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Abstract. Recently the ForkAES construction was proposed by An-
dreeva et al. for efficiently performing authenticated encryption of very
short messages on next generation IoT devices. The ForkAES tweakable
block cipher uses around one and a half AES encryption calls to produce
a pair of ciphertexts for any given plaintext. However the only downside
of the construction is that it needs to store an extra state of 128 bits in
addition with the storage elements required to perform AES encryption.
Thus a hardware implementation of ForkAES would require additional
circuit area to accommodate the extra state.
In this paper, we first show that it is possible to implement ForkAES
without any additional storage elements other than those required to
implement AES, if the AES circuit can additionally perform decryption.
Such an implementation naturally requires more clock cycles to perform
ForkAES operations. We extend the recently proposed Atomic AES v2.0
architecture to realize ForkAES and compare the area-latency trade-offs
incurred with and without an additional storage. The area of the most
compact ForkAES design takes about 1.2 times that of AES.
In the second part of the paper we look at another important parameter
of lightweight efficiency, i.e. energy. It is well known that round based
constructions for AES are the most energy efficient ones. We extend the
so-called “S3K2” construction of Banik et al. (IEEE HOST 17) to realize
ForkAES in an energy-preserving manner, and compare the effects of some
design choices. The energy consumption of our best ForkAES design takes
about 2 times that of AES. From lightweight design perspective, our
results hence demonstrate that although ForkAES lives up to its promise
(of being roughly 1.5 times that of AES) in terms of its area, the same
does not hold for its energy consumption.

Keywords: Energy Efficiency, ForkAES, Serialized Implementation.

1 Introduction

In the past few years, lightweight cryptography has indeed become an important
research discipline. A number of lightweight block ciphers like Clefia [2] and
Present [3] have become popular and have been well-studied with respect to their
security and implementation. Both ciphers have been standardized in ISO/IEC

∗The source code for our implementations are provided at [1].



29192 “Lightweight Cryptography”. The Simon and Speck family of block ciphers
[4] was proposed very recently by researchers of the NSA with the goal of reducing
hardware area. While the above ciphers have mostly targeted optimization of
hardware area, there have been other block ciphers aimed at optimizing other
lightweight design metrics. The principal among them is energy. The block cipher
Midori [5] was designed to specifically optimize energy consumption. It has also
been found that for energy efficient encryption of large quantities of data, stream
cipher based constructions like Trivium [6] are more energy efficient [7]. However,
AES still remains the de-facto encryption standard worldwide for a number of
sectors like banking and e-commerce. It is a part of several internet protocols
like HTTPS, FTPS, SFTP, WebDAVS, OFTP, and AS2.

Efficient encryption and authentication of short messages (with maximum
message length of 64 bytes) is an essential requirement for enabling security in
constrained computation and communication scenarios such as next generation
IoT devices. Accordingly, the recently started NIST lightweight cryptography
project specifies that AEAD submissions should be ”optimized to be efficient for
short messages (e.g., as short as 8 bytes)” [8]. ForkAES was proposed by Andreeva
et al. in [9] as a solution for the above. ForkAES is a tweakable forkcipher,
which is basically a tweakable blockcipher that uses the AES round function
to produce two blocks of ciphertext. It is based on the tweakable blockcipher
KIASU [10], which relies on the round function of AES and uses the TWEAKEY
framework to derive round keys from a 128-bit secret key and a 64-bit tweak.
Finally, the authors proposed several nonce-based AEAD modes of operations
like FAEP and SAEP, optimized to be efficient for short messages. There has been
sufficient interest in the community as evident from the cryptanalytic attempt
on round reduced ForkAES [11]. Furthermore, the forking construction [12] with
a more lightweight SPN block cipher Skinny [13], is also a submission to the
NIST lightweight cryptography project [8].

1.1 Contribution and Organization

As acknowledged by the authors, forking a block cipher to produce two cipher-
text blocks in the manner that they propose requires one additional storage
element of size equal to the AES blocksize, meant for storing an intermediate
block cipher state during the computation. This naturally comes at a cost to
the circuit size, since an additional storage component needs to be integrated
in the design. In this paper, we show that it is possible to implement ForkAES
without any additional storage elements other than those required to imple-
ment AES, if the AES circuit can perform both the encryption and decryption
operations. A very good candidate for the implementation is the Atomic-AES ar-
chitectures designed in [14,15] that can perform both encryption and decryption
operations with a datapath width of 8-bits. Atomic-AES v2.0 performs encryp-
tion/decryption using 246/326 cycles respectively and occupies only around 2060
GE when implemented with the standard cell library of the STM 90 nm CMOS
logic process. However an implementation that does not have an extra storage
element requires more clock cycles to perform ForkAES operations. This will be
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clear when we delve into the circuit level description of ForkAES. In the first part
of the paper we implement ForkAES both with and without additional storage
and compare the area-latency tradeoffs incurred in implementing the circuit.

