of any of the servers (line 17) is reject (line 18),
then inconsistency is detected and the user aborts. Finally,
the user submits the tree digest to the corresponding server
(line 19), obtains the server-side signature, authenticates the
signature (line 20), and updates her Status accordingly (line
21). If the server signature did not get verified, the user
aborts.

Audit: As discussed before, each user is responsible to
ensure that her operation is correctly inserted to the object
and is visible to all the other users. As such, every write
operation must be followed by the audit procedure (lines
23-24) during which the user waits for q or more operations
to be inserted into the object. q depends on pc and N
and is formulated by Equation 10 i.e., the user waits for
q = Q(pc, N) operations (this dependency is explained
below, under the audit threshold subsection). Then, the user
checks whether the tree digest at version pc is consistent
with the tree digest at version pc + q of the object. She
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User U Sj∈[1,N]

1. (pmax, lmax) = max
i∈[1,N]

{Si.GetStatus()} ⇐⇒

2. (pmin, lmin) = min
i∈[1,N]

{Si.GetStatus()} ⇐⇒

3. If (L(pmax, lmax)− L(pmin, lmin) >= N) then Abort

4. p∗ = pmax l∗ = dlog(pmax)e+ 1

5. (U′, (p∗, l∗), (τp∗ ,⊥, σU′), σSF(p∗,l∗)) = SF(p∗,l∗).Pull(U, (p∗, l∗)) ⇐⇒

6. If VerifyU′(τp∗ ||p∗, σU′) == False then Abort

7. If VerifySF(p∗,l∗)(τp∗ ||p∗, σSF(p∗,l∗)) == False then Abort

8. Retrieve τv from U.Status

9. path =Nodes (pi, li) along the incremental proof of τv and τp∗

10. For (pi, li) ∈ path

11. (Uk, (pi, li), (Npi,li , op, σUk
), σSF(pi,li)

) = SF(pi,li).Pull(U,pi, li)⇐⇒

12. If Npi,li is a leaf

If VerifyUk
(Npi,li ||pi, σUk

) == False then Abort

13. proof.insert((pi, li),Npi,li , op)

14. If (IncVrfy(τv, τ
∗,proof) == False) then Abort

15.U.Status = (p∗, τ∗, σSF(p∗,l∗))

Fig. 7: Update Status protocol. The arrows indicate the user’s interaction with the servers.

User U Sj∈[1,N]

1. Select a range R = [x, y]

2. Run Update Status and fetch the latest tree digestτ∗ ⇐⇒
3. path = Nodes (pi, li) along the membership proof of opx · · · opy

4. For (pi, li) ∈ path

5. (Uk, (pi, li), (Npi,li , op, σUk
),−) = SF(pi,li).Pull(U,pi, li) ⇐⇒

6. If Npi,li is a leaf

7. If VerifyUk
(Npi,li ||pi, σUk

) == False then Abort

8. If Npi,li 6= H(op) then Abort

9. proof.insert((pi, li),Npi,li , op)

10. If (MemVrfy(τ∗, {(j,Nj,0)}j∈R,proof) == False) then Abort

Fig. 8: Read protocol. The arrows indicate the user’s interaction with the servers.
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User U Sj∈[1,N]

1. Run Update Status and fetch (p∗, τ∗, σSF(p∗,dlog(p∗)e)) ⇐⇒
2. pc = p∗ + 1 , lc = dlog(pc)e
3. oppc = Craft the operation

4. σ = Signui
(H(oppc

)||pc)

5. path = Nodes (pi, li) along the insertion path of oppc
and their siblings

6. For (pi, li) ∈ path

7. (Uk, (pi, li), (Npi,li , op, σUk
),−) = SF(pi,li).Pull(U, (pi, li)) ⇐⇒

8. If Npi,li is a leaf

9. If VerifyUk
(Npi,li ||pi, σUk

) == False then Abort

10. If Npi,li 6= H(op) then Abort

11. proof.insert((pi, li),Npi,li , op)

12.Using proof, recalculate the insertion path {Npc,li}li∈[0,lc]
13. For Npc,li ∈ {Npc,0, · · · ,Npc,lc−1}
14. If Npc,li is a leaf node: in = (Npc,li , oppc

, σ)

15. If Npc,li is a full node: in = (Npc,li ,⊥,⊥)

16. If Npc,li is a temporary node: in = (⊥,⊥,⊥)

17. Res = SF(pc,li).Push(Ui, (pc, li), in) ⇐⇒
18. If Res == Reject then Abort

19. σSF(pc,lc)
= SF(pc,lc).Push(Ui, (pc, lc), (Npc,lc ,⊥, σ)) ⇐⇒

20. If VerifySF(pc,lc)
(Npc,lc , σSF(pc,lc)

) == False then Abort

21.Ui.Status = (Npc,lc , σSF(pc,lc)
)

Audit Procedure

23.Wait for T operations to be inseterted s.t. T ≥ Q(pc,N)

24. Run Update Status, if Abort occurs then Abort

Fig. 9: Write protocol. The arrows indicate the user’s interaction with the servers.

carries out this consistency check by the execution of the
update Status protocol (during which the incremental proof
between τpc and τpc+q is checked). If Update Status termi-
nates successfully, then the user knows that her operation is
consistently visible to all the other users. Otherwise, servers
must have equivocated about the user’s operation, which is
caught by the user.

