
Cryptanalysis of a New Code-based Signature Scheme with Shorter Public
Key in PKC 2019

Keita Xagawa

NTT Secure Platform Laboratories
3-9-11, Midori-cho Musashino-shi, Tokyo 180-8585 Japan

keita.xagawa.zv@hco.ntt.co.jp

Abstract. Song, Huang, Mu, and Wu proposed a new code-based signature scheme, the Rank Quasi-Cyclic
Signature (RQCS) scheme (PKC 2019, Cryptology ePrint Archive 2019/053), which is based on an IND-CCA2
KEM scheme, RQC, proposed by Aguilar Melchor et al. (NIST PQC Standardization Round 1). Their scheme
is an analogue to the Schnorr signature scheme.
In this short note, we investigate the security of RQCS. We report a key-recovery known-message attack
by following the discussion in Aragon, Blazy, Gaborit, Hauteville, and Zémor (Cryptology ePrint Archive
2018/1192) and an experimental result. The key-recovery attack requires only one signature to retrieve a
secret key and recovers a secret key within 10 seconds.
keywords: NIST PQC, post-quantum digital signatures, cryptanalysis, coding-based cryptography

1 Introduction

RQC is an e�cient KEM scheme proposed by Aguilar Melchor et al. [AMAB+17, AMBD+18], which is based on
hard problems related to rank-metric quasi-cyclic codes. Song, Huang, Mu, and Wu proposed the Rank Quasi-
Cyclic Signature (RQCS) scheme [SHMW19] upon key’s structure of RQC, which can be considered as analogue
to the Schnorr signature scheme [Sch90]. Song et al. insisted that RQCS is existentially unforgeable under adap-
tive chosen-message attacks (EUF-CMA secure) in the random oracle model if the syndrome decoding problem
related to the key pair’s structure in the rank metric is hard.

Our contribution: We give a key-recovery known-message attack by following the discussion in Persichetti [Per12]
and the discussion in Aragon, Blazy, Gaborit, Hauteville, and Zémor [ABG+18, Section 3.1]. Persichetti discussed
applicability of the Schnorr identi�cation to the code setting in his thesis [Per12, Section 7.3.2]. He concluded that
su�cient number of transcripts leak a whole secret in the rank-metric setting if challenges are chosen from Fq .
Aragon et al. proposed Durandal, a new code-based signature scheme based on a syndrome decoding problem
in the rank metric. They designed Durandal by following the Schnorr signature scheme but gave some tweaks,
because a signature will leak a secret key if they follow the Schnorr signature scheme directly and a challenge
is chosen from Fn−kqm with low-rank.1 However, RQCS directly follows the Schnorr signature scheme. Thus, the
attacks in [Per12, Section 7.3.2] and [ABG+18, Section 3.1] can be applied to RQCS. The key-recovery attack
requires only one signature to retrieve a secret key and recovers a key less than 10 seconds even on SageMath.

Related Works: Concurrently, Lau and Tan [LT19] propose an experimental attack on Magma. Their attack is the
same as the attack in this paper.

In the Hamming-metric setting, Persichetti discussed applicability of the Schnorr identi�cation to the code
setting in his thesis [Per12, Section 7.3.2]. He concluded that a transcript leaks information of the secret and thus,
the direct application of the Schnorr identi�cation (and signature) is not secure for ordinal signature scheme.

RaCoSS is a new signature scheme based on the syndrome decoding problem of a random parity-check matrix
in the Hamming-metric setting [FRXKMT17]. It can be a direct application of the Schnorr signature scheme. It
is broken because of the small parameter values [BHLP17], patched [RMFKT18], and broken again [Xag18].

Persichetti proposed an analogue of the Schnorr signature in the Hamming-metric code setting as one-time
signature [Per18]. Santini, Baldi, and Chiaraluce [SBC18] cryptanalyzed Persichetti’s one-time signature scheme
by discussing the corresponding decoding problem is easier than Persichetti thought. Moreover, Deneuville
and Gaborit [DG18] cryptanalyzed the scheme by using an e�cient bit-�ipping decoding algorithm for random
moderate-density parity-check codes.

1 We note that, in the lattice-based signature context, Lyubashevsky also gave a tweak, the rejection-sampling technique,
in his Schnorr-like signature scheme [Lyu08].

Organization: Section 2 reviews basic notions and notations. Section 3 reviews the signature scheme, RQCS.
Section 4 gives the attack and the experimental result.

