
Encrypted Databases:

New Volume Attacks against Range Queries ∗

Zichen Gui1, Oliver Johnson1, and Bogdan Warinschi1,2

1University of Bristol
2DFINITY

{zg13988,o.johnson,csxbw}@bristol.ac.uk

Abstract

We present a range of novel attacks which exploit information about
the volume of answers to range queries in encrypted database.

Our attacks rely on a strategy which is simple yet robust and effec-
tive. We illustrate the robustness of our strategy in a number of ways.
We show how i) to adapt the attack for several variations of a basic us-
age scenario ii) to defeat countermeasures intended to thwart the premise
of our basic attack and iii) to perform partial reconstruction of secret
data when unique reconstruction is information theoretically impossible.
Furthermore, over the state of the art, our attacks require one order of
magnitude fewer queries. We show how to improve the attacks even fur-
ther, under the assumption that some partial information is known to the
adversary.

We validate experimentally all of our attacks through extensive exper-
iments on real-world medical data and justify theoretically the effective-
ness of our strategy for the basic attack scenario. Our new attacks further
underscore the difficulty of striking an appropriate functionality-security
trade-off for encrypted databases.

1 Introduction

The idea of outsourcing data storing and processing to an untrusted server has
triggered significant cryptographic research on methods to hide the information
both from eavesdroppers but also from the cloud itself [8, 4, 19, 3, 2, 9, 13, 7].
In typical solutions, data is stored encrypted, but in a way which allows the
server to process (encrypted) queries to produce an encrypted response which
only the client can decrypt.

Unfortunately, a satisfactory trade-off between efficiency and security proves
elusive. All schemes inherently leak various types of information which can be

∗The paper will appear in ACM CCS 2019.

1

exploited by the adversary, sometime with devastating effects. Early designs
[18, 8] allow the server to learn the access pattern induced by queries. For each
query the adversary learns which records are accessed when it processes each
query of the client. It recently became quite clear that the access pattern can
help to recover all of the private data [15, 17, 11].

More recently, a new attack vector which relies on significantly less infor-
mation had been identified [15, 12]. Here, the adversary disregards completely
the internal structure of the answers to queries, and only looks at their size.
This setting models, for instance, an honest but curious server who learns the
number of encrypted record which corresponds to an encrypted query. It also
models an eavesdropper who observes the traffic between a client and a user
over some secure channel. Indeed, even if the communication between a user
and a server is via modern secure channels (e.g. as implemented by TLS 1.3) a
passive eavesdropper may learn the traffic size information since such channels
do not hide the size of transmitted messages.

1.1 Volume leakage attacks against encrypted databases.

Range queries in encrypted databases. We continue a recent line of work
which shows how to exploit volume information in encrypted databases which
support range queries. In this setting database records are associated with
some numerical label i ∈ {1, 2, . . . , N} for some N . For example, in medical
databases these labels can record a patient’s age, the number of days the patient
has been in the hospital, the severity of the illness, etc. If vi is the number of
records associated with value i then the vector v = (v1, v2, . . . , vN) describes
the database counts for the individual labels. We will refer to the entries in v
as elementary volumes. In this paper we consider attackers which try to recover
(information about) v. This information can be highly sensitive. For example,
if labels record various diseases in a regional hospital, the counts reflect the
incidence of that disease in the population served by that hospital. This type
of information can be (ab)used by insurance companies to reduce the risk they
take at the expense of policy holders.

Attacker model. The attack model we consider in this paper assumes an
adversary who obtains volume information related to range queries. These are
queries of the form Query(i, j). The answer consists of all records with labels
between i and j, so the volume of the answer is vi + . . . + vj . We will refer to
j − i+ 1 as the the window size of the query. The adversary learns (potentially
noisy) information about the volume of the response and, we emphasize that,
the adversary does not learn information about the query itself.

The following notation is useful to make more precise the setting which we
consider. For fixed database (counts) v and fixed set of queries q the adversary
learns some function L(v,q). This may comprise precisely the volumes which
corresponds to the queries in q, but can also include noisy information whenever
noise is injected in the communication between the parties. In an attack, both
v and q are sampled according to some distributions V and Q; the adversary

2

is given L(v,q) and returns o some which represents the information it had
learned. Various generalizations are possible. For example, one may decide to
include in the input of the adversary partial information about v, or have the
distribution V, Q sampled from some distributions themselves (to indicate that
the adversary may not have full knowledge about these).

The success of the adversary can then be measured in how “close” are o and
v, for some appropriately chosen notion of closeness. For example, for most of
our attacks we look at the probability that o = v, which corresponds to full
reconstruction of the database counts.

Prior work. To date, there are two known volume leakage attacks. The
breakthrough KKNO attack due to Kellaris et al. [15] shows that after observ-
ing Θ(N4 logN) queries distributed independently and uniformly at random
(over the set of all possible queries) an adversary can recover all of the database
counts. The attack reduces the problem of recovering database counts to fac-
toring polynomials. The attack is rather inefficient and is more of a proof of
concept. Recently, Grubbs et al. [12] have shown an attack (henceforth the
GLMP attack) with significantly reduced query complexity. Their attack works
for an adversary who sees the answers to all of the Θ(N2) possible queries. A
standard argument shows that this event occurs with overwhelming probability
after Θ(N2 logN) uniformly independent queries. The GLMP attack reduces
the recovery problem to that of clique finding in an appropriately defined graph.
Since this is an NP-complete problem, the GLMP attack employs heuristics to
deal with the inherent computational complexity of the problem.

Before we move on, we briefly discuss two aspects of the above attacks.
Although they expose a clear source of insecurity the attacks rely on strong
assumptions on the information the adversary learns. Indeed, since at the mo-
ment we have little understanding of what is the query distribution in practical
applications, it is difficult to confirm the assumptions required by the attacks.
Is it unclear how reasonable it is to assume that the adversary gets to observe
answers to all possible queries. The independence and uniformity assumptions
on the query distribution are perhaps even harder to justify.

Furthermore, it seems easy to defend against these attacks since they do not
seem robust under small departures from the assumptions on which they rely.
Put differently, do the attacks fail if a few queries are missing? What if the
adversary never gets to see the answer to Query(1, N) or queries of the form
Query(i, i), both of which are crucial for the GLMP attack to work?

These are not merely rhetorical questions. One tempting proposition is to
deploy protocols with a modicum of protection which invalidate the assumptions
required by the attacks. For example, one could simply ensure that elementary
volumes are never returned, prevent queries for large ranges, or introduce noise
in the communication. Each of these countermeasures thwarts existing attacks,
with no obvious way to bypass them.

3

1.2 Our results

We present novel volume leakage attacks which deal with all of the scenarios
outlined above. Our attacks use a simple yet effective strategy which takes full
advantage of the information present in volume leakage associated with range
queries. Over the state of the art, our attacks require one order of magnitude
fewer queries and are more versatile and robust: they tolerate missing and
spurious queries, and can be easily adapted for settings where noise has been
added to the information leaked. Our attacks share a robust strategy where
we use the leaked information iteratively build larger solutions from smaller
ones: different leaked information imposes constraints on valid solutions which
helps to keep the process efficient. We validate our attacks both theoretically
and experimentally. Below we describe our results in more details. We start
with a basic scenario which is useful to understand our basic attack strategy
and incrementally build towards our more involved attacks which themselves
require additional insights.

Basic attack. Our basic strategy is illustrated best with a basic scenario
where the adversary sees all queries for ranges with window size up to some
upper bound b (setting b = N yields the setting of [12]). Here, and for the rest
of the attacks which we consider, we make no specific assumption on the query
distribution and do not specify q either; the attack works for any distribution
which allows the adversary to learn this information.

Formally, if v = (v1, . . . , vN) is the vector of database counts and b is a
bound on the query window size, in the basic setting the information learned
by the adversary is described by the function

Lb(v) =

{
y∑
i=x

vi | y − x+ 1 ≤ b

}
.

The problem of complete recovery of database counts is: Given some volume
leakage W , find the solution(s) to the equation

W = Lb(v). (1)

We describe an algorithm which recovers all solutions to the above equa-
tion. Our algorithm constructs solutions to the equation, incrementally. At
any given point, we maintain a set of valid partial solutions of the form u =
(w1, w2, . . . , wk). Each such partial solution satisfies the invariant Lb(u) ⊆ W .
Every contiguous subarray of v satisfies the property and, moreover, this sim-
ple formulation encapsulates a large number of simultaneous constraints. At
every step, for each partial solution u in turn, we attempt to extend it with
some volume w ∈ W subject to the condition above. If for all w ∈ W the
extension fails, then we discard u; otherwise we add the result to the set of
solutions of length k + 1. We establish both theoretically and experimentally
that this greedy strategy is highly effective: W is highly structured and allows
us to quickly eliminate partial solutions which are not subarrays of v.

4

Experimental validation. We experimentally validate our analysis in two
different ways. First, we use data sampled according to the distributions for
which we provide theoretical bounds. Here, we show that either the theoretical
bound matches quite well the experimental results, or that it is in fact overly
pessimistic. Studying the effectiveness of our attack on this type of synthetic
data also helps to identify causes due to which our attack fails.

More interestingly, we run the attack against real world data. Full details of
the data we use are in Appendix A. Here we provide a brief overview. We use
the national Inpatient Sample database from the Healthcare Cost and Utiliza-
tion Project (HCUP) dataset [10] from three years, which provides more than
three thousand databases, one per hospital. Our attacks recover volume count
information for the attributes admission month (AMONTH), number of diagnoses
(NDX), number of procedures (NPR), age (AGE), and length of stay (LOS).

For our basic attack, both the analytic and experimental work show that
our attacks succeed for rather small b. For each attribute in turn, we run our
algorithm (for varying leakage parameters b) and record the fraction of databases
for which we recover precisely the underlying database, up to reflection. For
some attributes with small N , like NDX and NPR, where N is either 16 or 26 we
can recover database counts for over 80% of the databases, even if the adversary
only sees queries with window size b as little as 3. Attribute AGE (where N = 83)
is harder to recover; yet as soon as the adversary sees queries of size up to
b = 8 we can efficiently recover more than one in three databases uniquely (NB:
for simplicity we will often say we recover the database rather than database
counts). Our attack requires Θ(N) queries, an order of magnitude improvement
over the best attack of Grubbs et al. [12] and works in seconds on a commodity
laptop (See Appendix A for a brief comparison.)

Robustness against variations of the leaked information. It is easy
to identify scenarios where the communication between the client and the server
contains information that does not fit our basic attack scenario. For example,
the client may issue queries with windows size larger than b or the communica-
tion protocol may actively try to modify the leaked information. Countermea-
sures which have been suggested in the literature include suppressing answers
to some queries, adding fake queries and answers to the communication and
adding noise to the answer themselves. We show that our strategy still works
as is, or can be adapted to deal with such variations.

For example, we consider a setting where the leakage is noisy and comprises
additional spurious volumes. In the first instance we look at the case where the
spurious volumes correspond to valid queries but with larger window size than
expected. Although, as expected, we notice a degradation in the success of our
attacks, they still perform exceedingly well. For example, we experiment with
an adversary which attempts to recover the NPR-26 attribute counts in a setting
where for every two true query we add a randomly chosen query of larger size.
Here the success of our adversary drops from around 80% to around 40% which
is still devastating.

Interestingly, the attacks work even better if the noise added is selected

5

uniformly at random (e.g. as an explicit attempt to hide volume information).
Here, we recover more than 60% of the databases for the same attribute (even
when for each true query we add a fake one). This indicates that random noise
is a poor defense which can be easily filtered out using the relations present in
the genuine part of the leakage.

A potentially more promising countermeasure is to pad answers with fake
records. Although this countermeasure perturbs the structure present in the
leakage we observe that approximate variants of the type of constraints we
use in our basic attack still hold. As a proof of concept, we show how adapt
our attack to break this type of defense when Z is a discrete uniform random
distribution. Here we give a complete recovery algorithm which works for a
specific setting of the padding parameters. Even for better chosen parameters
we show that our attack can be adapted to perform approximate reconstruction
of the database counts.

Finally, we also show how to deal with the case where some of the queries
in the expected set of queries are missing.

Bounded window size. All existing attacks, including those introduced above,
are for settings where the adversary sees all elementary volumes. A natural
countermeasure is to prevent direct information about elementary volumes from
being revealed to the attacker. For example, one can demand that the range of
queries is at least 2 or, as suggested by Grubbs et al [12], to batch the answer
to several queries into a single answer. In this case, the leakage simply does not
contain any elementary volume and it is not clear if these can be recovered.

We extend our attacks to a setting where the window size of queries is
bounded from above and from below, that is the volumes of queries with small
and large window sizes are hidden. We model the resulting leakage as a function

La,b(v) =

{
y∑
i=x

vi | a ≤ y − x+ 1 ≤ b

}

parameterized by bounds a and b.
To cope with the new setting which is quite different from the one in our

basic attack we require a different way of using the information present in the
leakage. Without going too much into detail, we present a two-stage attack
where our basic attack plays a key role. In the first stage we regard volumes of
ranges of size a as elementary and apply our basic attack. We obtain as a result
an ordered set of volumes which, with high probability, should correspond to
consecutive ranges of size a. In the second stage we obtain a different ordered set
of volumes, again by using our basic algorithm but with additional constraints
which use the output of the first stage. With some care, we can then recover v
from these two pieces of information.