Audit Threshold: The value of q is formulated in Equa-
tion 10 and is a function of the object version v at which the
write operation takes place (i.e., v = pc in Figure 9) and the
number of servers N . We refer to q as the audit threshold.

Q(v,N) = min(q) s.t.

 q∑
j=0

dlog(v + j)e+ 1 ≥ N

 (10)

As a concrete example, assume a system with N = 8
servers. A user who inserts the second operation v = 2
shall execute Update Status after the insertion ofQ(2, 8) = 2

more operations into the object, i.e., at the version v′ = v +
q = 2 + 2 = 4th, or any later version i.e., v′ ≥ 4 of the object.
If the Update Status protocol does not end successfully, then
there is a view inconsistency, e.g., servers attempted to drop
her operation or replace it with another one.

Below, we provide intuition as to why auditing the
object after Q(p,N) operations will result in achieving q-
detectable consistency. Moreover, in Section 8, we provide
a formal security definition for a q-detectable consistent
system followed by a proof asserting that Integrita is q-
consistent relying on our proposed auditing strategy.

For the insertion of each operation i, the servers that
are located on the insertion path will be informed about the
insertion regardless of the type of nodes they are responsible
for (see Figure 9, lines 13-19). We assume that at least one
of the servers is honest, as this is a minimal requirement.
We call an operation “frozen” if one or some of the nodes
along its insertion path are assigned to the honest server.
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It is named frozen since due to the presence of the honest
server, no other operation with the same index will exist; the
honest server will not accept the insertion of two operations
with the same index (as indicated in line 5 of Algorithm
1). This implies that for the frozen operation with the index
of f , there would be only one tree digest τf in the system,
representing a unique history (sequence of operations) of
the object. We call a tree digest corresponding to a frozen
operation as a frozen tree digest. All the other tree digests
τj created as the result of further write operations j > f
will comply with the history that τf represents (this is due
to the incremental proof check in Step 11 of the Update
Status protocol). Thus, if an operation i where i < f belongs
to the sequence of operations that a frozen tree digest τf
represents, then it will certainly belong to all the future
versions of the object. Thus, to ensure view-consistency, the
user needs to perform a consistency check between the
tree digest at the time of insertion of her operation and
the very next frozen tree digest. To determine the index of
the next frozen tree digest, we need to know the index of
the honest server. However, there is no presumption about
which server will act honestly. As such, after insertion of
each operation i, the user shall wait for q many operations
to be inserted as the result of which all the servers get contacted
at least once. As the storage of nodes is assigned to the servers
under a round-robin fashion, if the sum of the length of the
insertion path of the next q operations exceeds N , it means
that all the N servers, including the honest server whose
index is unknown, are contacted at least once. Equation 10
calculates q, i.e., the total number of operations (inserted
after ith operation) whose insertion paths’ lengths in total
exceeds N . Recall that the number of nodes located on the
insertion path of jth operation is dlog(j)e+ 1 which means
dlog(j)e + 1 distinct servers get contacted as the result of
insertion of the jth operation.

Analysis of Audit Threshold: Figure 10 shows the audit
threshold computed based on the function Q(v,N) (Equa-
tion 10) under different number of servers N and operation
number v. The audit threshold for a particular operation
number will increase with the number of servers, e.g., the
audit threshold for operation number 65 for N = 8, 16, 24,
and 32 are 0, 1, 2, and 3, respectively.

After a certain version of the object, each inserted op-
eration is a frozen one since all the servers get contacted
along the insertion of each operation. This is because the
insertion path length exceeds the number of servers for
each operation. Indeed, the object enters its strong consistent
version where no fork can happen in users’ views. We call
that version of the object as the transition point of the object.
For a given N , the transition point is computed based on
Equation 11.

TP (N) = 2N−2 + 1 (11)

For example, with N = 8, the strong view consistency
starts at version 65, whereas with N = 16 the transition
point is 16385. Thus, the higher the number of servers, the
later the object transits to its strong consistent version. The
transition points of the different numbers of servers (1-20)
are illustrated in Figure 11.
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Fig. 11: The object’s transition point for various number of
servers as defined in Equation 11. The x axis represents
the number of servers whereas the y axis shows the binary
logarithm of the transition point.

7 COMPLEXITY AND PERFORMANCE

In this section, we analyze the asymptotic performance
of Integrita with respect to the storage overhead (Section
7.1), as well as the round and communication complexity
(Section 7.2) for both the servers and the users. Throughout
this section, we consider |H| to be the bit-length of hash
values whereas |σ| indicates the bit-length of each signature.

7.1 Storage Complexity

User: Users have to store constant amount of data for their
Status variable.
Server: Servers are responsible for storing the object’s posts,
and the activity log. Note that in the history tree represent-
ing the activity log, only leaves, full nodes, and tree digests
are maintained by the servers but no temporary nodes.