2 Preliminaries

For a positive integer n, we de�neR := Fqm [X]/(Xn−1), the quotient ring of Fqm -coe�cient polynomial modulo
Xn − 1. We will identify an element a of R as a row vector (a1, . . . , an) ∈ Fnqm and a polynomial a1 + a2X + · · ·+
anXn−1.

Rank Metric: We review the rank metric.

De�nition 2.1 (Rankmetric over Fnqm). Letx = (x1, . . . , xn) ∈ Fnqm . Let β1, . . . , βm ∈ Fqm be a basis of Fqm viewed
as an m-dimensional vector space over Fq . Each coordinate xj is associated to a vector of Fmq as xj =

∑m
i=1 xi j βj with

xi j ∈ Fq . We associate x with a matrixMx de�ned as

Mx :=


x11 . . . x1n
...
. . .

...
xm1 . . . xmn

 ∈ F
m×n
q .

The rank weight ‖x‖ of x is de�ned as
‖x‖ := rank

(
Mx

)
.

The distance dR(x, y) between elements x, y ∈ Fnqm is de�ned by

dR(x, y) := ‖x − y‖.

We omit the de�nition of Fqm -linear codes. See the textbooks, e.g., [Rot06].

De�nition 2.2 (Support of a word). Let x = (x1, . . . , xn) ∈ Fnqm . The support of x, denoted by Supp(x), is the
Fq-subspace of Fqm generated by the coordinates of x: that is,

Supp(x) := 〈x1, . . . , xn〉Fq .

We have dim Supp(x) = ‖x‖.

The number of supports of dimension w of Fqm is denoted by the Gaussian binomial coe�cient;(
m
w

)
q

=

w−1∏
i=0

qm − qi

qw − qi
.

De�nition 2.3 (Product of supports). Let E and F be Fq-linear subspaces of Fqm . Their product is de�ned as
Fq-linear subspace spanned by

{e · f | e ∈ E, f ∈ F}.

Quasi-Circulant Codes: The circulant matrix induced by x ∈ R is de�ned as

rot(x) =


x
xX
. . .

xXn−1

 =


x0 x1 . . . xn−1
xn−1 x0 . . . xn−2
...

...
. . .

...
x1 x2 . . . x0


∈ Fn×nqm .

De�nition 2.4 (Quasi-circulant codes). For positive integers n, `,m and a power of prime q, a [`n, n]qm linear code
C is said to be quasi-circulant if it has a generator matrix G of the form G := [G1 | · · · | G`] where each Gi is
circulant matrix of size n. If ` is two, we say double-circulant.

2

Problems and assumptions: Let us rephrase our syndrome decoding problem as follows:

De�nition 2.5 (Rank Syndrome Decoding (RSD) Problem). The input is a parity-check matrix H ∈ F
(n−k)×n
qm

of an [n, k] Fqm -linear code, a syndrome s ∈ Fn−kqm , and a positive integer r . The RSDq,m,n,k,r problem is �nding
e ∈ Fnqm such that ‖r‖ = w and s = r ·H>.

The rank quasi-cyclic syndrome decoding (RQCSD) problem is de�ned as the special case of the RSD problem.

De�nition 2.6 (Rank Quasi-Cyclic Syndrome Decoding (RQCSD) Problem). The input is h ∈ R which de�nes
a systematic parity-check matrix H = [In | rot(h)>] ∈ Fn×2nqm of a double-circulant [2n, n]qm code C, a syndrome
s ∈ Fnqm , and a positive integer w. The problem is �nding (x1,x2) ∈ F

2n
qm such that x1 + h · x2 = s and ‖x1‖ =

‖x2‖ = w, where x ·H> = s.

Gaborit and Zémor showed that the RSD problem is di�cult with a probabilistic reduction to the Ham-
ming setting in [GZ16]. If the parity-check matrix is low-rank, there are e�cient decoding algorithms [ABG+13,
AGHT18]

3 Review of RQCS

Song, Huang, Mu, and Wu proposed RQCS [SHMW19]. For a positive integer w, we de�neRw as a set of elements
in R whose weight is w, that is, Rw := {a ∈ R | ‖a‖ = w}. The scheme employs a hash function Hash : R ×
{0, 1}∗ → Rwg , which is modeled as a random oracle. RQCS is described as follows:

– Setup(1κ) → pp: It outputs pp = (n,w,wr,wg).
– Gen(pp) → (vk, sk): Choose h ← R and x, y ← Rw . Compute s = x + h · y. Output vk = (h, s) and

sk = (x, y).
– Sign(sk, M) → σ: Choose r = (r1, r2) ← Rwr × Rwr . Compute I = r1 + h · r2. Compute g = Hash(I, M) ∈
Rwg . Compute u = (u1,u2) = g · (x, y) + r ∈ R2. Output σ = (g,u).