In the second part of the paper we look at the energy consumption aspect
of lightweight efficiency when applied to ForkAES. The fundamental questions
then become how expensive is a ForkAES call (in terms of energy) and what
type of implementation leads to the most energy-efficient ForkAES realization.
It is well known that round based constructions for AES are the most energy
efficient, hence we naturally follow the round-based implementation paradigm to
realize energy-efficient ForkAES implementations. The freedom of choices in the
design, such as whether or not to add a new temporary register, or reorganize the
decryption datapath, leads to a few different realizations. Hence we pursue those
ideas, which generally involve some trade-off, to find the most energy-efficient
implementation with this paradigm. We report our findings and briefly explain
the intuition behind design choices. We point out that unlike in circuit area,
there is a gap between the energy consumption of ForkAES and AES. We hope
that our results draw attention to the energy-consumption perspective of being
lightweight and can be used to improve the idea of forkciphers.

The paper is organized as follows. Section 2 contains mathematical descrip-
tions of ForkAES. In Section 3, we show that it is possible to implement ForkAES
without additional storage. We explore the circuit level challenges required to
implement ForkAES both with and without additional storage and present a
detailed comparison. Section 4 focuses on the energy consumption aspects of
ForkAES and compares the results of multiple design choices. Section 5 concludes
the paper.

2 ForkAES Tweakable Blockcipher

Forkciphers. Let B, K, and T be non-empty sets or spaces. A tweakable
forkcipher E is a tuple of three deterministic algorithms:

1. An encryption algorithm E : K × T × B → (B)2;
2. A decryption algorithm D : K × T × B × {0, 1} → B;
3. A tag-reconstruction algorithm R : K × T × B × {0, 1} → B.

We define ET
K(P )[0] = C0 and ET

K(P )[1] = C1 Decryption and tag recon-

struction take a bit b such that it holds DT,b
K (ET

K(P )[b]) = P , for all K,T, P, b ∈
K× T ×B × {0, 1}. The tag-reconstruction takes K, T , Cb, and b as input, and
produces Cb⊕1. When K and T are omitted, we simply write Db and Rb for these
pair of algorithms.

Round function of AES. We recall that AES-128 is a substitution-permutation
network over 128-bit inputs, which transforms the input through ten rounds con-
sisting of SubBytes (SB), ShiftRows (SR), MixColumns (MC), and a round-key
addition with a round key Ki. At the start, a whitening key K0 is XORed to
the state; the final round omits the MixColumns operation. We write Si for the
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Fig. 1: ForkAES Tweakable Block Cipher. SB, SR,MC are SubBytes, ShiftRows and
MixColumns operations of AES-128 respectively; KS is a one round key schedule
operation. Formal descriptions of algorithms are given in Figure 2.

state after Round i, and Si[j] for the j-th byte, for 0 ≤ i ≤ 10 and 0 ≤ j ≤ 15.
Further, we use Sr,SB, Sr,SR, and Sr,MC for the states in the r-th round directly
after the SubBytes, ShiftRows, and MixColumns operations, respectively. The byte
ordering is given by: 

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

 .

We adopt a similar convention for the round keys Ki and their bytes Ki[j], for
0 ≤ i ≤ 16; for both, we also use often a matrix-wise indexing of the bytes from
0, 0 to 3, 3. More details can be found in [16].

KIASU-BC [10] is a tweakable block cipher that differs from the AES-128 only
in the fact that it XORs a public 64-bit tweak T to the topmost two rows of the
state whenever a round key is XORed. We denote the tweak by T and by T [j],
0 ≤ j ≤ 7, the bytes of T . The bytes are ordered as[

0 1 2 3
4 5 6 7

]
.

Alternatively one can consider as if Transpose(T ||064) is XORed to each of the
round keys, where Transpose is a matrix transposition.

ForkAES. It is a forkcipher based on KIASU-BC. It forks the state after five
rounds and transforms it twice to two ciphertexts C0 and C1. Denote by T̃ =
Transpose(T ||064). We denote the states of the first branch by Xi =def Si, for
0 ≤ i ≤ 10, where X0 = S0 denotes the plaintext P and X10 ⊕K10 ⊕ T̃ = C0.
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Moreover, we denote the states of the second branch by Yi, for 5 ≤ i ≤ 10,
where Y5 = S5 and C1 = Y10 ⊕K16 ⊕ T̃ . We will also write R for the sequence
MC ◦ SR ◦ SB and KS for an iteration of the AES-128 key schedule. A schematic
illustration is given in Fig. 1, and more details can be found in [9]. The designers
of ForkAES propose two modes of operations using the fork cipher SAEF and
PAEF. In both these modes of operation, the only functionalities of ForkAES
required are (a) Encryption E, (b) Decryption D0 and (c) Reconstruction R0.
Thus in this paper we will concentrate on implementing these three functions in
hardware.