An activity log with M operations (M being a power of
two) consists of M leaves, M − 1 full nodes, and M tree
digests. However, out of the M tree digests, some of them
overlap with the full nodes hence are already saved in the
system. Indeed, out of theM tree digests (forM operations),
log(M) many of them (associated with the operations with
the indices 20, 21, 22,..., 2log(M)) are full nodes. Therefore,
the total number of full nodes and tree digests stored is M+
M−1−log(M). Additionally, each leaf node is attached to a
user-side signature, thus, M signatures shall be maintained
by the servers on aggregate. Similarly, tree digests are also
signed by the users, though, only the signature of the O(N)
most recent tree digests are kept in the system (lines 14-15
of Algorithm 1).

The overall storage consumption by the N servers is as
shown in Equation 12 which is of O(M).

|H| · ( M︸︷︷︸
leaves

+M +M − 1− log(M)︸ ︷︷ ︸
tree digests and full nodes

) + |σ| · (M +N) (12)

Comparison with related work: In the replication-based
solutions [37], [13], [25], [26], [45], [52], [44], the activity
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Fig. 10: The Audit Threshold for a various number of servers each demonstrated by a different color. The x axis represents
the index of operation whereas the y axis shows the audit threshold computed based on functionQ(v,N) given in Equation
10.

log must be replicated over all the N servers. The history
tree associated with the activity log with M operations has
2 · M − 1 nodes. Also, all the M leaves are attached to
a user-generated signature. Thus, the storage of a single
activity log takes up |H| · (2 ·M − 1) + |σ| ·M bits. Each
server has one copy of the activity log, which on aggregate
results in N · [|H| · (2 ·M − 1) + |σ| ·M ] space complexity
for the entire system. On the other side, in the centralized
architectures [22], [23], there is only one central server
which holds a single copy of the activity log which imposes
|H| · (2 ·M − 1) + |σ| ·M storage overhead.

Concrete Storage: Table 1 summarizes the comparison
of the storage overhead between Integrita and the related
studies. For the concrete overhead, we consider Facebook
walls as the shared object and the average number of
posts on users walls as the total number of operations
in the activity log (though, we believe the true number
of operations including the deletion operations would be
higher than the number of posts). On Facebook, each wall on
average has 1241 posts (per year)7. Thus we set M = 1241.
Moreover, the number of monthly active users on Facebook
is approximately 2.41 billion8 which means 2.41 billion walls
(activity logs) should be maintained by the OSN. The values
reported in Table 1 are the storage required in total for 2.41
billion activity logs each with M = 1241 operations. We
assume the deployment of SHA-3 as the hash function with
a 512-bit output length and RSA signature scheme with
a 2048-bit signature length. The number of servers is set
to N = 20. We further examine the storage overhead for

7. https://blog.wishpond.com/post/115675435109/40-up-to-date-
facebook-facts-and-stats

8. https://www.businessinsider.com/facebook-grew-monthly-
average-users-in-q1-2019-4

N ∈ [20, 40] in Figures 12 and 13, which illustrate the total
and per-server storage overhead, respectively.

By inspecting Figure 12, we draw two observations
regarding the superiority of Integrita over the existing so-
lutions. First, the storage consumption of Integrita is inde-
pendent of the number of servers. This makes Integrita an
efficient solution compared to the replication-based meth-
ods where the overhead grows linearly with the number of
servers (recall that in replication-based solutions servers are
the replica of the activity logs). Second, Integrita storage
requirement is very close to the centralized architecture
(only 10% more) yet can guarantee a stronger level of view
consistency i.e., q-detectable consistency without relying on
users communication nor replication.

With respect to the per-server storage requirement, as
Figure 13 illustrates, Integrita outperforms both counter-
parts by incurring only O( 1

N )th of their overhead. This is
expected since, in Integrita, the activity log gets split across
the servers, and the proposed distributed storage algorithm
comes with an innate load balancing property. This gives
great flexibility to the system designer to adjust the number
of servers with respect to the storage capacity of individ-
ual servers. For example, if the total storage requirement
is 13504TB and each server has 421TB capacity, then the
number of required servers will be 32 (find 421TB on the
y-axis of Figure 13 which is 8.72 (28.72 ≈ 421), and then
spot the corresponding x-value on the Integrita’s curve i.e.,
32).
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Fig. 12: Total storage overhead. y axis represents binary
logarithm of the storage consumption in Terabytes.
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Fig. 13: Storage overhead per server. y axis represents binary
logarithm of the storage consumption in Terabytes.

7.2 Round Complexity and Communication Complexity

In this section, we analyze the round complexity as well
as the communication complexity, i.e., the number of bits
communicated between parties during the main protocols.
We consider each communication round to be one send and
one receive operation. If multiple send and receive actions
can be done concurrently (since they are independent), then
we count them as one round. The results are summarized
in Table 2 and Table 3. M and N stand for the total number
of operations in the activity log and the total number of
servers, respectively.
• Update Status: In this protocol as shown in Figure 7,

the user communicates with the servers at 3 different
steps (1,5, and 11). The result of step 1, where the user
gets the Status of all the servers, is necessary for the
next two communications. Thus, step 1 should precede
steps 5 and 11. However, steps 5 and 11, during which
the user downloads the tree digest and the incremental
proof, respectively, can be executed in parallel. Thus,
the overall round complexity of Update Status is 2 for