– Vrfy(vk, M, σ) → 0/1: Compute I ′ = u1 + h · u2 − s · g. Output 1 if and only if Hash(I, M) = g and
‖u1‖, ‖u2‖ ≤ B.

The parameter sets are summarized in Table 1.

Table 1: Parameter Sets for the RQCS scheme: Song et al. de�ned w = wr = wg.
Instance q n m w wr wg δ Security

RQCS-1 2 67 89 5 5 5 31 128
RQCS-2 2 97 121 6 6 6 43 192
RQCS-3 2 101 139 6 6 6 48 256

Theorem 3.1 ([SHMW19, Theorem 1]). If the RQCSD problem is hard and Hash is modeled as a random oracle,
then the RQCS scheme is existentially unforgeable under adaptive chosen-message attacks.

4 Attack

Idea: We notice that Aragon et al. [ABG+18] proposed a similar signature scheme, Durandal, based on a variant
of the rank syndrome decoding problem. They discussed why they do not directly follow the Schnorr signature
scheme in [ABG+18, Section 3.1].

The problem with this approach in the rank metric is that adding y to cS does not hide cS properly.
Indeed, the veri�er, or any witness to the protocol of Figure 1, can recover the support of the secret
matrix S even after a single instance of the protocol, using techniques from the decoding of LRPC codes

3

[15]: 2 since the veri�er has c he can choose a basis f1, . . . , fd of Supp(c) and then with high probability
it will occur that:

d⋂
i=1

f −1i Supp(z) = Supp(S)

and with the support of S the veri�er can compute S explicitly from the linear equations HST = T .

Letting y = r, c = g, S = (x, y), z = u, H = (,h), and T = s, the above argument says that if we know the
basis of Supp(c) = Supp(g), z = u will leak the support of S = (x, y). By combining this knowledge with the
relation of h = x + hy, we can �nd S = (x, y).

Let us consider a signature σ = (g,u) with u = (u1,u2). We have

u1 = gx + r1 and u2 = gy + r2.

Let E1 = 〈e11, . . . , e1w〉 and E2 = 〈e21, . . . , e2w〉 be the supports ofx andy, respectively. Let Rb = 〈rb1, . . . , rbwr 〉

be the supports of rb for b = 1 and 2. Let F = 〈 f1, . . . , fwg 〉 be the support of g. Let us de�ne two syndrome
spaces S1 = Supp(u1) and S2 = Supp(u2). We have

Sb ⊆ Eb .F + Rb,

where Eb .F = 〈eb1 · f1, . . . , ebw · fwg 〉. If Sb = Eb .F + Rb , then Eb ⊆ f −1i Sb for each i = 1, . . . ,wg. Thus, it will
occur that

Eb =

wg⋂
i=1

f −1i Sb .

If we �nd the supports E1 and E2 for x and y, then we can compute x and y by letting xi =
∑

j λi je1j and
yi =

∑
j ρi je2j and solving the system of nm equations over Fq corresponding to s = x + h · y with 2nw

unknowns λi j ’s and ρi j ’s.

4.1 Algorithm

The attacking algorithm is summarized as follows: The input is vk = (h, s), σ = (g,u) with u = (u1,u2).

1. Compute two syndrome spaces S1 = 〈u11, . . . , u1n〉Fq and S2 = 〈u21, . . . , u2n〉Fq .
2. Compute F = 〈 f1, . . . , fw〉 from g.
3. Compute two supports E1 :=

⋂w
i=1 f −1i S1 for x and E2 :=

⋂w
i=1 f −1i S2 for y.

4. Compute x and y by by letting xi =
∑

j λi je1j and yi =
∑

j ρi je2j and solving the system of nm equations
over Fq corresponding to s = x + h · y with 2nw unknowns λi j ’s and ρi j ’s.

