
Behind multiple trapdoors: A cryptographic

commitment scheme for establishing secure

communications

Borja Gomez

kub0x@elhacker.net

October 15, 2019

Abstract

This paper introduces a cryptographic commitment using multiple
platform groups where the attacker must solve multiple instances of the
Discrete Logarithm Problem to break the scheme. The goal is that Al-
ice and Bob establish a secret communication after verifying a finite set
of values that have been computed using multiple trapdoor-permutation
functions. Moreover, applicable cryptanalytic techniques and procedures
that entirely define this scheme are discussed.

1 Introduction

Before commenting out the construction of the scheme and its security, presen-
tation of the background is necessary. The algebraic scheme relies mainly on
using group elements of cyclic groups where the Discrete Logarithm is believed
to be hard. Later an implementation is discussed using Zn

∗: the multiplicative
group of units modulo n. Besides, a commutative permutation group P is intro-
duced to permute the transformations made by the parties on the initial shared
sequence and public key material. Alice and Bob aim to commit on a sequence
of values and as seen in other asymmetric schemes, every part involved in the
commitment process has its own pair of private-public key. The commitment
is represented as a n-tuple, and both parties must agree on the image of every
point in their derived secret material supporting on hash functions to perform
verification on those values. For the security part, the reader should be aware
of decomposition techniques based on the Chinese Remainder Theorem (CRT),
general group theory, probability, combinatorics and other methods that may
require numerical knowledge.

1

mailto:kub0x@elhacker.net


1.1 A brief remark

The goal of this work is to show that Alice and Bob can commit to a sequence
of values where the attacker has no clue of which values have been selected
by both parties. Generally, parties setup their public keys by picking up an
initial sequence, transforming and permuting it. Second, to compute secret
key material they permute the other’s party public key with their own private
private permutation. As a consequence of P being commutative, permutations
commute and parties should obtain the same ordering on the initial values,
however, in the public keys, these have been already transformed by the other’s
party private key, so if transformations commute parties end up having the same
shared key material. This is not easy even for parties, as the scheme is built in
a way that they cannot know which transformation to apply once they permute
other’s public key since parties need to probe each other using hash functions
to check on what value they do agree to reveal the position of the image of the
commitment value. In the end parties have an unique sequence of points-images
that can be used to build symmetric key material for enciphering information.
In the security part, the attacker must solve a finite number of DLP instances
to be able to compute the commitment values. There is also the chance for the
attacker to build a system of equivalence chains that permits him to succeed
against the group membership problem that is encountered later.

1.2 Motivation

The whole document is a consequence of the author studying how to build a
cryptographic scheme that uses multiple instances of a concrete problem[1]. The
idea is to create a commitment scheme using multiple trapdoor-permutations
functions. Moreover a n-tuple of distinct trapdor-permutation functions X =
(f1, · · · , fn) where Alice calculates the public key by permuting X with σ ∈ P
and evaluating every fσ(i) on the σ(i)-th element of her private key.

PubA = (fσ(1)(privA,σ(1)), · · · , fσ(n)(privA,σ(n))
The attacker must determine for a random element which trapdoor-permutation

function generated it, therefore, distinguishing is crucial to gain information of
the permutation used by Alice. The other relevant point is how Alice and Bob
arrive at the same shared key material for establishing a secure communica-
tion. As permuting each other’s public key with their private permutation gives
the same ordering on the elements of X, they must probe each other by trans-
forming a commitment point with their private key elements until they find a
coincidence, revealing the right image of the commitment point.
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2 Scheme construction

The construction of the scheme is given algebraically first. The approach on
this paper is to use a description based on groups and their elements, instead of
using general trapdoor functions as seen before in section 1.2. The main reason
of using groups is to give an implementation of the scheme using known platform
groups found in Cryptography. In the end, both descriptions are equal since
the operation that group elements use is a transformation, that’s a trapdoor-
permutation function.

2.1 Group based construction

Let X be the set of generators of n distinct cyclic groups Gi.

