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Abstract
Black-box accumulation (BBA) is a building block which
enables a privacy-preserving implementation of point
collection and redemption, a functionality required in
a variety of user-centric applications including loyalty
programs, incentive systems, and mobile payments. By
definition, BBA+ schemes (Hartung et al. CCS ’17) offer
strong privacy and security guarantees, such as unlinka-
bility of transactions and correctness of the balance flows
of all (even malicious) users. Unfortunately, the instan-
tiation of BBA+ presented at CCS ’17 is, on modern
smartphones, just fast enough for comfortable use. It is
too slow for wearables, let alone smart-cards. Moreover,
it lacks a crucial property: For the sake of efficiency, the
user’s balance is presented in the clear when points are
deducted. This may allow to track owners by just observ-
ing revealed balances, even though privacy is otherwise
guaranteed. The authors intentionally forgo the use of
costly range proofs, which would remedy this problem.
We present an instantiation of BBA+ with some exten-
sions following a different technical approach which sig-
nificantly improves efficiency. To this end, we get rid of
pairing groups, rely on different zero-knowledge and fast
range proofs, along with a slightly modified version of
Baldimtsi-Lysyanskaya blind signatures (CCS ’13). Our
prototype implementation with range proofs (for 16 bit
balances) outperforms BBA+ without range proofs by a
factor of 2.5. Moreover, we give estimates showing that
smart-card implementations are within reach.

1 Introduction
A variety of applications such as mobile payments, toll
collection, or loyalty and incentive programs follow the
same basic principle: certain types of points are col-
lected and redeemed. From a user’s perspective this
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should be done in a privacy-preserving way. The opera-
tor requires protection against any kind of frauds. This
basic functionality has been formally captured by [23,
20], where a general building block called BBA(+) for
privacy-preserving point collection is presented. BBA+
is a framework where users create a token (a wallet) and
then use it to collect or spend points. It offers strong pri-
vacy guarantees. For example, transactions are unlink-
able, even those before and after a user was corrupted
and all secrets were leaked.

The protocols for collecting and spending points are
offline in the sense that no connection to a central
database or entity is required. Thus, double-spending
detection is needed to prevent reuse of old token states.
This ensures that a user cannot skip the collection of
negative points (i.e. spent points) by simply reusing an
old token, as this will reveal his identity.

Unfortunately, the instantiation of BBA+ given in [20]
comes with some drawbacks: one is its reliance on
Groth–Sahai zero-knowledge proofs [19], which require a
large amount of computations in pairing groups and all
other building blocks to also work in this setting. This
leads to slow performance on weak hardware and makes
it unsuited for usage on smart cards, where even with a
dedicated co-processor for pairing-based operations [35],
evaluation of a pairing takes about 160 ms and multi-
plication in G2 about 100 ms (for the Fp254BNb and
Fp254n2BNb curves). For point collection/redemption
the user has to compute ≈ 100 multiplications in G2
alone, which already takes 10 s.

BBA+ also requires spending operations to reveal the
current balance. This may allow the system operator
to track a (anonymous) user by just observing balances
in spending operations. In the end, this may even help
to identify this user. So, while the privacy guarantees
ensure that nothing but the balance is leaked, this may
not be enough. This attack on user privacy is especially
relevant in scenarios where a user spends points (much)
more often than he collects them, such as mobile pay-
ments. To protect from this attack, range proofs, e.g. [8],
could be used. That is, instead of revealing the balance,
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a ZK proof of sufficient funds is performed. Since range
proofs are expensive and would make BBA+ impractical,
especially with the techniques used in [20], the authors
refrained from using them.

1.1 Our Contribution
Using the Commit-then-Blind-Sign Principle.
In BBA+, tokens (wallets) consist essentially of (a
commitment to) balance, serial number, and a signature
(on the commitment). In an interaction, the serial
number is revealed, the signature verified, the balance
updated, and a new signature (on the updated com-
mitment) is issued. Reuse of a serial number indicates
double spending. To achieve authenticity of wallets and
prevent tampering, the signature is used. To attain
unlinkability, BBA+ cannot send the signature in the
plain, as this would link the interaction with the one
which issued the signature. The solution in [20] is to
prove possession of a valid signature (on a randomized
commitment) in zero-knowledge. One may call this
the “commit-sign-prove” principle. Our approach is
different: We use a blind signature, so that a newly
issued signature is unknown to the issuer, and can later
be shown in the plain. This “commit-then-blind-sign”
principle also simplifies our construction and security
proofs. To this end, a suitable signature scheme without
pairings is needed. To the best of our knowledge the
only existing scheme [3] satisfying our requirements is
only known to be secure under sequential executions.
We need security under concurrent executions, and thus
present a slight modification of [3] and prove EUF-CMA
security in the generic group model. Under sequential
security, only one protocol may run at any time. This
is a nonsensical assumption for a distributed system
such as BBW, so we allow malicious users to attack
by running several executions concurrently, arbitrarily
interleaved. Security in this setting is harder to achieve.

Pairing-free. Our protocol does not rely on pairing
groups. While pairing groups are used to construct
many primitives, most notably the non-interactive zero-
knowledge proofs [19] used in [20], they require extra
structure. This extra structure has led to recent im-
provements in finding discrete logarithms in those groups
(c.f. [25, 5]), necessitating the use of larger parameters
to maintain ≈128 bit security, resulting in slower algo-
rithms. Additionally, the fastest currently known ellip-
tic curves (for example FourQ [13]) use techniques for
fast scalar-point multiplication that are not applicable
to pairing groups. Moreover, evaluating pairings is ex-
pensive. Thus, when targeting constrained devices, it is
useful to avoid the need for pairing groups.

Range Proofs. When a user spends points, BBA+ dis-
closes the current balance in the clear, which opens pos-
sible attacks on privacy. We implement efficient range
proofs (Bulletproofs [8]), which show in zero-knowledge
that a user has sufficient funds.

Removing the Trapdoor. Defining the legitimate
balance of a wallet/token requires a way to link transac-
tions to that wallet, but transactions need to be unlink-
able. To solve this dilemma, Hartung et al. [20] introduce
a trapdoor only known to a trusted third party which al-
lows to track users. This trapdoor is only intended for
definitional purposes but knowledge of it eliminates any
privacy guarantees. We define a new property called
simulation-linkability, and show how to circumvent the
need for such a trapdoor by relying on interactive proof
systems, where standard rewinding techniques replace
the trapdoor. Thus, linkability is possible only within
the security proof, but not in reality where rewinding
users is not possible.

Attributes. Our construction allows embedding of at-
tributes into tokens. This can be used for different pur-
poses. For example, it is possible to embed an expira-
tion date into all tokens. If tokens are valid for, say 6
months, then double-spending information for older to-
kens can safely be deleted, keeping the database small.
This may also be used to limit the amount of damage
that can be inflicted through double-spending a stolen
token. Other use cases include embedding of discounts
or age verification, for example children or senior pricing,
in pre-payment systems.

Implementation. To evaluate the suitability of our
construction for use on constrained devices, we imple-
mented our BBW instantiation and measured execution
times on a smartphone. For 16 bit balances, we estimate
a run-time of 122 ms on the user side (without commu-
nication). For the system side, we measure a run-time of
182 ms, which, considering that the system side may use
more powerful hardware, is good enough. The total com-
munication is about 4 kB. We also provide estimations
for smart cards based on the number of multiplications
required, where only 68 are needed for 16 bit ranges.
This results in approximately 4 s for 256 bit curves on the
MultOS 4.3.1 card and 1.5 s for a card with co-processor
for ECC operations.
Compared to BBA+, point collection is 5.6 times faster
while transmitting half as much data. Spending points
is 6 times faster when performing range proofs for 16 bit
values, and needs roughly a quarter of the commu-
nication of BBA+ (with 16 bit range proofs). This
makes our scheme well suited for privacy-preserving pre-
payment systems on constrained devices such as smart-
phones or wearables and provides a step towards privacy-
preserving wallets on smart cards.
Finally, we note that 16 bit are already enough for many
applications. For example, the EU limited anonymous
payments to 150 EUR [24].

1.2 Further Related Work
Intuitively, the problem of anonymous point collection
seems to be solvable using (transferable) e-cash. Har-
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tung et al. [20] already argued why this does not work
though: Roughly speaking, in traditional offline e-cash,
e.g. [9], withdrawing a coin is identifying and coins can-
not be transferred, thus the accumulator can neither ex-
ecute the withdraw protocol with the user nor transfer
coins it withdrew itself from the bank. Using transfer-
able e-cash such as [4] where anonymous and unlinkable
transfers of coins is possible (under certain assumptions),
the accumulator could withdraw coins and transfer them
to the user. However, an impossibility result by Canard
and Gouget [12] implies, that if the issuer, accumulator,
and verifier collude, transactions can be linked. Addi-
tionally, users would be free to transfer coins arbitrarily
among each other, allowing for pooling of points which
is not desired in certain applications.
In [31] a privacy-preserving prepaid system for pub-

lic transportation is constructed. However, payment is
done by first paying the maximum possible transporta-
tion fee and then getting a refund based on the actual
ride taken, where the possible refund values are encoded
in the system parameters. While this might be practical
in the case of public transportation with only a small
amount of different prices, it cannot be extended to a
general two-way payment system.
Besides BBA+, which we already discussed, [29] im-

plements an anonymous and unlinkable incentive scheme
called uCentive. However, the scheme targets a simpler
scenario than we do: points are not accumulatable and
double-spending detection is done online. Moreover, se-
curity and privacy protocols are stated only informally
and no proofs are given.
In [3] Anonymous Credentials Light (ACL) are pre-

sented, a building block for anonymous credentials
equipped with attributes. ACL does not provide a two-
way payment system, but may be used as building block
for one. However, security is only guaranteed for se-
quential interactions, a limitation not practical for real-
world scenarios. Their scheme has been implemented on
a smart card [21] and shown to be fairly practical.
Dimitriou [16] constructed an efficient privacy-

preserving point accumulation scheme based on ACL.
However, security is based on informal claims which
do not reflect the capabilities of real-world adversaries.
Problems stemming from concurrent executions are ig-
nored, as made evident by the use of the signature
scheme of [3] which is only sequentially secure. Addi-
tionally, spending points reveals the user’s identity.
In [22] a privacy-preserving system for toll collection is

built based on BBA+. In their system, users accumulate
debt while driving and pay at regular intervals. The
authors extend BBA+ to address the challenges posed by
real-world interactions in this scenario, such as broken
or lost user hardware. Interestingly, they avoid the need
for range proofs by following a post-payment instead of
a pre-payment approach. Their scheme is still based on
Groth–Sahai proofs and thus pairing groups.
Lastly, privacy-preserving cryptocurrencies such as

Dash [15] and ZCash [32, 36] provide another way of

anonymous two-way payments. However, these require
a reliable online connection, while our scheme explicitly
allows offline transactions. Furthermore, Dash comes
without formal security and privacy definitions, while in
ZCash transactions are only confirmed after several min-
utes, which makes them unsuitable for time-sensitive sce-
narios, such as paying in a store using one’s smartphone.
Additionally, using cryptocurrencies it is again possible
for users to transfer and pool funds among themselves,
which is not desired in certain applications.

1.3 Paper Organization
The rest of this paper is organized as follows. In Sec-
tion 2 we introduce some cryptographic assumptions and
informally describe cryptographic building blocks used.
Section 3 describes the BBA+ scheme as introduced by
Hartung et al. [20], and Section 4 describes our modi-
fications to address weaknesses of BBA+. In Section 5
we detail how we instantiated our construction, while
Section 6 explains the signature scheme used. Finally,
in Section 7 we provide and discuss performance metrics
obtained by implementing our construction on a smart-
phone.

2 Preliminaries
We use the common notation to describe cryptographic
protocols and define their security. By n, we denote the
security parameter. For two functions f(n) and g(n) we
write f ≈ g if |f − g| ≤ negl(n) for a negligible function
negl(n). We use additive notation for (commutative)
groups of prime order p. Group elements are always
denoted by upper case letters, scalars (i.e. elements of
Zp) by lower case letters.

2.1 Assumptions
Definition 2.1 (Group Generator) A group generator
is a PPT algorithm gp := (G, G, p)← SetupGrp(1n) that
on input of a security parameter 1n outputs the descrip-
tion of a cyclic group G of prime order p with |p| = n
and generator G.

Definition 2.2 (Discrete Logarithm Assumption) We
say the DLOG assumption holds with regard to SetupGrp
if the advantage Advdlog

SetupGrp,A(n) defined as

Pr
[

(G, G, p)← SetupGrp(1n);x← Zp;X = xG;
x′ ← A(G, G,X) : x′G = X

]
is negligible in n for all PPT algorithms A.

Definition 2.3 (Decisional Diffie-Hellman Assumption)
We say the DDH assumption holds with regard to
SetupGrp if the advantage Advddh

SetupGrp,A(n) defined as

Pr

 (G, G, p)← SetupGrp(1n);x, y, z ← Zp;
X = xG, Y = yG,Z0 = xyG,Z1 = zG;
b← {0, 1}; b′ ← A(G, G,X, Y, Zb) : b = b′

− 1
2
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is negligible in n for all PPT algorithms A.

2.2 Building Blocks
For formal definitions of the building blocks used, see
Appendix A.

Homomorphic Commitments A commitment
scheme allows the committing party to commit (using
Com) to some message m from some message space M
while keeping it secret. At a later point, m can then
be revealed together with a “proof” that it has indeed
been fixed during the committing step (verifiable using
Open). Homomorphic commitments allow adding of
commitments in a way that allows opening of the result
to the sum of the original messages.

Signatures A signature scheme allows a signer (with
a public and a secret key) to sign (using Sign) a message
m with his secret key so that anyone with knowledge
of his public key can verify (using Verify) that m was
indeed signed by the signer and has not been modified
since. For privacy-preserving protocols, signatures with
additional protocols BlindSign and BlindVerify for blind
signature issuance and verification can be used. Recall
that EUF-CMA security is the standard security notion
for signatures. It asserts an adversary, which is given
a signing oracle which signs any messages of its choice,
cannot produce a signature on a “fresh” message (of its
choice).

Interactive Zero-Knowledge Proofs A zero-
knowledge (ZK) proof allows a prover to convince
someone (called the verifier) of the truth of a statement
(usually membership in some NP language) without
revealing any information beside the validity of the
statement. A ZK proof of knowledge (PoK) convinces
the verifier that not only the statement is true, but
also the prover “knows” a witness for it (again without
revealing any information about the witness). We use
the notion of witness-extended emulation introduced
by Groth and Ishai [18] to formalize knowledge of the
prover.

3 BBA+ Description
Hartung et al. [20] introduced a generic building block for
privacy-preserving point collection called BBA+. BBA+
allows anonymous and unlinkable collection and redemp-
tion of points, while ensuring users can’t over- or under-
claim their balance, and preventing users from trading
points among themselves. It also supports offline double-
spending detection, avoiding the need of a permanent
connection to some centralized database.
On a high level, the BBA+ framework involves three

types of parties:

A Trusted Third Party (TTP) generates the com-
mon reference string, together with a trapdoor that al-
lows linking of transactions, once to setup the system.
It does not need to interact with anyone afterwards.
Operators of the system can be divided into three
roles: the Issuer (I) responsible for issuing new tokens
to users, the Accumulator (AC) from which points are
collected and the Verifier (V) to whom points can be
spent. All operators have to trust each other and in par-
ticular share the same secret key. Additionally, the op-
erators operate a shared central database in which they
store double-spending information. Connection to this
database does not have to be permanently available, as
double-spending can be detected after-the-fact when in-
serting values into this database: spending the same to-
ken twice results in two transactions with the same serial
number, and if two such transactions are detected, it is
possible to retrieve the identity of the misbehaving user
(together with a proof thereof).
Users have a token (piggy-bank) with which they want
to collect points. They are in possession of a public and
secret key. The public key is used to identify the user in
the system, and is assumed to be bound to some kind of
physical ID (e.g. passport, social security number, etc.).
It is assumed that ensuring uniqueness of keys and veri-
fying the physical ID is done out-of-band before interact-
ing with the BBA+ protocols. To become a participant
of the scheme, a user performs the token issuing protocol
with the issuer, during which knowledge of the secret key
corresponding to the claimed identity is proven. Then,
a user can use this token to accumulate points by run-
ning the Add protocol with the accumulator and spend
these points by running the Sub protocol with the veri-
fier. (For more intuitive notation, we use Add and Sub
instead of Acc and Ver as in [20].)