the users. The same holds for the servers who may get
contacted twice during this protocol, once to share their
latest status and the second time when the server may
be holding the tree digest or it is located on the proof
path.
The communication complexity of Update Status is due
to the download of the signed Status of the servers (step
1) as well as fetching the most recent tree digest (step 5)
and the incremental proof (step 11). The transmission of
Status variables incurs SSzie ·N bits data exchange for
N server generated signatures. The response to the pull
request of the tree digest embodies |H|+ 2 · SSize bits
data (the tree digest and two signatures, one server-
generated, and the other user-generated). The incre-
mental proof will approximately contain 2 · log2(M)
of tree nodes where at most 4 of them are leaves.
The metadata associated with these nodes will be
2 · log2(M) · |H|+ 4 ·SSize bits (where 2 · log2(M) · |H|
portion is for the hash values of the nodes and 4 ·SSize
correspond to the user signatures for the 4 leaves).
Thus, on aggregate, the communication complexity at
the user side is at most |σ|·(N+6)+|H|·2·log(M). The
communication complexity for each server on the aver-
age is SSize·(N+6)+|H|·2·log(M)

N ≈ SSize+ |H| · 2·log(M)
N .

• Read: During the Read protocol, shown in Figure 8, the
user communicates with the servers at two phases, once
at step 2 to fetch the latest tree digest by executing Up-
date Status protocol and another time at step 5, to pull
the nodes along the membership proofs. The former has
the round complexity of 2 whereas for the latter the user
can connect to all the servers simultaneously; hence, she
can fetch all the nodes in 1 round of communication.
The round complexity can be enhanced further by com-
bining the second round of Update Status protocol with
step 5 of the Read protocol. This is doable since, in both
phases, the user pulls a set of nodes from the servers
where the indices of nodes are known and independent.
Therefore, the overall round complexity of the Read
protocol for the user is 2. Similarly, each server may
get contacted at most 2 times.
To read the range [i, j] of operations, the user down-
loads R = j − i + 1 many leaf nodes with their user-
side signatures, which requires R · [SSize + |H|] bits
of transmission. The membership proof of R operations
entails at most 2·log(M) hash values. On aggregate, the
user communicates |H| · (2.log(M) + R) + |σ| · R bits
data. Consequently, the average data transfer for each
server is |σ| · R + |H|·(2.log(M)+R))

N . Note that this is in
addition to the data exchange incurred by the Update
Status protocol that is run at the beginning of the Read
protocol.
• Write: At the beginning of this protocol, as illustrated

in Figure 9, the user obtains the latest tree digest via
Update Status protocol, which imposes 2 rounds of
communication. Next, at step 7, the user fetches the
nodes on the insertion path of her operation. This can be
handled in 1 round of communication with concurrent
connections to the servers. Step 7 can be merged with
the second round of communication in Update Status
protocol since all the nodes fetched at these two phases
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Design Centralized Replication-based Integrita
Asymptotic |H| · (2 ·M − 1) + |σ| ·M N · [|H| · (2 ·M − 1) + |σ| ·M ] |H| · (3M − 1− Log(M)) + |σ| · (M +N)

Concrete 11483TB 229663TB 13504TB
Per-Server 11483TB 11483TB 675TB

View Consistency Level Fork-consistency Strong consistency q-detectable consistency

TABLE 1: Storage overhead of Integrita vs. related work. N : the number of servers. M : the number of operation in the
activity log. |σ| and |H| represent the bit-length of the signatures and hashed values, respectively.

are independent of each other and can be downloaded
concurrently. At steps 17 and 19, the user recomputes
the values for the nodes on the insertion path of her op-
eration and pushes the new values to the servers. This
also counts as 1 round of communication. Thus, in total,
the Write protocol costs 3 rounds of communication for
the user. Subsequently, each server may get involved in
at most 3 rounds.
From the communication complexity perspective, the
insertion path of the current operation requires a down-
load of at most 2 · log(M) hash values whereas push-
ing back the updated nodes requires the exchange of
|H| · log(M) bits. As such, the user communicates
|H| · 3 · log(M) bits with the servers. The data transfer
at the server-side, on the average, shall be |H|·3·log(M)

N .
Note that, in this calculation we excluded the data
exchange incurred by the Update Status protocol that
is run at the beginning of the Write protocol.

8 SECURITY

8.1 q-Detectable View Consistency and Inconsistency
Interval

In this section, we provide a different interpretation of q-
Detectable view-consistency. Recall that we name this level
of consistency as q-detectable since servers’ misbehavior in
perturbing views cannot last for longer than q operations.
Another way to look at this definition is that in a q-
detectable consistent system, where the shared object is in its
vth version (v operations are applied to the activity log), the
users are guaranteed to have consistent views towards all
the operations in the activity log except the last δ operations,
i.e., opv−δ, ..., opv . We use the term inconsistency interval to
refer to the range of operations [v−δ, v] where no guarantee
about consistency is in place. The views of the users for any
history of the object preceding the v−δth version of the object
is guaranteed to be the same. In Integrita, δ is a function of
the object version v and the number of servers N , and its
value is computed using the function ∆(v,N) formulated
in Equation 13.

