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Abstract. We present a systematic approach to define and study authentication notions in authenti-
cated key-exchange protocols. We propose and use a flexible and expressive predicate-based definitional
framework. Our definitions capture key and entity authentication, in both implicit and explicit vari-
ants, as well as key and entity confirmation, for authenticated key-exchange protocols. In particular,
we capture critical notions in the authentication space such as key-compromise impersonation resis-
tance and security against unknown key-share attacks. We first discuss these definitions within the
Bellare–Rogaway model and then extend them to Canetti–Krawczyk-style models.

We then show two useful applications of our framework. First, we look at the authentication guarantees
of three representative protocols to draw several useful lessons for protocol design. The core technical
contribution of this paper is then to formally establish that composition of secure implicitly authenti-
cated key-exchange with subsequent confirmation protocols yields explicit authentication guarantees.
Without a formal separation of implicit and explicit authentication from secrecy, a proof of this folklore
result could not have been established.

1 Introduction

The commonly expected level of security for authenticated key-exchange (AKE) protocols comprises two
aspects. Authentication provides guarantees on the identities of the parties involved in the protocol execution.
Secrecy promises that the key is not known by active adversaries. The two together ensure that the key is
only known by the “right” parties.

The apparent simplicity of these informal definitions hides a complex landscape as both secrecy and
authentication come in many related but distinct flavours. Authentication can be one-way or mutual; it can
refer directly to the entities involved in the protocol run (entity authentication) or indirectly to the identities
of the parties that hold the keys (key authentication); it can be explicit (i.e. be achieved during the protocol
run) or implicit (i.e. rely on use of the session-key in other protocols). In addition, AKE protocols are often
expected to guarantee key-confirmation, where a party which derives a key is convinced that it has also been
derived by another session, to ensure that only properly shared keys are used in communication. Each of
these properties may also come with different levels of strength due to the asymmetry in most two-party
protocols.4

Starting with the seminal work of Bellare and Rogaway [BR94], research has made steady progress
in formalizing and clarifying what some of these security notions signify. For example, the early defini-
tion proposed in [BR94] requires explicit entity authentication for all AKE protocols: when a session fin-
ishes its execution, there exists a unique session of the intended peer to which it is partnered.5 In par-
ticular, this definition is applicable to arbitrary two-party protocols (i.e. it does not require that parties
derive keys). Subsequent work resulted in numerous extensions and variations including changes to the

4 One party always terminates first after sending the last message and is not able to confirm the message’s correct
delivery.

5 Partnering was originally defined through matching conversations.



core partnering mechanism [BPR00,BR95,CK01,BFWW11,LS17] and extensions of the adversarial pow-
ers [CK01,LLM07,CF12]. Over time, definitions have shifted to guarantees associated only with keys, sepa-
rated from identities [Kra05,BSWW13], and formalized other aspects not considered by original definitions
e.g. various forms of forward secrecy [Kra05,CF12] and key-confirmation properties [FGSW16].

All these developments were guided chiefly by protocol design ideas and intuitive understanding of
the security guarantees and therefore happened outside of a complete framework of security notions. De-
spite some works which attempt to systematize and understand the relative merits of the different mod-
els [CBH05a,Ust09,Cre11], emphasis was on protocol design and more pressing aspects (e.g. privacy) rather
than on a thorough evaluation of the different guarantees (including authentication). This lack of comprehen-
sive study has led to missing definitions, unclear relations between properties, and the use of folklore results
which lack formal support. Perhaps surprisingly, core security notions such as implicit authentication have
influenced the design of large classes of protocols while not being formally defined. Similarly, large classes
of attacks on authentication, such as unknown key-share or key-compromise impersonation, have led many
protocols to attempt to avoid them, but no security definition has been argued to properly defend against
such attacks.

The case of implicit authentication. This discussion is best illustrated by the literature on implicit authen-
tication which has guided protocol design for decades [MTI86,Kra05,CF12]. This line of research weakens
the level of authentication provided. It requires that when a session derives a key, the adversary cannot force
an unintended party to derive the same key.

Unfortunately, implicit authentication is tangled together with authentication and secrecy guarantee into
single monolithic definitions which leads to several undesirable consequences. First, it makes the definitions
themselves difficult to understand. The relation between the trust models for authentication and secrecy is
not clear cut. For example, secrecy for some session when the intended partner is adversarially controlled
does not make sense, whereas integrity guarantees are still desirable. This makes it non-obvious that the two
notions can actually be compounded. Arguing that the definition captures the “right” guarantees requires a
rather cumbersome reduction from an authentication attack to an attack against secrecy. It also makes the
definition less portable; each change in the underlying execution model, e.g. varying the corruption model,
requires dealing, unnecessarily, with the idiosyncrasies associated to secrecy (e.g. specific freshness notions).

Finally, it makes reasoning about properties related strictly to authentication cumbersome. A simple
example is that it is difficult to justify that implicit authentication is a consequence of explicit authentication.
More importantly, the lack of standalone definitions for authentication, separated from that of secrecy,
makes it impossible to justify the folklore result that use of an implicitly authenticated key yields explicit
authentication guarantees. This is a highly desirable property which allows for more efficient key-exchange
protocol which delay the authentication guarantees to when keys are used rather than when they are agreed.
This folklore composition, sometime used as alternative definition for implicit authentication, has no rigorous
justification: there is no formal proof which establishes if, and under what conditions, the use of implicitly
authenticated keys provides further authentication guarantees to parties.6

Our results. To address these gaps, we present a comprehensive study of the various forms of authenti-
cation in AKE protocols. We discuss how different combinations of properties relate to each other through
implications and/or equivalence relations. We detail our results below.

Definitions. We identify and formally define a range of authentication properties. Figure 1 partially
summarizes our definitional contributions; it shows that we cover implicit and explicit authentication, for both
for keys and for entities, together with key and entity confirmation. Entity authentication and confirmation
have not been defined separately from the other notions before in the literature and we do so here for
completeness and symmetry, and to guide protocol design.

6 Yang [Yan13] provides a compiler to add entity authentication to secure key exchange protocols via MACs and
PRFs and a key refresh step, but this does not cover the case where the actual session key is used, e.g., in the
subsequent channel protocol. Such a composed protocol clearly does not guarantee key secrecy anymore and one
thus needs to argue along the authentication property alone to justify this property.
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Fig. 1: Relationship of notions for implicit key and entity authentication (iKeyAuth and iEntAuth),explicit key
and entity authentication (exKeyAuth and exEntAuth), key and entity confirmation (KeyConf and EntConf),
Match security and key Secrecy. We note that key confirmation and explicit authentication definitions actually
come in two flavours, full and almost-full, depending on which party receives the final protocol message. The
implications hold accordingly for these sub versions.

Our definitions use a formalism inspired by the work of Rogaway and Stegers [RS09]. Specifically, we
use logical statements to express when a desirable property is satisfied by the overall state of the protocol
execution; security then demands that this property is satisfied with overwhelming probability. A key benefit
of the approach is that these precise guarantees are unambiguous, unlike the English prose often used to
describe authentication properties in AKE [MvOV97], and can be assessed by parsing the logical formalism.

Not evident from Figure 1 is that we cover both one-way and mutual authentication settings using a new
and flexible mechanism to unify both versions. Another aspect not illustrated in Figure 1 is that some of the
notions come in two flavours: “full” which is the stronger guarantee, offered to the party which receives the
last message, and “almost-full” which is offered to the party that sends the last message (and therefore does
not know if this message is delivered).

In our work we made several important choices about the definitional framework. The first concerns
the adversarial powers and goals. While the rigorous formalization of adversarial goals is one of our main
contributions, we are aware that these need to be placed in (and often depend on) the context of the
available adversarial powers. A variety of choices exists, especially when deciding which parties the adversary
is allowed to corrupt, and we opt for a more conservative scenario. We extend the Bellare–Rogaway (BR)
model [BR94] by selectively allowing the adversary to compromise any of the two parties that engage in an
authenticated session. One implication of this choice is that our definitions fully cover advanced properties
like key-compromise impersonation (KCI) resistance [BJM97] and security against unknown key-share (UKS)
attacks [BWM99]. We also fully allow the reveal of session keys as we consider that authentication should
already hold upon derivation of the key. In a later section, we extend our definitions to the AKE models
in the Canetti–Krawczyk style [CK01] which also include the reveal of ephemeral material. We show that
our definitions naturally extend to this stronger adversarial model and that we can in fact separate out
authentication from secrecy definitions in order to capture our stronger form of implicit authentication.

Another choice is how to capture matching sessions (sometimes called session partnering). Such sessions
are deemed by the model to have communicated with one another and, among other implications, they are
expected to derive the same key. The notion of partnering is crucial for defining secrecy of keys (techni-
cally to restrict the powers of the adversary in a meaningful way) but also impacts authentication. When
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authentication is required, then sessions deemed as matching should agree on identities. In the literature,
there are two prevalent mechanisms that capture this idea: matching conversations and session identifiers.
In this paper we use session identifiers – some related to keys, some related to identities – and demand
that they meet a refined definition of Match security which was first proposed in earlier work [BFWW11] as
“partnering security.”

Such careful reflections about security notions and the logical formalism enable the intuitive under-
standing to be matched almost one-for-one in the security definitions, therefore guaranteeing that each
stand-alone definition captures exactly what it is supposed to, something that could not be achieved with a
single, secrecy-focused definition.

Relations. A second benefit of our predicate-based definitions is that the use of logic simplifies and facili-
tates the study of relations between the different properties. It is immediate that implicit authentication is a
consequence of explicit authentication. Similarly, implicit key authentication together with key confirmation
yield explicit key authentication.

The logical formulations also make it clear that although key authentication and entity authentication
are obviously related, the relation is more subtle than appears at first. A clear separation is that the latter
property is applicable to a larger class of protocols. Perhaps less clear is that for AKE protocols, entity
authentication does not imply key authentication. Indeed, the authentication guarantee could come from
protocol flows that are not involved in key generation; moreover, the key could be non-secret so authentication
via keys would then be meaningless. However, we complete the study of relations between the different notions
by showing formally that an equivalence holds for all protocols which satisfy Match security and for which
the keys are private.

Protocols. To illustrate the different levels of key authentication we briefly discuss how three well-known
protocols fare with respect to the notions we put forth. We first argue that for unauthenticated protocols like
plain Diffie-Hellman the notions of (key and entity) authentication do not yield any meaningful guarantees.

More interestingly, we test our formulation of implicit authentication in the case of the HMQV proto-
col [Kra05]. Due to the prudent choices in our definitions, we find that we cannot use the original proof
of secrecy in a black-box fashion since it holds for different adversarial powers. This indicates that existing
security definitions for IAKE protocols do not straightforwardly provide the strongest implicit guarantees.
Finally, we show that the much heavier TLS 1.3 protocol satisfies the strongest guarantee: explicit key au-
thentication. Following our analysis, we derive some rules of thumb which can inform the design of protocols
for AKE protocols. These analyses with our stand-alone definitions also bring out the assumptions that are
necessary for authentication which turn out to be significantly weaker than those required for secrecy.

Composition result. As explained above, a protocol with implicit key authentication and key confirmation
also satisfies explicit key authentication. This result can be used to prove the folklore (composition) result
that the use of the key obtained from an implicitly authenticated protocol yields stronger authentication
guarantees. Of course, the use of the key has to be meaningful, in the sense that only a party who possesses
the key can successfully engage in the task. One can then regard the use of the key as a means to “strengthen”
the key-exchange protocol to also provide key confirmation.

We formalize this idea as follows. We define the class of key-confirming protocols which, in addition to their
basic functionality, provide a key confirmation guarantee upon a “successful” use of a key. Such protocols can
be as simple as sending a MAC on some fixed message. For example, we argue that an authenticated channel
also offers key-confirming guarantees. We then prove that running an implicitly authenticated key-exchange
protocol followed by a key-confirming protocol results in an explicitly authenticated key-exchange protocol.
The desired result follows by observing that the composition is still an implicitly authenticated protocol in
addition to providing key confirmation.