Definition 3.1 (BBA+ Scheme [20]) A BBA+ scheme
consists of PPT algorithms Setup, IGen, UGen, de-
terministic polynomial time algorithms UVer, IdentDS,
VerifyGuilt and interactive protocols Issue, Add and Sub.
At the core of the scheme lies a token τ, containing a
unique serial number s and the balance w ∈ V. It is
bound to the owner’s identity (i.e. the user’s public key).

Setup: The Setup algorithm takes as input the se-
curity parameter n and outputs a common reference
string crs and a trapdoor td. IGen(crs) generates a key
pair (PKI , skI) for the issuer, which is also shared with
the accumulator and verifier. UGen(crs) generates a
user key pair (PKU , skU ). UVer, given a user key pair
(PKU , skU ), a token τ and a balance w outputs a bit b in-
dicating whether τ is a valid token with balance w owned
by the user with public key PKU .

Token generation: The protocol Issue is executed be-
tween a user U , given his own key pair (PKU , skU ) and
PKI ; and the issuer I, given PKU and the issuer key
pair (PKI , skI). Upon successful execution, U outputs a
token τ with initial balance 0 for the key pair (PKU , skU ).
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Both U and I additionally output a bit bU/bI that indi-
cates whether they accept the run.

Collecting points: To collect points, the protocol Add
is executed between user U with token τ containing se-
rial number s and balance w and the accumulator AC on
common input v (the amount of points to be collected).
At the end of the protocol, U outputs an updated token τ∗

(with balance w+v) while AC outputs a double-spending
tag dstag containing s. They additionally again output
a bit bU/bAC indicating whether they accepted the run.

Redeeming points: To spend points, the Sub protocol
is executed between a user U and a verifier V. It has the
same inputs and outputs as Add, with the exception that
the current balance is also part of the common input (i.e.
the verifier learns the user’s balance in the clear). This
allows the verifier to ensure that the user has a sufficient
balance to spend the desired amount of points, or can be
used in a post-payment system to clear the accumulated
debt.

Detection of double-spending: Using the same to-
ken twice results in two transactions with the same se-
rial number. At regular intervals (or whenever an on-
line connection is available), operators insert the double-
spending tags generated through the Add and Sub proto-
cols into the central database. While doing so, for each
inserted tag dstag they check whether the serial number s
of it is already contained in the database. If this is the
case, the corresponding double-spending tag dstag′ is re-
trieved from the database and IdentDS(dstag, dstag′) is
used to identify the offending user: IdentDS, given two
double-spending tags, returns the public key PKU of a
user together with a proof of guilt π or returns an error
⊥. In following legal action, VerifyGuilt can then be used
to convince a judge (or anyone else) of the misbehavior:
VerifyGuilt, given a user public key PKU and a proof of
guilt π outputs a bit b indicating whether the user with
public key PKU is guilty of double-spending.

The BBA+ scheme comes with strong security and pri-
vacy guarantees, which can be divided in the system side
and the user side: Security for the system side consists
of three goals:
1. Tokens can only be created and used in the name of

their legitimate owners (owner-binding).
2. A given user cannot claim more (or less) points than

he has collected up to that point, unless an old ver-
sion of a token is presented (balance-binding)

3. Users presenting old versions of their token can be
identified after the fact (double-spending detection).

Security for the user side consists of two goals:
1. Users should have the privacy guarantee that their

transactions are anonymous and cannot be used for
tracking (privacy-preserving)

2. Nobody should be able to forge a proof that a user
has committed a double-spending (false-accusation
protection)

To formally define what it means to use a token in the
name of someone and what the amount of points a user
has collected is, a way to link individual transactions to
the owner of the token is required. In BBA+, this is
achieved by having the TTP generate a trapdoor which
allows linking of transactions to individual users. More
formally, they defined a property called "trapdoor linka-
bility" which requires that all transactions result in some
linking information which can be used, together with the
linking trapdoor, to identify the corresponding user via
a deterministic algorithm ExtractUID.
In their security experiments formalizing above goals,

an adversaryAmay concurrently interact with an honest
issuer, accumulator, and verifier an arbitrary (bounded
by the polynomial run-time) number of times. The ad-
versary, playing the role of the user, may behave dis-
honestly and not follow the corresponding protocols. In
order to formalize this adversarial setting, Hartung et al.
[20] defined oracles the adversary may query:

Definition 3.2 (Oracles)

MalIssue(PKU ) lets the adversary initiate the Issue pro-
tocol with an honest issuer I, provided that there is
no pending MalIssue call for PKU and PKU has also
not been used in a successful call to MalIssue before.

MalAcc(v) is used by the adversary to initiate the Add
protocol with AC for input v.

MalVer(v, w) is used by the adversary to initiate the Sub
protocol with V for inputs w and v.

We say that a call to an oracle is successful if the honest
party represented by the oracle accepts the run (i.e. the
accept bit bI/bAC/bV is 1).

Then they defined owner-binding, which states that
a token bound to some user public key PKU can only
be obtained with knowledge of the corresponding skU
and that tokens used during Add/Sub must be bound
to a public key for which the Issue protocol has been
performed.

Next, they require that, unless double-spending oc-
curred, a user cannot claim a different balance than the
exact sum of points collected up to that point:

Definition 3.3 (Balance-Binding) A trapdoor-linkable
BBA+ scheme is called balance-binding if for any PPT
adversary A in the experiment Expbb

BBA+,A(n) from Fig-
ure 1 the advantage of A defined by

Advbb
BBA+,A(n) := Pr

[
Expbb

BBA+,A(n) = 1
]

(1)

is negligible in n.

Since they desired their system to be offline (i.e. with-
out the need of a permanent connection to some central-
ized database), users cannot be prevented from using
the same token twice. Thus, they require that a user do-
ing so is detected, revealing his identity and providing a
proof that he did cheat which can be verified by anyone.

5



Experiment ExpbbBBA+,A
(crs, td)← Setup(1n), (PKI , skI)← IGen(crs)
b← AMalIssue,MalAcc,MalVer(PKI)
The experiment outputs 1 iff A made a successful call to MalVer
with extracted user public-key PKU such that

– all successful MalIssue/MalAcc/MalVer calls produced unique
token version numbers

– the claimed balance w ∈ V does not equal the sum of pre-
viously collected accumulation values v for PKU , i.e.

w 6=
∑

v∈VPKU

v

where VPKU is the list of all accumulation values v ∈ V that
appeared in previous successful calls to MalAcc or MalVer for
which PKU could be extracted using ExtractUID.

Figure 1. Balance-binding experiment.

User security is defined using the real/ideal world
paradigm. In the real world, the adversary interacts
with oracles implementing the real user protocols. In
the ideal world, the adversary interacts with a simula-
tor. The simulator has to play the role of the oracles,
but without receiving any private user information. To
this end, it is given access to a simulation trapdoor for
the crs. It is then demanded that no PPT adversary can
distinguish between the real and the ideal world. For an
in-depth explanation of the different oracles used see [20].

Definition 3.4 (Privacy-Preserving) A BBA+ scheme
is privacy-preserving if there exist PPT algorithms
SimSetup and SimCorrupt as well as interactive PPT al-
gorithms SimHonIssue, SimHonAdd and SimHonSub that
receive no private user input, such that for all PPT ad-
versaries A = (A0,A1) in the experiments from Fig-
ure 2, the advantage Advpriv

BBA+,A(n) of A defined by∣∣∣Pr[Exppriv-real
BBA+,A(n) = 1]− Pr[Exppriv-ideal

BBA+,A(n) = 1]
∣∣∣ (2)

is negligible in n.

Lastly, false-accusation protection guarantees that
users cannot be framed for a double-spending they did
not commit.
For formal definitions of owner-binding, double-

spending detection and false-accusation protection see
Appendix B.

4 From BBA+ to BBW
Several shortcomings of the BBA+ scheme, as described
in Section 3, were discussed in the introduction. To
recall, it relies on Groth–Sahai (GS) zero-knowledge
proofs [19] together with pairing-based cryptographic
primitives. Since the protocol is interactive anyway,
we can replace GS proofs with more efficient interac-
tive proofs, namely Sigma protocols [28]. Now we are
not bound by the constraints of GS proofs anymore, in
particular, pairing-free instantiations become possible.

Another drawback of BBA+ was the need to reveal
the current balance to spend points, as this can impact
real-world privacy guarantees. Hartung et al. consider
range-proofs to ensure a sufficient balance as a solution,
but refrain from using them due to poor performance.
We introduce a balance space V = {0, . . . , 2l−1} (which is
sufficiently small to avoid problems caused by overflows,
e.g. 2|V| < |Zp|). We employ Bulletproofs [8], which are
very efficient range-proofs compatible with our existing
zero-knowledge proofs.
The security guarantees of BBA+ require a method to

define the correct balance of a user for the security proof,
while still ensuring user privacy. Hartung et al. [20] solve
this by introducing a trapdoor that allows to completely
abolish privacy, which is only known to a trusted third
party (and thus available in the security proofs, but as-
sumed to not be used in the real world). Through our
use of interactive zero-knowledge protocols, we can make
use of a technique called rewinding to achieve the same
result, without the need of a trapdoor. Rewinding de-
notes the process of running an adversary A to receive
some output and then rewind A to some previous state
to let it re-run with the same randomness but differ-
ent input (e.g. zero-knowledge challenge). While this is
possible during security proofs (where black-box access
to the program of an adversary is assumed), it is not
possible in the real world, where it is not possible for a
system operator to reset the user’s hardware. Formally,
we introduce a new property for BBA+ schemes, called
simulation linkability which replaces trapdoor linkability
introduced in [20]. As a side effect, since our common
reference string is indeed only a common random string,
and there is no trapdoor anymore, it is possible to set up
our scheme without a trusted third party by generating
the crs for example through evaluating a cryptographic
hash function on e.g. the timestamp during initializa-
tion. Note also that, unlike in BBA+, a misbehaving
TTP that leaks information on how the crs was gener-
ated (including e.g. the discrete logarithms of the ele-
ments in the crs) to the operator does not impact user
privacy (though leaking this information to users allows
them to claim arbitrary balances and attributes).
Another drawback of BBA+ that hinders deployment

in the real world is the need to store double-spending
tags forever. We solve this problem by adding attributes
to the token that can be revealed during Add and Sub
interactions. Their main use is to define validity periods
for tokens, which allows to discard double-spending tags
after the validity period expired. Additionally, they al-
low for efficient verification of other attributes the user
may have, such as discounted prices for students or age-
verification for purchases (such as alcohol). This allows
checking of the required attributes once during token
generation (by e.g. checking a student card or passport)
instead of for each transaction, removing the need to
show identifying documents. We want to note though
that care has to be taken when choosing the possible at-
tributes, as they might allow linking of users if chosen
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Experiment Exppriv-realBBA+,A(1n)
(crs, td)← Setup(1n), (PKI , state0)← A0(crs)
b← AHonUser,RealHonIssue,RealHonAdd,RealHonSub,RealCorrupt

1 (PKI , state0)
return b

Experiment Exppriv-idealBBA+,A(1n)
(crs, tdsim)← SimSetup(1n), (PKI , state0)← A0(crs)
b← AHonUser,SimHonIssue,SimHonAdd,SimHonSub,SimCorrupt

1 (PKI , state0)
return b

Figure 2. Real/Ideal world privacy experiments

poorly. In our envisioned scenarios, either the majority
of users share the same attributes (e.g. there are only
2 validity periods in use at any given time) or the at-
tributes are already clear from the context (e.g. to be
able to buy alcohol, the user must be above the legal
age). The user learns (during token creation) which at-
tributes will be part of his token and during each inter-
action chooses which attributes will be revealed (outside
of our protocol), and needs to not accept attributes that
would violate his privacy. As a concrete example, we pro-
pose validity periods of six months, ending every three
months, so new tokens are always valid for between three
and six months (depending on how close to the end of
a quarter the token is issued). This allows to keep the
database of double-spending tags small while also ensur-
ing that approximately half the users share the same at-
tribute. We want to stress that only attributes required
for a given transaction are revealed (e.g. when no age-
restricted goods are to be purchased, there is no need to
reveal the age-verification attribute).

Definition 4.1 (BBW Scheme) A BBW Scheme con-
sists of PPT algorithms Setup, IGen, UGen, determinis-
tic polynomial time algorithms UVer, IdentDS, VerifyGuilt
and interactive protocols Issue, Add and Sub. At the core
of the scheme lies a token τ that contains a unique se-
rial number s, the tokens balance w ∈ V and some at-
tribute(s) attr and is bound to the owner’s identity (i.e.
the user’s public key).

Setup: The Setup algorithm takes as input the security
parameter n and outputs a common reference string crs.
IGen(crs) generates a key pair (PKI , skI) for the issuer,
which is also shared with the accumulator and verifier.
UGen(crs) generates a user key pair (PKU , skU ). UVer
given a user key pair (PKU , skU ), a token τ, attribute attr
and a balance w outputs a bit b indicating whether τ is
a valid token with public attribute attr and balance w
owned by the user with public key PKU .

Token generation: The protocol Issue is executed be-
tween a user U , given some attribute attr , his own
key pair (PKU , skU ) and PKI ; and the issuer I, given
PKU , the same attribute attr and the issuer key pair
(PKI , skI). Upon successful execution, U outputs a to-
ken τ with initial balance 0 and public attribute attr for
the key pair (PKU , skU ). Both U and I additionally out-
put a bit bU/bI that indicates whether they accept the
run.

Collecting points: To collect points, the protocol Add
is executed between a user U with token τ containing

serial number s, balance w and public attribute attr and
the accumulator AC on common input (attr , v) (the pub-
lic attribute of the token and the amount of points to be
collected). At the end of the protocol, U outputs an up-
dated token τ∗ (with balance w + v) while AC outputs a
double-spending tag dstag containing s. They addition-
ally again output a bit bU/bAC indicating whether they
accepted the run.

Spending points: To spend points, the Sub protocol is
executed between a user U and a verifier V. It has the
same inputs and outputs as Add, except that the new
balance w∗ is computed as w∗ = w−v. Additionally, the
user proves (in zero-knowledge) that w ≥ v holds.

Detection of double-spending: IdentDS, given two
double-spending tags, returns the public key PKU of a
user together with a proof of guilt π or returns an error
⊥. VerifyGuilt given a user public key PKU and a proof
of guilt π outputs a bit b indicating whether the user with
public key PKU is guilty of double-spending.

To remove the need of the trapdoor for ExtractUID,
we formally define what it means for a scheme to be
simulation-linkable. The main difference to trapdoor-
linkable is that there is no need for a trapdoor but the
algorithm is allowed to fail with negligible probability.

For some fixed n ∈ N, crs ← Setup(1n) T Add
n,crs denotes

the set of transcripts (including AC’s output) resulting
from any Add protocol run accepted by AC with any
(potentially malicious) party, and T Sub

n,crs analog for V.