• X = (g1, · · · , gn) ∈ G1 × · · · ×Gn where < gi >= Gi and |X| = n

Let P be a commutative group of permutations generated by r permutations
σ1 · · ·σr

• P =< σ1 · · ·σr >

Let Deg(P ) be the degree of the permutation group P . The degree is the
number of symbols of a permutation and it cannot exceed n as it could not
permute beyond that limit.

• Deg(P ) ≤ |X|

Let δ be the set of commitment points involved on the commitment process
between Alice and Bob

• δ = (δ1, · · · , δk) ∈ [1, Deg(P )]k

Let PrivA be the private key of Alice where the i-th element belongs to Gi.

• PrivA = (α1, · · · , αn) ∈ G1 × · · · ×Gn

Let PrivB be the private key of Bob where the i-th element belongs to Gi.

• PrivB = (β1, · · · , βn) ∈ G1 × · · · ×Gn

Let PubA be the public key of Alice consisting on n residues where she swapped
the i-th position with the j-th, this is σ(i) = j. Same for Bob but he uses π to
permute the instances.

• PubA = (g
ασ(1)
σ(1) , · · · , g

ασ(n)

σ(n) ) ∈ Gσ(1) × · · · ×Gσ(n)

• PubB = (g
βπ(1)

π(1) , · · · , g
βπ(n)

π(n) } ∈ Gπ(1) × · · · ×Gπ(n)

Let SharedA,B be the shared key that Alice obtains when permuting PubB with
σ. If σπ = πσ the generators are placed in the same order in SharedA,B and
SharedB,A, then Alice and Bob need only one step more to obtain the same
transformation.
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• SharedA,B = (g
βσ(π(1))

σ(π(1)) , · · · , g
βσ(π(n))

σ(π(n)) ) ∈ Gσπ(1) × · · · ×Gσπ(n)

• SharedB,A = (g
απ(σ(1))

π(σ(1)) , · · · , g
απ(σ(n))

π(σ(n)) ) ∈ Gπσ(1) × · · · ×Gπσ(n)

Let ProbeA,δi be the set of digest values that Alice sends to Bob to verify the
correct image in the point δi. Every digest is calculated using the generator
g ∈ Gσπ(δi), thus, at the i-th position we have the digest or hash of the result

of g
βσπ(δi)

αi

σπ(δi)
.

• ProbeA,δi = (H(g
βσ(π(δi))

α1

σ(π(δi))
), · · · , H(g

βσ(π(δi))
αn

σ(π(δi))
))

• ProbeB,δi = (H(g
απ(σ(δi))

β1

π(σ(δi))
), · · · , H(g

απ(σ(n))
βn

π(σ(n)) ))

Alice and Bob are able to agree on the same value on position πσ(δi) =

σπ(δi) since H(g
βσπ(δi)

·ασπ(δi)

σπ(δi)
) = H(g

απσ(δi)·βπσ(δi)
πσ(δi)

). But this proposition makes

the verification vulnerable to an attack where the attacker figures out the com-
mitment images since both probe tuples have an equal value on the aforemen-
tioned position. Two probe tuples are needed for both Alice and Bob, using two
different salts. This way, the attacker cannot figure out the right value as he
has no information of what digests are equal, being unable to reveal the right
image of δi.

Eventually, taking the vulnerability into consideration, the new probing
phase consits of Alice sending ProbeA,δi,salt1 to Bob and keeping ProbeA,δi,salt2
for herself. Now Alice is able to distinguish the right image of δi in ProbeB,δi,salt2
comparing it to ProbeA,δi,salt2 . Bob is able to distinguish the image of δi in
ProbeA, δi, salt1 comparing it to ProbeB,δi,salt1 . Attacker knows ProbeA,δi,salt1
and ProbeB,δi,salt2 thus the position πσ(δi) cannot be determined as there’s no
equality or collision as salts are different for each probe tuple he has.