Although La,b leaks significantly less information than in our basic scenario,
our attack shows that there is still enough structure in W . Indeed, it turns out
that the HCUP databases are still extremely vulnerable to our modified attack.
We run our attack trying to recover the attributes NDX-26 and NPR-26 with

6

different a and b. In the worst case, where a = 3 and b = 9 we can still obtain
the precise counts for 78% of the databases for the attribute NDX-26.

Partial reconstruction attacks. In the above discussion and analysis we
consider, quite conservatively, that the adversary wins only when it manages to
successfully reconstruct the volume counts (up to reflection). While the level
of insecurity we demonstrate is already rather devastating, we push our attack
even further.

Notice that our attack may fail in two distinct ways. First, the attack aborts
when the number of partial solutions it maintains grows beyond a certain bound.
One obvious way to extend the attack is to simply increase the space allowance
of the algorithm (currently set to 1GB).

More interestingly, we take a closer look at the case when there is insufficient
information inW to uniquely recover v, in which case the attacks return multiple
solutions to the equation Lb(v) = W . This is the case, for example, when v
contains a subarray which can be permuted without changing the leakage. In
this case, the solutions found by our algorithm still overlap on a significant
proportion of labels. In effect, this means that our attack reconstructs the
(unambiguous) part of the database. Clearly, even if the privacy breach is not
total, the leak should be considered problematic.

This observation motivates a more refined measure of adversarial success
where its goal is to only partially reconstruct the volume counts. Of the several
different choices on how to quantify the success of the adversary we consider two.
The first simply counts the fraction of labels for which the attack recovers the
correct counts; the second, also accounts for the size of the counts themselves.
For example, an adversary may correctly identify counts for a small fraction of
the labels, but the total number of records associated with these labels can be
overwhelming.

We experiment with attacks against the length of stay attribute (which by
nature leads to leakage with a large set of valid preimages). Here, our attack
aborts for roughly 15%. However, for the remaining databases it recovers cor-
rectly the value associated with more than 95% of the records (divided across
at least 37% of the labels).

Partial information. Another way to deal boost the success of our attacks
it to somehow incorporate side information about and we briefly explore two
distinct options. The first uses partial information to disambiguate between
multiple valid solutions. Here, we assume that the adversary has access to a
very small section of the real database (e.g. learns the volume of a single query)
and filters out solutions which are not consistent with the adversary’s view.
Second, we also incorporate side information in the attack more directly. More
precisely, we assume that the adversary knows the “shape” of the distribution
(e.g. that it is decreasing) and use this information to prune the search. In both
cases, we confirm the intuition that side-information can significantly improve
the success of the our attacks.

7

1.3 Discussion

Assumptions. We assume the adversary is able to collect all queries within
some bounded window size and assume that the database is dense, meaning
that vi 6= 0 for all i = 1, . . . , N . This is an assumption that prior work also
makes. However, we explain later in the paper that our strategy can be adapted
to work if the database is close to being dense.

We also make the reasonable assumption that the maximum labelN is known
by the adversary. For example, in medical records the age of patients belong
to some standard set (i.e. age groups), the diagnostics are divided across some
canonical groups, and an address filed may correspond to known postal codes.

Significance. Our attacks work under strictly weaker assumptions than those
required for existing attacks, but their immediate impact on deployed systems
is difficult to quantify. The problem, shared with all works in this space, is that
the research community does not have a good handle on what are realistic query
distributions for range queries. To compensate for this lack of understanding,
we avoid to make specific assumptions on the distribution of queries. Instead we
focus on what one can interpret as being worst case scenarios for security where
we characterize the information which we can exploit (independent of how it can
be obtained by the adversary). Furthermore, while we are not (and cannot be!)
exhaustive we explore multiple leakage scenarios all inspired by natural uses of
the scheme and by the effect of countermeasures some actually suggested in the
literature.

The robustness of our basic strategy under all of these variations serves as
evidence that volume leakage for range queries is highly damaging and requires
novel countermeasures to be contained.

2 Basic Attack

In this section, we describe and analyse our basic reconstruction attack. We
assume that only queries of small windows are observed by the attacker. More
formally, we define the leakage function as

Lb(v) =

{
y∑
i=x

vi | y − x+ 1 ≤ b

}
. (2)

The adversary then learns W = Lb(v) for some database v = (v1, . . . , vN); his
goal is to recover v. By setting b = N , we recover the leakage function in the
previous attacks [15, 12]. It is the only case for which previous attacks work:
both attacks require volumes generated by all possible queries. On the other
hand, our attack works with considerably smaller b.

8

2.1 Reconstruction Algorithm

Intuition. Given a tuple of observed volumes, say (w1, . . . , wk), we can tell
if it looks like a subarray of v, since we know a set of conditions need to be
satisfied: all the sums of two consecutive volumes need to be present in W ;
similarly, the sums of three to b consecutive volumes need to be present in W .
Given a large number of constraints, it is unlikely that an arbitrary choice of
(w1, . . . , wk) meets all the constraints. Hence, a partial solution of length k is
likely to be a continuous segment of v.

Our basic attack is a variant of breadth-first search with pruning which
extends partial solutions iteratively. There are several choices for the initial
partial solutions. For certain databases, the minimum observed volume suffices
as an initial partial solution. This choice may not work on some databases as
the number of partial solutions grows too quickly. In that case, we opt for a
clique-finding subroutine inspired by GLMP [12] to generate partial solutions of
length b. In each iteration, our attack tries to extend the partial solutions found
in the previous iteration to the left and right by checking the new constraints
introduced by the new volume. Partial solutions that cannot be extended by any
observed volume are discarded. After obtaining the partial solutions of length
N , we check if the solutions generate the expected leakage, and the solutions
that do not are discarded. The remaining solutions are returned by our attack.
Pseudocode of our attack is shown in Algorithm 2.

Initial Solution via Clique-finding. An obvious starting partial solution
is the smallest observed volume: since all elementary volumes are observed
the smallest volume is necessarily an elementary volume. Looking ahead, this
strategy may not work (e.g. when the smallest volume is suppressed). We
therefore employ a more robust mechanism inspired by the GLMP attack and
which shares some ideas with a heuristic which complements the KKNO attack.
Below, we describe how an initial solution can be identified by finding a clique
in a certain graph. Let W be the set of observed volumes. We define the set of
complemented volumes C to be {v | v ∈W ∧max(W)− v ∈W} ∪ {max(W)}.
Nodes of our graph are defined by the elements of C. For v1, v2 ∈ C, there is an
edge between nodes v1 and v2 if |v1 − v2| ∈W . We know max(W) is the sum of
b elementary volumes, so a clique of size b with one of the volumes as max(W)
describes a partial solution of length b.

In GLMP the reconstruction of the entire database is reduced to finding a
clique (with N nodes). Here we only use clique finding to initialize our search,
so we only need to recover a small segment of size b of the database.

Detailed pseudocode of our clique-finding algorithm can be found in Algo-
rithm 1. In line 13, we use g〈i〉 to mean i-th smallest volume in g. It is also
worth pointing out that our algorithm employs a similar pruning strategy sug-
gested in Appendix E of the KKNO paper [15]. Without going into too many
details, that algorithm verifies similar constraints with our pruning mechanism
to identify a plausible segment of the hidden database.

Attack Overview. Pseudocode of our basic attack is shown in Algorithm 2.

9

Algorithm 1 Finding initial solution set

1: input W = {
∑y
i=x vi | y − x+ 1 ≤ b} , b

2: output {(w1, . . . , wb) | w ∈W ∧ Lb(w1, . . . , wb) ⊂W ∧
∑
i wi = max(W)}

3: procedure Initial Solution(W, b)
4: C = {v | v ∈W,max(W)− v ∈W} ∪ {max(W)}
5: G2 = {{v,max(W)} | v ∈ C, v 6= max(W)}
6: for i← 3, b do
7: Gi = {}
8: for g ∈ Gi−1, v ∈ C do
9: if {|h− v| | h ∈ g} ⊂W then

10: Gi = Gi ∪ {g ∪ {v}}
11: S = {}
12: for g ∈ Gb do
13: s = (g〈1〉, g〈2〉 − g〈1〉, . . . , g〈b〉 − g〈b− 1〉)
14: S = S ∪ {s}
15: return S

Our clique-finding algorithm (Algorithm 1) is used as the initial solution finding
algorithm but other choices are possible. In line 4, the set of initial solutions
are computed. The partial solutions are then iteratively extended by running
procedures Extend Left and Extend Right. In these two procedures, only
the sums involving the new volume w has to be checked, as all the other con-
straints are checked in previous iterations. After obtaining the partial solutions
of length N , we recompute the leakage associated to each one and discard those
for which the result is different from the input to the algorithm.

2.2 Theoretical Analysis

Correctness. For convenience, we denote our basic attack algorithm as A1.
It takes as input the set of observed volumes W = Lb(v), bound b and maximum
label N . We say that A1 is correct if the output of the attack is precisely the
set of databases that generates the given leakage. Formally, the correctness of
our attack is established by the following theorem. The proof can be found in
Appendix B.1.

Theorem 1 (Correctness of the basic attack). Let v be a database, N = |v|
and b be any natural number less or equal to N . Let SN be the output of A1,
i.e. SN = A1(Lb(v), b,N). Then

1. ∀v′ ∈ Lb(v)N ,Lb(v′) = Lb(v)⇔ v′ ∈ SN ,

2. v ∈ SN .

The correctness property of the attack implies that our attack is optimal
in terms of database recovery, meaning that there is no algorithm that can

10

Algorithm 2 Basic attack

1: input W = {
∑y
i=x vi | y − x+ 1 ≤ b}, b,N

2: output {(w1, . . . , wN) | wi ∈W}

3: procedure Attack(W, b,N)
4: Sb = Initial Solution(W, b)
5: for i← b+ 1, N do
6: Si ← ExtendLeft(Si−1,W, b)∪

ExtendRight(Si−1,W, b)
7: SN ← {s | s ∈ SN ∧ Lb(SN) = W}
8: return SN

9: procedure Extend Left(Si,W, b)
10: S ′ ← {}
11: for all (w1, . . . , wi) ∈ Si, w ∈W do

12: if {w +
∑k
j=1 wj | k < b} ⊆W then

13: S ′ ← S ′ ∪ {(w,w1, . . . , wi)}
14: return S ′

15: procedure Extend Right(Si,W, b)
16: S ′ ← {}
17: for all (w1, . . . , wi) ∈ Si, w ∈W do

18: if {w +
∑k
j=1 wi−j+1 | k < b} ⊆W then

19: S ′ ← S ′ ∪ {(w1, . . . , wi, w)}
20: return S ′

eliminate more partial solutions from the set of solutions, if there is no further
information.

Uniqueness. Correctness of our algorithm only ensures that we recover all the
valid solutions from the leakage. It is possible to have multiple databases (up
to reflection) generating the same leakage. For example, L3((1, 1, 1, 2, 1, 1)) =
L3((2, 1, 1, 1, 1, 1)) = {1, 2, 3, 4}, so the databases (1, 1, 1, 2, 1, 1) and (2, 1, 1, 1, 1, 1)
are indistinguishable given the leakage. Yet, our experiments show that our
attacks recover unique solutions for an overwhelming amount of real-world
databases. In this section we investigate why this is the case. We assume
that the databases are randomly sampled from some underlying distribution
Ṽ and we are therefore interested in the probability that the database can be
reconstructed uniquely from the leakage:

punique = Pr
v←Ṽ

[
S ← A1(Lb(v), b,N),∃s,S =

{
s, sR

}]
.

It becomes immediately clear that the probability is computationally infeasi-
ble to compute from its analytical expression. We discuss how to use a series of

11

bounding and approximation techniques to find an estimation of the probability.
We use a very rough approximation where we are interested in the event that all
of the partial solutions discovered/maintained by our attack are genuine, that
is they are solutions of the form (vi, . . . , vj) for some i and j or their reflections.
First we bound the probability that at iteration b the set of partial solutions
contains only genuine solutions. Here, we use the Chen-Stein method [6, 5] to
estimate the distribution of the observed volumes and derive the probability
that an arbitrary choice of b volumes from the set of observed volumes satisfies
all the constraints. This allows us to derive the probability that all the partial
solutions of length b are genuine solutions (Appendix B.2 Lemma 3). Then, we
bound the probability that the solution set contains only genuine solutions at
iteration i + 1 given that all solutions are genuine at iteration i. A bound on
punique follows by observing that the only genuine solutions of length N are v
and vR (Appendix B.2 Theorem 8). Detailed description of our derivation can
be found in Appendix B.2.

Our derivation uses the underlying distribution on the database as an ab-
stract parameter. We can then computationally determine concrete values for
the bound by instantiating with concrete distributions.

Complexity Analysis. We find worst-case complexity analysis uninforma-
tive, as there are cases where the solution set is exponentially large throughout
the execution of the algorithm. Furthermore, the worst case scenarios would
impact even an average-case analysis. Instead, we concentrate on bounding the
probability that the number of partial solutions maintained does not exceed a
certain size. In turn, this bound implies a bound on the total runtime of the
attack.

It turns out that we can reuse the analysis of uniqueness discussed above.
We are interested in the same event as our analysis of uniqueness, that is, we
bound the probability that the set of partial solutions of length b to N contain
only genuine solutions. As there are at most 2(N − i + 1) genuine solutions of
length i, we know that if the event happens, the number of solutions of length
b to N cannot exceed 2N . On the other hand, the number of solutions before
iteration b cannot exceed |W |b−1. Therefore, we conclude that the number of

partial solutions never exceed |W |b−1 with probability punique.

