
Multi-Locking and Perfect Argument Order: Two1

Major Improvements of Attribute-Based Encryption2

Cyrius Nugier, Remi Adelin, Vincent Migliore, Eric Alata3

October 17, 20194

Abstract. Attribute Based Encryption, proposed by Sahai and Waters in 2007, is a5

set of promising cryptographic schemes that enable various fine grained access control6

on encrypted data. With a unique encryption key, a user is able to encrypt data for7

a very specific group of recipient that matches a set of attributes contained inside8

their decryption key. In current scenario where personal devices share an increasing9

volume of private data on the web, such encryption algorithms are more than ever a10

strong alternative to standard encryption algorithms.11

In this paper, we propose two major improvements of ABE namely the Perfect12

Argument Order Optimization and the Multi-Locking. Multi-Locking ABE is an13

extension of ABE that enables to share access control policy on an arbitrary number14

of entities. We also make a step further for the speed-up of ABE by providing the15

“Perfect Argument Order Optimization”, which is a generalization of the “Fixed16

Argument Optimization” of Scott et al. to a much wider range of ABE constructions17

(and in particular to our Multi-Locking ABE). Based on those two improvements we18

propose a construction of the first privacy-preserving Cloud service based on ABE,19

allowing ephemeral accesses to the data. The Multi-Locking ABE and the Perfect20

Argument Order Optimization have been successfully integrated to the OpenABE21

library, providing a speed-up for a variety of ABE constructions.22

Keywords: Attribute-Based Encryption · Optimization · Privacy23

1 Introduction24

Usage of computers has recently evolved with a great increase of connectivity features.25

From social networks to connected objects such as Internet of Things (IoT), a massive26

amount of private data is daily exchanged through internet. Consequently, people should27

be more and more careful about their privacy.28

Traditional encryption algorithms are usually well suited for one-to-one communications.29

To satisfy recent needs, they have been adapted to communications with one emitter and a30

fixed and well defined group of recipients, with limited possibilities to manage a fine-grained31

access control policy. For example, symmetric and asymmetric encryptions such as AES32

or RSA are based on a “all or nothing” strategy, which requires as much key pairs as the33

number of targeted groups of recipients.34

Thankfully, Public Key Encryption was subjected to successive evolutions to provide35

more flexibility. The first evolution was the Identity-Based Encryption [Sha85], where36

the encryption key is function of publicly known information about the recipient and37

can be computed on-the-fly. Management of keys was greatly improved, however these38

constructions did not allow groups of recipients. A second construction presented in [SA05]39

proposed an encryption for a group of people based on a “fuzzy” identity. More precisely,40

people with identity “close” to the identity selected during encryption were able to decrypt.41

Then in 2006, Han et al. proposed in [GPSW06a] the first encryption algorithm that allows42

a fine-grained access control on encrypted data, called Attribute-Based Encryption (ABE).43

1

2 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

ABE is based on a combination of attributes and access structures that can respectively44

be seen as arguments and functions. These function evaluate to 1 if decryption is possible45

and to 0 otherwise. When attributes are integrated to the encrypted data and access46

structure is attached to recipients, we construct a Key-Policy ABE scheme. Inversely, if47

access structure is integrated to encrypted data and attributes are attached to recipients,48

we construct a Ciphertext-Policy ABE scheme. In any case, decryption restitutes the49

correct message only when attributes match the access structure.50

Expressive and efficient realizations exist for both these types of schemes (knowingly51

[Wat11] for CP-ABE and [GPSW06a] for KP-ABE). Most common ABE schemes are52

divided into four algorithms:53

Setup Executed by a trusted authority. Takes as input the security parameter and the54

universe of attributes and outputs the public key and master key.55

KeyGen Executed by a trusted authority. Given the master key and a set of attributes56

(CP-ABE) / access tree (KP-ABE), generates the corresponding secret key. In order57

to be secure against collusions, each key is randomized using a secret element, even58

with the same set of attributes.59

Encrypt Takes as input a message, the public key and the wanted access tree (CP-ABE)60

/ attributes (KP-ABE) and outputs the ciphertext. In order to be secure against61

replay, a randomly generated element makes each ciphertext of the same message62

different.63

Decrypt Takes a ciphertext and a secret key, and provides the right plain message if and64

only if the attributes validates the access tree.65

A wide range of variations are constructed from this basis, providing compromise66

between computation times of Setup, Encrypt, KeyGen, Decrypt, and the length of67

Master Key, Public Key, Secret Keys and Ciphertexts. Additionally, in order to solve68

specific situations, each scheme exhibits some interesting properties like being multi-69

authority, decentralized, hierarchical, having non-monotonic access structures, allowing70

user revocation, attribute revocation, having a hidden policy, collusion resistance, being71

quantum computer resistant...72

At this point, when opting for an ABE scheme for a cryptosystem, one would check out73

the most recent survey of ABE schemes (such as [PSA18], where the previous properties74

are defined), and find the construction that matches the most with desired properties.75

This “top-down” approach can sometimes leaves some specifications unsatisfied.76

A “bottom-up” approach would be, a priori, much more desirable, taking as inputs77

specifications to generate a freshly designed ABE scheme. However, a such process may be78

particularly complex to design and implement. Moreover, it is not practical since devices79

capabilities, infrastructures and scenario constraints continuously evolve.80

OUR CONTRIBUTIONS: To address this issue, we propose in this paper the “Multi-81

Locking” ABE construction, a framework that allows efficient composition of several82

ABE schemes during transfer of data, making construction of advanced infrastructures83

particularly simple. Additionally, the framework allows designers to implement and combine84

the following features:85

1. the possibility to impose a specific route for the data.86

2. the possibility to delegate access control to trusted nodes.87

Nugier C, Adelin R et al. 3

To demonstrate of the framework capacities, we combined both features to construct the88

first privacy-preserving Cloud service with ephemeral data access, presented in section 6.89

Since now nearly all ABE schemes can be integrated inside the framework, the second90

major contribution of the paper is an extension of the Fixed Argument Optimization91

presented in [Sco11], leading to a straight 30% boost of decryption pairing calculation time92

to nearly 100% of existing ABE schemes. We call this optimization “Perfect Argument93

Order Optimization”.94

Both Multi-Locking and Perfect Argument Order Optimization have been successfully95

integrated into the OpenABE library.96

The remainder of the paper is organized as follows:97

Section 2 provides fundamental background of ABE;98

Section 3 (Contribution) presents the Perfect Argument Order Optimization;99

Section 4 (Contribution) explains of Multi-Locking framework construction;100

Section 5 (Contribution) reviews existing ABE schemes and proposes some recom-101

mendations to make them compatible with Perfect Ordering and Multi-Locking;102

Section 6 (Contribution) defines the construction of the ephemeral Cloud;103

Section 7 (Contribution) details the integration of the Perfect Argument Order104

Optimization and Multi-Locking framework into OpenABE and RELIC libraries and105

benchmark results;106

Section 8 draws some conclusions and perspectives.107

2 Background and definitions108

This Section provides usual definitions and results of standard ABE schemes. We will109

also make a focus on the work [ALdP11] since it will be reused to construct our privacy-110

preserving Cloud service with ephemeral data access (see Section 6 for details).111

2.1 Functional Encryption: Syntax and Security Definition112

2.1.1 Syntax113

Let R : Σk × Σe→ {0, 1} be a boolean function where Σk and Σe denote “keyindex” and114

“ciphertextindex” spaces. A functional encryption (FE) scheme for the relation R consists115

of algorithms: Setup,KeyGen,Encrypt,Decrypt.116

Setup(λ, des)→ (mpk,msk): The setup algorithm takes as input a security parameter117

λ and a scheme description des and outputs a master public key mpk and a master118

secret key msk.119

KeyGen(msk,X)→ skX : The key generation algorithm takes in the master secret key120

msk and a key index X ∈ Σk. It outputs a private key skX .121

Encrypt(mpk,M, Y)→ C: This algorithm takes as input a public keympk, the message122

M , and a ciphertext index Y ∈ Σe. It outputs a ciphertext C.123

Decrypt(mpk, skX , X,C, Y)→M or⊥: The decryption algorithm takes in the public124

parameters mpk, a private key skX for the key index X and a ciphertext C for the125

ciphertext index Y . It outputs the message M or a symbol ⊥ indicating that the126

ciphertext is not in a valid form.127

4 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

Correctness mandates that, ∀λ, ∀(mpk,msk) produced by Setup(λ, des), ∀X ∈ Σk, all128

keys skX returned by KeyGen(msk,X) and all Y∈ Σe,129

• If R(X, Y) = 1, then Decrypt(mpk,Encrypt(mpk,M, Y), skX) = M .130

• If R(X, Y) = 0, then Decrypt(mpk,Encrypt(mpk,M, Y), skX) = ⊥.131

2.1.2 Security notions132

We now give the standard security definition for FE schemes.133

Definition 1. FE scheme for relation R is fully secure if no probabilistic polynomial time134

(PPT) adversary A has non-negligible advantage in this game:135

Setup. The challenger runs (mpk,msk)← Setup(λ,des) and gives mpk to A.136

Phase 1. On polynomially-many occasions, A chooses a key index X and gets:137

skX = KeyGen(msk,X). Such queries can be adaptive in that each one may depend138

on the information gathered so far.139

Challenge. A chooses messagesM0,M1 and a ciphertext index Y ∗ such that R(X,Y ∗) = 0140

for all key indexes X that have been queried at Step 2. Then, the challenger flips a141

fair binary coin d ∈ {0, 1}, generates a ciphertext C∗ = Encrypt(mpk,Md, Y
∗), and142

hands it to the adversary.143

Phase 2. A is allowed to make more key generation queries for any key index X such that144

R(X,Y ∗) = 0.145

Guess. A outputs a bit d′ ∈ {0, 1} and wins if d′ = d. The advantage of the adversary A146

is measured by Adv(λ) := |Pr[d′ = d]− 1
2 |.147

2.2 Key-Policy Attribute-Based Encryption148

In a Key-Policy Attribute-Based Encryption scheme, ciphertexts are associated with a set149

of attributes S and private keys correspond to access structures A.150

Definition 2 (Access Structures). Consider a set of parties P such as P = {P1, P2, · · · , Pn}.151

A collection A ⊂ 2P is said to be monotone if, for all B, C, if B ∈ A and B ⊂ C, then152

C ∈ A. An access structure (resp., monotonic access structure) is a collection (resp.,153

monotone collection) A ⊂ 2P \{∅} .The sets in A are called the authorized sets, and the154

sets not in A are called the unauthorized sets.155

When motonic access structures are represented as access trees, they contain only ∧156

and ∨, while non-monotonic ones can also contain ¬157

Definition 3 (Linear Secret Sharing Scheme). Let P be a set of parties. Let L be a158

l × k matrix. Let π : {1, · · · , l} → P be a function that maps a row to a party for159

labeling. A secret sharing scheme Π for access structure A over a set of parties P is a160

linear secret-sharing scheme (LSSS) in Zp and is represented by (L, π) if it consists of two161

efficient algorithms:162

Share(L, π): takes as input s ∈ Zp which is to be shared. It chooses β2, · · · , βk ∈r Zp163

and let β = (s, β2, ..., βk). It outputs L · β as the vector of l shares. The share λi:= 〈Li, β〉164

belongs to party π(i), where Li is the ith row of L.165

Recon(L, π): takes as input an access set S ∈ A. Let I = {i|π(i) ∈ S}. It outputs a166

set of constants {(i, ωi)}, i ∈ I such that
∑
i∈I ωi · λi = s.167

Nugier C, Adelin R et al. 5

A clear example of construction algorithm for LSSS matrices is explained and detailed168

in [LCW10]. Decryption is possible when the attribute set S is authorized in the access169

structure A (i.e., S ∈ A).170

We formally define it as an instance of FE as follows:171

Definition 4 (KP-ABE). Let U be an attribute space. Let n ∈ N be a bound on the172

number of attributes per ciphertext. A Key-Policy Attribute-Based Encryption (KP-173

ABE) for a collection AS of access structures over U is a functional encryption for174

RKP : AS ×
(
U
<n

)
→ {0, 1} defined by RKP (A, S) = 1 iff S ∈ A (for S ⊆ Usuch that175

|S| < n, and A ∈ AS). Furthermore, the description des consists of the attribute universe176

U, ΣKPk = AS, and ΣKPe =
(
U
<n

)
.177

2.3 Constant-Sized Ciphertext KP-ABE178

In [ALdP11], authors provide the first method to turn a linear IBBE scheme with specifi-179

cally constant-sized ciphertexts to an ABE scheme with the same constant-size property.180

However, authors do not explicit any formal instantiation of the scheme, so we propose181

the following construction:182

We note e(·, ·) a pairing G×G→ GT whose properties are reminded in section 3.1.183

Let n be the maximal amount of attributes that can be used to encrypt a message.184

185

Setup(λ,U)→ (MK,PK): It chooses bilinear groups G, GT of prime order p > 2λ, g ∈186

G187

Then it randomly chooses α and X = (x0, · · · , xn) ∈ Znp .188

It sets H = gX . and outputs the master key MK = X and the public key PK =189

(g, e(g, g)α, H).190

One Zp value att is publicly linked to each attribute in U .191

KeyGen(MK, (L, π))→ SKid: Compute Share(L, π) of 1 where L is the given LSSS192

matrix of l columns and m rows. This is done by choosing βi ∀i ∈ [2 : l] and defining193

column vector β = (1, β2 · · ·βl). Then we define λi as 〈L, β〉 for all i ∈ [1 : m].194

Then, ∀i ∈ [1 : m], choose ri ∈ Zp and define SKi = (D1i, D2i, D3i), where:195
D1i = gαλi ∗Hλi+ri

0 ,
D2i = gλi+ri ,

D3i is the list (D3ij)∀j ∈ [2 : n] where D3ij = (H−att
j−1

1 ∗Hj)λi+ri .