Encryption ET
K(P ):

1: K0, . . . ,K16 ← KS16(K)
2: T̃ ← Transpose(T ||064)
3: S0 ← P
4: for i = 1 to 5 do
5: zi ← Si−1 ⊕Ki−1 ⊕ T̃
6: Si ← R(zi)

7: X5 ← S5; Y 5 ← S5

8: for i = 6 to 10 do
9: ui ← Xi−1 ⊕Ki−1 ⊕ T̃

10: Xi ← R(ui)

11: C0 ← X10 ⊕K10 ⊕ T̃
12: for i = 6 to 10 do
13: vi ← Y i−1 ⊕Ki+5 ⊕ T̃
14: Y i ← R(vi)

15: C1 ← Y 10 ⊕K16 ⊕ T̃
16: return (C0, C1)

Decryption DT,0
K (C0):

1: K0, . . . ,K16 ← KS16(K)
2: T̃ ← Transpose(T ||064)
3: X10 ← C0 ⊕K10 ⊕ T̃
4: for i = 10 to 6 do
5: ui ← R−1(Xi)
6: Xi−1 ← ui ⊕Ki−1 ⊕ T̃
7: S5 ← X5

8: for i = 5 to 1 do
9: zi ← R−1(Si)

10: Si−1 ← zi ⊕Ki−1 ⊕ T̃
11: P ← S0

12: return P

Reconstruction RT,0
K (C0):

1: K0, . . . ,K16 ← KS16(K)
2: T̃ ← Transpose(T ||064)
3: X10 ← C0 ⊕K10 ⊕ T̃
4: for i = 10 to 6 do
5: ui ← R−1(Xi)
6: Xi−1 ← ui ⊕Ki−1 ⊕ T̃
7: S5 ← X5; Y 5 ← S5

8: for i = 6 to 10 do
9: vi ← Y i−1 ⊕Ki+5 ⊕ T̃

10: Y i ← R(vi)

11: C1 ← Y 10 ⊕K16 ⊕ T̃
12: return C1

Fig. 2: Exact descriptions of the three algorithms E,D0,R0 used in SAEF and
PAEF forkable modes of operations from [9]. Here, R denotes the round func-
tion, i.e. R(x) = MC(SR(SB(x))) and KS16 denotes successive applications of key
schedule algorithm 16 times, i.e. Ki+1 ← KS(Ki) for 0 ≤ i ≤ 16 where K0 = K.

3 Serial Implementation of ForkAES

The three functions that any ForkAES circuit must accommodate in order to
execute the FAEP and SAEP modes of operation are Encryption E, Decryption
D0 and Reconstruction R0. To begin with, we will show that it is possible to
execute these functions without the use of an extra register. To do so we first
examine the case when the circuit does utilize an additional register.

First of all, from Figure 1 and 2 it is straightforward to see that Decryption
D0 operation is the simple AES decryption with an additional tweak. Thus any
circuit that performs AES decryption can perform D0 with or without an addi-
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tional register in the same number of clock cycles. Thus we concentrate on the
E, R0 functions.

Store X5 in Register

KEY

STATE

5 Rounds 5 Rounds 5 Rounds

FORWARD Round Function

K0 K5 K10 K11 K16

X0 X5 X10 X5 C1

Output C0

1 Round

Load X5 from Register

Fig. 3: Executing E on an AES circuit with an additional register

Input C0

KEY

STATE

5 Rounds 1 Round 5 Rounds

FORWARD Round Function

BACKWARD Round Function

Register Frozen

K10 K5 K11 K16

X10 X5 C1

Store K10 in Register

K10

Load K10 from Register

X5

Fig. 4: Executing R[0] on an AES circuit with an additional register

Encryption E As shown pictorially in Figure 3, encryption on an AES circuit
would proceed as follows. In the first 5 rounds, the circuit would proceed in
the forward direction, i.e. execute the forward keyschedule function on the
key registers and the forward AES round functions on the state registers.
After this, the intermediate state X5 is stored in the additional register,
parallelly while the circuit continues to execute the forward functions on
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both the key and state registers for another 5 rounds. At this point the the
first ciphertext C0 = X10 ⊕K10 ⊕ T̃ is output from the state side.
Thereafter there needs to be one blank round in which the key registers ex-
ecutes the forward keyschedule to compute the 12th roundkey K11, during
which the state registers could either be frozen using clock gating techniques,
or let to operate normally (it does not make any difference to the eventual
circuit output). After this the state X5 that was stored in the extra register is
loaded back on to the state registers and the circuit operates in the forward
direction in both the state and key sides for another 5 rounds to output the
second ciphertext block C1.

Reconstruction R0 The reconstruction function essentially outputs C1 when
the input is C0. It would be executed as follows as per Figure 4. The initial
inputs to the circuit are the ciphertext block C0 = X10 ⊕K10 ⊕ T̃ and the
11th roundkey K10. We parallelly store K10 in the additional register and
execute the inverse AES round functions and keyschedule for 5 rounds. At
this point the state and key registers store the intermediate states X5 and
K5 respectively. We freeze the state register for one round at this point and
simultaneously load K10 that was stored in the additional register back on to
key registers. After this round the key registers compute the 12th roundkey
K11 required to start the bottom branch of the reconstruction process. After
this the state registers are unfrozen and both run in the forward direction
for 5 more rounds to compute C1.