4.2 Experiment

We implemented the attack in the computer algebra system SageMath [Sage18] using the code in appendix A.
We generate 100 keys on each parameter sets. On each key, we generate one random signature and try to �nd a
secret key.

We run the SageMath script on Ubuntu 18.04 in WSL on Windows 10. We succeed to obtain all secret keys
and the attack used an average CPU time of 2.640–6.928 seconds per a signature, on a single core of a 3.20GHtz
Core i7-8700 desktop machine. Table 2 summarizes the experimental results.

Table 2: Parameter Sets for the RQCS scheme: Song et al. de�ned w = wr = wg.
Instance success rate avg time (sec)

RQCS-1 100/100 2.640
RQCS-2 100/100 5.604
RQCS-3 100/100 6.928

2 [15] = [ABG+13]

4

References

ABG+13. Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville, and Gilles Zémor. Low rank parity check
codes and their application to cryptography. In Lilya Budaghyan, Tor Helleseth, and Matthew G. Parker, editors,
The Preproceedings of Workshop on Coding and Cryptography (WCC) 2013, Borgen, Norway, pages 167–179, April
2013. http://www.selmer.uib.no/WCC2013/pdfs/Gaborit.pdf. 3, 4

ABG+18. Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville, and Gilles Zémor. Durandal: a rank metric
based signature scheme. Cryptology ePrint Archive, Report 2018/1192, 2018. https://eprint.iacr.org/2018/1192. 1,
3

AGHT18. Nicolas Aragon, Philippe Gaborit, Adrien Hauteville, and Jean-Pierre Tillich. A new algorithm for solving the
rank syndrome decoding problem. In 2018 IEEE International Symposium on Information Theory, ISIT 2018, Vail,
CO, USA, June 17-22, 2018, pages 2421–2425. IEEE, 2018. 3

AMAB+17. Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-Christophe Deneuville,
Phillippe Gaborit, and Gilles Zemor. RQC. Technical report, National Institute of Standards and Technology,
2017. Available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions. 1

AMBD+18. Carlos Aguilar Melchor, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor. E�cient
encryption from random quasi-cyclic codes. IEEE Trans. Information Theory, 64(5):3927–3943, 2018. 1

BHLP17. Daniel J. Bernstein, Andreas HÃĳlsing, Tanja Lange, and Lorenz Panny. Comments on RaCoSS, a submission to
NISTâĂŹs PQC competition. 23 Dec. 2017. Available at https://helaas.org/racoss/. 1

DG18. Jean-Christophe Deneuville and Philippe Gaborit Cryptanalysis of a code-based one-time signature. Cryptology
ePrint Archive, Report 2018/1205, 2018. https://eprint.iacr.org/2018/1205. 1

FRXKMT17. Kazuhide Fukushima, Partha Sarathi Roy, Rui Xu, Shinsaku Kiyomoto, Kirill Morozov, and Tsuyoshi
Takagi. RaCoSS. 21 Dec. 2017. Available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions. 1

GZ16. Philippe Gaborit and Gilles Zémor. On the hardness of the decoding and the minimum distance problems for
rank codes. IEEE Trans. Information Theory, 62(12):7245–7252, 2016. 3

LT19. Terry Shue Chien Lau and Chik How Tan. Key Recovery Attack on Rank Quasi-Cyclic Code-based Signature
Scheme. CoRR, abs/1902.00241, 2019 https://arxiv.org/abs/1902.00241. 1

Lyu08. Vadim Lyubashevsky. Lattice-based identi�cation schemes secure under active attacks. In Ronald Cramer, editor,
PKC 2008, volume 4939 of LNCS, pages 162–179. Springer, Heidelberg, March 2008. 1

Per12. Edoardo Persichetti. Improving the E�ciency of Code-Based Cryptography. PhD thesis, University of Auckland,
2012. Available at https://researchspace.auckland.ac.nz/handle/2292/19803 1

Per18. Edoardo Persichetti. E�cient One-Time Signatures from Quasi-Cyclic Codes: A Full Treatment. Cryptography,
2(4):30, 2018. 1

Rot06. Ron Roth. Introduction to Coding Theory. Cambridge University Press, 2006. 2
RMFKT18. . Partha Sarathi Roy, Kirill Morozov, Kazuhide Fukushima, Shinsaku Kiyomoto, and Tsuyoshi Takagi. Code-Based