2.2 An implementation for G = Zn

An interesting procedure to investigate further on the security of the scheme is
to study the case when G is taken as the multiplicative group of integers modulo
n. For the following case represent a ≡ b (mod n) as a ≡n b :

• X = (g1, · · · , gn) ∈ Z1
∗ × · · · × Z∗n

• δ = (δ1, · · · , δk) ∈ [1, Deg(P )]k

• P =< σ1, · · · , σr >, Deg(P ) = |X| = n

• |P | = lcm(c1, · · · , cs) = q ⇐⇒
∑s
i=1 |ci| = Deg(P ) = n

Alice and Bob select σ, π ∈ P and their private key tuple named priv.

• σ, π ∈ P
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• privA = (α1, · · · , αn) ∈ Z1
∗ × · · · × Z∗n

• privB = (β1, · · · , βn) ∈ Z1
∗ × · · · × Z∗n

Now both setup their public key by transforming and permuting X with
their private keys and permutations. Public keys are exchanged and the shared
tuple computed.

• PubA = (g
ασ(1)
σ(1) ≡nσ(1) , · · · , g

ασ(n)

σ(n) ≡nσ(n)
) ∈ Z∗nσ(1) × · · · × Z

∗
nσ(n)

• PubB = (g
βπ(1)

π(1) ≡nπ(1)
, · · · , gβπ(n)

π(n) ≡nπ(n)
) ∈ Z∗nπ(1)

× · · · × Z∗nπ(n)

• SharedA,B = (g
βσπ(1)

σπ(1) ≡nσπ(1)
, · · · , gβσπ(n)

σπ(n) ≡nσπ(n)
∈ Z∗nσπ(1)

× · · · ×Z∗nσπ(n)

• SharedB,A = (g
απ(σ(1))

π(σ(1)) , · · · , g
απ(σ(n))

π(σ(n)) ) ∈ Gπσ(1) × · · · ×Gπσ(n)

For the last part, Alice and Bob must agree on every commitment point δi ∈ δ.
They build the Probe tuple for the point δi that consists of digests of the
transforms of the δi -th value on the the Shared tuple using every private value
of their priv tuple. This is stated as:

• ProbeA,δi,salt1 = (H(g
βσ(π(δi))

α1

σ(π(δi))
≡n1 ||salt1), · · · , H(g

βσ(π(δi))
αn

σ(π(δi))
) ≡nn ||salt1) ∈

Zn
+

• ProbeA,δi,salt2 = (H(g
βσ(π(δi))

α1

σ(π(δi))
||salt2), · · · , H(g

βσ(π(δi))
αn

σ(π(δi))
)||salt2) ∈ Zn+

• ProbeB,δi,salt1 = (H(g
απσ(δi)

β1

πσ(δi)
||salt1), · · · , H(g

απσ(δi)
βn

πσ(δi)
)||salt1) ∈ Zn+

• ProbeB,δi,salt2 = (H(g
απσ(δi)

β1

πσ(δi)
||salt2), · · · , H(g

απσ(δi)
βn

πσ(δi)
)||salt2) ∈ Zn+

Alice shares ProbeA,δi,salt1 and keeps ProbeA,δi,salt2 secret. Bob shares
ProbeB,δi,salt2 and keeps ProbeB,δi,salt1 secret.

Since ProbeA,δi,salt2 and ProbeB,δi,salt2 have the same digest on the point

σπ(δi), Alice is able to determine the transformation g
βσπ(δi)

ασπ(δi)

σπ(δi)
≡nσπ(δi)

. In

the same way does Bob, determining the transformation g
βσπ(δi)

ασπ(δi)

σπ(δi)
≡nσπ(δi)

.

This construction works as the underlying operation is commutative on P and
on every Z∗ni . However, various issues arise when inspecting the scheme at a
lower level as seen in the next section.
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3 Security: Distinguishability and Membership
of elements

The presented scheme is functional and applicable to real world purposes, how-
ever, its security must be analyzed to point out what are the requirements to
achieve the best affordable security. In the other hand, security will tell what
are the possible chances for an attacker to succeed and break into the commu-
nication. Furthermore, presentation of scenarios and environments is crucial to
determine and understand what an attacker would attempt to breakthrough.
To study such a thing, the chosen approach by the author is to address these
concerns one by one.

