
On the Efficiency of Software Implementations of
Lightweight Block Ciphers from the Perspective of

Programming Languages ∗†

Abdur Rehman Raza‡, Khawir Mahmood§, Muhammad Faisal Amjad,
Haider Abbas, and Mehreen Afzal

National University of Sciences and Technology, Islamabad, Pakistan

Abstract

Lightweight block ciphers are primarily designed for resource constrained de-
vices. However, due to service requirements of large-scale IoT networks and sys-
tems, the need for efficient software implementations can not be ruled out. A
number of studies have compared software implementations of different lightweight
block ciphers on a specific platform but to the best of our knowledge, this is the
first attempt to benchmark various software implementations of a single lightweight
block cipher across different programming languages and platforms in the cloud ar-
chitecture. In this paper, we defined six lookup-table based software implementa-
tions for lightweight block ciphers with their characteristics ranging from memory
to throughput optimized variants. We carried out a thorough analysis of the two
costs associated with each implementation (memory and operations) and discussed
possible trade-offs in detail. We coded all six types of implementations for three key
settings (64, 80, 128 bits) of LED (a lightweight block cipher) in four programming
languages (Java, C#, C++, Python). We highlighted the impact of choice relating
to implementation type, programming language, and platform by benchmarking
the seventy-two implementations for throughput and software efficiency on 32 &
64-bit platforms for two major operating systems (Windows & Linux) on Amazon
Web Services Cloud. The results showed that these choices can affect the efficiency
of a cryptographic primitive by a factor as high as 400.

Keywords: lightweight block-cipher, software implementation, lookup table, LED,
IoT, aws EC2

∗The published article is available at https://doi.org/10.1016/j.future.2019.09.058
† c© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

http://creativecommons.org/licenses/by-nc-nd/4.0/
‡Corresponding author: abraza@mcs.edu.pk (A.R. Raza)
§khawir@mcs.edu.pk (K. Mahmood), faisal@nust.edu.pk (M.F. Amjad),

haider@mcs.edu.pk (H. Abbas), mehreenafzal@mcs.edu.pk (M. Afzal)

1

1 Introduction

The proliferation of IoT devices, ranging from personalized fitness companions to smart
home sensors is gradually transforming every aspect of human life in fundamental and
diverse ways. Furthermore, the amalgamation of IoT with cloud technology and big data
is bringing together physical, industrial and biological worlds [56]. According to a predic-
tion by Gartner, more than 20 billion IoT devices will be connected to the Internet by the
year 2020 [39]. These IoT devices are constantly producing huge volumes of data which is
shared between devices for collaboration and forming ubiquitous systems. The networks
of IoT devices necessitate central processing for state-of-the-art intelligent services such
as analytics, mining, and prediction. This requirement is met by integrating IoT devices
with cloud-based technology resulting in a scalable, robust and highly available collab-
oration which entails huge potentials and benefits at the individual, society as well as
global levels. A key concern regarding the IoT devices is the nature of data accessed and
shared by these devices with one another and over cloud infrastructure. This data often
includes sensitive personal and mission-critical information for which the most significant
factors are privacy and security. Lack of privacy and security diminishes the efficacy of
IoT. This, in turn, acts as the primary barrier which needs to be provably surpassed for
practical utilization of IoT.

The peculiar cloud-based IoT ecosystem compounds the privacy and security require-
ments. A balanced approach is sought that deals with resource-constrained IoT devices
at one end and performance requirement for a large number of simultaneous cloud-
connected devices at the other. Existing standards of National Institute of Standards
and Technology(NIST) for encryption (AES [21]) and hash functions (SHA-III [14]) can
not be efficiently implemented in resource constrained environments. Therefore, the more
suitable options for these tiny IoT devices are low cost, lightweight cryptographic primi-
tives such as block ciphers, stream ciphers, hash functions, and Message Authentication
Codes(MAC) [59, 23, 4, 58].

Over the past decade a number of lightweight block ciphers have been designed such as
HIGHT [38], KLEIN [31], LED [34], MIBS [40], SPARX [25] and SKINNY [11]. The two
block ciphers CLEFIA [60] and PRESENT [18] form part of ISO standard for lightweight
block ciphers [29]. Mostly the lightweight block ciphers are designed to support compact
hardware implementation in terms of gate count and power consumption. However,
FeW [44], ITUbee [42], Robin and Fantomas [32] are also suitable for implementation in
software based platforms. For software implementations, the goal is to reduce the memory
requirement and increase throughput. Various designs support additional constraints such
as low latency, masked implementation and support for both encryption and decryption
with minimal overhead [30, 19, 54]. Few designs have been proposed which improve upon
or combine the ideas of existing lightweight block ciphers like for example SIMECK [62]
combines the best features of two ciphers Simon and Speck [10]. I-PRESENT [63] is an
involutive design based on PRESENT [18]. The involution part is inspired from block
cipher PRINCE [19] and encryption is identical to decryption except the round keys are
used in reverse order.

The lightweight block ciphers perform remarkably well in resource constrained hard-
ware and software platforms but there exists a need for good performance over high-end
software machines too. Consider a practical scenario where hundreds of tiny IoT devices
are connected to a server. Each device sends a small amount of data (one block or few bits)
after a specific interval and shares a unique symmetric key with the server for communi-

2

cating securely. The server needs to decrypt the data received from connected devices in
real-time in order to perform some analysis or update the user dashboard. This necessi-
tates the need for efficient software implementation so as not to burden server resources
with performing heavy cryptographic operations only.

Motivation. The available software based implementation techniques for lightweight
block ciphers include lookup-table based, bit-sliced and use of Single Instruction Multi-
ple Data (SIMD) instructions. The lookup-table based implementation is done by pre-
computing the small chunks of data, then selecting and aggregating it at runtime. The
bit-slice technique introduced in [15], implements the block cipher without lookup tables.
It involves breaking down the block cipher into logical bit operations in order to perform
N parallel encryptions on an N-bit microprocessor [53]. The use of SIMD instructions
for accelerating the AES was presented in [35]. Precisely, the vector permute (vperm)
instruction is used to perform parallel table lookups in order to increase the throughput.
This technique has later been applied to various block ciphers for accelerated implementa-
tions and resistance against side channel attacks [49, 51, 45, 61]. The bit-slice and SIMD
instruction based implementations deliver very good performance and therefore seem to
be the obvious choice for implementation in cloud-based services. However, it has its
limitations in practical scenario (explained in previous paragraph) due to the following
pitfalls:

• The bit-slice implementation works on N blocks in parallel. Thus it needs N blocks
of data to be present on the server before they can be packed together in bundles
to perform encryption or decryption. However, if IoT devices are sending small
data packets after considerable intervals, then the server has to either wait for the
arrival of more data packets or decrypt the single block via bit-slice technique. The
first option impairs the server’s ability to decrypt the data in real-time whereas
the second option gives a performance hit in terms of throughput. In [12], the
authors showed that bit-slice implementation is not suitable for scenarios where
each message consists of a small number of blocks.

• Although idea of implementing by bit-slice technique has been extended to many
lightweight block ciphers but only some are specifically designed for it (Gift [6],
PRIDE [2], RECTANGLE [64], RoadRunner [9]). Thus not all the lightweight block
ciphers will have similar performance gains from bit-slice implementation. Bitslice
implementations of various block ciphers are compared in [7]. The results show
that RECTANGLE (whose design took bitslice implementation into consideration)
performs remarkably better than others which were not specifically designed for
bit-slice technique.

• Not all the higher-level programming languages provide direct support for SIMD
instructions, whereas web-services and cloud applications are mostly written in
these languages. This limits the usability scenarios of SIMD instructions for fast
implementation of cryptographic primitives in higher-level languages.

In the light of the above discussion, look-up table based implementations seem practi-
cally more feasible and best suited for cloud-based IoT scenario explained above. Despite
having a larger memory footprint in terms of pre-computed lookup tables, they have bet-
ter performance and large-scale applicability relating to platform and language support.

Our Contributions. Apropos to the proceeding motivation, we contribute in tan-
gible terms to the software based implementations of lightweight block ciphers. The

3

parameters affecting the performance of a lightweight block cipher in a cloud-based IoT
network include the choice of the lightweight block cipher, implementation type, program-
ming language, operating system, and architecture. There exist a considerable body of
literature that compares particular implementation of various lightweight block ciphers
on a specific/single platform [12, 47, 43, 27, 24, 20], but to the best of our knowledge,
this is the first attempt to benchmark lookup table based software implementations of
a single lightweight block cipher across different programming languages and platforms
using Amazon Web Services (AWS) cloud architecture. Specifically, we have made the
following contributions in this paper:

• We defined six lookup-table based software implementations for lightweight block
ciphers with their characteristics and possible trade-offs, ranging from memory to
throughput optimized variants.

• We discussed the two types of costs (memory and operations) associated with each
implementation and shed light on the efficient computation of lookup tables and
round operations.

• We elaborated upon packing and unpacking cost associated with each implemen-
tation and explained the efficient conversion of plaintext and key bytes into the
format and data type required by each implementation.

• We implemented Light Encryption Device (LED) block cipher for three key settings
(64, 80, 128 bits) in four programming languages (Java, C#, C++, Python) for all
six implementation types.

• We benchmarked the seventy-two implementations for throughput and software
efficiency on 32 & 64-bit platform for two major Operating Systems (Windows &
Linux) on Amazon Web Services (AWS) Cloud. The results show the amount of
impact the choice of implementation type, programming language and platform has
on the efficiency of a cryptographic primitive.

The rest of this paper is organized as follows: In Section 2 we provide a comprehensive
breakdown of LED specifications. This is followed by a detailed description and trade-offs
related to six LookUp Table based (LUT) software implementations (4-bit Serial, 4-bit
LUT, 8-bit LUT, 16-bit LUT, 32-bit LUT, and 64-bit LUT) of LED block cipher in Section
3. The Section 4 presents performance results of all implementations. A comprehensive
account of related & future work is given in Section 5 and Section 6 concludes the paper.