2 Game-based security for AKE protocols

We use the framework of Brzuska et al. [BFWW11] for cryptographic games and describe its formulation of
the BR model [BR94] for AKE protocols. We augment it to provide a flexible authentication framework and
to capture key-confirmation as formalised by Fischlin et al. [FGSW16].
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In the security game, the adversary interacts with parties executing the protocol via queries; these capture
its capabilities in a real-world execution. The adversary’s aim is to trigger an event defined as “bad” by the
game whilst abiding by the game’s limitations on queries. We use λ to denote the security parameter, let 1λ

be its unary representation and let negl(λ) denote an arbitrary negligible function. We denote by {0, 1}∗ the
set of all finite-length bit-strings.

Identities. We let ni be the number of parties modelled by the game. Each party has a unique identity
i ∈ N and we denote by I ⊂ N the identity set of size ni.

To separate identities who are expected to authenticate we specify a subset S ⊆ I; this is our first
augmentation. This models real-world servers who have to convince clients of their identity by means of
a certificate. These clients, modelled by the identities in I \ S, do not have such secret information. This
modelling flexibly captures varying forms of authentication; a secure protocol for which S = I provides
mutual authentication for all sessions, whereas one for which S = ∅ provides no authentication whatsoever;
for S a non-empty proper subset of I, it provides one-way authentication from identities in S. We leave the
specification of S within I as a design choice for protocols.

We assume that each party is aware of its own identity in an execution. We sometimes use idA and idB
to distinguish between the identities of two parties A and B in an execution. We work in the pre-specified
peer model [MU08] where each session knows its intended partner’s identity from the start. We can restrict
to the case that only identities of authenticating partners are known, e.g. if a client remains anonymous in
a TLS connection.

Protocols and sessions. A protocol is a pair of algorithms π = (kg, ζ) where kg(1λ) is a randomized key
generation algorithm and where ζ is the algorithm executed locally by parties engaging in the protocol. Local
sessions are identified by a local session identifier ` ∈ I × I × Z where ` = (i, j, k) refers to the k-th session
of identity i with intended peer j. We use `.id and `.pid to refer to i and j respectively. We let ns be the
maximum value of k for any ` in a game.

We use the notion of session identifiers as was originally proposed by [BPR00] to “partner” two sessions
as having engaged in the same execution. These are computed by the protocol itself, different from the local
session identifier ` which is an artefact of the model. For simplicity we maintain the original approach of
considering these session identifiers to be revealed upon acceptance.

2.1 Common game states

Security games maintain states to keep track of the execution of the protocol. This consists of five elements:
a list LSID of valid local session identifiers, a list SST of protocol-related session states, a list LST of game-
related local session states, a game execution state EST which contains global protocol-related information,
and a model state MST which contains global game-related information, relevant to the security notion (e.g.
a hidden bit) Our authentication games share the same execution, game and local states. Here we describe
and augment the states from [BFWW11].

Game execution state. As in [BFWW11], the execution state EST contains a list Lkeys = {(i, pki, ski, δi)}i∈I
where δi ∈ {honest, corrupt} denotes whether ski has been corrupted.

Session state. The state of the local session with identifier ` = (i, j, k) is composed of the following:
– (pki, ski), the long-term key pair of identity i, the “owner” of the session. This is initialised to `.id’s key

pair if i ∈ S or set to ⊥ if i ∈ I \ S. One may think of the public keys as certified, in which case the
party also holds a certificate certi for pki under its identity, but we omit details here.

– pkj , the long-term public key of identity j, the intended peer of the session. This is initialised to `.pid’s
public key if j ∈ S or set to ⊥ if j ∈ I \ S.

– crypt ∈ {0, 1}∗ is some protocol-specific private session state used to maintain secret values from one
invocation to the next.

– accept ∈ {true, false,⊥} indicates whether the party has accepted or rejected the session as an succesful
execution of π. Initially set to ⊥, to signify running, accept may change to either true or false only upon
termination. We assume the value of accept is public.

– sid ∈ {0, 1}∗∪{⊥}, the session identifier as specified by the protocol. Initially set to ⊥, it may be changed
once to a non-trivial value. If the sid is different from ⊥, then accept must be set to true, and vice versa,
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if accept is set to true, then sid must become different from ⊥. We assume that the value of sid is made
public when accept is set to true.

– key ∈ {0, 1}∗ ∪{⊥} is the (session-)key locally derived during the execution. Initially set to ⊥, it may be
changed once to a non-trivial value. If the key is different from ⊥, then accept must be set to true, and
vice versa, if accept is set to true then, key must become different from ⊥. We note that this implies that
sessions must terminate with the same call to the protocol as that which sets the key and the sid, they
cannot continue once the key is set.

– kconf ∈ {full, almost, no,⊥} indicates the form of key confirmation that the owner expects to receive. This
addition to the model captures the fact that one partner of a run always terminates first and therefore
may not expect a full confirmation of the final session-key. The value of kconf is initialised to ⊥ and set
when the session is first activated.

– kcid ∈ {0, 1}∗ ∪ {⊥} is a key-confirmation identifier, indicating sessions which will eventually derive the
same key. Initially set to ⊥, it may be changed once to a non-trivial value and may not be changed again.
If key is different from ⊥, then kcid must be different from ⊥.

We write SST[`] = ((pki, ski), pkj , crypt, accept, sid, key, kconf, kcid) to denote the session state of `. We use
the notation `.sid or `.key to refer to individual elements and use similar notation for the game, local session
or model states.

This session state augments that of [BFWW11] with kconf and kcid from [FGSW16] along with some
renaming. These are used to to modularly capture the formal definition of key confirmation of [FGSW16],
similarly to our addition of S to capture different authentication directions. We refer to [BFWW11, Section
3] for a discussion on public session identifiers.

Local session state. The local session state consists of:
– δownr ∈ {honest, corrupt}: denotes whether the owner of the session was corrupted before the session was

completed (i.e. while `.accept = ⊥).
– δpeer ∈ {honest, corrupt}: denotes whether the intended peer of the session was corrupted before the

session was completed.
– δsess ∈ {fresh, revealed}: denotes whether the session-key for this session has been revealed to the adver-

sary.
As in [BFWW11], keeping track of δownr separately from δi allows sessions that terminated before their
owner was corrupted to remain honest; this enables the modelling of forward secrecy. We write LST[`] =
(δownr, δpeer, δsess) for the local session state of session ` and use the notation `.δsess to refer to individual
elements.

Setup. Modelling protocols using these states requires the following procedures:
– (SST,EST)← setupE(LSID, kg, 1λ): for protocol-relevant components.
– (LST,MST)← setupG(LSID,SST,EST, 1λ): for game-relevant components.

Our setupE is similar to that of [BFWW11] but it only generates long-term keys for the identities in S and
initialises the new elements of the session state.

2.2 Session partnering

We define the partnering predicate using session identifiers.

Definition 2.1 (Partners). We say that two sessions ` and `′ are partners if the predicate Partner(`, `′)
holds true, where

Partner(`, `′) ⇐⇒
[
(` 6= `′) ∧ (`.sid = `′.sid 6= ⊥)

]
.

Thus, to be partners, two sessions need to be administratively different and to both have set a non-trivial
sid. This does not exclude the possibility that they belong to the same identity, i.e. that `.id = `′.id.

For correctness, we require that two sessions executing π without adversarial interaction derive identical
sids upon accepting and are therefore partnered. We also require that two such sessions derive identical keys
and kcids.

While this definition of partnering appears similar to that of “matching” sessions in CK-like mod-
els [CK01,Kra05,LLM07], it differs it two important aspects. The first is that it does not involve the sessions’
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identities, thus separating out authentication notions. The second is that our sids are derived by the protocol
itself rather than arbitrarily set by a higher layer. We note that our notion of sids superseeds that of matching
conversations used for partnering in [Kra05,LLM07].

2.3 Adversarial interaction and common queries

The adversary A is a probabilistic polynomial-time (PPT) algorithm that interacts with a game through
queries specified by a set Q. Upon receiving a query q ∈ Q, the game has a behaviour algorithm χ which
takes q together with the state to return a response to A.

Not every query is always valid; this is captured by the Valid predicate which the game evaluates each
time a query q is received. Based on q and on the current state, Valid returns either true or false which
determines if χ is executed on q.

In addition to the common states, our security games for authentication notions also share a query set Q.
We specify here the Send, Reveal and Corrupt queries following the work of Brzuska et al. but, as we model
KCI resistance, we modify the Valid predicate.

The Send query. Whatever the game, Q always includes the Send query. It takes an identifier ` ∈ LSID
and a message m ∈ {0, 1}∗ as inputs and is processed by χ by running π on SST[`] with input m. This
updates SST and returns a response m′ which is given to A together with accept and also sid if m triggered
the termination of the session. This gives control of the network to A and allows it to forward, alter, delay,
create or delete messages.

The Reveal query. When A submits Reveal(`), this sets `.δkey ← revealed and returns `.key.
The Corrupt query. We formalise the Corrupt(i) query as follows. First, the value of δi in Lkeys is set to

corrupt. Then, for any session of the format (i, ∗, ∗) for which accept = ⊥, we set δownr ← corrupt; for any
session of the format (∗, i, ∗) which is still running, we set δpeer = corrupt. Finally, ski is returned to A.

The Valid predicate. A significant difference to [BFWW11] is that our Valid predicate allows for the
adversary to submit a Send query to a session whose owner has already been corrupted. This is crucial to
model KCI resistance as this notion guarantees a security property to sessions whose owner was corrupted
before they terminated. Furthermore, the Valid predicate returns false if a Reveal query is made to a session
whose key = ⊥.

2.4 Winning condition and formal game definition

A game considers that A has won a security game, i.e. broken a security property of π, if it succeeds in
triggering a “bad” event. This event is defined by a predicate P which is a logical statement evaluated on
the state. We denote this by b← P(LSID,SST, LST,EST,MST), where b ∈ {0, 1}, and b = 1 signifies that A
has successfully triggered the “bad” event. We therefore define a generic security experiment as follows.

Definition 2.2. A game G maintains a state (LSID,SST, LST,EST,MST) and is defined by the tuple (setupE,
setupG, Q,Valid, χ,P). An experiment parameterised by a protocol π, an adversary A and a game G is
executed as follows.

1. The experiment runs (SST,EST)← setupE(LSID, kg, 1λ) and (LST,MST)← setupG(LSID,SST, EST, 1λ).
2. The adversary submits queries from Q to the game which processes them with Valid and χ.
3. When A terminates, b ← P(LSID,SST, LST,EST,MST) is evaluated by the experiment which finally

outputs b.

We note that our definition of a game G includes more than [BFWW11, Definition 1], namely Q and P , as
these also uniquely characterise it. We denote the experiment by ExpGA,π(1λ) and we write ExpGA,π(1λ) = b.

2.5 Match security

Before authentication or secrecy, a “good” AKE protocol should first provide certain correctness and sound-
ness guarantees. A Match-secure AKE protocol should ensure that:
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1. Partner sessions derive the same key and kcid (properties 1 and 2 below);

2. at most two sessions derive the same sid (property 3);

3. sessions with the same kcid accept with the same key (property 4).

This guarantees disagreements cannot be created between partnered sessions. Formally, we define the fol-
lowing predicate.

Definition 2.3 (Match predicate). The Match predicate evaluates to 1 iff ∀`, `′, `′′ ∈ LSID,

(Partner(`, `′) ∧ `.key 6=⊥6= `′.key) =⇒ Samekey(`, `′) (1)

∧ (Partner(`, `′) ∧ `.kcid 6=⊥6= `′.kcid) =⇒ Samekcid(`, `′) (2)

∧ (Partner(`, `′) ∧ Partner(`, `′′)) =⇒ `′ = `′′ (3)

∧ (Samekcid(`, `′) ∧ `.key 6=⊥6= `′.key) =⇒ Samekey(`, `′). (4)

where Samekey(`, `′) ⇐⇒ [`′ 6= ` ∧ `′.key = `.key 6= ⊥] and Samekcid(`, `′) is defined analogously.