196

Finally we output the list of all SKi as the secret key SK.197

Encrypt(PK,M,S)→ C: S is the receiver set for the message M . We define Y =
(y1, · · · , yn) the coefficients vector of

Ps[Z] =
n∑
i=1

yi ∗ Zi−1 =
∏

atti∈S
(Z − atti).

We then pick s in Zp and compute C the ciphertext as follows:198

C = (C0, C1, C2) = (M.e(g, g)αs, gs, (H0
∏n
i=1 H

yi

i)s).199

Decrypt(MK,SK, (L, π), C, S)→M or ⊥: First, output ⊥ if S is an un-authorized200

set for L.201

6 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

Otherwise, take an authorized set w, let I = {i|π(i) ∈ w} and calculate the recom-202

position constants wi using recon((L, π), w). Parse C as (C0, C1, C2) and SK as203

{D1i, D2i, D3i} for all i ∈ [1 : m] and keep the ones where i is in I.204

To retrieve the plaintext message, compute205

M ′ = Co×
∏
i

(e(C2, D2i)
e(C1, D1i

∏
j D

yi

3ij)
)wi

206

207

Correctness:208

M ′ = Co×
∏
i

(e(gs(x0+x1y1+···+xnyn), gλi+ri)
e(gs, gαλi+x0(λi+ri) · g(λi+ri)·

∑
yj(x1∗attj−1+xj)

)wi

= Co×
∏
i

(e(g, g)s(λi+ri)(x0+x1y1+···+xnyn)

e(g, g)sαλi+s(λi+ri)(x0+
∑

yjx1∗attj−1+xjyj)

)wi

= Co×
∏
i

(e(g, g)s(λi+ri)(x0+x1y1+···+xnyn)

e(g, g)sαλi+s(λi+ri)(x0+x1y1+···+xnyn)

)wi

= M ∗ e(g, g)sα
∏
i

e(g, g)−sα∗λi∗wi

= M , since
∑
i

λi ∗ wi = 1.

Some remarks about this scheme: First, we easily verify constant-size property of the209

ciphertext since it is constructed with one element of GT and two elements of G. Second,210

this property is counterbalanced by the increase of SK length, which will be growing in211

magnitude O(n×m). This must be taken into account when implementing this scheme.212

Important note: The message confidentiality comes from its multiplication by e(g, g)α.s.213

The idea behind Attribute-Based Encryption is to send fragments of s that allow only214

a specific group of users to reconstruct s from their secret key. This the fundamental215

consideration that will be exploited in section 4 to provide Multi-Locking.216

3 Perfect Argument Order for faster decryption217

This Section presents the Perfect Argument Order Optimization that extends the idea of218

using precomputation to speed-up decryption computation time. Starting from the Fixed219

Argument Optimization presented in [CS10] (optimization that improves decryption but220

for a limited number of pairings), we propose a method called Switch Argument Method221

that allows to extend it to all pairings in existing ABE constructions. We also validated222

the optimization by a practical implementation, where we observed a 30% speed-up in223

pairing calculation during decryption (see Section 7 for details).224

Nugier C, Adelin R et al. 7

3.1 Asymmetric pairings and Perfectly Ordered schemes225

The curve selection and the pairing computation have a considerable impact on the226

computation times and key length. Consequently, they drive design considerations of any227

cryptographic system based on pairings.228

Fortunately, a well detailed mathematical analysis has been made in [Lyn07] chapter229

4, providing a strong basis to construct efficient primitives. This work has been a solid230

foundation of efficient ABE scheme construction in [Sco11], which also exhibits some231

guidelines that should be followed to construct efficient KP-ABE scheme.232

Among them, the Fixed Argument Optimization is one of the most impacting ones.233

Theoretically, the optimization should lead to 30% speed-up in pairing calculation during234

decryption as found in [CS10]. Unfortunately, this optimization is not applicable to all235

pairings of a scheme without a special attention to design.236

3.1.1 Asymmetric pairings and selection of the optimal curve237

We briefly provide mathematical background of asymmetric pairings and the method to238

select optimal curve.239

Definition 5 (Pairing). Let G1,G2 be two additive cyclic groups of prime order q, and240

GT another cyclic group of order q. A pairing is a map: e : G1 ×G2 → GT that have the241

following properties:242

• Bilinearity: ∀a, b ∈ F∗q , ∀P ∈ G1, ∀Q ∈ G2 : e(P a, Qb) = e(P,Q)ab.243

• Non-degeneration: e 6= 1.244

Remark: for practical use of pairings in cryptography, it is fundamental that they245

should be computed efficiently and difficult to invert for security.246

Definition 6 (Pairing Types). We call:247

• Symmetric and Type I a pairing where G1 = G2.248

• Asymmetric and Type II a pairing where G1 6= G2 but there is an efficiently249

computable homomorphism φ : G2 → G1.250

• Asymmetric and Type III a pairing where G1 6= G2 and there is no efficiently251

computable homomorphism φ : G2 → G1.252

From definition 6, we can already note that from a cryptographic standpoint, Type II253

asymmetric pairings are mostly equivalent to symmetric pairings due to the existence of254

the homomorphism. Thus, in the following, we will call an asymmetric pairing a Type III255

pairing only.256

When selecting the optimal pairing, the decisive parameter is the embedding degree k,257

which is the degree of the extension K of input group G1. The length of such elements258

follows the formula: k × log2(|G1|) = log2(|K|).259

In general, smaller embedding degrees allows for smaller output sizes and more efficient260

pairing computation. Unfortunately, attacks exist for small embedding degrees, referenced261

in [AS15].262

Considering complexities of best actual attacks, we know that in order to achieve at least263

a 80-bit level of security, one should ensure that log2(|G1|) ≥ 160 and log2(|K|) ≥ 1024.264

For our implementation, we will consider a 128-bit security. With this setup, the best265

case scenario is achieved for a 256-bit input group embedded in a field of the same size266

(resist against Pollard’s Rho attack) and an embedding degree of 12, leading to the output267

group being embedded into a 3072-bit field (safe against index calculus attack).268

8 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

In practice, Type I pairings are implemented using super-singular elliptic curves and269

are limited to embedding degrees of 2, 4 and 6 respectively [Lyn07]. For asymmetrical270

pairings, there is no limitation on the embedded degree, thus it can be soundly selected in271

order to have the lowest secure input and output field sizes, maximizing efficiency.272

We extracted the best curves from the work in [Lyn07], targeting an asymmetric pairing273

with the shortest possible ciphertexts and fastest computation times while keeping 128-bit274

security.275

3.1.2 Selection of the pairing algorithm and Fixed Argument Optimization276

Similarly to curve selection, pairing algorithm selection is also well documented. For Type277

I pairings, the Tate pairing is the most common approach, being computed through Miller’s278

Algorithm [Mil86]. For better efficiency on small characteristic fields, one should definitely279

look at the modified Tate Pairing ηT as described for example in [BBD+08].280

For Type III pairings, some variants like the ate paring or the R-ate pairing allow loop281

reductions. But the main benefit of using Type III pairings lies in the possibilities of pre-282

computation. The first improvement was proposed by Scott in work [SCA06], performing283

pre-computations on one argument of the pairings and its associated slopes. Enhancement284

were proposed afterwards by Costello and Stebila in [CS10] that defined “Multi-pairings”285

and the so called “Fixed Argument Optimization” presented by Scott in [Sco11]. Important286

note: all other things held constant, we will always call the precomputable argument the287

left-side argument and the other one the right-side argument and display them accordingly288

to uniformize across different pairings1.289

Scott also proposed in [Sco11] a CP-ABE scheme that takes advantage of the Fixed290

Argument Optimization:291

292

Setup: Select random points P ∈ G2 and Q ∈ G1. If the pairing friendly group is of size r,293

then pick random group elements α and δ ∈ Zr. Set Pd = δP , Qd = δQ, Qα = αQ294

and v = e(P,Q)α. For each of the U attributes in the system, generate a random295

Hi ∈ G2. The public parameters are {P,Q, v, Pd, Qd, H1 · · ·HU}. The master key is296

Qα.297

298

Encrypt: The inputs are a message M , and a m× n LSSS matrix S. Generate a random299

vector ū = (s, y2, ...yn) ∈ Zr. Then calculate the m vector λ̄ = S · ū and generate300

another random m vector x̄ ∈ Zr. Calculate the ciphertext as Ct = Mvs, Cd = sP ,301

and for i equal 1 to m calculate Ci = λiPd − xiHf(i) and Di = xiQ. Note that the302

same attribute may be associated with different indices i.303

304

KeyGen: The inputs are the master key and a set of l attributes A assigned to an individual.305

Pick a random group element t ∈ Zr and create a private key asK = Qα+tQd, L = tQ306

and Ki = tHi for each possessed attribute i ∈ A.307

308

Decrypt: First reduce the matrix S by removing rows associated with attributes that are
not in A and remove redundant all-zero columns from the matrix. Next calculate
the vector ω̄ which in the first row of S−1. For a reasonable number of attributes,
the ωi will be very small integers. (The shared secret s = ω̄ · λ̄.) Set all Cj ← ωjCj
and Dj ← ωjDj . Where the same attribute is associated with more than one
row of the S matrix, combine the associated Cj and Dj values by simply adding

1In the literature Tate parings are often written with their precombutable argument on the left side,
but it is the opposite for ate pairing

Nugier C, Adelin R et al. 9

them. (We exploit bilinearity as e(Ki, Dj) · e(Ki, Dk) = e(Ki, Dj +Dk), and rewrite
Di = Dj +Dk). Finally recover the message as

M = Ct · e(Cd,−K) · e
(∑
i∈A

Ci, L
)
·
∏
i∈A

e(Ki, Di).

309

310

During decryption, only pairings where the left argument is known beforehand (i.e. are311

part of the keys) can benefit from Fixed Argument Optimization. Since all Ki are part312

of the decryption key, pairings e(Ki, Di) can benefit of pre-computation with the Fixed313

Argument Optimization. However, pairings e(Cd,−K) and e
(∑

i∈A Ci, L
)
do not since314

Cd and
∑
i∈A Ci are part of the ciphertext.315

3.2 Notion of Perfect Argument Order and Switch Argument Method316

3.2.1 Perfect Argument Order317

First of all, we introduce the notion of Perfect Argument Order.318

Definition 7 (Perfect Argument Order). An ABE scheme using Type III pairings has319

a Perfect Argument Order, and is called Perfectly Ordered if for all pairings, the320

left-side arguments are obtained before or along the right-side ones. That implies that if321

the left-side argument depends of the ciphertext, the right-side argument also does.322

More roughly, it means all pairing computations done in the Decrypt algorithm that323

could benefit from the Fixed Argument Optimization actually benefit from it.324

For example, Scott’s scheme has not a Perfect Argument Order since two pairings have325

their left-side argument dependant of the ciphertext, while right-side ones are from the326

secret key. In the following, we propose the Switch Argument Method that switches327

arguments of any pairing in the decryption, making their arguments Perfectly Ordered.328

3.2.2 Switch Argument Method329

The fundamental idea behind the Switch Argument Method is that for all pairings during330

decryption where the left-side argument is dependant of the ciphertext, we can make an331

“argument swap” by using at the same time pairing bilinearity property and the fact that332

any element can be expressed as a power of the group generator.333

More precisely, we rely on the following property:334

e(aP, bQ) = e(bP, aQ) (1)335

By doing so, we can effectively “swap” arguments of any pairing by swapping multiplicities336

a and b. We can note that, at some point, the method requires controlling multiplicities.337

In general, since the correctness of the scheme does not require such control, designers338

often pick random points with unknown multiplicity order.339

Consequently, our method requires to pick randomly generators P and Q only, and then340

express following random points as multiple of P for key elements and Q for ciphertext341

elements. In practice, this implies to pick random integer a ∈ Zp then computing aP for342

secret key elements or aQ for ciphertext elements.343

This way, no more Ciphertext elements are the left-side arguments of the pairings. All344

of them benefit of the Fixed Argument Optimization, and the scheme has now a Perfect345

Argument Order.346

10 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

3.3 Construction of a Perfectly Ordered CP-ABE347

In the paper presenting the Fixed Argument Optimization [Sco11], Scott carefully selected348

group G1 and G2 to apply Fixed Argument Optimization to the majority of pairings.349

However, two last pairings could not be optimized and he believed that he applied the350

Fixed Argument Optimization to the maximum number of pairings of Waters’ scheme351

[Wat11].352

Thanks to our Switch Argument Method, we tackle this limitation and provide below353

a modified version of the scheme achieving Perfect Argument Order. We can note that, to354

the best of our knowledge, the method can be applied to all existing ABE schemes. More355

information is provided in Section 5.356

Modification of Scott’s Scheme: First of all, pairings that are “wrong-sided” in Scott357

construction are those that depend on Cd, K, Ci and L. To apply our method, we first358

expressed them as multiple of the group generator, then swapped them using bilinearity.359