The implementation codes are available at
https://github.com/rzpbcodes/LightWeightBlockCiphers

2 LED Block Cipher

LED is a lightweight block cipher with operations similar to AES [21] like sbox,
shiftRows and mixColumns. The cipher supports 64-bit block length and key lengths
of 64 to 128 bits in multiples of 4. LED block cipher does not employ any key schedule,
rather the user provided master key is used as-is where required. Moreover, the round
key is mixed into the plaintext after every four rounds, called step. This helps in realiz-
ing compact hardware implementation while enabling the provision of concrete security

4

https://github.com/rzpbcodes/LightWeightBlockCiphers

bounds under the related key attacks. Although the non-existence of key-schedule seems
dangerous and makes the cipher vulnerable to different types of attacks [16, 17], spe-
cial care has been taken in the design of LED to thwart against this e.g. resistance to
slide-attacks [34].

The 64-bit plaintext block p is conceptually arranged in a 4×4 matrix of 16 nibbles(4-
bit) as

p0 p1 p2 p3
p4 p5 p6 p7
p8 p9 p10 p11
p12 p13 p14 p15

Each nibble is an element of GF (24) with underlying polynomial for finite field mul-

tiplication as X4⊕X ⊕ 1. The elements p0|p1|p2| · · · |p14|p15 are loaded row-wise into the
state matrix. This is more hardware friendly as compared to loading the state column-
wise as is the case in AES [50].

The master key K consists of l nibbles (k0| k1| k2| · · · | kl−2| kl−1). All the subkeys
are conceptually arranged as a 4× 4 square matrix just like the input state matrix. For
64-bit master key, there is only one subkey sk0 which is equal to the master key K. For
128-bit master key, the two subkeys sk0 and sk1 are equal to left and right half of the
master key K = sk0|sk1. For master key with 64 < length < 128. (in multiple of 4), the
first subkey sk0 consists of first 16 nibbles of the master key K and the second subkey
sk1 is computed as

sk1i = K(i+16) mod l i : 0→ 15.

The 4× 4 subkey matrices for 64, 80 and 128 bit master keys K are as
k0 k1 k2 k3
k4 k5 k6 k7
k8 k9 k10 k11
k12 k13 k14 k15

subkey for 64-bit master key.

k0 k1 k2 k3
k4 k5 k6 k7
k8 k9 k10 k11
k12 k13 k14 k15

k16 k17 k18 k19
k0 k1 k2 k3
k4 k5 k6 k7
k8 k9 k10 k11

subkeys for 80-bit master key.

k0 k1 k2 k3
k4 k5 k6 k7
k8 k9 k10 k11
k12 k13 k14 k15

k16 k17 k18 k19
k20 k21 k22 k23
k24 k25 k26 k27
k28 k29 k30 k31

subkeys for 128-bit master key.

Figure 1 illustrates the encryption operation of the LED block cipher which pri-
marily consists of mixing the subkeys into state and performing step operation.

5

4 x Rounds
Plaintext

sk0

STEP

STEP

STEP

Ciphertext

addConstants

subCells

shiftRows

mixColumns

O
n
e

R
o
u
n
d

3 x Rounds

sk0

sk1

sk1

sk0

Figure 1: Encryption operation of LED block cipher.

Pseudo-code for LED block cipher encryption method is shown in Listing 1. The
addRoundKey(state, sk) method mixes the subkey into state using binary
Exclusive-Or (xor) operation (⊕). For 64-bit master key, both subkeys sk0 and sk1

are equal to the master key K. The step(state) method updates the state by apply-
ing four rounds. Each round consists of four operations, addConstants, subCells,
shiftRows and mixColumns as shown in Figure 2. The number of steps to be per-
formed depends on the key length. For 64-bit master key, the number of steps is 8 and
for the master key of length 64 < length ≤ 128 number of steps is equal to 12. A shows
the test vectors and performance results of the LED block cipher.
for i=0 to s-1 do {
addRoundKey(state, sk0);
step(state);
addRoundKey(state, sk1);
step(state);
}
addRoundKey(state, sk0);

Listing 1: Pseudo-code for LED Block Cipher Encryption.

addConstants. Each round mixes 8 bits of key size constant and 6 bits of Linear
Feedback Shift Register (LFSR) constant by xor operation with the first and second
column of the state matrix. The key length of the master key K is expressed as key size
constant of 8 bits (ks7, ks6, . . . , ks0) where ks7 is Most Significant bit(MSb). The 6 bits
of LFSR constant rc5, rc4, rc3, rc2, rc1, rc0, are computed as shown in Figure 3. All six
state bits of the LFSR are initialized to zero at start and values are updated before using

6

4

C
e
l
l
s

4 Cells

S S S S

S S S S

S S S S

S S S S

addConstants

subCells

shiftRows

mixColumns

nibble

Figure 2: One round of LED block cipher.

in the round. To update, the LFSR is shifted one position left and rc0 is updated with a
new value computed as rc5⊕rc4⊕1. Table 1 shows round constant values in hexadecimal
notation. Matrix representation of LFSR and key size constant bits which are added in
state matrix by xor operation is as

0⊕ (ks7|ks6|ks5|ks4) rc5|rc4|rc3 0 0

1⊕ (ks7|ks6|ks5|ks4) rc2|rc1|rc0 0 0

2⊕ (ks3|ks2|ks1|ks0) rc5|rc4|rc3 0 0

3⊕ (ks3|ks2|ks1|ks0) rc2|rc1|rc0 0 0

subCells. The sixteen nibbles of the state are updated with sbox values. LED uses

sbox of PRESENT [18] block cipher as given in Table 2.

rc5 rc4 rc3 rc2 rc1 rc0

1

Figure 3: Generation of LED round constants by LFSR.

7

Table 1: Round constants for LED block cipher in Hex notation.

Rounds Constants

1 - 10 01,03,07,0F,1F,3E,3D,3B,37,2F

11 - 20 1E,3C,39,33,27,0E,1D,3A,35,2B

21 - 30 16,2C,18,30,21,02,05,0B,17,2E

31 - 40 1C,38,31,23,06,0D,1B,36,2D,1A

41 - 48 34,29,12,24,08,11,22,04

Table 2: Substituion-box (sbox) of PRESENT block cipher.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

sbox[x] c 5 6 b 9 0 a d 3 e f 8 4 7 1 2

shiftRows. The shift rows operation is performed similarly as in AES. The ith row
of the state matrix is left rotated cyclically for i number of cell where i = 0, 1, 2, 3.

p0 p1 p2 p3
p4 p5 p6 p7
p8 p9 p10 p11
p12 p13 p14 p15

 −→

p0 p1 p2 p3
p5 p6 p7 p4
p10 p11 p8 p9
p15 p12 p13 p14

mixColumns. Each column of the state is multiplied by a 4×4 MDS matrix M . The

MDS matrix M is derived from a simple 4× 4 matrix A such that A4 = M . The matrix
A can efficiently be realized in hardware for very compact serial implementation. It has
simple elements 0, 1, 2 and 4 and there is no memory element or control logic involved in
storing the temporary multiplication results [33].

A4 =

0 1 0 0

0 0 1 0

0 0 0 1

4 1 2 2

4

=

4 1 2 2

8 6 5 6

b e a 9

2 2 f b

 = M

3 Software Implementations

In the following subsections, we define six lookup-table based software implementations
for lightweight block ciphers, ranging from memory to speed optimized variants. We
explain the implementations for LED lightweight block cipher because it is a Substitu-
tion Permutation Network (SPN) with architecture similar to AES [21]. AES is NIST
standard for block ciphers and in fact, the most extensively studied design. Its wide trail
strategy provides concrete security bounds against differential and linear cryptanalysis
[22]. Over the years, many lightweight block ciphers including LED have been designed
with a structure similar to AES such as KLEIN [31], Midori [5], Mysterion [41], Skinny
[11], and Zorro [30]. Therefore, explaining implementation techniques for LED shall help
in covering a large range of lightweight block ciphers to which these techniques can be
easily extended. In addition to it, LED employs recursive MDS matrix in permutation
layer which helps in realizing the 4-bit Serial implementation. Showing the real essence

8

of serial implementation may have not been possible if some other SPN block cipher
would have been selected. Moreover, if we had chosen some 64-bit Feistel lightweight
block cipher then it would have not been possible to explain 64-bit LUT implementa-
tion as it’s round function would be operating on 32-bits. There are two types of costs
associated with each implementation i.e memory and operations. Memory requirement
consists of precomputed tables like sbox, roundConstants and multiplication tables
whereas operations’ cost is the number of basic operations (xor, and, shift) required
to perform one round or encryption of complete block. We explain both the costs for
each implementation type in detail and discuss possible trade-offs in terms of memory
requirement and number of operations.

3.1 4-bit Serial

The 64-bit state and subkey sk0 are stored in two byte arrays of length 16 each. The
4-bit sbox and 32 LFSR constants as shown in Table 2 are stored in two byte arrays of
length 16 and 32 respectively. The round key sk0 is added to the state matrix by sixteen
xor operations i.e adding each nibble of the round key to the corresponding nibble of the
state matrix. Byte value of LFSR constant for each round is fetched from the LUT and
split into two bytes x, y such that x = |rc5|rc4|rc3 and y = rc2|rc1|rc0. These two bytes
x, y are then added into nibbles state1, state9 and state5, state13 of the state matrix
respectively. Relevant bits of key size constant and the values 0x00, 0x01, 0x02 and
0x03 are mixed by xor and stored in four bytes. These four bytes are then added to
the nibbles state0, state4, state8, state12 of the state matrix in each round. In total, the
addConstants operation is performed by eight xor, two and, one shift and two
lookup operations (C - Listing 8).