Definition 4.2 (Simulation-Linkability) A BBW
scheme is called simulation-linkable if it satisfies the
following conditions:

Completeness: Let n ∈ N, (crs, td) ← Setup(1n) and
tr ∈ T Add

n,crs. Then there exist inputs PKU , skU , τ,
w and random choices for an honest user U and
honest accumulator AC such that an Add protocol
run between U and AC with these inputs and random
choices leads to the same transcript tr . The same
holds for all tr ∈ T Sub

n,crs with respect to Sub.

Extractability: There exists a PPT algorithm
ExtractUID that, given two related transcripts
tr1, tr2 ∈ T Add

n,crs (or T Sub
n,crs resp.) produced by the

interaction of a honest user U with public key PKU
and the honest accumulator AC (or honest verifier
V resp.) outputs the public key PKU . Two tran-
scripts tr1, tr2 are called related if they are identical
up to the point where the zero-knowledge challenge
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is sent, and then contain different challenges and
different responses.
Additionally, there exists an expected PPT algo-
rithm GenerateTranscripts that, given access to a
transcript oracle O = 〈U ,AC〉 (or O = 〈U ,V〉 resp.)
outputs two related transcripts tr1, tr2 ∈ T Add

n,crs
(resp. tr1, tr2 ∈ T Sub

n,crs) with overwhelming probabil-
ity. GenerateTranscripts is allowed to rewind O and
resume with fresh randomness for AC (resp. V).

Remark
Since ExtractUID only receives transcripts tr1, tr2 ∈
T Add
n,crs (resp. T Sub

n,crs), and completeness in above defini-
tion requires that any such transcript can be produced by
an honest user, the output of ExtractUID is well defined
even for malicious users U∗.

We note that our version of ExtractUID only outputs
the user’s public key with overwhelming probability (in-
stead of always, as is the case for trapdoor linkability).
Thus, it is necessary to extend all security experiments:
the adversary additionally also wins if he is able to per-
form a successful interaction for which ExtractUID fails
to output the public key. Additionally, for user privacy,
the ideal world oracles now need access to the user at-
tributes where needed, but the oracle for Sub does not
receive the balance anymore. The formal definitions are
lengthy and can be found in Appendices D.3 and D.4.

Remark (Modeling privacy for attributes)
Recall that modeling user security via the real/ideal
paradigm ensures that a real-world adversary learns no
more than an ideal-world adversary. However, if a (de-
sired) privacy property does not hold in the ideal world,
then neither need it hold in the real. Thus, we must
assume that attributes are used in a privacy-preserving
manner. Uniquely identifying attributes do not contra-
dict real/ideal world security. However, due it is suffi-
cient to study the impact of attributes on privacy in the
ideal world. The impact on privacy is highly dependent
on the setting. Thus, it has to be carefully analyzed indi-
vidually for every application of BBW. In Section 4, we
outlined some acceptable usage, such as children, adult,
senior pricing earlier where a “physical world” adver-
sary must learn the attributes anyway. Similarly, sensi-
ble implementations of expiration dates should preserve
privacy, because at any time, a large portion of users
share the same expiration date.

5 Instantiation
Recall that a token contains a signature on (a commit-
ment to) the balance, serial number and some other val-
ues, which is verified in a transaction. Then to modify
the balance, a new signature on (a commitment to) the
updated balance and a new serial number is formed. To
provide correctness on the one hand, and user privacy

on the other hand, ZK proofs are used to hide sensi-
ble information while proving that the new commitment
is formed correctly. Thus, to instantiate our scheme,
we need to find a suitable and efficient zero-knowledge
proof system and a compatible signature and commit-
ment scheme. We have one algorithm SetupGrp that
outputs the description of an elliptic curve group G of
prime order p with generator G which is then used by
all building blocks.
As already mentioned, for efficiency reasons we make

use of sigma protocols for our ZK proofs. We make
use of the generalized definition of a sigma protocol by
Maurer [28] which is perfect special honest verifier zero-
knowledge. We extend it by replacing the challenge
with a Blum coin-toss to achieve perfect composable
zero-knowledge as proposed by Damgård [14]. To do
so, we use the Pedersen commitment scheme for mes-
sages of length 1 (a single element of Zp). We refer to
this commitment scheme as CZK in the following. Mau-
rer’s scheme allows proofs of knowledge for preimages of
group-homomorphisms (where the homomorphism may
depend on the statement being proven). We consider
homomorphisms Φ: A → B, where A and B are of the
form Gn1 × Zn2

p .
To prove that w ≥ v in the Sub protocol, we use range

proofs. A range proof is a ZK proof that the content
of a commitment lies within a given interval. We prove
that w − v ∈ V, which is equivalent to w ≥ v as long as
|Zp| > 2|V|. We use Bulletproofs [8] to implement the
range proof, referred to as RP in the following.
For commitments, we make use of the Pedersen multi-

commitment scheme, referred to as PC in the following,
which allows to commit to a vector ml of messages in a
single group element.
Choosing a signature scheme poses the greatest chal-

lenge: the running time of the scheme is dominated by
verifying signatures (both in zero-knowledge and on the
user side to ensure correct token creation). We need
a signature scheme that allows signing of committed
messages (i.e. signing a group element) and verification
of such signatures in an unlinkable way. Additionally,
both during the process of obtaining a signature as well
as during verification, it must be possible to prove, in
zero-knowledge, statements involving the content of the
signed message. The latter requirement severely re-
stricts the class of possible signature schemes. While
structure-preserving signatures obviously fulfill our re-
quirements, they rely on pairings. Normal blind signa-
ture schemes (without pairings) usually do not allow to
(efficiently) prove statements about the content of the
signed message (for example due to the use of a cryp-
tographic hash function whose output is then signed).
The same problem arises when using normal signatures
to get a signature on a commitment and then prove
knowledge of both the commitment and the signature in
zero-knowledge (which satisfies unlinkability), as again
the use of a hash-function on the message prevents ef-
ficient zero-knowledge proofs containing the content of
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the message. Camenisch and Lysyanskaya [10, 11] intro-
duced a class of signatures commonly referred to as CL-
type signatures intended for usage in privacy-preserving
protocols. CL-type signatures consist of a commitment
scheme and a signature scheme and come with efficient
(interactive) protocols to obtain signatures on commit-
ted messages and to prove knowledge of a signature in
zero-knowledge, which are exactly the properties we re-
quire. Unfortunately, known CL-type signatures rely on
either RSA groups ([10]) or pairings ([11, 30]). Thus, we
decided to adapt the blind signature scheme of Baldimtsi
and Lysyanskaya [3] into a CL-type signature scheme.
Since the authors only provided a proof for sequential
security of their blind signature protocol (where the ad-
versary must finish one interaction with the signer be-
fore he is allowed to start a new one), while we require
concurrent security for our scheme (as it is implausible
to assume an adversary cannot interleave protocol exe-
cutions in a distributed setting as targeted by us), we
also provide a proof of concurrent security in the generic
group model which may be of independent interest. The
resulting signature scheme is described in detail in Sec-
tion 6.

5.1 Instantiating BBW
The scheme is summarized in Figures 3 and 5 to 7. In the
following, we explain the details of the algorithms and
protocols. Whenever a ZKPoK is conducted between
parties, the verifying party aborts and outputs ⊥ if it
does not accept the proof.

Setup: Setup, run by the trusted third party, generates
a suitable group and the common reference string crs for
the scheme, which consists of a common reference string
crscom for the commitment scheme PC and a common
reference string crspok for the zero-knowledge scheme Z
that is used in Issue, Add and Sub.
IGen generates a key pair for the system operator, which
simply consists of a key pair for the signature scheme S.
UGen generates a key pair for a user, consisting of a
secret key skU (a random element in Zp), and a public
key PKU = skUG, which is used as the users identity.

Token generation: The protocol to issue new tokens
is shown in Figure 5. A token consists of a random
serial number s ∈ Zp, a balance w ∈ V, the users
secret key skU ∈ Zp, and the double-spending infor-
mation u1 ∈ Zp, together with a valid signature σ
(under the issuers public key PKI) on the message
m := (s, w, skU , u1). To ensure the serial number s is
indeed random, it is chosen jointly by the user and the
issuer (making use of the homomorphic property of the
commitment scheme PC).
To obtain an initial token, the user forms a commit-
ment C ′ on (s′ ∈ Zp, 0, skU , u1), where s′ ← Zp is his
random share of the serial number and u1 ← Zp, with

initial balance 0. He then performs a zero-knowledge
proof P1 with the issuer to prove knowledge of the se-
cret key corresponding to his public key PKU , knowl-
edge of the content of the commitment C ′ and to en-
sure that the balance is 0. The issuer verifies the zero-
knowledge proof, then chooses s′′ ← Zp, uses the ho-
momorphic property of PC to generate a commitment
C on (s′ + s′′, 0, skU , u1) and then engages in an inter-
action of the protocol BlindSign of S to sign the tuple
(s′ + s′′, 0, skU , u1) with his private key skI . Finally, af-
ter receiving the signature through BlindSign, the user
verifies that it is valid.

Setup(1n, l)
gp := (G, p, G)← SetupGrp(1n)
(crssig, crscom)← S.Setup(gp, 5)
crspok ← Z.Setup(gp)
crsrp ← RP.Setup(gp, l)
crs := (gp, crssig, crscom, crspok, crsrp)
return crs

IGen(crs)
(PKsig, sksig)← S.KeyGen(crs)
return (PKI , skI) := (PKsig, sksig)

UGen(crs)
y ← Zp

(PKU , skU ) := (yG, y)
return (PKU , skU )

Figure 3. Setup and Key Generation

Proof P1 (for the Issue protocol)
Statement: crscom, C

′,PKU
Witness s′, skU , u1, d

′ so that

PC.Open(crscom, (s′, 0, skU , u1, 0), C′, d′) = 1
skUG = PKU

Proof P2 (for the Add protocol)
Statement: crscom, s, t, u2, C

′, attr, σ1
Witness s′, w, skU , u′1, d

′, C, u1, σ2 so that

PC.Open(crscom, (s′, w, skU , u′1, attr), C′, d′) = 1
PCB.Open(crscom, (s, w, skU , u1, attr), (ζ, ζ1), σ2) = 1

skUu2 + u1 = t

Proof P3 (for the Sub protocol)
Statement: crscom, crsrp, s, t, u2, C

′, attr, σ1, CRP, v
Witness s′, w, skU , u′1, d

′, C, u1, σ2, r so that

PC.Open(crscom, (s′, w, skU , u′1, attr), C′, d′) = 1
PCB.Open(crscom, (s, w, skU , u1, attr), (ζ, ζ1), σ2) = 1

skUu2 + u1 = t

PC.Open(crscom, (w − v), CRP, r) = 1

Additionally, a range proof that w−v ∈ V (using CRP) is performed.

Figure 4. Zero-Knowledge Proofs
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U(PKI ,PKU , skU , attr) I(PKU ,PKI , skI , attr)

s
′
, u1 ← Zp

m
′ := (s′, 0, skU , u1, 0)

(C′, d)← PC.Com(m′) C′, π1

ZKPoK P1

s
′′ ← Zp

m
′′ := (s′′, 0, 0, 0, attr)

(C′′, 0)← PC.Com(m′′; 0)
C′′, s′′

C = C
′ + C

′′; s = s
′ + s

′′
C = C

′ + C
′′

m := (s, 0, skU , u1, attr)

σ ←−−−−−−−−−−−−−−−−− BlindSign(C,m)

τ = (σ, s, u1)
if UVer(skU , τ, 0, attr) = 0

return (⊥, 0)
else return (τ, 1) return 1

Figure 5. Issue Protocol

Collecting points: To collect points, the Add proto-
col described in Figure 6 is used. In the protocol, AC
starts by choosing a random value u2 ← Zp and send-
ing it to U , who then computes the second part of the
double-spending token (s, t) as t = skUu2 +u1. The user
then prepares a new token by again forming a commit-
ment C ′ on (s′, w, skU , u′1), where s′, u′1 ← Zp are new
random values, while w is the same as in his existing
token. The user then sends C ′ and t together with the
serial number s contained in his token to the accumu-
lator and performs the ZKPoK P2 with AC to prove
knowledge of a valid token and correct computation of
t and C ′. After verifying the proof, AC adds his share
s′′ ← Zp to the new serial number as well as the amount
of points collected v to the balance in C ′ (again using
the homomorphic property of PC). Then the user and
AC again perform the BlindSign protocol to sign the new
tuple (s′ + s′′, w + v, skU , u′1). Finally, the user again
checks that the resulting token is valid and contains the
correct new balance.

Spending points: The protocol Sub works mostly the
same as Add, with the difference that v is subtracted
from the balance and P3 contains a range proof that
w − v ∈ V.

Detection of double-spending: Algorithms IdentDS
and VerifyGuilt are shown in Figure 7. IdentDS exploits
that the two double-spending tags are blinded by the
same value u1 to extract the users secret key. The users
identity is then revealed by computing his public key.
VerifyGuilt checks that the value contained in the proof
of guilt π is indeed the secret key corresponding to PKU .

5.2 Security of BBW
In the security games (see Section 3 as well as ap-
pendix B), the adversary engages in multiple, possibly

U(PKI ,PKU , skU , w, v, attr) AC(PKU ,PKI , skI , v, attr)
parse: (σ, s, u1) := τ u2 ← Zp

parse: (σ1, (d, γ)) := σ
u2

t = skUu2 + u1

s
′
, u
′
1 ← Zp

m
′ := (s′, w, skU , u′1, attr)

(C′, d∗)← PC.Com(m′) s, t, C′, σ1, π1

ZKPoK P2

if ¬S.Verify1(σ1)
return (⊥, 0)

dstag = (s, t, u2)

s
′′ ← Zp

m
′′ := (s′′, v, 0, 0, 0)

(C′′, 0)← PC.Com(m′′; 0)

C
∗ = C

′ + C
′′

C′′, s′′

C
∗ = C

′ + C
′′

s
∗ = s

′ + s
′′;w∗ = w + v

m
∗ := (s∗, w∗, skU , u′1, attr)

σ
∗ ←−−−−−−−−−−−−−−−−−−− BlindSign(C∗,m∗)

τ
∗ = (σ∗, s∗, u′1)

if UVer(skU , τ∗, w∗, attr) = 0
return (⊥, 0)

else return (τ, 1) return (dstag, 1)

Figure 6. Add Protocol

UVer(PKI ,PKU , skU , τ, w, attr)
parse: (σ, s, u1) := τ

if (PKU = skUG ∧ S.Verify(PKI , (s, w, skU , u1, attr), σ) = 1)
return 1

else return 0

IdentDS(PKI , (s1, z1), (s2, zw))
parse: (t, u2) := z1, (t′, u′2) := z2

if
(
s1 6= s2 ∨ u2 = u

′
2

)
return ⊥

else skU = (t− t′)(u2 − u′2)−1 mod p,PKU = skUG
return (PKU , π := skU )

VerifyGuilt(PKI ,PKU , π)
if πG = PKU return 1
else return 0

Figure 7. User verification of tokens and double-spending algo-
rithms

concurrent and arbitrarily interleaved ZK arguments.
We show by hybrid argument that this does not affect the
possibility to extract witnesses from those arguments.

Theorem 5.1 (Extraction) If P1, P2 and P3 have
witness-extended emulation, there exists an expected
PPT extractor E∗ that has overwhelming probability for
extracting witnesses for all successful calls to MalIssue,
MalAcc and MalVer made by an PPT adversary A in the
security games.
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The idea in the proof is to extract one witness at a time
and view all oracle calls except the one for which the
witness is being extracted as part of the adversary. This
is possible since we do not rely on extracted information
during interaction with the adversary, but only to deter-
mine whether the adversary was successful. For the full
proof, see Proof 4.
In the following, we refer to an interactive protocol

between an honest party and a (possibly) malicious party
as complete if for every transcript tr of a transaction
that results in the honest party accepting, there exists
inputs and random choices for honest parties so that an
interaction between them results in the same transcript.