Signature Scheme without Trapdoors. IEICE Tech. Rep., vol. 118, no. 151, ISEC2018-15, pp. 17âĂŞ22, July 2018. See
also https://www.ieice.org/ken/paper/20180725L1FF/eng/. 1

Sage18. The Sage Developers. Sagemath, the sage mathematics software system (version 8.3), 2018. http://www.sagemath.
org. 4

SBC18. Paolo Santini, Marco Baldi, Franco Chiaraluce Cryptanalysis of a One-Time Code-Based Digital Signature
Scheme. CoRR, abs/1812.03286, 2018. https://arxiv.org/abs/1812.03286. 1

Sch90. Claus-Peter Schnorr. E�cient identi�cation and signatures for smart cards. In Gilles Brassard, editor,CRYPTO’89,
volume 435 of LNCS, pages 239–252. Springer, Heidelberg, August 1990. 1

SHMW19. Yongcheng Song, Xinyi Huang, Yi Mu, and Wei Wu. A new code-based signature scheme with shorter public
key. Cryptology ePrint Archive, Report 2019/053, 2019. https://eprint.iacr.org/2019/053. 1, 3

Xag18. Keita Xagawa. Practical Attack on RaCoSS-R. Cryptology ePrint Archive, Report 2018/831, 2018. https://eprint.
iacr.org/2018/831. 1

A Implementation

Listing 1.1: attack.sage
Breaking RQCS \url{https ://ia.cr /2019/053}
import sys

if len(sys.argv) != 2:
print("Usage: %s <n>" % sys.argv [0])
print("Run the attack script against RQCS")
sys.exit (1)

5

http://www.selmer.uib.no/WCC2013/pdfs/Gaborit.pdf
https://eprint.iacr.org/2018/1192
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://helaas.org/racoss/
https://eprint.iacr.org/2018/1205
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://arxiv.org/abs/1902.00241
https://researchspace.auckland.ac.nz/handle/2292/19803
https://www.ieice.org/ken/paper/20180725L1FF/eng/
http://www.sagemath.org
http://www.sagemath.org
https://arxiv.org/abs/1812.03286
https://eprint.iacr.org/2019/053
https://eprint.iacr.org/2018/831
https://eprint.iacr.org/2018/831

if int(sys.argv [1]) == 1:
(q,n,m,w,ww,delta) = (2, 67, 89,5,30,31) #RQCS -1

elif int(sys.argv [1]) == 2:
(q,n,m,w,ww,delta) = (2, 97,121,6,42,43) #RQCS -2

elif int(sys.argv [1]) == 3:
(q,n,m,w,ww,delta) = (2 ,101 ,139 ,6 ,42 ,48) #RQCS -3

else:
print("%s should be 1/2/3 <n>" % sys.argv [1])
sys.exit (1)

print "===== Start ====="
print [q,n,m,w,ww,delta]

F = GF(q^m,'a')
P.<XX> = F[]
R.<X> = QuotientRing(P, P.ideal(XX^n-1))

Utilities
def random_F_vec_generation(F,n,t):

B = matrix(F.base_ring(),t,m,0)
while B.rank() != t:

B = matrix(F.base_ring (),[vector(F.random_element ()) for i in range(t)])
C = matrix(F.base_ring(),n,m,0)
while C.rank() != t:

C = matrix(F.base_ring(),n,t,[F.base_ring (). random_element () for _ in range(n*t)]) * B
return vector(F,[C[i] for i in range(n)])

def F_vec_to_R_elem(v):
z = R(0)
for i in range(n):

z += v[i]*X^i
return z

def random_R_element_generation(t):
return F_vec_to_R_elem(random_F_vec_generation(F,n,t))

def R_to_Matrix(z):
return matrix(F.base_ring(),n,m,[vector(z[i]) for i in range(n)])

def rank_R(z):
return matrix(F.base_ring(),n,m,[vector(z[i]) for i in range(n)]). rank()

def basis_to_F_list(B):
return [F(x) for x in B.rows ()]

key generation and sign. We omit the verification algorithm
def sk_gen ():

return random_R_element_generation(w), random_R_element_generation(w)
def pk_gen(x,y):

h = R.random_element ()
s = x+h*y
return h,s

def sign(h,s,x,y):
r1 = random_R_element_generation(w)
r2 = random_R_element_generation(w)
III = r1 + h * r2
g = random_R_element_generation(w)
u1 = x*g+r1
u2 = y*g+r2
return III , g, u1, u2, r1, r2
we output r1 and r2 for debugging

compute Si = (1/Fi)*S for Fi in F0/F1 and take intersection

6

def find_Ei(S_Flist , Fi_Flist):
tmp = matrix(F.base_ring (),[vector(F.gen ()**i) for i in range(m)]). row_space ()
for Fi in Fi_Flist:

FSi_list = [(1/Fi)*i for i in S_Flist]
SSBi = matrix(F.base_ring (),[vector(i) for i in FSi_list])
tmp = tmp.intersection(SSBi.row_space ())

return tmp

def make_A(H1,H2,E1,E2):
A_list = []
For x
for i in range(n):

for k in range(w):
for j in range(n):

A_list += list(vector(H1[i,j]*E1[k]))
For y
for i in range(n):

for k in range(w):
for j in range(n):

A_list += list(vector(H2[i,j]*E2[k]))
return matrix(F.base_ring (),2*n*w,n*m,A_list)

def recover_sk(h,s,g,u1,u2):
we have u1 = g*x+r1 and u2 = g*y+r2
S1 is generated by u1 and S2 is generated by u2
E1 is generated by x and E2 is generated by y
F is generated by g
We have S1 = E1.F + R1 and S2 = E2.F + R2.
Thus , we take Eb = \bigcap fi^{-1} Sb for b = 1 and 2
We then solve the system of eqs , x + hy = s.

step 1: compute S1 = Supp(u1) and S2 = Supp(u2)
S1_basis = matrix(R_to_Matrix(u1). row_space (). basis ())
S1_Flist = basis_to_F_list(S1_basis)
S2_basis = matrix(R_to_Matrix(u2). row_space (). basis ())
S2_Flist = basis_to_F_list(S2_basis)

step 2: compute F
F_basis = matrix(R_to_Matrix(g). row_space (). basis ())
F_Flist = basis_to_F_list(F_basis)

step 3: find E1 = Supp(x) and E2 = Supp(y)
E1c_basis = matrix(find_Ei(S1_Flist ,F_Flist).basis ())
E1c_Flist = basis_to_F_list(E1c_basis)
E2c_basis = matrix(find_Ei(S2_Flist ,F_Flist).basis ())
E2c_Flist = basis_to_F_list(E2c_basis)

step 4: recover x and y
step 4-1: find x_ij and yij
S = vector(F,s)
Sp_list = []
for j in range(n):

Sp_list += list(vector(S[j]))
Sp = vector(F.base_ring(),Sp_list)

H1 = R(1). matrix ()
H2 = h.matrix ()
A = make_A(H1,H2,E1c_Flist ,E2c_Flist)
V = A.solve_left(Sp)

step 4-2: compute x and y from xij and yij

7

Vx = matrix(F,n,w,V[0:n*w])
Vy = matrix(F,n,w,V[n*w:2*n*w])
Zx = Vx * (vector(F,E1c_Flist))
Zy = Vy * (vector(F,E2c_Flist))
Xc = F_vec_to_R_elem(Zx)
Yc = F_vec_to_R_elem(Zy)

return Xc, Yc

def test(pairs=10,debug=true):
succ = 0
tottime = 0.0
for npair in range(pairs):

x,y = sk_gen ()
h,s = pk_gen(x,y)
print "----- Key pair %d -----" % (npair)

II, g, u1, u2, r1, r2 = sign(h,s,x,y)

tm = cputime(subprocesses = True)
try:

Xc, Yc = recover_sk(h,s,g,u1,u2)
if debug:

print "rank(Xc), rank(Yc), Xc == x, Yc == y, Xc+h*Yc"
print rank_R(Xc), rank_R(Yc), Xc == x, Yc == y, s == Xc+h*Yc

if rank_R(Xc) == w and rank_R(Yc) == w and s == Xc+h*Yc:
succ += 1

except:
print "Unexpected error", sys.exc_info ()[0]

zz = float(cputime(tm))
tottime += zz
if debug:

print zz

print "===== Results ====="
print [q,n,m,w,ww,delta]
print "Total time for extraction : %f seconds ." % (tottime)
print "Average time for extraction : %f seconds ." % (tottime / pairs)
print "Successful recoveries : %d/%d" % (succ ,pairs)

test (100, True)

8

	Cryptanalysis of a New Code-based Signature Scheme with Shorter Public Key in PKC 2019

