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Abstract. Let us assume that Alice has received a constant-size signa-
ture on a set of messages {mi}ni=1 from some organization. Depending
on the situation, Alice might need to disclose, prove relations about or
hide some of these messages. Ideally, the complexity of the correspond-
ing protocols should not depend on the hidden messages. In particular,
if Alice wants to disclose only k messages, then the authenticity of the
latter should be verifiable in at most O(k) operations.
Many solutions were proposed over the past decades, but they only pro-
vide a partial answer to this problem. In particular, we note that they
suffer either from the need to prove knowledge of the hidden elements or
from the inability to prove that the latter satisfy some relations.
In this paper, we propose a very efficient constant-size redactable signa-
ture scheme that addresses all the problems above. Signatures can indeed
be redacted to remain valid only on a subset of k messages included in
{mi}ni=1. The resulting redacted signature consists of 4 elements and
can be verified with essentially k exponentiations. Different shows of the
same signature can moreover be made unlinkable leading to a very effi-
cient anonymous credentials system.

1 Introduction

Digital Signature is a major cryptographic tool that is used to attest the authen-
ticity of a digital data, ensuring that not even one bit has been modified. This
rigidity is a strength in many scenarios but it also comes with its drawbacks.
One of them is that verification of a standard signature requires knowledge of
the full signed message.

For example, let us consider the case of a database containing n elements
{mi}ni=1 that should be certified by some authority. If the latter signs the whole
set {mi}ni=1, there is only one signature σ but checking the authenticity of even
one element requires to download the full database. Obviously, this problem
could be avoided by signing separately each element but this would replace
one signature by potentially billions (n) of them. Between these two solutions
one can find different trade-offs, such as splitting {mi}ni=1 into different subsets
that would be signed individually, but none of them is fully satisfying. Even
solutions based on hash functions, such as Merkle tree, require to download at
least a logarithmic number of elements. Moreover, using hash functions prevents
efficient proofs of knowledge, which will cause further problems.



The problem described above is not just related to efficiency. It indeed means
that, to check the validity of a signature without using hash functions, one must
have access to all the signed messages which is also a privacy issue. This problem
is probably more obvious in a context where a user gets his attributes (e.g.
his name, birthdate, address, etc) certified by some authority and then needs
to prove the authenticity of only one of them. For example, to benefit from
a preferential rate, he might need to prove that he is under 25 years of age.
With a standard digital signature, he needs to send all his attributes, even if the
latter are totally irrelevant. This means that the merchant will not only have
information on his age, but he will also know his name, address and so on.

This problem is far from new in cryptography and a very classical solution
for the user is to prove knowledge of the hidden attributes and that the latter are
indeed certified by a credential issued by the organization. This requires a digital
signature scheme with some nice features but this is not a real problem as several
such schemes [4, 10, 21] have already been proposed. Actually, most anonymous
credentials (or attribute based credentials) systems [1,9,10,21] work this way to
solve our problem. Moreover, such a primitive can provide additional security
guarantees, such as unlinkability of different showings, which are particularly
interesting in many contexts.

Regarding privacy, this solution is thus fully satisfying. Regarding efficiency,
things got worse as the unnecessary attributes must now be hidden in proofs of
knowledge whose cost is at least greater than the one of sending all the attributes
in clear. We believe that this problem is inherent to constructions based on digital
signatures. As we explain above the latter indeed require the whole set of signed
messages to be verified and do not support efficient partial verification. It seems
therefore necessary to find another building block to avoid this problem.

Another strategy could be based on cryptographic accumulators, such as the
ones from [2,19]. An accumulator C indeed allows to accumulate many elements
{mi} ∈ I while remaining of constant size. Moreover, for any accumulated mes-
sage mi, it is possible to derive a witness wi proving that mi has indeed been
accumulated in C. If C is further signed, then one gets efficient partial verifica-
tion on a message mi: given C, the signature on C and the witness wi, one can
indeed check the authenticity of mi without knowing any other messages. By
using appropriate zero-knowledge proofs, one could even achieve some privacy
properties. Actually, this is reminiscent of the approach of [15]. The authors
indeed extend Nguyen’s accumulator [19] to enable efficient proof that a subset
{mi}i∈I ⊂ {mi}ni=1 has been accumulated. They then show how to combine their
accumulator with signatures on equivalence classes to construct an anonymous
credentials system with very nice features. Unfortunately, with their solution,
once elements are accumulated, one only has the possibility to disclose them,
not to prove that they satisfy some relations while hiding them. Concretely, in
our example with user’s attributes, this means that the user can now reveal his
birthdate and any other necessary attribute, but not just prove (efficiently) that
he is under 25.
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Compared to the previous anonymous credentials cited above, [15] thus solves
the efficiency issue but by removing an important feature of anonymous creden-
tials, which implicitly harms privacy.

Finally, the problem of checking the authenticity of parts of the signed mes-
sages while hiding the other ones has already been considered by papers on
redactable signature [6, 18, 20]. This primitive allows the user to quote parts of
the message signed under σ and yet to prove that the latter is valid on the
disclosed parts. Actually, this might seem exactly what we need here but, un-
fortunately, most redactable signatures aim at achieving some properties, such
as transparency (original signatures should be indistinguishable from redacted
ones), that do not seem relevant in our context and that negatively impact effi-
ciency. Nevertheless, in [7], Camenisch et al introduce a new variant of redactable
signature, called unlinkable redactable signature (URS), that does not consider
such outlying properties and that is thus perfectly tailored for applications to
privacy-preserving protocols. As an example, the authors construct from an URS
an anonymous credentials system with remarkable asymptotic complexity. Un-
fortunately, in this case, asymptotic complexity is not indicative of concrete
performances. Current instantiations are indeed still very costly and can hardly
compete with the most efficient solutions in practice (see Section 7). Moreover,
their construction makes use of a vector commitment scheme that shares com-
monalities with the accumulator used in [15], which leads to the same issue:
attributes can be either disclosed or hidden, but proving that some of them sat-
isfy non trivial relations cannot be done efficiently. Nevertheless, to be fair, we
must note that [7] provides security in the UC framework [11], which explains
in part the efficiency gap with alternative solutions

1.1 Our Contribution

In this work we follow the approach based on URS from [7], but with the aim of
achieving extremely efficient protocols. To this end, we construct a very flexible
redactable signature scheme, that can be made unlinkable at almost no cost. We
then explain how to use it to construct an anonymous credentials system with
remarkable efficiency and that still supports proof of relations about attributes,
contrarily to [15].

Our starting point is the Pointcheval-Sanders (PS) signature scheme [21] that
generates constant size signatures on blocks of messages (m1, . . . ,mn). As shown
in [21], it comes with a series of features that are extremely useful in a privacy
preserving context, such as the ability to efficiently prove knowledge of a signa-
ture or to generate a signature on a committed message. Unfortunately, when
used to construct anonymous credentials systems, this scheme suffers from the
problems described above, namely the fact that non disclosed messages heavily
impact complexity, because their knowledge must be proven. Concretely, if one
discloses k attributes (and thus hide/redact the n−k other ones), one must still
send O(n − k) elements to the verifier (besides the k disclosed attributes) and
the latter must still perform O(n) operations.
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The first contribution of our paper is the construction of an efficient redactable
signature scheme RS from PS signatures. At first sight, this problem might
seem easy to solve due to the simple algebraic structure of PS signatures. In-
deed, in a bilinear group (G1,G2,GT ), a PS signature on (m1, . . . ,mn), issued
with secret key (x, y1, . . . , yn), is a pair (σ̃1, σ̃2) ∈ G2 where σ̃1 is random and

σ̃2 = σ̃
x+

∑n
i=1 yi·mi

1 . By providing (X,Y1, . . . , Yn) = (gx, gy1 , . . . , gyn) for some
generator g ∈ G1 in the public key, one can test the validity of (σ̃1, σ̃2) using the
pairing e:

e(X ·
n∏
i=1

Y mi
i , σ̃1) = e(g, σ̃2)

When one asks to verify the authenticity of only a subset {mi}i∈I of mes-
sages, it might be tempting to only send (σ̃1, σ̃2) along with an element σ1 =∏
i∈[1,n]\I Y

mi
i that would accumulate all the redacted elements. The previous

equation would then simply become

e(X · σ1 ·
∏
i∈I

Y mi
i , σ̃1) = e(g, σ̃2). (1)

Such a scheme would be extremely efficient: only a constant number of el-
ements1 needs to be sent to the verifier and the later only needs to perform k
exponentiations in G1. Moreover, the structure of the resulting scheme makes
combination with Schnorr’s proof of knowledge [22] trivial. One can then hide
and prove relations about any mi with i ∈ I.

Unfortunately, such a scheme is not secure. We provide details on the problem
in Section 4.1 but intuitively it stems from the fact that the adversary can hide
anything in σ1, including elements of the form Y rii with i ∈ I that it could use to
cheat the verifier. A solution could then be to prove that σ1 only aggregates the
elements Y mi

i with i ∈ [1, n] \ I, by running the classical Schnorr’s protocol to
prove knowledge of the corresponding mi. Unfortunately, such a solution takes us
back to square one: we need to send O(n− k) elements and verification requires
O(n) operations.

Fortunately, we can do far better by observing that we do not really care
about the elements accumulated in σ1. If the adversary manages to add some
elements to σ1 such that the verification equation above is still verified, this is
not a problem as long as the added elements are not of the form Y rii for i ∈ I
and known ri. Actually, the ability to add random elements to σ1 should be kept
since it will be the key to achieve unlinkability, as we will explain.

To retain security, we must then force the user to prove that σ1 does not
aggregate an element of the above form. Surprisingly, this can be done very
efficiently by noticing that the polynomial f defined by e(g, g̃)f(y1,...,yn) = e(σ1,∏
i∈I Ỹi) will necessarily contain a monomial of the form y2j for some j ∈ I if

the user has cheated. Conversely, with a valid σ1, f will not contain such kind

1 We here follow the convention of previous works that do not include the disclosed
elements {mi} in the complexity evaluation.
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of monomials, the only degree 2 monomials being of the form yi · yj for i 6= j.
By providing appropriate elements in the public key we can enable the user to
prove that f is of the right form by simply providing an element σ2 in G1 such
that e(σ1,

∏
i∈I Ỹi) = e(σ2, g̃). That is, we get a secure redactable signature with

remarkable efficiency: redacted signatures contain 4 elements and can be verified
with 4 pairings and k exponentiations, whatever the values of k and n.