Theorem 5.2 (Simulation-Linkability) If BBW and S
are correct, P2, P3 and BlindSign are complete and
P2 and P3 have witness-extended emulation, BBW is
simulation-linkable (Definition 4.2).

Theorem 5.3 (System Security) If BBW is
simulation-linkable, the premises of Theorem 5.1
and the DLOG assumption in G hold, PC is additively
homomorphic and binding and S is EUF-CMA secure,
then BBW is owner-binding (Definition B.1), balance-
binding (Definition 3.3) and ensures double-spending
detection (Definition B.2).

For the proofs, see Appendix D.3. Owner-binding wrt.
Issue is a straight-forward reduction to CDH. For owner-
binding wrt. Add/Sub, we show that any adversary able
to win the game with non-negligible probability can be
used to break EUF-CMA security of S. The proof for
balance-binding closely follows the one in [20]. Equivo-
cation of Pedersen commitments does not have to be con-
sidered explicitly anymore as it is covered by EUF-CMA
security. Instead of building a graph based on signed
commitments, a graph based on the unique serial num-
bers can be built. Then it can be shown that an adver-
sary successfully attacking balance-binding can be used
to break EUF-CMA security of S.

Theorem 5.4 (User Security) If P1, P2 and P3 are
composable zero-knowledge and PC is equivocable, then
BBW is privacy-preserving, and if additionally the
DLOG assumption holds in G, it is secure against false
accusation of double-spending.

The proof is largely the same as in [20]. For details,
see Appendix D.4. We make use of the simulation trap-
door (i.e. the equivocality trapdoors of the commitment
scheme) to step-by-step remove private input from the
oracles until we are left with the ideal-world oracles that
do not receive any private input. The main difference
to [20] is that the signature σ1 is sent to the adversary
during the protocol, and replacing it by a simulated one
relies on the DDH assumption to be indistinguishable
(see Appendix C.2).
The proof for false-accusation protection is straight-

forward and the same as in [20].

6 Signature Scheme
Starting from the signature scheme of Baldimtsi and
Lysyanskaya [3], we construct a CL-type signature
scheme: Messages of arbitrary but fixed length l are first
committed into a single group element using Pedersen
commitments and then signed.
The scheme of Baldimtsi and Lysyanskaya (called

ACL) is a blind signature with attributes, where effi-
cient ZK proofs regarding the attributes are possible.
It is based on the blind signature scheme of Abe [1] and
a blinded variant of the Pedersen commitment scheme:
Given a Pedersen commitment C onm (with opening in-
formation d) and an additional generator Z (that is part
of the crs), C ′ = (γZ, γC) is also a commitment on m
with opening information (d, γ). Additionally, C ′ and C
are unlinkable (without knowledge of γ) under the DDH
assumption. Below, we refer to this variant of Pedersen
commitments as PCB.
We interpret these “attributes” as the message, which

then allows for efficient ZK proofs regarding the mes-
sage. The resulting scheme works roughly as follows.
The signer has a real public key PK (of which he knows
the corresponding secret key sk) and a “tag” public key
Z (generated by a trusted party or by applying a crypto-
graphic hash function to his public key, so that nobody
knows the corresponding secret key). To sign a mes-
sage m, a blinded Pedersen commitment C ′ = (Z1, Z2)
is created (using the tag public key Z). A signature
then consists of a non-interactive (via the Fiat–Shamir
transformation) ZKPoK, proving knowledge of either the
secret key sk or the discrete logarithms of Z1 and Z2
(which are not known to anyone). This construction al-
lows for efficient ZK proofs involving m. To obtain blind
signatures, a user sends C (together with a ZKPoK of
the opening to m) to the signer, who then interactively
performs the ZKPoK with the user. To obtain the chal-
lenge, the user queries the hash function (after applying
appropriate blinding factors). This results in a signa-
ture that is unlinkable to any information received by
the signer during signing.

Definition 6.1 Our CL-type signature scheme consists
of algorithms Setup, SimSetup, KeyGen, Sign and Verify:

Setup(gp, l): Generates a common reference string
crscom := (H0, . . . ,Hl) ← PC.Setup(gp, l), sam-
ples random Z,H ← G and chooses a hash
function H : {0, 1}∗ → Zp. Outputs
crs = (gp,H, Z,H, crscom).

SimSetup(gp, l): Generates a common reference string
(crscom, tdcom) ← PC.SimSetup(gp, l), samples ran-
dom z, h ← Zp, computes Z = zG,H = hG and
chooses a hash function H : {0, 1}∗ → Zp. Outputs
(crs, td) = ((gp,H, Z,H, crscom), (z, h, tdcom)).

KeyGen(crs): Samples random sk ← Zp and computes
PK = skG. Outputs (PK, sk).
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Sign(crs, sk,m): Sets C = PC.Com(crscom,m; 0). Then
samples random u, r′1, r

′
2, c
′, u′3 ← Zp and computes

A = uG, B1 = r′1G + c′C, B2 = r′2H + c′(Z −
C), B3 = u′3Z and sets e = H(Z,Z1, A,B1, B2, B3).
Then computes c = e− c′, r = u− cx, r′3 = u′3 − c′
and outputs σ = (σ1, σ2) where σ1 := (Z,C, r, c, r′1,
r′2, c

′, r′3) and σ2 := (0, 1).

Verify(crs,PK,m, σ): Parse σ := (σ1, σ2) where σ1 :=
(Z̃, C̃, r̃, c̃, r̃′1, r̃′2, c̃′, r′3) and σ2 := (d, γ). Check
that Z̃ 6= 0, PCB.Open(crscom,m, (Z̃, C̃), σ2) = 1
and Verify1(crs,PK, σ1) = 1, where Verify1 out-
puts 1 if for Ã = r̃G + c̃PK, B̃1 = r̃′1G + c̃′C̃,
B̃2 = r̃′2H + c̃′(Z̃ − C̃) and B3 = r′3Z + c̃′Z̃ it holds
that

c̃+ c̃′ = H(Z̃, C̃, Ã, B̃1, B̃2, B3)
and 0 otherwise.

The scheme additionally consists of two interactive pro-
tocols for obtaining blind signatures and verification of
signatures in zero-knowledge:

BlindSign: The user first computes a commitment
(C, d) ← PC.Com(crscom,m) on his message
m. He then sends C to the signer and per-
forms a ZKPoK Π1 of m and d such that
PC.Open(crscom,m,C, d) = 1. If the signer accepts
the proof, they then engage in the interactive signing
protocol to generate a blind signature.
See Figure 8 for the description of the interactive
signing protocol.

BlindVerify: The user with signature σ := (σ1, σ2) on
a message m, where σ1 = (Z̃, C̃, r̃, c̃, r̃′1, r̃′2, c̃′, r′3)
and σ2 = (d, γ), sends σ1 to the verifier and
performs a ZKPoK Π2 of m and σ2 such that
PCB.Open(crscom,m, (Z̃, C̃), σ2) = 1. The verifier
checks that Verify1(crs,PK, σ1) = 1 and Π2 is valid.
To implement Π2 as a Σ-protocol, the equations to
be shown can be rewritten as

Com(m; d)− γ′C̃ = 0 (3)
γ′Z̃ = Z (4)

where γ′ = γ−1.

Remark
Modifications detailed above are mainly regarding nota-
tion and to remove the blind message and thus allow the
EUF-CMA security definition and do not change ACL
on a technical level.

Theorem 6.2 Above signature scheme is EUF-CMA
secure in the combined generic group and random oracle
model.

Note that since BlindSign contains a ZKPoK of the mes-
sage m, the set of messages that have been signed us-
ing the oracle for BlindSign is well defined, and thus
EUF-CMA security is applicable. In the generic group

User(PK, C,m, d) Signer(sk, C)
ensure PC.Open(m,C, d) = 1

ZKPoK Π1

γ ← Z∗p C
′ = Z − C

Z̃ = γZ, C̃ = γZ1 u, r
′
1, r
′
2, c
′ ← Zp

C̃
′ = Z̃ − C̃ A = uG

u
′
3 ← Zp B1 = r

′
1G+ c

′
C

B3 = u
′
3Z B2 = r

′
2H + c

′
C
′

A,B1, B2

check that A,B1, B2 ∈ G
t1, t2, t3, t4, t5 ← Zp

Ã = A+ t1G+ t2PK

B̃1 = γB1 + t3G+ t4C̃

B̃2 = γB2 + t5H + t4C̃
′

ε = H(Z̃, C̃, Ã, B̃1, B̃2, B3)
e = ε− t2 − t4 e

c = e− c′

r = u− csk
c, r, c′, r′1, r

′
2

c̃ = c+ t2; c̃′ = c
′ + t4

r̃ = r + t1; r′3 = u
′
3 − c̃

′
γ

r̃
′
1 = γr

′
1 + t3; r̃′2 = γr

′
2 + t5

σ1 = (Z̃, C̃, r̃, c̃, r̃′1, r̃
′
2, c̃
′
, r
′
3)

σ2 = (d, γ)
return σ := (σ1, σ2)

Figure 8. Protocol for obtaining blind signatures

model introduced by Shoup [34], the adversary operates
on the group through a group oracle that allows com-
putation of the group law, inversion and checking for
equality. The adversary only receives random identifiers
of group elements he either receives as input or com-
putes through use of the oracles. See Appendix C.1 for
the proof.

We additionally require that issuing and verification
of signatures through BlindSign and BlindVerify is un-
linkable. More precisely, the signer/verifier should learn
nothing from the interactions that allows him to link
the signature verified during BlindVerify to a particular
interaction of BlindSign. Note that unlinkability only
holds between signing and verifying, engaging the veri-
fying protocol twice for the same signature is linkable.

Theorem 6.3 The protocol BlindSign is perfectly blind
if Π1 is composable perfect zero-knowledge, PC is per-
fectly hiding and H is a random oracle. It addition-
ally allows for extraction of the signed message if Π1
has witness-extended emulation.

Theorem 6.4 The protocol BlindVerify is composable
zero-knowledge if Π2 is composable zero-knowledge, PCB
is hiding, the DDH assumption holds in G and H is a
random oracle. It additionally has witness-extended em-
ulation if Π2 has witness-extended emulation.

For the proofs see Appendix C.2.
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7 Performance Evaluation
We evaluate the performance of BBW by measuring ex-
ecution times and network payload of a practical imple-
mentation. Since data transmission times largely depend
on external factors and the instantiation scenario, we ex-
clude them from our measurements and instead provide
estimates based on NFC with its maximum transmission
speed of 424 kbit/s.
Evaluation is done on a modern smartphone featur-

ing a Snapdragon 845 (4 × 2.8 GHz & 4 × 1.77 GHz)
and running Android 9. The implementation was done
in C++17 and employs the RELIC toolkit v0.5.0, an
open source library with support for elliptic curve arith-
metic [2], for underlying group operations.
In order to compare the performance of BBW with

BBA+ we also implemented BBA+ with support for 16-
bit range proofs as described in [20] and measured exe-
cution times on the same platform.
Note that a modern smartphone represents a particu-

larly strong device in embedded computing. To obtain
performance estimations for smart cards (or other low-
end micro controllers), we count the number of multi-
plications done and estimate the execution time based
on the performance of a dedicated ECC coprocessor [35]
and the MultOS card. Note that this coprocessor was de-
signed for fast pairing execution and was thus optimized
for Barreto-Naehrig (BN) curves. Although the authors
also supplied performance estimates for Curve25519,
their processor does not make use of the special form
of Curve25519 that would allow for faster arithmetic. A
dedicated coprocessor for either Curve25519 or FourQ
curves [13] should result in much faster implementa-
tions, especially as FourQ curves can achieve signifi-
cantly higher performance than Curve25519 [27].

7.1 Implementation Details
To obtain small group elements (and thus minimize net-
work payload) and fast computation times, we chose to
use the elliptic curve Curve25519 ([26, 6, 7]) which pro-
vides 128 bit of security. For the range proofs in the Sub
protocol we employ Bulletproofs by Bünz et al. [8]. The
authors first construct a protocol with linear data trans-
mission size and then extend it to provide logarithmic
data size at the cost of additional prover computation
time. We implemented both variants for both 16 and
32 bit ranges, referring to the variant with linear data
size as Subl,lin and to the logarithmic variant as Subl,log
in the following, where l denotes the size of the range.
We suggest to use 16 bit on weak devices and 32 bit on
smartphones (if needed).

7.2 Evaluation
Table 1 shows our measurement results. The evaluation
was performed utilizing a single CPU core and results
are averaged over 1000 individual executions.

While Issue and Add are highly efficient with approx-
imately 50 ms and 60 ms respectively, the performance
of Sub varies with different parameters and algorithm
choices. As expected, there is a runtime-communication
tradeoff when employing the logarithmic range proofs:
the amount of data that has to be transmitted in total is
reduced (5039 B to 3607 B for l = 32) while the compu-
tational complexity is increased tremendously (170 ms
to 870 ms for l = 32). Note that, using NFC with
424 kbit/s, 3607 B are transmitted in approx. 70 ms and
5039 B are transmitted in approx. 95 ms. Even when
using NFC at only 106 kbit/s (e.g. when using smart
cards), the difference amounts to only about 110 ms,
which is still faster than the additional computation.
Using the number of multiplications in G, we can esti-

mate a lower bound for the execution time on other plat-
forms. Note that we restrict our estimations to the user
side, as the backend is expected to be notably more pow-
erful. Furthermore, as these estimations are solely based
on the number of point multiplications, execution times
of concrete instantiations would be higher due to the re-
maining computations and I/O. The dedicated coproces-
sor by Unterluggauer and Wenger [35] takes 23 ms for a
multiplication on Curve25519. On a MultOS 4.3.1 card,
point multiplication on ≈250 bit curves takes 61 ms [17].
The resulting estimated lower bounds for execution time
of BBW are shown in Table 1. It is worth noting that,
although the MultOS card does not employ a dedicated
coprocessor, the execution time is only increased by a
factor of less than 3.