We then define the Match security game GMatch in the sense of Definition 2.2 where π is an AKE protocol,
the state, and the setupE algorithm are as in Section 2.1, the query set Q = {Send,Reveal,Corrupt} and the
behaviour χ are as in Section 2.3, the setupG algorithm sets the LST of each session to (honest, honest, fresh)
and the predicate P = Match. The advantage of an adversary A against the game GMatch with identity sets
I,S is written as

AdvGMatch

A,π,I,S(1λ) = Pr
[
ExpGMatch

A,π,I,S(1λ) = 0
]
.

Definition 2.4 (Match security). An AKE protocol π is Match-secure for identity sets I,S if, for all PPT
adversaries A, AdvGMatch

A,π,I,S(1λ) = negl(λ).

Comparison to previous definitions. Considered in the context of the BR model, our definition of Match
security refines that of [BFWW11] in two ways. We first incorporate the conditions of the KCIDbind predicate
of [FGSW16] as conditions (2) and (4). As this work builds a unified model of AKE protocols with both
authentication and key confirmation, it is reasonable to add this predicate to the definition of Match since
it concerns notions of correctness and soundness, as the previous definition already did for keys.

Secondly, we remove the requirement that partnered sessions should agree on each other’s identities. This
condition implied that Match-secure AKE protocols already provided some form of authentication, albeit
very weak. This mixed an authentication with design and soundness and we therefore remove it. We present
separate definitions for authentication in the next section.

In the context of the CK-style models, as summarised in [Cre11], the usual first requirement of security
is for matching sessions of uncorrupted identities to derive equal keys. We note that our notion of Match
security would capture and extend this requirement if a StateReveal query were added to its game. We note
that we do not restrict to uncorrupted identities, as we do not consider that the adversary takes control of
sessions ` managed by the game; thus our Match predicate is only evaluated for honestly-behaving sessions.

3 Key authentication and confirmation

We present here our new predicate-based definitions for key authentication notions. We define three dis-
tinct flavours of authentication: implicit, confirmation and explicit. For each, we first discuss the intuitive
understanding that motivates our definition and then give a formal statement. We then show that our def-
initions are consistent and that a protocol that combines implicit key authentication and key confirmation
also provides explicit key authentication.
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3.1 Implicit authentication

We take implicit to mean: “should there be a session `′ that possesses the same key as session `, then the
owner of session `′ must be the identity designated as the peer of session `.” This does not guarantee the
secrecy of the key, nor whether such a session `′ exists. Equivalently, this means that any session whose
owner is not designated by the peer of ` is incapable of deriving the same session-key. (Recall that the term
“session” refers to sessions executed by the model and that this does not forbid the adversary from deriving
the key itself.)

This informal notion of implicit authentication raises the question whether to only consider sessions which
interact with an honest peer, or to also allow those with a corrupted peer. The impact of this distinction was
first observed by Diffie et al. [DvOW92]. In their design of the station-to-station (STS) protocol they aimed
to prevent an attack in which one can make an honest B believe it is sharing a key with a malicious E,
whereas the actual other honest key holder A intends to communicate with B. This has later become known
as an unknown key-share (UKS) attack [BWM99] which, ironically, was shown to apply to the STS protocol
in the same work [BWM99].

For our formal definition, the question is then either to restrict the adversary’s valid targets to the sessions
that were executed with an honest peer, or to allow all sessions, even those that accepted with a corrupted
peer, as valid targets. The first choice would comply with the idea stated in [BWM99]: “By definition, the
provision of implicit key authentication is only considered in the case where B engages in the protocol with
an honest entity (which E isn’t).” The second choice, would instead lead to a definition where UKS attack
scenarios even with dishonest peers are accounted for. Such a scenario would include a corrupt server causing
a client to exchange a key with another, unintended, server. It is clear that this yields a stronger security
guarantee and we therefore choose the second formulation in our definitions.

We stress that our model also captures key-compromise impersonation resistance [BJM97]—where the
adversary knows the long-term key of a party A and tries to impersonate another party to A—since our
formalization also allows the owner of target sessions to be corrupted.

Definition 3.1 (Implicit key authentication). The iKeyAuth predicate evaluates to 1 if and only if

∀` ∈ LSID, (`.pid ∈ S ∧ `.accept) =⇒ ∀`′ ∈ LSID, (Samekey(`′, `) =⇒ `′.id = `.pid) ,

where `.accept holds true if and only if `.accept = true. We then say that the AKE protocol π with identity
sets I,S provides implicit key authentication if, for all PPT A,

Adv
GiKeyAuth

A,π,I,S(1λ) = Pr
[
Exp

GiKeyAuth

A,π,I,S(1λ) = 0
]

= negl(λ),

where GiKeyAuth is the same as GMatch with P = iKeyAuth.

Note that the predicate only applies to sessions that expect authentication, which is captured by the
condition that `.pid ∈ S. This models the fact that one can only provide authentication to keys if one
possesses authenticating information. An artefact of this is that protocols without authenticating parties
(i.e. with S = ∅) strictly speaking provide implicit key authentication as there is no authenticating party
which the adversary can attack. Mathematically, this corresponds to a quantification over the empty set.

On the other end of the spectrum, we see that the case where S = I rejoins mutual authentication
where, upon completion, session ` has authenticated to session `′ and vice-versa. Indeed, if `.id ∈ S and also
`.pid ∈ S, then it is expected to authenticate itself to its intended peer in the same way that it expects to
receive authentication. Upon both sessions completing, the predicate therefore induces a symmetry in the
authentication guarantees.

As explained in the introduction, our basic definition considers the strongest adversarial model. We
remark that we could relax the above requirement and only consider sessions ` with an honest peer, i.e.
with `.δpeer = honest. Indeed, this notion sometimes appears in the literature: it still provides guarantees for
parties who engage in sessions of the protocol with an honest peer as intended partner. Clearly, the notion
neglects executions in which the intended peer is dishonest in which case one could be vulnerable to certain
UKS attacks.
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3.2 Key confirmation

Intuitively, this second notion is “the guarantee that another session possesses the same key.” While this
does not provide authentication in the sense of binding an identity to a key, we define it here because its
existential guarantee is a link between implicit and explicit authentication.

Here, we note that key confirmation only makes sense for honest peers because an adversary impersonating
an honest party can always compute the key and provide confirmation to the target session. To prevent this
trivial attack, we introduce a freshness condition on the peer.

Definition 3.2 (Authentication freshness). For any ` ∈ LSID, aFresh(`) evaluates to true if and only if

`.δpeer = honest.

We note that this freshness notion does not prohibit Reveal queries; this is because key authentication
properties are expected to hold upon derivation of the key, and knowledge of the key should not benefit
the adversary in breaking these. Furthermore, we show that the Reveal query is not useful for the adversary
to wrongfully provide confirmation. Either another session derives the same key and the adversary reveals
it, but then another session with the same key does exist, and therefore confirmation holds even though
it does with the adversary’s intervention; or the adversary reveals the target session itself. However, the
second option is not possible, since, in our model, setting the key to a non-trivial value is synonymous with
accepting and terminating. Therefore the adversary cannot submit a Reveal query before the session has
already accepted, at which point the adversary has already won if the session does not share a key with any
other. Hence our freshness predicate does not need to eliminate trivial attacks using the Reveal query.

Fischlin et al. [FGSW16] introduced the distinction between full and almost-full key confirmation which
captures the differences in guarantees that the last sender and last receiver in an AKE session can expect.
We present here their predicate-based definitions and refer to [FGSW16] for a discussion. The former one
says if an “authentication fresh” session with full key confirmation accepts, then there must be at least one
other session holding the same key.

Definition 3.3 (Full key confirmation). The fKeyConf predicate evaluates to 1 if and only if

∀` ∈ LSID, (aFresh(`) ∧ `.kconf = full ∧ `.pid ∈ S ∧ `.accept) =⇒ ∃`′ ∈ LSID :: Samekey(`′, `).

We then say that the AKE protocol π with identity sets I,S provides full key confirmation if, for all PPT
adversaries A,

Adv
GfKeyConf

A,π,I,S(1λ) = Pr
[
Exp

GfKeyConf

A,π,I,S(1λ) = 0
]

= negl(λ),

where GfKeyConf is defined similarly to GiKeyAuth.

We see that the session’s expected level of key confirmation, which is set when the session is first activated,
is captured with the condition that `.kconf = full — for a given protocol π, a session can decide which key
confirmation to expect if it is activated as an initiator or a responder. Also, the session ` in question is
excluded from the existence condition by the Samekey predicate and therefore a session cannot confirm its
own key. We note that fKeyConf is only tested against sessions that expect authentication, with `.pid ∈ S, as
is discussed in [FGSW16, Section III.D]. Whilst this condition is not strictly required in the predicate for our
result in Section 3.4, we adopt it here to align ourselves on the stand-alone definition of key confirmation.
This condition also creates the artefact that protocols which do not specify any authenticating identies, by
setting S = ∅, trivially provide key confirmation, similarly to implicit key authentication.

As pointed out by Fischlin et al. [FGSW16], almost-full key confirmation is delicate to define. We adopt
their notion saying that if such a fresh session accepts, then there must be a another session holding the
same key-confirmation identifier and, moreover, if that other session has already derived a key, then it is the
same one as the original session.
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Definition 3.4 (Almost-full key confirmation). The afKeyConf predicate is defined as

∀` ∈ LSID, (aFresh(`) ∧ `.kconf = almost ∧ `.pid ∈ S ∧ `.accept) =⇒

∃`′ ∈ LSID ::
(
Samekcid(`′, `) ∧

[
`′.key 6= ⊥ =⇒ Samekey(`′, `)

])
.

We then say that the AKE protocol π with identity sets I,S provides almost-full key confirmation if, for all
PPT adversaries A,

Adv
GafKeyConf

A,π,I,S (1λ) = Pr
[
Exp

GafKeyConf

A,π,I,S (1λ) = 0
]

= negl(λ)

where GafKeyConf is defined similarly to GiKeyAuth.

3.3 Explicit authentication

This third notion is much stronger than the first. Indeed, we take explicit to mean that authentication is
obtained at termination, and therefore it does not rely on the potential use of the key at a later time. In
other words, session `, upon accepting, knows that there is another session `′ which has the same key and
whose identity is bound to it. Intuitively, it is a combination of implicit authentication and key confirmation,
and indeed it was informally defined as such in Menezes, van Oorschot and Vanstone’s Handbook of Applied
Cryptography [MvOV97]; this appears in the predicates below.

Similarly to key confirmation, the existence of a session which has already derived the same key cannot
always be guaranteed due to the asymmetry of the final message. We therefore define the two analogous
notions of full and almost-full explicit key authentication.

As before, we study the requirements of a freshness predicate. As in the case of implicit authentication we
do not stipulate that the peer is honest for the target session when it comes to the condition that any partner
holding the same key is correctly identified (∀`′ ∈ LSID, Samekey(`′, `) =⇒ `′.id = `.pid). This again provides
safety against all possible UKS attacks. Only for the “liveness” condition (i.e. that there exists a party with
the same key) do we require that the intended peer is honest (aFresh(`) =⇒ ∃`′ ∈ LSID :: Samekey(`′, `)),
otherwise the session may have communicated with an impersonating adversary which could trivially compute
the key. Similarly to key confirmation, the Reveal query would not enable the adversary to conduct trivial
attacks; this implies that the aFresh predicate is also the correct one here.

In summary, full explicit key authentication demands that for any fresh accepting session, any other
session deriving the same key has the correct identity and there exists at least one other session holding the
same key, if the peer is honest.