∆(v,N) = max(q ∈ [0, v]) s.t.

 q∑
j=0

dlog(v − j)e+ 1 ≥ N


(13)

As a concrete example, assume a system with N = 8 servers
and an object at its 5th version. The inconsistency interval is 2
(∆(5, 8) = 2), that is, the view consistency holds for all the
operations except the 4th and the 5th operation. As such,
the following two views V iew5 = {op1, op2, op3, op4, op5}
and V iew′5 = {op1, op2, op3, op′4, op′5} are q-consistent

since, the consistency holds for all the operations out of
the inconsistency interval. However, the following two
views V iew5 = {op1, op2, op3, op4, op5} and V iew′5 =
{op1, op′2, op3, op′4, op′5} do not satisfy q-consistency because
there is an inconsistency at the second operation which is
out of the inconsistency interval.

Audit threshold vs inconsistency interval: The audit
threshold Q (given in Equation 10) and inconsistency in-
terval ∆ (given in Equation 13) measure the number of
operations whose aggregated insertion path lengths exceeds
N (N is the total number of servers). But there is a slight
difference; Q measures this value for the future of an op-
eration whereas ∆ measures this value for the recent past
of an operation. To be more specific, the audit threshold
and inconsistency interval help answering distinct questions
given below.
• For the newly inserted operation v, what is the future

version v′ of the tree at which users are guaranteed to
have consistent view of the operation v? the answer is
v′ = v + Q(v,N) where Q(v,N) indicates the audit
threshold.
• Given the current version v′ of the tree, what is the lat-

est operation number v preceding v′ that is consistently
visible to all the users (in other words, the audit thresh-
old of v has passed)? the answer is v = v′ − ∆(v′, N)
where ∆(v′, N) represents the inconsistency interval.

The main observation from the the arguments above is that
for two operation numbers v and v′ where v′ = v+Q(v,N),
we have v = v′−∆(v,N). In other words, the audit thresh-
old for the operation number v is equal to the inconsistency
interval of the operation number v′ = v + Q(v,N) i.e.,
∆(v + Q(v,N), N) = Q(v,N). To capture the notion of q-
consistency, we define the following game to be played be-
tween an adversaryA and a challengerChal. The adversary
controls N − 1 servers, whereas the challenger gets to play
for the authorized users Ui ∈ FList and the honest server.
To represent servers under the control of the adversary
we write Si∈A whereas for the one server running by the
challenger we denote SChal. The adversary can specify a
user to run the read or write protocol. The challenge for
the adversary is to make two users U and U ′ accept two
q-inconsistent views of the object.

q-Detectable Consistency Experiment q-Det-
Cons(1λ)

1) The challenger gives the security parameter
1λ to the adversary. Next, the challenger and
the adversary exchange the signature verifi-
cation keys of the parties they control. The
challenger hands in the adversary vkSChal and
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Entity\Overhead Update Status Read Write
User 2 2 3

Servers 2 2 3

TABLE 2: Integrita Round Complexity

Entity\Overhead Update Status Read Write

User |σ| · (N + 6) + |H| · 2 · log(M) |σ| ·R+ |H| · (2.log(M) +R) |H| · 3 · log(M)

Servers SSize+ hSzie · 2·log(M)
N |σ| ·R+ |H|·(2.log(M)+R)

N
|H|·3·log(M)

N

TABLE 3: Integrita Communication Complexity. N : the number of servers. M : the number of posts on the object. |σ|: the
size of each signature in bit length. |H|: the bit-length of the hash output. R: the number of consecutive posts to be read
from the object. In the values reported for the Read and Write protocols, the communication complexity of the Update Status
protocol (which is executed at the beginning of these protocols) is not included.

{vkU1 , · · · , vkUT } that are the verification keys
of the honest server and the authorized users,
respectively. Likewise, the adversary delivers a
set of signature verification keys {vkSi}i∈A for
the corrupted servers.

2) The adversary designates the group administra-
tor Ui. The challenger initiates the shared object
on behalf of Ui through Create object protocol.
Steps 3 and 4 can be repeated polynomial times
by the adversary, in any order.

3) The adversary specifies a user Ui to run the
Write protocol and insert an operation op to
the object’s activity log. The content of op is de-
termined by the adversary. The challenger runs
the Write protocol accordingly. Note that the
challenger shall act upon the Audit procedure
(which is a subroutine of the Write protocol)
without needing the adversary’s request.

4) The adversary determines a range of operations
R = [l, r] to be read by a particular user Ui.
Chal runs the Read protocol accordingly.

5) The adversary specifies two users U and U ′,
a version number j, and the index j∗ of an
operation such that j∗ is out of the inconsistency
interval of the jth version of the shared object,
i.e., j∗ < j −∆(j,N). Note that when j∗ is out
of the inconsistency interval, the corresponding
operation opj∗ is no longer subject to incon-
sistency and all the users including U and U ′

must have a consistent view of it unless the
adversary could successfully fork the views and
stay unnoticed (this is going to be determined
in the rest of the game). The challenger attempts
to read the jth operation on behalf of both U
and U ′ via the execution of the Read protocol.
A wins if

a) the Read protocol terminates successfully for
both U and U ′ while the Status variable of
both users point to the jth version of the
shared object

b) andU andU ′ have obtained two different val-
ues for the j∗th operation. That is, U and U ′

have read opj∗ and op′j∗ , respectively while
opj∗ 6= op′j∗ .