7.3 Discussion
Our evaluation shows that, although the logarithmic
variant of Sub results in less transmitted data, the over-
head in execution time is tremendous. While this may
not be an issue on the smartphone, as 1 s for 32 bit ranges
might be an acceptable waiting period for users, more
than 5.8 s or even 15.4 s for just 16-bit ranges as in our
estimations for smart cards is unacceptable. Therefore,
we favor the linear variant, as the penalty of transmit-
ting the additional data is easily outweighed by the pro-
cessing time saved. Regarding the smartphone, this re-
duces the computation time of the user to only 170 ms for
Sub32,lin. On more constrained devices, using the linear
variant and l = 16 results in promising execution times,
i.e. close to 1.5 s for Sub on [35], which may be acceptable
depending on the scenario. Note that Sub without range
proofs takes approximately as long as Add, and thus less
than 1 s on [35].
Comparing our implementation with the performance

of BBA+, we see improvement in all areas. Regarding
transmitted data, the Issue protocols are roughly equal,
while for Add the transmitted data was reduced from
4208 B to 1745 B. The most notable difference is in Sub,
where the amount of transmitted data was reduced from
14368 B when supporting only a 16-bit range proof, to
5039 B for Sub32,lin, i.e., supporting a 32-bit range proof.
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Execution Time [ms] Transmitted Data [B] Smart card estimations

User System User System Combined #multiplications Estimated Runtime [ms]
Algorithm BBW BBA+ BBW BBA+ BBW BBW BBW BBA+ in G [35] [17]

Issue 52 102 20 70 625 380 1005 1024 40 920 2440

Add 62 284 45 262 1330 415 1745 4208 30 690 1830

Sub16,lin 122 707 182 605 2876 1045 3921 14368 68 1564 4148
Sub16,log 475 - 234 - 2143 1359 3502 - 253 5819 15433

Sub32,lin 170 - 302 - 3994 1045 5039 -
Sub32,log 870 - 389 - 2213 1394 3607 -

Table 1. Performance measurements of BBW and BBA+ on our smartphone platform and lower-bound estimations for smart cards

Regarding execution time and the favorable linear vari-
ant of Sub, BBW is faster in every protocol. Especially
Sub32,lin is more than four times as fast than Sub in
BBA+ despite supporting 32-bit range proofs, and still
twice as fast as Sub without any range proofs (where ex-
ecution time is the same as in Add). Additionally, our
scheme also offers a significantly faster system-side, en-
abling the use of weaker hardware in operator terminals
(such as subway turnstiles).
Regarding practical implementations on smart cards,

possible problems might arise from the amount of RAM
required (which we did not optimize for on our smart-
phone implementation) and bad connectivity using NFC
in passive mode. As almost all multiplications are fixed-
point, storing pre-computation tables would allow for
more efficient algorithms. However, this requires such
tables for every element in the common reference string,
which requires somewhat large amounts of permanent
storage.
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A Formal Instantiations of Build-
ing Blocks

A.1 Commitment Scheme
Definition A.1 (Non-interactive commitment scheme)
The triple (Setup,Com,Open) is called a non-interactive
commitment scheme for message space M with group
setup SetupGrp if the following holds:

Completeness: For all gp ← SetupGrp(1k), all
crs ← Setup(gp) and all m ∈ M and (C, d) ←
Com(crs,m) it holds that Open(crs,m,C, d) = 1

Perfectly Hiding: For all (unbounded) adversaries A

Pr

 gp ← SetupGrp(1k); crs ← Setup(gp);
(m0,m1)← A(crs); b← {0, 1}
(C, d)← Com(crs,mb) : A(crs, C) = b

 = 1
2

Binding: For all PPT adversaries A

Pr


gp ← SetupGrp(1k); crs ← Setup(gp)
(C,m, d,m′, d′)← A(crs) :
m 6= m′ ∧ Open(crs,m,C, d) = 1
∧ Open(crs,m′, C, d′) = 1

 ≈ 0

The commitment scheme is called additively homo-
morphic if the message space M is an additive group
and it has an algorithm for adding commitments such
that the resulting commitment can be opened to the sum
of the messages.
It is called equivocable, if knowledge of a trapdoor al-
lows opening of commitments to arbitrary messages and
existence of the trapdoor cannot be detected.

We use Pedersen multi-commitments:

Definition A.2 (Pedersen Multicommitments) The
Pedersen multi-commitment scheme is given by:

Setup(gp, l) samples x1, . . . , xl ← Z∗p and returns crs :=
(H,H1, . . . ,Hl) := (G1, x1G1, . . . , xlG1).

SimSetup(gp, l) works as Setup(gp, l), but sets td :=
(x1, . . . , xl) as trapdoor, and returns (crs, td).

Com(crs,m) where m = (m1, . . . ,ml) samples d ← Z∗p
and returns (C, d) := (dH +

∑l
i=1miHi, d).

SimCom(crs) returns (C, d) := (dH, d), where d← Z∗p.

Open(crs,m,C, d) where m = (m1, . . . ,ml) returns 1 if
dH +

∑l
i=1miHi = C and 0 otherwise.

CAdd(C1, C2) returns C1 + C2.

DAdd(d1, d2) returns d1 + d2.

Equiv(C, d,m, td) returns d′ = d−
∑l
i=1mlxl where m =

(m1, . . . ,ml) and td = (x1, . . . , xl).

Definition A.3 (Blinded Pedersen Commitment)
For the blinded Pedersen commitment, Setup adds
another element Z ← G \ {0} to the common reference
string, and Com calculates the commitment (γZ, γC)
as described above. The unveil information consists of
(d, γ).

Theorem A.4 If the DLOG assumption holds with
regard to SetupGrp, the Pedersen multi-commitment
scheme is an equivocable, additively homomorphic non-
interactive commitment scheme and the blinded variant
is an equivocable non-interactive commitment scheme.

A.2 Signatures
Definition A.5 (Signature Scheme) A signature
scheme (with setup SetupGrp and message space M)
is a triple (KeyGen,Sign,Verify) which satisfies correct-
ness: ∀gp ← SetupGrp(1n),∀(PK, sk) ← KeyGen(gp),
∀m ∈M: Pr[Verify(PK,m,Sign(sk,m)) = 1] = 1
It is called EUF-CMA secure if for all PPT adversaries
A with access to a signing oracle Ssk we have

Pr

 gp ← SetupGrp(1n); (PK, sk)← KeyGen(gp);
(m∗, σ∗)← ASsk(·)(PK) :
m∗ /∈ QSsk

A ∧ Verify(PK,m∗, σ∗) = 1

 ≈ 0

where QSsk
A is the set of all messages m for which A did

an oracle query.

A.3 Zero-Knowledge
Definition A.6 (ZKPoK) For a polynomial time de-
cidable ternary relation R we define the group-dependent
language Lgp as the set of x for which there exists w with
(gp, x, w) ∈ R. We call w a witness for x.
An interactive zero-knowledge proof of knowledge con-
sists of PPT algorithms Setup, SimSetup, ExtSetup and
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interactive PPT algorithms (P,V) called the prover and
the verifier. By tr = 〈P(x),V(y)〉 we denote the public
transcript produced by the interaction between P and V,
ending with V either accepting or rejecting.
Moreover, we require the following properties:

Perfect completeness: For all gp ← SetupGrp(1n),
crs ← Setup(gp), (x,w) ∈ Lgp : 〈P(x,w),V(x)〉=1.

Composable Zero-Knowledge: There exists a simu-
lation trapdoor and a PPT algorithm called the simula-
tor that, when given the simulation trapdoor, can simu-
late the prover without access to a witness for any PPT
verifier V∗ when given black-box access to V∗ in a way
that even an adversary that generates the statement to
be proven and is also given the simulation trapdoor has
only negligible advantage in deciding whether transcripts
are produced by the simulator or an actual interaction be-
tween P and V∗. Additionally, existence of the trapdoor
must be undetectable from the crs.

Witness-Extended Emulation There exists an ex-
pected PPT extractor E that when given access to a tran-
script oracle of the interaction of a prover P∗ with the
verifier V produces a transcript indistinguishable from
one obtained from a real interaction between P∗ and V,
and if the transcript is accepting also outputs a valid wit-
ness w. Note that this also implies soundness.

We extend the generic sigma protocol introduced by
Maurer [28] with a Blum coin-toss to achieve concurrent
zero-knowledge:

Definition A.7 (Modified Zero-Knowledge Protocol)
Our modified ZK scheme is given by:

• Setup(gp) generates crs ← CZK.Setup(gp) and out-
puts crspok = crs.

• SimSetup(gp) generates
(crs, td) ← CZK.SimSetup(gp) and outputs
(crspok, tdpok) = (crs, td).

• The interactive ZKPoK for x : Φ(x) = Z is per-
formed roughly as follows:
P picks a random k ← A, computes T = Φ(k) and
sends T together with a commitment on his half of
the challenge to V
V randomly picks his half of the challenge and
sends it to P
P computes the challenge c from the two halves,
sets r = k+cx and sends r together with the open-
ing of his challenge half to V
V computes c and checks that Φ(r) = T+cZ holds.

Theorem A.8 The protocol in Definition A.7 is an ar-
gument for the relation Rgp with (gp, Z, x) ∈ R ⇔
Φ(x) = Z. It has composable perfect zero-knowledge
if CZK is equivocable and witness-extended emulation if
CZK is binding.

Composable perfect zero-knowledge follows from equivo-
cability of CZK (see [14]), the proof for witness-extended
emulation is straightforward.

Definition A.9 (Bulletproof Range Proof) The Bul-
letproof range proof scheme consists of an PPT
algorithm Setup and an interactive protocol RangeProof
between a prover P and a verifier V.

Setup(gp, l) generates a common reference string crsrp
for the range [0, 2l].

RangeProof The prover P with inputs (crsrp, v, r, C)
convinces the verifier V with inputs (crsrp, C) that
C = Com(v; r) and that v ∈ [0, 2l − 1].

For details on how the interactive proof is performed, see
[8].

Theorem A.10 The range proof in Definition A.9 has
perfect completeness, perfect special honest verifier zero-
knowledge and witness extended emulation. If the chal-
lenge is replaced by a Blum coin toss, it has perfect com-
posable zero-knowledge.

For the proof see [8, Cor. 2] and [14] for composable
zero-knowledge.

B Formal Definitions of BBA+
Definition B.1 (Owner-Binding) A trapdoor-linkable
BBA+ scheme is called owner-binding if for any PPT
adversary A in the experiments Expob-issue

BBA+,A(n) and
Expob-acc-ver

BBA+,A (n) from Figure 9 the advantages of A de-
fined by

Advob-issue
BBA+,A(n) := Pr

[
Expob-issue

BBA+,A(n) = 1
]

Advob-acc-ver
BBA+,A (n) := Pr

[
Expob-acc-ver

BBA+,A (n) = 1
]

are negligible in n.

Experiment Expob-issueBBA+,A(n)
(crs, td)← Setup(1n)
(PKI , skI)← IGen(crs), (PKU , skU )← UGen(crs)
b← AMalIssue,MalAcc,MalVer(crs,PKI ,PKU )
The experiment returns 1 iff A made a successful call to
MalIssue(PKU ).

Experiment Expob-acc-verBBA+,A (n)
(crs, td)← Setup(1n), (PKI , skI)← IGen(crs)
b← AMalIssue,MalAcc,MalVer(PKI)
The experiment returns 1 iff A made a successful call to MalAcc or
MalVer such that ExtractUID applied to that call outputs a public
key PKU for which MalIssue has never been called before.

Figure 9. Owner-binding experiments for Issue and Add/Sub

Definition B.2 (Double-Spending Detection) A
trapdoor-linkable BBA+ scheme ensures double-spending
detection if for any PPT adversary A in the experiment
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Expdsd
BBA+,A(n) from Figure 10 the advantage of A defined

by
Advdsd

BBA+,A(n) := Pr
[
Expdsd

BBA+,A(n) = 1
]

(5)

is negligible in n.

Experiment ExpdsdBBA+,A(n)
(crs, td)← Setup(1n), (PKI , skI)← IGen(crs)
b← AMalIssue,MalAcc,MalVer(PKI)
The experiment returns 1 iff A did two successful MalAcc/MalVer
calls resulting in two double-spending tags dstag1 = (s, z1) and
dstag2 = (s, z2) with extracted public keys PK(1)

U and PK(2)
U such

that at least one of the following conditions is satisfied:
– PK(1)

U 6= PK(2)
U or

– IdentDS(PKI , dstag1, dstag2) 6= (PK(1)
U , π) or

– IdentDS(PKI , dstag1, dstag2) = (PK(1)
U , π) but

VerifyGuilt(PKI ,PK(1)
U , π) = 0

Figure 10. Double-spending detection experiment.

Definition B.3 (False-Accusation Protection) A
trapdoor-linkable BBA+ scheme ensures false-accusation
protection if for any PPT adversary A = (A0,A1) in the
experiment Expfacp

BBA+,A(n) from Figure 11 the advantage
of A defined by

Advfacp
BBA+,A(n) := Pr[Expfacp

BBA+,A(n) = 1] (6)

is negligible in n.

Experiment ExpfacpBBA+,A(n)
(crs, td)← Setup(1n)
(PKI , skI)← A0(crs), (PKU , skU )← UGen(crs)
π ← ARealHonIssue,RealHonAdd,RealHonSub

1 (PKI ,PKU )
The experiment returns 1 iff VerifyGuilt(PKI ,PKU , π) = 1.

Figure 11. False accusation protection experiment

C Proofs for the Signature
Scheme

C.1 Proof of EUF-CMA Security
We make use of the following Lemma:

Lemma C.1 (Schwartz [33]) Let p be prime and let
t ≥ 1. Let F (X1, . . . , Xk) ∈ Zpt [X1, . . . , Xk] be a
nonzero polynomial of total degree d. Then for random
x1, . . . , xk ∈ Zpt , the probability that F (x1, . . . , xk) = 0
is at most d

p .

Proof (Proof of Theorem 6.2)
First note that because the Pedersen commitment scheme
is binding and the user performed a proof of knowledge
of m, the message being signed during BlindSign is well-
defined.1

1And since the adversary had to compute the commitment, the
message m can be obtained from the queries to the group oracle.

In the generic group model, the adversary is only al-
lowed black-box access to the group. More precisely,
group elements are identified by uniformly random cho-
sen handles from {0, 1}n. The adversary receives handles
for the group elements in his input and is given access
to oracles to compute the group law and inversion that
take identifiers and return an identifier for the result.

As a first step, we modify the group oracle as follows:
The oracle keeps a list of the handles (random bitstrings)
the adversary receives and the internal representation of
that group element. Internally, group elements are repre-
sented by polynomials Fi ∈ Zp[X1, . . . , Xk]. The genera-
tor G is represented by the constant polynomial 1 and the
public key PK is represented by the constant polynomial
sk (where skG = PK). For each element H,Z,H0, . . . ,Hl

of the common reference string a new indeterminate
XH , XZ , XH0 , . . . XHl

is introduced and the element is
represented by the polynomial Xi for the correspondent
indeterminate. When the adversary queries the group
law oracle on two elements Fi, Fj the resulting group
element is represented by Fk = Fi + Fj, and when he
queries the group inversion oracle on Fi, the resulting
group element is represented by Fk = −Fi. If Fk is al-
ready in the list, the corresponding handle is returned,
otherwise a new one is chosen at random. After the
adversary finished and outputted his solution, a random
x := (x1, . . . , xk) ∈ Zkp is chosen and all polynomials are
evaluated at x. During interaction, whenever a random
group element is chosen (including cases where a random
scalar s is chosen and the group element is computed by
sY for some group element Y ) a new indeterminate Xi

is introduced and the element is represented as above.
Whenever non-random group elements are computed, the
oracle addition/inversion is used.

More precisely, during the BlindSign protocol, the ad-
versary receives group elements Ai, B1,i, B2,i. The Ai
are again represented by a polynomial in a newly intro-
duced indeterminate Xi, while B1,i, B2,i are represented
by polynomials in existing indeterminates (and depend
on the group element Ci the adversary supplied).