We provide below the explicit expression of each elements before application of the Switch360

Argument Method (left) and after (right):361

(2)

Cd = sP

Ci = λiδP − xiHf(i)

L = tQ

K = αQ+ tδQ

=⇒ (3)

Cd = sQ

Ci = λiδQ− xihf(i)Q

L = tP

K = αP + tδP

362

We can note that the remark we made in the description of our method about picking363

random points after P and Q concerns perfectly Waters scheme. Indeed, we turned point364

Hf(i) as multiple of P such as Hf(i) = hf(i)P , then swapped it using equation 1.365

We can now explicit the Perfectly Ordered version of Waters’ CP-ABE scheme.366

367

Setup: Select random points P ∈ G2 and Q ∈ G1. If the pairing friendly group is of368

size p, then pick random group elements α and δ ∈ Zr. Set Pd = δP , Qd = δQ,369

Pα = αP and v = e(P,Q)α. For each of the U attributes in the system, pick a370

random group element xi ∈ Zr. Set hi = xiP and ki = xiQ. The public parameters371

are {P,Q, v,Qd, k1, · · · , kU}. The master key is {Pα, Pd, h1, · · · , hU}.372

Encrypt: The inputs are a message M , and a m× n LSSS matrix S. Generate a random373

vector ū = (s, y2, ...yn) ∈ Zr. Then calculate the m vector λ̄ = S · ū and generate374

another random m vector r̄ ∈ Zr. Calculate the ciphertext as C = Mvs, C ′ = sQ,375

and for i equal 1 to m calculate Ci = λiQd − rikf(i) and Di = riQ. Note that the376

same attribute may be associated with different indices i.377

KeyGen: The inputs are the master key and a set of l attributes A assigned to an individual.378

Pick a random group element t ∈ Zr and create a private key asK = Pα+tPd, L = tP379

and Ki = thi for each possessed attribute i ∈ A.380

Decrypt: First reduce the matrix S by removing rows associated with attributes that are
not in A and remove redundant all-zero columns from the matrix. Next calculate
the vector ω̄ which in the first row of S−1. For a reasonable number of attributes,
the ωi will be very small integers. (The shared secret s = ω̄ · λ̄.) Set all Cj ← ωjCj
and Dj ← ωjDj . Where the same attribute is associated with more than one
row of the S matrix, combine the associated Cj and Dj values by simply adding

Nugier C, Adelin R et al. 11

them. (We exploit bilinearity as e(Ki, Dj) · e(Ki, Dk) = e(Ki, Dj +Dk), and rewrite
Di = Dj +Dk). Finally recover the message as

M ′ = C · e(−K,C ′) · e
(
L,
∑
i∈A

Ci
)
·
∏
i∈A

e(Ki, Di).

381

382

Correctness:383

M ′ = C · e(−K,C ′) · e
(
L,
∑
i∈A

Ci
)
·
∏
i∈A

e(Ki, Di)

= M · e(P,Q)sα · e
(
− (Pα+ tPd), sQ

)
· e
(
tP,
∑
i∈A

ωiλiQd − ωirihi
)
·
∏
i∈A

e(tki, riQ)

= M · e(P,Q)sα · e(P,Q)−sα−stδ · e
(
tP,
∑
i∈A

ωiλiQd − ωirixiQ
)
·
∏
i∈A

e(txiP, ωiriQ)

= M · e(P,Q)sα · e(P,Q)−sα−stδ · e(P,Q)t
(∑

i∈A
ωiλiδ−ωirixi

)
·
∏
i∈A

e(P,Q)tωirixi

= M · e(P,Q)sα · e(P,Q)−sα−stδ · e(P,Q)
∑

i∈A
tωiλiδ

= M.e(P,Q)sα · e(P,Q)−sα−stδ · e(P,Q)stδ

= M

Now all pairings of the decryption have their left argument known before the right384

ones. All of them benefit of the Fixed Argument Optimization because the scheme is now385

Perfectly Ordered.386

3.4 Important notes387

Turning a given ABE scheme to its Perfectly Ordered version speeds-up decryption in any388

case, but has, at first sight, some impact on other parts of the algorithm as long as they389

require random curve points picked. Indeed, for random points where a control of the390

multiplicity is required, one need at some point to choose random a ∈ Zp and make the391

full point multiplication with the generator. For random points without the requirement of392

multiplicity control, exponentiation time is reduced since the following “trick” (described393

in [Lyn07] ch 5.5) can be often used:394

1. Pick random X axis value.395

2. Use the curve equation to find a point with such X. If there is no such point, try396

again with X+1.397

3. Multiply the point with the cofactor of the curve to ensure that the picked point is398

in the group of the right order.399

12 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

Considering this, curves that are recommended in standards are often chosen to have a400

small cofactor, letting the point multiplication be fast (this shows that the choice of the401

best curve is really crucial for a scheme).402

In most finite-universe ABE schemes, this is a very slight drawback because the attribute-403

linked random picks are performed during Setup, and Setup times are considered irrelevant404

since they are computed once. For Large Universe ABE schemes, where attributes are405

generated “on-the-fly”, random picks are generally performed during Encryption, making406

a possible overhead during this phase.407

Fortunately, to bypass this limitation, we found a smart method to move much of408

random picks to the Setup phase. This proposition allow us to make at the same time409

Encryption and Decryption faster. More information is provided in section 7.2.4.410

4 Multi-Locking411

In this section, we will describe the concept and construction of the “Multi-Locking”412

framework. In a few words, Multi-Locking allows efficient composition of several ABE413

schemes during transfer of data, making construction of advanced infrastructures particu-414

larly simple. Additionally, the framework allows designers to implement and combine the415

following features:416

1. the possibility to impose a specific route for the data.417

2. the possibility to delegate access control to trusted nodes.418

In the following, we will describe how KP-ABE can benefit of Multi-Locking. Note that419

the method still stand for CP-ABE and more generally for various encryption algorithms.420

4.1 Introductory example421

Consider the following scenario: young Alice A wants to send messages to Bob B, but her422

motherM wants to be sure she does not send messages after 10 pm and that Bob is really423

the intended recipient. They reach an agreement, but Alice insists that her mother should424

not be able to read her messages. The scheme they will use is the following: A locks the425

message with two separate locks, LAB and LAM and sends it. M then checks if it is sent426

before 10 pm and if it is the case, she will unlock LAM with the corresponding key KAM,427

add a new lock LMB and pass forward the new message. B then receives the message and428

is able to use his two keys KMB and KAB to get the plaintext sent from Alice.429

4.2 Definition of a Multi-Locking scheme430

Now we should list all the properties we expect to hold when implementing a Multi-Locking431

scheme: let us name the original sender the Source, the intermediary users the Relays and432

the final reader the Target.433

First, we present the two hypothesis we assume to hold for a Multi-Locking implemen-434

tation:435

Keys conservation: The Relays and the Target will not distribute their private keys.436

Trustworthiness: The Relays will add or remove locks according to the access policy437

agreement.438

Then, these are the properties a Multi-Locking scheme is able to provide:439

Nugier C, Adelin R et al. 13

Circuit: The scheme defines possible circuits by providing specific locking/unlocking440

capabilities to the Source, Relays and Target. No Relay is able to retrieve the441

plaintext, and the Target is not able to retrieve it before the end of the circuit among442

the relays.443

Correctness: The Target retrieves the right plaintext message.444

Privacy: Only the Target can decrypt the ciphertext.445

Collusion Resistance: this concerns ABE schemes A given Relay or Target is not a446

specified user, but a set of users sharing attributes (CP-ABE) or authorizations447

(KP-ABE). A set of users will never be able to access data if none of its parts can448

access it.449

Definition 8 (Cryptographic scheme). Let S be a cryptographic scheme. It is the450

definition of:451

• A space of encryption keys K, decryption keys K ′, a space of plaintexts M and a452

space of ciphertexts C453

• An Encryption E : K ×M → C454

• A Decryption D : K ′ × C →M455

• A morphism φ : K → K ′, such that D(φi(k), E(k, ·)) = IdM456

Definition 9 (Multi-Locking Family). A Multi-Locking Family is a family of n cryp-457

tographic schemes {Si , i ∈ I} = {(Ki,K
′
i,Mi, Ci, Ei, Di,Φi)}i∈I such as:458

1. ∀i, j ∈ I,Mi
∼= Mj

∼= Ci ∼= Cj459

2. ∀i, j ∈ I, F ∈
{
{Ei} ∩ {Di}

}
, kF ∈ KF , G ∈

{
{Ej} ∩ {Dj}

}
, kG ∈ KG, F (kF , ·) ◦460

G(kG, ·) = G(kG, ·) ◦ F (kF , ·)461

Notation: We call a multi-locking family accordingly to the operation responsible of462

Encryption/Decryption commutativity Op. If useful we also specifying the number of463

primes i in the factorized cardinality of the plaintext and ciphertext spaces. Thus, we call464

a generic Multi-Locking Family by the name “pi −Op-MLF”.465

4.3 Common Multi-Locking Families466

4.3.1 Xor-MLF: case of One-Time Pad scheme467

The One-Time Pad cryptographic scheme with fixed message length n defined below is468

part of a Multi-Locking Family:469

• K = M = C = Z2n470

• E(k,m) = k ⊕m471

• D(k, c) = k ⊕ c472

• φ(k) = k473

Property 2 from Multi-Locking Family definition can also be straightforwardly verified:474

475

∀(m, k1, k2) ∈ (Z2n)3, (m⊕ k1)⊕ k2 = (m⊕ k2)⊕ k1 (2)476

Since Encryption/Decryption commutativity is derived from the commutativity of XOR,477

this construction belongs to Xor-MLF. In particular, a OTP multi-locking scheme is secure478

as long as every ki is chosen at random uniformly since k1 ⊕ k2 is indistinguishable from479

another key chosen at random uniformly.480

14 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

4.3.2 p2-mul-MLF: case of Textbook-RSA481

Given N = p · q, Textbook RSA forms a Multi-Locking Family because,482

• K = Z(p−1)(q−1),M = C = ZN483

• E(k,m) = mk[N]484

• D(k, c) = ck[N]485

• φ(k) = k−1[(p− 1)(q − 1)]486

∀(m, k1, k2) ∈ ZN × Z2
φ(N), (mk1 [N])k2 [N] = (mk2 [N])k1 [N] (3)487

Important note: In contrast to previous construction, the use of RSA inside p2-Exp-MLF488

is not secure: in order to form a Multi-Locking family, RSA schemes need to share a same489

N (if not, plaintext and ciphertext spaces are different, so encryption and decryption no490

longer commute). However, it is known for a long time that having multiple instances of491

RSA sharing the same modulus leads to major security issues [B+98, HL10, SIM83]. An492

construction in p-Exp-MLF would not be secure since modular inversion would be easy.493

However, it would be interesting to study the security of pi-Exp-MLF with i > 2.494

4.3.3 p-mul-MLF: case of ABE schemes495

Most of ABE schemes (and more generally FE schemes) naturally belong to p-mul-MLF.496

For example, the wide range of schemes are constructed with E(k,m) = m · e(g1, g2)αs497

and D(k, c) = c · e(g1, g2)−αs where G1 and G2 have a prime order.498

These constructions are obviously Multi-Lockable since modular multiplications are499

commutative, thus they fall inside p-mul-MLF. For information, all ABE schemes detailed500

previously in this paper are part of this family.501

However, we should make an important note on ABE schemes: Some of them are502

not part of p-mul-MLF but belong to another Multi-Locking Families, making them503

not Multi-Lockable with p-mul-MLF ones. A contrario, they can be composed with504

other cryptographic schemes that share the same family, making an open area to smart505

compositions.506

4.3.4 Construction of Multi-Locking Scheme based on p-mul-MLF ABE schemes507

To make the presentation of Multi-Locking scheme with ABE easier, we will explicit a508

reduced version called “tripartite Multi-Locking” composed of a unique Source, Relay and509

Target, corresponding to the former example of Alice, her mother and Bob.510

To enable Multi-Locking, we should at some point let the ciphertext be partially511

decrypted by Relay and Target. As a recap, a ciphertext of ABE has the form C =512

m · e(P,Q)αs, with s picked uniform at random during Encryption and removed during513

Decryption using information from ciphertext.514

To ensure that ciphertext is only partially decryptable by Relay and Target, we must515

at some point generate a specific uniformly random value for each “Lock”. This values will516

correspond to layers of security of the data. As in the example of Alice presented before,517

we will need three locking and unlocking mechanisms, namely AB, AM, and MB.518

Currently, to be safe against replay attacks, every Encrypt, Source selects a random519

number s ∈ Zp. This is equivalent security-wise to pick n random numbers s1 · · · sn ∈ Zp520

and set s =
∑
si (distribution for s is uniform if for all i, si is picked uniformly). This will521

allow us to add or remove “Locks” (Si) while guarantee the privacy of the data if there is522

at least one lock at any given time.523

During the Setup phase, we arbitrarily select a partition of the universe of attributes U524

in n (here 3) sub-universes. We note them UAB, UAM and UMB. They addresses specific525