We believe that such a redactable signature is of independent interest. How-
ever, although it is redactable and unforgeable, it is not unlinkable and so cannot
be directly used to build an anonymous credentials system. Our next contribu-
tion is then to enhance it to construct an URS in the sense of [7].

Here, the transformation is based on our previous observation. Our “proof of
validity” of σ1 does not prove that σ1 is of the expected form

∏
i∈[1,n]\I Y

mi
i but

simply that it does not contain illicit elements Y rii , for i ∈ I. In particular, we can
aggregate anything in σ1 as long as it is not of the latter form and equation (1)
is verified. To satisfy both conditions, we will use the fact that PS signatures can
be sequentially aggregated to add to (σ̃1, σ̃2) a signature on a random message
t under a dummy public key and then modify σ1 and σ2 appropriately. That is,
a new derived signature on {mi}i∈I is the resulting aggregate signature whose
messages {mi}i∈[1,n]\I and t have been redacted. As we prove in our paper, the
random elements added in the process perfectly blind the original signature and
thus ensure unlinkability at almost no cost: few additional exponentiations to
redact the signature, but the signature size and the verification process remain
unchanged.

Once we have our unlinkable redactable signature scheme, the transforma-
tion into an anonymous credentials system is rather straightforward because we
inherit most of the nice features of PS signatures. We just have to adapt the
protocol to get a credential on a committed value from [21] and then to add
a proof of knowledge of the user’s secret key during the showing process. Re-
garding efficiency, there is almost no change and the resulting protocol compares
favourably with the state-of-the-art (see Section 7). In particular, in our system,
the user only has to send a constant number of elements to prove possession of
k attributes and the verifier only has to perform O(k) operations, even if the
credential was initially issued on a much larger number n of attributes. The
main difference with our URS construction is the anonymity proof that is more
intricate and that now makes use of the DDH assumption.

In the end, we get a remarkably versatile system which can provide both
security and privacy with very good performance.

1.2 Organisation

We recall in Section 2 the definition of bilinear groups and two computational
assumptions that we use to prove the security of our schemes. The syntax and
the security model of redactable signatures (resp. anonymous credentials) are
provided in Section 3 (resp. Section 6). Our redactable signature scheme is pre-
sented in Section 4 along with a variant achieving additional properties. The
security proofs of our main construction can be found in the same section, those
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for the variant are postponed to Appendix A due to lack of space. Our anony-
mous credentials system is described, and proved secure, in Section 6. Finally,
we compare the efficiency of our constructions with the one of the most relevant
schemes from the state-of-the-art in Section 7.

2 Preliminaries

Bilinear Groups. Our construction requires bilinear groups whose definition
is recalled below.

Definition 1. Bilinear groups are a set of three groups G1, G2, and GT of order
p along with a map, called pairing, e : G1 ×G2 → GT that is

1. bilinear: for any g ∈ G1, g̃ ∈ G2, and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)ab;

2. non-degenerate: for any g ∈ G∗1 and g̃ ∈ G∗2, e(g, g̃) 6= 1GT
;

3. efficient: for any g ∈ G1 and g̃ ∈ G2, e(g, g̃) can be efficiently computed.

In this work, we need bilinear groups of prime order with type 3 pairings [16],
meaning that no efficiently computable homomorphism is known between G1 and
G2. We stress that this is not a significant restriction since this yields the most
efficient parameters [12,17].

Computational Assumptions. The security analysis of our protocols will
make use of the following two assumptions.

– DL assumption: Given (g, ga) ∈ G2, the DL assumption in the group G states
that it is hard to recover a.

– DDH assumption: Given (g, ga, gb, gc) ∈ G4, the DDH assumption in the
group G states that it is hard to decide whether c = a · b or c is random.

3 Redactable Signatures

A signature σ on some set of messages {mi}ni=1 is redactable if it is possible to
derive from it a signature σI on a subset of messages {mi}i∈I , with I ⊂ [1, n].
The point is that the verification of σI no longer requires the knowledge of the
messages mi for i ∈ I, where I = [1, n] \ I. This feature is particularly useful
when one only needs to check the authenticity of a subset of the messages.
However, redacting messages does not necessarily mean hiding them and so it is
necessary to consider additional properties when privacy is required. This leads
us to the following definition of redactable signatures, adapted from [7].
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3.1 Syntax

A redactable signature consists of the 4 following algorithms.

– Keygen(1k, n): On input a security parameter 1k and an integer n, this algo-
rithm returns a key pair (sk, pk) supporting signatures on sets of n messages
{mi}ni=1.

– Sign(sk, {mi}ni=1): On input n messages {mi}ni=1 and the signing key sk, this
algorithm outputs a signature σ.

– Derive(pk, σ, {mi}ni=1, I): On input a signature σ on {mi}ni=1, the public
key pk and a subset I ⊂ [1, n], this algorithm returns a redacted (or derived)
signature σI on the subset of messages {mi}i∈I . In this paper, we will omit
the subscript I of σI if this set is clear from the context.

– Verify(pk, σ, {mi}i∈I): On input the public key pk, a set of messages {mi}i∈I
and a signature σ (redacted or not), this algorithm outputs 1 (valid) or 0
(invalid).

Notation. In this paper, we will consider sets of messages {mi}ni=1 instead of
vectors (m1, . . . ,mn) to highlight the benefits of redactability. Indeed, with this
notation, a redacted signature σI can be verified only with the knowledge of the
|I| elements in {mi}i∈I . Conversely, with a vector notation, verification of σI
would still require to send a vector of n elements (m′1, . . . ,m

′
n), with m′i =⊥ for

i ∈ I.
We nevertheless stress that it is only a notation issue. In particular, even with

our notation, the position of the messages (indicated by their index) remains
crucial. For example, if m1 = m′2 and m2 = m′1, then we stress that a valid
signature on {m1,m2} is not valid on {m′1,m′2} (this would be considered as
a valid forgery in our security game). More generally, we will consider in this
paper that {mi}i∈I ⊂ {m′i}ni=1 when mi = m′i ∀i ∈ I.

3.2 Security Model

Correctness. Correctness requires that, for honestly generated keys, honestly
generated and honestly derived signatures always verify.

Unforgeability. In [7], the authors consider a very strong notion of unforge-
ability. Indeed, besides the natural requirements for a signature scheme, their
definition considers a signature σI on {mi}i∈I , derived from a signature σ valid
on {mi}ni=1, as a forgery if the adversary only had access to other redacted ver-
sions σJk

of σ with Jk 6= I. Concretely, this means that the adversary succeeds
if it can produce a new redacted version of a signature, even if the signer has
actually signed the messages {mi}i∈I . In this paper, we will call this security
notion “strong unforgeability” because it is reminiscent of the eponymous notion
for standard digital signature schemes.

Although we will show that our unlinkable redactable signature scheme of
Section 4.2 satisfies this strong property, we believe that it is too strong for
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many scenarios. For example our anonymous credentials construction only needs
a weaker version, that we simply call “unforgeability”, where new derivations of
a signature are no longer considered as a forgery. Moreover, the strong unforge-
ability notion forbids some nice features, such as the ability to further redact
a redacted signature. Finally, as we will show in Section 4.1, we can construct
more efficient schemes if we only aim at achieving our unforgeability property.

We therefore think that it is relevant to consider this new notion that we
define below. However, for completeness, we also recall the original one from [7].

Our security experiments in Figure 1 make use of a counter c and three
tables, Q1, Q2 and Q3, along with the following oracles:

– OSign∗({mi}ni=1): on input a set of n messages, this oracle returns Sign(sk,
{mi}ni=1), stores Q1[c] = (σ, {mi}ni=1) and increments c← c+ 1.

– OSign({mi}ni=1): on input a set of n messages, this oracle computes σ ←
Sign(sk, {mi}ni=1), stores Q1[c] = (σ, {mi}ni=1) and increments c← c+ 1.

– ODerive(k, I): on input an index k and a set I, this algorithm returns ⊥
if Q1[k] = ∅ or if I * [1, n]. Else, it uses σ and {mi}ni=1 stored in Q1[k] to
return Derive(pk, σ, {mi}ni=1, I). The set {mi}i∈I is then added to Q2.

– OReveal(k): on input an index k, this algorithm returns ⊥ if Q1[k] = ∅ and
Q1[k] = (σ, {mi}ni=1) otherwise. The set {mi}ni=1 is then added to Q3.

We note that the only difference between OSign∗ and OSign is that the for-
mer returns the signature, contrarily to the latter that does not return anything.
Our unforgeability experiment only uses OSign∗, which makes the OReveal and
ODerive oracles useless. For convenience, the set of messages {mi}ni=1 stored in

Q1[j] will be denoted {m(j)
i }ni=1.

A redactable signature scheme is unforgeable if Advuf (A) = |Pr[ExpufA (1k, n) =
1]| is negligible for any polynomial time adversary A. A redactable signature

scheme is strongly unforgeable if Advsuf (A) = |Pr[ExpsufA (1k, n) = 1]| is negligi-
ble for any polynomial time adversary A.

Unlinkability. Unlinkability states that it should be hard to link back a de-
rived signature σI to its origin σ, unless the disclosed (non redacted) messages
{mi}i∈I trivially allow to do so. In particular, this implies that σI does not leak
any information on the redacted messages {mi}i∈I , even for an adversary that
has generated the public key pk. This property is formally defined by the exper-
iment Expunl−bA (1k, n) of Figure 1. A redactable signature scheme is unlinkable

if Advunl = |Pr[Expunl−1A (1k, n) = 1] − Pr[Expunl−0A (1k, n) = 1]| is negligible for
any polynomial time adversary A.