The subCells operation updates the state by sixteen lookups from the sbox. The
shiftRows operation needs another sixteen lookups from the current state matrix and
stores the values at shifted indices in the new state matrix. However, the subCells
and shiftRows operations can be combined together. In this case, the updated values
of nibbles after lookup from the sbox are directly stored in the new state matrix at ap-
propriate indices with respect to shiftRows operation. This reduces the extra lookups
and both operations can be completed in just sixteen lookups as given in C - Listing 9.

The mixColumns operation is implemented using the 4× 4 matrix A. Each column
of the state matrix is multiplied with the matrix A for four times. This is equal to
one-time multiplication of state matrix columns by matrix M . Matrix A consists of only
four distinct elements i.e 0, 1, 2, 4. Multiplication with 0 and 1 is straight forward.
Multiplying an element q of GF (24) with 2 is similar to multiplying the polynomial
representation of element q with x modulo the polynomial X4 ⊕ X ⊕ 1 (details in B).
Thus xTimes is achieved by left shift of one bit position and a conditional xor with
underlying field polynomial (see Listing 2). Multiplication with 4 is equal to multiplying
two times with 2 i.e x2Times(q) = xTimes(xTimes(q)). Thus, multiplying one
column of state with matrix A for four times is implemented by 12 xor and 16 calls to
the method xTimes (C - Listing 10).

The 4-bit Serial implementation requires 52 bytes of memory for sbox, LFSR constants
and key size constants. The complete encryption of one block consists of 1936 xor, 64
and, 32 shifts, 576 lookup operations and 2048 calls to xTimes method.

Trade-Offs. The 32 byte LFSR constants LUT can be omitted and these can be
computed on the fly by implementing LFSR. This will reduce the memory cost at the

9

byte xTimes(byte q) {
q <<= 1;
if ((q & 0x10) == 0x10)
q ˆ= poly;
return (q & 0x0F)
}

Listing 2: xTimes - Multiplying q by 2 in GF (24).

expense of extra operations. Each round will need to process an extra 4 xor and 3 shift
operations for updating the LFSR state. On the other hand, the LFSR constants for byte
values x, y (x = |rc5|rc4|rc3 and y = rc2|rc1|rc0) can be precomputed and stored in two
different byte arrays of length 32 each. This will reduce the number of operations required
to split values of LFSR constants at runtime but require extra 32 bytes of memory. In
another possible case, the multiplication by 2 and 4 can be precomputed and stored in
two byte arrays of length 16. Then multiplication in mixColumns operation can be
carried out by lookups instead of calls to xTimes method.

3.2 4-bit LUT

The 64-bit state and subkey sk0 are stored in two byte arrays of length 16 each. A
byte array of length 16 is used to store the values of 4-bit sbox. The round key sk0 is
mixed into the state matrix by sixteen xor operations. The LFSR constants are split into
three MSb & Least Significant bits (LSb) and stored in two different byte arrays, each
of length 16. Then, the pre-splitted value is fetched from appropriate LUT and added
to the state1, state9 or state5, state13 by xor operation. This reduces the number of
operations for computing LFSR constant value but increases memory requirement by 16
bytes. Relevant bits of key size constant and the values 0x00, 0x01, 0x02 and 0x03
are added together by xor operation and stored in four bytes. These four bytes are then
added to state0, state4, state8 and state12 respectively in each round. The complete
addConstants operation consists of four lookups and eight xor operations.

The mixColumns operation is performed by multiplying with the matrix M in-
stead of matrix A. Other than 1, there are ten distinct elements in the matrix M (see
mixColumns operation in Section 2). The multiplication of each element q of GF (24)
with each distinct element m of matrix M is precomputed and stored in multiplication
tables (mulTablem). The size of each multiplication table is 16 bytes. This increases
the memory cost by 160 bytes but reduces the number of operations required to be per-
formed for matrix multiplication. The value at index i in a mulTablem is computed by
multiplying m with sbox[i] in GF (24).

mulTablem[i] = m× sbox[i] i : 0→ 15.

The entries of mulTable2 are shown in Table 3. Computing multiplication tables
by combining the effect of sbox and finite field multiplication help in performing all
three operations subCells, shiftRows and mixColumns together. This reduces
the overall number of basic operations required to implement one round. All subsequent
implementations combine the above mentioned three operations together. Listing 3 shows
the combined implementation of subCells, shiftRows and mixColumns operations.

10

Table 3: Multiplication Table for element 2 (mulTable2) in GF (24) for combined subCells
& mixColumns Operations.

i 0 1 2 3 4 5 6 7 8 9 a b c d e f

2× sbox[i] b a c 5 1 0 7 9 6 f d 3 8 e 2 4

void SubCellShiftRowMixColumns(byte[] state) {
byte[] temp = new byte[16];

temp[0] = (mul4[state[0]] ˆ sbox[state[5]] ˆ mul2[state[10]] ˆ mul2[state
[15]]);

temp[4] = (mul8[state[0]] ˆ mul6[state[5]] ˆ mul5[state[10]] ˆ mul6[state
[15]]);

temp[8] = (mulb[state[0]] ˆ mule[state[5]] ˆ mula[state[10]] ˆ mul9[state
[15]]);

temp[12] = (mul2[state[0]] ˆ mul2[state[5]] ˆ mulf[state[10]] ˆ mulb[state
[15]]);

...
state = temp;
}

Listing 3: Combined 4-bit LUT Implementation of subCells, shiftRows & mixColumns
Operations.

The 4-bit LUT implementation requires 244 bytes of memory for sbox, LFSR con-
stants, multiplication tables and key size constants. The complete encryption of one
block consists of 1936 xor and 2112 lookup operations.

Trade-Offs. Multiplication tables for only five distinct elements (2, 4, 8, b, e) of
matrix M are precomputed and stored in byte arrays. The multiplication values for
remaining elements of matrix M can be computed at runtime by

mul5[i] = mul4[i]⊕ sbox[i];

mul6[i] = mul2[i]⊕mul4[i];
mul9[i] = mul8[i]⊕ sbox[i];

mula[i] = mulb[i]⊕ sbox[i];

mulf [i] = mule[i]⊕ sbox[i];

This reduces the memory requirement by 80 bytes, but it needs extra 20 lookups and 20
xor operations for matrix multiplication in each round.

3.3 8-bit LUT

The 64-bit state and subkey sk0 are stored in two byte arrays of length 8. The two
consecutive nibbles p2i and p2i+1 of state matrix are concatenated together to form a
byte bi as

p15|p14 | · · · | · · · | p3|p2 | p1|p0
b7 | · · · | · · · | b1 | b0

11

p0 p1 p2 p3
p4 p5 p6 p7
p8 p9 p10 p11
p12 p13 p14 p15

 −→

b0 b1
b2 b3
b4 b5
b6 b7

The values of the sbox are stored in a byte array of length 256. This large sbox8 has

input and output of 8-bits. The value at index b of the sbox8 is computed as

sbox8[b] = sbox[bmsb(4)] | sbox[blsb(4)]; b : 0→ 255

Now the complete state can be updated by its sbox values in 8 lookups as two nibbles
are updated in a single lookup. This reduces the number of lookups by a factor of 2 in
each round. However, this 8-bit sbox needs 240 more bytes of memory than the 4-bit
sbox. The round key sk0 is mixed into the state matrix by 8 xor operations. Relevant
bits of LFSR constants, key size constant and the values 0x00, 0x01, 0x02 and 0x03
are concatenated together to form byte values.

b0 = (00⊕ (ks7|ks6|ks5|ks4)) | (rc5|rc4|rc3)
b2 = (01⊕ (ks7|ks6|ks5|ks4)) | (rc2|rc1|rc0)
b4 = (02⊕ (ks3|ks2|ks1|ks0)) | (rc5|rc4|rc3)
b6 = (03⊕ (ks3|ks2|ks1|ks0)) | (rc2|rc1|rc0)

These byte values are computed for byte positions b0, b2, b4 and b6 of the state matrix
for all 32 rounds and stored in four byte arrays of length 32 each. Then addConstants
operation is performed by four lookups (one from each round constants LUT) and four
xor operations.

The mixColumns operation is performed similarly as described in Section 3.2 (4-
bit LUT) except this 8-bit LUT implementation employs larger multiplication tables
(mulTablem). Just like the sbox8, these larger multiplication tables have input and
output of 8-bits. The values of mulTablem for each distinct element m of matrix M are
precomputed and stored in ten byte arrays of length 256 each. This increases the memory
cost from 160 bytes to 2560 bytes but reduces the number of lookups and xor required
for implementing mixColumns operation. The 8-bit value at index b of mulTablem is
computed as

mulTablem[b] = (m× sbox[bmsb(4)])|(m× sbox[blsb(4)])

b = 0→ 255

Since the adjacent nibbles are concatenated together to form bytes, the shiftRows
operation is performed as follows.

b0 b1
b2 b3
b4 b5
b6 b7

 SR−−→

b0 b1

(b3 �4)|(b2 �4) (b3 �4)|(b2 �4)

b5 b4
(b7 �4)|(b6 �4) (b7 �4)|(b6 �4)

First row is not shifted so b0 and b1 stays in place. In order to shift the second and

fourth row, the two bytes of the row are left and right shifted for four bit positions and
then concatenated together to form new byte values. Third row is shifted 2 cell positions,

12

void SubCellShiftRowMixColumns(ref byte[] state) {
byte[] temp = new byte[8];
byte b2, b3, b6, b7;

b2 = (byte)((state[2] >> 4) ˆ (state[3] << 4));
b3 = (byte)((state[2] << 4) ˆ (state[3] >> 4));

temp[0] = (mul4[state[0]] ˆ sbox[b2] ˆ mul2[state[5]] ˆ mul2[b6]);
temp[2] = (mul8[state[0]] ˆ mul6[b2] ˆ mul5[state[5]] ˆ mul6[b6]);
temp[4] = (mulb[state[0]] ˆ mule[b2] ˆ mula[state[5]] ˆ mul9[b6]);
temp[6] = (mul2[state[0]] ˆ mul2[b2] ˆ mulf[state[5]] ˆ mulb[b6]);
...
state = temp;
}

Listing 4: Combined 8-bit LUT Implementation of subCells, shiftRows & mixColumns
Operations.

so its simply swap of the bytes b4 and b5. Listing 4 shows the combined 8-bit LUT
implementation of subCells, shiftRows and mixColumn operations.