As a consequence, the space complexity of the attack is O(|W |b−1) with
probability punique. In each iteration of the attack, every partial solution is
appended with all volumes in W to the left and to the right, and at most b
conditions are checked. Therefore, extending a partial solution takes O(2b|W |)
operations, and the total time complexity is maxiO(bN |Si|) = O(bN |W |b) with
probability punique.

2.3 Experimental Validation

We present an experimental evaluation of our basic attack described in the
previous section. We perform attacks on the attributes AMONTH, NDX, NPR and
AGE as these attributes have a variety of N ranges and different distributions,

12

allowing us to understand the effectiveness of our attack on different databases.
We excluded experimental results on the attribute LOS, as most of the databases
on the attribute cannot be recovered uniquely with a relatively small b. We
discuss how to relax the adversarial goal to recover a part of the database
uniquely in Section 5. We also give numerical examples and simulations to the
analysis of uniqueness of solutions presented in Section 2.2.

Experimental results. For efficiency of implementation, we abort as soon as
the size of the solution set exceeds |W |2. Although our earlier analysis suggests
that the solution size can grow exponentially, our experiments show a small
threshold is sufficient for most attacks. We test our attack on the attributes
and parameters shown in Table 1. For each attribute in turn, we report on
the fraction of databases we recover uniquely and the fraction of databases for
which more than one solution exist. We also indicate the fraction of databases
for which our clique-finding initialization procedure fails and the the fraction of
databases where our attack runs out of space.

For the attributes with moderate N , our attack works sufficiently well with
bounds as small as 3 to 5. Our attack is less effective on the attribute AGE as
the databases on the attribute often contain segments of small volumes that
cannot be recovered uniquely given the bounds. Nonetheless, even here our
attack recovers uniquely (up to reflection) one in five databases.

Attribute b Unique Ambiguous Clique fail Abort Avg. time (s)
AMONTH 3 78.5% 3.2% 0.0% 18.3% 0.0087
NDX-16 3 87.3% 2.1% 0.0% 10.7% 0.0083
NDX-26 4 82.7% 4.1% 0.3% 12.9% 0.0494
NDX-26 5 88.3% 40.0% 1.2% 6.4% 0.0498
NPR-16 3 89.1% 10.2% 0.0% 0.7% 0.0011
NPR-26 4 81.2% 15.2% 0.0% 3.7% 0.0124
NPR-26 5 84.6% 14.2% 0.0% 1.2% 0.0131

AGE 6 22.4% 0.9% 41.1% 35.7% 17.60
AGE 8 32.1% 0.6% 52.6% 14.7% 15.99

Table 1: Experimental data for the basic attack.

Theoretical analysis of uniqueness of solutions and simulation. We
perform simulation to study the empirical probabilities that our algorithm re-
turns a unique solution under different parameters, using the theoretical bound
described in Section 2.2. We study two types of synthetic distributions for
N = 40 and b between 5 and 8. Detailed experimental results can be found
in Appendix B.3. Our theoretical analysis of the uniqueness of solutions can
be overly pessimistic with small b, but it is fairly accurate for larger b. Our
experiments provide some initial evidence that databases with large variations
of elementary volumes are susceptible to volume leakage attacks.

13

3 Simple Variations on the Leakage

In this section, we study the robustness of our basic attack with variations on
the basic leakage function in Equation (2). These variations correspond to more
realistic query distributions, the use of countermeasures, or both. For example,
we look at the case where the user may issue some queries with window size
larger than b, or decide not to query some of the small ranges. Additionally,
the server can pad some fake records to the query responses to invalidate our
basic attack. Recall that our basic attack incrementally extends solutions using
volumes which need to verify some constraints so additional volumes, or miss-
ing ones, will impact our algorithm. Nonetheless, we show that many of the
databases can still be reconstructed uniquely under these variations.

3.1 Spurious Volumes

First, we consider two types of spurious volumes in our attack, namely volumes
from queries with larger windows and random volumes. We show that with
slight modification to our basic attack, a significant proportion of the databases
from the HCUP dataset can still be recovered uniquely.

Attack Overview. To model additional volumes we use some distribution Z̃.
We write z ← Z̃(v) for sampling a volume from this distribution. Notice that
we allow the distribution to depend on the real database counts: this is useful
to model both the case when noise consists of real volumes (due to real queries
outside of unexpected window size) and noise which is calibrated with respect
to the real data. The leakage function in the presence of such noise is

Lb,Z̃,I(v) = Lb(v) ∪ {zi | i ≤ I, zi ← Z̃(v)}. (3)

for some I which itself may depend on v. The goal of the adversary is to
reconstruct database v given a sample from Lb,Z̃(v).

For this type of scenarios, we argue that the same strategy (with a minimal
change) works. That is, we use the same way to incrementally build solutions by
checking the same constraints as before. While all solutions can still be found (if
the attack does not abort) the presence of noise may lead to additional solutions
which include fake volumes. Worse, since the adversary learns W ← Lb,Z̃(v) we
cannot sift potential solutions by checking that Lb(v) = W . We experimentally
confirm that the success of the adversary does not drastically degrade.

We do need to change the way we initialize our attack: due to noise our initial
solution finding algorithm may fail to return a genuine partial solution. For
example, if the maximum observed volume is a fake volume, our clique-finding
algorithm will certainly no generate proper partial solutions. To overcome this
problem, we run the initial solution finding algorithm, iteratively, starting with
different volumes and use the union of all initial solutions found this way as the
starting point for the iterative part of the attack.

Our attack in the presence of noise is the same as Algorithm 2, except that
we omit the final check on the leakage (line 7 of Algorithm 2) and employ a

14

slightly more elaborate algorithm for identifying starting partial solutions. We
refer to the resulting attack as A2.

Theoretical Analysis. Since we can no longer check for equality of leakages
in A2, we cannot ensure that any solution v′ output by the attack satisfies
Lb(v′) = W , though it must be the case that Lb(v′) ⊆ W . The modified
correctness property is established by the following theorem. The proof can be
found in Appendix C.1.

Theorem 2 (Correctness of the attack in the presence of noise). Let v be a
database, N = |v| and b be any natural number less or equal to N . For any
possible sample from the leakage function W ← Lb,Z̃(v), let SN be the output of
A2, i.e. SN = A2(W, b,N). Then

1. ∀v′ ∈WN ,Lb(v′) ⊆W ⇒ v′ ∈ SN ,

2. v ∈ SN .

Experimental Results. We use NDX-26 and NPR-26 as the attributes to
perform experiments: since our basic attack succeeded with high probability for
these attributes, they offer a good starting point to understand the effects of
the noise.

For uniformly distributed random noise, the fake volumes are drawn with-
out replacement from a discrete uniform distribution with lower limit as the
minimum observed volume, and upper limit as the maximum observed volume.
The minimum observed volume is used as the initial solution to the attacks.
We compare recovery rate of our attack with b = 5 and noise levels 0.5 and
1, where with noise level α, α · |Lb(v)| fake volumes are added to Lb(v). We

abort an attack as soon as the solution set is larger than |W |2. The results are
summarized in Table 2.

Attribute α Unique Ambiguous Abort Avg. Time (s)
NDX-26 0.5 62.3% 15.9% 21.9% 0.72
NDX-26 1 58.1% 16.4% 25.5% 1.70
NPR-26 0.5 61.4% 16.7% 22.0% 0.61
NPR-26 1 60.1% 18.1% 21.7% 1.37

Table 2: Experimental data for the attack with uniform random noise.

For volumes from larger windows, we test our attack on b = 5 and larger
window of size 8. The minimum observed volume is used as the initial solution.
We use noise levels α = 0.5 and 0.75 in our experiments, where with noise
level α, α · |L8(v)\L5(v)| volumes from larger windows are added to L5(v). We

abort an attack as soon as the solution set is larger than |W |2. The results are
summarized in Table 3.

15

Attribute α Unique Ambiguous Abort Avg. Time (s)
NDX-26 0.5 64.5% 14.3% 21.2% 0.46
NDX-26 0.75 60.4% 16.1% 23.5% 1.00
NPR-26 0.5 43.6% 20.1% 36.4% 0.45
NPR-26 0.75 41.8% 20.9% 37.3% 0.61

Table 3: Experimental data for the attack with noise from larger windows.

3.2 Missing Queries

In our basic attack, every volume within a given window size is assumed to be
observed by the adversary, so all the constraints within the window size b can
be checked. In practice, it is possible that some of the queries are not issued
by the user as they are uninteresting. It is also possible that the user/server
actively blocks some of the queries in an attempt to defend against volume
leakage attacks. We demonstrate that it is still possible to reconstruct the
database uniquely, even if some of the volumes from the small windows are
missing. For simplicity, within each window of size b, we assume the adversary
does not have access to k randomly chosen volumes. Furthermore, we assume
that the elementary volumes and all two-way sums of the elementary volumes
are always part of the leakage. Our assumptions are somewhat arbitrary but
our attack demonstrate that there is a lot of redundancy in the leakage function
to cope with missing volumes.

Attack Overview. We start with a description of the leakage function one
may observe when some queries are suppressed. Let k be a natural number that
is less or equal to b− 2, let I be an index set of pairs of labels as follows:

1. ∀i ≤ N, (i, i) ∈ I,

2. ∀i ≤ N − 1, (i, i+ 1) ∈ I,

3. ∀i ≤ N − b, |{(x, y) ∈ I | i ≤ x ≤ y ≤ i+ b− 1}| ≥ b(b+1)
2 − k.

Indexes (x, y) that appear in I are the queries the adversary observes. Notice
that condition (3) allows for a certain number of queries to be missing (more
specifically k queries for each individual window of size b.

For a fixed I, the adversary learns the leakage function

Lb,I(v) =

{
y∑
i=x

vi | (x, y) ∈ I, y − x+ 1 ≤ b

}
. (4)

The adversary is given the leakage of some database Lb,I(v) and k, and his goal
is to reconstruct all v that generates the set of observed volumes, potentially
with a different index set that satisfies all the constraints.

We can no longer check all the additive constraints within the windows, but
given our assumption on I, we know that a solution is not plausible if in any
window, there are more than k missing constraints. Therefore, we extend a

16

solution by some new volume only if at most k of the constraints associated
to the new volume are missing. Our attack is described by Algorithm 4 in
Appendix C, and we call the attack A3.

Theoretical Analysis. We say that A3 is correct if for all solutions found
by the algorithm, there exists an index set satisfying all the constraints and
the resultant leakage is the same as the leakage from the input. The following
theorem establishes that A3 is correct. The proof can be found in Appendix
C.3.

Theorem 3 (Correctness of the attack with missing queries). Let v be a
database, N = |v| and b be any natural number less or equal to N . Let I
be an index set described above. Let W = Lb,I(v) and SN be the output of A3,
i.e. SN = A3(W, b, k,N). Then

1. ∀v′ ∈WN ,∀I ′ ∈ ([N]× [N])∗,Lb,I′(v′) = W ⇒ v′ ∈ SN ,

2. v ∈ SN .

Experimental Results. We test our attack on the attributes NDX-26 and
NPR-26, with the missing queries generated uniformly, and the results are shown
in Table 4. A significant proportion of the databases can still be reconstructed
uniquely in the setting b = 6 and k = 2, indicating that banning some of the
queries is not an efficacious countermeasure.

Attribute b k Unique Ambiguous Abort Avg. Time (s)
NDX-26 5 1 42.8% 23.7% 33.4% 2.20
NDX-26 6 1 59.4% 16.7% 23.9% 21.31
NDX-26 6 2 40.1% 27.4% 32.5% 40.33
NPR-26 5 1 44.6% 20.5% 34.9% 1.18
NPR-26 6 1 56.1% 15.9% 27.9% 5.97
NPR-26 6 2 40.4% 24.0% 35.5% 11.87

Table 4: Experimental data for attack with missing queries.

3.3 Adding Fake Records

To a large extent, our attacks rely on checking equality of volumes, i.e. if v1
and v2 are adjacent volumes, then their sum should be in the set of observed
volumes. An obvious defense strategy is to pad the responses with fake records.
An entire spectrum of instantiations of this idea is possible. We discuss some
considerations in padding strategies, and present an attack which bypasses a
plausible instantiation of this countermeasure.

The best defense is to pad all answers with a large number of fake records.
While there is clearly no effective database reconstruction attack, the scheme is
highly inefficient. For efficiency one may choose to pad a small fraction of the
queries with a small number of fake records. If the parameters of the padding

17

strategy are chosen inappropriately, the attacker may be able to recover the
true observed volume and use our basic attack to reconstruct the underlying
database. Interestingly, the padding strategy plays an important role in the
security too. For example, if the size of the padding is generated uniformly at
random for each individual query then an attacker may be able to learn the true
volumes from the perturbed volumes for some databases. On the other hand, if
the size of the padding stays is an (unknown) constant r for all queries, then it
is easy to see that the optimal guess of any elementary volume always has an
uncertainty of r.

Attack Overview. Let Z = {Zx,y} be some noise distribution (which can
potentially depend on the indices of the queries and the volumes of the query
responses). We formally define the leakage function as

Lb,Z(v) =

{
y∑
i=x

vi + zx,y | y − x+ 1 ≤ b, zx,y ← Zx,y

}
. (5)

Given the leakage of some database Lb,Z(v) and a description of Z, the adversary
is asked to find all databases that can generate the set of observed volumes. We
study the case where each query is padded with up to r fake entries selected
uniformly and independently. That is, i.e. for all x, y, Zx,y = Uniform(1, r).