4 Short Redactable Signatures

4.1 Our Construction

Our main building block to construct an unlinkable redactable signature or an
anonymous credentials system will be the following redactable signature scheme
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Unforgeability
Exp

uf
A (1k, n)

1. c← 0; Q1 ← ∅;
2. (sk, pk)← Keygen(1k, n)
3. (σ∗, {mi}i∈I)← AOSign∗(pk)
4. Return 1 if I 6= ∅

and Verify(pk, σ∗, {mi}i∈I) = 1

and ∀j < c, ∃kj ∈ I : mkj 6= m
(j)
kj

5. Else, return 0

Strong Unforgeability
Exp

suf
A (1k, n)

1. Q1, Q2, Q3 ← ∅;
2. (sk, pk)← Keygen(1k, n)
3. (σ∗, {mi}i∈I)← AOSign,ODerive,OReveal(pk)
4. Return 1 if I 6= ∅

and Verify(pk, σ∗, {mi}i∈I) = 1
and {mi}i∈I /∈ Q2

and ∀{m′i}ni=1 ∈ Q3 :
∃kj ∈ I : mkj 6= m′kj

5. Else, return 0

Unlinkability
Expunl−b
A (1k, n)

1. (pk, I, {m(0)
i }

n
i=1, {m

(1)
i }

n
i=1, σ

(0), σ(1))← A()

2. If Verify(pk, σ(0), {m(0)
i }

n
i=1) = 0, return 0

3. If Verify(pk, σ(1), {m(1)
i }

n
i=1) = 0, return 0

4. If ∃j ∈ I : m
(0)
j 6= m

(1)
j , return 0

5. σ
(b)
I ← Derive(pk, σ(b), {m(b)

i }
n
i=1, I)

6. b′ ← A(σ
(b)
I )

7. Return b′.

Fig. 1. Security Notions for Redactable Signatures

RS. The latter is unforgeable but it is clearly not unlinkable. We will explain
in the next section how to enhance it to achieve this property. Nevertheless,
we believe that this construction might be of independent interest due to its
efficiency, for scenarios where privacy is not necessary.

Intuition. The signatures output by our Sign algorithm are PS signatures [21]
on the messages (m1, ...,mn). However, such signatures do not support partial
verification, on a subset of {mi}ni=1 : all the signed messages must be disclosed,
or one must prove knowledge of them, which in all cases imply to send at least
n elements and to perform n exponentiations to verify the signature.

When considering the verification equation of PS signatures e(X
∏n
i=1 Y

mi
i ,

σ̃1) = e(g, σ̃2), it might be tempting to circumvent this problem by simply re-
grouping all the elements {Y mi

i }i∈I in σ1 =
∏
i∈I Y

mi
i . The verification equation

would then become:

e(X · σ1
∏
i∈I

Y mi
i , σ̃1) = e(g, σ̃2).

Unfortunately, the resulting scheme would clearly be insecure. Indeed, noth-
ing prevents a dishonest user from hiding some parts of the disclosed messages
in σ1 to deceive the verifier. For example, if one receives a signature on {mi}ni=1,

one can set σ1 = Y r1 ·
n∏
i=2

Y mi
i and then claims a signature on m1 − r, for any
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r ∈ Zp. Indeed, in such a case

e(X · σ1 · Y m1−r
1 , σ̃1) = e(X · Y m1−r

1 · Y r1
r∏
i=2

Y mi
i , σ̃1)

= e(g, σ̃2)

so the equation would be verified. The element σ1 cannot therefore be any el-
ement of G1, it is necessary to prove that it only accumulates messages whose
index is not in I. The conceptually simplest solution, that is actually used in
most anonymous credentials constructions, is to prove knowledge of the undis-
closed messages. However, as we have explained, this leads to a cost at least linear
in the size of I. We therefore use here a much more efficient solution, based on
the following idea. If σ is a signature that has been honestly derived for I, then
the pairing e(σ1,

∏
i∈I Ỹi) evaluates to e(g, g̃)f(y1,...,yn) for some polynomial f

whose monomials are of the form yi ·yj , for i 6= j. Conversely, if one tries to hide
some parts of the disclosed messages in σ1, as in the attack we sketched above,
then f now contains monomials of the form y2i , for some i ∈ [1, n].

These two cases can easily be distinguished by adding the elements Zi,j =
gyi·yj to the public key, for i 6= j. Indeed, these elements can trivially be used
to reconstruct f in the former case, whereas they will not be sufficient in the
latter case. Concretely, an honest user can compute σ2 ←

∏
i∈I,j∈I Z

mj

i,j and
then prove that σ1 is well formed with our second verification equation:

e(σ1,
∏
i∈I

Ỹi) = e(σ2, g̃)

Providing a similar element for an invalid σ1 is equivalent to computing

g
∑

j∈J y
2
j , for some J ⊂ [1, n], which is thought to be impossible in bilinear

groups, given only the elements of the public key. A formal security analysis
is provided in Section 4.3. We nevertheless recall that our redactable signature
scheme RS is not strongly unforgeable. Such a property is achieved by our con-
struction URS as a (positive) side effect of unlinkability.

The scheme.

– Keygen(1k, n): on input a security parameter 1k and an integer n, this al-

gorithm generates (g, g̃)
$← G∗1 × G∗2 along with (n + 1) random scalars

x, y1, . . . , yn
$← Zp and computes the following elements:

• X ← gx

• Yi ← gyi , ∀1 ≤ i ≤ n
• Ỹi ← g̃yi , ∀1 ≤ i ≤ n
• Zi,j ← gyi·yj , ∀1 ≤ i 6= j ≤ n

The secret key sk is then (x, y1, . . . , yn) whereas the public key pk is (X,

{(Yi, Ỹi)}1≤i≤n, {Zi,j}1≤i 6=j≤n).
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– Sign(sk, {mi}ni=1): To sign n messages m1, . . . ,mn, the signer selects a ran-

dom element σ̃1
$← G2, computes σ̃2 ← σ̃

x+
∑n

i=1 yi·mi

1 and then outputs the
signature σ = (1G1

, 1G1
, σ̃1, σ̃2).

– Derive(pk, σ, {mi}ni=1, I): on input a signature σ = (σ1, σ2, σ̃1, σ̃2) on {mi}ni=1,
the public key pk and a subset I ⊂ [1, n], this algorithm generates:
• σ′1 =

∏
j∈I Y

mj

j

• σ′2 =
∏
i∈I,j∈I Z

mj

i,j =
∏
j∈I(

∏
i∈I Zi,j)

mj

where I = [1, n]\I. If I = [1, n], then I = ∅ and σ′1 = σ′2 = 1G1
. In all cases,

the signer returns the derived signature σI = (σ′1, σ
′
2, σ̃1, σ̃2) on {mi}i∈I .

– Verify(pk, σ, {mi}i∈I): A signature σ = (σ1, σ2, σ̃1, σ̃2) ∈ G2
1×(G∗2)2 is valid

on a subset of messages {mi}i∈I if the following equalities hold, in which
case the algorithm returns 1:

1. e(X · σ1
∏
i∈I Y

mi
i , σ̃1) = e(g, σ̃2)

2. e(σ1,
∏
i∈I Ỹi) = e(σ2, g̃)

If (at least) one of these equations is not satisfied, then the algorithm returns
0.

Remark 2. We add (1G1 , 1G1) to the signatures returned by Sign so that they
have the same structure as derived signatures, produced by Derive. We note
that, for such signatures, the second verification equation is trivially satisfied
and does not require pairing computations: both pairings evaluate to 1GT

.
We stress that any signature derived for a subset I can be verified without

knowledge of the redacted messages (those whose indices are in I). Moreover, the
computational cost for the verifier does not depend on the number of redacted
messages, namely |I|.

Remark 3. One can note that Zi,j = Zj,i for all 1 ≤ i 6= j ≤ n. Therefore the

public pk contains 1 + n(n+3)
2 elements. Nevertheless, we note that verification

does not require the knowledge of the elements Zi,j that are only useful to
derive signatures. In practice, one could then define a verification key vk =
(X, {(Yi, Ỹi)}1≤i≤n), containing only 1 + 2n elements, that is sufficient to verify
any signature (derived or not).

4.2 Achieving Unlinkability

The redactable scheme RS described in Section 4.1 is unforgeable but it is not
unlinkable. As in [21], we could try to rerandomize each element by raising it
to some random power, but this would only work for the (σ̃1, σ̃2) part of the
signature. Rerandomizing similarly the other half of the signature seems to be
much more complex and is likely to require more elements and more pairing
equations to prove validity of the resulting signature.

We therefore use two tricks to achieve unlinkability. The first one is that
we can add in σ1 any element that is not of the form Y ri , for i ∈ I and some
known scalar r. The second one is the ability of PS signatures to be sequentially
aggregated. Concretely, we will aggregate a signature on a random message t
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under a dummy public key to the original signature and we will then include t
in the set of redacted messages. Intuitively, the randomness of t will hide any
information on the messages mi ∈ I, thus ensuring unlinkability. Moreover, it
remains easy to prove well-formedness of the resulting σ1 due to the use of a
dummy public key for which we know the corresponding secret key (in practice
we will define the latter value as 1, but any other value would work). We thus
get unlinkable signatures of the same size as previously and whose generation
only requires few additional computations.

An Unlinkable Redactable Signature. The only differences between our
unlinkable scheme URS and the one described in the previous section can be
found in the Derive algorithm. Therefore, we here only describe this algorithm
and refer to Section 4.1 for the description of the other algorithms that remain
unchanged.

– Derive(pk, σ, {mi}ni=1, I): on input a signature σ = (σ̃1, σ̃2) on {mi}ni=1, the
public key pk and a subset I ⊂ [1, n], this algorithm generates 2 random

scalars r, t
$← Zp and computes the following elements:

• σ̃′1 ← σ̃r1
• σ̃′2 ← σ̃r2 · (σ̃′1)t

• σ′1 ← gt
∏
j∈I Y

mj

j

• σ′2 ← (
∏
i∈I Yi)

t
∏
i∈I,j∈I Z

mj

i,j

where I = [1, n] \ I. If I = [1, n] then I = ∅ and (σ′1, σ
′
2) = (gt,

n∏
i=1

Y ti ).

In all cases, the signer returns the derived signature σI = (σ′1, σ
′
2, σ̃
′
1, σ̃
′
2) on

{mi}i∈I .

The resulting derived signature has exactly the same size and the same struc-
ture as in the previous scheme RS. In particular, it is worthy to note that the
verification algorithm remains unchanged and so that an unlinkable signature is
also a valid signature for RS. Alternatively, we can see the Derive algorithm of
the previous section as a particular case of this one, where r = 1 and t = 0.

Regarding the computational cost, we note that generating an unlinkable
signature essentially requires 5 additional exponentiations (2 in G1 and 3 in G2)
compared to the scheme RS.