We now try to prove that both encryption and reconstruction can be per-
formed on an AES circuit that additionally supports decryption.

Proposition 1. Consider any circuit that performs both AES encryption and
decryption. If the circuit is able to accommodate an additional 64 bit tweak reg-
ister and a mechanism to add the tweak value efficiently to the state, then it is
possible to perform the ForkAES E and R0 operations on such a circuit without
requiring any other additional storage elements.

Proof Idea 1 We first look at encryption as explained in Figure 5. The AES
circuit first runs for 10 rounds without interruption, and the ciphertext block
C0 = X10 ⊕ K10 ⊕ T̃ is output. Thereafter the circuit is made to operate in
the backward direction for 5 rounds, i.e. the inverse AES round functions and
keyschedule operations are performed so that at the end of this, the circuit
returns to having X5, K5 in the state and key registers. At this point we freeze
the state registers for 6 rounds and let the key registers run in the forward
direction this time for 6 rounds, so that the 12th roundkey K11 is computed by
this time. After this both the state and key registers are both run in the forward
direction for 5 rounds so that after this the ciphertext block C1 would have been
computed.

We next look at reconstruction R0. Reconstruction is essentially getting the
circuit to output C1, given C0 and K10 as inputs. This is essentially how the
circuit functions in the last 16 rounds in the encryption operation as is evident
from Figures 5 and 6. This completes the proof sketch. ut
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3.1 Implementing ForkAES with the Atomic AES v 2.0 architecture

The Atomic AES v2.0 architecture was proposed in [15]. It is an 8-bit serial circuit
that accommodates both encryption and decryption operations. One forward
round is executed in 23 clock cycles and an inverse round is executed in 31
clock cycles. It occupies an area of only 2060 GE when implemented with the
standard cell library of the STM 90nm CMOS logic process and thus a very good
candidate for a lightweight implementation of ForkAES both with and without
the use of additional storage elements.

We first look at the circuit without an additional register, and refer this
implementation as Configuration A. Before getting into circuit details of the
implementation let us look at the changes we need to make to the original circuit
to accommodate ForkAES operations. They are highlighted in purple in Figure
7.

A: The original circuit had a an additional 32 bit multiplexer, for the mixcolumn
circuit. This is because the last round in AES encryption does not employ a
MixColumns operation. However all ForkAES round functions are identical:
none of them omit the MixColumns function. Thus the 32 bit multiplexer can
be omitted.

B: Additional 64 bit tweak register, to accommodate the tweak addition opera-
tion. Also additional 8-bit and gates are required to prevent tweak addition
in clock cycles when it is not required.

C: One additional 8-bit multiplexer to cycle back the bytes coming out of the
state registers back into the state.

D: Additional circuitry to generate more round constants.

E: Additional circuitry to generate control signals to employ a more fine-grained
control over the circuit.

F: Additional circuitry to generate gated clock signals to periodically stop data
movement in registers as and when required.

We now look at register level operations for a clearer picture of the move-
ment of data in and out of the registers. Note that we do not delve into circuit
level details of how the AES round and key functions operate. The readers are
referred to [15] for a more detailed and comprehensive analysis of clock by clock
operations involved in the actual round functions/keyschedule functions the cir-
cuit. However before we proceed it would be helpful to have an idea of the
sequence of operations performed by the Atomic AES circuit while performing
encryption/decryption. An encryption round consists of the following sequence
of operations:

ShiftRows (3 cycles), MixColumns (4 cycles), AddRoundKey + SubBytes of next round (16 cycles)

Thus given SB(Xi ⊕ Ki) as input a forward round on this circuit produces
SB(Xi+1 ⊕Ki+1). A decryption round consists of the following operations:

MixColumns −1 (12 cycles), ShiftRows −1 (3 cycles), SubBytes −1 + AddRoundKey (16 cycles)
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Fig. 7: ForkAES on the Atomic-AES v 2.0 circuit without an additional register
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Thus an inverse round would produce Xi⊕Ki given Xi+1⊕Ki+1 as input. Now
let us look at the sequence of operations in ForkAES E operation:

Cycles 0 to 222 The first 16 + 9 · 23 = 223 cycles are used for loading of
key/plaintext on to the registers (16 cycles) and executing the first 9 rounds
of AES (207 cycles) and the 10th round substitution layer. Of course the
initial data loaded onto the state register after cycle 15 is SB(X0 ⊕K0) so
that every forward round can function seamlessly.

Cycles 223 to 229 The next 3 + 4 = 7 cycles are used to execute the 10th
round ShiftRows (3 cycles) and the subsequent MixColumns (4 cycles). Thus
the content of the state register at this point is basically equal to Y =
MC ◦ SR ◦ SB(X9 ⊕K9).