The 8-bit LUT implementation requires 2944 bytes of memory for sbox, round con-
stants and multiplication tables. The complete encryption of one block consists of 1096
xor, 256 shifts and 1152 lookup operations.

Trade-Offs. Only the LFSR constants are precomputed and stored in two byte
arrays of length 32 each. Relevant bits of the key size constant are mixed with 0x00,
0x01, 0x02, 0x03 and stored separately as four byte values. This reduces the memory
cost by 60 bytes, but it requires extra four xor operations to be performed in every
round for mixing the key size constant into the state matrix. Similar to 4-bit LUT
implementation, the multiplication tables for only 5 distinct elements (2, 4, 8, b, e) of
matrix M can be stored in five byte arrays. The multiplication values for remaining
elements of the matrix M can be computed at runtime. This reduces the memory cost
for multiplication tables from 2560 bytes to 1280 bytes. But it will increase the number of
lookups and xor operations from 32, 24 to 42, 34 respectively for each round. In another
possible way, the memory requirement of 8-bit LUT implementation can be reduced by
implementing matrix multiplication in serial way just like 4-bit Serial implementation.
The multiplication of two nibbles with 2 and 4 can precomputed and stored in two byte
arrays of length 256 each. This will reduce the memory required for multiplication tables
from 2560 to 512 bytes at the expense of extra lookups and xor operations.

3.4 16-bit LUT

The 64-bit state and subkey sk0 are stored in two arrays of ushort (16-bit unsigned
integer) each of length 4. Nibbles belonging to one column of the state matrix are
concatenated together to form a ushort word ui as

p13|p9|p5|p1 | p12|p8|p4|p0
u1 | u0

p15|p11|p7|p3 | p14|p10|p6|p2
u3 | u2

13

This particular arrangement of storing nibbles in ushort words enables efficient im-
plementation of matrix multiplication with one column of the state matrix. The round
key sk0 is added to the state matrix by four xor operations. The LFSR constant bits for
each round are concatenated to form a ushort word and stored in an array of length 32.

u = b|a|b|a
a = 0|rc2|rc1|rc0
b = 0|rc5|rc4|rc3

Then LFSR constant is added to the word u1 of the state matrix by one lookup and
xor operation, in each round. The xor of key size constant with values 0x00, 0x01, 0x02
and 0x03 is precomputed and stored as a single ushort word. This key size constant is
then added to the word u0 of the state matrix in each round by one xor operation. The
complete addConstants operation consists of two xor and one lookup.

The 16-bit LUT implementation employs four lookup tables (T0, T1, T2, T3) of 4-bit
input and 16-bit output. Each lookup table Ti takes input of ith 4-bit nibble of 16-bit
string (U = U3|U2|U1|U0) and outputs multiplication of nibble Ui with all four elements
of the ith column of matrix M . The 16-bit outputs from all four lookup tables are xor
together to produce output of matrix multiplication.

M × U = U ′ −→

4 1 2 2

8 6 5 6

b e a 9

2 2 f b

×

U0

U1

U2

U3

 =

U ′0
U ′1
U ′2
U ′3

T0[U0] = 2.U0|b.U0|8.U0|4.U0

⊕ T1[U1] = 2.U1|e.U1|6.U1|1.U1

⊕ T2[U2] = f.U2|a.U2|5.U2|2.U2

⊕ T3[U3] = b.U3|9.U3|6.U3|2.U3

U ′ = U ′3 | U ′2 | U ′1 | U ′0

The computation of mixColumns operation for one column of the state matrix is
completed by four lookups, three xor, three shift and four and operations. In actual,
the four lookup tables are computed after taking into account the values from subCells
operation. This helps in combining the subCells and shiftRow operations with the
matrix multiplication as shown in Listing 5.

The 16-bit LUT implementation requires 194 bytes of memory for round constants
and four lookup tables. The complete encryption of one block consists of 484 xor, 512
and, 384 shift and 544 lookup operations.

3.5 32-bit LUT

The 32-bit LUT implementation is a combination of 8-bit LUT and 16-bit LUT imple-
mentations. The bytes are formed from nibbles as in 8-bit LUT and lookup tables are
computed similar to 16-bit LUT implementation excepts now its for 8-bit input values.
The 64-bit state and subkey sk0 are stored in two arrays of uint (32-bit unsigned integer),

14

void SubCellShiftRowMixColumns(UInt16[] state) {
UInt16[] temp = new UInt16[4];

temp[0] = T0[(state[0] >> 00) & 0x0F];
temp[0] ˆ= T1[(state[1] >> 04) & 0x0F];
temp[0] ˆ= T2[(state[2] >> 08) & 0x0F];
temp[0] ˆ= T3[(state[3] >> 12) & 0x0F];
...
state = temp;
}

Listing 5: Combined 16-bit LUT Implementation of subCells, shiftRows & mixColumns
Operations.

each of length 2. The two consecutive nibbles p2i and p2i+1 of state matrix are concate-
nated together to form a byte bi. Then the bytes belonging to one column of the state
matrix are concatenated together to form a uint word ui as

p15|p14 | · · · | · · · | p3|p2 | p1|p0
b7 | · · · | · · · | b1 | b0

b7|b5|b3|b1 | b6|b4|b2|b0
u1 | u0

The round key sk0 is added to the state matrix by two xor operations. Relevant bits
of the LFSR constants, key size constant and values 0x00, 0x01, 0x02 and 0x03 are
mixed by xor operation and concatenated together to form a 32-bit round constant word
u as

u = d|(b⊕ 03)|c|(b⊕ 02)|d|(a⊕ 01)|c|(a⊕ 00)

a = ks7|ks6|ks5|ks4
b = ks3|ks2|ks1|ks0
c = 0|rc5|rc4|rc3
d = 0|rc2|rc1|rc0

The 32-bit round constant words are then precomputed for all rounds and stored
in a uint array of length 32. In each round, one word is fetched from round constants
array and is added to the word u0 of the state matrix. The complete addConstants
operation consists of one lookup and one xor.

The 32-bit LUT implementation uses four lookup tables (T0, T1, T2, T3). Each table
has an 8-bit input and 32-bit output. The ith entry of the table Ti is computed by splitting
the 8-bit input (b) into two nibbles and multiplying each nibble by all four elements of
the ith column of the matrix M . For example, the contents of the lookup table T0 are
computed as

T0[i] = 2.p1|2.p0|b.p1|b.p0|8.p1|8.p0|4.p1|4.p0
i = imsb(4)|ilsb(4) = p1|p0
i = 0→ 255

15

void SubCellShiftRowMixColumns(uint[] state) {
uint[] temp = new uint[2];
byte b2, b3, b6, b7;
b2 = (byte)(((state[0] >> 12) & 0xF) ˆ ((state[1] >> 4) & 0xF0));
...
temp[0] = T0[state[0] & mask];
temp[0] ˆ= T1[b2];
temp[0] ˆ= T2[(state[1] >> 16) & mask];
temp[0] ˆ= T3[b6];
...
state = temp;
}

Listing 6: Combined 32-bit LUT Implementation of subCells, shiftRows & mixColumns
Operations.

The value of nibbles p0 and p1 is updated from the sbox before multiplying with
elements of ith column the matrix M . These lookup tables are precomputed and stored
in four uint arrays of length 256. The 32-bit outputs from all four lookup tables are
added together by xor operation to produce output of subCells, shiftRows and
mixColumns as shown in Listing 6. The shiftRows operation over bytes is performed
similarly as mentioned in Section 3.3.

The 32-bit LUT implementation requires 4224 bytes of memory for round constants
and four lookup tables. The complete encryption of one block consists of 242 xor, 384
and, 320 shift and 288 lookup operations.

3.6 64-bit LUT

The 64-bit state and subkey sk0 are stored in two ulong words (64-bit unsigned integer).
The two consective nibbles p2i and p2i+1 of state matrix are concatenated together to
form a byte bi. Then these eight bytes are concatenated together to form a ulong word u
as

p15|p14 | · · · | · · · | p3|p2 | p1|p0
b7 | · · · | · · · | b1 | b0

u

The round key sk0 is added to the state by one xor operation. The round constants
for all 32 rounds are precomputed as ulong words and stored in an array of length 32.
Each 64-bit word u of the round constants array is computed by concatenating together
the values of LFSR constant, key size constant and values 0x00, 0x01, 0x02 and 0x03.
The complete addConstants operation is then performed by one lookup and one xor.

u = j|z|(x⊕ 03)|j|y|(x⊕ 02)|j|z|(w ⊕ 01)|j|y|(w ⊕ 00)

w = ks7|ks6|ks5|ks4 , y = 0|rc5|rc4|rc3
x = ks3|ks2|ks1|ks0 , z = 0|rc2|rc1|rc0
j = 0|0|0|0|0|0|0|0

16

ulong SubCellShiftRowMixColumns(ulong state) {
ulong temp = 0;

temp = T0[state & 0xFF];
temp ˆ= T1[state >> 8 & 0xFF];
temp ˆ= T2[state >> 16 & 0xFF];
temp ˆ= T3[state >> 24 & 0xFF];
temp ˆ= T4[state >> 32 & 0xFF];
temp ˆ= T5[state >> 40 & 0xFF];
temp ˆ= T6[state >> 48 & 0xFF];
temp ˆ= T7[state >> 56 & 0xFF];

return temp;
}

Listing 7: Combined 64-bit LUT Implementation of subCells, shiftRows & mixColumns
Operations.