Correctness. Let σI = (σ1, σ2, σ̃1, σ̃2) be a derived signature on {mi}i∈I out-
putted by this new Derive algorithm. We then have:

e(X · σ1
∏
i∈I

Y mi
i , σ̃1) = e(gt+x+

∑n
i=1 yi·mi , σ̃1)

= e(g, σ̃2)

12



and

e(σ1,
∏
i∈I

Ỹi) = e(gt
∏
j∈I

Y
mj

j ,
∏
i∈I

Ỹi)

= e((
∏
i∈I

Yi)
t(
∏
j∈I

Y
mj

j )
∑

i∈I yi , g̃)

= e((
∏
i∈I

Yi)
t

∏
i∈I,j∈I

Z
mj

i,j , g̃)

= e(σ2, g̃)

which proves correctness of our scheme.

4.3 Security Analysis

The unforgeability of the scheme URS directly relies on the one of RS, proven
in the generic group model. Proving strong unforgeability of URS requires to
adapt the previous proof, which is done in Appendix A. In all cases, we recall
that we only consider type 3 pairings in this paper. Regarding unlinkability, we
prove that the randomness added to our derived signatures perfectly hide the
undisclosed messages and the original signatures. This is formally stated by the
following theorem.

Theorem 4. – RS is an unforgeable redactable signature scheme in the generic
group model.

– URS is an unforgeable redactable signature scheme if RS is unforgeable.
– URS is a strongly unforgeable redactable signature scheme in the generic group

model.
– URS is an unconditionally unlinkable redactable signature scheme.

Proofs of Unforgeability. We proceed in two steps and first show the unforge-
ability of the scheme RS described in Section 4.1. We next extend this result to
the unlinkable construction URS of Section 4.2.

Lemma 5. In the generic group model, no adversary can break the unforgeability

of the scheme RS with probability greater than 3(4qO+qG+ 1+n(n+3)
2 )2/2p, where

qG is a bound on the number of group oracle queries and qO is a bound on the
number of OSign∗ queries.

Proof. The adversary has access to the group elements provided in the public key
pk = (X, {(Yi, Ỹi)}1≤i≤n, {Zi,j}1≤i 6=j≤n) and those contained by the signatures
σ(i) returned by the OSign∗ oracle on (mi,1, . . . ,mi,n). In the following, each
group element is associated with a polynomial whose formal variables are the
scalars unknown to the adversary, namely x, y1, . . . , yn and ri such that σ̃i,1 =
g̃ri . We must first prove that the adversary is unable to symbolically produce a
valid forgery (σ1, σ2, σ̃1, σ̃2) for some subset of messages {mi}i∈I .

13



In the generic group model, the only way for the adversary to generate new
group elements is to use the group oracle queries. This means that there are
known scalars (a, b, {ci}ni=1, {di,j}1≤i6=j≤n), (a′, b′, {c′i}ni=1, {d′i,j}1≤i6=j≤n), (α, {βi}ni=1,
{γi}qOi=1, {δi}

qO
i=1) and (α′, {β′i}ni=1, {γ′i}

qO
i=1, {δ′i}

qO
i=1) such that:

σ1 = ga ·Xb ·
n∏
i=1

Y cii ·
∏

1≤i 6=j≤n

Z
di,j
i,j

σ2 = ga
′
·Xb′ ·

n∏
i=1

Y
c′i
i ·

∏
1≤i6=j≤n

Z
d′i,j
i,j

σ̃1 = g̃α ·
n∏
i=1

Ỹ βi

i ·
qO∏
i=1

σ̃γii,1 ·
qO∏
i=1

σ̃δii,2

σ̃2 = g̃α
′
·
n∏
i=1

Ỹ
β′i
i ·

qO∏
i=1

σ̃
γ′i
i,1 ·

qO∏
i=1

σ̃
δ′i
i,2

We do not consider separately the elements σi,1 and σi,2 because they are
public combinations of {Yi}ni=1 and {Zi,j}1≤i 6=j≤n.

Since (σ1, σ2, σ̃1, σ̃2) is a valid signature on {mi}i∈I , we know that:

1. e(X · σ1
∏
i∈I

Y mi
i , σ̃1) = e(g, σ̃2)

2. e(σ1,
∏
i∈I Ỹi) = e(σ2, g̃)

Moreover, (σ1, σ2, σ̃1, σ̃2) is a valid forgery only if it cannot be trivially de-
rived from the output of the OSign∗ oracle. Concretely, this means that, for any
` ∈ [1, q0], there is at least one index k` ∈ I such that m`,k` 6= mk` .

Now, if we consider the second equation we get the following polynomial
relation:

(a+b·x+

n∑
i=1

ci·yi+
∑

1≤i 6=j≤n

di,j ·yi·yj)
∑
i∈I

yi = a′+b′·x+

n∑
i=1

c′i·yi+
∑

1≤i 6=j≤n

d′i,j ·yi·yj

Since I 6= ∅, for each monomial of the left member, there is at least an index
i ∈ [1, n] such that the monomial is a multiple of yi. Therefore me must have
a′ = b′ = 0. Moreover, if one of the coefficients di,j were not zero, then the left
member would be of degree 3 whereas the right one would be of degree 2. We
can then conclude that di,j = 0 ∀1 ≤ i 6= j ≤ n and thus get:

(a+ b · x+

n∑
i=1

ci · yi)
∑
i∈I

yi =

n∑
i=1

c′i · yi +
∑

1≤i 6=j≤n

d′i,j · yi · yj

We can then note that there is no longer any term in x in the right member,
which implies that b = 0. Moreover, there is no term in y2i in the right member
which means that ci = 0, ∀i ∈ I. We can therefore conclude that:
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σ1 = ga ·
∏
i∈I

Y cii

σ2 =

n∏
i=1

Y
c′i
i ·

∏
1≤i 6=j≤n

Z
d′i,j
i,j

Now, let us consider the first equation, which gives the following polynomial
relation:

(x+ a+
∑
i∈I

ci · yi +
∑
i∈I

yi ·mi)(

qO∑
i=1

γi · ri +

qO∑
i=1

δi · ri(x+

n∑
j=1

yj ·mi,j)+

α+

n∑
i=1

βi · yi) = α′ +

n∑
i=1

β′i · yi +

qO∑
i=1

γ′i · ri +

qO∑
i=1

δ′i · ri(x+

n∑
j=1

yj ·mi,j)

On the left side, there is a unique monomial of the form δi · ri ·x2, ∀i ∈ [1, n],
whereas there is no term in x2 on the right side. We can then conclude that
δi = 0, ∀i ∈ [1, n]:

(x+ a+
∑
i∈I

ci · yi +
∑
i∈I

yi ·mi)(

qO∑
i=1

γi · ri + α+

n∑
i=1

βi · yi)

= α′ +

n∑
i=1

β′i · yi +

qO∑
i=1

γ′i · ri +

qO∑
i=1

δ′i · ri(x+

n∑
j=1

yj ·mi,j)

One can then note that, in the right member, all the monomials of degree 1
in x are also a multiple of some ri. Therefore, we can conclude that α = 0 and
that βi = 0, ∀i ∈ [1, n]. It then no longer remains any constant term in the left
member, which implies that α′ = 0:

(x+ a+
∑
i∈I

ci · yi +
∑
i∈I

yi ·mi)(

qO∑
i=1

γi · ri)

=

n∑
i=1

β′i · yi +

qO∑
i=1

γ′i · ri +

qO∑
i=1

δ′i · ri(x+

n∑
j=1

yj ·mi,j)

The factor
qO∑
i=1

γi · ri on the left side implies that all monomials are a multiple

of some ri. This means that β′i = 0, ∀i ∈ [1, n]:
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(x+a+
∑
i∈I

ci ·yi+
∑
i∈I

yi ·mi)(

qO∑
i=1

γi ·ri) =

qO∑
i=1

γ′i ·ri+
qO∑
i=1

δ′i ·ri(x+

n∑
j=1

yj ·mi,j)

Now, if we consider this relation as an equality between polynomials in the
variables ri, we get, for each ` ∈ [1, qO]:

(x+ a+
∑
i∈I

ci · yi +
∑
i∈I

yi ·mi)γ` = γ′` + δ′`(x+

n∑
j=1

yj ·mi,j)

However, we know that, for any ` ∈ [1, q0], there is at least one index k` ∈ I
such that m`,k` 6= mk` . This implies that δ′` = γ` = γ′` = 0 ∀` ∈ [1, q0], which is
impossible. The adversary cannot therefore symbolically produce a valid forgery.

It remains to assess the probability of an accidental validity, when two differ-
ent polynomials evaluate to the same value. All the polynomials considered in

this proof are of degree at most 3. Since there are at most (4qO + qG+ 1+n(n+3)
2 )

polynomials, the probability of an accidental validity is bounded by 3(4qO+qG+
1+n(n+3)

2 )2/2p according to the Schwartz-Zippel lemma, which is negligible. ut
Our next lemma shows that the unforgeability of RS implies the one of our

unlinkable scheme URS from Section 4.2.

Lemma 6. Any adversary A against the unforgeability of our unlinkable scheme
URS can be converted into an adversary against the unforgeability of RS, succeed-
ing with the same probability.

Proof. Our reduction R uses A, an adversary against the unforgeability of URS,
to break the unforgeability of RS. There will be then two unforgeability games.
To avoid any confusion, we will refer to the unforgeability game of our basic
scheme as the “RS game” and to the one of our unlinkable scheme as the “URS
game”.
R starts the RS game and then obtains a public key pk that it forwards to

A. When it receives a OSign∗ query, it simply forwards it to the corresponding
oracle of the RS game and then receives a valid signature σ = (σ1, σ2, σ̃1, σ̃2) for
RS. It then selects two random scalars r and t and computes:

– σ′1 = σ1 · gt;
– σ′2 = σ2 · (

∏
i∈I Yi)

t;
– σ̃′1 = σ̃r1;
– σ̃′2 = σ̃r2 · (σ̃′1)t.

Finally, it returns σ = (σ′1, σ
′
2, σ̃
′
1, σ̃
′
2) to the adversary A.