Cycles 230 to 245 These 16 cycles are used to do the final key addition to
generate the first ciphertext block C0. At the same time the bytes coming
out of the state register (which are the individual bytes of Y ) are driven
back into the state register via the additional multiplexer mentioned in item
C of the above list. Since the inverse round operations of Atomic-AES v 2.0
circuit start with the MixColumns −1 operation this will nicely help us invert
round function to get back X5. Note that at the same time K10 is recycled
back into the key registers.

Cycles 246 to 400 The next 31 · 5 = 155 cycles are used to perform 5 inverse
AES round operations.

Cycles 401 to 515 At this point of time the state registers store the signal X5

and are frozen by gating the clock signal feeding them. The key registers store
K5, and so the next 5 · 23 = 115 cycles are used to operate the keyschedule
in the forward direction to compute K10.

Cycles 516 to 538 The key registers function normally so that from cycles
523-538 the 12th roundkey K11 are available for key addition. The state
registers are frozen till cycle 522. From cycles 523 to 538 the bytes are taken
out of the state register added to the individual bytes of K11, passed through
the S-box and driven back into the state registers. In this way at the end of
this set of cycles, the state registers hold SB(X5⊕K11), which is exactly the
value required to operate the subsequent forward rounds.

Cycles 539 to 653 The next 5 · 23 = 115 cycles, 5 forward AES rounds are
executed in a normal way, so that it is able to output the final ciphertext
block C1.

All the above description implicitly assumes that the Tweak register essen-
tially operates as a circularly shifting register that makes the tweak bytes avail-
able for addition as and when required. We already know that decryption D0

is performed in a manner exactly same as the AES decryption function on the
Atomic AES circuit in 326 cycles. As per Proposition 1, the reconstruction R0 is
simply achieved by executing the operations from cycles 230 to 653. Thus encryp-
tion, decryption and reconstruction takes 654, 326 and 424 cycles respectively.
This completes the analysis for Configuration A. Due to space constraints, we
omit similar detailed circuit level analysis for the case when an extra register is
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Table 1: Performance Comparison of ForkAES implemented with Atomic-AES
v2.0 circuit. For comparison Atomic-AES v2.0 consumes 2060 GE of area.

# Configuration Area Operation Latency Power Energy TPmax

(GE) (cycles) (µW) (nJ) (Mbps)

1 A 2476 Encryption 654 118.8 7.77 54.90
Decryption 326 3.87 55.07

Reconstruction 424 5.04 42.34

2 B 2911 Encryption 384 134.8 5.18 91.74
Decryption 326 4.39 54.03

Reconstruction 309 4.17 57.00

used (call it Configuration B). However it is not too difficult to see that the
clock-by-clock analysis is pretty similar to the arguments outlined right at the
beginning of the section.

3.2 Implementation Results

In order to perform a fair performance evaluation, we first implemented the
circuits using VHDL. Thereafter the following design flow was adhered to for all
the circuits: a functional verification at the RTL level was first done using Mentor
Graphics Modelsim software. The designs were synthesized using the standard
cell library of the 90nm logic process of STM (CORE90GPHVT v 2.1.a) with
the Synopsys Design Compiler, with the compiler being specifically instructed to
optimize the circuit for area. A timing simulation was done on the synthesized
netlist to confirm the correctness of the design, by comparing the output of the
timing simulation with known test vectors. The switching activity of each gate
of the circuit was collected while running post-synthesis simulation. The average
power was obtained using Synopsys Power Compiler, using the back annotated
switching activity. The results are tabulated in Table 1. We can achieve an
implementation of 2476 gates in Configuration A, which is only around 400
GE larger than the original AES circuit.

In Figure 8, we present a componentwise breakdown of the areas occupied in
the 2 configurations. It can be seen that most of the area is occupied by the reg-
isters (state and key), s-box, mixcolumn and other control signals required in the
core AES circuit. The additional area requirement is accounted for by the tweak
registers, clock gating circuit, and the additional register used in Configuration
B.

4 Energy Consumption of ForkAES architectures

During its functionality, the energy spent by a circuit can be divided into two
parts: leakage energy and dynamic energy. The former roughly scales with the
number of gates constituting the circuit, where each gate is associated with a
constant power leakage due to its implementation in the CMOS technology. The
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Fig. 8: Component-wise breakdown of areas in the 2 configurations of ForkAES

latter, on the other hand, essentially stems from state changes of wires, as each
component of the circuit receives and further propagates glitches, until both
its input and output values are stabilized. This repeats each time the input of
components change that coincides with the rising edge of the clock signal.

Hence, minimizing the circuit size does not necessarily align with the goal of
reducing energy consumption. Following the work of Banik et al. [17], a circuit
that performs one round of AES per clock cycle leads to the most energy efficient
design. Then the follow-up question is how one can transform that particular one
round per clock cycle AES circuit to obtain most energy efficient implementa-
tion for ForkAES. Since converting a plain AES architecture that supports both
decryption and encryption into ForkAES circuit reveals a number of free design
choices, we consider and compare each one of the possible designs below.