If two distinct polynomials Fi, Fj evaluate to the same
group element, a simulation failure occurs and we abort,
otherwise this is indistinguishable to the real experi-
ment. We call this event FG. Note that for an ad-
versary performing qG queries to the group oracle and
engaging in qsign signing protocols, there exist at most
5 + l + qG + 3qsign ≈ qG + 3qsign polynomials Fi in at
most 3 + l + qsign ≈ qsign indeterminates Xj. Note also
that the polynomials Fi are of degree either 0 or 1, as for
Fk = Fi + Fj it holds that the degree of Fk is at most
the larger of the degrees of Fi and Fj, and polynomials
inserted otherwise are of degree 0 or 1. Then it follows
from Lemma C.1 that the probability of two polynomials
Fi and Fj in qsign indeterminates to be equal on ran-
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dom x ∈ Zqsign
p is at most 1

p , and as there are at most(
qG+3qsign

2
)
pairs of polynomials, we have

Pr[FG ] ≈
(
qG + 3qsign

2

)
1
p

(7)

Then observe that an adversary has two options to
come up with a valid signature:
1. For a given signature on message m obtained

through interaction with the signing oracle, open the
commitment (Z̃, C̃) part of the signature to a differ-
ent message m′

2. Generate a fresh signature by computing some group
elements via the group oracle and some non-group
data that arbitrarily depends on the responses to the
group and random oracles

For simplicity, we first assume that no hash collisions
occur, i.e. there are no queries q1, q2 to the random or-
acle H so that H(q1) = H(q2). Should two such queries
occur, we abort. We call this event FH (hash collision).
Since H is a random oracle, for an adversary performing
qH queries to H, we have

Pr[FH ] ≈
(
qH
2

)
1
p

(8)

Regarding (1), note that (Z̃, C̃) uniquely defines C:
For the adversary to be able to open the blinded commit-
ment, he must supply some γ ∈ Zp so that γZ = Z̃ and
γC = C̃. Two different openings d and d′ to different
messages m and m′ for C result in two different poly-
nomials F and F ′ with coefficients m, d and m′, d′ that
both evaluate to C. This constitutes a simulation failure
as described above and is thus already contained in FG.
For (2), the adversary needs to forge the ZKPoK,

i.e. come up with group elements Z̃, C̃ and val-
ues c̃, r̃, c̃′, r̃′1, r̃

′
2, r
′
3 ∈ Zp for which c̃ + c̃′ =

H(Z̃, C̃, Ã, B̃1, B̃2, B3) holds for Ã = r̃G + c̃PK,
B̃1 = r̃′1G + c̃′C̃, B̃2 = r̃′2H + c̃′(Z̃ − C̃) and
B3 = r′3Z + c̃′Z̃.
We call the first part of the ZKPoK (knows sk

such that skG = PK, corresponding to c̃) the key
side and the second part (knows (w1, w2, γ) such that
w1G = C̃, w2H = (Z̃ − C̃), γZ = Z̃, corresponding to
c̃′) the message side.
Now for the key side, observe that the adversary only

receives non-group elements of the form ri = ai + cisk
with new random ai each time, and ai and sk otherwise
are only accessed through the group oracle, whose output
is statistically independent of ai and sk, and thus ri is
statistically independent of sk. Thus, the probability to
output some Ã ∈ G and then for c̃ dependent on Ã suc-
cessfully compute r̃ for which it holds that Ã = r̃G+ c̃PK
is at most qG

2H(c̃) , where H(c̃) is the entropy of c̃.
For the message side, following equations must hold:

B̃1 = r̃′1G+ c̃′C̃ (9)
B̃2 = r̃′2H + c̃′(Z̃ − C̃) (10)
B3 = r′3Z + c̃′Z̃ (11)

Now, we view the group elements A uses as multivariate
polynomials Fi(X1, . . . , Xl) and rewrite the equations as

r̃′1 = FB̃1
− c̃′FC̃ (12)

r̃′2XH = FB̃2
− c̃′(FZ̃ − FC̃) (13)

r′3XZ = FB3 − c̃′FZ̃ (14)

So, after evaluating the polynomials at x chosen uni-
formly random as mentioned above, equation (12) holds
if either FB̃1

and FC̃ are both constant or only with prob-
ability 1

2H(c̃′) , where H(c̃′) is the entropy of c̃′. Similarly,
equation (14) holds if FZ̃ and FB3 are both of the form
riXZ or again only with probability 1

2H(c̃′) . For equa-
tion (13) to hold, both FB̃2

as well as (FZ̃ −FC̃) need to
be of the form riXH , otherwise it again only holds with
probability 1

2H(c̃′) . But as FZ̃ = riXZ and FC̃ = rj, it
cannot hold that (FZ̃−FC̃) = rkXH . Thus, the probabil-
ity that equations (12) to (14) are simultaneously satis-
fied is only 1

2H(c̃′) , and the probability that both the key-
side and the message-side are simultaneously satisfied is
at most

qG
2H(c̃)

qG
2H(c̃′) = q2

G
2H(c̃)+H(c̃′)

. Since it has to hold that c̃+c̃′ = c and H(c) ≈ n since H
is a random oracle and it holds that H(c) = H(c̃+ c̃′) ≤
H(c̃, c̃′) ≤ H(c̃) +H(c̃′) we have that H(c̃) +H(c̃′) ≥ n
and thus the probability of (2) is at most

qG
2n (15)

So to conclude, the probability of an adversary to suc-
ceed in forging a signature is at most the sum of 1 and 2
and the failure events FG and FH. So from (7), (8) and
(15) we have

Adveuf-cma
A (n) ≤ q2

G
2n +

(
qG + 3qsign

2

)
1
p

+
(
qH
2

)
1
p

which is negligible in n since qG, qH and qsign are poly-
nomials in n, while p ≈ 2n. �

C.2 Proofs of Blindness/Zero-
Knowledge

Proof (Proof of Theorem 6.3)
The only information that is sent outside the composable
perfect zero-knowledge proof Π1 is C = PC.Com(m; d)
which is statistically independent of m as PC is perfectly
hiding and e, which is statistically independent of m be-
cause H is a random oracle. Extraction of the signed
message directly follows from witness-extended emula-
tion of Pi1. �

Zero-Knowledge Verification First note that be-
cause C is uniquely defined by (γZ, γC) and C was sent
to the signer, the protocol only achieves computational
zero-knowledge (learning C during this interaction al-
lows linking the signature to a signing interaction, thus
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we need to treat C as part of the witness). We follow
the proof of blindness in [3].

Proof (Proof of Theorem 6.4)
The user sends the following information to the verifier:
Z̃ = γZ, C̃ = γC, r̃ = r + t1, c̃ = c + t2, r̃

′
1 = γr′1 +

t3, r̃
′
2 = γr′2 + t5, c̃

′ = c′ + t4, r
′
3 = u′3 + c′γ. The ti have

all been chosen uniformly at random by the user, thus
r̃, r̃′1, r̃

′
2, c̃, c̃

′ and r′3 are all statistically independent of
the values r, r′1, r′2, c, c′ sent by the signer. Additionally,
it holds that r̃G+ c̃X = Ã, r̃′1G+ c̃′C̃ = B̃1 and r̃′2H +
c̃′(Z̃ − C̃) = B̃2, but Ã, B̃1 and B̃2 are also statistically
independent of A,B1 and B2. Finally, c̃ + c̃′ = ε is
statistically independent of e = ε − t2 − t4. Thus, it
remains to show that any adversary that can link Z̃, C̃
to C can be used to solve the DDH problem.
First, note that there are two types of signatures a

simulator might output: σ = (Z̃, C̃, r̃, c̃, r̃′1, r̃′2, c̃′, r′3) is
correct if there exists γ such that Z̃ = γZ and C̃ = γCi
for some interaction i with the signer and the signature
verifies. The signature σ is fake if no such γ exists (but it
still verifies). It is easy for the simulator to output a fake
signature with control over the random oracle: it picks
random Z̃, C̃ ← G, r̃, r̃′1, r̃′2, c̃, c̃′, r′3 ← Zp and programs
the random oracle so that the signature verifies.
Now, observe that an adversary able to successfully

distinguish between a correct and a fake signature (with
non-negligible advantage ε) can be used to solve the DDH
problem. We construct a reduction B as follows:
The reduction B gets as input a DDH instance

(gp, A,B,D). B then sets Z = A and H = eG
and H0, . . . ,Hl to e0A, . . . , elA for randomly chosen
ei ∈ Zp. Then B constructs the signature as Z̃ = D and
C̃ = kD for random k ← Zp, chooses all other values
at random and programs the random oracle as explained
above. (Note that as B knows the discrete logarithms of
H0, . . . ,Hl and thus knows k ∈ Zp for honestly gener-
ated commitments C so that C = kA.) If (gp, A,B,D)
is a DH-tuple, then it holds that A = aG,B = bG
and D = abG, and thus Z̃ = D = bA = bZ and
C̃ = kD = kbA = bC is identically distributed as a cor-
rect signature. Conversely, if (gp, A,B,D) is not a DH-
tuple, then (Z̃, C̃) is a fake signature. Thus, B outputs
“DH” if A outputs “real” and “random” otherwise. �

D Proofs for BBW
D.1 Extraction
Proof (Proof of Theorem 5.1)
We consider an adversary AMalIssue,MalAdd,MalSub that
stopped after interacting q times with the three oracles,
where q is bounded by a polynomial in the security pa-
rameter.
For any successful interaction with one of the oracles

(from the oracle’s point of view) we extract a witness
for the argument used in the interaction in the following
way: We fix the randomness of A and that of all oracles.

Then, starting with the interaction for which the ZKPoK
was completed last, we iteratively extract witnesses one-
by-one: For the interaction we want to extract, we supply
the extractor E of the corresponding ZKPoK with a tran-
script oracle O of all messages part of the ZKPoK. Due
to the witness-extended emulation property and since the
interaction was successful and thus the first transcript
produced is accepting, E outputs a witness with over-
whelming probability in expected polynomial time.
We repeat this step for every successful oracle inter-

action, of which there are at most q. This results in an
extraction algorithm E∗ with expected runtime q·t where t
is the expected runtime of E. Since E has expected poly-
nomial runtime and q is bounded by a polynomial, the
resulting runtime is expected polynomial. As the proba-
bility for successful extraction is overwhelming for each
interaction and the amount of interactions is bounded
by q, the probability that all witnesses are successfully
extracted is overwhelming. �

D.2 Simulation-Linkability
We start with the requirement of P2, P3 and BlindSign
being complete:

Lemma D.1 P2 and P3 are complete.

Lemma D.2 The protocol BlindSign to obtain blind sig-
natures is complete.

Proof (Proof of Lemma D.1)
We prove Lemma D.1 for P2, the proof for P3 works
analog. A transcript for P2 is of the form tr =: (π1, c, π2)
where π1 =: (T,CZ) and π2 = (c′, dZ, r). Since tr is
accepting, it holds for the group homomorphism Φ: A→
B used in P2 and the statement Z that Φ(r) = T + (c+
c′)Z, as well as CZK.Open(c′, CZ, dZ) = 1.
c′, dZ and CZ are part of the protocol, and the honest

prover P can choose the same values. Since Z is in the
image of Φ and Φ is a homomorphism, it follows that
T is also in its image. Thus, there exists (at least one)
x ∈ A for which it holds that Φ(x) = Z. Then, for fixed
c, c′ and x, there exists k ∈ A such that r = k+ (c+ c′)x
and Φ(k) = T . Hence, the honest prover P with witness
x and randomness k, c′, dZ interacting with the honest
verifier V with randomness c produce the same transcript
tr . �

Proof (Proof of Lemma D.2)
A transcript for BlindSign is of the form tr =:
(trZ, (A,B1, B2), e, (c, r, c′, r′1, r′2)) where trZ is a tran-
script of the zero-knowledge proof of knowledge for the
opening of the commitment C given as common input to
the user and signer. With the same argument as in the
proof of Lemma D.1 this zero-knowledge protocol is com-
plete and there exist suitable inputs and random choices
for the honest user U that lead to the same transcript
trZ. All messages sent by the signer only depend on the
common input C, his own random choices and the mes-
sage e, so as long as there are inputs for the honest user
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that lead to the same value of e, the resulting interac-
tion leads to the same transcript tr . e is calculated as
ε− t2 − t4, where ε is the output of H on values depend-
ing on t2 and t4, so there need to exist values for which
H outputs e + t2 + t4. As G is cyclic with prime order,
every group element is a generator. Thus, independent
of the choices of t2 and t4, there exist values for t1, t3
and t5 so that α, β1 and β2 can be any element from
G. Since H is a random oracle, for some fixed values
of ζ, ζ1 and µ, the output of H(ζ, ζ1, α, β1, β2, µ) is still
uniformly random, and thus there exist suitable choices
for t1, . . . , t5 so that H(. . .) = e+ t2 + t4 (as there are p3

possible values for (α, β1, β2) but only p possible values
for H(. . .)). �

Now we can show that our scheme is indeed
simulation-linkable:

Proof (Proof of Theorem 5.2)
Completeness: We need to show that any accepting
transcript could be produced by interaction of an honest
user U with an honest accumulator AC/verifier V when
given suitable inputs and randomness. More precisely,
we need to show that for all values part of an accepting
transcript, there exist inputs and random choices for U
and AC/V that result in these values being part of the
transcript.
A transcript for Add has the form
tr =: (u2, (s, t, C ′, σ1, ), trP2(C ′′, d′′, s′′), trBlindSign).
For trP2 by Lemma D.1, and for trBlindSign there exist
suitable inputs and random choices by Lemma D.2.
s is part of the token and chosen uniformly at random
during honest token generation, so any value of s can
be part of a token given as input to U . t is calculated
as t = skUu2 + u1, so for any user secret key skU and
any value u2 sent by AC/V, there exists a value u1 that
results in t, which is also chosen uniformly at random
during honest token generation and can thus be part of
the input token. C ′ is a Pedersen commitment on some
messagem′. As Pedersen commitments are perfectly hid-
ing, there exists a random choice d′ for any message m′
so that C ′ is a commitment on m′ with opening infor-
mation d′. σ1 =: (ζ, ζ1, ρ, ω, ρ′1, ρ′2, ω′, µ) is part of a
valid signature σ := (σ1, σ2 := (d, γ)). Since P2/P3
have witness-extended emulation (and are thus sound),
we have that ζ = γZ and ζ1 = γC for some commit-
ment C (note that this fixes the choice of γ). Then, as
above, there exists a random choice d for any message
m so that C is a commitment on m with opening infor-
mation d. Now, as the signature basically consists of a
(non-interactive via Fiat-Shamir transformation) sigma-
protocol zero-knowledge proof, with the same argument
as in the proof of Lemma D.1 there exist suitable inputs
and random choices for which σ1 is produced.

Extractability: Since P2 and P3 have witness-
extended emulation, there exists an extractor E for them.
Extraction for Σ-protocols is achieved by first getting

enough related transcripts and then supplying them to an
algorithm KnowledgeExtractor that outputs the witness.
It is thus possible to construct GenerateTranscripts and
KnowledgeExtractor from E and implement ExtractUID by
running KnowledgeExtractor to receive a witness x con-
taining the user secret key skU and then computing and
outputting PKU = skUG. �

D.3 System Security
We first state the slightly modified formal definitions for
security.

Definition D.3 (Oracles) The adversary in the follow-
ing security games is given access to the following ora-
cles.

MalIssue(PKU ) lets the adversary initiate the Issue pro-
tocol with an honest issuer I provided that there is
no pending MalIssue call for PKU and PKU has also
not been used in a successful call to MalIssue before.

MalAdd(attr , v) is used by the adversary to initiate the
Add protocol with honest AC for input v ∈ V.

MalSub(attr , v) is used by the adversary to initiate the
Sub protocol with honest V for input v ∈ V.

Definition D.4 (Owner-Binding) A simulation-
linkable BBW scheme is called owner-binding if for any
PPT adversary A in the experiments Expob-issue

BBW,A(n) and
Expob-add-sub

BBW,A (n) from Figure 12 the advantages of A
defined by

Advob-issue
BBW,A(n) := Pr

[
Expob-issue

BBW,A(n) = 1
]

Advob-add-sub
BBW,A (n) := Pr

[
Expob-add-sub

BBW,A (n) = 1
]

are negligible in n.

Experiment Expob-issueBBW,A(n)
crs← Setup(1n)
(PKI , skI)← IGen(crs), (PKU , skU )← UGen(crs)
b← AMalIssue,MalAdd,MalSub(crs,PKI ,PKU )
The experiment returns 1 iff A made a successful call to
MalIssue(PKU ).