Nugier C, Adelin R et al. 15

possibilities of access control. Each subsequent users can be further narrowed down by526

users that have locking capabilities.527

In the Encrypt phase, for all sub-universes of U in which the Source have control528

possibilities (namely UAB and UAM), it will pick uniformly at random a corresponding529

sAB (resp. sAM). Then it will have to encrypt as normal successively in every sub-530

universe, each time taking the message-dependant part of the ciphertext as the input of531

the next encryption. Every other ciphertext element required by the specific scheme for a532

sub-universe is simply appended to the previous ciphertext.533

For example in CP-ABE it will share si using the LSSS matrix Li of the sub-universe534

Ui and so, three matrices will be joined to the ciphertext, the width of each one being the535

number of leaves of the corresponding sub-universe access tree. Note that we could use a536

single matrix, but it will be filled with mostly zeros, we will prefer multiple smaller ones537

for efficiency.538

During the KeyGen phase, we can deliver wisely the keys to force the circuit. This539

implies having keys in only some universes. For example Bob should not have keys in UAM.540

Note that it does not change from our usual KeyGen for CP-ABE but for KP-ABE it forces541

us to calculate keys separately for the three sub-universes (one LSSS per sub-universe).542

In practiceM will run Decrypt with all elements generated by the encryption in UAM543

to retrieve C ′ = m · e(P,Q)αsAB . As planned, M cannot access to the plaintext before544

B. Since the relay is suposed trustworthy, it will run Encrypt using C ′ as input, to get545

c′′ = m · e(P,Q)αsAB · e(P,Q)αsMB and append the other scheme-specific elements.546

Ultimately, B can run Decrypt once with each set of keys (once in UAB to remove sAB547

and once in UMB to remove sMB) in order to retrieve M.548

Because of the form taken by the message-dependent part of the ciphertext C =549

m · e(P,Q)αs that grants inclusion into the p-Mul-MLF, we can see that all properties550

guaranteed by a Multi-Locking scheme are met. Collusion Resistance is granted by the551

collusion resistance protecting each secret Si552

4.4 Generalization553

We will propose an extension to the idea of tripartite Multi-Locking. For this we will554

show how we can generate a Multi-Locking scheme matching a given circuit type we will555

consider general enough.556

Definition 10 (Sequential Circuit). We call the source S, the target T and the different557

groups of relays R1,R2 · · · . (If a same user have the required attributes or credentials to558

be in several groups we will consider two distinct groups).559

We call a Sequential Circuit an expression linking different groups of relays with the560

following natural operators: OR (∨), AND (∧), and THEN (→), which beginning is S →561

and which end is → T .562

The example with Alice presented earlier corresponds to the Sequential Circuit S →563

R1 → T .564

For instance, S → (R1 ∨ R2) → (R3 ∧ R4) → T is a valid Sequential Circuit. This565

example would correspond to a message being checked by branch director or secretaries566

before being checked by IT and CCO’s and then sent.567

Property 1. Every (A) ∧ (B) is equivalent to ((A)→ (B)) ∨ ((B)→ (A)).568

Property 2. → distributes over ∨ i.e. every (A)→ ((B) ∨ (C)) is equivalent to ((A)→569

(B)) ∨ ((A)→ (C)) and ((B) ∨ (C))→ (A) is equivalent to ((B)→ (A)) ∨ ((C)→ (A)).570

Proposition 1. For each Sequential Circuit, at least one Multi-Locking scheme imple-571

menting it exists.572

16 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

Proof. We will prove the existence of it in two steps: first, we will show that every sequential573

circuit is equivalent to a sequential circuit of the form S → (M1)∨ · · ·∨ (Mn)→ T , where574

everyMi is of the form Ri1 → Ri2 → · · · → Riω. Second, we will show how to implement575

this exact type of circuit.576

To transform any Sequential Circuit in the desired form, we fist remove all the ∧ using577

property 1 and then distribute all → over the ∨ using property 2.578

For example: S → (R1 ∨R2)→ (R3 ∧R4)→ T is equivalent to579

S → ((R1 → R3 → R4)
∨ (R1 → R4 → R3)
∨ (R2 → R3 → R4)
∨ (R2 → R4 → R3))→ T

(4)580

To implement the Multi-Locking schemes corresponding to all the Sequential Circuits581

of this kind, we can do the following: S will lock the message with the locks LST and LS1582

and broadcast it. The first relays in all (Mi) have KS1, remove the corresponding lock,583

and adds locks Li1T and Li2. Similarly, all others relays j in (Mi) except the last will use584

their key Kij and add locks LijT and Li j+1. The last relay uses Kiω and adds lock LiωT585

only. Finally, T can use all KijT keys and KST to retrieve the message.586

Since lock LST is always kept, we can verify easily that no one is able to retrieve the587

message before T does. Moreover, during all broadcasts, there is at least one lock where588

T does not have the corresponding key. Thus T cannot retrieve the message before the589

circuit is ended, ending the proof.590

591

4.5 Benefits over super-encryption592

So far, Multi-Locking does not lead to more expressivity than super-encryption. In fact,593

in the previous proof, the proposed implementation works very well with super-encryption.594

To visualize this, we will propose the Lock-key graphs. They are finite oriented binary595

connected graphs where all vertices are groups in the scheme (i.e. source, relays, target).596

The start of an edge shows who puts a lock and the end of this edge indicates who possesses597

the corresponding key. These graphs have no loops since we consider users intervening598

many times will count in as many of separated vertices. In the following, we highlighted599

LST for visibility.600

Thereafter is presented the construction proposed in the above proof (1).601

S

R1

R2 R3

R4

T

Figure 1: Lock-key graph of an scheme implementing of a Sequential Circuit composed
only by five successive →.

In particular, any node at the end of an edge needs information broadcast by the node602

at the beginning of this edge. Thus, this construction achieves the circuit property of603

Nugier C, Adelin R et al. 17

Multi-Locking. Furthermore, Figure 1 represents only oneMi. A full implementation for604

S → (R1 ∨R2)→ (R3 ∧R4)→ T would be represented like in Figure 2.605

S

R1
R3

R4

R1

R4

R3

R2 R3 R4

R2

R4

R3

T

Figure 2: Lock-key graph of an implementation of S → (R1 ∨R2)→ (R3 ∧R4)→ T .

Note that all edges are not necessary for a working scheme. All the ones ending in T606

except S-T are optional. We can see that every Sequential Circuit implementation can be607

represented in at least one planar Lock-key graph. As a visualisation, Figure 2 shows us608

how to transform the developed form of our example Sequential Circuit (4) into a planar609

Lock-key graph.610

In super-encryption, locks work as a stack. So all schemes can be represented with611

a Sequential Circuit2 and so with a planar Lock-key graph. It motivates the following612

proposition:613

Proposition 2. A scheme implementing a Sequential Circuit following the requirements614

listed in section 4.2 admits a Planar Lock-key (weakly connected, oriented, finite, binary)615

graph.616

A Planar Lock-key graph with two or more vertices is the representation of a scheme617

implementing a Sequential Circuit (SC) if every walk starting in S ends in T and there is618

an edge from S (only vertex without antecedent) to T (only vertex without successor).619

Proof. The first point was discussed earlier.620

For the second point, the existence of the S-T edge guarantees privacy.621

Besides this, every walk ends in T so there is at least one edge Ri pointing only to T622

(who has no successor). So we can define a sub-graph representing the SC (Ri → T). We623

create as many SCs that there are points like this and list themMi.624

From there, we will iterate the following until that all edges are added to a single SC:625

There is at least one edge with a predecessor in our list, and all walks lead to T so626

there is at least one edge Rα pointing only to nodes already in our list. For every one of627

them, and for every SCMi starting with this node, we add Rα →Mi to our list.628

This ends when S, with no antecedent, is included to all elements of the list. This629

termination is guaranteed because the graph is finite and S is the only vertex with no630

predecessor.631

We define Circuit :=
∨
i(Mi), then factor all starting S and ending T so it is in a valid632

SC form. This ends the proof.633

634

2Since decryption must be done in the reverse order of the locks

18 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

We can conclude that since all super-encryption schemes can be expressed by a635

Sequential Circuit, they all have a planar Lock-key scheme.636

But in spite of super-encryption, Multi-Locking allows us to have non-planar Lock-key637

graphs like Figure 3.638

S

R1

R2

R3

T

Figure 3: A Lock-key graph that is not planar.

To finish this section, we want to put forward a metaphor: super-locking is like putting a639

locked case inside a locked case inside a locked case... This makes all the cases untouchable640

except the outer one. Instead, Multi-Locking corresponds to adding and removing multiple641

locks on the same case. In this case, they are all simultaneously accessible.642

4.6 Computational consequences643

Multi-authority support: It happens that different trusted authorities can manage644

each of one these universes and the distribution of the corresponding keys. As long as645

all the authorities have the Master Secret Key for the scheme, this allows a per-universe646

Multi-authority construction. Sub-universes where the ABE scheme is Multi-authority647

allows for even finer distribution of the KeyGen responsibilities.648

A second remark is that the construction proposed in the proof (using developed649

Sequential Circuit form) corresponds to the worst case scenario. There are almost always650

some ways to factorize the number of keys needed, but this is out of the scope of this651

paper.652

Scheme Modifications: Given this construction, we can already study the impact653

on our KP-ABE scheme. First, in the setup phase the creation of the σ new universes654

of attributes is not affecting efficiency since it just requires to have the attribute names655

start with the name of the universe they belong to. Then, at usual, we have to link each656

attributes to a value. Note that the computation times are the same if there is no increase657

of the number of attributes. The only requirement is to have at least one attribute per658

sub-universe.659

The partition of the universe of attributes allows a gain in bandwidth used for transmis-660

sion of keys, and space needed for storage: not all users will want to use all of the attributes661

for encryption (they do not encrypt in every possible universe). The cherry-picking of662

universes according to the wanted attributes keeps minimal the storage and transmission663

of keys.664

Finally, the number of decryptions made across the full scheme has increased sightly. In665

most schemes the number of pairings required during Decrypt can be decomposed in two666

parts: one part scaling with the number of lines in the LSSS, and one part being constant,667

depending of the scheme, but usually very low (1-3 for most schemes). For equivalent668

access structures, the linear number of pairings do not change between a plain scheme and669

a Multi-Locking one. However the constant number stacks with every decryption. Even670

if this is negligible in a scalable scheme, this supports even more the choice of Perfect671

Argument Order. This is will be even more true for the later relays of the scheme, whose672

number of decryptions has increased the most.673

Nugier C, Adelin R et al. 19

The last impact to study concerns the ciphertext. This impact depends strongly on674

the scheme. However, in order to give a substantial example, we describe the conse-675

quences on a Multi-locking ABE scheme based only on KP-ABE with constant ciphertext676

length[ALdP11]. For 80 security bits and an optimal embedding degree k = 6, the length677

of a emitted message is 1026 + (2× 170× δ). δ is the number of current locks protecting678

the message, i.e. the number of edges going out of the vertex and all his predecessors,679

minus the number of incoming edges for this vertex and all his predecessors. In general for680

an embedding degree of k, the plaintext/ciphertext ratio is k

k + δ
.681

ABE composition: The real payout of this construction is that multiple ABE682

instances can be used in this scheme. We can mix CP-ABE with KP-ABE and even with683

Fuzzy-IBE, the only constraint is that the schemes belong in the same Multi-Locking684

family.685

This brings us to our final remark: it happens that the property of trustworthiness may686

be too strong in real case. In fact, without this property, a single user can not enforce the687

circuit by itself. In the worst case scenario, if the source adds a lock for every relay, it can688

at least guarantee that the message will go through all of them, or will not be deciphered.689

The fact that order does not matter (commutativity required for Multi-Locking) will give690

us more possible uses.691

5 Discussion about the scope of the improvements692

5.1 Compatibility of Perfect Argument Order with existing optimiza-693

tions694

In the litterature, two distinct types of optimizations exist: the first one concerns the695

optimisation of the pairing computation time, and the second one concerns modification of696

the scheme for efficiency.697

The first category is mostly represented by the work of Costello and Stebila in [CS10].698

Authors propose a way to accelerate the product of pairings with no common argument.699

Since this acceleration can be applied with or without the Fixed Argument Optimization,700

we consider using the Multi-Pairing Optimization natural for all implementations.701

For optimization that falls into the second category, they basically require a modification702

of the scheme itself. Consequently, it requires at some point a comprise between Perfect703

Argument Order and existing optimizations. The most powerful one is the so called704

Decryption Optimization of Pirretti [PTMW10b]. To illustrate this optimization and705

its intricacy with Perfect Argument Order, lets first describe how related schemes are706

constructed.707

Let us imagine a scheme where Decrypt contains
∏
i∈S e(Di, E)ωi , with Di derived708

from SK and E from the ciphertext. These pairings can be accelerated by precomputation709

with the Fixed Argument Optimization. In particular the previous computation requires710

|S| pairings, |S| exponentiations in GT and |S| − 1 multiplications in GT .711

The Pirretti optimization is based on bilinearity property of pairings, dispatching the712

external product computation into the left argument:713 ∏
i∈S

e(Di, E)ωi = e(
∏
i∈S

Dωi
i , E) (5)714

This leads to two great optimizations. First, only 1 pairing computation is needed715

instead of |S|. Second, exponentiations and multiplications are now performed on much716

smaller groups since G1 is smaller than GT by a factor defined by the embedding degree k.717