4.1 Generic Architecture

On a higher level, the architectures we propose share the common structure with
some further tweaks that let us pick the most energy efficient architecture. The
following summary of the design refers to the most energy efficient design on
average and it is obtained through a combination of compartmentalized compo-
nents SC#1, KC#1, TC explained below. Further modifications we make lead to
slight changes in the precise description of these components and as well as the
main circuit as seen in Figure 9. We present the power and energy consumption
results of the modifications in Table 2.

In comparison to Atomic AES that uses 8-bit data and key path, the designs
below utilize 128-bit data and key paths. All mainly consist of three components,
that handle the states Si, the round keys Ki and the temporary register.
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Fig. 9: The state components SC#1, SC#1; the key components KC#1, KC#2,
and the temporary register component TC of ForkAES circuit.
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State component. It consists of three parts (see SC#1 in Figure 9):

– At its core, 128-bit RegisterSt is used to keep the plaintext/ciphertext state
of each ForkAES round. At the rising edge of the clock, its content is updated
to the next state with the help of the multiplexer described below.

– The multiplexer placed at the input of RegisterSt supports three basic op-
erations, by selecting which value should be loaded into this register. First,
it can load the next plaintext/ciphertext state from the wire St, as it is
computed by the round function circuit. Secondly, it can load the initial
state, e.g. S0 during encryption. And lastly, it can load the contents of the
temporary register RegisterTmp.

– Round function bus consists of two series of 128-bit combinatorial circuits
arranged to perform either the round function R or its inverse R−1, as well
as the tweaked key addition. This dual circuit is complemented with mask-
ing AND gates (denoted with symbol ) that disable the unused part of
the circuit, i.e. either the encryption or the decryption path, to reduce en-
ergy consumption. The final output of the circuit is selected by the output
multiplexer.

Key Component (KC) The key component KC works in a quite similar fashion
to the state component. It also consists of three parts (see KC#1 in Figure 9):

– 128-bit RegisterKey is used to keep the current round key (more precisely it
keeps Ki−1 at round i). It is updated with the rising edge of the clock.

– The multiplexer wired to the input of RegisterKey supports three different
basic operations, by selecting which value to load into the register. First, it
can load the next round key computed by the key schedule circuit. Secondly,
it can initialize the register during cycle 0, e.g. load K0 during encryption.
And lastly, it can load the content of RegisterTmp.

– The key schedule consists of two series of 128-bit combinatorial circuits ar-
ranged to perform either the forward key schedule function KS or its in-
verse KS−1. This dual circuit is also complemented with masking AND gates
( ) that disable the unused part of the circuit for energy efficiency. The
actual round key that the state component needs is provided through either
Kenc or Kdec based on the actual ForkAES operation the circuit is performing.

Temporary (Register) Component (TC) It consists of two parts (see TC
in Figure 9):

– 128-bit RegisterTC is used to keep a temporary 128-bit value. This is either
the state S5 used at fork (see Figure 1) or the round key K10 loaded to the
circuit during reconstruction operation.

– The multiplexer wired to the input of RegisterTC supports three basic opera-
tions, by selecting which value to load into the register. First, it can maintain
its content through reloading from itself. Secondly, it can initialize the with
the round key K10. And lastly, it can load the forking state S5 from the state
component.
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Below we describe how encryption is done with the particular ForkAES ar-
chitecture that combines components SC#1, KC#1, TC. We use the series of
variables Si, zi,Ki defined in the encryption algorithm in Figure 2 for conve-
nience.

Cycle 0 On SC#1, AddRoundKey (with tweak) is done on plaintext, and the
result z1 = S0 ⊕K0 ⊕ T̃ is loaded1 into RegisterSt through multiplexer. On
KC#1, the initial key K0 is loaded into RegisterKey without any operation.

Cycles 1 to 4 At the very beginning of cycle i, RegisterSt holds zi. Then during
cycle i, Si ← SB(SR(MC(zi))) is computed through encryption path and the
round key addition follows it: zi+1 ← Si ⊕ Ki ⊕ T̃ . Since RegisterKey holds
Ki−1 at the beginning of clock cycle i, the round key Ki appears at wire
Kenc after being computed by KS circuit of KC#1 and the result is passed
to the encryption path via Kenc as seen in Figure 9. Also, Ki is loaded into
RegisterKey.

Cycle 5 Works similar to cycles 1-4. The only difference is that the forking state
S5 from the encryption path is stored into the temporary register RegisterTmp.

Cycles 6 to 9 Similar to cycles 1 to 4.
Cycle 10 Works similar to cycles 1 to 4. The difference is that C0 becomes

available at the output wire CT during this clock cycle. Also, the control
bits of multiplexer before RegisterSt is set to load the forking state S5 for the
next clock cycle from the temporary register RegisterTmp.