The fact that R forwards each query to the oracles of the RS game implies
that the sets of messages stored in Q1 are exactly the same for both games.
Since the oracle of the URS game is perfectly simulated, the adversary eventually
outputs a forgery which is a valid derived signature σ∗ for URS. Since RS and
URS have the same verification algorithm, σ∗ is also a valid signature for RS.
Moreover, our previous remark on Q1 means that σ∗ is also a valid forgery for
the RS game. R then never fails when A succeeds, which concludes the proof.
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Proof of Unlinkability. We prove here that a signature σI on {mi}i∈I derived
from an original signature σ on {mi}ni=1 is distributed independently of σ and
{mi}i∈I . Since the messages output by the adversary in the unlinkability game

satisfy m
(0)
i = m

(1)
i , ∀i ∈ I, this means that the advantage of the adversary can

only be negligible in this game.
Concretely, let τ̃ be a random element of G2 and u be a random scalar.

For a signature σ = (σ1, σ2, σ̃1, σ̃2) on {mi}ni=1 and any subset I ⊂ [1, n], we
define t = u −

∑
i∈I yi · mi and r = v

s , where v and s are such that τ̃ = g̃v

and σ̃1 = g̃s. Since u and τ̃ are random, r and t are also random and so are
distributed as specified in the Derive algorithm. Running the latter algorithm
on (σ, {mi}ni=1, I) with these values would then lead to the derived signature
σI = (σ′1, σ

′
2, σ̃
′
1, σ̃
′
2) with:

– σ̃′1 = σ̃r1 = τ̃
– σ̃′2 = σ̃r2 · (σ̃′1)t = τ̃x+

∑
i∈I yi·mi · τ̃u

– σ′1 = gt
∏
j∈I Y

mj

j = gu

– σ′2 = (
∏
i∈I Yi)

t
∏
i∈I,j∈I Z

mj

i,j = gu·
∑

i∈I yi

Since u and τ̃ are random, the derived signature σI is clearly independent of
the original signature and of the messages {mi}i∈I , which concludes the proof.

5 Anonymous Credentials

Anonymous credential (also called attribute-based credential) is a broad notion
that usually encompasses any system that allows some organization to issue a
credential on users’ attributes such that 1) the users can later proved that their
attributes are certified and 2) the elements revealed by the users when they
show their credential cannot be linked to a specific issuance (unless the revealed
attributes trivially allow to do so).

However, there is no unique, commonly accepted definition of anonymous
credentials, but rather several variants of the same intuitive notion. For example,
some definitions [5,14] assume that the credential are only shown once, whereas
others support multiple (and unlinkable) showing of a credential [10,15,21]. We
follow in this section the definition from [15] that consider multiple, interactive
showings.

5.1 Syntax

An anonymous credentials system is defined by the following algorithms.

– OrgKeygen(1k, n): This algorithm takes as input a security parameter 1k

and an integer n defining a bound on the number of attributes to certify and
returns the organization key pair (sk, pk).

– UserKeygen(pk): This algorithm returns a user’s key pair (usk, upk) from the
organization public key pk.
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– (Obtain(usk, pk, {mi}ni=1), Issue(upk, sk, {mi}ni=1): To obtain an anonymous
credential on a set of attributes {mi}ni=1, the user, running Obtain, interacts
with the organization, running Issue. The former algorithm additionally
requires the user’s secret key usk and the organization public key pk whereas
the latter requires upk and sk. At the end of the protocol, Obtain returns
either a credential σ or ⊥.

– (Show(pk, usk, {mi}ni=1, I, σ), Verify(pk, {mi}i∈I)): These algorithms are run
by a user and a verifier, respectively, who interact during execution. Show en-
ables the user to prove that a subset {mi}i∈I of his attributes, with I ⊂ [1, n],
has been certified. It takes as input the credential σ, the organization public
key pk, the whole set of attributes {mi}ni=1 along with the intended subset
I. The Verify algorithm only takes as input pk and the subset {mi}i∈I and
returns either 1 (accept) or 0 (reject).

5.2 Security Model

The security model considered here is the one from [15], that we slightly modify
to harmonize this section with the one on redactable signature (Section 3).

Besides correctness, an anonymous credentials system must achieve unforge-
ability and anonymity that essentially mirror the unforgeability and unlinka-
bility notions for redactable signatures. As in Section 3, we define these prop-
erties by the experiments described in Figure 2 that use the following oracles
along with two sets: HU, the set containing the identities of honest users and CU,
that contains the ones of corrupt users. We additionally define the set Att that
stores {i, {mj}nj=1} each time a credential is generated for user i on {mj}nj=1

by the oracles OObtIss and OIssue below. We say that {i, {mj}j∈I} ⊂ Att if
∃{i, {m′j}nj=1} ∈ Att with m′j = mj for all j ∈ I.

– OHU(i): on input an identity i, this oracle returns ⊥ if i ∈ HU ∪ CU. Else it
generates a key pair (uski, upki) ← UserKeygen(pk) and returns upki. The
identity i is then added to HU.

– OCU(i, upk): on input an identity i and optionally a public key upk, this oracle
registers a new corrupt user with public key upk if i /∈ HU and returns uski
and all the associated credentials otherwise. In the latter case, i is removed
from HU. In all cases, i is added to CU.

– OObtIss(i, {mj}nj=1): on input an identity i ∈ HU and a set of attributes
{mj}nj=1, this oracle runs (Obtain(uski, pk, {mj}nj=1), Issue(upki, sk, {mj}nj=1)
and stores the resulting output. The elements {i, {mj}nj=1} are then added
to Att. If i /∈ HU, the oracle returns ⊥.

– OObtain(i, {mj}nj=1): on input an identity i ∈ HU and a set of attributes
{mj}nj=1, this oracle runs Obtain(uski, pk, {mj}nj=1) and stores the resulting
output. If i /∈ HU, the oracle returns ⊥. This oracle is used by an adversary
impersonating the organization to issue a credential to an honest user.

– OIssue(i, {mj}nj=1): on input an identity i ∈ CU and a set of attributes
{mj}nj=1, this oracle runs Issue(upki, sk, {mj}nj=1). The elements {i, {mj}nj=1}
are then added to Att. If i /∈ CU, the oracle returns ⊥. This oracle is used
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Unforgeability
Exp

uf
A (1k, n)

1. (sk, pk)← Keygen(1k, n)
2. {mj}j∈I ← AOHU,OCU,OObtIss,OIssue,OShow(pk)
3. b← (A(), Verify(pk, {mj}j∈I))
4. If {i, {mj}j∈I} ⊂ Att with i ∈ CU or if b = 0, return 0
5. Return 1.

Anonymity
Expano−b
A (1k, n)

1. (sk, pk)← Keygen(1k, n)
2. (j0, j1, {mi}i∈I)← AOHU,OCU,OObtain,OShow(sk)
3. If {jb′ , {mi}i∈I} 6⊂ Att for b′ ∈ {0, 1}, return 0

4. (Show(pk, uskjb , {m
(jb)
i }nj=1, I, σ(k)),A())

5. b∗ ← AOHU,OCU,OObtain,OShow(sk)
6. If OCU has been queried on jb′ for b′ ∈ {0, 1}, return 0
7. Return b∗.

Fig. 2. Security Notions for Anonymous Credentials

by an adversary playing a malicious user to get a certificate from an honest
organization.

– OShow(k, I): Let σ(k) be the credential issued on {m(k)
j }nj=1 for a user ik dur-

ing the k-th query to OObtIss or OObtain. If ik /∈ HU, this oracle returns ⊥.

Else, this oracle runs Show(pk, uskik , {m
(k)
j }nj=1, I, σ(k)) with the adversary

playing a malicious verifier.

Correctness. A showing of a credential σ with respect to a set {mi}i∈I always
verify if σ was honestly issued on {mi}ni=1, with I ∈ [1, n].

Unforgeability. A credential system is unforgeable if Advuf (A) = |Pr[ExpufA (1k, n)
= 1]| is negligible for any polynomial time adversary A.

Anonymity. The anonymity property is defined by the Expano−bA experiment
in Figure 2, for b ∈ {0, 1}. A credential system is anonymous if Advano =
|Pr[Expano−1A (1k, n) = 1]−Pr[Expano−0A (1k, n) = 1]| is negligible for any polyno-
mial time adversary A.

Our definition assumes that the organization key pair (sk, pk) is honestly
generated and then sent to the adversary, contrarily to [15] that lets the adversary
generates its own key pair. This modification indeed allows us to reduce the size
of the public key pk in our next construction. Nevertheless, we stress that the
latter can satisfy the original definition from [15] if we add a non-interactive
zero-knowledge proof of knowledge of sk in pk.
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6 Our Anonymous Credentials System

As noticed in [7, 15], an unlinkable redactable signature scheme is very similar
to an anonymous credentials system [8], also called attribute-based credentials
system. Indeed, it can be used to prove that some data have been certified
without being traced, while hiding (redacting) all the other signed data. To
achieve all the properties expected from an anonymous credentials system, it
thus essentially lacks the ability to issue credentials on the user’s secret key and
then to present the credentials with respect to this key.

In this paper we use the definition of anonymous credentials provided in [15]
and thus consider an interactive presentation protocol. However, the latter can
easily be made non interactive by using the Fiat-Shamir heuristic [13] on the
proof of knowledge that it contains.

6.1 Our Construction

In our system, the user’s secret key usk is simply a random scalar that defines
the public key upk as g̃usk. Using the protocols described in [21], that we slightly
modify, the user is able to get a redactable signature σ on usk and a set of
attributes {mi}ni=1 without revealing usk. Such a signature σ then acts as a
credential for this user. To show a credential on some attributes {mi}i∈I , the
user essentially runs the Derive algorithm on σ and {usk} ∪ {mi}i∈I and then
prove knowledge of usk.

Our construction can thus be seen as an interactive version of our URS
scheme supporting proofs of knowledge of secret attributes. However, such mod-
ifications make the security proofs more intricate. In particular, anonymity no
longer holds unconditionally, but under the DDH assumption in G2. Intuitively,
this is due to the fact that usk must be kept secret but cannot either be aggre-
gated to the set of undisclosed messages. Therefore, the distribution of derived
signatures can no longer be made independent of usk and thus we cannot rely
on the same arguments as those used in the security proof of Section 4.3.