Definition 3.5 (Full explicit key authentication). The fexKeyAuth predicate evaluates to 1 if and only
if

∀` ∈ LSID, (`.pid ∈ S ∧ `.kconf = full ∧ `.accept) =⇒ (
∀`′ ∈ LSID, Samekey(`′, `) =⇒ `′.id = `.pid

)
∧
(
aFresh(`) =⇒ ∃`′ ∈ LSID :: Samekey(`′, `)

)
.

We then say that the AKE protocol π with identity sets I,S provides full explicit key authentication if, for
all PPT adversaries A,

Adv
GfexKeyAuth

A,π,I,S (1λ) = Pr
[
Exp

GfexKeyAuth

A,π,I,S (1λ) = 0
]

= negl(λ)

where GfexKeyAuth is defined similarly to GiKeyAuth.

We see that a session’s expectation of both authentication and confirmation appears as `.pid ∈ S and
`.kconf = full in the predicate.
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Definition 3.6 (Almost-full explicit key authentication). The predicate afexKeyAuth evaluates to 1 if
and only if

∀` ∈ LSID, (`.pid ∈ S ∧ `.kconf = almost ∧ `.accept) =⇒(
∀`′ ∈ LSID, (Samekey(`′, `) =⇒ `′.id = `.pid)

)
∧
(
aFresh(`) =⇒ ∃`′ ∈ LSID ::

[
Samekcid(`′, `) ∧ (`′.key 6= ⊥ =⇒

Samekey(`′, `))
])
.

We then say that the AKE protocol π with identity sets I,S provides almost-full explicit key authentication
if, for all PPT adversaries A,

Adv
GafexKeyAuth

A,π,I,S (1λ) = Pr
[
Exp

GafexKeyAuth

A,π,I,S (1λ) = 0
]

= negl(λ)

where GafexKeyAuth is defined similarly to GiKeyAuth.

3.4 Equivalence results

We formally prove the coherence of the authentication definitions presented above. Namely, we show that
a protocol which satisfies both implicit key authentication and key confirmation also satisfies explicit key
authentication, and we show that the converse holds.

Theorem 3.1. Let π be an AKE protocol; it holds for π that

iKeyAuth ∧ fKeyConf ⇐⇒ fexKeyAuth, (5)

iKeyAuth ∧ afKeyConf ⇐⇒ afexKeyAuth. (6)

proof We first focus on equation (5) and show that iKeyAuth∧ fKeyConf =⇒ fexKeyAuth; we proceed by
proving the contrapositive. Let A be a successful adversary against the fexKeyAuth predicate; i.e. A reaches
an execution state where ¬fexKeyAuth holds true. This is equivalent to

∃`∗ ∈ LSID :: `∗.pid ∈ S ∧ `∗.kconf = full ∧ `∗.accept

∧
((
∃`′ :: Samekey(`′, `∗) ∧ `′.id 6= `∗.pid

)
∨
(
aFresh(`∗) ∧ ∀`′′,¬Samekey(`′′, `∗)

))
(7)

Thus if ¬fexKeyAuth holds true, either the first expression of the or clause holds, which implies ¬iKeyAuth,
or the second one holds and implies ¬fKeyConf. We therefore obtain that

¬fexKeyAuth =⇒ ¬iKeyAuth ∨ ¬fKeyConf (8)

which completes the first part of the proof.

We now show that fexKeyAuth =⇒ iKeyAuth∧ fKeyConf. We first show that fexKeyAuth =⇒ iKeyAuth.
Let A be a successful adversary against the iKeyAuth predicate; i.e. A reaches an execution state where
¬iKeyAuth holds true which is equivalent to

∃`∗ :: `∗.pid ∈ S ∧ (`∗.kconf = full) ∧ `∗.accept ∧ ∃`′ :: Samekey(`∗, `′) ∧ (`′.id 6= `∗.pid). (9)

Note that we include `∗.kconf = full in ¬iKeyAuth as we only aim to prove that fexKeyAuth implies iKeyAuth
for sessions that expect full explicit key authentication. We now assume, for contradiction, that fexKeyAuth
holds; this implies

∀`, (Samekey(`, `∗) =⇒ `.id = `.pid) ∧ (aFresh(`∗) =⇒ ∃`′′ :: Samekey(`∗, `′′)) (10)
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Client A Server B

group 〈g〉 of order q

x
$←− Zq, X = gx X y

$←− Zq, Y = gy

key = Y key =

KDF(Y x, (X,Y, [idA, idB ])) KDF(Xy, (X,Y, [idA, idB ]))

Fig. 2: The plain Diffie-Hellman protocol with
identifiers sid = kcid = (idA, X, idB , Y ). Identi-
ties idA and idB are known in advance; [idA, idB ]
means that the identities are optional.

for `∗ as in (9). We see that the existence of `′ that holds from (9) contradicts the first condition of (10)
which shows that fexKeyAuth =⇒ iKeyAuth as expected from the formulation of the predicates.

We now show that fexKeyAuth =⇒ fKeyConf. Let A be a successful adversary against the fKeyConf
predicate; i.e. A reaches an execution state where ¬fKeyConf holds true. This is equivalent to

∃`∗ :: aFresh(`∗) ∧ `∗.pid ∈ S ∧ (`∗.kconf = full) ∧ `∗.accept ∧ ∀`,¬Samekey(`∗, `).

This `∗ is now exactly one that satisfies ¬fexKeyAuth and hence we immediately have that fexKeyAuth =⇒
fKeyConf. Since we have that fexKeyAuth implies both iKeyAuth and fKeyConf, combined with (8) this
concludes the proof that

iKeyAuth ∧ fKeyConf ⇐⇒ fexKeyAuth.

The proof of the same equivalence for almost-full confirmation notions, equation (6), follows from a similar
argument. ut

4 Protocol examples

In this section we present established protocols and study which of our authentication notions they achieve.

Our results confirm that a “rule of thumb” for protocol design to achieve implicit key authentication is to
include the parties’ identities in the key derivation step, key = KDF(K, (idA, idB , . . . )). If the key derivation
function is collision-resistant then different identities immediately imply different session keys. Indeed this
strategy has already been applied in very early protocols proposals, such as [BPR00], and has even been
sometimes used to fix insecure protocols, e.g., [CBH05b]. We note that this method is also used in the TLS
1.3 protocol.

From the analysis of key confirmation in TLS 1.3 of [FGSW16], we see that a good strategy to obtain
full or almost-full key confirmation is to send a MAC computed over a known value (such as the transcript)
with a key derived from the same material as the final session key.

4.1 Plain Diffie–Hellman

We begin with the plain Diffie-Hellmann (DH) protocol, presented in Figure 2, in which the parties exchange
gx and gy to derive a key from gxy and the communication transcript. One may also use the identities in
the key derivation. The exchanged elements live in a cyclic group G of prime order |G| = q with generator
g such that 〈g〉 = G. We assume that this group is known to all parties. Since this is an unauthenticated
protocol, we have S = ∅.
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Match security. The plain DH protocol provides Match security. Indeed both the session and key-confirmation
identifiers fully determine the key (Properties 1 and 2). Furthermore, since the key-confirmation and session
identifiers are identical, equal key-confirmation identifiers imply identical keys (Property 4). Finally, an
honest party will contribute a random Diffie-Hellman share, such that the probability of matching any other
share, is at most n2

s · 1
q for a total number of ns sessions, and thus negligible (Property 3).

Implicit key authentication. The plain DH protocol trivially provides implicit key authentication, as S = ∅,
but this is somewhat meaningless since this guarantee does not apply for any identity (again, as S = ∅). We
note that setting S 6= ∅ would allow an adversary to break implicit key authentication as it could deroute
messages to create a mismatch in the expected peer identities for any two sessions.

However, by including the identities in the key derivation function (as shown in Figure 2) this protocol
can provide implicit key authentication even in the setting where S 6= ∅. Indeed, the adversary has no control
over a session’s owner identity `.id which implies that if `.pid 6= `′.id then `.key = `′.key only if there is a
collision in the KDF. In the random oracle model, or assuming a collision-resistant KDF, this happens only
with negligible propability.

Key confirmation and explicit key authentication. As for implicit key authentication, this protocol also
trivially provides key confirmation in a meaningless way since S = ∅. We can show formally that setting
S 6= ∅ breaks key confirmation by taking an adversary which initiates a session with an honest session `
(either client or server), such that `.pid ∈ S, without initiating a matching partner session. It then creates the
message gx or gy to complete the exchange with the honest party. Obviously, there is then no other session
which holds the same key nor the same key-confirmation identifier thus contradicting the requirement for
key confirmation.

Interestingly, Theorem 3.1 therefore implies that the DH protocol provides explicit key authentication as
long as no identity is expected to authenticate itself (i.e. S = ∅). The two attacks discussed above show that
this no longer holds when S 6= ∅. This example demonstrates that the definition of S within I is crucial in
giving meaning to the various security guarantees.

4.2 HMQV

We next come to one of the most prominent candidates for implicitly authenticated key exchange, the
HMQV protocol [Kra05]. The idea here is to run a DH key exchange and to mix Schnorr-type signatures
under the parties’ public keys in the key derivation. These signatures are not sent but only used locally, thus
“implicitly” authenticating the key.

The protocol works over a group 〈g〉 = G and uses a hash function H to compute the Schnorr signature.
It is mutually authenticating, i.e. S = I, for which both parties use a long-term key. We assume that each
party holds a certificate certi for its public key pki, and that the certificate is verified upon receiving it.
We also assume that the public key and the owner’s identity can be recovered from the certificate. We set
sid = kcid = (certA, X, certB , Y ). Since key derivation in HMQV is also determined by the transcript and the
hash function, Match security follows as in the plain DH case.

Implicit key authentication. We provide a proof that the HMQV protocol achieves our strong notion of
implicit key authentication and is therefore secure against all possible UKS and KCI attacks. Recall that we
need to show that

∀` ∈ LSID, (`.pid ∈ S ∧ `.accept) =⇒ ∀`′ 6= ` ∈ LSID, (Samekey(`′, `) =⇒ `′.id = `.pid) .

Due to the differences in the corruption queries that the adversary is allowed to make, the proof of secrecy
for HMQV in [Kra05] is not immediately sufficient to imply our strong notion. Indeed, this proof holds only
when the test-session in the secrecy experiment is fresh in the sense of secrecy freshness (see Section 5). An
attack on implicit key authentication which would require the corruption of the owner before the session
took place would therefore not be considered as valid against key secrecy and would not be ruled out by the
proof of [Kra05].
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Client A Server B

(a,A = ga, certA) group 〈g〉 of order q (b,B = gb, certB)

x
$←− Zq, X = gx y

$←− Zq, Y = gy

certA, X

verify certB certB , Y verify certA

d = H(X, certB) d = H(X, certB)

e = H(Y, certA) e = H(Y, certA)

KA = (Y Be)x+da KB = (XAd)y+eb

key = KDF(KA) key = KDF(KB)

Fig. 3: HMQV protocol with session and
key-confirmation identifiers sid = kcid =
(certA, X, certB , Y ).

Proposition 4.1. In the random oracle model, HMQV provides unconditional mutual implicit key authen-
tication, with

Adv
GiKeyAuth

A,HMQV,I,I(1λ) ≤ n2
i · ns · h

2q
+ negl(λ),

where h is the number of queries made to H.

proof To break the iKeyAuth predicate, it must be that a session `A = (A,B, ∗) shares a key with a
session `C = (C,D, ∗) where C 6= B. This can happen either if KA = KC , or if KA 6= KC but KDF(KA) =
KDF(KC). The later implies a collision in the KDF and we assume that this happens only with negligible
probability. The only freedom that A then has is to modify the Y value sent to `A as a response to its first
message. Since the value of KC , x, d and a are already fixed, A must choose a value of Y such that Y Be,
where e = H(Y, certA) is exactly the right value such that KA = KC . Modelling H as a random oracle
ensures that each value of Y yields a new random value of e and therefore that there is a probability of
1/q that a given value of Y will yield the correct value of Y Be. Given that there are at n2

i · ns/2 pairs of
sessions, it holds that the adversary has at most a n2

i ·ns · h/2q probability of finding a suitable Y for which
the equality holds. ut

Similarly to the plain DH protocol, setting key = KDF(K, (idA, idB)) immediately provides implicit key
authentication if the KDF is collision resistant.