Our attack A4 begins by guessing the ranges for the observed volumes. A
guess is of the form (w1, w2) where w1 is the lower bound and w2 is the upper
bound (inclusive) of the guess. A partial solution is a tuple just like that in
the basic attack A1, except that the entries are ranges of the form (w1, w2) as
described above. The solution extension procedure uses the same idea as the
basic attack, but the constraints checked are changed to if the partial solution
can generate the padded volumes. We present the pseudocode of the attack in
Appendix C.4 Algorithm 5.

We note that our notion of approximate reconstruction is different from
that of the GLMP attack [11]. In their notion, the adversary is given the access
pattern leakage of all queries and his goal is to guess the label of every record
within a certain threshold of error. For our attack, the approximation is on the
elementary volumes, and this is the best the adversary can do as the volumes
are perturbed.

As the goal of the adversary is to approximately recover the database, he
can give up some accuracy in his guess to allow for more databases to be
uniquely reconstructed. By that, we mean that if there are two solutions
((w1, w2), (w3, w4)) and ((w1, w5), (w3, w4)) and w5 > w2, the adversary can
merge the guesses as ((w1, w5), (w3, w4)) at a loss of accuracy. In our attack,
we achieve this trade-off by allowing relaxed guesses on the observed volumes.

Theoretical Analysis. The solutions in the final solution set SN are of the
form ((w1, w2), . . . , (w2N−1, w2N)). We say that the attack is correct if given
any solution of that form, there is a database (v1, . . . ,vN) that can generate the
given leakage W and the solution contains the database, i.e. w2i−1 ≤ vi ≤ w2i

for all i = 1, . . . , N . We formalize the correctness of A4 as follows. The proof

18

can be found in Appendix C.5.

Theorem 4 (Correctness of attack with padded queries). Let v be a database,
N = |v| and b be any natural number less or equal to N . Let Z = {Zx,y} be
distributions of noises with Zx,y = Uniform(1, r) for some natural number r.
Let W ← Lb,Z(v), R be some estimations of the true volumes and SN be the
output of A4, i.e. SN = A4(R,W, b,N, r). Then

1. ∀v′ ∈ NN ,W ∈ supp(Lb,Z(v′))⇒ ∃s ∈ SN ,∀si, si[1] ≤ v′[i] ≤ si[2],

2. v ∈ SN .

Experimental Results. We study the effectiveness of our attack with two
sets of attacks on the attributes NDX and NPR with b = 5 and r = 10. Our choice
of r is arguably small but that is due to the fact that the elementary volumes
themselves are small. For instance, for the attribute NPR-26, over 54% of the
elementary volumes are below 100. As before, we abort if the number of partial
solutions is over |W |2.

For the first set of attacks, we aim to reconstruct all elementary volumes with
the best possible precision. To do that, we computeR asR = {(v − r, v − 1) | v ∈W}
and execute our attack (Algorithm 5). The experimental results are shown in
Table 5.

Attribute Unique Ambiguous Abort Avg. Time (s)
NDX-16 4.5% 16.2% 79.3% 0.92
NPR-16 10.0% 13.1% 76.9% 0.64
NDX-26 1.4% 6.0% 92.6% 2.82
NPR-26 6.7% 8.4% 84.9% 1.25

Table 5: Experimental data for the attack with perturbed volumes, the unique
solutions are the most information-theoretically precise solutions.

For the second set of attacks, we trade precision for more unique solutions.
We compute R just as before, and iteratively merge ranges (w1, w2), (w3, w4) in
R into (w1, w4) if w2 ≥ w3. The experimental results are shown in Table 6.

Attribute Unique Ambiguous Abort Avg. Time (s)
NDX-16 19.1% 10.8% 70.1% 0.84
NPR-16 19.7% 9.8% 70.5% 0.50
NDX-26 11.1% 6.7% 82.1% 2.10
NPR-26 12.1% 9.2% 78.7% 0.74

Table 6: Experimental data for the attack with perturbed volumes, the guesses
on the elementary volumes are relaxed.

An overwhelming proportion of the attacks abort as the databases often
contain similar elementary volumes. After perturbing, these volumes can often

19

be swapped without violating the constraints. Overall, adding fake records is a
better countermeasure than the other ones we have considered.

4 Attack on Observed Volumes with Bounded
Window Size

All attacks in the literature and our attacks described above require the set of
elementary volumes to be part of the observed volumes, so one may suspect that
these are absolutely necessary. In this section, we show that this is not the case.
We construct a successful adversary which only observes volumes for queries of
medium window sizes, i.e. there is a lower bound and an upper bound on the
window size. More formally, we define the leakage function as:

La,b(v) =

{
y∑
i=x

vi | a ≤ y − x+ 1 ≤ b

}
(6)

for some 0 < a < b ≤ N . For simplicity, we assume b and N are multiples of a.
The assumptions are not necessary requirements for our attack to work, though
they make our attack simpler to present and understand. We do need however
that b is somewhat large compared with a, more specifically that b > k · a, for
some k. We explain below the role played by this restriction.

4.1 Reconstruction Algorithm

Intuition. We provide an overview of the ideas that go into our attack. For
concreteness, let’s assume that a = 3, b = 9, N = 12. The database counts are
v = (v1, . . . , v12). Here, and throughout this section, we write v[i] for vi, and

we write v[i, j] for
∑j
k=i vk. Clearly, v[i, j] + v[j + 1, k] = v[i, k].

Our attack proceeds in two stages. In the first stage we recover the sequence
ṽ0 = (v[1, 3],v[4, 6],v[7, 9],v[10, 12]) (i.e. disjoint queries with window size a
which cover the entire v). To piece together ṽ0 we observe that the leaked
information allows us to check constraints on neighboring entries in ṽ. For
example, we have that v[4, 6] +v[7, 9] = v[4, 9] and v[4, 9] occurs in the leakage
(it corresponds to a query with window size 6). Similarly, v[4, 6] + v[7, 9] +
v[10, 12] = v[4, 12] also occurs in the leakage (query with window size 9).

Based on the above observations, we construct ṽ0 by viewing its entry as
elementary volumes and applying our basic search strategy. Every entry needs
to satisfy between k − 1 and 2k − 2 constraints, where k = b/a1. Importantly,
notice that from ṽ0 we can also recover all volumes of the form v[1, 3i].

Next, we determine volumes of the form v[1, 3i + 1] by reconstructing the
sequence ṽ1 = (v[1, 4],v[5, 7],v[8, 12]). One can think of ṽ1 as a variant of
ṽ0 shifted by 1. The first query has window size a + 1, and all but last of

1k is the “window size” for ṽ0 – the larger the ration of b to a the more constraints we
have available

20

the subsequent ones have window size a. The last query has size a − 1. Here,
again we use the strategy to incrementally build solutions from shorter ones. In
addition to the additive constraints which have to be satisfied by neighboring
entries (e.g. that v[1, 4] + v[5, 7] occurs in the leakage) we also use two other
types of constraints. Taking w = v[1, 4] as an example, notice that it must be
the case that v[1, 3] ≤ w ≤ v[1, 6]. It also must be the case that the values
v[1, 9]−w = v[5, 9] and v[1, 12]−w = v[5, 12] occur in the leakage (since these
correspond to queries of window size 5 and 8 respectively whereas the maximum
size of a query window size is 9). Similar conditions on size and relation to the
entries in the leakage hold for the rest of the entries in ṽ1.

Finally, we also recover v[1, 3i + 2] by reconstructing the sequence ṽ2 =
(v[1, 5],v[6, 8],v[9, 12]) using a similar strategy.

At this point, since we have recovered all volumes of the form v[1, 3i],
v[1, 3i+ 1] and v[1, 3i+ 2] we can recover almost all entries in v since v[t+ 1] =
v[1, t+1]−v[1, t]. In our example, we can recover the values (v[4],v[5], . . . ,v[9]).

To complete the attack we recover the elementary volumes in the windows
of size 3 at the start and end of v. This can be done by simply extending
(v[4],v[5], . . . ,v[9]) to the left and right: since all volumes with window size
between 3 and 9 are part of the leakage, we can check 6 constraints on v[3] and
v[10], and so on.

One difficulty which in the above description is not apparent, is that when
reconstructing ṽ0, ṽ1, ṽ2 we may obtain more than one solution for each. In
brief, we overcome this difficulty by relying on constraints that need to hold
between the entries in the three different sequences.

Attack overview. Our attack begins by finding all plausible solutions which
consists of consecutive volumes corresponding to queries of window size a. That
is, we find all valid ṽ0 from the example above. Call this set S0. Next, for every
solution in S0, we find sequences of consecutive volumes: the first one belonging
to the interval v[1, a] and subsequent ones being elementary volumes – this step
subsumes roughly identifying ṽ1, ṽ2, . . . and (most) of the elementary volumes in
v. The result is a set S ′ of sequences where the first and last entry correspond
to compound entries (i.e .queries of window size greater than 1) whereas all
other entries are actual elementary volumes. Finally, for each sequence in S ′
we recover the elementary volumes on the sides (and remove the compound
entries). All solutions are added to a set of tentative solutions S. Finally, we
sift through S and only keep those entries that generate the leakage observed.
Full pseudocode of the attack can be found in Appendix D.1 Algorithm 6.

4.2 Correctness

We say our algorithm is correct if it identifies the set of solutions such that
every solution in the set generates the same set of observed volumes as the one
given at the start of the attack. For convenience, we call our attack on observed
volumes with bounded window size A5. We establish that the algorithm works
as expected, under some further assumptions on the parameters a and b. The

21

proof of the theorem below can be found in Appendix D.2.

Theorem 5 (Correctness of the attack with bounded window sizes). Let v be
a database, N = |v| and a, b be natural numbers less or equal to N with b > 2a.
Let S be the output of the attack, i.e. S = A5(La,b(v), a, b,N). Then

1. ∀v′ ∈ La,b(v)N ,La,b(v′) = La,b(v)⇔ v′ ∈ S,

2. v ∈ S.

4.3 Experimental Results

We test our attack on the attributes NDX-26 and NPR-26 of the HCUP database
extensively, as our basic attack recovers the databases on the attributes uniquely
with high success rate so attacking the databases with leakage function La,b is
informative. At the same time, N for the attributes are large enough so that we
can study effectiveness of our attack under a variety of choices of a and b. The
threshold before aborting is set as |W |2. The experimental results are shown in
Table 7.

Attribute a b Unique Ambiguous Abort Avg. Time (s)
NDX-26 3 9 78.1% 1.2% 20.7% 0.49
NDX-26 4 12 80.2% 1.1% 18.7% 1.02
NDX-26 4 16 85.0% 2.5% 12.5% 1.90
NPR-26 3 9 79.8% 0.5% 19.7% 0.30
NPR-26 4 12 84.9% 0.3% 14.8% 0.68
NPR-26 4 16 91.6% 0.4% 8.0% 1.92

Table 7: Experimental results for the attack on bounded window size.

Our attack on the attribute NDX-26 with a = 3 and b = 9 has recovered over
78% of the databases uniquely. This suggests that banning queries from small
windows alone is ineffective as a countermeasure. Furthermore, our attack on
the attribute NPR-26 with a = 4 and b = 16 is able to reconstruct over 91% of
the databases uniquely, indicating that the use of larger b makes the databases
more vulnerable to volume leakage attacks.

5 Partial Reconstruction

Not all databases are uniquely reconstructable as shown by our previous attacks.
However, the information in the observed volumes often allows unique recon-
struction of a segment of the database. Consider database v = (100, 2, 1, 1, 1, 2, 1).
The database is not uniquely reconstructable from L3(v). However, by setting
100 as the initial solution and run our basic attack, we find (100, 2, 1) (and
its reflection) as the only solution of length 3. This means we have uniquely
reconstructed (100, 2, 1) as a segment of the database.

22

We introduce the partial reconstruction problem as follows. The adversary
obtains leakage L(v) for some database v, and his goal is to output a segment
of the database s ∈ v (up to reflection). There is more than one choice on how
to measure the effectiveness of an adversary with respect to this kind of attacks.
Of the several different choices on how to quantify the success of the adversary
we consider two. The first simply counts the fraction of labels for which the
attack recovers the correct counts; the second, also accounts for the size of the
counts themselves. For example, an adversary may correctly identify counts for
a small fraction of the labels, but the total number of records associated to these
labels can be overwhelming.

5.1 Partial Reconstruction Algorithm

Intuition. Our partial reconstruction attack can be viewed as a special case of
our basic attack where instead of reporting all solutions of length N , we return
the longest solution that can be uniquely identified. Databases that can only be
reconstructed partially usually have a segment of small volumes. For example,
the length of stay of the patients in hospitals is usually less than 10 days, with
occasional longer stays. If we use the minimum observed volume as the initial
solution, it is very likely for the number of solutions to grow out of control.
Hence, we initialise our partial reconstruction attack with the clique-finding
algorithm described by Algorithm 1. Unlike our basic attack, solutions for the
partial reconstruction attack have to be extended in one direction at a time.
This is because extending the solutions in both directions inherently introduces
ambiguity (and we aim to identify a unique common subsequence).

Attack Overview. Our partial reconstruction attack is described by Al-
gorithm 3. We begin by running Algorithm 1 as the initial solution finding
algorithm. Reflections are removed from the initial solutions. The set of partial
solutions is then extended iteratively by procedures Extend Left and Extend
Right of the basic attack. Only the longest partial solution that is unique is
kept. For practical purposes, the set of partial solutions is extended as much
as possible until some threshold on its size has reached, and the longest unique
solution amongst those is kept by the attacker. If a unique solution is found
with line 15 of the algorithm, we return the solution in line 16.