We talk about distinguishability when the attacker wants to determine which
properties does satisfy a random selected element. Distinguishing could lead
him to succeed if his chances to guess are likely to occur. On this scheme
distinguishability plays an important role specially in the situation where the
attacker can distinguish with high probability which element of the public key
is a member of a particular group Gi. Concretely in PubA the value in the
i-th position depends on the permutation σ say σ(i) = j, so attacker sees an
element in Gj in position i. He must find out that the value in position i was
originally in position j of X, it was brought to position i, transformed by a
trapdoor permutation function and inserted on the public key. This is hard for
the attacker, but not impossible.

3.1 Analyzing the structure of the permutation group P

Permutation elements of P constitute one of the core features of this scheme:
they are responsible of permuting every transformation applied to elements in
X to generate public keys. In addition, they are involved on the shared key
material generation as well, and this material is used to build the Probe tuple
that Alice and Bob use to commit on a sequence of values. As a result of these
details, the attacker can partially succeed in his mission of breaking the scheme
if he can retrieve or obtain private permutations selected by Alice or Bob. Let’s
proceed with an approach using group theory that attempts to represent what
the attacker gains from the permutation used to permute any public key:

Let P be a commutative permutation group of order q and degree n where
q, n ∈ Z. Suppose thatDeg(P ) = k < n, asX contains n elements or generators,
σ ∈ P has less than n symbols and will inherently fix n− k symbols on PubA.
Consequently, a necessary condition is Deg(P ) = |X| = n.

The attacker can sharpen and figure out what group elements can appear in
a certain position of PubA. This is strongly related to P acting on S transitively.
Let S = {1, · · · , n} ∈ Z+ be the set of integer symbols ranging from 1 to n and
define the group action morphism of the G-set PS as:

φ : P × S 7→ S

ρ · x 7→ φ(ρ, x) ρ ∈ P, x ∈ S
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Do not confuse PS with PP because if S = P then PP acts on itself, giving the
permutation representation (Cayley’s Theorem), thus the group action would be
transitive as φ : P × P 7→ P gives the automorphism group. Focus the interest
on PS as it defines a bijection in the set of symbols S.

Eventually, define the group action of PS as transitive ⇐⇒ ∀x, y ∈ S ∃ρ ∈
φ : ρ(x) = y.

This is, if the action on PS is transitive every symbol in S is related to
every other symbol by the equivalence x ∼ y as permutation elements in P
have a single orbit O (Burnside’s Lemma)[2]. Otherwise, the action of PS is
intransitive and ρ(x) 6= y in certain cases so position x in Pub is restricted to
an orbit containing less than n elements[2]. The attacker can exploit this fact
to reduce the number of group candidates for a certain element of Pub.

It results that the group action of PS is intransitive when P is generated
by disjoint permutations cycles. Let P =< ρ > and ρ = c1, · · · , cr Then
Deg(P ) =

∑k
i=1 nci |ci| where |ci| denotes the length of the cycle ci and nci how

many cycles of length i are in ρ. P is clearly commutative, but as it’s generated
by a permutation generator consisting of disjoint cycles, then a symbol in X
of ci cannot appear in ck, thus its group action is intransitive. This result is
crucial as the attacker knows that in position i it can have |Oi| candidates,
which is inherently less than n. The goal is to create a permutation group that
is transitive where every symbol or position i has n candidates, thus there would
exists an unique orbit of size n. Therefore |O| = Deg(P ) = n. This way, every
group element in PubA could belong to any group Gi, as a consequence, the
attacker cannot elaborate a reduced list of group candidates for the position i
in PubA using the intransivity criteria. The final conclusion is that P must be
a permutation group generated by a single ρ, thus |P | = Deg(P )

3.2 Ordering Chains

In the previous section the attacker could gain information if the action on PS
is intransitive. Now he’s in the position to investigate further as in the scheme
P acts on S transitively. He could be confused by the fact that every position
of PubA can contain any element of any group Gi where 1 ≤ i ≤ n. But he’s
clever enough to realize that logic comparison is used to classify permutations
via ordering chains. A general method is presented that can be applied when P
is either transitive or intransitive. Of course when P is intransitive, this method
will have a bigger impact on the breakthrough since it allows the attacker to
discard group candidates with more ease.