Since the set S is specified in the ciphertext, the pairing touched by Decryption718

Optimisation now have both his arguments obtainable at the same time, so, following719

20 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

definition 7 this pairing is can no longer be subjected to Fixed Argument Optimization720

and the scheme remains Perfectly Ordered.721

Note that since Decryption Optimization reduces the number of pairings (right side of722

eq.5) it is better to use it and renounce precomputation possibilities than to calculate the723

product as in the right side of eq. 5. As a consequence it can be useless to use the Swap724

Argument Method.725

However, one should consider it in some specific cases. For example, a really small726

universe of attributes, implies a reduced number of possible values of
∏
i∈S D

ωi
i . In727

this case, one should calculate these points and use the Fixed Argument Optimization728

precomputation possibilities. That would require this point to be the left-side argument.729

We see no generalizable transformation to apply to a scheme in order to make the730

Decryption optimization applicable, so we will consider this possibilities dependent of the731

scheme design.732

Note that in Scott scheme presented earlier, Pirretti’s Decryption Optimization was733

not applicable, making it a perfect candidate for Perfect Argument Order Optimization.734

5.2 Compatibility of Perfect Argument Order and Multi-Locking with735

existing ABE schemes736

In the following, we will provide a survey of the most relevant existing ABE schemes listed737

in [QLDJ14] and their compatibility with Perfect Argument Order and Multi-Locking.738

Below notation used in table 1:739

MLF: Scheme is part of a multi locking family. Additionally, schemes with a “•” falls into740

the p-Mul-MLF.741

Perfectly Ordered: Scheme is based on a Type III pairing and perfectly ordered.742

Category 1: Scheme is based on a Type I pairing, but the classical generalisation to a743

Type III pairing gives a Perfectly Ordered scheme.744

Category 2: Scheme is based on a Type III pairing. Applying the Switch Argument745

Method provides Perfect Argument Order.746

Category 3: Scheme is based on a Type I pairing. After generalizing it to a Type III747

pairing, applying the Switch Argument Method provides Perfect Argument Order.748

Furthermore, to make meaningful nuances, we use the 3 different symbols for specific749

cases:750

“•”: indicates that the property is present for the scheme.751

“�”: indicates that the presence or not of the property cannot be directly given. Either a752

change could be made to the scheme in order to obtain the property, or some extra753

justification of the property presence or absence is needed. These cases are discussed754

in the list below.755

“?”: indicates that the scheme also benefits from Decryption Optimisation756

Based on the table 1, we can make some interesting remarks:757

• Almost all studied ABE schemes are part of a Multi-Locking Family, most of them758

in p-Mul-MLF. Exceptionally, some of them are in p3-Mul-MLF and Xor-MLF, but759

can be composed with non-ABE schemes as stated in section 4.3.760

Nugier C, Adelin R et al. 21

Table 1: Survey of Multi-Locking and Perfect Argument Order in ABE schemes

Author Contribution MLF P.O. Cat. 1 Cat. 2 Cat. 3
[SA05] Fuzzy IBE • •

[GPSW06b] Key policy • •
[BSW07] Ciphertext policy • •

[PTMW10a] Security • •
[Cha07] Multi-Auth. • ?

[BSSV09] Decentralized • •
[OSW07] Non-monotonic policy • ?

[MKE09] Multi-Auth. � •
[MKE08] Distributed Auth. � •
[WLW10] HABE � •

[CC09] Improved Multi-Auth. • •
[LOS+10] Decentralized Auth. � •
[LCH+11] W/O Random Oracle � ?

[LCLS10] W/O Central Auth. � •
[Hur13] Revocation+Delegation • •

[HSMY12] Privacy+Decentralized • •
[WLWG11] Revocation � •
[LLLS10] Revocation • •
[AHL+12] Const Size Cipher. • •

[CWM+13] Revocation �
[LHC+11] Accountability • •
[HJSNS08] Anti-key-cloning • •

[HW13] Fast Decryption • •

• We observe two groups: the simpler schemes that presents only one security property761

(in [QLDJ14]) are usually in category 1, and the more complex ones, intentionally762

combining more of these properties are usually in category 3.763

We believe that most category 1 schemes have a Perfect Argument Order just because764

of the aesthetics of having all ciphertext elements being the same argument for each765

pairing.766

• Numerous schemes should have been much more efficient with slight modifications.767

In particular, those that does not generalize Type I pairings into Type III pairings768

even if it unlocks more inclusion degrees and thus efficiency in more security levels.769

To clarify schemes marked with �, we provide additional information below:770

Müller 2008-2009, Multi & Distributed Auth. In these two schemes, the part of the771

ciphertext that depends of the message is split in many pieces that each have the772

expected p-Mul-MLF form. We can make this scheme part of a Multi-Locking scheme773

implementation, but that would need every piece of the ciphertext to go through774

every subsequent computation, thus multiplying ciphertext length and computation775

time by the number of pieces. So in theory, these schemes are part of the p-Mul-MLF,776

but in practice it would be better not to include them in a scalable Multi-Locking777

scheme.778

22 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

Lewko, 2011: Decentralized Auth. At first sight, the ciphertext seems to be in the same779

form than p-Mul-MLF schemes, but in fact the G group is not of prime order (on780

the contrary of all other schemes in the survey). Since the order of the GT of all781

schemes have to be equal across this case of Multi-Locking Family, this scheme is782

not part of p-Mul-MLF, but p3-Mul-MLF. Note that the author believes that it can783

be transformed into a prime order system.784

Wang, 2011: HABE & Revocation. These schemes are not part of the p-Mul-MLF but785

instead part of the Xor-MLF since they rely on hiding the message with a ⊕. We786

believe that replacing the⊕ with a modular multiplication (in Encrypt) and a modular787

multiplication by the inverse (in Decrypt) could make it part of the p-Mul-MLF.788

Liu, 2011: W/O Random Oracle. This scheme, like Lewko’s one, belongs to the p3-Mul-789

MLF since the order is also multiplication of 3 primes, and the ciphertext have the790

right form.791

Lin, 2008: W/O Central Auth. As it is the scheme requires appending a certain number792

l of zeroes at the end of the message to verify if a message if valid. If l = 0 then the793

scheme is part of p-Mul-MLF.794

Cheng, 2013: Revocation. Relies on a generic CP-ABE to store the data. Whether this795

scheme is Perfectly Ordered or not depends on the choice of the underlying CP-ABE796

scheme.797

6 Privacy-preserving Cloud service with ephemeral data798

access799

If we make general considerations about connected objects, they are mostly designed to800

upload large amounts of data to Cloud servers. In return, device owners have access to801

services obtained by the merging of devices data.802

Regarding data itself, if is usually stored permanently into servers with no particular803

control from device owners. Thus, if they want some kind of ephemeral access, making data804

available for a configurable time window, owners should rely only on the trustworthiness805

of the Cloud.806

Moreover, even for a trusted Cloud, making conditional access control depending807

on a per-message configuration mixed with decryption time windows licensed to service808

providers is fundamentally complex and requires fine-grained authentication mechanisms.809

To face this limitation, Multi-Locking ABE is an excellent candidate for a privacy-810

preserving Cloud service with ephemeral data access because it allows efficient share of811

access control policy between device and the Cloud.812

Furthermore, we pushed Multi-Locking to the point that the Cloud’s computations813

have been reduced to completely regular operations independent from device owners and814

service providers.815

We detail the steps of the Multi-Locking scheme design and will then discuss the816

benefits:817

• First, the user will encrypt the data, positioning all attributes he needs to enforce818

the accessibility he wants. If he wants to access the data later, he needs to check that819

he has the right accesses to decipher. If he has not, he also positions an “identity”820

attribute for which only him have secret keys. We will suppose that the Cloud will821

never have access rights in this “User-User” universe of attributes (Key conservation822

requirement of a secure Multi-Locking scheme, see section 4.2).823

Nugier C, Adelin R et al. 23

• Then, the user will encrypt again, but this time within a set of attributes that824

matches the authorizations of the Cloud (a “User-Cloud” universe). This Multi-825

Locking prevents anyone from accessing data that did not pass through the Cloud.826

The user can now broadcast the ciphertext.827

• When receiving the ciphertext, the Cloud removes a lock using his “User-Cloud” keys828

and then stores the cipher data , marking it with a timestamp, and other metadata829

if it is useful.830

• At the reception of a user’s request to access some data, the Cloud first ciphers831

the data with a set of attributes in a “Cloud-User” universe, that is function of the832

metadata previously attached to the data. This function was given by the data833

owner beforehand. This needs to include a ∆t attribute that represents the difference834

between the current time and the timestamp. This re-ciphered data can then be sent835

to the user requesting it.836

• Finally, the end user will decipher the data if he has the authorizations to, by837

deciphering successively within the two universes of attributes (removing the two838

locks protecting the data).839

The improvement brought by this construction comes from the possibility in some
user’s access tree to refine its authorizations with time conditions. Let us imagine a user
Alice having as authorizations:(

“V ideos” ∧ “∆t < 1week”
)
∨
(
“Patented” ∧ “∆t > 10years”

)
∨
(
“Alice′sData”

)
The privacy gain can be considerable if the distribution of keys by the trusted authority840

is made carefully. Some Large Universe schemes authors already describethe possibility841

of having time-dependant elements in secret keys. In these schemes keys are said to be842

revocable but in reality they are just expirable. Updating access rights require constant843

renewing of secret keys.844

In contrast, our construction does not require updating keys that passed their “lifespan”.845

Instead, the key is kept the same, it is the data accessibility that is limited in time.846

We can understand from looking at the previous example that a good ABE scheme847

for this construction would have a mechanism allowing ∆t attributes to have an arbitrary848

precision (Year, milliseconds...) in order to be independent of a preset list of attributes849

given by the trusted authority like in [Sco11] or [ALdP11]. Thus, a Large Universe scheme850

is almost mandatory.851

Moreover our supposition is that the Cloud is honest, but not the users. We cannot let852

the receiver users calculate the ∆t value, so our only choice is to let the Cloud “Tag” the853

value of ∆t to the data and thus forcing the underlying ABE scheme to be a Key-Policy854

one.855

So, for a prototype implementation of our privacy-preserving cloud service with856

ephemeral data access (presented in the upcoming section 7), we chose a KP-ABE scheme857

that matches our needs for flexibility. We took as starting point the OpenABE KP-ABE858

scheme that we modified in order to enable Multi-Locking and ensure all possible optimiza-859

tions are used. This constraints however touches only our “Cloud to User” communication.860

On the other hand, this ABE scheme is not the best for the “User to Cloud” communi-861

cation: considering the context of embedded devices and Internet of Things, ABE schemes862

that limit computation time and bandwidth are to consider. For example, Attrapadung’s863

KP-ABE scheme with constant-sized Ciphertexts [ALdP11] (as described in section 2.3) is864

a interesting candidate. We can merge this scheme with the OpenABE KP-ABE scheme865

we modified because they are both part of p-Mul-MLF.866

24 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

7 Implementation867

In this section, we will present the two libraries we enhanced, then we will detail and868

justify the optimizations brought and discuss about our implementation results.869

7.1 RELIC870

RELIC [AG] is a low-level cryptographic library designed to realize efficient operations871

on Elliptic Curves. This library is written in C and assembly and is dual-licensed under872

Apache 2.0 and LGPL 2.1. A major advantage of this library is that it contains efficient873

state-of-the-art pairing algorithms which are useful to improve computation time of ABE874

schemes. As mentioned in section [CS10], we implement the Fixed Argument Optimization.875

7.1.1 Optimal ate Pairing algorithm876

The Optimal ate Pairing algorithm (shortened “oatep”) [CS10] enables to realize pairing877

computations on Elliptic Curves with even embedding degrees. As it is the fastest pairing878

algorithm in RELIC library, we used it as the basis for the optimization. We now recall879

this algorithm:880

Algorithm 1 Miller’s affine double-and-add algorithm with denominator elimination
s Input: R = (xR, yR), S = (xS , yS),m = (ml−1...m1,m0)2.
Output: fm,R(S)← f

1: T ← R, f ← 1
2: for i from l − 2 to 0 do
3: Compute g(x, y) = y − yT + λ(xT − x), where λ is the gradient of the tangent line

to T .
4: T ← [2]T = [2](xT , yT).
5: g ← g(xS, yS).
6: f ← f2 · g.
7: if mi 6= 0 then
8: Compute g(x, y) = y − yT + λ(xT − x), where λ is the gradient of the line joining

T and R.
9: T ← T +R.