5.2 Correctness and Complexity Analysis

Correctness. Correctness of the partial reconstruction attack needs to be
formalized differently from other attacks as we do not recover the whole database
most of the time. However, whenever we recover a unique solution, it must
be a segment of the original database (up to reflection). We call our partial
reconstruction attack A6. The following Theorem establishes the correctness of
partial reconstruction attack. The proof is similar to that of the basic attack
with the additional constraint that the partial solution is unique so it is omitted.

23

Algorithm 3 Partial reconstruction attack

1: input W = {
∑y
i=x vi | y − x+ 1 ≤ b}, b,N

2: output (w1, . . . , wm) with m ≤ N and for all i, wi ∈W

3: procedure Attack(W, b,N)
4: Sb ← Initial Solution(W, b)
5: for s ∈ Sb do
6: if sR ∈ Sb then
7: Sb ← Sb\ {s}
8: for i← b+ 1, N do
9: Si ← ExtendLeft(Si−1,W, b)

10: j ← maxi{i | |Si| = 1}
11: for i← j + 1, N do
12: Si ← ExtendRight(Si−1,W, b)
13: if min{|Si|} > 1 then
14: return ()

15: j ← maxi{i | |Si| = 1, i ≥ j}
16: return Sj .pop()

Theorem 6 (Correctness of the partial reconstruction attack). Let v be a
database, N = |V | and b be any natural number less or equal to N . Let
s = A6(Lb(v), b,N). Then s ∈ v or sR ∈ v.

Complexity. Algorithm 1 takes at most O(|W |b) time and space following a
standard argument for brute-force clique finding. The solution extension proce-
dures takes at most O(|W |b−1) space and O(b·N ·|W |b) time as the clique finding

step generates at most O(|W |b−1) solutions. Therefore, the overall space com-

plexity of the attack is O(|W |b) and the overall time complexity of the attack

is O(b ·N · |W |b).
In practice, we stop the attack as soon as there are more than |W |2 solu-

tions (including the clique finding step). So the space complexity in practice is

O(|W |2) and the time complexity is O(b ·N · |W |3).

5.3 Experimental Results

We choose LOS as the attribute to attack from the HCUP dataset since our basic
attack performs poorly due to presence of small elementary volumes. In addition
to the performance parameters introduced at the start of the section, we measure
the fraction of databases for which our attack fails due to the computational
threshold of |W |2 or inability to identify a unique solution.

Our experimental results are summarised in Table 8 where we report both
the fraction of labels correctly identified (column ”Length”) and the fraction
of correctly identified labels but weighted by their value (column ”Volume”).

24

Attribute b Length Volume Failed Time (s)
LOS 4 37.5% 95.6% 14.7% 0.31
LOS 6 48.1% 97.3% 14.2% 0.99
LOS 8 54.5% 98.2% 15.3% 2.24
LOS 10 59.0% 98.7% 16.5% 4.54

Table 8: Experimental results for the partial reconstruction attack.

Our partial reconstruction attack works on over 85% of the databases on LOS

for bound b as small as 4. Although only 37.5% of the labels can be recovered
uniquely on average, it corresponds to 95.6% of the inpatients. This means
that the partial reconstruction attack has effectively recovered the majority of
the entries of the databases uniquely. The attack is very efficient despite the
expensive clique-finding procedure.

6 Use of Side Information

Side information on the underlying databases can be used to boost our attacks.
In this section, we discuss and experiment with two general ways of using side
information

Post-processing. The most straightforward use of side information is to post-
process the results of our attacks to further sift the possible solutions output by
our attacks. We note that the solutions output by our attacks are naturally am-
biguous as it is information-theoretically impossible to distinguish the database
from its reflection. With the help of minimal knowledge on the database, the
attacker may be able to distinguish the database from its reflection. For in-
stance, over 92% of the databases in HCUP, for the attribute AGE it holds that
that v[2, 5] < v[N − 4, N − 1] so almost all databases can be distinguished
from their reflections. More interestingly, if the adversary has access to more
concrete side information, he may be able to identify the real database from a
large set of solutions. For example, if the attacker knows some true volumes
of some segments of the database, he can use that information to disambiguate
the solutions.

Dynamic. Side information can also be used dynamically to prune the search
space more effectively and reduce the number of ambiguous solutions. For ex-
ample, over 50% of the databases on the attribute NPR-26 satisfies the condition
v[i] > v[i + 1] for 2 ≤ i ≤ N − 1. This means if the attacker knows the tar-
get database has this property, the partial solutions must be decreasing in the
middle, and the volumes used to extend the partial solutions to the left must
be larger than the first volume of the partial solution and vice versa.

We experimentally verify the effect of side information on two of our attacks.
We attack the attribute NDX-26 in the setting of missing queries, with the same
parameters as those in Table 4. In addition to the observed volumes and relevant
parameters to the attack, the adversary is given the volume of the answer to

25

up to 3 queries of window size within b. The queries are generated uniformly
at random. For each hospital, we run the attack 10 times with freshly selected
known queries, and report the average rate of success. We observe a considerable
increment in the uniqueness rate of solutions as compared to the case where the
attacker has received no additional information (Table 4), as shown by Table 9.

Unique
b k m = 1 m = 2 m = 3 Abort
5 1 51.8% 55.7% 57.7% 34.0%
6 1 64.7% 67.5% 68.9% 24.9%
6 2 50.2% 53.6% 55.9% 34.3%

Table 9: Experimental data for attack with missing queries on the attribute
NDX-26. The attacker is given m = 1, 2, 3 random known queries.

On the same attribute, we have also tested known v[1] and v[N] as the
side information, and the results are shown in Table 10. The uniqueness rates
of solutions are higher than those in the previous setting. This hints that the
ambiguity in the solutions often comes from the initial and final segments of the
databases.

b k Unique Ambiguous Abort
5 1 63.3% 2.4% 34.3%
6 1 72.9% 1.8% 25.3%
6 2 64.7% 1.6% 33.7%

Table 10: Experimental data for attack with missing queries on the attribute
NDX-26. The attacker is given v[1] and v[N].

We attack the attribute NPR-26 in the setting of perturbed volumes, with b =
5 and r = 10. The attack is conducted on the databases with the property v[i] >
v[i+1] for 2 ≤ i ≤ N−1, and this information is given to the attacker. The side
information improves the fraction of the databases that can be reconstructed
uniquely from 12.1% (Table 6) to 24.8%.

7 Countermeasures

Our attacks show that left unchecked volume leakage can be devastating. Here
we discuss two generic types of countermeasures which have been proposed from
the point of view of our attacks.

Modifying the database. One modification to consider is to group labels into
buckets [14]. This is commonly known as bucketization technique. If, as natural,
this is done with consecutive values, then volume leakage attacks can now target
bucketed elementary volumes. So such technique only prevents the adversary
from learning the original elementary volumes, but our attack still apply and

26

can recover the bucket sizes. Alternatively, one can add dummy records. Intu-
itively, a small number of dummy records does not change the database much
so either padding with dummy records leads to (space/bandwidth) inefficient
solutions, or as shown by our attack which use noisy leakage, significant amount
of information about the database may still be recovered. We also note that
using a differential private mechanism to add dummy records as suggested by
KKNO [16] is not effective in our setting. Differential privacy only protects
the database from exact reconstruction, but the ”shape” of the database is not
changed by the mechanism.

Modifying query processing. Queries can be processed to hide certain
volumes. Two prior suggestions due to Grubbs et al. [12] are to batch queries
together and therefore hide all elementary volumes. In particular, one can
restrict the minimum window size of a range query. Our attack in Section 4
suggests that these are not effective countermeasures.

New proposals. Informed by our attack (or rather by the cases where our
attacks fail) we suggest two directions for research on countermeasures against
volume leakage attacks. Here, we consider the less ambitious but still challenging
setting where the server is honest and we are only trying to protect the scheme
from passive external observers. The first proposal is to pad the answers it
returns so that all volumes observed are powers of two. Suppose {2i, 2j , 2k, 2l} ∈
W , with i < j < k < l and l = k + 1. Then the following tuples (up to
reflection) can all be part of the original database: (2i, 2k), (2j , 2k), (2k, 2k).
The intuition is that the leakage does not contain any information regarding
the adjacency of the indexes queried and our attack strategy cannot rely on any
obvious constraints. In the worst case however, the bandwidth required by the
scheme doubles.

A preliminary idea for a method which incurs less bandwidth loss is based
on the following observation. Imagine that one can somehow ensure that the
leakage function is L(v) =

{∑
x∈X x | X ⊆ v

}
, where by X ⊆ v we mean

that X is a subset of the set of entries in v. That is, the leaked volumes
comprise all the sums of the subsets of the elementary volumes in the database.
It is immediate in this case that all possible permutations of v are preimages
of L(v) so short of degenerate cases (and of using side information about the
database) it is impossible to uniquely recover v. The technical reason why our
recovery algorithm fails in this case is that leakage function contains spurious
volumes which have “the right” structure: when extending partial solutions we
check if certain sums of volumes occur in W but his check will always succeed.
A natural countermeasure inspired by the above discussion is to ensure that
the information leaked contains as many possible volumes from L(v) above:
these increase the likelihood that the check we made when extending solutions
succeeds even for invalid extensions, and therefore has the potential to disrupt
our attacks.

We emphasize that this is a rather preliminary idea: we cannot ensure that
the leakage is the entire L(v) above (there are exponentially many entries in
L(v) so how to pad appropriately is still a problem which we leave for future

27

research.

8 Conclusion

We present new volume leakage attacks against encrypted range queries. We
improve over the state of the art in several respects. Our attacks require sig-
nificantly less data, are robust when the leakage includes noise, and can be
extended to deal with other practically relevant settings. We show how to deal
with less orthodox leakage functions (e.g. only medium window size queries) and
identify formalize partial reconstruction attacks, a realistic adversarial goal. We
discussed how side information can be used to improve the effectiveness our at-
tacks further. Our highly effective attacks spotlight the rich structure of W as
a key source of insecurity and explain the difficulty of coming up with efficient
countermeasures. We suggest some preliminary ideas in this direction, but leave
a careful study and deployment for future work.

The key idea underlying our attacks can also be extended to deal with non-
dense databases. For the leakage in our basic attack, zeros in the databases
essentially generates less constraints when the solutions are extended, and this
information can be used to locate the zeros. We illustrate this with an example.
Consider v = (4, 2, 5, 0, 7) and b = 4, if we try to extend the partial solution
(4, 2, 5) to the right with 7, we are only able to identify 3 additive constraints
as the two-way sum cannot be checked. This tells us that the partial solution
can be extended with (0, 7).

Finally, we highlight a difficulty faced by both design and cryptanalytic
work in the space of searchable encryption. Essentially all works in this space
either make assumptions on the query distribution (which are often difficult
to justify) or study worst case scenarios. What is missing is a principled de-
scription/understanding of the query distributions encountered in practice: this
would both help to further validate cryptanalysis work and open up the space
for designs of schemes and countermeasures which can take advantage of this
knowledge.

References

[1] R. Arratia, L. Goldstein, and L. Gordon. Two moments suffice for poisson
approximations: The chen-stein method. Ann. Probab., 17(1):9–25, 01
1989.

[2] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. On the integra-
tion of public key data encryption and public key encryption with keyword
search. In Sokratis K. Katsikas, Javier Lopez, Michael Backes, Stefanos
Gritzalis, and Bart Preneel, editors, ISC 2006, volume 4176 of LNCS, pages
217–232. Springer, Heidelberg, August / September 2006.

28

[3] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Per-
siano. Public key encryption with keyword search. In Christian Cachin and
Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages
506–522. Springer, Heidelberg, May 2004.

[4] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo
Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable
encryption in very-large databases: Data structures and implementation.
In NDSS 2014. The Internet Society, February 2014.

[5] Louis H. Y. Chen. An approximation theorem for sums of certain ran-
domly selected indicators. Zeitschrift für Wahrscheinlichkeitstheorie und
Verwandte Gebiete, 33(1):69–74, Mar 1975.

[6] Louis H. Y. Chen. Poisson approximation for dependent trials. Ann.
Probab., 3(3):534–545, 06 1975.

[7] Carlo Curino, Evan Philip Charles Jones, Raluca Popa, Nirmesh Malviya,
Eugene Wu, Samuel Madden, Hari Balakrishnan, and Nickolai Zeldovich.
Relational cloud: A database-as-a-service for the cloud. pages 235–240, 04
2011.

[8] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky.
Searchable symmetric encryption: improved definitions and efficient con-
structions. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, ACM CCS 2006, pages 79–88. ACM Press, Octo-
ber / November 2006.

[9] Liming Fang, Willy Susilo, Chunpeng Ge, and Jiandong Wang. A secure
channel free public key encryption with keyword search scheme without
random oracle. In Juan A. Garay, Atsuko Miyaji, and Akira Otsuka, edi-
tors, CANS 09, volume 5888 of LNCS, pages 248–258. Springer, Heidelberg,
December 2009.

[10] Agency for Healthcare Research and MD. Quality, Rockville. Hcup na-
tionwide inpatient sample (nis). healthcare cost and utilization project
(hcup). https://www.hcup-us.ahrq.gov/nisoverview.jsp, 2018. Ac-
cessed: 2019-02-20.