– OrgKeygen(1k, n): On input a security parameter 1k and an integer n, this

algorithm generates (n+ 2) random scalars x, y0, y1, . . . , yn
$← Zp and com-

putes the following elements:
• X ← gx

• Yi ← gyi , ∀0 ≤ i ≤ n
• Ỹi ← g̃yi , ∀0 ≤ i ≤ n
• Zi,j ← gyi·yj , ∀0 ≤ i 6= j ≤ n

The secret key sk is then (x, y0, y1, . . . , yn) whereas the public key pk is (X,

{(Yi, Ỹi)}0≤i≤n, {Zi,j}0≤i 6=j≤n)
– UserKeygen(pk): To generate a key pair (usk, upk) for a user, this algorithm

selects a random usk
$← Zp and computes upk← g̃usk.

– (Obtain(usk, pk, {mi}ni=1), Issue(upk, sk, {mi}ni=1): To obtain an anonymous
credential on a set of attributes {mi}ni=1, the user first sends her public key
upk along with a proof of knowledge of usk, using for example the Schnorr’s
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protocol [22]. If the proof is correct, then the organization selects a random

r
$← Zp and returns σ = (σ̃1, σ̃2)← (g̃r, upkr·y0 · g̃r(x+

∑n
i=1 yi·mi)) to the user.

– (Show(pk, usk, {mi}ni=1, I, σ), Verify(pk, {mi}i∈I)): For I ⊂ [1, n], we define
I0 = {0} ∪ I. The protocol to show a credential on a subset {mi}i∈I is
described in Figure 3.

User(pk, usk, {mi}ni=1, I, σ) Verifier(pk, {mi}i∈I)

k, r, t
$← Zp

σ′1 ← gt ·
∏

j∈[1,n]\I Y
mj

j

σ′2 ← (
∏

i∈I0 Yi)
t ·

∏
i∈I0,j∈[1,n]\I Z

mj

i,j

σ̃′1 ← σ̃r
1

σ̃′2 ← σ̃r
2 · (σ̃′1)t

C ← e(Y k
0 , σ̃

′
1)

(σ′1, σ
′
2, σ̃
′
1, σ̃
′
2), C

−−−−−−−−−−−−−−−−→ If (σ̃′1, σ̃
′
2) /∈ (G∗2)2, return 0.

Else, c
$← Zp

c←−−−−−−−−−−−−−−−− B = e(X · σ′1
∏

i∈I Y
mi
i , (σ̃′1)−1)

s = k + c · usk s−−−−−−−−−−−−−−−−→ If e(Y s
0 , σ̃

′
1) · C−1 = [B · e(g, σ̃′2)]c

and e(σ′1,
∏

i∈I0 Ỹi) = e(σ′2, g̃)

return 1
Else, return 0

Fig. 3. A protocol to show a credential σ on a subset {mi}i∈I

Correctness. For a valid credential σ issued on (m1, . . . ,mn) and usk, we have:

e(X · Y usk
0 ·

n∏
i=1

Y mi
i , σ̃1) = e(g, σ̃2)

which is equivalent to:

e(Y usk
0 , σ̃1) = e(g, σ̃2) · e(X ·

n∏
i=1

Y mi
i , σ̃1)−1

Therefore:
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e(Y s0 , σ̃
′
1) · C−1 = e(Y usk

0 , σ̃1)r·c

= [e(g, σ̃2) · e(X ·
n∏
i=1

Y mi
i , σ̃1)−1]r·c

= [e(g, σ̃′2) · e(g, σ̃′1)−t · e(X ·
n∏
i=1

Y mi
i , (σ̃′1)−1)]c

= [e(g, σ̃′2) · e(X · gt ·
∏
i∈I

Y mi
i ·

∏
i∈[1,n]\I

Y mi
i , (σ̃′1)−1)]c

= [e(g, σ̃′2) · e(X · σ′1 ·
∏
i∈I

Y mi
i , (σ̃′1)−1)]c

= [e(g, σ̃′2) ·B]c

and

e(σ′1,
∏
i∈I0

Ỹi) = e(
∏

j∈[1,n]\I

Y
mj

j ,
∏
i∈I0

Ỹi) · e(gt,
∏
i∈I0

Ỹi)

= e((
∏

j∈[1,n]\I

Y
mj

j )
∑

i∈I0
yi , g̃) · e((

∏
i∈I0

Yi)
t, g̃)

= e(σ′2, g̃)

which implies correctness of our protocol.

Proving Knowledge of Attributes. As we have explained, our Show protocol
essentially consists in deriving a signature on usk ∪ {mi}i∈I and then proving
knowledge of usk. The latter proof is very easy to produce using Schnorr’s pro-
tocol because usk is an exponent in the verification equation. We note that this
is also true for every attribute mi such that i ∈ I. Therefore, the protocol of
Figure 3 can easily be extended to hide and prove knowledge of the attributes
{mj}j∈J , for any subset J ⊂ I.

6.2 Security Analysis

The structure of our Show protocol makes the unforgeability proof rather straight-
forward: if an adversary is able to prove possession of a credential on a set of
attributes that it does not own, then it is able to produce a valid forgery for our
URS system or to impersonate an honest user. Since our protocol requires that
the users prove knowledge of their secret key, the latter case implies an attack
against the discrete logarithm. Proving anonymity of our credential system is
more subtle as we cannot simply rely on the unlinkability of URS.
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Theorem 7. – Our credential system is unforgeable if URS is unforgeable and
if the DL assumption holds in G2.

– Our credential system is anonymous under the DDH assumption in G2.

Proof of Unforgeability. Let A be an adversary against the unforgeability of
our anonymous credentials system. During the game,A returns a set of attributes
{mi}i∈I and then proves possession of a credential on this set. Obviously, the
credentials issued by oracles to corrupt users cannot be valid on {mi}i∈I . How-
ever, honest users could possess a credential on such attributes, which leads to
consider two different cases in our proof. Let usk be the secret key whose knowl-
edge is proved by the adversary when it shows the credential on {mi}i∈I , we
distinguish two types of adversary:

– Type 1: ∃i ∈ HU such that uski = usk
– Type 2: ∀i ∈ HU, uski 6= usk.

Lemma 8. Any type 1 adversary A succeeding with probability ε can be con-
verted into an adversary against the discrete logarithm assumption in G2 suc-
ceeding with probability ε

q , where q is a bound on the number of honest users.

Proof. Let (g̃, g̃a) be a DL challenge. Our reduction R generates the organisation
key pair using g̃ as the generator for G2 and returns pk to A. Since we consider
a type 1 adversary, we know that there is an index i such that A will try to
impersonate the i-th honest user. Our reduction R then makes a guess on i ∈
[1, q] and proceeds as follows.

– OHU: Let j be the index query to this oracle. If j 6= i, then R proceeds as
usual. Else, it returns upki = g̃a.

– OCU: If R receives a corruption query on an honest user j, it returns uskj if
j 6= i and aborts otherwise.

– OObtIss: R knows the organization secret sk and so perfectly simulates the
organization’s side of this protocol. It can also play the role of any honest
user j if j 6= i. Else, it simulates the proof of knowledge of uski.

– OIssue: R knows sk and so is perfectly able to answer any query.
– OShow: If the queried credential belongs to j 6= i, then R is able to run the

Show protocol defined in Figure 3. Else, it runs the first steps of the protocols
but simulates the knowledge of uski.

One can note that the game is perfectly simulated if the guess on i is correct,
which occurs with probability 1

q . In such a case, a successful adversary A proves
knowledge of uski = a when it shows its credential. R can then run the extractor
of the proof of knowledge to recover a, that it returns as a valid solution to the
DL problem. The probability of success of R is then ε

q . ut

Lemma 9. Any type 2 adversary A can be converted into an adversary against
the unforgeability of the URS scheme succeeding with the same probability.
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Proof. Our reduction R runs the unforgeability game of the URS scheme for the
parameter n+1 and so receives a public key (X, {(Yi, Ỹi)}1≤i≤n+1, {Zi,j}1≤i6=j≤n+1).
R changes the indices of the elements of the public key, starting from 0 instead
of 1, and then returns pk = (X, {(Yi, Ỹi)}0≤i≤n, {Zi,j}0≤i6=j≤n) to A. It can then
answers oracle queries as follows.

– OHU: R proceeds as usual, and stores the corresponding secret key.
– OCU: Here again, R proceeds as usual.
– OObtIss: Let i ∈ HU and {mi}ni=1 be the input of this oracle. The reduction

recovers the secret key uski that it has generated for user i and then sub-
mits (uski,m1, . . . ,mn) to the signing oracle OSign∗. It then receives a URS

signature (σ1, σ2, σ̃1, σ̃2) whose first two elements are 1G1
. R then discards

σ1 and σ2 and stores the resulting credential (σ̃1, σ̃2).
– OIssue: Let i ∈ CU and {mi}ni=1 be the input of this oracle. R extracts uski

from the proof of knowledge produced by A and then proceeds as previously
to get a URS signature on (uski,m1, . . . ,mn). Here again, the new credential
is defined as (σ̃1, σ̃2).

– OShow: Let i and {mi}i∈I be the inputs of this oracle. A show query can only
be made for a credential that has been issued through the OObtIss oracle.
Since the latter oracle uses the OSign∗ oracle of the unforgeability game of
the URS scheme, there is a corresponding signature σ on (uski,m1, . . . ,mn) in
the table Q1.R can then run the Derive algorithm on σ and {uski}∪{mi}i∈I
and gets (σ′1, σ

′
2, σ̃
′
1, σ̃
′
2) such that:

• σ̃′2 = (σ̃′1)t+x+y0·uski+
∑n

i=1 yi·mi

• σ′1 ← gt ·
∏
j∈[1,n]\I Y

mj

j

• σ′2 ← (
∏
i∈I0 Yi)

t ·
∏
i∈I0,j∈[1,n]\I Z

mj

i,j

The elements σ′1, σ′2, σ̃′1 and σ̃′2 are therefore distributed as in the Show

protocol of Figure 3. It then only remains to compute C = e(Y k0 , σ̃
′
1) for

some random k and to return a valid s using uski.

R can handle any oracle query and never aborts. Therefore, at the end of
the game, A is able, with some probability ε, to prove possession of a credential
on {mi}i∈I . Our reduction extracts from the proof of knowledge contained in
the Show protocol the value usk and stores the elements σ′1, σ′2, σ̃′1 and σ̃′2. The
latter constitute a valid derived signature on {usk} ∪ {mi}i∈I .