10: g ← g(xS, yS).
11: f ← f · g.
12: end if
13: end for
14: return f

As we can see, the second argument appears only after computation on the first881

argument (at line 5, 6, 10 and 11). The whole Fixed Argument Optimization is based on882

this particular repartition of the variables dependencies. Note that a good curve would883

have a low l for more efficiency.884

7.1.2 Fixed Argument Optimization885

The pairing optimization is realized using the optimization described in [CS10, SCA06].886

The algorithm 2 computes the internal variables of the algorithm 1 depending only on the887

left-side argument. All the values of these variables are then stored for later reuse.888

The second part of the split Miller’s algorithm computes the pairing result using the889

precomputed internal variables obtained from algorithm 2 and the right-side argument. It890

is detailed in algorithm 3.891

Nugier C, Adelin R et al. 25

Algorithm 2 R-dependant precomputations
Input: R = (xR, yR),m = (m0,m1, ...,m#DBL−1,m#DBL)2.
Output: GDBL = {(λ1, c1), (λ2, c2), ..., (λ#DBL, c#DBL)} and GADD =
{(λ′1, c′1), (λ2, c

′
2), ..., (λ′#DBL, c′#DBL)}

1: T ← R,GDBL ← {∅}, GADD ← {∅}.
2: for i from 1 to #DBL do
3: Compute λi and ci, such that y + λix+ ci is the line tangent to T .
4: T ← [2]T .
5: Append (λi, ci) to GDBL.
6: if mi 6= 0 then
7: Compute λ′i and c′i, such that y + λ′ix+ c′i is the line joining T and R.
8: T ← T +R.
9: Append (λ′i, c′i) to GADD.

10: end if
11: end for
12: return GDBL, GADD

Algorithm 3 S-dependant computations
Input: S = (xS , yS),m = (m0,m1, ...,m#DBL−1,m#DBL)2, GDBL and GADD (from
Algorithm 2).
Output: fm,R(S)← f .

1: f ← 1, countADD ← 1
2: for i from 1 to #DBL do
3: Compute g ← (yS + λixS + ci)
4: f ← f2 · g
5: if mi 6= 0 then
6: Compute g ← (yS + λ′countADD

xS + c′countADD
)

7: countADD ← countADD + 1
8: f ← f · g
9: end if

10: end for
11: return f

26 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

7.2 OpenABE892

OpenABE is a cryptographic library incorporating various Attribute-Based Encryption893

schemes. This library is developed by Zeutro in C++ for the core part and is available for894

use under the AGPL 3.0 license. In OpenABE, all low-level cryptographic operations are895

realized using a low-level cryptographic library. OpenABE supports two low-level crypto-896

graphic libraries, OpenSSL and RELIC. The library doing the elliptic curve operations is897

choosen at compilation time depending on the script options. Symmetric-key cryptographic898

operations are always carried out by OpenSSL. Since these two libraries support similar899

pairing algorithms, we choose to use RELIC, that provides the most efficient ones.900

7.2.1 KP-ABE scheme901

In order to validate our improvements and realize our cloud service, we focused our work902

on optimizing the KP-ABE scheme implemented in OpenABE. This scheme and all its903

properties are described in OpenABE’s design document, we recall it here3 :904

905

Setup(τ, n)→ (MSK,PK): The setup algorithm takes as input the security parameter906

τ , creates the parameters for a bilinear group (p, g1, g2, G1,G2,GT , e) such that p is907

a prime in Θ(2τ), G1, G2 and GT are groups of order p where g1 generates G1, g2908

generates G2 and e : G2 ×G1 → GT is an admissible bilinear map. Then it chooses909

a random exponent y ∈ Zp, and computes Y = e(g2, g1)y.910

In addition, we will use as a collision-resistant hash function H1 : GT → {0, 1}n that
we model as a random oracle. The algorithm outputs the public parameters PK and
the master secret key MSK as follows:

PK = {g1, g2, e(g2, g1)y} MSK = y

KeyGen(PK,MSK,T)→ SK: Let T : {0, 1}∗ → G1 be a function that we will model
as a random oracle. The key generation algorithm outputs a private key which
enables the user to decrypt a message encrypted under a set of attributes γ, if and
only if T (γ) = 1. The algorithm calculates the randomized shares of y according to
the access structure T . The following secret values are handed to the user for each
leaf node x in the tree:

Dx = gλx
1 · T (i)rx where i = att(x) dx = grx

2

Encrypt(PK, γ;u)→ (Key,CT): The encryption algorithm takes as input the public
parameters PK, a set of attributes γ, and an optional input seed u ∈ {0, 1}k to a
pseudo-random generator G. The algorithm first chooses a random s ∈ Zp (if seed u
is specified, then use G as source of randomness) and then returns the following:

Key ← H1(e(g2, g1)ys), CT = (γ,E′′ = gs2, {Ei = T (i)s}i∈γ)

Decrypt(CT, SK)→ Key: The decryption algorithm takes as input the ciphertext CT
and the user’s private key SK which embeds the access structure T . The algorithm
first determines whether the access structure T satisfies the attributes γ on the
ciphertext (e.g., if T (γ) = 1). If so, then we proceed to recover the Lagrange
coefficients ω for the minimum set of attributes S necessary to satisfy T . Therefore,

3The ate pairing inputs groups are (G2,G1) and not the usual ones (G1,G2). We displayed the scheme
in a way such that the precomputable element is always on the left side.

Nugier C, Adelin R et al. 27

for each such attribute i ∈ S, the corresponding coefficient ωi and the corresponding
SK components in T (e.g., defined by Dρ(i) and dρ(i)), the algorithm first computes:

∏
i∈S

(
e(E′′, Dρ(i))
e(dρ(i), Ei)

)ωi

=

∏
i∈S

e(g2, g1)λxωis · e(g2, T (i))ωirxs

(g2, T (i))ωirxs
=
∏
i∈S

e(g2, g1)λxωis = e(g2, g1)ys

The algorithm can then compute Key = H1(e(g2, g1)ys).911

912

913

7.2.2 Multi-Locking support914

The original form of the ciphertext in OpenABE’s KP-ABE scheme is the following one:

Key ← H1(e(g2, g1)ys), CT = (γ,E′′ = gs2, {Ei = T (i)s}i∈γ)

To protect against CCA-2 attack, ABE provides a Key Encapsulation Mechanism915

(KEM) for an AES key. The AES key encrypts and decrypts the data. This key is created916

by hashing the ABE lock.917

Then, the aim of the ABE decryption is to reconstruct the lock and hash it to retrieve918

the symmetric key. This hashing prevents the scheme from being Multi-Lockable since919

the lock does not appear explicitly in the ciphertext, thus no re-encryption or partial920

decryption can be done.921

We provide a construction that makes the encryption and decryption composition
commutative, and thus makes the scheme multi-lockable. We will make the following
Encrypt changes: first, pick a random M ∈ GT . Then, M is hashed to produce the
symmetrical (AES-256 in OpenABE) encryption key: Key ← H1(M). Then, we multiply
M with the lock e(g2, g1)ys and add it to the ciphertext, thus letting the scheme belong to
p-mul-MLF:

Key ← H1(M), CT = (γ,E = M · e(g2, g1)ys, E′′ = gs2, {Ei = T (i)s}i∈γ)

The Decrypt as it is gives a reconstruction of e(g2, g1)ys. We modify the output to be922

eitherKey ← H1(E ·e(g2, g1)−ys) in the case of the last decryption orM ′ ← E ·e(g2, g1)−ys923

for partial decryptions done during the multi-locking circuit.924

925

In order to make Multi-Locking easy to implement, we added an option to KeyGen,926

Encrypt and Decrypt. This one allows the specification of a sub-universe by passing its927

name as an argument. By simply appending a universe specifier at the start of the name928

of an attribute, we allow an easy generation of keys where access rights are ensured to be929

sub-universe specific. This slight adaptation already mentionned in section 4.6 allows the930

Multi-Locking scheme to be intuitively created from its Lock-Key graph.931

7.2.3 Perfect Argument Order932

The original form of the Decrypt is the following one:∏
i∈S

(
e(E′′, Dρ(i))
e(dρ(i), Ei)

)ωi

28 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

The pairing used in the scheme is Type III since the setup generate two different groups933

used as input groups.934

In the numerator, we see that the left-side argument of the pairing does not depends of935

i, since E′′ = gs1, so the pairing can be subjected to the Decryption Optimization. The936

right-side argument also depends on the ciphertext, we are in the case described in 5.1.937

Here, we should think that we should not Swich E′′ and Dρ(i) since exponentiations are938

faster in G1 beacause group elements are two times smaller than G2 elements.939

The OpenABE developers have already implemented the Decryption Optimization, so
the Decrypt algorithm actually computes:

e(E′′,
∏
i∈S D

ωi

ρ(i))∏
i∈S e(dρ(i), Ei)ωi

Then we still have to optimize the product of the remaining pairings which means940

computing it using the multi-pairing operation.941

7.2.4 Optimizing Encrypt942

In OpenABE, one multiplication per attribute is realized during Encrypt, and also one943

during the re-encryption that happens during Decrypt for CCA-2 security. This multi-944

plication happens during the calculation of T (i): we multiply a point of the curve issued945

from the hash of the attribute name by the cofactor of the curve. This operation is typical946

in Large Universe schemes. Studying the design of our Cloud service with ephemeral data947

access, we made some remarks:948

• Some attributes are really common and come regularly attached to data (usual949

meta-data tags e.g “Video”, “GPS”, ...)950

• A single user will have a preferred set of attributes to Encrypt with, as well as a951

set of attributes more often needed for decryption. The most common one in this952

category for example is the attribute corresponding to a user’s identity.953

• Some attributes are hapax lagomena and appear only once. For example timestamps,954

if they are precise up to the second or millisecond, or other values with great (dates,955

GPS coordinates, ...).956

Given this behaviour, that we expect applied to the vast majority of real-case scenarios,957

we can propose new trade-offs allowing to avoid the repeated calculation of T (i), and958

providing better performances in both Encrypt and Decrypt than just accelerating pairings.959

960

We propose for each of the three previous cases, respectively that:961

• The Setup computes, once and for all, the point multiplications linked to the attributes962

that are most common for all users. The trusted authority can propose batches of963

precomputed attributes as optional parts of the public key. So all users can download964

specifically batches that concerns them.965

To implement this behaviour, we modify Setup: Setup(τ, n) → (MSK,PK, Vatt)
such that the trusted authority precomputes T (atti) for all attributes atti of a set δ
of most common attributes into a vector:

Vatt ← {T (x)}x∈δ

• For further optimization, any user can also compute point multiplications linked to966

personal most-used attributes and store the results in his copy of Vatt for later reuse.967

All following Encrypt and Decrypt using attributes in Vatt will be sped-up.968

Nugier C, Adelin R et al. 29

To implement this change, we modify the Encrypt algorithm in order to enable it to969

use our stored attributes from Vatt. Encrypt(PK, γ, Vatt;u)→ (Key,CT)970

To encrypt using a set of attributes γ, for each attribute x ∈ γ, the algorithm retrieves971

the point linked to an attribute if it is contained in the vector Vatt, otherwise he972

computes T (x).973

Then the schemes continues as usual by an exponentiation with a randomly picked
s ∈ Zp and putting the result into the ciphertext:

Key ← H1(e(g2, g1)ys), CT = (γ,E′′ = gs2, {Ei = Esatti}i∈γ)

• Hapax legomema (one time used) attributes cannot be precomputed, but they974

represent the smallest proportion of attributes. In our Cloud service, the only such975

attribute to calculate during Encrypt is the “∆t“ attribute.976

The stastically-driven factorization of calculation in these three levels of computation977

allows for a faster schemes with a compromise in memory space used of one elliptic point978

per attribute.979

7.2.5 Optimizing Decrypt980

During Decryption, in the denominator, to remove a lock or obtain the plaintext, we have
to compute a number of exponentiations equal to the size of the minimum accepted set S
of attributes: ∏

i∈S
Dωi

ρ(i)

The possibility of swapping the arguments of the pairing can ensure us these exponen-981

tiations take place in the smallest possible group for efficiency. Since Dρ(i) belongs to G1,982

whose elements are twice shorter than elements of G2 we do not need the swap.983

In the IoT context that motivates the construction of our privacy-preserving Cloud984

service with ephemeral data access, data will be sent to the cloud as multiple data streams985

coming from registered devices. Most commonly, the stream incomming from a specific986

device will almost always be ciphered using the same set of attributes.987

Our last optimization, that we will call “Stream Optimization” consists to consider988

that the “stram” situation places us in the very small universe scenario described in 5.1. In989

this case, we can store during the first decryption of each stream the value of
∏
i∈S D

ωi

ρ(i).990

During decryption, we recover the Lagrange coefficients ω if the access structure T
satisfies the attributes γ contained in the ciphertext. Those coefficients depend only of the
access structure and the attributes. So once we succeeded to retreive the coefficients, for
x ∈ γ, and computed the exponentiations, we store their product D into a vector that will
be valid until a change of the access strucure:

VD ← {
∏
i∈Sj

Dωi

ρ(i)}j where j are the stream identifiers

When the cloud receives a new ciphertext, if it belongs to an identified stream (already991

encountered set of attributes) the user can reuse the corresponding
∏
i∈Sj

Dωi

ρ(i) previously992

calculated from the vector VD.993

Ultimately, because of this we now are in possession of pairing arguments before the994

reception of the ciphertext. On this behalf, this pairing can now be subjected to the Fixed995

Argument Optimization. If needed, the Switch Argument Method has to be used to allow996

the precomputation. If we decide to use it, we can change the storage VD from storing997

30 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

points to storing precomputation data for later pairing calculation. This makes the data998

stream context, the one with the fastest possible decryption.999

In recapitulation: in cases where the data comes from an identified stream, the1000

computation time is reduced to the retrieving time of the precomputed data in VD. This1001

optimization was initially proposed for the cloud as the most obvious destination for1002

streams of data ciphered with the same set of attributes.1003

However, another setting exists using this optimization: a user could want to download1004

from the cloud all possible data ciphered with a given set of attributes (for example “Alice’s1005

data” and “videos”). This configuration creates the possibility for Alice to precompute1006 ∏
i∈Sj