The 64-bit LUT implementation employs eight lookup tables (T0, T1, T2, . . . , T7).
Each lookup table takes an 8-bit input and outputs a 64-bit ulong word. In each lookup
table, the updated value of the input from sbox and matrix multiplication is placed at
the appropriate position in 64-bit output, keeping in view the shift row operation. The
remaining byte positions within the ulong word are set to value 0x00. For example, the
value at index i of the table T0 and T1 is computed as

T0[i] = j | w | j | x | j | y | j | z
T1[i] = w | j | x | j | y | j | z | j
w = 2.p1|2.p0, y = 8.p1|8.p0
x = b.p1|b.p0, z = 4.p1|4.p0
j = 0|0|0|0|0|0|0|0
i = imsb(4)|ilsb(4) = p1|p0
i = 0→ 255

The 64-bit outputs of lookup tables T0 and T1 for few indices are provided in D. In
order to perform subCells, shiftRows and mixColumns, the ith byte of the state
is input to table Ti and all eight 64-bit outputs are mixed together by xor operation.
This is achieved by seven xor, eight and, seven shift and eight lookup operations,
as shown in Listing 7.

The 64-bit LUT implementation requires 16,640 bytes of memory for round constants
and eight lookup tables. The complete encryption of one block consists of 265 xor, 256
and, 256 shift and 288 lookup operations.

Trade-Offs. Instead of 8-bit input and 64-bit output, the lookup tables can be
computed for 4-bit input and 64-bit output(each corresponding to one nibble of the
original sixteen nibble state matrix). These sixteen 4-bit lookup tables will reduce the
memory requirement from 16,384 to 2048 bytes. However, now subCells, siftRows
and mixColumns operation will be performed by 15 xor, 16 and, 15 shift and 16
lookup in each round.

17

3.7 Decryption

The block cipher mode of operations like Counter(CTR) and Output Feedback(OFB) sup-
port decryption of an encrypted message without actually implementing the inverse of
the underlying block cipher. However, the use of such mode of operations may not always
be possible. The block cipher may have to be incorporated in an existing cryptosystem
which uses Cipher Block Chaining (CBC) mode of operation. With CBC, implement-
ing the decryption routine of the block cipher becomes mandatory. The decryption of a
block cipher is similar to encryption except that the inverse of each component is applied
in reverse order. All the implementation techniques defined in Section 3 for encryption
of LED are also applicable to its decryption routine. However, while implementing the
decryption, a major question arises: “How to combine the inverse of substitution and
permutation layer in a single lookup table?”. In the forward direction(encryption), we
computed the lookup tables by combining the effect of subCells and mixColumn opera-
tions of one round, but this is not possible for the reverse direction (decryption). So two
possible alternatives are

• Decryption – 1: Implement the inverse of subCells and mixColumn operations
in separate lookup tables. This almost doubles the number of lookup operations
required to implement each round as compared to encryption routine and results
in lower throughput.

• Decryption – 2: Combine the inverse subCells of roundi with inverse mixColumn
operation of roundi-1. This way both the operations can be performed in single
lookup as was done in encryption. However, now the values of interleaved oper-
ations such as the inverse of addConstants and addKey need to be recomputed
and then added to the state. Moreover, mixColumn operation from the last round
and subCells operation from the first round are still to be computed by separate
non-combined lookup tables. So the two sets of lookup tables are to be stored.
This almost doubles the memory requirement but results in higher throughput as
compared to the Decryption – 1 method.

4 Results & Discussion

We implemented LED block cipher for all six implementation types (Section 3), in four
programming languages (Java, C#, C++, Python). Separate dedicated implementations
were coded for three key settings (64, 80 and 128 bit) by pre-computing lookup tables for
each. Figure 4 summarizes the implementation details. All 72 implementations were then
run on Elastic Compute (EC2) instances of AWS cloud with operating system Windows
and Linux for both 64-bit and 32-bit versions (E). Detail of programming languages
and IDEs are given in Table 4. Mono (open-source implementation of Microsoft’s .NET
Framework) was used to run C# code on Linux. Subsequently, we benchmarked the
implementations for throughput (KB/s) and Software Efficiency (SE) [36] on four different
platforms for the scenario discussed in section 1. For a fair comparison, we used similar
coding conventions across all programming languages. SE was calculated as

SE =
Throughput[KB/s]

CodeSize[KB]
where KB = 1024 bytes.

18

Ke
y

Le
n

gt
h

64

80

128

Implementation Type

Figure 4: Implementation Breakdown.

Table 4: Programming Languages and integrated development environment used for code
implementation.

IDE Language Version

1 Net Beans 8.2 Java Java 1.8

2 Visual Studio 2017 C# .Net 3.5

3 Code::Blocks 17.2 C++ GCC 5.1

4 PyCharm Community 2018.2 Python Python 3.7

4.1 Operations and Memory

Figure 5 shows the memory and number of basic operations required for implementation
types explained in Section 3.

• The figure shows that larger the number of precomputed tables (memory require-
ment), lesser the number of operations required to perform the encryption. How-
ever, 16-bit LUT implementation is an exception. It requires both memory and
number of operations lesser than the 8-bit LUT implementation. This is because
of the huge difference in the size of lookup tables with 4-bit and 8-bit input (16 vs
256 byte).

• There is also a pack and unpack cost associated with each implementation. The
plaintext and key bytes need to be packed according to format and data type
required by each implementation. Subsequently, the ciphertext has to be unpacked
back to bytes at the end of encryption. This packing-unpacking involves and,
shift and xor operations. Consequently, overall throughput has been measured
after taking into account the packing-unpacking cost.

• If state is stored in data types larger than 8-bits, then more number of shift
& and operations are required to select the appropriate chunk of the state for
lookup. The number of these operations can also increase as a result of applying
permutation to the state e.g. shiftRows in 8-bit LUT implementation.

19

0

3500

7000

10500

14000

17500
B

yt
es

Implementation Types

Memory Requirement

0

500

1000

1500

2000

2500

C
o

u
n

t

Implementation Types

Number of Operations

Xor

Lookup

Shift

And

Figure 5: Memory and Number of basic operations required for LED-64 Encryption
foreach implementation type.

4.2 Throughput

Figure 6 shows the throughput of all six implementations of LED-64 on 32 & 64-bit
versions of Windows and Linux operating system.

• The 64-bit LUT implementation in C++ on 64-bit Linux outperforms all other
implementations. At the other end of the throughput spectrum, 4-bit Serial imple-
mentation in Python on 32-bit Linux is the slowest one.

• The 64-bit LUT implementation achieves maximum throughput in almost all pro-
gramming languages and platforms except in Java for the 32-bit version of Windows
and Linux where 32-bit LUT implementation performs slightly better.

• The Java implementations for all types and platforms are faster than the same im-
plementations in the remaining three languages with an exception of 64-bit LUT
implementation in C++. None of the Python implementations achieve the through-
put of 100KB/s thus making these the slowest. Python is an interpreted higher
level language which does not convert the code logic to native code at compile
time, rather code is interpreted to native code at runtime. However, standard dis-
tributions of other interpreted languages (Java & C#) include a Just In Time(JIT)
compiler which converts the bytecode to native code at runtime, thus making these
faster from Python.

• Maximum and minimum throughput of each implementation in all programming
languages is achieved while running the code on 64-bit Linux and 32-bit Linux
respectively. The C# implementations perform reasonably well on both 64-bit
Linux despite the fact that these were run through mono since the .Net Framework
is native to Windows. However, throughput of same implementations is much lower
on 32-bit Linux as compared to 32-bit Windows.

20

4-Serial 4-LUT 8-LUT 16-LUT 32-LUT 64-LUT

0

5000

10000

15000

20000

25000

JAVA

0

4000

8000

12000

16000

20000

C#

0

7000

14000

21000

28000

35000

C++

0

20

40

60

80

100

Python
Th

ro
u

gh
p

u
t

(K
B

/s
)

Figure 6: Throughput of all Six Implementations of LED-64 in four programming lan-
guages on different Operating Systems

4.3 SE Benchmark

Figure 7 shows SE of all six implementations of LED-64 on Windows and Linux for both
32 & 64-bit versions.

• Although the 64-bit LUT implementation attains the highest throughput, it is not
the most efficient one, because it requires large memory for precomputed lookup
tables.

• The implementation with highest SE on almost all platforms and programming
languages is 16-bit LUT implementation with an exception of C++ implementations
on Windows for both 64 and 32-bit version. This is because of low throughput of
C++ implementations in Windows.

• The Java implementations for all types and operating systems have higher SE when
compared to similar implementations in other languages except 8-bit LUT. This is
because of the reason that Java has no 8-bit data type to store an unsigned 8-bit
value. So higher 16-bit data type is used to store lookup tables of 8-bit LUT imple-
mentation. This almost doubles the memory required for lookup tables and results
in lower SE. However Java SE 8 and later do have support for unsigned integer(32-
bit) and long(64-bit) data types so there is no additional memory requirement for
lookup tables of 32-bit LUT and 64-bit LUT implementations as compared to other
programming languages.

• Similar to throughput, the Python implementations have lowest SE as compared
to other languages.

• For 64-bit LUT and 32-bit LUT implementations, highest SE is achieved on Linux-
64 by C++ and Java implementations respectively.