Definition 8.1. A storage system provides q-detectable
consistency if the success probability of any probabilistic
polynomial time (PPT) adversary in the q-Det-Cons(1λ)
experiment is negligible in the security parameter λ.

Theorem 1. If the deployed signature scheme is existentially
unforgeable under adaptive chosen message attack and the
hash function is collision-resistant, then Integrita provides
q-detectable consistency.

Proof of Theorem 1: If there exists a PPT adversary A who
wins q-Det-Cons(1λ) with non-negligible probability ε, then
we construct a PPT simulator B who finds a forgery for the
underlying signature scheme.

Proof Overview: Before diving into the full proof, we
provide an overview. The success of the adversary indicates
that U and U ′ have read two different values for the j∗

operation where j∗ < j − ∆(j,N). Therefore, the system
undertook a fork at the j∗ operation due to which users
are split into two groups depending on whether they are
shown opj∗ or op′j∗ . Also, based on step 5.a of the game,
the presence of a fork has stayed unnoticed and continued
successfully till the jth version of the object. This means that
each fork should have a successful chain of write operations
from i∗th to jth version of the object. Recall that within this
interval, there is at least one frozen operation (recall that a
frozen operation is the one that the honest server sits on its
insertion path). Let k where j∗ < k < j∗ + Q(j∗, N) < j
denote the index of that operation. The honest server accepts
only one operation with index k, thus there will be only one
valid tree digest at version k. This further implies that only
one fork will get to grow. For the other fork (namely the
second fork) to grow, the corrupted servers need to bypass
the honest server. For this to happen the corrupted servers
have two choices:
• The corrupted servers need to convince the users of

the second fork that the last operation on the object
has an index higher than k so that they won’t attempt
insertion of the kth operation. However, this would
only happen if the corrupted servers can generate an
authenticated operation and tree digest on behalf of an
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authorized user. Thus, if the simulator B can guess for
which authorized user this forgery takes place, B will
exploit this forgery and breaks the unforgeability of the
underlying signature scheme.
• Alternatively, the corrupted servers can bypass the hon-

est server if they can successfully convince the users
of the second fork to accept τk and opk (generated
by the first fork). This implies that the servers have
to craft a valid incremental proof to τk from an older
tree digest seen by the users of the second fork. Since
the Status variable of all the users in the second fork
contains a tree digest that is consistent with τ ′j∗ , a
valid crafted incremental proof would assert that τk is
consistent with τ ′j∗ . However, τk is generated by the
users of the first fork and hence complies with the
history represented by τj∗ (but not τ ′j∗ ). This means that
if users of the second fork verify τk as a valid tree digest,
then τk must represent two different sequences of posts,
a sequence with opj∗ and the other one with op′j∗ . This
indicates that for an index h where j∗ ≤ h ≤ k the tree
digests τh and τ ′h, generated by the first and second
fork, respectively, collide, i.e., a collision is found for
the underlying hash function.

Based on the above arguments, breaking the q-detectable
consistency is equivalent to breaking the security of the
underlying signature scheme or finding a collision in the
hash function.

Note that the q-Detectable consistency experiment in-
volves only one shared object yet can be further extended
to include multiple objects shared across overlapping sets of
users. It is straightforward to prove that Integrita provides
q-detectable view-consistency under the extended experi-
ment as well. For the sake of simplicity, we only sketch the
proof idea of the extended game and eliminate the details.
Essentially, the accessibility of the adversary to more than
one shared object does not give it the advantage to win
the game. This is because every two distinct shared objects
e.g., group pages always differ in their first operation which
is the insertion of the title of the group concatenated with
the time of creation (the time and title might be encrypted
though it does not affect our argument). Thus the history
tree of each group page has a unique value for its first node
(unless two group pages with identical names get created
simultaneously, which is unlikely, or even in that case more
metadata can be included in the first operation like the
page owner, etc.). As such, two distinct shared objects can
be seen as two forks of the same shared object where the
fork has happened since the very first operation. As such,
their operations are not exchangeable at any point in the
future. This non-exchangeability of the forked views has
been extensively discussed in the formal proof of the regular
q-Detectable consistency game and relies on the fact that
forked views never get to converge unless the adversary
manages to forge signatures or find a collision in the hash
function. As such, Integrita protects q-detectable consistency
in the extended experiment with multiple shared objects as
well.

In the following, we provide the formal security proof
of Integrita based on q-Det-Cons(1λ) . The hash function is
assumed to be collision-resistant hence the security proof
is tied to the security of the signature scheme. The proof

leverages the following lemma that is due to [15].

Lemma 2. Given that the hash function that un-
derlies the history tree is collision-resistant, if there
is a valid incremental proof between two tree di-
gests τi and τj , then for every operation opk where
k < i for which there is a valid membership proof ,
s.t. True ← MEMBERSHIP.V F (k, τi, opk, proof)),
and op′k s.t. there is a proof ′ for which True ←
MEMBERSHIP.V F (k, τj , op

′
k, proof)), then opk must

be equal to op′k. Namely, if two tree digests are consistent,
then they both represent the same sequence of operations
for their shared past [15].

Formal Proof of Theorem 1: If there exists a PPT ad-
versary A who wins q-Det-Cons(1λ) with non-negligible
probability ε, then we construct a PPT simulator B who
finds a forgery for the underlying signature scheme. The
internal code of B is given below. B is given the security
parameter 1λ as well as a signature verification key vk′ from
the challenger of the signature scheme.