Experiment Expob-add-subBBW,A (n)
crs← Setup(1n), (PKI , skI)← IGen(crs)
b← AMalIssue,MalAdd,MalSub(PKI)
The experiment returns 1 iff A made a successful call to MalAdd or
MalSub such that ExtractUID applied to that call outputs a public
key PKU for which MalIssue has never been called before.

Figure 12. Owner-binding experiments for Issue and Add/Sub

Definition D.5 (Balance Binding) A simulation-
linkable BBW scheme is called balance-binding if for
any PPT adversary A in the experiment Expbb

BBW,A(n)
from Figure 13 the advantage of A defined by

Advbb
BBW,A(n) := Pr

[
Expbb

BBW,A(n) = 1
]

(16)

is negligible in n.
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Experiment ExpbbBBW,A
crs← Setup(1n)
(PKI , skI)← IGen(crs)
b← AMalIssue,MalAdd,MalSub(PKI)
The experiment outputs 1 iff either of the following holds:

1. ExtractUID fails to extract a public key for any of the suc-
cessful calls to MalAdd or MalSub

2. or A made a successful call to MalSub such that
– all successful MalIssue/MalAdd/MalSub calls produce

unique token version numbers
– the amount of points v∗ ∈ V subtracted exceeds the

sum of previously collected points w for PKU (ex-
tracted from the call to MalSub), i.e.

v
∗
> w =

∑
v∈V Add

PKU

v −
∑

v∈V Sub
PKU

v,

where V Add
PKU

is the list of all accumulation values v ∈ V
that appeared in previous successful calls to MalAdd for
which PKU has been extracted using ExtractUID, and
V Sub

PKU
for MalSub respectively.

Figure 13. Balance binding experiment.

Definition D.6 (Double-Spending Detection) A
simulation-linkable BBW scheme ensures double-
spending detection if for any PPT adversary A in the
experiment Expdsd

BBW,A(n) from Figure 14 the advantage
of A defined by

Advdsd
BBW,A(n) := Pr

[
Expdsd

BBW,A(n) = 1
]

(17)

is negligible in n.

Experiment ExpdsdBBW,A(n)
crs← Setup(1n)
(PKI , skI)← IGen(crs)
b← AMalIssue,MalAdd,MalSub(PKI)
The experiment returns 1 iff A did two successful MalAdd/MalSub
calls resulting in two double-spending tags dstag1 = (s, z1) and
dstag2 = (s, z2) such that at least one of the following conditions
is satisfied:

– ExtractUID fails to extract PK(1)
U or PK(2)

U for the respective
calls or

– PK(1)
U 6= PK(2)

U or
– IdentDS(PKI , dstag1, dstag2) 6= (PK(1)

U , π) or
– IdentDS(PKI , dstag1, dstag2) = (PK(1)

U , π) but
VerifyGuilt(PKI ,PK(1)

U , π) = 0

Figure 14. Double-spending detection experiment.

We split the proof of Theorem 5.3 in separate
proofs for owner-binding, double-spending detection and
balance-binding.

Owner-Binding The proof for owner-binding wrt.
Issue is a straight-forward reduction to the CDH prob-
lem.
Proof (Proof of owner-binding wrt. Add/Sub)
We proceed in a series of games.
Game 1 is the real experiment.
In Game 2, if ExtractUID fails for any call to MalAdd

or MalSub, the experiment aborts and returns 0. We call
this event failure event F1 (ExtractUID failed).

In Game 3, when A finished running, we use
the extractor E∗ from Theorem 5.1 to extract wit-
nesses for all zero-knowledge proofs. More pre-
cisely, for each call to MalIssue, we extract a mes-
sage m′ := (s′, w = 0, skU , u1) and store a record
(PKU ,m′,m∗ := (s′ + s′′, w = 0, skU , u1)), where PKU
is the user public key for which MalIssue was called and
m∗ is the message for which A obtained a signature, with
s′′ being the issuers random share of the serial number.
For each call to MalAcc or MalVer we extract a message
m′ := (s′, w, skU , u′1) and a message m := (s, w, skU , u1)
together with a valid signature σ and store a record
(PKU ,m′,m, σ,m∗ := (s′ + s′′, w + v, skU , u′1)), where
PKU is the public key extracted by ExtractUID and m∗

is the message for which A obtained a signature, with s′′
being the issuers random share of the serial number and
v the amount of points collected/redeemed. If extraction
of any witness fails, the game aborts and returns 0. We
call this event failure event F2 (extraction failure).
In Game 4 we check for each extracted message m if

there exists a previous call to MalIssue, MalAcc or MalVer
for which our record contains m∗ with m∗ = m, i.e. if ev-
ery message for which A proves knowledge of a signature
has indeed been signed by the experiment. If this is not
the case for any call, the experiment aborts and returns
0. We call this event failure event F3 (forged signature).
Let Advgame−i

BBW,A (n) = Pr
[
Expgame−i

BBW,A (n) = 1
]
denote the

advantage of A in Game i. Thus, by definition,
Advgame-1

BBW,A(n) = Advob-acc-ver
BBW,A (n).

Since each game only differs from the previ-
ous one if the respective failure event occurred,
we also have Advgame-4

BBW,A(n) = Advgame-1
BBW,A(n) −

Pr
[
Expgame−1

BBW,A (n) = 1 ∧
(∨3

i=1 Fi
)]

.

Now lets consider the success probability of A in Game
4: As we already ensured that ExtractUID always suc-
ceeds, the only way for A to win is to make a call to
MalAcc or MalVer which results in an extracted PKU for
which MalIssue has not been called previously.
So consider the first call to MalAcc or MalVer where

this happens. We have a record for this call containing a
message m := (s, w, skU , u1) and a valid signature σ on
m. As we ensured that m has been signed in a previous
call, we have another call for which the record contains
m∗ = m and a public key ˆPKU . But due to the equations
shown in the respective zero-knowledge proof (and since
soundness for the proof holds when extraction was suc-
cessful), we know that ˆPKU = PKU must hold. Thus, if
the call containing m∗ was to MalAcc or MalVer, it is a
previous call containing PKU , which contradicts the as-
sumption of considering the first such call. If it is a call
to MalIssue, it contradicts the assumption that MalIssue
has not been called for PKU .
Thus, it holds that A can not win this game and we

have Advgame-4
BBW,A(n) = 0. Now, let us discuss the failure

events. F1 only occurs with negligible probability as BBW
is simulation-linkable, so we have Pr[F1 ] ≤ negl(n). F2
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also only occurs with negligible probability according to
Theorem 5.1, so we have Pr[F2 ] ≤ negl(n). When F3
occurs, we extracted a valid signature σ on a message m
that has never been signed. Thus, we can construct an
adversary BEUF-CMA against the EUF-CMA security of
S and it holds that Pr[F3 ] = Adveuf-cma

S,BEUF-CMA
(n).

Putting everything together, we have

Advob-acc-ver
BBW,A (n) = Advgame-1

BBW,A(n)

= Pr
[

Expgame−1
BBW,A (n) = 1 ∧ ¬

( 3∨
i=1
Fi
)]

+ Pr
[

Expgame−1
BBW,A (n) = 1 ∧

( 3∨
i=1
Fi
)]

≤ Advgame-4
BBW,A(n) + Pr

[( 3∨
i=1
Fi
)]

≤ Pr[F1 ] + Pr[F2 ] + Pr[F3 ]
≤ negl(n) + negl(n) + Adveuf-cma

S,BEUF-CMA
(n)

which is negligible since S is EUF-CMA secure. �

Double-Spend Detection

Proof
We make use of the same sequence of games 1
to 4 as in the proof of owner-binding. Let
Advgame−i

BBW,A (n) = Pr
[
Expgame−i

BBW,A (n) = 1
]

again de-
note the advantage of A in Game i. We
thus have that Advgame-1

BBW,A(n) = Advdsd
BBW,A(n) and

Advdsd
BBW,A(n) ≈ Advgame-4

BBW,A(n) + Adveuf-cma
S,BEUF-CMA

(n).
Now let us again consider the success probability of A

in Game 4:
Let PK(1)

U ,m(1) := (s(1), w(1), sk(1)
U , u

(1)
1 ), σ(1) be the ex-

tracted values from the call resulting in dstag1 = (s, z1)
and PK(2)

U ,m(2) := (s(2), w(2), sk(2)
U , u

(2)
1 ), σ(2) from the

call resulting in dstag2 = (s, z2) respectively, with
s(1) = s(2) = s. Let also z1 =: (t(1), u

(1)
2 ) and

z2 =: (t(2), u
(2)
2 ). Note that it holds that PK(i)

U = sk(i)
U G.

There are 4 ways for A to win:
Case 1 ExtractUID fails to extract a PKU for either call
Case 2 PK(1)

U 6= PK(2)
U

Case 3 IdentDS(PKI , dstag1, dstag2) 6= (PKU , π)
Case 4 IdentDS(PKI , dstag1, dstag2) = (PK(1)

U , π) but
VerifyGuilt(PKI ,PK(1)

U , π) = 0
Case 1 can never happen, as we already ensured
ExtractUID successfully extracts PKU for all calls, hence
Pr[Case 1] = 0.
In Case 2 we have two messages m(1), m(2) that were
both signed by the experiment and for which it holds that
s(1) = s(2) but sk(1)

U 6= sk(2)
U (since PK(1)

U 6= PK(2)
U ). But

s(i) is chosen uniformly at random from Zp (observe that
for any s′ ∈ Zp and uniformly randomly chosen s′′ ← Zp
it holds that s′ + s′′ is uniformly random over Zp) and
thus the probability for s(1) = s(2) is at most q2

p where

q is the amount of successful calls A did to MalIssue,
MalAcc and MalVer. Hence, we have Pr[Case 2] ≤ q2

p .
For Case 3, recall that we have double spending tags
dstag1 and dstag2 with t(1) = sk(1)

U u
(1)
2 + u

(1)
1 and

t(2) = sk(2)
U u

(2)
2 + u

(2)
1 . From the definition of IdentDS

it follows that IdentDS(dstag1, dstag2) = (PK(1)
U , sk(1)

U ) if
the following conditions are satisfied: (1) sk(1)

U = sk(2)
U

(2) PK(1)
U = sk(1)

U G (3) u(1)
2 6= u

(2)
2 and (4) u(1)

1 = u
(2)
1 .

Assume PK(1)
U = PK(2)

U (otherwise Case 2 is satis-
fied). From the definition of ExtractUID, it follows that
PK(1)
U = sk(1)

U G,PK(2)
U = sk(2)

U G and thus sk(1)
U = sk(2)

U .
u

(1)
2 6= u

(2)
2 holds with probability at least 1 − q2

p as both
are chosen uniformly at random from Zp by the Accu-
mulator/Verifier. It remains the case that u(1)

1 6= u
(2)
1 .

Again, as we already ensured that m(1) and m(2) were
both signed by the experiment during a call to any or-
acle, this means there were two distinct calls that re-
sulted in the same serial number s. Thus, as in Case 2,
the probability for this is at most q2

p . This leads us to
Pr[Case 3 | ¬Case 2 ] ≤ q2

p + q2

p .
Case 4 can never happen due to the definitions of
IdentDS and VerifyGuilt: If IdentDS outputs (PKU , π)
(and not ⊥), it computed PKU as πG, while VerifyGuilt
checks whether PKU = πG. Thus Pr[Case 4] = 0.
Hence, A’s advantage in Game 4 is Advgame-4

BBW,A(n) ≤ 3q2

p
and we have that

Advdsd
BBW,A(n) ≈ 3q2

p
+ Adveuf-cma

S,BEUF-CMA
(n)

which is negligible since S is EUF-CMA secure and q2

p
is negligible. �

Balance-Binding This proof closely follows the proof
of [20, Thm. B.5].
Proof
We show that an adversary cannot make us miscount his
balance and that he cannot claim a higher balance than
what we counted.
To achieve this, we proceed in a series of games, where

the first game is the real experiment and the last game is
setup such that it is impossible for the adversary to win.
We show that the difference between two such games is
either negligible or any adversary able to differentiate
between them can be used to build an adversary against
one of the building blocks.
Firstly, we now explain the different games.
Game 1 is the real experiment.
In Game 2, if ExtractUID fails for any call to MalAcc

or MalVer, the experiment aborts and returns 0. We call
this event failure event F1 (ExtractUID failed).
In Game 3, when A finished running, we use

the extractor E∗ from Theorem 5.1 to extract wit-
nesses for all zero-knowledge proofs. More pre-
cisely, for each call to MalIssue, we extract a mes-
sage m′ := (s′, w = 0, skU , u1) and store a record
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(PKU ,m′,m∗ := (sout := s′ + s′′, w = 0, skU , u1), s′′),
where PKU is the user public key for which MalIssue was
called and m∗ is the message for which A obtained a
signature, with s′′ being the issuers random share of the
serial number. For each call to MalAcc or MalVer we
extract a message m′ := (s′, w, skU , u′1) and a message
m := (sin := s, w, skU , u1) together with a valid signature
σ and store a record (PKU ,m′,m, σin,m

∗ := (sout := s′+
s′′, w + v, skU , u′1), s′′), where PKU is the public key ex-
tracted by ExtractUID and m∗ is the message for which A
obtained a signature, with s′′ being the issuers random
share of the serial number and v the amount of points
collected/redeemed. If extraction of any witness fails,
the game aborts and returns 0. We call this event failure
event F2 (extraction failure).
In the following we view the set of transactions as a

directed graph, where each successful transaction is a ver-
tex and there exists an edge from transaction A to trans-
action B, if the serial number sout from A is equal to the
serial number sin of B.
In Game 4 we make sure that the indegree of ev-

ery vertex associated with a call to MalAcc or MalVer
is at least one, i. e. every serial number sin that
appeared in a call to MalAcc or MalVer was part of
a signed token generated in a previous interaction.
Let r̂ec = (P̂KU , m̂′, m̂ := (ŝin, ŵ, ŝkU , û1), σ̂in, m̂

∗ :=
(ŝout, ŵ

∗, ŝkU , û∗1), ŝ′′) denote the record of the transac-
tion considered. Then, the game checks for every suc-
cessful MalAcc/MalVer transaction (containing ŝin) if
there exists a previous transaction whose record contains
sout with sout = ŝin. If no such transaction exists, the
game aborts and returns 0. We call this event failure
event F3 (new serial number).
In Game 5 we now make sure that the indegree of ev-

ery vertex associated with a call to MalAcc/MalVer is at
most one, i. e. every serial number sin that appeared in a
call to MalAcc or MalVer has been signed in exactly one
previous transaction. To do so, the game now addition-
ally checks if there is more than one previous transaction
containing sout such that sout = ŝin. If at least two such
transactions exist, the game aborts and returns 0. We
call this event failure event F4 (serial number collision).
In Game 6 we make sure that the outdegree of every

vertex is at most one, i. e. that every serial number sout
is used as input in at most one other transaction. To do
so, for every call to MalAcc or MalVer the game checks
if there already exists another transaction containing sin
with sin = ŝin and if so aborts and returns 0. We call
this event failure event F5 (double spending).
In Game 7 we now have for every MalAcc/MalVer

transaction exactly one previous transaction where ŝin
was generated and signed. We now make sure that the
public key P̂KU in each new such transaction is equal to
the public key PKU from the previous transaction. If this
is not the case for the first time, the game aborts and
return 0. We call this event failure event F6 (miscount).