Cycle 11 At the beginning of this cycle, RegisterSt receives v6 = S5 ⊕K11 ⊕ T̃ .
Similar to cycle 1, the computation Y6 ← SB(SR(MC(v6))) is done first, and
then the key addition: v7 ← Y6 ⊕K12 ⊕ T̃ . v7 is stored back into RegisterSt,
and the round key K12 is stored into RegisterKey.

Cycles 12 to 15 Similar to cycles 1 to 4.
Cycle 16 Similar to cycle 10, with the difference that C1 becomes available at

CT.

Below we describe how ForkAES reconstruction is performed by the circuit,
which involves some parts of encryption and decryption operations. We assume
that at the beginning of the operation, the ciphertext C0 is loaded into P, and
the round key K10 is loaded into Key.

Cycle 0 On SC#1, AddRoundKey (with tweak) and MC−1 is computed on the
ciphertext C0, and the result X10,SR is loaded into RegisterSt through mul-
tiplexer. On KC#1, the initial key K10 is loaded both into RegisterKey and
RegisterTmp without any operation.

Cycles 1 to 4 At the beginning of cycle i, RegisterSt holds X11−i,SR. Then dur-
ing cycle i, u11−i ← SB−1(SR−1(zi)) is first computed through decryption
path2 and the round key addition follows it: X10−i ← u11−i ⊕ K10−i ⊕ T̃ .

1More precisely, the value is loaded into RegisterSt during the rising edge that marks
the end of cycle 0, hence the value itself becomes available at the output of the register
at cycle 1. We rather say the value is loaded into the register at clock cycle 0.

2Note that SB−1(SR−1(x)) = SR−1(SB−1(x)) for all x.
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And finally, X10−i,SR ← MC−1(X10−i). In the same fashion, at the beginning
of the clock cycle i, RegisterKey holds K11−i, hence the round key K10−i is
calculated with the combinatorial KS−1 circuit of KC#1 and the result is
passed to the decryption path via Kdec as seen in Figure 9; and also loaded
back into RegisterKey.

Cycle 5 Works similar to cycles 1-4. The difference is that the forking state
S5 from the decryption path appears at Sdec and hence it is loaded into the
temporary register RegisterTmp at the end of this clock cycle. Moreover, the
round key K10 is loaded back into RegisterKey from RegisterTmp.

Cycle 6 No decryption or encryption operation is done on SC#1, because an
operation that must follow is a round key addition (see Figure 1). Therefore,
the forking state S5 is read from RegisterTmp and the round key addition is

done on the wire: v6 ← S5⊕K11⊕ T̃ , where the round key K11 is computed
with KS circuit in KC#1. The result v6 is loaded into RegisterSt.

Cycles 7 to 11 Works similar to cycles 12 to 16 of ForkAES encryption opera-
tion above, and the result C1 becomes available at clock cycle 11.

We skip the description of decryption, as it can be easily constructed by
repeating the cycles 1 to 4 of ForkAES reconstruction above.

4.2 Modified Implementations.

We explore possible modifications to the generic circuit, and compare their re-
sults in Table 2. In order to derive a single metric for strict comparison, we take
the average of energy consumed by each ForkAES encryption E, decryption D0

and reconstruction R0 operations. Our choice of this metric is justified by the
fact that the proposed modes of operations SAEF and PAEF by Andreeva et al.
[9] make the following number of ForkAES calls for a message of m blocks and
an associated data of a blocks3:

– encryption: (m + a) · E,
– decryption: a · E + m ·D0 + m · R0.

Hence the average energy spent per message block roughly converges to our
metric assuming m� a.

Clock gating (design #2). One might notice that during encryption the
control bits and contents of RegisterTmp is irrelevant for 12 clock cycles, and
used as a storage for 4 cycles. Similarly, during reconstruction, the RegisterTmp

stores its value for many cycles without receiving a new value. The register stores
its value through a multiplexer that feeds the register’s own value back into its
input (see TC in Figure 9). Hence one might wonder if freezing the register by
micromanaging its clock signal yields a better design instead of reloading the

3This metric omits the additional higher-level circuitry such as control blocks to
handle multiple associated data and message blocks in SAEF and PAEF, as we only
focus on the ForkAES implementation.
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register with the same value multiple times. We implemented this version. This
implementation (#2 in Table 2) is dubbed with an extra cg, i.e. clock gating.
Even though there is a small energy gain in decryption, the encryption becomes
more costly. That might be explained with the inherent glitches on additional
clock signals of registers, as adding more control leads to more complicated
circuit in front of this signal. The glitch on this clock signal incurs further wasted
computation in other components. In conclusion, this modification leads to a less
efficient implementation on average.