1) B gives the security parameter 1λ to the adversary. B
runs the signature key generation algorithm for the
honest server as (skSChal , vkSChal) ← Gen(1λ) and
hands the vkSChal to the adversary. B selects the index
of a user randomly i.e., β ← [1, T ] and sets the signa-
ture verification key of Uβ to vk′ whereas for the rest of
users, B generates the signature key pairs as normal.
Essentially, at this step, B guesses the user Uβ for
which the adversary may successfully forge a signature,
hence B can leverage the adversary’s success probabil-
ity to win the signature unforgeability game. B sends
FList = {(U1, vk1), · · · , (Uβ , vk′), · · · , (UT , vkT )} to
the adversary. The adversary communicates a set of
signature verification keys for the corrupted servers
{vkSi}i∈A to B.

2) The adversary specifies a user Ui as the group adminis-
trator to initiate the shared object through the invocation
of Create object protocol. The adversary also determines
the content of the first post, i.e., title, date, and time.
The challenger performs as indicated in Figure 6. If the
designated group administrator is i = β (for which the
challenger does not have the signature key), then to
generate the required signatures, B queries the signing
oracle of the signature challenger and stores the set
of queried messages and signatures in a QSign set.
Otherwise, B acts as in the Create object protocol.

3) The adversary specifies a user Ui to carry out a write
operation op on the object. B runs the Write protocol
accordingly.
First, B runs the Update Status and fetches the latest
tree digest τp∗ . As the result of running Update Status,
B fetches an incremental proof = {(Np,l, op, σUk)}
for some p and l and k. B runs Algorithm 4 on the
proof to identify and output a signature forgery to
the signature challenger, if any. During this procedure,
B checks whether there is a node in the proof that
is signed by Uβ but was never generated by her i.e.,
/∈ QSign; which means that signature must have been
forged by the adversary.
B fetches the required nodes for the insertion of the
new operation as proof = {(Np,l, op, σUk)}. B runs
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Algorithm 4 and if a successful signature forgery is
found, returns it to the signature challenger.

Algorithm 4 Signature forgery identification. This process
checks whether there is a node in the proof that is signed
by Uβ but was never generated by her; which means that
signature must have been forged by the adversary.

Input: proof = {(Np,l, op, σUk)}, QSign
1: for Np,l ∈ proof do
2: if Np,l is a leaf node OR Np,l is a tree digest then
3: if V rfyvkUβ (Np,l||p, σUk) == accept AND
Np,l||p /∈ QSign then

4: Return (Np,l||p, σUβ )

B recalculates the nodes on the insertion path of her
operation. B signs the leaf node H(op)||p∗ + 1 and
the tree digest τp∗+1 using the signature key of Ui. If
i = β, then B queries the signing oracle and inserts the
queried message and the obtained signature to QSign.
If the Write protocol terminates with abort, then B
immediately aborts; in which case the adversary loses.
Note that after each write operation, B shall act upon
the audit procedure, i.e., B runs the Update Status
protocol at the p∗ + Q(p∗, N)th version (or some later
version) of the object. As the result of running Update
Status, B pulls some of the tree nodes as proof =
{(Np,l, op, σUk)}. B performs Algorithm 4 on the proof
to find any signature forged by the adversary, in which
case B outputs the forgery to the signature challenger.
If the Update Status results in an abort, then B aborts.

4) The adversary specifies a range R = [l, r] to be read by
a particular user Ui. B runs the Read protocol accord-
ingly. B aborts in case that the Read protocol concludes
with abort. Otherwise, as the result of running Read
protocol, B pulls some of the nodes of the tree as
proof = {(Np,l, op, σUk)}. B performs Algorithm 4
on the proof to identify any signature forged by the
adversary, in which case B outputs the forgery to the
signature challenger.

5) The adversary specifies two users U and U ′, a ver-
sion number j, and a operation index j∗ where j∗ <
j − ∆(j,N). B runs the Read protocol for U and U ′

separately. B acts identical to the step 4 (above) to run
the Read protocol. If the protocol concludes with abort,
then B also aborts. Otherwise, B proceeds as follows.
Let τj and τ ′j indicate the tree digests inside the Status
variable of U and U ′ after the Read protocol execution.
Also let opj∗ and op′j∗ indicate the content of the ith

operation that are read by U and U ′, respectively. If
opj∗ 6= op′j∗ then B finds a signature forgery as we
discuss below.

Note that the inconsistency between opj∗ and op′j∗
means that there will be two different tree digests τj∗ (with
opj∗ as its i∗th operation) and τ ′j∗ (with op′j∗ as its i∗th

operation). As such, from version j∗ onward, the users will
be divided into two groupsG andG′ depending on whether
they are shown opj∗ (τj∗ ) or op′j∗ (τ ′j∗ ). More precisely, a
group G of users whose further Status variables (i.e., τf
where f ≥ j∗) are consistent with τj∗ (i.e., τj∗ → τf ) and

the other group G′ whose further Status variables (i.e., τ ′f
where f ≥ j∗) are consistent with τ ′j∗ (i.e., τ ′j∗ → τ ′f ).