Since we here consider a type 2 adversary, usk must be different from uski, for
any honest user i. Moreover, to be considered as an attack against unforgeability,
no credential owned by corrupt users can be valid on this set of messages. This
means that, for any credential on (uski,m

′
1, . . . ,m

′
n) with i ∈ CU, we have either

usk 6= uski or ∃j ∈ I such that mj 6= m′j . In all cases, this means that σ =
(σ′1, σ

′
2, σ̃
′
1, σ̃
′
2) and {usk} ∪ {mi}i∈I is a valid forgery against our URS scheme,

which concludes our proof. ut

Proof of Anonymity. Let (g̃, g̃a, g̃b, g̃c) be a DDH challenge in G2. We con-
struct a reductionR that uses A, an adversary succeeding against the anonymity
of our credential system with advantage ε, to decide whether c = a · b.
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At the beginning of the game Expano−bA , R generates the organization key
pair (sk, pk) and forwards it to A that eventually returns (j0, j1, {mi}i∈I). R
then makes a guess on the identity of the user ib that will possess the credential
σ(jb) targeted by A and answers the oracle queries as follows.

– OHU: Let j be the identity submitted to this oracle. If j 6= ib, thenR proceeds
as usual. Else, it returns g̃a as the public key upkib of user ib.

– OCU: R proceeds as usual, unless this oracle is queried on ib, in which case
R aborts.

– OObtain: For any j 6= ib, R knows uskj and so is able to run the Obtain

protocol as usual. If j = ib, then R sends the public key upkib and simulates
the proof of knowledge of a.

– OShow: Here again, R proceeds as usual or by simulating the proof of knowl-
edge of the secret key if the credential belongs to ib.

At some point in the game, the adversary outputs the indices j0 and j1 of
two credentials, along with a set of attributes {mi}i∈I . If the credential jb does
not belong to ib, then R aborts. Else, it proceeds as follows.
R first selects two random scalars k and α and sets σ̃′1 = gb. It then computes:

– σ̃′2 ← (σ̃′1)α+x+
∑

i∈I yi·mi · (gc)y0
– σ′1 = gα

– σ′2 = (σ′1)
∑

i∈I0
yi

and simulates knowledge of a.
If z = a · b, then, by setting t = α −

∑
i∈[1,n]\I yi · mi, one can see that

(σ′1, σ
′
2, σ̃
′
1, σ̃
′
2) are distributed as in the protocol of Figure 3. Else, z is random,

which means that σ̃′2 is a random element of G2. Since σ′1, σ′2 and σ̃′1 are indepen-
dent of a and {mi}i∈[1,n]\I , A cannot succeed in this game with non negligible
advantage. Therefore any change in the behaviour of A can be used to solve the
DDH problem in G2, unless R aborts. The advantage of R is then at least ε

q ,
where q is a bound on the number of honest users.

7 Efficiency

We describe in this section the complexity of the redactable signature schemes
RS and URS before comparing the one of our anonymous credentials system with
the most relevant systems of the state-of-the-art.

Redactable Signatures. Table 1 provides the most important figures regard-
ing the size and computational complexity of the schemes RS and URS. For sake
of clarity, we only consider the most expensive operations, such as exponentia-
tions and pairings, and do not take into account the other ones. As in Remark
3, we define the subset vk of the elements of the public key pk that are necessary
to verify signatures. Our efficiency analysis is based on the descriptions of the
schemes from Sections 4.1 and 4.2 that aim at minimizing the complexity in G2,
where operations are usually less efficient and elements are larger than in G1.
Nevertheless, we note that we can safely switch G1 and G2 if needed.
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vk pk σ Sign Derive Verify

RS (n+ 1)G1

+nG2

n2+n+2
2

G1

+nG2
2G1 + 2G2 1r2 + 1e2 2(n− k)e1 ke1 + 2p2

URS (n+ 1)G1

+nG2

n2+n+2
2

G1

+nG2
2G1 + 2G2 1r2 + 1e2

2(n− k + 1)e1
+3e2

ke1 + 2p2

Table 1. Complexity of our Redactable Signature Schemes. The costs of Derive and
Verify are provided for a set {mi}i∈I of k elements. Here, r2 denotes the generation
of a random element in G2, ei denotes an exponentiation in Gi, for i ∈ {1, 2}, and pi
denotes an equation involving i pairings.

Anonymous Credentials. We compare in Table 2 the efficiency of our anony-
mous credentials system from Section 6 with the one of different approaches
supporting multiple unlinkable showings of credentials. Most of the references
and figures are extracted from the comparison in [15]. The latter shows that the
existing solutions mostly differ in the size of the public key and of the credential
and in the complexity of the showing process. For sake of clarity, we therefore
only consider these features in our table and, for example, do not take into
account the complexity of the Issuing process. We nevertheless note that our
issuing process is among the most efficient ones. Similarly, we do not indicate
in our table the computational assumptions that underlie the security of the
constructions and refer to [15] for this information. We indeed note that, except
for [9], all of them rely on the generic group model (GGM) or on non-standard
assumptions (that are themselves proven in the GGM), which seems to be the
price for efficiency and functionalities.

Scheme pk/vk σ |Show| Show Verify Proof

[9] O(n)/O(n) O(1) O(n− k) O(n− k) O(n) r
[10] O(n)/O(n) O(n) O(n) O(n) O(n) r
[1] O(n)/O(n) O(1) O(n− k) O(n− k) O(n) r
[21] O(n)/O(n) O(1) O(n− k) O(n− k) O(n) r
[7] O(n)/O(n) O(1) O(1) O(n− k) O(k) s
[15] O(n)/O(n) O(1) O(1) O(n− k) O(k) s

Sec. 6 O(n2)/O(n) O(1) O(1) O(n− k) O(k) r
Table 2. Comparison of different anonymous credentials systems. The pk, vk and σ
colomns refer to the size of the public key, of the verification key and of the credential,
respectively. |Show| indicates the number of elements exchanged by the user and the
verifier when the former shows k attributes. The Show and Verify colomns indicate the
computational complexity for the user and the verifier, respectively. The last colomn
indicates whether the scheme only supports selective (s) disclosure, or if it also allows
to prove relations (r) about the attributes.

This table shows that, for a long time, a credential issued on n attributes
needed O(n) operations to be verified, even if the user only showed k attributes.
Moreover, it was necessary to prove knowledge of the (n− k) hidden attributes,
which implied to send O(n− k) elements during the protocol.
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Our protocol circumvents this problem and proposes a constant size creden-
tial with a constant number of elements to send during Show. Moreover, a verifier
who only needs to check k attributes only has to perform k operations, which
seems optimal. However one can note that our scheme is not the first one to
achieve such remarkable features. We therefore need to go beyond asymptotic
comparison when it comes to [7] and [15].

Regarding [7], the situation is quite simple. Although it has nice asymptotic
complexity, the O(1) notation for |Show| hides about 100 groups elements to show
a credential (see [15]). It is therefore far less practical than our scheme and the
one from [15]. Nevertheless, we must mention that it is the only one to achieve
strong security in the UC framework [11], which may justify the efficiency gap.

Regarding [15], we note that our public key is larger, although it can be
restricted to O(n) elements if we only consider elements necessary for the ver-
ification, as explained in Remark 3. Our credential only consists of 2 elements
of G2 and so is roughly twice shorter than the one from [15] that consists of 3
elements of G1, 1 of G2 and 2 scalars.

In our case, to show a credential, a user must send 2 elements of G1, 2 of G2,
1 of GT and one scalar, contrarily to 8 elements of G1, 1 of G2 and two scalars
in [15]. If we use Barreto-Naehrig curves [3] to instantiate the bilinear group, we
get roughly the same complexity because of the element in GT in our protocol.
However, we note that the latter is the commitment of a Schnorr’s proof and so
could be replaced by a scalar if we choose to make our protocol non-interactive
using the Fiat-Shamir heuristic [13]. In such a case, our Show protocol would be
twice more efficient than the one from [15].

Finally, we believe that the main difference between these two schemes can
be found in the ability to prove relations about the attributes. Indeed, in our
protocol, each disclosed element is involved as an exponent of some public ele-
ment in the verification equation so it is easy to hide it using Schnorr’s proof of
knowledge [22] and then to prove that it satisfies another relation (hence the “r”
in the last column). Conversely, in [15], the disclosed attributes are roots of some
polynomial fT (a) that is involved in the verification equation, with a a secret
parameter of their scheme. Proving knowledge of these attributes is thus much
more complex than in our case, so [15] cannot be used if one needs to efficiently
prove some relations about them.

Conclusion

In this paper, we have provided a remarkably versatile and efficient signature
scheme. Given a signature σ on a set of messages {mi}ni=1, one can indeed
disclose, prove relations about or redact any subset of {mi}ni=1. Moreover, the
number (n − k) of undisclosed messages does not impact communication or
verification complexity, leading to very efficient partial verification of a signature
when k is small.

This ability to redact or prove relations about parts of the message is partic-
ularly useful when privacy is critical and we show that our scheme can be used to
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construct an anonymous credentials system with the same features. The result-
ing protocol then combines almost all the best properties of previous solutions,
with constant-size credentials and O(k) verification complexity, along with the
ability to prove relations about attributes.

We believe that anonymous credentials are just an example of application
of our scheme and that the latter could be useful as a building block for other
primitives, in particular privacy-preserving ones.

Acknowledgements

The authors are grateful for the support of the ANR through project ANR-16-
CE39-0014 PERSOCLOUD and project ANR-18-CE-39-0019-02 MobiS5.

References

1. Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-TAA. In
Roberto De Prisco and Moti Yung, editors, SCN 06, volume 4116 of LNCS, pages
111–125. Springer, Heidelberg, September 2006.

2. Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna Lysyanskaya, Leonid
Reyzin, Kai Samelin, and Sophia Yakoubov. Accumulators with applications to
anonymity-preserving revocation. In EuroS&P 2017, pages 301–315, 2017.

3. Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of
prime order. In Bart Preneel and Stafford Tavares, editors, SAC 2005, volume
3897 of LNCS, pages 319–331. Springer, Heidelberg, August 2006.

4. Dan Boneh and Xavier Boyen. Short signatures without random oracles and the
SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149–177, April
2008.