[11] P. Grubbs, M. Lacharité, B. Minaud, and K. G. Paterson. Learning to
reconstruct: Statistical learning theory and encrypted database attacks.
In 2019 2019 IEEE Symposium on Security and Privacy (SP), volume 00,
pages 480–496, 2019.

[12] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Pa-
terson. Pump up the volume: Practical database reconstruction from vol-
ume leakage on range queries. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 315–331.
ACM Press, October 2018.

29

[13] H. Hacigumus, B. Iyer, and S. Mehrotra. Providing database as a service.
In Proceedings 18th International Conference on Data Engineering, pages
29–38, Feb 2002.

[14] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. A privacy-preserving index
for range queries. In Proceedings of the Thirtieth International Conference
on Very Large Data Bases - Volume 30, VLDB ’04, pages 720–731. VLDB
Endowment, 2004.

[15] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill.
Generic attacks on secure outsourced databases. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 1329–1340. ACM Press, October
2016.

[16] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Ac-
cessing data while preserving privacy, 2017.

[17] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. Improved
reconstruction attacks on encrypted data using range query leakage. In 2018
IEEE Symposium on Security and Privacy, pages 297–314. IEEE Computer
Society Press, May 2018.

[18] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical tech-
niques for searches on encrypted data. In 2000 IEEE Symposium on Secu-
rity and Privacy, pages 44–55. IEEE Computer Society Press, May 2000.

[19] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dy-
namic searchable encryption with small leakage. In NDSS 2014. The Inter-
net Society, February 2014.

[20] Charles Stein. A bound for the error in the normal approximation to the
distribution of a sum of dependent random variables. In Proceedings of
the Sixth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 2: Probability Theory, pages 583–602, Berkeley, Calif., 1972. Uni-
versity of California Press.

A Experimental Data and the Attacks

Dataset. The Agency for Healthcare Research and Quality (AHRQ) is the
lead Federal agency in US with a mission to improve the safety and quality
of America’s healthcare system. The Healthcare Cost and Utilization Project
(HCUP) is a family of healthcare databases and related software tools and prod-
ucts developed and sponsored by AHRQ. One of the datasets in the HCUP is
the National (nationwide) Inpatient Sample (NIS), which is the largest publicly
available all-payer inpatient healthcare database in US. It contains data from

30

over 7 million hospital stays each year. We use the HCUP dataset to mean the
NIS throughout our paper.

The NIS has been anonymised to protect patient privacy. We did not
attempt to deanonymise any of the data, nor are our attacks designed
to deanonymise medical data. All authors have completed the HCUP Data
Use Agreement training and submitted signed Data Use Agreements to the
HCUP Central Distributor.

We use the HCUP dataset from year 2004, 2008 and 2009 for our experi-
ments. For each year the dataset contains data for about one thousand hospi-
tals. The median number of inpatients is around 3 to 4 thousand depending
on the year. Most of the data fields are for discharge information and hence,
not suitable for our attacks. We choose admission month (AMONTH), number
of diagnoses (NDX), number of procedures (NPR), age (AGE), and length of stay
(LOS) as the target attributes for our attacks as these attributes are suitable
for range queries and they have diversified distributions. For the attributes NDX
and NPR, there are 16 categories for year 2004 and 2008 and these attributes
are labelled as NDX-16 and NPR-16 respectively. For the same attributes, there
are 26 categories for year 2009 and these attributes are labeled as NDX-26 and
NPR-26 respectively. Summary statistics of the attributes can be found in Table
11. We also offer a comparison of the number of queries required to observe all
volumes in the leakage for the GLMP attack and our basic attack with a typical
window size, assuming an uniform query distribution.

Attribute Max. N Avg. N Dense b GLMP Basic
AMONTH 12 11.9 97.8% 3 451.2 149.1
NDX-16 16 12.0 4.3% 3 598.4 175.0
NDX-26 26 17.2 8.0% 4 1221.3 341.6
NPR-16 16 9.2 15.3% 3 343.2 113.2
NPR-26 26 10.7 1.0% 4 463.8 168.7

AGE 83 71.1 39.2% 6 16666.3 1714.5
LOS 366 45.9 0.0% 6 6671.6 805.9

Table 11: Summary statistics on the attributes used in the attacks.

Data Processing. For each year, attribute and hospital, we build a database
by merging the records together, and remove the labels with zero counts. For
the attribute AGE, we top-code at 90 in all experiments just like the GLMP
attack. Furthermore, we merge ages 1 to 5 and 6 to 10 into two labels for our
basic attack as many databases cannot be uniquely reconstructed with small
bound on the window size due to this segment of the database. The remaining
databases has N = 83 and we believe that it is sufficiently large to demonstrate
efficiency and effectiveness of our attacks.

We define an attack as the process of generating some set of observed volumes
specified by some leakage function for a database on an attribute and a hospital,
and running one of our algorithms. Some of the leakage functions we have

31

considered are probabilistic in nature. In that case, we run the attacks with
randomized realizations of the leakage functions. To test the performance of
our attack on a leakage function, we run the attack on individual attributes for
each hospital at a time and report performance metrics regarding the success
probability.

Attack Environment. We implement data processing and the attacks in
python and theoretical analysis of our basic attack in R. The attacks are run
on an Intel Core i7 4.7GHz machine with 16GB of DDR4 RAM clocked at
2133MHz.

Performance Parameters of the Attacks. There are five performance
parameters that are common to most of our attacks, namely the fraction of
databases which we can recover uniquely (up to reflection), the fraction of
databases for which we obtain ambiguous solutions, the fraction of databases
where the initial solution finding algorithm fails, the fraction of databases for
which the attack aborts, and the average time taken for the attack on the given
attribute across all databases.

B Basic Attack

B.1 Correctness of Basic Attack

Proof of Theorem 1. Statement (2) follows from (1), so it suffices to prove (1).
(⇐) We obtain this implication for free as line 7 of the algorithm ensures

that Lb(v′) = Lb(v).
(⇒) Assume that Lb(v′) = Lb(v). We show that at iteration i of the algo-

rithm in line 6, we have the invariant that ∀v′ ∈ Lb(v)N , Lb(v′) = Lb(v) =⇒
∃(x1, . . . , xi) ∈ v′ s.t. (x1, . . . , xi) ∈ Si. In particular, this implies that for
solutions of length N , v′ ∈ SN . We prove this by induction.

The correctness of the base case relies on the correctness of the initial solution
finding algorithm. We prove that Algorithm 1 is correct. Assume for the sake
of contradiction that there exists some clique of size b, (w1, . . . , wb) which is not

in the output of the algorithm. Then
{
w1, w1 + w2, . . . ,

∑b
j=1 wj

}
must not

be in Gb. This is impossible as
{
w1,

∑b
j=1 wj

}
∈ G2 and for i between 3 and

b, adding
∑i
j=1 wj to the previous set of volumes generates a valid element in

Gi. Therefore, our assumption must be false and the correctness of the clique
finding algorithm follows.

In the inductive step, we assume that at iteration k, there exists (x1, . . . , xk) ∈
v′ such that (x1, . . . , xk) ∈ Sk. Without loss of generality, we can assume
xk is not the last volume to the right of v′, so there is some xk+1 such that
(x1, . . . , xk, xk+1) ∈ v′. Running the Extend Right procedure from line 15 to

20, we check if
{
xk+1 +

∑j
i=0 xk−i | 0 ≤ j ≤ min{b− 1, k}

}
⊆ Lb(v). This is

indeed the case as Lb(v′) = Lb(v). So there exists (x1, . . . , xk, xk+1) ∈ v′ such
that (x1, . . . , xk, xk+1) ∈ Si+1.

32

Hence, we conclude that after the final iteration, ∀v′ ∈ Lb(v)N , Lb(v′) =
Lb(v) =⇒ ∃(x1, . . . , xN) ∈ v′ s.t. (x1, . . . , xN) ∈ Si, and the desired result
follows.

B.2 Uniqueness of Solution of Basic Attack

The probability that the final solution is unique is computationally infeasible
to compute from its analytical expression so we use a series of bounding and
approximation techniques to find an estimation of the value. Given a database
v, we call a solution s genuine if s ∈ v or sR ∈ v. We make the following
observation. If we discover a solution that is not genuine at any stage of the al-
gorithm, then there must exist a tuple of observed volumes that is not a segment
of v but still satisfies all the constraints. If we can estimate the probability of a
random tuple satisfying all the constraints, then we can derive the probability
that there is no combination of the observed volumes other than the genuine
solutions by the end of the attack.

Our estimation of punique is derived using the following lemmas. In Lemma
1, we derive the distribution of observed volumes. This allows us to work out
the distribution of out-of-order sums of the observed volumes in Lemma 2.
Combining the two lemmas, we find an estimation on the probability that the
solutions of length b contains only genuine solutions using Lemma 3. Finally,
we derive an estimation of punique using Theorem 8.

Distribution of observed volumes. We write W̃ to denote the distribution
of observed volumes. Unlike a simple random variable, a draw from W̃ gener-
ates a set of volumes. Given the distribution of elementary volumes as Ṽ =
(V1, . . . , VN), and bound b, a draw from W̃ is equivalent to {

∑j
i vi | vi ← Vi,

j− i+1 ≤ b}. Volumes in W̃ have significant dependencies amongst each other,
and it is not trivial to compute W̃ . We appeal to the works of Stein [20] and
Chen [6, 5], later known as the Chen-Stein method. It works as follows.

Let I be a finite or countable index set. For each α ∈ I, let Xα be a Bernoulli
random variable with pα = Pr[Xα = 1] > 0. Let

U =
∑
α∈I

Xα and λ = E(U). (7)

We assume λ ∈ (0,∞). Let Z be a Poisson random variable with the same
mean as U . For each α ∈ I, we define Bα ⊂ I with α ∈ Bα as the neighbour-
hood of Xα.The neighbourhood of Xα is the set of random variables that have
dependency with Xα. Define

b1 =
∑
α∈I

∑
β∈Bα

pαpβ , (8)

b2 =
∑
α∈I

∑
α6=β∈Bα

pαβ , where pαβ = E(XαXβ) and (9)

b3 =
∑
α∈I

E(E(Xα − pα | σ(Xβ : β 6= Bα))). (10)

33

Loosely, b1 measures the neighbourhood size, b2 measures the expected num-
ber of neighbours of a given occurrence and b3 measures the dependence between
an event and the number of occurrences outside its neighbourhood.

The main result we use is proven by Arratia, Goldstein and Gordon [1].

Theorem 7. Let U =
∑
α∈I Xα be the number of occurrences of dependent

events, and let Z be a Poisson random variable with E(Z) = E(U) = λ < ∞.
Then

sup
x
|Pr[U = x]− Pr[Z = x]|

≤2

[
(b1 + b2)

1− e−λ

λ
+ b3 min(1, 1.4λ−1/2)

]
≤2(b1 + b2 + b3),

and, ∣∣Pr[U = 0]− e−λ
∣∣

≤(b1 + b2 + b3)(1− e−λ)/λ

<min(1, λ−1)(b1 + b2 + b3).

For our purpose, Xα’s are indicator random variables that tell us if the sum
of adjacent elementary volumes associated with the index α takes a particular
value u or not. These events usually happen with small probability so it is
reasonable to use Poisson approximation.

Let Ṽ = (V1, . . . , VN) be the distribution of elementary volumes and b be the
maximum window size. We define the index set as I = {(i, j) | j − i+ 1 ≤ b}.
We define the neighborhood set of index (i, j) as β(i,j) = {(k, l) | i < k < j, l >
j, l − k + 1 ≤ b} ∪ {(k, l) | k < i, i < l < j, l − k + 1 ≤ b}. We define X(i,j)(u) =

1
{∑j

k=i Vk = u
}

to be the indicator random variables to check if the sum of i-

th elementary volume through j-th elementary volume is equal to some volume
u. Then U(u) =

∑
α∈I Xα(u) is the random variable for the number of times

we see u in the set of observed volumes. Using second part of Theorem 7, we
find a lower bound on the probability that we do not see u in the set of observed
volumes, and hence an upper bound on the probability that we do see u. The
result is summarized in the following lemma.

Lemma 1 (Distribution of Observed Volumes). Let Ṽ = (V1, . . . , VN) be the
distribution of elementary volumes and b be the maximum window size. Let I
be the index set, β(i,j) be the neighborhood set, and X(i,j)(u) be the indicator
random variables defined above. Let U(u) =

∑
α∈I Xα(u). Then

Pr[U(u) > 0] ≤ 1− e−λ(u) + min(1, λ−1)(b1 + b2),

where λ(u), b1 and b2 are quantities defined in Equation (7), (8) and (9) respec-
tively.

34

Proof. Lemma 1 is a direct result from Theorem 7. For our purpose, b3 = 0, so
it suffices to find λ(u), b1 and b2.

It is straightforward to compute λ(u) for volume u from definition. We have

λ(u) =E(U(u)) (11)

=E

 ∑
(i,j)

j−i+1≤b

X(i,j)(u)

 (12)

=
∑
(i,j)

j−i+1≤b

Pr

(
j∑
k=i

Vk = u

)
. (13)

Equation (11) is a rephrasing of λ(u). Equation (12) expands equation (11)
by writing out the indicator random variables explicitly. Equation (13) uses
linearity of expectation and rewrites the indicators as probabilities.