Results show the amount of impact the choice of programming language and platform
has on implementation of LED block cipher. Implementation of the same block cipher
algorithm produces remarkably different throughput based on these choices. This is

21

4-Serial 4-LUT 8-LUT 16-LUT 32-LUT 64-LUT

0

300

600

900

1200

1500

JAVA

0

300

600

900

1200

1500

C#

0

300

600

900

1200

1500

C++
SE

0

2

4

6

8

10

Python

Figure 7: Software Efficiency (SE) of all Six Implementations of LED-64 in four program-
ming languages on different Operating Systems.

because of the fact that different programming languages process the same piece of logic
differently on different platforms which can have significant impacts upon execution time.
Moreover, the same implementation entails different memory requirements in different
programming languages based on availability or lack of support for particular native data
type. These implementations have also highlighted that packing-unpacking cost is an
additional consideration factor towards the overall throughput particularly in scenarios
where small chunks of data needs to be processed in a key-agile environment. F shows
the throughput and SE for 80 and 128 bit key lengths.

The main goal of the study was to highlight the impact of choices relating to im-
plementation type, programming language, and platform. That is why we explained
all implementation techniques for only one block cipher. However the implementation
techniques mentioned in Section 3 can be easily extended to implement other lightweight
block ciphers and impact of these choices will be similar for other SPN/ Feistel lightweight
block ciphers. As a proof of concept, we implemented PRESENT-80 [18] (ISO standard
for lightweight block ciphers [29]) for 4-bit LUT based implementation in all four pro-
gramming languages (Java, C#, C++, Python). Figure 8 shows the throughput of
these implementations on 64-bit Windows and Linux. The impact of these choices on
PRESENT is quite similar to that on LED block cipher. The C# implementation per-
formed better than Java on Windows and Java implementation performed better than
C# on Linux. The Python implementations were the slowest and C++ implementation
in Linux performed better than it did in Windows.

In order to see the impact of the two choices for implementing decryption routine,
we implemented 4-bit LUT decryption for LED-64 in all four programming languages.
G shows the comparison between Throughput and Software Efficiency of encryption and
both the decryption methods for 4-bit LUT implementation on all four platforms. Since
method-1 requires more number of lookup operations to implement one round of decryp-
tion, its throughput is slower than that of encryption and method-2. On the other hand,
the throughput of decryption method-2 is comparable to encryption routine and the
marginal difference between these is because of the implementation overhead for recom-
puting the key values in the decryption routine. However, the SE for method-2 is much
lesser than the encryption and decryption method-1 because of the fact that method-2

22

0 100 200 300 400 500 600 700 800 900 1000

Java

C#

CPP

Python

Throughput (KB/s) Linux-64 Win-64

Figure 8: Throughput of 4-bit LUT based Implementation of PRESENT-80 in four pro-
gramming languages on 64-bit Windows and Linux.

requires more memory resources. For 4-bit LUT implementation, the memory cost in-
creases by the factor of two as two sets of the lookup tables are to be stored. However, for
other implementations like 64-bit LUT, this factor can be reduced by using larger tables
for combined lookup of subCells & mixColumns operations and smaller tables for non-
combined lookups. Similarly a vast range of larger combined and smaller non-combined
lookup table combinations is possible for implementing decryption routine.

5 Related & Future Work

Both, hardware and software implementations of lightweight cryptogtraphy (symmet-
ric & asymmetric) were evaluated in [28, 47]. The authors provided a classification of
lightweight schemes for estimating their suitability in different types of embedded systems.
In [55], authors discussed lightweight hardware and software cryptographic solutions for
Wireless Sensor Networks. The focus was towards how the hardware can influence the
usage of lightweight cryptographic primitives in commercial and research based wireless
sensor nodes and how the software implementations handle it. A comparative study of
hardware implementations of block ciphers was presented in [43] which included area,
power consumption, and throughput as the performance metric. In [27], the authors
reported on the performance of 12 lightweight block ciphers in ATtiny45 (a low power,
high-performance 8-bit microcontroller from AVR series of ATMEL). The block ciphers
were implemented in assembly language for both encryption and decryption routines and
compared for code size, RAM and cycles. A framework to benchmark lightweight block
ciphers for RAM footprint, execution time and binary code size was provided in [24].
In [20], authors benchmarked software implementations of 12 lightweight and 5 conven-
tional block ciphers on a mixed signal microcontroller (MSP430) for CPU cycles, energy
consumption, and memory requirement. A comparison of 20 different software oriented
block ciphers on smart phones for two forms of implementation (native JAVA APIs and
Sponge Castle API) was given in [46]. The authors reported on current consumption and
execution time of these implementations for different message lengths. The two standards
for block ciphers AES [21] and PRESENT [18] were evaluated in the context of security
applications on smart phones in [3]. A comprehensive survey of 52 block ciphers and
their 360 lightweight implementations for both hardware and software was provided in
[36]. Software implementations of three lightweight block ciphers PRESENT, LED and
PICOLO were compared for performance on x86 architecture in [12]. In [57], authors
presented implementation of Low-power Encryption Algorithm (LEA)[37] in javascript
language. Unlike other programming languages, javascript does not have support for

23

unsigned integer and rotation operations so authors discussed different techniques for
solving the issue. The implementation was benchmarked for cycles per byte in different
Web browsers on devices ranging from personal computers to mobile devices.

5.1 Future Work

In this paper, implementation techniques are explained for LED block cipher which in-
troduced many novel ideas relating to block cipher design. LED does not employ any key
schedule and user supplied key is used as-is where required. However, It has large number
of rounds to thwart against the related key attack which makes it slower as compared
to other block ciphers [36]. On the other hand, many lightweight block ciphers specify
a proper key schedule which may or may not use the components from block cipher en-
cryption routine [18, 6, 9, 52]. These key-schedule algorithms often use bit permutations
which are very easy to realize in hardware as compare to the software. Comparing dif-
ferent lightweight block ciphers with a lesser number of rounds and proper key schedule
may provide good insight about how a key schedule may affect the usability of a block
cipher in key-agile environments.

The two main disadvantages of precomputed lookup table based implementations are
large memory requirements and the possibility of cache side-channel attacks(CSCA), be-
cause lookup from the table depends on the portion of the master key. The former is easy
to solve as developers can choose between larger or smaller lookup tables depending upon
the environment in which cryptosystem is being deployed. However, thwarting against
CSCA involves using the masking techniques which may have a performance hit. The
cache is a small memory where frequently accessed portions of data are stored so that
data can be served faster to the CPU on subsequent requests. Cache hit or miss occurs if a
particular entry in the cache is found or not [48]. This cache hit and miss phenomena en-
ables an attacker to perform trace-based cache side-channel attacks to recover the key [1].
Cache-Timing attacks recover the key by analyzing execution time for known-plaintexts
[13]. One possible way forward is to analyze the implementation techniques explained
in Section 3 for CSCA and improve these to resist CSCA without much compromise on
performance. Another line of work is to test these implementations on platforms with
smaller caches which may produce different results. Because the EC2 instances used in
this paper have sufficiently large cache which enabled the implementations with larger
memory requirement like 64-bit LUT to reside in cache memory completely.

The current trends in lightweight cryptography include designing ciphers which sup-
port decryption with minimal overhead [2], have low latency [19] or provide authenticated
encryption [26]. The portfolio 1 of CESEAR competition deals with authenticated en-
cryption for lightweight applications and recently NIST has also published a list of 56
lightweight block ciphers as round – 1 candidate for its lightweight cryptography project.
Extending the implementation techniques from this paper to these lightweight block ci-
phers and authenticated encryption schemes will quantify their usability across different
choices of platform and programming languages.

6 Conclusion

The significance of efficient and robust encryption in resource constrained devices is driv-
ing considerable research as well as development. This is attributed to the proliferation/u-
tility of IoT devices on one hand and security/privacy concerns on the other. The 64-bit

24

block length and support for smaller key sizes make lightweight block ciphers ideal for
small resource constrained devices while catering for software implementation suitability
requirements for high-end devices and servers in network systems. Inherently, designers
of lightweight cryptography have to balance trade-offs between security, cost, and perfor-
mance; amongst which it is generally easier to optimize any two at a time. This paper
has further highlighted the impact choice of the platform and programming language has
on the performance of a cryptographic primitive. We discussed six different lookup-table
based software implementation techniques for lightweight block ciphers along with their
relevant trade-offs. We implemented LED block cipher for three key settings (64, 80, 128
bits) in four programming languages (Java, C#, C++, Python) for all six implementation
types. We benchmarked these 72 implementations for throughput and software efficiency
on four different platforms, thereby providing a quantitative elaboration of the impact
accrued from the choice of programming language, platform and implementation type.
These implementations are envisaged to serve as a crypto library which can be referenced
for future research and analysis but the use of these codes in production without taking
measures against SCA is not recommended.

References

[1] Onur Acıiçmez and Çetin Kaya Koç. Trace-driven cache attacks on aes (short paper).
In International Conference on Information and Communications Security, pages
112–121. Springer, 2006.

[2] Martin R Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander, Christof
Paar, and Tolga Yalçın. Block ciphers–focus on the linear layer (feat. pride). In
International Cryptology Conference, pages 57–76. Springer, 2014.

[3] Carlos Andrés, Morales-Sandoval Miguel, Dı́az-Pérez Arturo, et al. An evaluation of
aes and present ciphers for lightweight cryptography on smartphones. In Electronics,
Communications and Computers (CONIELECOMP), 2016 International Conference
on, pages 87–93. IEEE, 2016.

[4] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Maŕıa Naya-Plasencia.
Quark: A lightweight hash. In Cryptographic Hardware and Embedded Systems,
CHES 2010, pages 1–15. Springer Berlin Heidelberg, 2010.

[5] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga
Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: a block cipher for low
energy. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 411–436. Springer, 2014.

[6] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng
Sim, and Yosuke Todo. Gift: a small present. In International Conference on
Cryptographic Hardware and Embedded Systems, pages 321–345. Springer, 2017.

[7] Zhenzhen Bao, Peng Luo, and Dongdai Lin. Bitsliced implementations of the prince,
led and rectangle block ciphers on avr 8-bit microcontrollers. In International Con-
ference on Information and Communications Security, pages 18–36. Springer, 2015.