Key confirmation and explicit key authentication. HMQV does not provide key confirmation in the same
way that the plain DH does not. It immediately follows that the protocol does not provide explicit key
authentication either.

4.3 TLS 1.3

We give a simplified version of the DH mode of the TLS 1.3 protocol suite in Figure 4 on page 16 which
omits intermediate keys (e.g. handshake key and encryption of the handshake protocol). We also only look
at server-only authentication.

Match security and implicit key authentication. TLS 1.3 is Match-secure; the argument is identical to the
plain DH case and appears in [DFGS15]. Implicit key authentication follows as for the HMQV variant with
identifiers in the KDF, if we assume that it is collision-resistant; as the server authenticates and certB
appears in the key derivation, equal keys imply a correct authentication. Similarly to the HMQV protocol,
key secrecy of TLS is not enough to imply implicit key authentication.
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Client A Server B

〈g〉 of order q (skB , pkB , certB)

r
$←− {0, 1}n s

$←− {0, 1}n

x
$←− Zq, X = gx y

$←− Zq, Y = gy

r,X

s, Y

σB
$←− Sig(skB , (r, . . . , Y ))

kB = KDF(Xy,

"server", (r, . . . , Y ))

τB
$←− MAC(kB , (r, . . . , σB))

verify certB certB , σB , τB

Vf(pkB , σB , (r, . . . , Y ))

kB = KDF(Y x,

"server", (r, . . . , Y ))

Vf(kB , τB , (r, . . . , σB))

kA = KDF(Y x,

"client", (r, . . . , τB))

τA
$←− MAC(kA, (r, . . . , τB)) τA

kA = KDF(Xy,

"client", (r, . . . , τB))

Vf(kA, τA, (r, . . . , τB))

key = KDF(Y x, key = KDF(Xy,

"app", (r, . . . , τA)) "app", (r, . . . , τA))

Fig. 4: (Simplified) TLS 1.3 in mode (EC)DH, without handshake encryption and with server-only authen-
tication. The session identifier and key-confirmation identifier are given by sid = kcid = (r,X, S, Y, certB).
Notation x, . . . , y means all transmitted communication data, ranging from x to y.
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Key confirmation and explicit key authentication. Key confirmation for TLS 1.3 (draft-10) was shown
in [FGSW16] and our version corresponds to this variant. The idea of the proof is that the parties use the
key in the handshake protocol within the MAC and that his provides the required confirmation. Together with
the argument that TLS 1.3 draft-10 provides implicit key authentication, this shows that it also provides
explicit key authentication according to our new definition, independently of any key secrecy guarantees;
this was not the case in previous work [DFGS15].

5 Key Secrecy

We now define BR-style key secrecy with a security game and define the notion of Key-Match soundness.

5.1 BR-Style Key Secrecy

We recall the definition of secrecy for AKE protocols from [BFWW11]. The adversary is challenged, for a
session of its choice, to distinguish between an honest key or a random one. To define the BR-secrecy game
GBRSec,D, where D denotes the key distribution, we use the same execution, session and local session states
as in Section 2. The model state contains two bits, btest (initialised at random) and bguess (intialised to ⊥)
along with a session identifier `test ∈ LSID (initialised to ⊥). The identifier `test stores the object of the Test
query (see below). The bit btest determines whether the adversary receives the real key from `test, or a random
value, in response to the Test query. The bit bguess stores the adversary’s guess.

There are two additional queries, Test and Guess. The Test(`) query sets `test ← ` and returns key = `.key

if btest = 1 or key
$←− D otherwise. The query Guess(b) sets bguess ← b. The Valid predicate requires that only

one Test is made and to a session which has derived a key, and that only one Guess is made. The adversary
may therefore chose to submit queries that will trivially allow him to win the game.

To catch this, if `test.δownr = corrupt or `test.δpeer = corrupt, the sFresh predicate returns false. It also
does so if `test, or any of its partners, has been revealed. We also take care of sessions which do not expect
authentication as A may impersonate the unauthenticated party and learn the session key. Hence, sFresh also
returns false if the intended partner `test.pid belongs to the set I \ S of unauthenticated parties. However,
there is one exception: if there exists an honest session which is partnered to `test, even if it does not belong
to the intended partner, then the session took place between two honest session and the key is still expected
to remain secret.

Definition 5.1 (Secrecy freshness). For any ` ∈ LSID, the sFresh(`) predicate evaluates to true if and
only if,

(`.δownr = `.δpeer = honest) ∧ (`.δsess = fresh)

∧ (∀`′ ∈ LSID,Partner(`′, `) =⇒ `′.δsess = fresh)

∧
[
`.pid ∈ I \ S =⇒ (∃`′ ∈ LSID :: Partner(`, `′))

]
The least strict requirement for sessions with unauthenticated parties would be to define almost-partnered

sessions and allow these to be tested. We however refrain from introducing another identifier and keep the
definition with partnering.

Definition 5.2 (BR-secrecy). The BRSec predicate is defined differently from the authentication ones due
to its distinguishing nature. Instead of returning 0 or 1 to signify whether a certain condition holds, the
BRSec predicates evaluates to MST.bguess if and only if

MST.`test 6= ⊥ ∧ sFresh(MST.`test)

and evaluates to ⊥ otherwise. We also denote by GbtestBRSec,D the secrecy game with a specific value for btest.
We then say that the AKE protocol π with identity sets I,S is BR-secret w.r.t. output key distribution D if,
for all PPT adversaries A,

Adv
GBRSec,D
A,π,I,S (1λ) =

∣∣∣∣Pr

[
Exp

G0
BRSec,D
A,π,I,S (1λ) = 1

]
− Pr

[
Exp

G1
BRSec,D
A,π,I,S (1λ) = 1

]∣∣∣∣
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is a negligible function in λ.

5.2 Key-Match Soundness

We now define the KMSoundness property which captures the essence of secrecy as a predicate without Test
and Guess queries. It says that for any authentication fresh and accepting session `, there does not exist
another session `′ which holds the same key but is not partnered with `.

Definition 5.3 (Key-Match Soundness). The KMSoundness predicate evaluates to 1 if and only if

∀` ∈ LSID, (aFresh(`) ∧ `.pid ∈ S ∧ `.accept) =⇒ ∀`′ ∈ LSID :: (Samekey(`′, `) =⇒ Partner(`′, `)).

We then say that the AKE protocol π with identity sets I,S provides key-match soundness if, for all PPT
adversaries A,

AdvGKMSoundness

A,π,I,S (1λ) = Pr
[
ExpGKMSoundness

A,π,I,S (1λ) = 0
]

= negl(λ)

where GKMSoundness is defined similarly to GiKeyAuth.

The next theorem states that BR-secrecy and Match-security imply Key-Match soundness.

Theorem 5.1. Let π be an AKE protocol with Match security and BR secrecy w.r.t. D. Then it also provides
key-match soundness. More precisely, for any PPT algorithm A attacking KMSoundness in at most n sessions,
it holds that for some PPT algorithms B1, B2 and the output length |key| of keys,

AdvGKMSoundness

A,π,I,S (1λ) ≤ n2 ·Adv
GBRSec,D
B2,π,I,S(1λ) + AdvGMatch

B1,π,I,S(1λ) + 2−|key|.

proof The first observation is that Match security implies that any partnered session to either ` or to `′

must hold the same key as the corresponding session. If this would not hold with overwhelming probability,
we could build an algorithm B1 to refute Match security in a straightforward way. This enables us to assume
that there are two sessions `0 and `′0 with the above property and which accept first. That is, `0 and `′0

– hold identical keys, Samekey(`0, `
′
0),

– are not partnered, ¬Partner(`0, `′0), and
– for neither of the two sessions, in the moment when the session accepts, there is another session which

is yet partnered with the session.

Note that `0 must have accepted by assumption, such that `0.key 6= ⊥, and therefore Samekey(`0, `
′
0) implies

that session `′0, too, must have a valid key. In particular it must have accepted (and can both be tested and
revealed in an attack on secrecy).

Assume now that there was a successful adversary A against key-match soundness (with two sessions
`0, `

′
0 as above). We show how to break BRSec through an adversary B2 with non-negligible probability in

this case.
Our adversary B2 will try to predict the sessions `0, `

′
0 by picking two session numbers i, j at random

from {1, 2, . . . , n}, where we count sessions according to their initialisation in A’s simulated attack. Next,
B2 runs A’s attack, relaying all inputs and oracle queries and answers between B2’s game and A. Note that
B2 has the same oracle interfaces as A, but in addition may call the Test and the Guess oracle.

Adversary B2 diverges from A with respect to two points: If the i-th session in the attack accepts, then
B2 immediately asks to Reveal the session key keyi. If the j-the session accepts, then B2 immediately calls
Test to get a key value keyj . Adversary B2 makes the Guess(bguess) query and stops, where the bit bguess is
set to 1 if keyi = keyj , and to 0 otherwise.

Note that up to the point when B2 makes the Test query, the simulation to A is perfect. Assume that B2

predicts `0, `
′
0 correctly for the Test query resp. the Reveal query, which happens with probability at least

1/n2. Then the Test session `0 does not have a partner yet, is authentication fresh and the authenticating
partner is still honest, such that the session is still secrecy fresh. In this case, if btest = 1 the Test oracle
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returns the actual session key, such that the keys match, and we have B2 output 1, too. In summary, the
probability of this happening is at least 1

n2 times the probability that A succeeds, minus a negligible term
for refuting Match security. This is non-negligible.

Next consider the case btest = 0 such that the test session `0 returns a random key. Then the probability
that this independent random key matches the other key is 2−|key| and thus negligible, such that B2 only
returns 1 with this negligible probability. ut

6 Relation with CK-style Security

In all CK-style models (CK, CKHMQV and eCK) the definition of “matching sessions” includes the re-
quirement that parties agree on each other’s identities. As there is no other mention of matching expected
identities, this seems to be the only capture of authentication in such models.

Capturing authentication in CK-style models. In [Cre11], Cremers states that since “the test session-key
must be indistinguishable from keys computed by non-matching sessions”, then sessions with the same key
must be matching sessions. This is analogous to our Theorem 5.1 concerning KMSoundness except that the
CK-style definition of matching includes expected identities, and therefore this implies that CK-style security
also guarantees (at least) implicit authentication.

Crucially, this argument however only applies to sessions for which CK-style security holds, that is sessions
that remain sFreshCK, for a suitable definition of this that captures the restriction of the CK-style models as
presented in [Cre11]. In contrast, our standalone Definition 3.1 of implicit authentication captures security
against a wider range of attacks due to the absence of freshness requirements on the target session.

Extending authentication freshness. To establish our authentication definitions of Section 3 in a CK-style
model, we consider whether the freshness conditions change with the addition of a StateReveal query. This
reveals to the adversary either the entire state or only the ephemeral key, as defined by the protocol, for the
CK and eCK models respectively [Cre11].

Following from Section 3.1, we allow the adversary to make StateReveal queries against the iKeyAuthCK

predicate to capture the widest possible range of attacks. This implies that A can both StateReveal a session
and Corrupt its owner which is not allowed by CK-style models. Following similarly from Sections 3.2 and 3.3,
we restrict the adversary from trivially obtaining the key when attacking key confirmation and explicit key
authentication. Therefore we state that it cannot both corrupt the intended partner and also StateReveal a
partner session against CK variants of these predicates.