Since the users are divided in two groups G and G′,
there will be two separate chains of operations (after the i∗th

operations) generated by group G and G′, i.e., opi i ∈ [j∗, j]
uploaded by group G and op′i i ∈ [j∗, j] performed by users
of groupG′. Assume k ∈ [j∗, j∗+Q(i,N)] is the index of the
frozen node (a node of the tree for which the honest server
stores one of the nodes along its insertion path). Assume
that a user from group G attempts the insertion of opk
earlier than a user from a group G′. Since the honest server
appears on the insertion path of opk, it gets informed about
the inclusion of the kth operation and updates its Status
accordingly. When a user from the groupG′ holding a Status
variable τ ′i wants to insert op′k, it first runs the Update
Status to fetch the latest version of the object and perform
consistency check between τ ′i and the current version of the
object. During the status update protocol, the adversary may
try to act dishonestly which we discuss next.

1) The adversary may attempt to send an incorrect Status
value to the user and make her accept a lower version
< k of the object. However, due to the presence of the
honest server (who has witnessed the insertion of opk),
the adversary does not succeed as the honest server will
communicate its intact Status value, i.e., k with the user.

2) The adversary may attempt sending a Status value x,
where x ≥ k, for which the adversary also needs to
come up with a valid tree digest τ ′x where τ ′x =⇒ τ ′i

9

(τ ′i is the Status of the user from group G′ while in-
serting op′k) in order to pass the Update Status protocol
successfully. To come up with a valid τ ′x, the adversary
has the following choices:

a) The adversary may use the tree digest τx that is
signed and generated by one of the members of the
group G. However, any tree digest τx generated by
a member of group G will be consistent with τj∗ but
not with τ ′j∗ , i.e., τj∗ 6=⇒ τx. This means that there
will be no valid incremental proof between τ ′j∗ and
τx.

b) The other choice for the adversary is to generate a op′x
and forge a signature on H(op′x||x) (the leaf node) on
behalf of an authorized user.

c) The adversary uses opx generated by one of the mem-
bers ofG and computes the tree digest τ ′x accordingly.
A also needs to generate a valid signature over τ ′x on
behalf of the user who issued opx.

The above argument indicates that for a member of
group G′ to accept that the latest version of object as
x where x ≥ k and successfully pass the Update Status
protocol, the adversary needs to forge a signature on
behalf of an authorized user U

′′
either on the leaf node

H(op′x||x) or the tree digest τ ′x||x. Thus, B shall figure
out this forgery while fetching the incremental proof on
behalf of a member of the group G′.

B can win the signature game if the forgery of the ad-
versary is from Uβ . Recall that the probability of A winning
the q-Det-Cons(1λ) is ε(λ) and the total number of users T

9. We write τi =⇒ τj to indicate that there exists an incremental
proof for which IncrV f(τi, τj , proof)) returns True.
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is polynomial in the security parameter (i.e., poly(λ)). Thus,
we have

Pr[B breaks the signature scheme] =

Pr[q-Det-Cons(1λ) = 1 AND U
′′

= Uβ ]

= Pr[q-Det-Cons(1λ) = 1|U
′′

= Uβ ] · Pr[U
′′

= Uβ ]

≥ ε(λ) · 1

T

= ε(λ) · 1

poly(λ)
(14)

If ε(λ) is non-negligible, then B also breaks the signature
scheme with non-negligible probability. Since the signature
scheme is assumed to be existentially unforgeable under
adaptive chosen message attacks, then Integrita provides q-
detectable consistency. �

9 CONCLUSION

In Integrita, we address the view consistency in a collab-
orative data-sharing environment such as Facebook group
pages and walls. The shared object is comprised of a
sequence of posts that can be generated by any of the
authorized users. The view consistency concerns that all
the authorized users are shown the same set of posts and
with the intact order. To accomplish this, the log of oper-
ations performed on the shared object (called activity log)
is modeled by a history tree, which is an append-only data
structure. Operations constitute the insertion and deletion
of posts. Having access to the intact activity log naturally
guarantees users’ view-consistency. Our design relies on the
federation of N servers.

In Integrita, we introduce a new level of consistency
called q-detectable consistency where any inconsistency be-
tween users’ view (toward the activity log) cannot remain
undetected for more than q operations. The q-detectable
consistency holds as long as one server does not collude
with the rest of the servers. The value of q is quantified
based on the number of operations in the activity log as
well as the number of servers. Our proposal outperforms
the state of the art in two major directions. First, unlike
the replication-based solutions, Integrita operates only on
one instance of the shared object that is maintained col-
laboratively by all the servers. As such, Integrita saves
2344 Terabytes of annual storage for a social network like
Facebook with 2.3 billion users, when presumably running
on the federation of 20 servers. This is enabled by trading
the strong consistency with q-detectable consistency. Nev-
ertheless, q-detectable consistency will ultimately converge
toward strong consistency as the size of the activity log
elevates. Moreover, unlike the centralized OSNs where the
inconsistency detection relies on the users’ direct communi-
cation, Integrita detects any fork in the users’ views regard-
less of users’ direct communication.

As future work, Integrita can be extended to further
support q-detectable view-consistency in a malicious adver-
sarial model where a subset of users may get corrupted and
conspire with the servers.
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