Return to the definition of the scheme when Gi = Z∗ni . Due the group action
of PS being transitive, let σ(i) = j so the element on position i of PubA is the
residue hj such that g

αj
j ≡nj hj . The attacker knows that hj may belong to

any group when hj satisfies hj ∈ Gk ⇐⇒ hj < nk. Thus he builds an ordering
chain that defines the membership of the element hj respect to all Gi.

Chj = n1 ≤ n2 ≤ · · ·hσ(i) < nσ(i) < · · ·nn
The previous chain is the trivial chain for the residue hj ∈ Gj . Note that

hj < nj and since hj > nj−1 you are done because hj it’s greater than any other
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modulus less than nj . But what if hj < nj−1? And what if hj < n1? Further-
more, there exists an abstract method to classify the number of possible chains
for a residue hj ∈ Gj . This method can be used to estimate the probability of
a residue hj having a particular chain.

C1 = h1 < n1 < · · · < nn

C2 =

{
n1 < h2 < n2 < · · · < nn

h2 < n1 < n2 < · · · < nn

· · ·

Cn =


n1 < · · · < hn < nn

n1 < · · · < hn < nn−1 < nn

· · ·
hn < n1 < · · · < nn

An important conclusion is that there are j possible ordering chains for the
element hj . Obviously, when observing PubA the attacker selects one of these
chains for every hj , building the chain himself by the criteria exposed above.

The attacker realizes that Chj can be used to distinguish the membership of
the congruence hj respect to all groups G. His next step is to group these chains
to detect possible arrangements using cycle detection or elimination techniques.

3.3 Elimination techinques

Let A(PubA) ∈ Fn×n2 be the adjacency matrix that results from the possible ar-
rangements (permutations) involved in PubA. Every row i contains the possible
group memberships of the element hj recall that σ(i) = j.

A(PubA)i,k =

{
1 ⇐⇒ hσ(i) < nk

0 ⇐⇒ hσ(i) > nk

The reader can check that the following property is always satisfied when P
acts on S transitively:
∀i ∈ [1, n]→ A(PubA)i,σ(i) = 1
Thus if every row of A(PubA) has distinct degree then a triangular matrix

is obtained (after reordering/sorting). It is clear that the attacker can distin-
guish every element in PubA by elimination. This is the case when every Ci
is the trivial chain. The scenario can be complex, as P is transitive, perfect
indistinguishability is achieved when every A(PubA)i,j = 1 masquerading every
residue.

If P is intransitive, the attacker knows that the symbol i has an orbit of size
k < n. Let Oi be the orbit associated with the symbol i. He obtains the chain
for hσ(i)=j by the following rule:

A(PubA)i,k =

{
1 ⇐⇒ k ∈ Oi ∧ hj < nk

0 ⇐⇒ k 6∈ O
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This is why the author recommends that P acts on S transitively. In-
transitivity weakens the security of the scheme by letting the attacker to dis-
tinguish residues or group elements by eliminating candidates taking Oi into
account. The elimination process works because a membership candidate i.e
A(PubA)i,k = 1 turns into A(PubA)i,k = 0 if k is not in the orbit Oi. A naive
idea is to think that making PS intransitive would result in Deg(P ) = n but
|P | > n. The ability of the attacker to sneak in the Probe tuple depends on
breaking DLP instances found in PubA and for that he must distinguish the
right group for hj , thus action intransitivity reduces the candidates for every
point/position.