For index (i, j), the neighbourhood set is every pair of (k, l) such that (i, j)

and (k, l) overlaps. Though we know that if
∑j
m=i Vm = u, then there is no way∑l

m=k Vm = u, if k < i and l > j, and vice versa. So k or l has to be between i
and j, except when k = i, l = j. Therefore we can derive b1(u) for volume u as
follows.

b1(u) =
∑
α∈I

∑
β∈Bα

pα(u)pβ(u)

=
∑
(i,j)

j−i+1≤b

p(i,j)(u)2 +
∑
(i,j)

j−i+1≤b

∑
(k,l)

i<k<j,l>j
l−k+1≤b

p(i,j)(u)p(k,l)(u)

+
∑
(i,j)

j−i+1≤b

∑
(k,l)

k<i,i<l<j
l−k+1≤b

p(i,j)(u)p(k,l)(u),

where p(i,j)(u) = Pr
[∑j

k=i Vk = u
]
.

To derive b2(u) for volume u, it suffices to derive an expression for pαβ(u).
Without loss of generality, we can assume α = (i, j), β = (k, l), and i < k < l.

35

Then

p(i,j)(k,l)(u)

= Pr
(
X(i,j)(u)X(k,l)(u)

)
= Pr

(
j∑

m=i

Vm = u,

l∑
m=k

Vm = u

)

=
∑
x

Pr

(
k−1∑
m=i

Vm = x

)
· Pr

(
j∑

m=k

Vm = u− x

)
· Pr

 l∑
m=j+1

Vm = x

 .

So

b2(u) =
∑
(i,j)

j−i+1≤b

∑
(k,l)∈β(i,j)

(k,l)6=(i,j)

∑
x

Pr

(
k−1∑
m=i

Vm = x

)
·

Pr

(
j∑

m=k

Vm = u− x

)
· Pr

 l∑
m=j+1

Vm = x

 .
Finally, by combining the quantities above using Theorem 7, we obtain the

desired result.

Distribution of out-of-order sum of observed volumes. An out-of-
order sum of the observed volumes is a summation of volumes picked from the
set of observed volumes in random order. So the sum does not necessarily
correspond to a sum of adjacent elementary volumes. We need the distribution
of out-of-order sum of the observed volumes because it is key to derive the
probability that a random sum of the observed volumes is equal to one of the
observed volumes.

To derive the distribution, we do not find the Chen-Stein method as useful
as the neighbourhood set is always everything, and b1 and b2 are too large
to provide any meaningful bound. Instead, we simply use union bound for
this purpose. Below, we write Ui for the distribution of the summation of i
volumes from the set of observed volumes, where the database is distributed with
Ṽ = (V1, . . . , VN). By abusing notation, we write U to mean the distribution of
the observed volumes.

Lemma 2 (Distribution of out-of-order sum of observed volumes). Let Ṽ =
(V1, . . . , VN) be the distribution of elementary volumes and b be the maximum
window size. Write U for the distribution of observed volumes and Uk for the
distribution of summations of k volumes from the set of observed volumes. We
have

Pr[u ∈ Uk] ≈ Pr[U ∗ . . . ∗ U = u] / i!,

where U ∗ . . . ∗ U is the convolution of U k times.

36

Proof.

Pr[u ∈ Ui] (14)

= Pr

 ⋃
u1,...,ui−1

u1 ∈ U, . . . , ui−1 ∈ U, u−
i−1∑
j=1

uj ∈ U

 (15)

≤
∑

u1,...,ui−1

Pr

u1 ∈ U, . . . , ui−1 ∈ U, u− i−1∑
j=1

uj ∈ U

 (16)

≈
∑

u1,...,ui−1

Pr [u1 ∈ U] . . .Pr

u− i−1∑
j=1

uj ∈ U

 (17)

≈Pr[U ∗ . . . ∗ U = u] / i!. (18)

Equation (15) is a decomposition of events from equation (14). We use the
union bound to obtain equation (16). In equation (17), we treat draws from U
as independent draws, and write different draws as a product of probabilities.
This can be approximated by convolution of independent copies of U divide
by i!, which accounts for the number of times combinations of u1, . . . , ui −
1, u −

∑i−1
j=1 uj have been double-counted. If the numerical value of Pr[u ∈ Ui]

is greater than 1, it is set to 1.

Collision probability and uniqueness of solution. Suppose we have
more than one solution by the end of A1. This means that there is at least
one non-genuine solution satisfying all the constraints. The solution has to
be different from the original database by at least one volume. With some
simplification, we assume that this volume is in the middle of the tuple, then
the solution must satisfy two two-way out-of-order sum of observed volumes,
three three-way out-of-order sum of observed volumes and so on. In other
words, there are two volumes drawn from U2 that are in U by chance, and so
on.

We define k-way collision probability by

Pr[k-way collision] = max
x

[Pr[U(x) > 0] Pr[x ∈ Uk]] . (19)

This is the maximum probability that a random sum of k out-of-order observed
volumes equal to one of the observed volumes. This allows us to derive the
probability that the solutions of length b contains only genuine solutions.

Lemma 3. Let Ṽ = (V1, . . . , VN) be the distribution of elementary volumes and
b be the maximum window size. Let Sb be the solutions of length b. Then Sb
contains only genuine solutions with probability approximately

1−
i−1∑
j=1

(
i− 1

j

)
|W |j

i∏
k=2

Pr[k-way collision]
min{j·k,i−k+1}

.

37

Proof. Since
∣∣∣Ṽ ∣∣∣ = N and the maximum window size is b, there are at most

|W | =
∑b−1
i=0 N − i = bN − (b− 1)b/2 observed volumes. This means there are

at most b − 1 volumes that can differ from a genuine solution. Therefore, by
computing the probability that there are 1 ≤ i ≤ b − 1 volumes differing from
a genuine solution, we obtain a bound on the probability that Sb contains only
genuine solutions.

In general, we can compute the probability that there are i volumes differ
from a genuine solution as

Pr[i volumes are different from a genuine solution]

≈
(
b− 1

i

)
|W |i

b∏
k=2

Pr[k-way collision]
min{i·k,b−k+1}

.

In the equation,
(
b−1
i

)
|W |i accounts for the orientations of genuine volumes and

wrong volumes, and the later product is an upper bound on the probability
that a solution with i non-genuine volumes is valid, assuming independence of
collisions.

Using union bound, we find the probability that the solution set contains
only genuine solutions as

Pr[Sb contains only genuine solutions]

≈1−
b−1∑
i=1

Pr[i volumes are different from a genuine solution]

≈1−
b−1∑
i=1

(
b− 1

i

)
|W |i

b∏
k=2

Pr[k-way collision]
min{i·k,b−k+1}

.

The next Theorem establishes an estimation for punique.

Theorem 8 (Estimation of punique). Let Ṽ = (V1, . . . , VN) be the distribution
of elementary volumes and b be the maximum window size. We can estimate
punique as

Pr[Sb contains only genuine solutions]− (N − b)q,

where q = 2|W |
∏b+1
k=2 Pr[k-way collision].

Proof. We know from Lemma 3 there is a certain probability that the solutions
of length b contains only genuine solutions. We seek the probability that the
solution set remains genuine for all further iterations. There are |W | to be tested
on the left and right of the genuine solutions in each iteration. If our algorithm
finds a solution by chance, there must be a k-way collision for all 2 ≤ k ≤ b.

38

Hence, using union bound, we get

Pr
[

Sj+1 contains
only genuine solutions |

Sj contains
only genuine solutions

]
≈1− 2|W |

b∏
k=2

Pr[k-way collision]

=1− q.

Applying union bound again, we find

punique

≈Pr[Sb contains only genuine solutions]

−
N∑

j=b+1

1− Pr
[

Sj+1 contains
only genuine solutions |

Sj contains
only genuine solutions

]
= Pr[Sb contains only genuine solutions]− (N − b)q.

B.3 Theoretical Analysis of uniqueness and Simulation

In this section we compare the quality of the theoretical bound on unique-
ness with experimental simulation. We perform experiments on distributions
of databases where the elementary volumes are modelled by independent and
identically distributed binomial distributions, for b = 5 to 8, and N = 40. There
are two types of synthetic distributions we have considered, namely databases
with an increasing/decreasing elementary volumes and those with an inverted-U
shape.

For the first type of database, we sample the elementary volumes as vi ∼
Binom(20i+ 200, 0.5). For the second type of database, we sample the elemen-
tary volumes as vi ∼ Binom(400− 20i, 0.5) for N ≤ 20 and vi ∼ Binom(20i−
200, 0.5) for N > 20. We compute the theoretical estimations of the uniqueness
rates for the two types of databases and compare those to the simulations.

For the simulations, we generate 1000 databases from the type of database in
interest and execute our basic attack. We report the uniqueness rates with out
the final leakage check procedure (line 7 of Algorithm 2) so that the comparison
with our theoretical estimations is more direct. The experimental results are
shown in Table 12 respectively.

C Simple Variations on the Leakage

C.1 Correctness of Attack with Noise

Proof of Theorem 2. Statement (2) follows immediately if we can prove state-
ment (1). To prove statement (1), we use induction to show that ∀v′ ∈W i,Lb(v′) ⊆
W ⇒ v′ ∈ Si. The proof is identical to that of the basic attack.

39

b Experimental Theoretical
5 0.0% 98.1%
6 73.8% 98.1%
7 95.8% 99.8%
8 99.5% 99.7%

b Experimental Theoretical
5 0.0% 85.9%
6 0.0% 98.7%
7 40.4% 99.7%
8 88.0% 99.6%

Table 12: Experiments on the databases with a decreasing shape (left) and
inverted-U shape (right).

C.2 Pseudocode of the Attack with Missing Queries

Full pseudocode of our attack A3 is shown in Algorithm 4. The main structure
of the attack is quite similar to that of the basic attack, so we only highlight the
key differences between the two attacks. In lines 5 and 6 of the algorithm, we
extend the solutions in a way that is quite similar to that in the basic attack.
The difference is that we need to check the number of missing constraints, as
of line 12 to 15 of the algorithm, and eliminate the solutions with too many
missing constraints in line 17. All the solutions of length N are returned by the
algorithm.

C.3 Correctness of the Attack with Missing Queries.

Proof of Theorem 3. Statement (2) comes for free if we can prove statement (1),
so it suffices to prove the first statement.

(⇒) Assume that v′ is a solution that satisfies Lb,I′(v′) ⊆W with I ′ satis-
fying the same constraints as I. We show that all solutions of this form are in
SN .

We prove with induction that in each iteration, ∀v′ ∈ W i,∀I ′ ∈ ([N] ×
[N])∗,Lb,I′(v′) ⊆ W ⇒ v′ ∈ Si. The base case is trivial as the minimum vol-
ume satisfies all the constraints. Now we assume that the statement is true
for some iteration i. We assume without loss of generality that (w1, . . . , wi) is
one of the solutions in Si. Our algorithm in line 12 to 17 checks if some new
volume w0 can satisfy sufficiently many constraints between indices 0 and b−1.
We add (w0, . . . , wi) to the solution set Si+1 if no more than k constraints are
missing. We do not need to check the constraints between other windows as
they have already been checked in the previous iterations, as stated by our as-
sumption. Therefore, we conclude that the partial solutions satisfies sufficiently
many constraints during each iteration and the proof is complete.

C.4 Pseudocode of the Attack with Padded Queries

Pseudocode of our attack A4 is shown in Algorithm 5. R in our attack is a set of
pairs of volumes which the adversary computes as a guess of the ranges of true
volumes. Each element of R is of the form (x, y), where x is the lower bound and
y is the upper bound on the guess. We do not specify how the adversary should
guess the true volumes in general as it depends on the distribution of fake records

40

in general. In the toy version where the number of fake records for a query
follows a discrete uniform distribution between 1 and r, and it is not changed
for further queries, we can compute R trivially as {(w − r, w − 1) | w ∈W}.
The adversary can make less accurate guesses on the true observed volumes as
an attempt to achieve unique database reconstruction.

The adversary initialise S1 as the pair of volumes containing the minimum
observed volume. In the pseudocode, we abuse min(R) to mean the operation
described above. Solutions are extended in line 5 to 6 just like the basic attack.
Unlike the equality constraints in the basic attack, presence of fake records
means the adversary is only able to check if the solutions can be padded to
generate the same observed volumes as he is given. Finally, some of the solutions
are eliminated in line 7 to 9 by checking if all padded volumes can be derived
from the solutions.

C.5 Correctness of the Attack with Padded Queries

Proof of Theorem 4. Statement (2) comes for free if we can prove statement (1),
so it suffices to prove the first statement.

(⇐) We get this implication for free as line 7 to 9 of the algorithm ensures
the condition.

(⇒) Suppose v′ can generate the set of observed volumes, i.e. W ∈ supp(Lb,Z(v′)),
we show that an estimation of the solution is in the final solution set. We use
induction to show that the support of the leakage of the partial solutions are
subsets of W . As the algorithm checks for the equality in line 7 to 9, we obtain
the desired result in the end.

We verify that in the base case when a subset of W is in the support of the
leakage of the partial solution. This is indeed the case as the smallest entry
in R includes the minimal volume in the real database. In the induction step,
we assume that v′ is a database that can generate a subset of W , then there
is a solution (s[1], . . . , s[i]) such that ∀i, s[i][1] ≤ v′ ≤ s[i][2]. Without loss of
generality, we look at the case where the solution is extended to the left. Let w
be some volume that can be used to extend v′ such that the extended database
can generate a subset of W , then there must be a pair of volumes (x, y) ∈ R
such that x ≤ w ≤ y. The condition check in line 15 of the algorithm must
succeed on (x, y) by the definition of the leakage function. So the induction
step is complete.