In Game 8 we check for over-claims along the path.
By now, our graph consists of unary trees, where the root
of each tree represents a call to MalIssue and consecu-
tive child nodes represent changes to the balance associ-
ated with the respective user (and we made sure that for
each such tree there is exactly one user associated with
the transaction, namely the one for which MalIssue was
called). Now, the game first checks that for each MalVer
transaction, it holds that w ≥ v (and thus ŵ ∈ V). Addi-
tionally the game checks each MalAcc transaction if for
its predecessor transaction record it holds that ŵ = w+v
and for each MalVer transaction that ŵ = w−v. If either
of these not the case for any transaction, a wrong bal-
ance has successfully been claimed and the game aborts
and returns 0. We call this event failure event F7 (wrong
claim).
Let Advgame−i

BBW,A (n) = Pr
[
Expgame−i

BBW,A (n) = 1
]
denote the

advantage of A in Game i. Thus, by definition,

Advgame-1
BBW,A(n) = Advbb

BBW,A(n) (18)

Note that in Game 8, if none of the failure events
occurred, what has been counted as balance for PKU up to
a MalVer call coincides with the claimed balance. Hence,
the adversary cannot win this game and we have

Advgame-8
BBW,A(n) = 0 (19)

Since each game only differs from the previous one if
the respective failure event occurred, we also have

Advgame-8
BBW,A(n) = Advgame-1

BBW,A(n)−

Pr
[

Expgame−1
BBW,A (n) = 1 ∧

( 7∨
i=1
Fi
)] (20)

Now let us discuss the failure events.
F1 only occurs with negligible probability as BBW is

simulation-linkable, thus

Pr[F1 ] ≤ negl(n) (21)

F2 only occurs with negligible probability according to
Theorem 5.1, so

Pr[F1 ] ≤ negl(n). (22)

If F3 occurs, we have a serial number ŝin that didn’t
occur in previous transactions. As we assume that P2
and P3 are sound, we have the signature σ̂in as part
of r̂ec, which is a valid signature for the message m =
(ŝin, ŵ, ŝkU , û1) that has not been signed by the experi-
ment. Hence, we can construct an EUF-CMA adversary
BEUF-CMA against S with advantage

Adveuf-cma
S,BEUF-CMA

(n) ≈ Pr[F3 ] (23)

If F4 occurs, we have two previous records rec1 and
rec2 both containing sout = ŝin. As sout was computed as
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s′+s′′, where s′ was chosen by A but s′′ was chosen uni-
formly at random from Zp by the oracle, sout is uniformly
random over Zp. Thus, the probability for sin1 = sin2 is
at most q2

p , where q is the amount of successful calls A
did to MalIssue, MalAcc and MalVer. So we have

Pr[F4 ] ≤ q2

p
(24)

If F5 occurs, we have a record rec containing sin = ŝin.
But due to the winning conditions of A, it holds that

Pr
[
Expgame−i

BBW,A (n) = 1 ∧ F5

]
= 0. (25)

If F6 occurs, we have a previous record rec containing
PKU 6= P̂KU . As we already made sure that each serial
number is only part of one signed token, which in this
case must be m = (sout, w + v, skU , u′1) and PKU 6= P̂KU
implies skU 6= ŝkU , the soundness of P2 and P3 means
we have another message m̂ = (ŝin = sout, ŵ, ŝkU , û′1)
and valid signature σ̂in on m̂. As m̂ was never signed
before, we can construct an adversary BEUF-CMA against
the EUF-CMA security of S with advantage

Adveuf-cma
S,BEUF-CMA

(n) ≈ Pr[F6 ] (26)

If F7 occurs, there are two possibilities: there exists a
MalVer transaction for which w < v (F7.1) or there exists
a MalAcc or MalVer transaction for which ŵ 6= w + v
(ŵ 6= w − v resp.) holds (F7.2).
If F7.1 occurs, we can construct an adversary Bwee

against witness-extended emulation of RP with advantage

Advwee
RP,Bwee(n) ≈ Pr[F7.1 ] (27)

. For F7.2 we again have two tokens with the same
serial number that differ in another part. So with
the same argument as above, we have a message
m̂ = (ŝin = sout, ŵ, ŝkU , û′1) and signature σ̂in on m̂,
but m̂ has never been signed (as ŵ 6= w + v), so we
can again construct an adversary BEUF-CMA against the
EUF-CMA security of S with advantage

Adveuf-cma
S,BEUF-CMA

(n) ≈ Pr[F7.2 ] (28)

. Thus, we have

Pr[F7 ] ≤ Advwee
RP,Bwee(n) + Adveuf-cma

S,BEUF-CMA
(n) (29)

Putting everything together, we have from (19) to (26)
and (29) that

Advbb
BBW,A(n) = Advgame-1

BBW,A(n)

= Pr
[

Expgame−1
BBW,A (n) = 1 ∧ ¬

( 7∨
i=1
Fi
)]

+ Pr
[

Expgame−1
BBW,A (n) = 1 ∧

( 7∨
i=1
Fi
)]

= Advgame-8
BBW,A(n)

+ Pr
[

Expgame−1
BBW,A (n) = 1 ∧

( 7∨
i=1
Fi
)]

≤ negl(n) + Pr
[( 7∨

i=1
Fi
)]

≤ negl(n) + negl(n) + negl(n)

+ Adveuf-cma
S,BEUF-CMA

(n) + q2

p

+ 0 + Adveuf-cma
S,BEUF-CMA

(n)
+ Advwee

RP,Bwee(n) + Adveuf-cma
S,BEUF-CMA

(n)

≈ q2

p
+ Adveuf-cma

S,BEUF-CMA
(n)

which is negligible as we assumed S to be EUF-CMA
secure and q2

p is negligible. �

D.4 User Security/Privacy
Again we state the slightly modified formal definitions
for user privacy/security.

Definition D.7 (Privacy-Preserving) We say that a
BBW scheme is privacy-preserving, if there exist PPT
algorithms SimSetup and SimCorrupt as well as inter-
active PPT algorithms SimHonIssue, SimHonAdd and
SimHonSub that receive no private user input, such that
for all PPT adversaries A = (A0,A1) in the experiments
from Figure 2, the advantage Advpriv

BBW,A(n) of A defined
by ∣∣∣Pr[Exppriv-real

BBW,A(n) = 1]− Pr[Exppriv-ideal
BBW,A (n) = 1]

∣∣∣ (30)

is negligible in n.

Definition D.8 (False-Accusation Protection) A
simulation-linkable BBW scheme ensures false-
accusation protection if for any PPT adversary
A = (A0,A1) in the experiment Expfacp

BBW,A(n) from
Figure 11 the advantage of A defined by

Advfacp
BBW,A(n) := Pr[Expfacp

BBW,A(n) = 1] (31)

is negligible in n.

Experiment ExpfacpBBW,A(n)
crs← Setup(1n)
(PKI , skI)← A0(crs)
(PKU , skU )← UGen(crs)
π ← ARealHonIssue,RealHonAdd,RealHonSub

1 (PKI ,PKU )
The experiment returns 1 iff VerifyGuilt(PKI ,PKU , π) = 1.

Figure 15. False accusation protection experiment

We again split the proof of Theorem 5.4 in separate
proofs for privacy-preserving and false-accusation pro-
tection.
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Privacy-Preserving

Proof
To show that BBW is privacy-preserving, we define a se-
quence of games Game 1, . . . , Game 5, where Game
1 is the game where all oracles are those from the real
world, while Game 5 is the game where all oracles are
those from the ideal world.
We denote the experiment with an adversary A playing

the game i by Expgame−i
BBW,A (n).

We write Setupi,HonIssuei,HonAddi,HonSubi and
Corrupti to denote the implementations of the oracles in
game i (the oracle HonUser remains unchanged in all
games).

Game 1 We set Setup1 = Setup, HonIssue1 =
RealHonIssue, HonAdd1 = RealHonAdd, HonSub1 =
RealHonSub and Corrupt1 = RealCorrupt as in Fig-
ures 3 to 6. So in other words, Expgame−1

BBW,A (n) is
identical to Exppriv-real

BBW,A(n).

Game 2 We modify Setup2 such that crssig is not gen-
erated by S.Setup(gp) but instead by (crssig, tdsig)←
S.SimSetup(gp) (and thus crscom is generated
as (crscom, tdcom) ← PC.SimSetup(gp)), crspok
is not generated by Z.Setup(gp) but instead by
(crspok, tdpok) ← Z.SimSetup(gp) and crsrp is
not generated by RP.Setup(gp) but instead by
(crsrp, td rp)← RP.SimSetup(gp).

Game 3 We redefine HonIssue3,HonAdd3 and HonSub3
such that the proofs done with the adversary are sim-
ulated (using the trapdoors tdpok and td rp to choose
the challenge beforehand).

Game 4 We modify HonIssue4,HonAdd4 and HonSub4
so that the commitment C ′ sent to the adver-
sary is replaced by a commitment to (0, 0, 0, 0, 0)
and the signature σ1 is replaced by random val-
ues for which the random oracle H is accord-
ingly programmed so the signature verifies. We
also modify Corrupt4 to equivocate (using tdcom)
the commitment C (which was sent by A and
now is a commitment to (s′′, v, 0, 0, 0)) to one
containing random s, u1 and the correct skU , w
and attr with opening information d, and gen-
erate a new signature σ by choosing random
γ, ω, ω′, ρ, ρ′1, ρ

′
2, µ ← Zp, computing ζ = γZ,

ζ1 = γC, setting σ = (ζ, ζ1, ρ, ω, ρ′1, ρ′2, ω′, µ, d, γ)
and programming the random oracle H so that the
signature verifies.
We also need to make sure UVer still
works as expected in HonIssue4,HonAdd4
and HonSub4. To achieve this we replace
the call UVer(PKI ,PKU , skU , τ, w∗, attr) with
UVer(PKI , 0G, 0, τ, v, 0).

Game 5 We now modify HonAdd5 and HonSub5 so that
t and s are chosen at random.

We note that Expgame−5
BBW,A (n) is identical to

Exppriv-ideal
BBW,A (n).

We now show that a PPT adversary A cannot distin-
guish between games i and i + 1. By Di we denote the
probability that A is able to distinguish Game i from
Game i + 1.

Game 1 to Game 2 Only the crs is changed and this
is perfectly indistinguishable for both crscom and
crspok (see the zero-knowledge property of the proofs
and the equivocality property of PC) Thus, we have

Pr[D2 ] = 0 (32)

Game 2 to Game 3 In this hop, the real zero-
knowledge proofs are replaced by simulated ones.
Note that the proven statements are still valid.
We introduce 2 new games: in Game 2.1, only P1
proofs are replaced by simulated ones. In Game 2.2
we also replace the proofs for P2 and in Game 2.3
additionally proofs for P3 are replaced, so Game
2.3 = Game 3.
Now assume there is an adversary A that can distin-
guish between Game 2 and Game 2.1. We argue
by use of an hybrid argument with games Game 2.0
to Game 2.0.q = Game 2.1. In Game 2.0.j, the
first j proofs for P1 are simulated, while all proofs
from j + 1 to q are real. As A notices a difference
between Game 2.0 and Game 2.0.q, there must
be an index j ∈ [q] such that A can distinguish be-
tween Expgame−2.0.j

BBW,A (n) and Expgame−2.0.j+1
BBW,A (n). We

can then construct an adversary B1−j against the
composable perfect zero-knowledge property of P1.
It then holds that Pr[D2.1 ] ≤

∑q−1
i=0 Advzk

P1,B1−i
(n),

but as we assume that P1 is perfectly composable
zero-knowledge, it holds that Advzk

P1,B1−i
(n) = 0 for

all i ∈ [q − 1] and thus

Pr[D2.1 ] = 0 (33)

Next, consider the hop from Game 2.1 to Game
2.2. This time the proofs for P2 are also replaced by
simulated ones. We argue by use of the same hybrid
argument as above: in Game 2.1.j, all proofs for
P1 are simulated and the first j proofs for P2 are
simulated, while proofs j + 1 to q for P2 are real.
Hence we have that

Pr[D2.2 ] = Advzk
P2,B1−i

(n) = 0 (34)

The same argument can also be done for the hop
from Game 2.2 to Game 2.3 and so to conclude
we have

Pr[D3 ] ≤ Pr[D2.1 ] + Pr[D2.2 ] + Pr[D2.3 ] = 0 (35)

Game 3 to Game 4 The difference in Game 4 is that
all the commitments and signatures are replaced.
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We first argue about replacing the commitments:
Assume there is an adversary A that can distinguish
between Expgame−3

BBW,A (n) and Expgame−4
BBW,A (n). We argue

by use of an hybrid argument with games Game
3.0 to Game 3.q = Game 4. In Game 3.j, the
first j commitments are replaced by simulated com-
mitments while all commitments from j+ 1 to q are
real. As A notices a difference between Game 3.0
and Game 3.q, there must be an index j ∈ [q] such
that A can distinguish between Expgame−3.j

BBW,A (n) and
Expgame−3.j+1

BBW,A (n). We can construct an adversary C
against the equivocality of PC that internally runs
A and simulates the oracles. C has the same advan-
tage in the equiv-exp as A in distinguishing games
3.j and 3.j + 1, so

Advequivocality
PC,C (n) = Pr[D3.j+1 ] (36)

But as PC is equivocable, we have that
Advequivocality

PC,C (n) = 0 and thus Pr[D3.j+1 ] = 0
for all j ∈ [q − 1]. For the signatures, we have the
same argument, but against blindness of BlindVerify.
Thus, for similarly defined games 3.j and 3.j + 1
we have

Advzero−knowledge
S,C (n) = Pr[D3.j+1 ] (37)

and thus overall we have

Pr[D4 ] ≤ qAdvzero−knowledge
S,C (n) ≤ negl(n) (38)

Game 4 to Game 5 In the last step, the values s and
t are chosen at random (if the user has not been
corrupted in the previous call). Thus, there are
two cases to regard: in Case 1, the adversary has
successfully corrupted the user PKU in the previous
call and in Case 2 the previous oracle call for PKU
was any other oracle than Corrupt. In Case 2, this
changes nothing for the attacker, as u1 is chosen
uniformly at random in every interaction and thus
t = skUu2 + u1 is a uniformly random value as any
other dependency on u1 has already been removed in
the previous games. The same is true for s = s′+s′′
where s′ is chosen uniformly at random.
In Case 1, the adversary knows the last value of u1
as well as s that will be used in the next interaction.
As u2 is chosen from the adversary, he can check if
t = skUu2 +u1 actually holds (since he also received
skU upon corruption) and whether the correct s is
used. For this reason, in the interaction immedi-
ately following a corruption, the real user algorithm
is used.
Thus, we have

Pr[D5 ] = 0 (39)

To conclude, we have that

Advpriv
BBW, A(n) ≤ D2 +D3 +D4 +D5 ≤ negl(n) (40)

and thus BBW is privacy-preserving. �

False-Accusation Protection
Proof
Assume there is an adversary A that breaks false-
accusation protection. Note that the oracles used in the
false-accusation experiment are a subset of those used in
the privacy-preserving experiment. Thus we can replace
all oracles by the simulation oracles and can distinguish
two cases:

Case 1 A is still able to output a valid proof of guilt
π = skU with non-negligible probability. Since
all simulation oracles have besides PKU no input
that is related to skU and are PPT, we can con-
struct an adversary B against the DLOG exper-
iment that gets PKU as challenge and simulates
the false-accusation game for A and outputs the
proof A returns, which is the discrete logarithm
of PKU .

Case 2 A is no longer able to output a valid proof of
guilt. Then A can be used to create an adver-
sary B against the privacy-preserving experiment
that distinguishes between the real and the ideal
game. As BBW is privacy-preserving, it holds
that Advpriv

BBW, B(n) ≤ negl(n).

So to conclude, we have that

Advfacp
BBW, A(n) = Advdlog

B (n) + negl(n) (41)

which is negligible as we assumed the DLOG assumption
to hold. �
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