Dωi

ρ(i) as a left-side pairing argument, in a advanced method to speed-up decryption1007

of the stream coming from the cloud.1008

7.3 Fully Optimized KP-ABE scheme1009

We detail our full scheme:1010

1011

Setup(τ, n)→ (MSK,PK, Vatt): The setup algorithm takes as input the security1012

parameter τ , creates the parameters for a bilinear group (p, g1, g2, G1,G2,GT , e)1013

such that p is a prime in Θ(2τ), G1, G2 and GT are groups of order p where g11014

generates G1, g2 generates G2 and e : G2 ×G1 → GT is an admissible bilinear map.1015

Then it chooses a random exponent y ∈ Zp, and computes Y = e(g2, g1)y.1016

In addition, we will use as a collision-resistant hash function H1 : GT → {0, 1}n

and T : {0, 1}∗ → Zp that we both model as random oracles. Let T1(i) = g
T (i)
1

and T2(i) = g
T (i)
2 The algorithm outputs the public parameters PK and the master

secret key MSK as follows:

PK = {g1, g2, e(g2, g1)y} MSK = y Vatt ← {T (x)}x∈δ

The T1(i) values for the attributes that are most common for all users are precom-1017

puted and stored into a vector Vatt.1018

1019

KeyGen(PK,MSK,T)→ SK: Let T : {0, 1}∗ → G1 be a function that we will model
as a random oracle. The key generation algorithm outputs a private key which
enables the user to decrypt a message encrypted under a set of attributes γ, if and
only if T (γ) = 1. The algorithm calculates the randomized shares of y according to
the access structure T . The following secret values are handed to the user for each
leaf node x in the tree:

Dx = gλx
1 · T2(i)rx where i = att(x) dx = grx

2

At the reception of its keys, the user generates the precomputation data from the1020

dρi
using algorithm 2 and stores it. Additionally the user computes and stores the1021

T1(i) for all his most used attributes not already in VAtt.1022

1023

Encrypt(PK, γ, u)→ (Key,CT): The encryption algorithm takes as input the public
parameters PK, a set of attributes γ, and an optional input seed u ∈ {0, 1}k to a
pseudo-random generator G. The algorithm first chooses a random s ∈ Zp (if seed u
is specified, then use G as source of randomness) and then returns the following:

Key ← H1(M), CT = (γ,E = M · e(g2, g1)ys, E′′ = gs2, {Ei = T1(i)s}i∈γ)

Nugier C, Adelin R et al. 31

Decrypt(CT, SK)→ Key: The decryption algorithm takes as input the ciphertext CT
and the user’s private key SK which embeds the access structure T . The algorithm
first determines whether the access structure T satisfies the attributes γ on the
ciphertext (e.g., if T (γ) = 1). If so, then we proceed to recover the Lagrange
coefficients ω for the minimum set of attributes S necessary to satisfy T . Therefore,
for each such attribute i ∈ S, the corresponding coefficient ωi and the corresponding
SK components in T (e.g., defined by Dρ(i) and dρ(i)), if the ciphertext does not
come from an identified stream, the algorithm compute

e(
∏
i∈S D

ωi

ρ(i), E
′′)∏

i∈S e(dρ(i), Ei)ωi

If the ciphertext comes from the identified stream j, the algorithm computes:

e(VDj , E′′)∏
i∈S e(dρ(i), Ei)ωi

The tho operations evaluate identically to:

=
∏
i∈S

e(g2, g1)λxωis · e(gT (i)
2 , g1)ωirxs

(g2, g
T (i)
1)ωirxs

=
∏
i∈S

e(g2, g1)λxωis = e(g2, g1)ys

The algorithm can then compute Key = H1(E/e(g2, g1)ys).1024

1025

7.4 Results and benchmarks1026

Experiments were executed on a Desktop computer equipped with a 64-bit Intel(R)1027

Core(TM) i7-4770 CPU, based on Haswell microarchitecture, at a frequency of 3.40 GHz1028

and a maximal frequency of 3.90 GHz. The Operating System on which the experiments1029

were realized is Ubuntu 16.04.6 LTS. The Desktop computer has a RAM of 16 GB, with1030

a L1d cache of 32 KB, a L1i cache of 32 KB, a L2 cache of 256 KB and a L3 cache of1031

8192 KB.1032

In the following, we present the experiments and the results on RELIC and then on1033

OpenABE.1034

7.4.1 RELIC1035

We compare the execution time of our implementation of the Fixed Argument Optimization1036

based on the multi Optimal ate pairing with Costello and Stebila’s original implementation1037

of the multi Optimal ate pairing. We also evaluate the memory consumption of the pairing1038

precomputations.1039

Experiments were carried out by varying the number of pairings based on a logarithmic1040

scale in base 2, from 1 to 8,192 pairings. For each number of pairings we realized 1281041

computations, then removed the outliers and computed the average.1042

Figure 4 represents the speed-up percentage between the execution of the RELIC multi1043

Optimal ate pairing and our implementation of the Fixed Argument Optimization using1044

the precomputations.1045

Results show that a single pairing has a speed-up percentage of about 11.6 %. The1046

speed-up grows consistently until 32 pairings are reached with a speed-up of about 31.6 %.1047

After that number of pairings, the speed-up varies around a 32 % rate.1048

Those results confirms Costello and Stebila’s results in [CS10].1049

32 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

1 2 4 8 16 32 64 128 256 512 1,020 2,050 4,090 8,180

20

30

Number of pairing

Sp
ee
d-
up

(%
)

Figure 4: Speed-up of the multi Optimal ate pairing with the Fixed Argument Optimization
over the original multi Optimal ate pairing

Table 2 represents the execution time (in ms) of RELIC’s moatep and the corresponding1050

execution times of our pairing precomputation (col. 3) and pairing computation (col. 4)1051

using the precomputed data as a percentage of RELIC’s execution time, and the memory1052

consumption in kB of the precomputations (col.5).1053

Table 2: Evaluation of the memory consumption of the Fixed Argument Optimization
and comparison of the execution time of the optimization with the original pairing

#pairings moatep (ms) moatep w/ precomp (%) Memory (kB)
w/o precomp precomp pairing

1 1.85 11.85 88.40 88
2 2.48 17.81 83.07 176
4 3.75 24.10 77.19 353
8 6.27 29.20 72.97 705
16 11.30 32.54 70.10 1411
32 21.37 34.50 68.42 2823
64 41.77 35.44 67.06 5645
128 81.77 36.44 67.43 11291
256 162.59 37.08 67.79 22581
512 323.42 37.72 68.39 45163
1024 647.08 37.95 68.09 90325
2048 1336.32 36.97 65.73 180650
4096 2691.23 37.48 65.60 361300
8192 5325.37 39.40 69.43 722600

As expected, memory consumption grows linearly with the number of pairings pre-1054

computations stored. The theoretic memory consumption is expressed using the following1055

function: f(x) = x · l · (‖G2‖+ ‖dv2‖+ 7 · ‖Fp2‖) with x being the number of pairings and1056

l being the number of Miller’s loops precomputed (Algorithm 1).1057

The Elliptic Curve used for computation is the curve BN-256. One element of G2 is 1600-1058

bits long. One element of dv2 is 4352-bits long. One element of Fp2 is 512-bits long. The1059

Nugier C, Adelin R et al. 33

miller loop variable length l (in algorithm 1) is 74. Finally, the real memory consumption is1060

expressed with the following function: f(x) = x ·74 · (1600+4352+7 ·512) = 705664 ·x bits.1061

By summing the two last columns, we can see that total percentage exceeds 100 %.1062

For 1 pairing we exceed this value by 0.25 %, and for 8,192 pairing we exceed it by 8.83 %.1063

This is due to the added time for storing and retrieving the precomputed variables.1064

Our implementation of the Fixed Argument Optimization performs better than the1065

original pairing computation except if we use the precomputation only once. As soon as1066

the second pairing computation, the percentage of calculation represent 94.3 % of the1067

original pairing, but this optimization should not be used if the two arguments of the1068

pairing are expected to come simultaneously.1069

7.4.2 OpenABE1070

We compare the execution time of the different algorithms of our Fully Optimized KP-ABE1071

scheme with the implementation of the original KP-ABE in OpenABE. This comparison is1072

carried out in two settings: a classical source-target scheme and a tripartite Multi-Locking1073

scheme (with one relay).1074

Experiments were carried out by varying the number of attributes based on a logarithmic1075

scale in base 2 from 1 to 4,096 attributes. For each number of attributes we realized 1281076

computations, then removed the outliers and computed the average. All experiments were1077

realized by encrypting a random plaintext of 4,096 Bytes.1078

Asymmetric encryption usage Experiments were realized by computing the following1079

algorithms: Setup, KeyGen, Encrypt and Decrypt. We executed all the four algorithms to1080

get the execution times for the original KP-ABE scheme in the white columns. For the1081

experiments on the Fully Optimized KP-ABE scheme, we executed the Setup and KeyGen,1082

then the Encrypt and Decrypt two times each.1083

The first grey Encrypt and Decrypt column represent the start of a data stream, that1084

do not yet benefit from already existing values in the VD vector, they also store the new1085

values in the vector.1086

The second ones represent the Fully Optimized KP-ABE at its best, with all possible1087

precomputed variables already in the memory.1088

The Elliptic Curve used for computation is the curve BN-254, so the size of one element1089

of G2 is 1600-bits. One element of dv2 is 1280-bits long. One element of Fp2 is 512-bits long.1090

The miller loop variable length l (Algorithm 1) is 70. Finally, the real memory consumption1091

is expressed with following function: f(x) = x · 70 · (1600 + 1280 + 7 · 512) = 452480 · x bits.1092

The results of our Fully Optimized scheme are the following ones:1093

• The Setup grows linearly with the number of attributes since hashed of the attributes1094

are precomputed in this algorithm but this overhead is acceptable since it is an1095

algorithm executed once in the system.1096

• The KeyGen takes more time to compute since the we count the precomputation1097

part of the pairing in it, this algorithm will be executed each time a user joins the1098

system and does precomputation based on a decryption key.1099

• The Encrypt takes less computation time since we used the precompute T1(i) from1100

the Setup.1101

• Finally the first Decrypt is in the same order of magnitude as the Decrypt of the1102

original KP-ABE scheme since it does not take into account the Stream Optimization.1103

The second Decrypt takes less computation time since it used the VD precomputations.1104

34 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

Table 3: Evaluation of the memory consumption of the optimization in RELIC and
comparison of the execution time of the optimization with the original one

#att Setup KeyGen Encrypt Decrypt
1 1.77 1.32 0.60 0.74 0.78 0.58 0.54 1.55 1.35 1.31
2 1.71 1.42 1.08 1.46 0.82 0.68 0.64 1.81 1.63 1.53
4 1.79 1.62 2.09 2.87 1.04 0.88 0.84 2.34 2.17 1.95
8 1.83 2.02 3.81 5.68 1.49 1.27 1.23 3.44 3.43 2.77
16 1.80 2.81 6.92 11.33 2.41 2.06 2.02 5.77 5.92 4.44
32 1.74 4.39 12.84 22.57 4.31 3.64 3.58 10.62 10.81 7.88
64 1.77 7.55 25.27 45.00 8.11 6.78 6.73 20.92 20.40 15.17
128 1.75 13.88 49.55 89.85 15.67 13.12 13.10 44.34 47.05 31.19
256 1.85 26.45 98.05 179.73 31.01 25.94 25.92 100.77 105.12 68.96
512 1.78 51.58 195.08 359.32 62.20 52.22 52.12 218.03 226.55 149.69
1024 1.64 101.68 389.03 719.57 127.72 107.52 107.27 456.90 469.29 308.26
2048 1.64 201.88 777.24 1440.04 268.01 227.28 227.26 943.23 960.85 643.30
4096 1.43 402.18 1554.45 2897.77 590.37 511.56 508.54 1969.09 2033.50 1363.45

Multi-Locking Experiments were realized by enforcing the scheme in Figure 5. We1105

executed the following algorithms: Setup, KeyGen for the tree sub-universes Source-Relay,1106

Source-Target and Relay-Target. Then, a first Encrypt for the Source-Target lock, a1107

second Encrypt for the Source-Relay lock, a first Decrypt with Source-Relay keys, a last1108

Encrypt for the Relay-Target lock, a second Decrypt with the Source-Relay keys and a1109

final Decrypt using Source-Target Keys.1110

The access policy is a ∧ over all attributes attached to the ciphertext. So the LSSS1111

has a line for each attribute positioned.1112

This lock key graph is similar to the one in our example in section 6. Since this1113

Lock-Key graph is planar, it can also be expressed with a scheme realizing over-encryption.1114

Indeed, we executed all the algorithms to compute the execution time for the original1115

KP-ABE scheme. Like the previous experiment, we executed a first time all the algorithms1116

with our Fully Optimized KP-ABE scheme. Then we executed all the Encrypt and Decrypt1117

a second time to benefit of the stream optimization.1118

S

R1

T

Figure 5: A Lock-key graph with 1 relay.