3.4 Brief example

Let’s start by solving the trivial case mentioned above where every chain Chj
is trivial. Let σ = (13452) so PubA = (h3, h1, h4, h5, h2) ∈ G3 × · · · ×G2 where
hi ≡ni g

αi
i . Attacker must write a chain for every hi. As this example works

with trivial chains he writes up:

Cσ(1) = C3 = n1 < · · · < h3 < n3 < · · · < nn

Cσ(2) = C1 = h1 < n1 < · · · < nn

· · ·
Cσ(5) = C2 = n1 < h2 < n2 < · · · < nn

Now he derives the adjacency matrix A(PubA) ∈ Fn×n2 from the system of
chains:

A(PubA) =


0 0 1 1 1
1 1 1 1 1
0 0 0 1 1
0 0 0 0 1
0 1 1 1 1


And he trivially recovers σ = (13452). This method is the principle to

distinguish residues and their memberships. Note that when attacker encounters
non-trivial chains he could obtain more than one σ ∈ P , yet he’s still winning
as he can distinguish some residues hi if A(PubA) is not full of 1′s (perfect
indistinguishability). There is another crucial point regarding probabilities, as
the attacker has different chances of seeing a particular ordering chain for an
element hi. As a consequence, it’s a must to determine what are the chances for
A(PubA) to satisfy perfect indistinguishability, between others like the chances
to obtain trivial chains.
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3.5 Probability on ordering chains

First, how many adjacency matrices A(PubA) ∈ Fn×n2 are out there? Recall
that hi has i chains, so every row ri has i possible candidates. Then

∏n
i=1 i = n!

matrices.
Let K be the probability that A(PubA) results in an adjacency matrix where

every row ri represents the trivial chain of hσ(i). Then:

P [K] =

n∏
i=2

ϕ(ni)− ϕ(ni−1)

ϕ(ni)

=

n∏
i=2

(1− ϕ(ni−1)

ϕ(ni)
)

Therefore, the probability that a random hj belongs to groups where their
modulus is smaller than nj turns to be bigger when the distance nj−nk, nk <
nj is small.

The other relevant case is when every A(PubA)i,k = 1 as it grants perfect
indistiguishability due to the attacker not being able to distinguish hj ’s mem-
bership because every element in PubA belongs to G1, so immediately belongs
to every other group as n1 < · · · < nn.

Let K be the probability that every A(PubA)i,k = 1. Then:

P [K] =

n∏
i=2

(1− ϕ(ni)− ϕ(n1)

ϕ(ni)
)

=

n∏
i=2

ϕ(n1)

ϕ(ni)

There are complex cases not belonging to trivial chains or all residues being
in G1. A formula is needed to obtain the probability that the residue hj belongs
to the group Gk but not to Gi, where i = k − 1. This is equal to the difference
of the elements in Gk and Gi divided by the number of elements in Gj as the
residue set where hj belongs is on Gj .

P [hj ∈ Gk ∧ hk 6∈ Gi] = P [ni < hj < nk < · · · < nj ] =
ϕ(nk)− ϕ(ni)

ϕ(nj)

The aforementioned formula is useful when dealing with all the residues hj
that are in between modulus that are less than nj .
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3.6 Composition via Chinese Remainder Theorem

When all the groups include a prime modulus, the Chinese Remainder Theorem
can be applied to solve a discrete logarithm inGN that recovers all the exponents
in privA. It is not a good attack when all pi are big in bit-size but it can be
useful when these are not big enough. Let N =

∏n
i=1 pi, construct an unit in

GN that later defines the congruence to hN via exponentiation:
First do CRT on all the generators in X:

g1 ≡p1 g1 (1)

· · · (2)

gn ≡pn gn (3)

Then we have the representation of the base gN that’s used to recover the
exponent αN solving the discrete logarithm on the residue hN . For that recover
first hN as:

gα1
1 ≡p1 h1 (4)

· · · (5)

gαnn ≡pn hn (6)

From this system recover hN ≡N gαNN . Then obtain each αi as:

αN ≡ϕ(p1) α1 (7)

· · · (8)

αN ≡ϕ(pn) αn (9)

Requirements are that the attacker knows which residues belong to the right
group, this is, he must find out the permutation σ for mounting this attack. He
could be able to solve n discrete logarithms by computing just 1 dlog in the big
field, but in complexity is better to separate a big coprime modulus into prime
factors via CRT, this is why this attack is not recommendable.