25

[8] Lejla Batina, Amitabh Das, Barış Ege, Elif Bilge Kavun, Nele Mentens, Christof
Paar, Ingrid Verbauwhede, and Tolga Yalçın. Dietary recommendations for
lightweight block ciphers: power, energy and area analysis of recently developed
architectures. In International Workshop on Radio Frequency Identification: Secu-
rity and Privacy Issues, pages 103–112. Springer, 2013.

[9] Adnan Baysal and Sühap Şahin. Roadrunner: A small and fast bitslice block cipher
for low cost 8-bit processors. In International Workshop on Lightweight Cryptography
for Security and Privacy, pages 58–76. Springer, 2015.

[10] Ray Beaulieu, Stefan Treatman-Clark, Douglas Shors, Bryan Weeks, Jason Smith,
and Louis Wingers. The simon and speck lightweight block ciphers. In Design
Automation Conference (DAC), 2015 52nd ACM/EDAC/IEEE, pages 1–6. IEEE,
2015.

[11] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas
Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY family of
block ciphers and its low-latency variant MANTIS. In Advances in Cryptology –
CRYPTO 2016, pages 123–153. Springer Berlin Heidelberg, 2016.

[12] Ryad Benadjila, Jian Guo, Victor Lomné, and Thomas Peyrin. Implementing
lightweight block ciphers on x86 architectures. In International Conference on Se-
lected Areas in Cryptography, pages 324–351. Springer, 2013.

[13] Daniel J Bernstein. Cache-timing attacks on aes. 2005.

[14] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak
sponge function family main document. Submission to NIST (Round 2), 3(30),
2009.

[15] Eli Biham. A fast new des implementation in software. In International Workshop
on Fast Software Encryption, pages 260–272. Springer, 1997.

[16] Alex Biryukov and David Wagner. Slide attacks. In International Workshop on Fast
Software Encryption, pages 245–259. Springer, 1999.

[17] Alex Biryukov and David Wagner. Advanced slide attacks. In International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 589–606.
Springer, 2000.

[18] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe.
Present: An ultra-lightweight block cipher. In International Workshop on Cryp-
tographic Hardware and Embedded Systems, pages 450–466. Springer, 2007.

[19] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneze-
vic, Lars R Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, et al. Prince–a low-latency block cipher for pervasive computing appli-
cations. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 208–225. Springer, 2012.

26

[20] Mickaël Cazorla, Kevin Marquet, and Marine Minier. Survey and benchmark of
lightweight block ciphers for wireless sensor networks. In Security and Cryptography
(SECRYPT), 2013 International Conference on, pages 1–6. IEEE, 2013.

[21] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael. 1999.

[22] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced en-
cryption standard. Springer Science & Business Media, 2013.

[23] Christophe De Canniere. Trivium: A stream cipher construction inspired by block
cipher design principles. In International Conference on Information Security, pages
171–186. Springer, 2006.

[24] Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann Großschädl,
and Alex Biryukov. Triathlon of lightweight block ciphers for the internet of things.
Journal of Cryptographic Engineering, pages 1–20, 2015.

[25] Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Johann Großschädl,
and Alex Biryukov. Design strategies for arx with provable bounds: Sparx and
lax. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 484–513. Springer, 2016.

[26] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. As-
con v1. 2. Submission to the CAESAR Competition, 2016.

[27] Thomas Eisenbarth, Zheng Gong, Tim Güneysu, Stefan Heyse, Sebastiaan In-
desteege, Stéphanie Kerckhof, François Koeune, Tomislav Nad, Thomas Plos,
Francesco Regazzoni, et al. Compact implementation and performance evaluation of
block ciphers in attiny devices. In International Conference on Cryptology in Africa,
pages 172–187. Springer, 2012.

[28] Thomas Eisenbarth, Sandeep Kumar, Christof Paar, Axel Poschmann, and Leif Uh-
sadel. A survey of lightweight-cryptography implementations. IEEE Design & Test
of Computers, 24(6):522–533, nov 2007.

[29] International Organization for Standardization. Information technology - security
techniques - lightweight cryptography - part 2: Block ciphers. ISO/IEC 29192-
2:2012, 2012.

[30] Benôıt Gérard, Vincent Grosso, Maŕıa Naya-Plasencia, and François-Xavier Stan-
daert. Block ciphers that are easier to mask: How far can we go? In Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, pages 383–399.
Springer, 2013.

[31] Zheng Gong, Svetla Nikova, and Yee Wei Law. Klein: a new family of lightweight
block ciphers. In International Workshop on Radio Frequency Identification: Security
and Privacy Issues, pages 1–18. Springer, 2011.

[32] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varıcı. Ls-
designs: Bitslice encryption for efficient masked software implementations. In Inter-
national Workshop on Fast Software Encryption, pages 18–37. Springer, 2014.

27

[33] Jian Guo, Thomas Peyrin, and Axel Poschmann. The photon family of lightweight
hash functions. In Annual Cryptology Conference, pages 222–239. Springer, 2011.

[34] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The LED block
cipher. In Cryptographic Hardware and Embedded Systems – CHES 2011, pages
326–341. Springer Berlin Heidelberg, 2011.

[35] Mike Hamburg. Accelerating aes with vector permute instructions. In Cryptographic
Hardware and Embedded Systems-CHES 2009, pages 18–32. Springer, 2009.

[36] George Hatzivasilis, Konstantinos Fysarakis, Ioannis Papaefstathiou, and Charalam-
pos Manifavas. A review of lightweight block ciphers. Journal of Cryptographic
Engineering, 8(2):141–184, 2018.

[37] Deukjo Hong, Jung-Keun Lee, Dong-Chan Kim, Daesung Kwon, Kwon Ho Ryu,
and Dong-Geon Lee. Lea: A 128-bit block cipher for fast encryption on common
processors. In International Workshop on Information Security Applications, pages
3–27. Springer, 2013.

[38] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bon-Seok
Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong, et al. Hight: A
new block cipher suitable for low-resource device. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 46–59. Springer, 2006.

[39] Mark Hung. Leading the iot, gartner insights on how to lead in a connected world.
Gartner Research, pages 1–29, 2017.

[40] Maryam Izadi, Babak Sadeghiyan, Seyed Saeed Sadeghian, and Hossein Arabnezhad
Khanooki. Mibs: a new lightweight block cipher. In International Conference on
Cryptology and Network Security, pages 334–348. Springer, 2009.

[41] Anthony Journault, François-Xavier Standaert, and Kerem Varici. Improving the
security and efficiency of block ciphers based on ls-designs. Designs, Codes and
Cryptography, 82(1-2):495–509, 2017.

[42] Ferhat Karakoç, Hüseyin Demirci, and A Emre Harmancı. Itubee: a software ori-
ented lightweight block cipher. In International Workshop on Lightweight Cryptog-
raphy for Security and Privacy, pages 16–27. Springer, 2013.

[43] Paris Kitsos, Nicolas Sklavos, Maria Parousi, and Athanassios N Skodras. A com-
parative study of hardware architectures for lightweight block ciphers. Computers
& Electrical Engineering, 38(1):148–160, 2012.

[44] Manoj Kumar, Saibal K Pal, and Anupama Panigrahi. Few: A lightweight block
cipher. IACR Cryptology ePrint Archive, 2014:326, 2014.

[45] Benjamin Lac, Anne Canteaut, Jacques JA Fournier, and Renaud Sirdey. Thwarting
fault attacks against lightweight cryptography using simd instructions. In Circuits
and Systems (ISCAS), 2018 IEEE International Symposium on, pages 1–5. IEEE,
2018.

28

[46] Lukas Malina, Vlastimil Clupek, Zdenek Martinasek, Jan Hajny, Kimio Oguchi, and
Vaclav Zeman. Evaluation of software-oriented block ciphers on smartphones. In
Foundations and Practice of Security, pages 353–368. Springer, 2014.

[47] Charalampos Manifavas, George Hatzivasilis, Konstantinos Fysarakis, and Kon-
stantinos Rantos. Lightweight cryptography for embedded systems–a comparative
analysis. In Data Privacy Management and Autonomous Spontaneous Security, pages
333–349. Springer, 2014.

[48] Heiko Mantel, Alexandra Weber, and Boris Köpf. A systematic study of cache side
channels across aes implementations. In International Symposium on Engineering
Secure Software and Systems, pages 213–230. Springer, 2017.

[49] Seiichi Matsuda and Shiho Moriai. Lightweight cryptography for the cloud: exploit
the power of bitslice implementation. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 408–425. Springer, 2012.

[50] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang. Push-
ing the limits: a very compact and a threshold implementation of aes. In Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 69–88. Springer, 2011.

[51] Taehwan Park, Hwajeong Seo, and Howon Kim. Fast implementation of simeck
family block ciphers using avx2. In 2018 International Conference on Platform
Technology and Service (PlatCon), pages 1–6. IEEE, 2018.

[52] Gilles Piret, Thomas Roche, and Claude Carlet. Picaro–a block cipher allowing
efficient higher-order side-channel resistance. In International Conference on Applied
Cryptography and Network Security, pages 311–328. Springer, 2012.

[53] Chester Rebeiro, David Selvakumar, and ASL Devi. Bitslice implementation of aes.
In International Conference on Cryptology and Network Security, pages 203–212.
Springer, 2006.

[54] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of
aes. In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 413–427. Springer, 2010.

[55] Rodrigo Roman, Cristina Alcaraz, and Javier Lopez. A survey of cryptographic prim-
itives and implementations for hardware-constrained sensor network nodes. Mobile
Networks and Applications, 12(4):231–244, 2007.

[56] Klaus Schwab. The fourth industrial revolution. Crown Business, 2017.

[57] Hwajeong Seo and Howon Kim. Low-power encryption algorithm block cipher in
javascript. Journal of information and communication convergence engineering,
12(4):252–256, 2014.