Separating authentication from secrecy. Let E denote the event, in a CK-style secrecy experiment, where
A succeeds in causing two game-controlled sessions to share a key without matching in the CK-style sense,
i.e. without agreeing on each other’s identities. Let GCK denote the usual CK-style secrecy game and G−CK
denote the game which instead uses our definition of partnering of Section 2.2 without expected identities
(i.e. an extension of the secrecy game of Section 5.1). Using a rather informal terminology, we then have

Pr [A wins GCK] = Pr [A wins GCK|E ] · Pr [E ] + Pr [A wins GCK|¬E ] · Pr [¬E ] .

First, E corresponds to a break of iKeyAuthCK and so we have

Pr [A wins GCK|E ] · Pr [E ] ≤ Pr [¬iKeyAuthCK] .

Second, if A wins GCK without triggering E , then his attack can be reproduced in G−CK and so we have

Pr [A wins GCK|¬E ] · Pr [¬E ] ≤ Pr
[
A wins G−CK

]
.

In conclusion,
Pr [A wins GCK] ≤ Pr [¬iKeyAuthCK] + Pr

[
A wins G−CK

]
,

which shows that we can represent CK-style key secrecy through our separate notions of authentication and
key secrecy when adapted to these models.
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7 Key-confirming protocols

We now define symmetric key-confirming protocols. These provide guarantees on the existence of a session
with the same key. This guarantee may be secondary to the main purpose of these protocols. For example,
we expect that protocols for authenticated message transmission would belong to this class.

Based on [BFWW11, Section 4], we describe the syntax and the security game for such protocols. We
denote these as π = (kg, ζ) and write Dkg for the output distribution of the randomized algorithm kg; we
use the mechanism of local session identifiers. Here, EST is not defined as there are no long-term keys.

Session state. For key-confirming protocols, it consists of:
– crypt ∈ {0, 1}∗: protocol-specific private session state.
– key ∈ {0, 1}∗ ∪ {⊥}: the symmetric key used.
– kcind ∈ {true, false,⊥}: indicates if key confirmation is achieved. Initially set to ⊥, it must be changed

to true or false before termination. Its value is always public.
The difference with [BFWW11] is the addition of the key confirmation indicator kcind. We stress that
setting kcind is done independently of termination. For example, a secure channel protocol could achieve
key confirmation after the first messages but continue running for much longer as the channel is used for
communication. We focus on guarantees on the setting of kcind and do not make assumptions or requirements
on termination.

Local session state. As in [BFWW11], it consists of:
– δkey ∈ {fresh, revealed} denotes whether the key is known to the adversary.
– lst ∈ {0, 1}∗ is any other local session state required to model the protocol’s other security requirements.

Setup. The setupE algorithm only initialises crypt, key and kcind to ⊥ for each ` ∈ LSID. The setupG algorithm
also only initialises δkey ← fresh for every session as our security game for key confirmation does not require
any model-wide state.

Queries. As in [BFWW11], our model allows A to initialise sessions with three different queries. The first,
InitS(`), initialises a session with an honestly generated key, `.key ← kg(1λ), which remains hidden from A.
The second, InitP(`1, `2), initialises a session with the same key as another. The game sets `2.key ← `1.key
and `2.δkey ← `1.δkey. The third, InitK(`, κ), allows A to set his own key. It sets `.key ← κ and immediately
sets `.δkey ← revealed. As before, Send(`,m) and Reveal(`) allow A to control the network and view honestly
generated keys.

The Valid predicate verifies that Send and Reveal queries are made to initialised sessions and that
initialisation queries are made to sessions without keys. For the InitP query, it also verifies that `1 is initialised.

Key confirmation guarantee. Here there no longer is a distinction between full and almost-full key confir-
mation since keys are set upon initialisation. This notion says that for any session which has set the key
confirmation identifier to true, there is another session which uses the same key.

Definition 7.1 (Key confirmation guarantee). The symKeyConf predicate evaluates to 1 if and only if

∀` ∈ LSID, (`.δkey = fresh ∧ `.kcind = true) =⇒ ∃`′ ∈ LSID :: Samekey(`′, `),

where Samekey is defined as before. The game GsymKeyConf is then defined with state, setupE, setupG and be-
haviour as above, with query set Q = {Send, InitS, InitP, InitK,Reveal} and winning predicate P = symKeyConf.

The protocol π provides (secure) key confirmation, or is a key-confirming protocol, if, for all PPT ad-
versaries A,

Adv
GsymKeyConf

A,π,I (1λ) = Pr
[
Exp

GsymKeyConf

A,π,I (1λ) = 0
]

= negl(λ).

We note that a symmetric protocol π which always sets kcind = false trivially achieves secure key con-
firmation. This is similar to an AKE protocol formally achieving implicit key authentication by setting
S = ∅.
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πkconf (with secret key)

1 : Initialise kcind← ⊥ and role ρ← ⊥
2 : while kcind = ⊥ do

3 : Receive m∗

4 : if m∗ = init then

5 : Set ρ← init

6 : Send t = MAC(key, 1)

7 : elseif ρ = init then

8 : if Vf(key, 2,m∗) = 1 then

9 : Set kcind← true

10 : else set kcind← false

11 : else

12 : if Vf(key, 1,m∗) = 1 then

13 : Set kcind = true

14 : Send t = MAC(key, 2)

15 : else set kcind← false

Fig. 5: A simple key confirmation protocol that expects a tag on the message “1” or “2” depending on the
role (initiator or responder) played by the session.

Protocol example. We present an example of key-confirming protocols. Let M = (kg,MAC,Vf) be an
unforgeable message authentication code (MAC) which requires that, for any PPT adversary A,

Pr

Vf(key,m, t) = 1;
key← kg(λ),

(m, t)← AMAC(key,·)(λ),
m 6∈ Q

 ≤ negl(λ),

where MAC(key, ·) denotes access to a tagging oracle and Q denotes the messages queried by A for tagging.
From such a MAC, we construct the protocol πkconf as follows. If a session is activated with m = init, it sends
t = MAC(key, 1). When it receives a second message m∗, it verifies that it is a tag for the message “2” by
checking if Vf(key, 2,m∗) = 1. If this holds, then it sets kcind ← true, otherwise it sets kcind ← false. If a
session is instead activated as a receiver, then it plays the counterpart and checks that it correctly receives
a tag for the message “1” and, if so, sets kcind← true and replies with a tag for “2”. We present the formal
description of πkconf in Figure 5.

To show that the protocol πkconf is key-confirming, we use the concept of single-session reducible games
presented in [BFWW11]. Without specifying the formal details, we see that the independence or sessions
in the game Gπkconf

symKeyConf , apart from their potential partner, implies that this game is session restricted.
Theorem 2 of [BFWW11, Appendix B] then gives us that Gπkconf

symKeyConf is single session reducible and therefore
that the key-confirmation property of πkconf depends only on the security of a single session.

We then reduce the security of one session to the unforgeability of the MACM. The reduction sets up a
session and waits for the adversary to submit a message. If it submits m∗ = init, then the reduction uses the
oracle MAC(key, ·) to respond with a correct tag. If it submits any other message, then the reduction submits
(1,m∗) or (2,m∗) as its forgery, depending on its role. If the reduction has queried the MAC oracle on “1” in
response to an init message, then the adversary must create a tag for the message “2” to make πkconf accept
and therefore there is no risk of the reduction outputting a message which it has already queried. This shows
that the reduction creates a forgery exactly when the adversary is capable of winning is Gπkconf

symKeyConf and thus
πkconf provides secure key confirmation if M is an unforgeable MAC.
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While this protocol is a simple example that has no objective beyond providing secure key confirmation,
it nonetheless provides justification for expecting useful constructions, such as authenticated encryption
schemes of secure channel protocols, to provide the same guarantees.

8 Explicit authentication from key-confirming protocols

We now define the composition of AKE protocols with key-confirming protocols, similarly to [BFWW11,
Section 5]. As a significant difference, we consider the composition as an AKE protocol, not as a symmetric
protocol, and we prove that composing an AKE protocol with implicit key authentication and key secrecy
together with a secure key-confirming protocol yields an AKE protocol with explicit key authentication.

Syntax of composed protocols. The composition first runs the AKE protocol and then, once this accepts,
the symmetric protocol, initialised with the key from the first step, until key confirmation.

Recall that a key-confirming protocol π = (kgπ, ζπ) sets kcind before terminating and that it can then
continue its execution; this is not the case when forming an AKE protocol since it must terminate upon
acceptance of the key, as in Section 2. We therefore define π̄ to be π with the algorithm ζπ̄ the same as ζπ
but halted after kcind is set. Thus the key derived by ζke is only accepted as the final key for the composition
once ζπ̄ has set kcind to true. Given an AKE protocol ke = (kgke, ζke), we write ke; π̄ = (kgke;π̄, ζke;π̄) for the
composition.

As we consider ke; π̄ as an AKE protocol, it uses the same long-term key generation as ke and therefore
kgke;π̄ = kgke. The algorithm ζke;π̄ first runs ζke. If this rejects, then ζke;π̄ rejects the session; otherwise it runs
ζπ̄ with the derived key and accepts or rejects depending on kcind.

Syntax of composed games. The game Gke;π̄
Pred enables A to interact with simultaneous sessions of the

composed protocol. Here, the adversary attacks the authentication property Pred of ke; π̄ seen as an AKE
protocol. We build the game from the elements of the games for the protocols ke and π and use indices to
distinguish them.

Game state. The execution state ESTke;π̄ is ESTke as key-confirming protocols do not have one. The session
state SSTke;π̄ is made up of the same elements as for key exchange protocols but constructed from the
composing session states as follows:
– The long-term keying information is as in SSTke.
– The protocol private session state is the concatenation of both states: cryptke;π̄ = cryptke‖cryptπ̄.
– The acceptke;π̄ indicator is set to true once kcindπ̄ is set to true.
– The session identifier sidke;π̄ is set to sidke only when acceptke;π̄ is set to true.
– The keyke;π̄ is set to keyke only when acceptke;π̄ is set to true. Before then, keyke is kept internally and

passed on to π̄, so that keyπ̄ ← keyke, when acceptke ← true.
– As π̄ always provides full key confirmation, we have that kconfke;π̄ = true for all sessions.

The local session state LSTke;π̄ is the same as for AKE protocols and the model state remains undefined as
not required for authentication.

Setup, queries and Valid predicate. These are the same as in Section 2 with the addition that the Valid
predicate uses Validπ̄ for Send and Reveal queries to sessions executing π̄.

Winning predicates. Any from Sections 2 and 3.

Composition result. We show that a implicitly authenticated key exchange protocol composed with a
key-confirming protocol produces an explicitly authenticated key exchange protocol. Our choice of public
session identifiers means we do not require a session matching algorithm as in [BFWW11, Section 3].
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Theorem 8.1. Let ke be a Match-secure key exchange protocol which provides implicit key authentication
and BR-secrecy w.r.t. key distribution D. Let π be a symmetric-key protocol with key generation distribution
D which provides secure key confirmation. Then ke; π̄ is a key exchange protocol with provides explicit key
authentication.

proof We make use of Theorem 3.1 to separate our work into two steps. First we prove in Lemma 8.1
that ke; π̄ provides implicit key authentication under the assumption that ke does. Then we prove in Lemma
8.2 that ke; π̄ provides full key confirmation under the assumption that ke is BR-secret and that π̄ provides
secure key confirmation. As the two property hold separately, Theorem 3.1 immediately gives us that ke; π̄
provides explicit key authentication. ut

Lemma 8.1. Let ke be a key exchange protocol and let π be a symmetric-key protocol. For any PPT adversary
A, it holds that, for some PPT algorithm B,

Adv
Gke;π̄

iKeyAuth

A,ke;π̄,I,S(1λ) = Adv
Gke

iKeyAuth

B,ke,I,S(1λ).

proof Let A be an adversary against ke; π̄ in the Gke;π̄
iKeyAuth game, which we refer to Gke;π̄ when the context

is clear. We build an adversary B against ke in the Gke
iKeyAuth game, which we similarly refer to Gke.