4 Complexity

At this time the attacker has a potential method for distinguishing random el-
ements depending on the structure and properties of the public key and the
permutation group P . However, the underlying problem where this scheme is
based must be analyzed as every presented element in PubA has been trans-
formed by a DLP based trapdoor-permutation involving a private exponent.

From an arbitrary PubA and a commitment point δi ∈ δ the attacker solves
the discrete logarithm of the residue in a quantity of groups less than O this is:

gσ(δi)
ασ(δi) = hj ∈ Gi, 1 ≤ i ≤ O
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It is obvius that when he finds the right Gj it will recover the right αj . As
this is the brute force approach, the whole attack needs solving |δ| · O discrete
logarithms because for every commitment point there are O = n mappings of
distinct residues when PS is transitive.

When A(PubA)i,j = 1 ∀i, j, this is all 1′s in the matrix this is the perfect
indistinguishability case. In this case there are n! permutations, but as the
attacker knows that σ ∈ P this is equal to having |P | candidates. This scenario
represents the best case for hiding the permutation σ as it conduces the attacker
to the brute force approach.

In the case that A(PubA) can be reduced via elimination or reduction tech-
niques the formula for determining how many permutation cycles can be con-
structed via reduction is:

N(cycles) =

n−1∏
i=0

|m(Gi+1)− i|

where |m(Gi+1)| is the number of residues in PubA that belong to Gi+1.
The proof of the previous argument is hard to give but is constructed tak-
ing into account the intersection of membership sets. Check that the per-
fect indistinguishability case is satisfied as N(cycles) = n! = 5 · 4 · 3 · 2 · 1
as |m(G1)| = · · · |m(Gn)|. The case where all the ordering chains are trivial,
this is nj−1 < hj < nj is equal to N(cycles) = 1 as |m(G1)| = 1, |m(G2)| =
2, · · · , |m(Gn) = n|. As the formula seems to work with these two trivial case as
non-trivial cases as well (see section 4), the author concludes that it should be
taken into account when estimating the number of cycles involved in an adja-
cency matrix that represents the ordering chain of PubA. An elimination attack
can cause relevant impact if recovering σ from the candidates: the complexity
of determining the number of cycles is trivial, and the algorithm of testing-
composing every permutation resulting from a mapping table is also trivial.
This leads the attacker to solve |δ| discrete logarithms, one for every commit-
ment point.

Complexity goes beyond when dealing with probabilities as in the real world
there are public keys that have a specific ordering chain more often than others.
Estimation on these chains must be done to the point that the system can be
weak if the presented ordering chains are solvable or can be reduced into a
new ordering system that turns these chains into solvable. The scheme must be
constructed with security in mind, as the perfect indistinguishability is achieved
when every residue is in G1, this is equal to present multiple Z∗pi where p1 is big
enough and the rest of primes bigger than p1 are close to it. Then the outcomes
of the probability formulas exposed in the previous section tend to satisfy that
residues hj ∈ G1. To mount the scheme using these prime modulus think on
intervals with consecutive primes where the first one is big enough in bit-size.

12



5 An elimination attack involving non-trivial chains

Every system of ordering chains where the solution depends on elimination or
reduction techniques is called non-trivial. Our goal is to hide the permutation
σ ∈ P that has been used to permute PubA. If the attacker obtains σ he gains
information about the membership of all the residues in PubA. As we have
seen, every public key can be expressed as an adjacency matrix that express the
system of ordering chains of the residues in PubA. Note that in this example
residues are ignored, the resulting ordering chain has been arbitrarily chosen.
In a real case scenario, the attacker must build the system of chains himself, it
is not complicated as it’s based on logic comparison. Moreover, we are going to
represent Alice in this example.