5. Stefan Brands. Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. 01 2000.
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Auxiliary Material

A Strong Unforgeability of URS

Our proof of strong unforgeability for URS is very similar to the proof of unforge-
ability for RS but we here need to take into account the fact that the success
conditions are less restrictive and that the signatures returned by the oracles are
slightly more complex.

Lemma 10. In the generic group model, no adversary can break the strong
unforgeability of the scheme URS with probability greater than 3(4qO + qG +
1+n(n+3)

2 )2/2p, where qG is a bound on the number of group oracle queries and
qO is a bound on the number of OReveal and ODerive queries.

Proof. The adversary has access to the group elements provided in the public key
pk = (X, {(Yi, Ỹi)}1≤i≤n, {Zi,j}1≤i 6=j≤n) and those contained by the signatures
returned by the ODerive and OReveal queries. Since the signatures returned
by these oracles have the same structure, we will select their indices sequentially,
regardless of the oracle that has generated them. That is, we will consider that
the adversary has access to a list of signatures σ(i) = (σi,1, σi,2, σ̃i,1, σ̃i,2) either
valid on {mi,j}nj=1 or on {mi,j}j∈Ii , where i ∈ [1, qO] and Ii ⊂ [1, n].

In the following, each group element is associated with a polynomial whose
formal variables are the scalars unknown to the adversary, namely x, y1, . . . , yn
and ri such that σ̃i,1 = g̃ri along with the random scalar ti used during deriva-
tion. We must first prove that the adversary is unable to symbolically produce
a valid forgery (σ1, σ2, σ̃1, σ̃2) for some subset of messages {mi}i∈I .

In the generic group model, the only way for the adversary to generate
new group elements is to use the group oracle queries. This means that there
are known scalars (a, b, {ci}ni=1, {di,j}1≤i 6=j≤n, {ei}

qO
i=1, {fi}

qO
i=1), (a′, b′, {c′i}ni=1,

{d′i,j}1≤i 6=j≤n, {e′i}
qO
i=1, {f ′i}

qO
i=1), (α, {βi}ni=1, {γi}

qO
i=1, {δi}

qO
i=1) and (α′, {β′i}ni=1, {γ′i}

qO
i=1,

{δ′i}
qO
i=1) such that:

σ1 = ga ·Xb ·
n∏
i=1

Y cii ·
∏

1≤i 6=j≤n

Z
di,j
i,j ·

q0∏
i=1

gei·ti ·
q0∏
i=1

(
∏
j∈Ii

Yj)
fi·ti

σ2 = ga
′
·Xb′ ·

n∏
i=1

Y
c′i
i ·

∏
1≤i 6=j≤n

Z
d′i,j
i,j ·

q0∏
i=1

ge
′
i·ti ·

q0∏
i=1

(
∏
j∈Ii

Yj)
f ′i ·ti

σ̃1 = g̃α ·
n∏
i=1

Ỹ βi

i ·
qO∏
i=1

σ̃γii,1 ·
qO∏
i=1

σ̃δii,2

σ̃2 = g̃α
′
·
n∏
i=1

Ỹ
β′i
i ·

qO∏
i=1

σ̃
γ′i
i,1 ·

qO∏
i=1

σ̃
δ′i
i,2

Here, the elements gti and (
∏
j∈Ii Yj)

ti come from the elements σi,1 and σi,2
that constitute the first part of the signatures returned by the oracles. Since
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σi,1 = gti ·
∏
j∈Ii Y

mj

j , one can indeed transfer the public part
∏
j∈Ii Y

mj

j in the

product
∏n
i=1 Y

ci
i to simplify the equation. This also works for σi,2, hence the

elements (
∏
j∈Ii Yj)

ti .

Since (σ1, σ2, σ̃1, σ̃2) is a valid signature on {mi}i∈I , we know that:

1. e(X · σ1
∏
i∈I

Y mi
i , σ̃1) = e(g, σ̃2)

2. e(σ1,
∏
i∈I Ỹi) = e(σ2, g̃)

We must be more careful with the success conditions of the adversary in the case
of strong unforgeability. As previously, the forgery is valid if, for all {m`,j}nj=1

in the table Q3, there is at least one index k` ∈ I such that m`,k` 6= mk` . The
novelty here is that the adversary may also receive derived signatures from its
ODerive oracle that do not satisfy the previous condition. The only restriction
for such derived signatures is that {mi}i∈I must not belong to the table Q2.

Now, if we consider the second equation we get the following polynomial
relation:

(a+ b · x+

n∑
i=1

ci · yi +
∑

1≤i 6=j≤n

di,j · yi · yj +

q0∑
i=1

ei · ti +

q0∑
i=1

fi · ti(
∑
i∈Ii

yi))
∑
i∈I

yi

= a′ + b′ · x+

n∑
i=1

c′i · yi +
∑

1≤i 6=j≤n

d′i,j · yi · yj +

q0∑
i=1

e′i · ti +

q0∑
i=1

f ′i · ti(
∑
i∈Ii

yi)

Since I 6= ∅, for each monomial of the left member, there is at least an index
i ∈ [1, n] such that the monomial is a multiple of yi. Therefore me must have
a′ = b′ = 0 and e′i = 0 ∀i ∈ [1, qO]. Moreover, if one of the coefficients di,j or fi
were not zero, then the left member would be of degree 3 whereas the right one
would be of degree 2. We can then conclude that di,j = 0 ∀1 ≤ i 6= j ≤ n and
fi = 0 ∀i ∈ [1, qO] and thus get:

(a+ b · x+

n∑
i=1

ci · yi +

q0∑
i=1

ei · ti)
∑
i∈I

yi

=

n∑
i=1

c′i · yi +
∑

1≤i 6=j≤n

d′i,j · yi · yj +

q0∑
i=1

f ′i · ti(
∑
i∈Ii

yi)

We can then note that there is no longer any term in x in the right member,
which implies that b = 0. Moreover, there is no term in y2i in the right member
which means that ci = 0, ∀i ∈ I. Finally, for any i such that I 6= Ii, we must
have f ′i = ei = 0. We can therefore conclude that:
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σ1 = ga ·
∏
i∈I

Y cii ·
q0∏

i:I=Ii

gei·ti

σ2 =

n∏
i=1

Y
c′i
i ·

∏
1≤i 6=j≤n

Z
d′i,j
i,j ·

q0∏
i:I=Ii

(
∏
j∈Ii

Yj)
f ′i ·ti

Now, let us consider the first equation, which gives the following polynomial
relation:

(x+ a+
∑
i∈I

ci · yi +

q0∑
i:I=Ii

ei · ti +
∑
i∈I

yi ·mi)(

qO∑
i=1

δi · ri(x+

n∑
j=1

yj ·mi,j) + α

+
n∑
i=1

βi · yi +

qO∑
i=1

γi · ri) = α′ +

n∑
i=1

β′i · yi +

qO∑
i=1

γ′i · ri +

qO∑
i=1

δ′i · ri(x+ µ′i · ti +

n∑
j=1

yj ·mi,j)

where µ′i = 0 if σ(i) has been obtained through a OReveal query and µ′i = 1
otherwise. On the left side, there is a unique monomial of the form δi · ri · x2,
∀i ∈ [1, n], whereas there is no term in x2 on the right side. We can then conclude
that δi = 0, ∀i ∈ [1, n]:

(x+ a+
∑
i∈I

ci · yi +

q0∑
i:I=Ii

ei · ti +
∑
i∈I

yi ·mi)(

qO∑
i=1

γi · ri + α+

n∑
i=1

βi · yi)

= α′ +

n∑
i=1

β′i · yi +

qO∑
i=1

γ′i · ri +

qO∑
i=1

δ′i · ri(x+ µ′i · ti +

n∑
j=1

yj ·mi,j)

One can then note that, in the right member, all the monomials of degree 1
in x are also a multiple of some ri. Therefore, we can conclude that α = 0 and
that βi = 0, ∀i ∈ [1, n]. It then no longer remains any constant term in the left
member, which implies that α′ = 0:

(x+ a+
∑
i∈I

ci · yi +

q0∑
i:I=Ii

ei · ti +
∑
i∈I

yi ·mi)(

qO∑
i=1

γi · ri)

=

n∑
i=1

β′i · yi +

qO∑
i=1

γ′i · ri +

qO∑
i=1

δ′i · ri(x+ µ′i · ti +

n∑
j=1

yj ·mi,j)
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The factor
qO∑
i=1

γi · ri on the left side implies that all monomials are a multiple

of some ri. This means that β′i = 0, ∀i ∈ [1, n]:

(x+ a+
∑
i∈I

ci · yi +

q0∑
i:I=Ii

ei · ti +
∑
i∈I

yi ·mi)(

qO∑
i=1

γi · ri)

=

qO∑
i=1

γ′i · ri +

qO∑
i=1

δ′i · ri(x+ µ′i · ti +

n∑
j=1

yj ·mi,j)

Now, if we consider this relation as an equality between polynomials in the
variables ri, we get, for each ` ∈ [1, qO]:

(x+a+
∑
i∈I

ci · yi +

q0∑
i:I=Ii

ei · ti +
∑
i∈I

yi ·mi)γ` = γ′` + δ′`(x+µ′` · t` +

n∑
j=1

yj ·mi,j)

Here, we need to distinguish two cases. If σ(`) has been obtained through a
OReveal query on {m`,j}nj=1, then µ′` = 0 but there must be at least one index
k` ∈ I such that m`,k` 6= mk` . This implies that δ′` = γ` = γ′` = 0 for such a
value of `. Else, we may have m`,j = mj for all j ∈ I, but in such a case σ(`)

must have been returned by the ODerive oracle queried on some subset I` 6= I
and with µ′` = 1. Therefore, there is no monomial in t` in the left member of the
equation (since ei 6= 0 only for the indices i such that I = Ii), which implies
δ′` = 0 = γ` = γ′`. The adversary cannot therefore symbolically produce a valid
forgery.

It remains to assess the probability of an accidental validity, when two differ-
ent polynomials evaluate to the same value. All the polynomials considered in

this proof are of degree at most 3. Since there are at most (4qO + qG+ 1+n(n+3)
2 )

polynomials, the probability of an accidental validity is bounded by 3(4qO+qG+
1+n(n+3)

2 )2/2p according to the Schwartz-Zippel lemma, which is negligible. ut
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