Figure 6 represents the comparison of standard over-encryption in OpenABE’s KPABE1119

and Multi-Locking with our Fully Optimized KP-ABE. The full line represents OpenABE1120

times, and the dotted line represents our scheme when benefiting from all our improvements1121

including Stream Optimization. The comparison of the two curves highlight the efficiency1122

of our improvement.1123

Nugier C, Adelin R et al. 35

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

2

4

6

Number of attributes

T
im

e
(s
)

w/ stream opti
OpenABE

Figure 6: Advantage of Multi-Locking over super-encryption using ABE

8 Conclusion and future work1124

In this paper, we presented two major improvements of ABE. The Perfect Argument1125

Order Optimization based on the Switch Argument method allows to apply the Fixed1126

Argument Optimization to all pairings in a ABE scheme end thus speeding them up1127

by 30%. We open new horizons on the construction of ABE schemes by introducing1128

Multi-Locking families, allowing a better fit for a larger range of real-case scenarios. We1129

checked that our improvements were applicable to nearly all schemes among a large survey.1130

We benefited from the combination of a Large Universe KP-ABE and a Constant-Size1131

Ciphertext KP-ABE to create a Cloud service allowing time-based access policies not1132

relying on the decay or revocation of keys that also allows for the possibility to delegate1133

access control to trusted relays. We implemented a model for such a device and studied1134

its performances to demonstrate the efficiency of our optimizations.1135

Some aspects, notably of Multi-Locking can be improved: how can one be sure of1136

the trustworthiness of its relays? Is it possible to design an ABE scheme with a traitor1137

tracing or watermarking mechanism? When studying the scope of multi-lockable ABE1138

schemes, we ignored post-quantum, lattice-based schemes. Is there a way to implement1139

multi-locking on these schemes? We believe the framework we developed can provide ABE1140

constructions fitting a wide variety of scenarios. For future work we would like to explore1141

more deeply the impact on privacy in such scenarios.1142

References1143

[AG] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for1144

Cryptography. https://github.com/relic-toolkit/relic.1145

[AHL+12] Nuttapong Attrapadung, Javier Herranz, Fabien Laguillaumie, Benoît Libert,1146

Elie De Panafieu, and Carla Ràfols. Attribute-Based Encryption Schemes1147

with Constant-Size Ciphertexts. Theoretical Computer Science, 422:15–38,1148

2012.1149

[ALdP11] N. Attrapadung, B. Libert, and E. de Panafieu. Expressive key-policy1150

attribute-based encryption with constant-size ciphertexts. PKC 2011 LNCS1151

6571, pages 90–108, 2011.1152

https://github.com/relic-toolkit/relic

36 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

[AS15] Ram Govind Singh Anurag Singh. Various attacks over the elliptic curve-1153

based cryptosystems. International Journal of Engineering and Innovative1154

Technology, 5:50–52, 11 2015.1155

[B+98] Dan Boneh et al. Twenty years of attacks on the rsa cryptosystem. Notices1156

of the AMS, 46(2):203–213, 1998.1157

[BBD+08] Jean-Luc Beuchat, Nicolas Brisebarre, Jérémie Detrey, Eiji Okamoto, and1158

Francisco Rodríguez-Henríquez. A comparison between hardware accelerators1159

for the modified tate pairing over F2m and F3m . In Steven D. Galbraith and1160

Kenneth G. Paterson, editors, Pairing-Based Cryptography – Pairing 2008,1161

pages 297–315, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.1162

[BSSV09] Vladimir Božović, Daniel Socek, Rainer Steinwandt, and Viktoria Villanyi.1163

Multi-authority attribute-based encryption with honest-but-curious central1164

authority. IACR Cryptology ePrint Archive, 2009:83, 01 2009.1165

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-Policy1166

Attribute-Based Encryption. In 2007 IEEE Symposium on Security and1167

Privacy (SP ’07), Berkeley, France, May 2007. IEEE.1168

[CC09] Melissa Chase and Sherman S.M. Chow. Improving privacy and security in1169

multi-authority attribute-based encryption. In Proceedings of the 16th ACM1170

Conference on Computer and Communications Security, CCS ’09, pages1171

121–130, New York, NY, USA, 2009. ACM.1172

[Cha07] Melissa Chase. Multi-authority attribute based encryption. In Proceedings1173

of the 4th Conference on Theory of Cryptography, TCC’07, pages 515–534,1174

Berlin, Heidelberg, 2007. Springer-Verlag.1175

[CS10] Craig Costello and Douglas Stebila. Fixed argument pairings. In Michel1176

Abdalla and Paulo S. L. M. Barreto, editors, Progress in Cryptology – LAT-1177

INCRYPT 2010, pages 92–108, Berlin, Heidelberg, 2010. Springer Berlin1178

Heidelberg.1179

[CWM+13] Yong Cheng, Zhi-ying Wang, Jun Ma, Jiang-jiang Wu, Song-zhu Mei, and1180

Jiang-chun Ren. Efficient revocation in ciphertext-policy attribute-based1181

encryption based cryptographic cloud storage. Journal of Zhejiang University1182

SCIENCE C, 14, 02 2013.1183

[GPSW06a] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-1184

based encryption for fine-grained access control of encrypted data. Proceedings1185

of the ACM Conference on Computer and Communications Security, pages1186

89–98, 01 2006.1187

[GPSW06b] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-1188

based encryption for fine-grained access control of encrypted data. In Proceed-1189

ings of the 13th ACM conference on Computer and communications security,1190

pages 89–98. Acm, 2006.1191

[HJSNS08] M Hinek, Shaoquan Jiang, Reihaneh Safavi-Naini, and Siamak Shahandashti.1192

Attribute-based encryption with key cloning protection. IACR Cryptology1193

ePrint Archive, 2008, 12 2008.1194

[HL10] M Jason Hinek and Charles CY Lam. Common modulus attacks on small1195

private exponent rsa and some fast variants (in practice). Journal of Mathe-1196

matical Cryptology, 4(1):58–93, 2010.1197

Nugier C, Adelin R et al. 37

[HSMY12] Jinguang Han, Willy Susilo, Yi Mu, and Jun Yan. Privacy-preserving1198

decentralized key-policy attribute-based encryption. Parallel and Distributed1199

Systems, IEEE Transactions on, 23:2150–2162, 11 2012.1200

[Hur13] Junbeom Hur. Improving security and efficiency in attribute-based data1201

sharing. IEEE Transactions on Knowledge and Data Engineering, 25:2271–1202

2282, 2013.1203

[HW13] Susan Hohenberger and Brent Waters. Attribute-based encryption with fast1204

decryption. In International Workshop on Public Key Cryptography, pages1205

162–179. Springer, 2013.1206

[LCH+11] Zhen Liu, Zhenfu Cao, Qiong Huang, Duncan S. Wong, and Tsz Hon Yuen.1207

Fully secure multi-authority ciphertext-policy attribute-based encryption1208

without random oracles. In Proceedings of the 16th European Conference1209

on Research in Computer Security, ESORICS’11, pages 278–297, Berlin,1210

Heidelberg, 2011. Springer-Verlag.1211

[LCLS10] Huang Lin, Zhenfu Cao, Xiaohui Liang, and Jun Shao. Secure threshold multi1212

authority attribute based encryption without a central authority. Information1213

Sciences, 180(13):2618 – 2632, 2010.1214

[LCW10] Zhen Liu, Zhenfu Cao, and Duncan S. Wong. Efficient generation of linear1215

secret sharing scheme matrices from threshold access trees. Cryptology ePrint1216

Archive, Report 2010/374, 2010.1217

[LHC+11] Jin Li, Qiong Huang, Xiaofeng Chen, Sherman Chow, Duncan Wong, and1218

Dongqing Xie. Multi-authority ciphertext-policy attribute-based encryp-1219

tion with accountability. In Proceedings of the 6th ACM Symposium on1220

information, COmputer and COmmunications Security, pages 386–390, 011221

2011.1222

[LLLS10] Xiaohui Liang, Rongxing Lu, Xiaodong Lin, and Xuemin Sherman Shen.1223

Ciphertext policy attribute based encryption with efficient revocation. Tech-1224

nicalReport, University of Waterloo, 2, 8, 2010.1225

[LOS+10] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and1226

Brent Waters. Fully secure functional encryption: Attribute-based encryp-1227

tion and (hierarchical) inner product encryption. In Proceedings of the 29th1228

Annual International Conference on Theory and Applications of Crypto-1229

graphic Techniques, EUROCRYPT’10, pages 62–91, Berlin, Heidelberg, 2010.1230

Springer-Verlag.1231

[Lyn07] Ben Lynn. ON THE IMPLEMENTATION OF PAIRING-BASED CRYP-1232

TOSYSTEMS. PhD thesis, STANFORD UNIVERSITY, June 2007.1233

[Mil86] Victor S. Miller. Short programs for functions on curves. In IBM THOMAS1234

J. WATSON RESEARCH CENTER, 1986.1235

[MKE08] Sascha Müller, Stefan Katzenbeisser, and Claudia Eckert. Distributed1236

attribute-based encryption. In ICISC, 2008.1237

[MKE09] Sascha Mueller, Stefan Katzenbeisser, and Claudia Eckert. On multi-authority1238

ciphertext-policy attribute-based encryption. Fraunhofer SIT, 46, 07 2009.1239

[OSW07] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption1240

with non-monotonic access structures. IACR Cryptology ePrint Archive,1241

2007:323, 01 2007.1242

38 Multi-Locking and Perfect Argument Order : Two Major Improvements of ABE

[PSA18] Praveen Kumar P., Syam Kumar P., and Alphonse P.J.A. Attribute based1243

encryption in cloud computing: A survey, gap analysis, and future directions.1244

Journal of Network and Computer Applications, 108:37–52, 2018.1245

[PTMW10a] Matthew Pirretti, Patrick Traynor, Patrick Mcdaniel, and Brent Waters.1246

Secure attribute-based systems. J. Comput. Secur., 18(5):799–837, September1247

2010.1248

[PTMW10b] Matthew Pirretti, Patrick Traynor, Patrick Drew McDaniel, and Brent1249

Waters. Secure attribute-based systems. Journal of Computer Security,1250

18(5):799–837, 10 2010.1251

[QLDJ14] Zhi Qiao, Shuwen Liang, Spencer Davis, and Hai Jiang. Survey of attribute1252

based encryption. 15th IEEE/ACIS International Conference on Software1253

Engineering, Artificial Intelligence, Networking and Parallel/Distributed1254

Computing (SNPD), pages 1–6, 2014.1255

[SA05] Waters B. Sahai A. Fuzzy identity-based encryption. Cramer R. (eds)1256

Advances in Cryptology – EUROCRYPT 2005. EUROCRYPT 2005. Lecture1257

Notes in Computer Science, vol 3494. Springer, Berlin, Heidelberg, 2005.1258

[SCA06] Michael Scott, Neil Costigan, and Wesam Abdulwahab. Implementing1259

cryptographic pairings on smartcards. In Louis Goubin and Mitsuru Matsui,1260

editors, Cryptographic Hardware and Embedded Systems - CHES 2006, pages1261

134–147, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.1262

[Sco11] Michael Scott. On the efficient implementation of pairing-based protocols.1263

In Liqun Chen, editor, Cryptography and Coding, pages 296–308, Berlin,1264

Heidelberg, 2011. Springer Berlin Heidelberg.1265

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. Advances1266

in Cryptology, pages 47–53, 1985.1267

[SIM83] GUSTAVUS J. SIMMONS. A “weak” privacy protocol using the rsa crypto1268

algorithm. Cryptologia, 7(2):180–182, 1983.1269

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption:an expressive,1270

efficient, and provably secure realization. Catalano D., Fazio N., Gennaro R.,1271

Nicolosi A. (eds) Public Key Cryptography – PKC 2011. PKC 2011. Lecture1272

Notes in Computer Science, vol 6571. Springer, Berlin, Heidelberg, 2011.1273

[WLW10] Guojun Wang, Qin Liu, and Jie Wu. Hierarchical attribute-based encryption1274

for fine-grained access control in cloud storage services. In Proceedings of the1275

17th ACM Conference on Computer and Communications Security, CCS ’10,1276

pages 735–737, New York, NY, USA, 2010. ACM.1277

[WLWG11] Guojun Wang, Qin Liu, Jie Wu, and Minyi Guo. Hierarchical attribute-based1278

encryption and scalable user revocation for sharing data in cloud servers.1279

Computers & Security, 30(5):320 – 331, 2011. Advances in network and1280

system security.1281

	Introduction
	Background and definitions
	Functional Encryption: Syntax and Security Definition
	Key-Policy Attribute-Based Encryption
	Constant-Sized Ciphertext KP-ABE

	Perfect Argument Order for faster decryption
	Asymmetric pairings and Perfectly Ordered schemes
	Notion of Perfect Argument Order and Switch Argument Method
	Construction of a Perfectly Ordered CP-ABE
	Important notes

	Multi-Locking
	Introductory example
	Definition of a Multi-Locking scheme
	Common Multi-Locking Families
	Generalization
	Benefits over super-encryption
	Computational consequences

	Discussion about the scope of the improvements
	Compatibility of Perfect Argument Order with existing optimizations
	Compatibility of Perfect Argument Order and Multi-Locking with existing ABE schemes

	Privacy-preserving Cloud service with ephemeral data access
	Implementation
	RELIC
	OpenABE
	Fully Optimized KP-ABE scheme
	Results and benchmarks

	Conclusion and future work