B sets up Gke;π̄ for A as described above using elements from Gke. It then responds to A’s queries in the
following way. (We use the notation `ke;π̄ to denote session identifiers used by A in Gke;π̄ and the notation
`ke to denote the corresponding identifiers used by B in Gke.)

– When A submits Send(`ke;π̄,m), B checks the value of `ke;π̄.accept. If it is either true or false, B responds
⊥ to A as the sessions has either already accepted or rejected. If it is still ⊥, B examines the value of
`ke.accept.
• If `ke.accept = ⊥, B submits Send(`ke,m) to Gke and responds to A with m′ returned by Gke. If
`ke.sid is set at that step, B sets `ke;π̄.sid ← `ke.sid. If `ke.accept ← false, B sets `ke;π̄.accept ← false
and makes this known to A. If `ke.accept← true, B submits Reveal(`ke) to Gke to obtain `ke.key.

• If `ke.accept = true and `π̄.kcind = ⊥, B has obtained `ke.key so it can respond to A according to π̄ by
computing the response internally. If `π̄.kcind← false, B sets `ke;π̄.accept← false. If `π̄.kcind← true,
B sets `ke;π̄.accept← true and `ke;π̄.key← `key.key.

• The case of `ke.accept = false is never examined as it would already hold that `ke;π̄.accept = false.
– When A submits Reveal(`ke;π̄), B checks the value of `ke;π̄.accept. If it is either ⊥ or false, B responds
⊥ to A as his Reveal query is invalid. If it is true, then `ke;π̄.key was set when `ke;π̄.accept ← true so B
responds with `ke;π̄.key to A and sets `ke;π̄.δsess ← revealed.

– When A submits Corrupt(i), B submits Corrupt(i) to Gke and receives ski which it returns to A. At
that moment, Gke will mark the values of `ke.δownr and `ke.δpeer as corrupt for relevant `ke as decribed in
Section 2. However, B will not update the corresponding sessions in Gke;π̄ in the same way as this would
leak information to A about the internal stage of the sessions. Instead, B marks the values as corrupt
for the sessions `ke;π̄ which have not completed the entire composed protocol, even if they have already
completed the key exchange protocol and would not be marked as corrupt in Gke.

We now argue that if A is able to reach an execution state in Gke;π̄ for which the iKeyAuth predicate
evaluates to 0, then B, by behaving as described above, reaches a state in Gke for which the iKeyAuth
predicate also evaluates to 0. This means that the composed protocol preserves implicit key authentication.
If A reaches such a state, then we have that

∃`ke;π̄ ∈ LSIDke;π̄ :: (`ke;π̄.pid ∈ S ∧ `ke;π̄.accept)
∧
(
∃`′ke;π̄ ∈ LSIDke;π̄ :: Samekey(`′ke;π̄, `ke;π̄)

∧ `′ke;π̄.id 6= `ke;π̄.pid
)
.

We show that this also holds for the corresponding sessions `ke and `′ke in Gke. We first have that `ke.pid ∈ S as
all the sessions and the set S match one-to-one between the two games. We then have that `ke.accept = true
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as `ke;π̄.accept is set to true only if the ke session accepts, and B relays A’s Send queries exactly which causes
`ke to accept in Gke.

As per the definition of the composed protocol ke; π̄, the final key is fixed as soon as the ke part completes,
therefore it holds that if two sessions accept with the same key in Gke;π̄, then they have derived that same
key in the first part. As B relays A’s queries exactly, we have that Samekey(`′ke, `ke) holds in Gke for the
sessions corresponding to `′ke;π̄ and `ke;π̄. Furthermore, `′ke.id 6= `ke.pid also holds as these values are the same

as the ones for the sessions in Gke;π̄. This shows that the following holds for the corresponding sessions:

∃`ke ∈ LSIDke :: (`ke.pid ∈ S ∧ `ke.accept)
∧ (∃`′ke ∈ LSIDke :: Samekey(`′ke, `ke) ∧ `′ke.id 6= `ke.pid) ,

which implies that B is successful for the game Gke
iKeyAuth exactly when A is succesful for the game Gke;π̄

iKeyAuth.
ut

Lemma 8.2. Let ke be a Match-secure key exchange protocol with output key distribution D. Let π be a
symmetric-key protocol with key generation distribution D. Let n = n2

i · ns. For any PPT adversary A, it
holds that

Adv
Gke;π̄

fKeyConf

A,ke;π̄,I,S(1λ) ≤ n ·Adv
GBRSec,D
B1,ke,I,S(1λ) + Adv

GsymKeyConf

B2,π,I (1λ),

for some PPT algorithms B1 and B2.

proof We use a strategy similar to the proof of Theorem 1 in [BFWW11], namely we first replace all the
keys derived by the ke part of the composed protocol by randomly sampled keys from the correct distribution,
using BR-secrecy to show that the final game is indistinguishable from the first. Then we show, similarly to
Lemma 8.1, that if an adversary manages to break the key confirmation property of the composed protocol,
then a reduction can break the key confirmation property of the symmetric protocol π.

To replace all the keys used, we proceed with a hybrid argument. Let the game Gke;π̄,Σ,D
fKeyConf be the game

GfKeyConf played against protocol ke; π̄, where the first Σ sessions to accept a new key, i.e. where a partner
session has not already accepted a key, have their keys from ke replaced by a random value from D for the
π part, where D = Dkg is the output distribution of the key generation algorithm for π. We remove the
mention of fKeyConf when the context is clear. The original game GfKeyConf for A is therefore Gke;π̄,0,D where
only honestly computed keys are used for π.

The game Gke;π̄,Σ,D runs just as Gke;π̄
fKeyConf does with the following modifications. It maintains a counter

σ to keep track of the number of new keys that are accepted (not counting those which the adversary might
already know by corrupting one of the parties); this is set to 0 initially. The behaviour of Gke;π̄,Σ,D is then
the same as Gke;π̄ with the following differences to the Send(`ke;π̄,m) query:

– If σ ≥ Σ, behave as in Gke;π̄, otherwise:
– If `ke has accepted already, simulate the π part honestly with `π̄.key;
– Compute the response and the state update according to the ke algorithm;
– If `ke.accept← true:
• If there exists an `′ke;π̄ ∈ LSID such that Partner(`ke;π̄, `

′
ke;π̄) = true and `′ke.accept = true, then set

`π.key← `′π.key;
• If there does not exist such an `′ke;π̄ that is partnered and whose ke part has already accepted, but

either `ke;π̄.δownr = corrupt or `ke;π̄.δpeer = corrupt then set `π.key← `ke.key;
• If both identities are still honest, and no partner session exists or has already accepted a ke key, then

set `π.key
$←− D and update σ ← σ + 1.

With this new behaviour, we have that the first Σ new keys that are unknown to the adversary at the time
of their acceptance are replaced with keys sampled from D for the π part of the protocol.

Lemma 8.3 now allows us to change the game Gke;π̄,0,D into the game Gke;π̄,n,D for n = n2
i · ns where the

indinstinguishability of the two games is guaranteed by the BR-secrecy of the ke protocol. This yields∣∣∣∣Adv
Gke;π̄,0,D

fKeyConf

A,ke;π̄,I,S(1λ)−Adv
Gke;π̄,n,D

fKeyConf

A,ke;π̄,I,S(1λ)

∣∣∣∣ ≤ n ·Adv
GDBRSec
B1,ke,I,S(1λ),
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for a first reduction B1. In Lemma 8.4, we then show that key confirmation of the composed protocol follows
from key confirmation of the symmetric-key protocol:

Adv
Gke;π̄,n,D

fKeyConf

A,ke;π̄,I,S(1λ) = Adv
GsymKeyConf

B2,π,I (1λ)

for a second reduction B2. This allows us to conclude that

Adv
Gke;π̄

fKeyConf

A,ke;π̄,I,S(1λ) ≤ n ·Adv
GBRSec,D
B1,ke,I,S(1λ) + Adv

GsymKeyConf

B2,π,I (1λ).

ut

Lemma 8.3. Let ke be a Match-secure key exchange protocol with output key distribution D. Let π be a
symmetric-key protocol with key generation distribution D. For Σ = 1, . . . , n2

i ·ns and for any PPT adversary
A, we have

Adv
Gke;π̄,Σ−1,D

fKeyConf

A,ke;π̄,I,S (1λ) ≤ Adv
Gke;π̄,Σ,D

fKeyConf

A,ke;π̄,I,S(1λ) + Adv
GBRSec,D
B,ke,I,S(1λ),

for some PPT algorithm B = B(Σ).

proof Given an adversary A against the game Gke;π̄,Σ−1,D
fKeyConf , we construct an algorithm B against the game

GBRSec,D. The reduction B sets up the game for A as described at the beginning of this section and keeps
track of the internal variable of each of the stages of the protocol. It also initialises σ ← 0.

As A runs, B responds to a Send(`ke;π̄,m) query as follows. (We recall that `ke;π̄ refers here to the variables

of Gke;π̄,Σ,D
fKeyConf simulated by B to A, `ke refers here to the variables of GBRSec,D played by B and that `π̄ refers

to the variables for the execution of π̄ simulated by B.)

– If `ke;π̄.accept ∈ {true, false}, B returns ⊥ to A; otherwise:
– If `ke.accept = ⊥, B submits Send(`ke,m) to GBRSec,D and receives an updated state for `ke and a response
m′. If `ke.sid is set, B sets `ke;π̄.sid ← `ke.sid for A. If `ke.accept ← false, B sets `ke;π̄.accept ← false and
informs A. If `ke.accept← true, the following takes place:
• If σ = Σ, @`′ke ∈ LSIDke :: Partner(`ke, `

′
ke) and `ke;π̄.δownr 6= corrupt and `ke;π̄.δpeer 6= corrupt, then

∗ Submit Test(`) to GBRSec,D and receive keyke.
∗ Set `π̄.key← keyke.
∗ Update σ ← σ + 1.

• Else, if σ ≤ Σ then
∗ If there does not exist `′ke ∈ LSIDke such that Partner(`ke, `

′
ke) and `ke;π̄.δownr 6= corrupt 6= `ke;π̄.δpeer,

then sample a random key keyπ
$←− D and set `π̄.key← keyπ. Update σ ← σ + 1.

∗ Else, if @`′ke ∈ LSIDke :: Partner(`ke, `
′
ke) and either `ke;π̄.δownr = corrupt or `ke;π̄.δpeer = corrupt,

then submit the query Reveal(`ke) to GBRSec,D and receive keyke. Then set `π̄.key← keyke.
∗ Else, there exists an `′ke ∈ LSIDke :: Partner(`ke, `

′
ke) for which `′π̄.key has already been set. Then

set `π̄.key← `′π̄.key.
• Else σ > Σ so perform the following:

∗ If ∃`′ke ∈ LSIDke :: Partner(`ke, `
′
ke) then set `π̄.key← `′π̄.key.

∗ Else submit the query Reveal(`ke) to GBRSec,D, receive keyke and set `π̄.key ← keyke. Update
σ ← σ + 1.

If A submits a Reveal(`ke;π̄) query, `ke;π̄ must have accepted for it to be valid. Therefore B has already
manually set the internal key `π̄.key and it can return it to A consistently.

If A submits a Corrupt(i) query, B marks all relevant sessions `ke;π̄ ∈ LSIDke;π̄ as corrupt if they are still
running and then submits Corrupt(i) to GBRSec,D to receive ski and return it to A.