D Attack on Observed Volumes with Bounded
Window Size

D.1 Attack on Bounded Window Sizes

Full pseudocode of our attack A5 on observed volumes with minimum and max-
imum window sizes is shown in Algorithm 6.

41

D.2 Correctness of Attack on Bounded Window Sizes

We prove the correctness of the sub-routines one by one, and then establish the
correctness of the overall algorithm. At a high level, the correctness of the sub-
routines states that if we begin with a database that has the same leakage profile
as what is given, and run the sub-routines with appropriate inputs including
some transformation(s) of the database, then the outputs contain some other
transformation(s) of the database. To prove that our attack is correct as a whole,
it suffices to show that all the sub-routines output the expected results. For
readability, we write v[i] to mean i-th entry of v, and v[i, j] to mean

∑j
k=i v[k].

All proofs refer to pseudo-code shown in Algorithm 6.

Lemma 4 (Correctness of the Initial Solution). Let v be a database, N =
|v| and a, b be natural numbers less or equal to N with b > 2a. Let S =
A2(La,b(v), b/a,N/a). Let s = (v[1, a],v[a+ 1, 2a], . . . ,v[N − a+ 1, N]). Then

(s ∈ S) ∨
(
sR ∈ S

)
.

Proof. The correctness of the initial solution is a direct consequence of the
correctness of z with all observed volumes used as the initial solution.

Lemma 5 (Correctness of procedure Offset Solutions). Let v be a database,
N = |v| and a, b be natural numbers less or equal to N with b > 2a. Let
s = (v[1, a],v[a + 1, 2a], . . . ,v[N − a + 1, N]). Let S = Offset Solutions(s,
La,b(v), b/a,N/a). Then for all sk := (v[1, a+k],v[a+k+1, 2a+k], . . . ,v[N −
2a+ k + 1, N]) with 1 ≤ k < a, we have

sk ∈ S.

Proof. We prove the statement for an arbitrary k. In line 23 to 26, we find the
initial set of solutions by checking conditions in line 25. It is not hard to see that
v[1, a+ k] satisfies all the conditions, so (v[1, a+ k]) ∈ S1. By construction, in
iteration i, v[(i− 1)a+ k+ 1, ia+ k] satisfies all constraints specified in line 31,
so Si contains first i volumes of sk (as a tuple) for all i ≤ N/a− 2. Finally, line
33 to 36 append last volumes to the solutions, if the resulting solution is still
plausible. sk is a partial solution with correct last volume, so sk ∈ SN/a.

Lemma 6 (Correctness of procedure Merge Solutions). Let v be a database,
N = |v| and a, b be natural numbers less or equal to N with b > 2a. Let s =
(v[1, a],v[a+1, 2a], . . . ,v[N−a+1, N]). Define sk := (v[1, a+k],v[a+k+1, 2a+
k], . . . ,v[N −2a+k+1, N]) with 1 ≤ k < a. Let S = Merge Solutions(S ′, s,
La,b(v), a, b,N). If sk ∈ S ′ for all k, then

(v[1, a],v[a+ 1], . . . ,v[N − a],v[N − a+ 1, N]) ∈ S.

Proof. We show that line 39 to 47 produce the accumulated version of the
desired result. By that, we mean the volumes in the middle are of the form
v[1, j] as opposed to v[j]. It suffices to show that at iteration i, (v[1, a],v[1, a+
1], . . . ,v[1, (i+ 1)a− 1]) ∈ Si. We prove this with induction.

42

At iteration i = 1, we start building the set of solutions with v[1, a] in line
41. In line 42, we know that v[1, ia+k] ∈ X for all k = 1, . . . , a−1, as sk ∈ S ′ for
all k. As a result, (v[1, a],v[1, a+1], . . . ,v[1, 2a−1]) ∈ S1 because all conditions
in line 45 and 47 are satisfied. Inductive step works in the same way as the base
case, and we conclude that (v[1, a],v[1, a+ 1], . . . ,v[1, N − a− 1]) ∈ SN/a−2.

In line 48, the last two volumes are added to each of the solutions in SN/a−2,
and all the volumes except the first and the last volumes are transformed to
elementary volumes. By the correctness of the operation, we obtain the desired
solution.

Lemma 7 (Correctness of procedure Finalise Solution). Let v be a database,
N = |v| and a, b be natural numbers less or equal to N with b > 2a. Let s =
(v[1, a],v[a+1], . . . ,v[N−a],v[N−a+1, N]). Let S = Finalise Solutions(s,
La,b(v), a, b,N). Then

v ∈ S.

Proof. In line 53, v[1, a] and v[N−a+1, N] are removed from s. In line 54 to 60,
we try to extend s to the left by finding volumes that look like v[1, a], . . . ,v[a−
1, 2a − 1]. The real database v with last a volumes removed satisfies all the
conditions in line 58 by default. Using the same argument to extend the solution
to the right, we conclude that v ∈ S.

We are ready to prove our main theorem.

Proof of Theorem 5. We get statement (2) for free if we can prove statement
(1). Backward implication of statement (1) is trivial, as equality of leakage is
checked in line 12 of the attack. It remains to prove the forward implication.

(⇒) Let v′ be any database with La,b(v′) = La,b(v), we show that v′ is one of
the solutions toA5(La,b(v), a, b,N). By the correctness of the procedure Initial
Solution, we know that s = (v′[1, a],v′[a+ 1, 2a+ 1], . . . ,v′[N − a+ 1, N]) or
its reflection is one of the solutions returned by procedure Initial Solution.
Without loss of generality, we assume s is one of the solutions. By the correctness
of the procedure Offset Solutions, the offset solutions sk associated to v′ are
contained in the set of solutions returned by Offset Solutions. This means
the procedure Merge Solutions returns solutions including v′ with volumes
in range 1 to a and N − a + 1 to N merged. Finally, with the correctness
of the procedure Finalise Solution, the solution found in the previous step
is restored to v′ and potentially some other solutions. Check of equality of
leakage in line 12 does not affect v′ as we assumed La,b(v′) = La,b(v) from the
beginning. Therefore, we conclude that v′ ∈ A5(La,b(v), a, b,N) and the proof
is complete.

43

Algorithm 4 Attack with missing queries

1: input W = {
∑y
i=x vi | (x, y) ∈ I, y − x+ 1 ≤ b} , b, k,N

2: output {(w1, . . . , wN) | wi ∈W}

3: procedure Attack(W, b, k,N)
4: S1 = {(min(W))}
5: for i← 2, N do
6: Si ← ExtendLeft(Si−1,W, b, k)∪

ExtendRight(Si−1,W, b, k)

7: return SN

8: procedure Extend Left(Si,W, b, k)
9: S ′ ← {}

10: for all (w1, . . . , wi) ∈ Si do
11: for all w0 ∈W do
12: m← 0
13: for all (x, y), x < y, y ≤ b− 1 do

14: if
(∑y

j=x wj

)
/∈W then

15: m← m+ 1

16: if m ≤ k then
17: S ′ ← S ′ ∪ {(w0, w1, . . . , wi)}
18: return S ′

19: procedure Extend Right(Si,W, b, k)
20: S ′ ← {}
21: for all (w1, . . . , wi) ∈ Si do
22: for all wi+1 ∈W do
23: m← 0
24: for all (x, y), x < y, x ≥ i− b+ 1 do

25: if
(∑y

j=x wj

)
/∈W then

26: m← m+ 1

27: if m ≤ k then
28: S ′ ← S ′ ∪ {(w1, . . . , wi, w)}
29: return S ′

44

Algorithm 5 Attack with padded queries

1: input R,W = {
∑y
i=x vi + r | y − x+ 1 ≤ b, r ← Z} , b,N, r = max(Z)

2: output {(w1, w2), . . . , (w2N−1, w2N))}

3: procedure Attack(R,W, b,N, r)
4: S1 = {(min(R))}
5: for i← 2, N do
6: Si ← ExtendLeft(R,Si−1,W, b, r)∪

ExtendRight(R,Si−1,W, b, r)
7: for all s ∈ SN do
8: if ∃w ∈W, ∀(x, y),

∑y
i=x s[i][1] < w − r and∑y

i=x s[i][2] > w − 1 then
9: SN ← SN\ {s}

10: return SN

11: procedure Extend Left(Si, R,W, b, r)
12: S ′ ← {}
13: for all (w1, . . . , wi) ∈ Si do
14: for all w0 ∈ R do
15: if ∀j < b,∃w ∈W,

∑j
k=0 wk[1] ≥ w − r and∑

k = 0jwk[2] ≤ w − 1 then
16: S ′ ← S ′ ∪ {(w0, w1, . . . , wi)}
17: return S ′

18: procedure Extend Right(Si, R,W, b, r)
19: S ′ ← {}
20: for all (wi, . . . , w1) ∈ Si do
21: for all w0 ∈ R do
22: if ∀j < b,∃w ∈W,

∑j
k=0 wk[1] ≥ w − r and∑

k = 0jwk[2] ≤ w − 1 then
23: S ′ ← S ′ ∪ {(wi, . . . , w1, w0)}
24: return S ′

45

Algorithm 6 Attack with bounded window size

1: input W = {
∑y
i=x vi | a ≤ y − x+ 1 ≤ b}, a, b,N

2: output {(w1, . . . , wN) | wi ∈W}

3: procedure Attack(W, b,N)
4: X ← ∅
5: S ← Initial Solution(W, b/a,N/a)
6: for all s ∈ S do
7: S ′ ← Offset Solutions(s,W, b/a,N/a)
8: S ′ ←Merge Solutions(S ′, s,W, a, b,N)
9: for all s′ ∈ S ′ do

10: s′ ← Finalise Solution(s′,W, a, b,N)
11: X ← X ∪ {s′}
12: X ← {x | x ∈ X,La,b(x) = W}
13: return X

14: procedure Initial Solution(W, b,N)
15: S1 = {(w) | w ∈W}
16: for i← 2, N do
17: Si ← ExtendLeft(Si−1,W, b) ∪ExtendRight(Si−1,W, b)
18: for s ∈ SN do
19: if sR ∈ SN then
20: SN ← SN\{s}
21: return SN

22: procedure Offset Solutions(s,W, b,N)
23: S1 ← ∅
24: for all w ∈W do
25: if (w > s[1]) ∧ (w < s[1] + s[2]) ∧{(∑k

j=1 s[j]
)
− w | k = 3, . . . , b+ 1

}
⊂W then

26: S1 ← S1 ∪ {(w)}
27: for all i← 2, N − 2 do
28: Si = ∅
29: for all s′ ∈ Si−1 do
30: for all w ∈W do
31: if

(
w +

∑
j s
′[j] >

∑i
j=1 s[j]

)
∧
(
w +

∑
j s
′[j] <

∑i+1
j=1 s[j]

)
∧{

w +
∑i−1
j=k s

′[j] | k = max{1, i− b+ 1}
}
⊂W∧{∑k

j=0 s[j]−
∑
j s
′[j]− w | k = i+ 2, . . . ,min{|s|, i+ b+ 1}

}
⊂

W then
32: Si ← Si ∪ {s′ + (w)}
33: SN−1 = ∅
34: for all s′ ∈ SN−1 do

35: if
{∑

i s[i]−
∑j
i=1 s

′[i] | j = N − b, . . . , N − 2
}
⊂W then

36: SN−1 ← SN−1 ∪ {s′ + (
∑
i s[i]−

∑
i s
′[i])}

37: return SN−1
46

38: procedure Merge Solutions(S, s,W, a, b,N)
39: S0 ← {()}
40: for all i← 1, N/a− 2 do

41: Si ←
{
s′ +

(∑i
j=1 s[j]

)
| s′ ∈ Si−1

}
42: X ←

{∑i
j=1 s

′[j] | s′ ∈ S
}

43: for all x ∈ X do
44: for all s′ ∈ Si do
45: if

{
x+

∑b
j=a−1 s

′[j]
}

⊂ W ∧{(∑k
j=1 s[j]

)
− x | k = i+ 2, . . . , i+ b/a+ 1, k < |s|

}
⊂W then

46: Si ← Si ∪ {s′ + (x)}
47: Si ← {s′ | s′ ∈ S ′, |s′| = i · a}
48: S ′ ← {(s′[0], s′[1]− s′[0], . . . , s′[N − a]− s′[N − a− 1],

∑
i s[i]− s[N/a−

1]− s′[N − a], s[N/a− 1]− s[N/a]) | s′ ∈ SN/a−2}
49: return S ′

50: procedure Finalise Solution(s,W, a, b,N)
51: if s = () then
52: return ∅
53: S ′ = {s[2 : |s| − 1]}
54: for all i← 1, a do
55: Stmp ← ∅
56: for all x ∈ S ′ do
57: for all w ∈W do
58: if

{
w +

∑k
j=a x[j] | k = a, . . . , b− 1

}
⊂W then

59: Stmp ← Stmp ∪
{(
w −

∑a−1
j=1 x[j]

)
+ x
}

60: S ′ = Stmp
61: S ′ ← {xR | x ∈ S ′}
62: for all i← 1, a do
63: Stmp ← ∅
64: for all x ∈ S ′ do
65: for all w ∈W do
66: if

{
w +

∑|x|−a+1
j=k x[j] | k = |x| − b, . . . , |x| − a+ 1

}
⊂ W

then
67: Stmp ← Stmp ∪

{
x+

(
w −

∑a−2
j=0 x[|x| − j]

)}
68: S ′ = Stmp
69: return S ′

47