[58] Adi Shamir. Squash–a new mac with provable security properties for highly con-
strained devices such as rfid tags. In International Workshop on Fast Software
Encryption, pages 144–157. Springer, 2008.

29

[59] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Ak-
ishita, and Taizo Shirai. Piccolo: an ultra-lightweight blockcipher. In Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, pages 342–357.
Springer, 2011.

[60] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The
128-bit blockcipher clefia. In International Workshop on Fast Software Encryption,
pages 181–195. Springer, 2007.

[61] Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
TWINE: A lightweight block cipher for multiple platforms. In Selected Areas in
Cryptography, pages 339–354. Springer Berlin Heidelberg, 2013.

[62] Gangqiang Yang, Bo Zhu, Valentin Suder, Mark D Aagaard, and Guang Gong. The
simeck family of lightweight block ciphers. In International Workshop on Crypto-
graphic Hardware and Embedded Systems, pages 307–329. Springer, 2015.

[63] Muhammad Reza Z’aba, Norziana Jamil, Mohd Ezanee Rusli, Md Zaini Jamaludin,
and Ahmad Azlan Mohd Yasir. I-presenttm: An involutive lightweight block cipher.
Journal of Information Security, 5(03):114, 2014.

[64] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang, and
Ingrid Verbauwhede. Rectangle: a bit-slice lightweight block cipher suitable for
multiple platforms. Science China Information Sciences, 58(12):1–15, 2015.

30

A LED Test Vectors

The test vectors of LED block cipher for three key lengths(64, 80 & 128 bits) are given
below in hexadecimal byte notation.

64-bit key

plaintext 10 32 54 76 98 BA DC FE

key 10 32 54 76 98 BA DC FE

ciphertext 0A 30 55 E1 83 39 CF 85

80-bit key

plaintext 10 32 54 76 98 BA DC FE

key 10 32 54 76 98 BA DC FE 10 32

ciphertext 5D 2E 9A 88 90 C2 E1 B0

128-bit key

plaintext 10 32 54 76 98 BA DC FE

key 10 32 54 76 98 BA DC FE 10 32 54 76 98 BA DC FE

ciphertext 6D 8B 42 85 F7 10 F4 2C

Table 5: Hardware implementation results of LED block cipher.

Key Length Technology Area[GE] Throughput[Kbits/s] Ref

64 0.18µm 966 5.1 [34]

80 0.18µm 1040 3.4 [34]

128 0.18µm 1265 3.4 [34]

128 0.18µm 3194 133 [8]

B Finite Field Multiplication

A nibble(4-bit) can be represented as polynomial with bits as coefficients in GF(2).

b3b2b1b0 7→ b(x)

b(x) = b3x
3 + b2x

2 + b1x+ b0

According to this, the polynomial representation of 2 is x and field multiplication is
performed as

b.x = ((b3x
3 + b2x

2 + b1x+ b0) . x) mod (x4 + x+ 1)

= (b3x
4 + b2x

3 + b1x
2 + b0x) mod (x4 + x+ 1)

= b2x
3 + b1x

2 + (b0 ⊕ b3)x+ b3

The modulo operation is performed if degree of resultant polynomial is greater than 3
which is dependent upon the bit b3. Thus multiplication with 2 is performed by a left
shift of one bit and conditional xor with x+ 1.

31

Table 6: Software implementation results of LED block cipher.

Key Length Architecture Clock Speed Throughput[KB/s] Ref

64 4 – bit micro-controller 500 KHz 0.078 [34]

128 4 – bit micro-controller 500 KHz 0.052 [34]

80 8 – bit micro-controller 4 MHz 0.225 [27]

80 16 – bit micro-controller 4 MHz 0.215 [27]

80 32 – bit micro-controller 4 MHz 0.766 [27]

128 Intel Core i7 CPU Q720 1.6 GHz 18168.6 [12]

128 Intel XEON X5650 2.67 GHz 24621.5 [12]

64 AWS EC2 t2.micro instance 2.8 GHz 34429.4 this paper

80 AWS EC2 t2.micro instance 2.8 GHz 21178.9 this paper

128 AWS EC2 t2.micro instance 2.8 GHz 23675.2 this paper

C 4-bit Serial Implementation Code Listings

void AddConstants(byte[] state, int round) {
state[0] ˆ= keySizeConst0;
state[4] ˆ= keySizeConst1;
state[8] ˆ= keySizeConst2;
state[12] ˆ= keySizeConst3;

byte temp = (byte)(RC[round] >> 3 & 0x07);
state[1] ˆ= temp;
state[9] ˆ= temp;

temp = (byte)(RC[round] & 0x07);
state[5] ˆ= temp;
state[13] ˆ= temp;
}

Listing 8: Add Constants

void SubCellShiftRows(byte[] state) {
byte[] temp = new byte[16];

temp[0] = sbox[state[0]];
temp[1] = sbox[state[1]];
temp[2] = sbox[state[2]];
temp[3] = sbox[state[3]];
temp[4] = sbox[state[5]];
temp[5] = sbox[state[6]];
.
.
.
temp[14] = sbox[state[13]];
temp[15] = sbox[state[14]];

state = temp;
}

Listing 9: Sub Cells & Shift Rows

32

void MultiplyColumn(byte[] t) {
//t is one column of 4x4 state matrix
t[0] = (x2Times(t[0]) ˆ t[1] ˆ xTimes(t[2]) ˆ xTimes(t[3]));
t[1] = (x2Times(t[1]) ˆ t[2] ˆ xTimes(t[3]) ˆ xTimes(t[0]));
t[2] = (x2Times(t[2]) ˆ t[3] ˆ xTimes(t[0]) ˆ xTimes(t[1]));
t[3] = (x2Times(t[3]) ˆ t[0] ˆ xTimes(t[1]) ˆ xTimes(t[2]));
}

Listing 10: xTimes - Multiply one Column by matrix A

D Multiplication Table 64-bit LUT Implementation

index T0 T1
0 00BB00DD00AA0055 BB00DD00AA005500

1 00BA00D100AE0057 BA00D100AE005700

2 00BC00DF00A5005B BC00DF00A5005B00

3 00B500D900A7005A B500D900A7005A00
...

...
...

...
...

...

254 0042005B00380084 42005B0038008400

255 0044005500330088 4400550033008800

E AWS EC2 instance Details

EC2 Type Operating System vCPUs Memory(GB)

1 t2.micro Windows Server 2008 R2 Base SP1 64-bit 1 1

2 t2.micro Windows Server 2008 SP2 32-bit 1 1

3 t2.micro Ubuntu Server 14.04 LTS 64-bit 1 1

4 t1.micro Ubuntu 14.04-i386-server 32-bit 1 0.613

33

F Throughput & SE for LED-80 and LED-128

4-Serial 4-LUT 8-LUT 16-LUT 32-LUT 64-LUT

0

4000

8000

12000

16000

20000

JAVA

0

3000

6000

9000

12000

15000

C#

0

5000

10000

15000

20000

25000

C++

0

14

28

42

56

70

Python

Th
ro

u
gh

p
u

t
(K

B
/s

)

Figure 9: Throughput of all Six Implementations of LED-80 in four programming lan-
guages on different Operating Systems.

4-Serial 4-LUT 8-LUT 16-LUT 32-LUT 64-LUT

0

250

500

750

1000

1250

JAVA

0

200

400

600

800

1000

C#

0

250

500

750

1000

1250

C++

SE

0

1

2

3

4

5

Python

Figure 10: Software Efficiency of all Six Implementations of LED-80 in four programming
languages on different Operating Systems.

34

4-Serial 4-LUT 8-LUT 16-LUT 32-LUT 64-LUT

0

4000

8000

12000

16000

20000

JAVA

0

3000

6000

9000

12000

15000

C#

0

5000

10000

15000

20000

25000

C++

0

14

28

42

56

70

Python

Th
ro

u
gh

p
u

t
(K

B
/s

)

Figure 11: Throughput of all Six Implementations of LED-128 in four programming
languages on different Operating Systems.

4-Serial 4-LUT 8-LUT 16-LUT 32-LUT 64-LUT

0

250

500

750

1000

1250

JAVA

0

200

400

600

800

1000

C#

0

250

500

750

1000

1250

C++

SE

0

1

2

3

4

5

Python

Figure 12: Software Efficiency of all Six Implementations of LED-128 in four programming
languages on different Operating Systems.

35

G Throughput & SE for LED-64 Decryption
Th

ro
u

gh
p

u
t

(K
B

/s
)

0

600

1200

1800

2400

3000

Java

0

600

1200

1800

2400

3000

C#

0

650

1300

1950

2600

3250

C++

0

4

8

12

16

20

Python

Encrypt Decrypt-1 Decrypt-2

Figure 13: Comparison between Throughput of 4-bit LUT based Encryption and Decryp-
tion for LED-64 in all four programming languages on different Operating Systems.

SE

0

100

200

300

400

500

JAVA

0

100

200

300

400

500

C#

0

170

340

510

680

850

C++

0

1

2

3

4

5

Python

Encrypt Decrypt-1 Decrypt-2

Figure 14: Comparison between Software Efficiency of 4-bit LUT based Encryption and
Decryption for LED-64 in all four programming languages on different Operating Systems.

36

	Introduction
	LED Block Cipher
	Software Implementations
	4-bit Serial
	4-bit LUT
	8-bit LUT
	16-bit LUT
	32-bit LUT
	64-bit LUT
	Decryption

	Results & Discussion
	Operations and Memory
	Throughput
	SE Benchmark

	Related & Future Work
	Future Work

	Conclusion
	LED Test Vectors
	Finite Field Multiplication
	4-bit Serial Implementation Code Listings
	Multiplication Table 64-bit LUT Implementation
	AWS EC2 instance Details
	Throughput & SE for LED-80 and LED-128
	Throughput & SE for LED-64 Decryption