Reorganized decryption path (#3). One of the benefits of the state compo-
nent SC#1 (see Figure 9) is that both SB and SB−1 has the same input, which
allows them to be implemented as a single circuit and share a demultiplexer.
This idea is due to Banik et al. [14]. As a disadvantage, this design requires
an extra MC−1 circuit attached to the input wire P, as ForkAES does not skip
a MixColumns operation at the last round in contrast to the original AES-128.
In order to understand this trade-off better, we compare it with another state
component design, i.e. SC#2. The latter organizes MC−1, SR−1, SB−1 circuits
in a more intuitive fashion in the decryption path, and eliminates the need to
append an extra MC−1 to the input (see Figure 9). In conclusion, this leads to a
slightly less efficient implementation as reported in Table 2, because the energy
consumption caused by duplication of some S-box circuitry due to separation
beats the energy gain by removal of MC−1.

Removing temporary register (#4). We have shown in Section 3 that
even without a temporary register to store the forking state S5, one can still
realize ForkAES operations. This would apparently require more clock cycles,
and therefore more energy. In order to understand this trade-off, we consider the
design that is a combination of SC#1, KC#1 without temporary component. In
order to micromanage the registers, we use clock gating. It can be seen in the
Table 2 that this design is at least 20% less efficient than its counterpart with
temporary components (due to clock gating based implementation, comparison
of #2 versus #4 is more reasonable).

Flipped key scheduler (#5). Our final tweaked design is based on the fol-
lowing observation: during each clock cycle, the round key is computed either
through KS or KS−1 circuit. Because it takes few nanoseconds for these circuits
to compute the final round key, the output wires Kenc and Kdec propagate glitches
into SC#1 circuit. That is due to the fact that RegisterKey actually stores the
previous round key instead of the exact round key needed by the state compo-
nent. In comparison, if the key component were to be updated as such that the
particular round key was stored in the key register precisely when it was needed
by the state component, then Kenc and Kdec would be glitch-free. The modified
key component is given as KC#2 in Figure 9. This modification decreases the
energy spent during encryption operation, but surprisingly incurs more for de-
cryption and reconstruction operations. The energy results of this modification
can be seen by comparing designs #1 versus #5 in Table 2.
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Fig. 10: Component-wise breakdown of the energy consumption of the most
energy-efficient architecture, i.e. implementation #1 with SC#1, KC#1, TC com-
ponents, during ForkAES encryption, decryption and reconstruction operations.

5 Conclusion

The recently proposed ForkAES cipher would normally require an additional reg-
ister to store an intermediate state during computation. Thus an implementation
of ForkAES in hardware would require additional circuit area to accommodate
the extra state. In this paper, we first showed that it was possible to implement
ForkAES without any additional storage elements other than those required to
implement AES, if the AES circuit could additionally perform decryption. As a
proof of concept, using the Atomic AES v2.0 architecture as a building block,
we implemented the ForkAES circuit both with and without an additional reg-
ister and present a tradeoff in terms of area of circuit and number of clock
cycles required to perform encryption/decryption/reconstruction operations of
ForkAES. Without an additional register, the circuit occupies 2476 GE which is
only around 400 GE more than the core AES circuit. In the second part of the
paper we looked at the energy-efficiency of ForkAES implementations. We ex-
tended the so-called “S3K2” construction of Banik et al. [17] to realize ForkAES
in an energy-preserving manner, and compared the effects of some design choices.
We found that the energy consumption of the most energy-efficient implementa-
tion of ForkAES consumed about 2 times that of AES. From lightweight design
perspective, our results present various tradeoffs involved in the design space of
ForkAES that can be useful in determining the implementation most suitable to
meeting any given area/power/energy budget.
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Table 2: Results for various energy-efficient architectures. For comparison, note
that the most efficient AES-128 circuit “S3K2” of [14] consumes 0.484 nJ on
average with 22729 GE area, making the most efficient ForkAES implementation
at least twice more expensive.

# Configuration Area Operation Latency Power Energy TPmax

(GE) (cycles) (µW) (nJ) (Mbps)

1 SC#1, KC#1, TC 27155 Encryption 17 643.6 1.094 2671
(described in text) Decryption 11 739.2 0.813 2064

Reconstruction 12 800.8 0.961 1892
Average - - 0.956 -

2 SC#1, KC#1, TC, cg 27182 Encryption 17 713.5 1.213 2892
Decryption 11 735.3 0.809 2234

Reconstruction 12 809.7 0.972 2048
Average - - 0.998 -

3 SC#2, KC#1, TC 30908 Encryption 17 748.3 1.272 3042
Decryption 11 618.8 0.681 2351

Reconstruction 12 849.3 1.019 2155
Average - - 0.991 -

4 SC#1, KC#1, cg 26480 Encryption 25 713.7 1.784 2112
Decryption 11 695.3 0.765 2408

Reconstruction 15 760.3 1.140 1766
Average - - 1.230 -

5 SC#1, KC#2, TC 27137 Encryption 17 630 1.071 3790
Decryption 11 759.1 0.835 2929

Reconstruction 12 849.5 1.019 2684
Average - - 0.975 -
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