Let P = C5, then define σ = (13524) as a permutation element from the
cyclic group of five units. Transform the pubic set of generatorsX = (g1, · · · , gn)
with our private key privA = (α1, · · · , αn) via modular exponentiation s.t hi ≡ni
gαii . Then our public key PubA is obtained by applying the permutation σ s.t
PubA = σ(X.priv). Call the ordering chain of X.privA as A(X.privA) ∈ F 5×5

2 :

A(X.privA)


1 1 1 1 1
0 1 1 1 1
0 1 1 1 1
0 0 0 1 1
0 0 0 1 1


Apply σ to obtain the ordering chain on the permuted residues in the public

key

A(PubA) =


0 1 1 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 1 1
0 1 1 1 1


The attacker sees only A(PubA) as the permutation σ remains secret. He

knows about ordering chains and is capable of mounting an elimination attack
to obtain a reduced subset of possible permutations. Call candidate to any
of these permutations that are in C5. First he writes up a mapping for each
i ≤ Deg(C5) based on A(PubA)i,j = 1 ⇐⇒ hi < nj :

1→ 2, 3, 4, 5 (10)

2→ 4, 5 (11)

3→ 4, 5 (12)

4→ 1, 2, 3, 4, 5 (13)

5→ 2, 3, 4, 5 (14)

He realizes that some mapping candidates can be eliminated and obtains a
new mapping table:
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1→ 2, 3 (15)

2→ 4, 5 (16)

3→ 4, 5 (17)

4→ 1 (18)

5→ 2, 3 (19)

This table is equal to the following adjacency matrix that results from elim-
inating mappings in the previous table:

M =


0 1 1 0 0
0 0 0 1 1
0 0 0 1 1
1 0 0 0 0
0 1 1 0 0


Eventually, he generates all the permutations built from the final symbol

mapping table. These permutations are: (124)(35), (134)(25), (12534), (13524).
Note that attacker obtains σ as it’s on the last position of the previous list
of candidates. σ is the unique permutation that belongs to C5 in those can-
didates, which attacker distinguishes with ease. Check that N(cycles) = 4,
this is |m(G1)| = 1, |m(G2)| = 3, |m(G3)| = 3, |m(G4)| = 5, |m(G5)| = 5 then
N(cycles) = 1 · 2 · 1 · 2 · 1 = 4 possible permutations as seen in section 4.
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6 A complete example with n = 5 groups

Let X be the public set of generator X = (2, 3, 5, 3, 2) ∈ Z11 × Z17 × Z23 ×
Z31 × Z37. The private exponent tuples are privA = (7, 15, 9, 11, 35), privB =
(3, 11, 5, 19, 31),. The permutation group is the cyclic group of 5 elements thus
P = C5, the selected private permutations are σ = (13524), π = (15432), and
the commitment point set is δ = (1, 3, 5).

X · privA = (7, 6, 11, 13, 19) and X. · privB = (8, 7, 20, 12, 22) via modular
exponentiation. Now construct public keys permuting with σ, π

PubA = σ · X · privA = (11, 13, 19, 7, 6) and PubB = π · X · privB =
(22, 8, 7, 20, 12). Alice exchanges her public key with Bob as Bob does with
Alice. Both parties compute the shared tuple as follows:

SharedA,B = σ · PubB = (7, 20, 12, 22, 8)
SharedB,A = π · PubA = (6, 11, 13, 19, 7)
For the commitment point δ = 1 Alice computes the probe tuple as follows:
ProbeA,δ1 = (77 ≡11 6, 715 ≡17 5, 79 ≡23 15, 711 ≡31 20, 735 ≡37 16)
ProbeB,δ1 = (63 ≡11 7, 611 ≡17 5, 65 ≡23 2, 619 ≡31 6, 631 ≡37 31)
It’s obvious that both users discover that the image in δ1 = 1 is 5, located

on both probing tuples at position 2 since σπ(1) = 2 = πσ(1). Probing tuples
must use hash functions and two salts, thus two probing tuples are needed as
seen in the Scheme construction section, but in this example this procedure is
simplified. For the rest of δ points, the mechanic is the same, take the position
δi on the shared tuples, then apply every private exponent, hash the residues
+ salt and send back to the other party to check the commitment value. Note
that this is just an example that is easily broken but it demonstrates the insight
behind this scheme.
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