In the processing of a Send query, when σ > Σ and there is an existing partner session, we initialise the
key directly from the partner session’s. As we assume that ke is Match-secure, these two partner sessions will
derive the same key with overwhelming probability.
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We note that if the Test query returns the real key, then B will perfectly simulate Gke;π̄,Σ−1,D
fKeyConf to A, but

if it returns a random key from D, then B will perfectly simulate Gke;π̄,Σ,D
fKeyConf . When A terminates and was

successful, B submits Guess(1) to GBRSec,D; it submits Guess(0) otherwise. The advantage of B in GBRSec,D
therefore corresponds to the difference in the success probability of A as we have

Pr

[
Exp

G0
BRSec,D
B,ke,I,S(1λ) = 1

]
= Adv

Gke;π̄,Σ,D
fKeyConf

A,ke;π̄,I,S(1λ)

and

Pr

[
Exp

G1
BRSec,D
B,ke,I,S(1λ) = 1

]
= Adv

Gke;π̄,Σ−1,D
fKeyConf

A,ke;π̄,I,S (1λ)

which gives

Adv
GBRSec,D
B,ke,I,S(1λ) =

∣∣∣∣Adv
Gke;π̄,Σ−1,D

fKeyConf

A,ke;π̄,I,S (1λ)−Adv
Gke;π̄,Σ,D

fKeyConf

A,ke;π̄,I,S(1λ)

∣∣∣∣
and yields the desired result. ut

Lemma 8.4. Let ke be a Match-secure key exchange protocol with output key distribution D and π be a
symmetric-key protocol with key generation distribution D. Let n = n2

i · ns. For any PPT adversary A, it
holds that

Adv
Gke;π̄,n,D

fKeyConf

A,ke;π̄,I,S(1λ) = Adv
GsymKeyConf

B,π,I (1λ),

for some PPT algorithm B.

proof Similarly to the proof of Lemma 8.1, we build a reduction B against π in GsymKeyConf which uses an

adversary against ke; π̄ in Gke;π̄,n,D
fKeyConf , which we refer to as Gke;π̄,n in this proof for simplicity.

The algorithm B sets up Gke;π̄,n for A by simulating all the elements relevant to the ke stage of the
composed protocol. It then responds to A’s queries as follows (we once again use `ke;π̄ to refer to identifiers
used byA, `ke for corresponding identifiers simulated internally by B and `π for those used by B in GsymKeyConf .

– When A submits Send(`ke;π̄,m): if `ke;π̄.accept ∈ {true, false}, B returns ⊥ to A. Otherwise:
• If `ke.accept = ⊥, B simulates the execution of ke. If `ke.accept← false, B sets `ke;π̄.accept← false. If
`ke.accept← true, B leaves `ke.key = ⊥ and then:

∗ If `ke.δpeer = honest ∧ @`′ke ∈ LSIDke :: (Partner(`ke, `
′
ke) ∧ `′ke.accept = true), then B submits

InitS(`π) to GsymKeyConf .
∗ If `ke.δpeer = corrupt ∧ @`′ke ∈ LSIDke :: (Partner(`ke, `

′
ke) ∧ `′ke.accept = true), then B submits

InitS(`π) and then Reveal(`π) to GsymKeyConf to generate and obtain keyπ which it saves by setting
`ke.key← keyπ.

∗ If ∃`′ke ∈ LSIDke :: (Partner(`ke, `
′
ke) ∧ `′ke.accept = true), then B submits InitP(`′π, `π) to GsymKeyConf

and sets `ke.key← `′ke.key.
• If `ke.accept = true, B submits Send(`π,m) to GsymKeyConf and returns the reply to A. If `π.kcind ←
false, B sets `ke;π̄.accept ← false. If `π.kcind ← true, B sets `ke;π̄.accept ← true and sets `ke;π̄.key ←
`ke.key.

– When A submits Reveal(`ke;π̄): if `ke;π̄.accept ∈ {⊥, false}, B returns ⊥ to A. Otherwise:
• If `ke;π̄.key 6= ⊥, B returns `ke;π̄.key to A.
• If `ke;π̄.key = ⊥, B submits Reveal(`π) to GsymKeyConf to obtain keyπ, sets `ke;π̄.key ← keyπ and sets
`′ke;π̄.key← keyπ for any `′ke ∈ LSIDke such that Partner(`ke, `

′
ke) ∧ `′ke.accept = true.

– When A submits Corrupt(i): B marks all relevant sessions `ke;π̄ ∈ LSIDke;π̄ as corrupt (either δownr or δpeer)
and returns ski to A.

By processing each query as above, the algorithm B ensures that the first session that accepts the ke stage
within a potential partnership pair is mapped to a new session in GsymKeyConf by an InitS query. If the peer
of that session was already corrupt, then B submits a Reveal query so that this session is flagged as revealed
in the game for π. If a session is the second to accept within a partnership pair at the ke stage, then B
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uses an InitP query to initialise it with the same key as it’s partner and to give it the same value for δkey
within GsymKeyConf . As we assume that ke is Match-secure, these two partner sessions will derive the same key
with overwhelming probability. This, together with B’s handling of A’s Reveal and Corrupt queries ensures
that every session for which A could trivially obtain the session key is immediately marked as revealed in
GsymKeyConf .

Furthermore, since the key derived by B’s internal simulation of the ke stage is never used by the π stage,
but instead replaced with a randomly generated key using an InitS query, B provides a perfect simulation
of Gke;π̄,n to A. Therefore, as B relays A’s Send queries exactly, we see that if A wins against the fKeyConf
predicate in Gke;π̄,n then B will also reach a state that wins against GsymKeyConf . We therefore have

Adv
Gke;π̄,n,D

fKeyConf

A,ke;π̄,I,S(1λ) = Adv
GsymKeyConf

B,π,I (1λ).

ut

9 Entity authentication

This second form of authentication does not involve the key in its security guarantees. Our entity authenti-
cation definitions are instead based on the Partner predicate, instead of Samekey, and say that if two sessions
terminate with the same sid, then they should agree on each other’s identities. This corresponds to the
intuitive notion of entity authentication where sessions obtain guarantees upon terminating and deriving an
identifier.

This equivalence also shows that, similarly to including the identities in the key to ensure implicit key
authentication, including the identities in the session identifiers ensures implicit entity authentication. It also
suggests that involving the sids in a MAC is a good method for ensuring entity confirmation.

9.1 Implicit and full explicit entity authentication and confirmation

To adapt our definitions to entity authentication, we replace Samekey by Partner. Below we present only
the predicates for implicit entity authentication, entity confirmation and full explicit entity authentication;
the full case requires the definition of the session state variable econf ∈ {full, almost, no,⊥}, indicating,
analogously to kconf, which form of authentication a session expects. The almost-full case is more involved
because it also requires entity confirmation identifiers, similarly to the kcid; for the sake of brevity, we do
not include it here. The full definitions can be derived from the following predicates.

Implicit entity authentication: The iEntAuth predicate is defined as
∀` ∈ LSID, (`.pid ∈ S ∧ `.accept) =⇒ ∀`′ ∈ LSID, (Partner(`′, `) =⇒ `′.id = `.pid) .

Full entity confirmation: The fexEntConf predicate is defined as
∀` ∈ LSID, (aFresh(`) ∧ `.econf = full ∧ `.pid ∈ S) ∧ `.accept) =⇒ ∃`′ ∈ LSID :: Partner(`′, `).

Full explicit entity authentication: The fexEntAuth predicate is defined as

∀` ∈ LSID,

(
`.pid ∈ S ∧ `.accept
∧ `.econf = full

)
=⇒

(∀`′ ∈ LSID,Partner(`′, `) =⇒ `′.id = `.pid)

∧ (aFresh(`) =⇒ ∃`′ ∈ LSID :: Partner(`′, `)).

We note that implicit entity authentication is a very weak notion as the session terminates neither with an
explicit guarantee nor with a secret element, such as a key, that it may use later to obtain a stronger guarantee.
Separating the two different properties that constitute explicit authentication may be helpful to understand
and guide protocol design. For example, with this separation in mind, a signature over the transcript sent at
the end of an execution can be seen as providing entity confirmation, and therefore boosting implicit entity
authentication to explicit authentication. A similar argument could show that password authentication over
a secure channel can serve a similar purpose.
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9.2 Key and entity authentication relationships

We now present the necessary conditions for key and entity authentication notions to be equivalent to one
another. We use the “secrecy and match-security predicate” KMSoundness from Definition 5.3 to state the
relationships in terms of predicates. Recall that this predicate holds (with overwhelming probability) for
a Match-secure and BR-secret protocol. The results are intuitively compelling. Under the assumption that
partnered sessions derive equal keys and equal keys can only be derived in partnered sessions, authentication
guarantees obtained via keys are equivalent to those obtained directly via session identifiers.

Proposition 9.1. Let π be an AKE protocol; it holds that

iKeyAuth ∧Match =⇒ iEntAuth, (11)

fexKeyAuth ∧Match ∧ KMSoundness =⇒ fexEntAuth, (12)

proof The first implication (11) can be seen as follows. Both predicates are identical, except that entity
authentication uses the Partner predicate instead of Samekey. Hence, a mismatch—in the sense that iKeyAuth
holds but iEntAuth does not—can only occur if:

∃` ∈ LSID :: [((`.pid ∈ S) ∧ `.accept) ∧ ∃`′ ∈ LSID :: (¬Samekey(`′, `) ∧ Partner(`′, `))].

If the sessions `, `′ would have the same key, and then they would also satisfy the identity requirement
`′.id = `.pid, because of the iKeyAuth property.

Note that the partnering predicate stipulates that the session identifiers of ` and `′ are equal (and different
from ⊥). According to our specification of key exchange protocols this, in turn, implies that both sessions
must have accepted and, if so, that they have set the keys to values different from ⊥. But now we would get
an immediate contradiction to Property (1) of Match security:

∃`, `′ ∈ LSID :: Partner(`, `′) ∧ (`.key 6=⊥6= `′.key) ∧ ¬Samekey(`, `′).

The second implication (12) follows similarly, there are two possibilities for a mismatch (fexKeyAuth holds,
but fexEntAuth does not). Either the first property in the implication in fexEntAuth, which also appears in
the implicit definition, is false, in which case we get the same contradiction as before. Or the second property
in the implication (aFresh =⇒ ∃`′ :: Partner(`′, `)) is false, although it holds in fexKeyAuth for the Samekey
case. This means that

∃` ∈ LSID ::
(
aFresh(`) ∧ `.pid ∈ S ∧ `.accept

∧
[
∃`′ ∈ LSID :: Samekey(`′, `)

]
∧
[
∀`′′ ∈ LSID :: ¬Partner(`′′, `)

])
.

Note that this means that there will be a session `′ which has the same key as `, and since ` has accepted it
must be a valid key `.key 6= ⊥, but such that no other session is partnered with `. This, however, contradicts
the KMSoundness predicate. ut

Proposition 9.2. Let π be an AKE protocol; it holds that

iKeyAuth⇐= iEntAuth ∧Match ∧ KMSoundness, (13)

fexKeyAuth⇐= fexEntAuth ∧Match ∧ KMSoundness (14)

proof We start with the first implication (13). Similar to the previous proposition one can show that any
mismatch in the predicates implies

∃` ∈ LSID ::
[
`.pid ∈ S ∧ `.accept ∧ ∃`′ ∈ LSID :: (Samekey(`′, `) ∧ ¬Partner(`′, `))

]
.

This would also contradict the KMSoundness predicate.
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The second implication (14) derives a contradiction as in the implicit case, or we can analogously to the
other direction conclude that

∃` ∈ LSID ::
(
aFresh(`) ∧ `.pid ∈ S ∧ `.accept

∧
[
∃`′ ∈ LSID :: Partner(`′, `)

]
∧
[
∀`′′ ∈ LSID :: ¬Samekey(`′′, `)

])
.

This, of course, would contradict Property (1) of the Match predicate, since we would have partnered sessions
`, `′ which do not hold the same (valid) key `.key 6= ⊥. Here we use the fact that partnering implies non-trivial
session identifiers, and if session `′ has set the identifier, it has accepted and set a key `′.key 6= ⊥, too. ut

Finally, we show that implicit entity authentication together with (full) explicit entity confirmation is
equivalent to full explicit entity authentication.

Proposition 9.3. Let π be an AKE protocol; it holds that

iEntAuth ∧ fexEntConf ⇐⇒ fexEntAuth

The proof follows as in the case of key authentication.
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