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We detail an algorithm for the evaluation of the 8*"-power residue symbol. Algorithms for
computing r*f-power residue symbols have only been devised for r € {2,3,4,5,7}. See [3, 2],
[7, 2], [6] and [1] for the cases r = 3, 4, 5 and 7, respectively. As noted in [1], as r grows,
the technical details become increasingly complicated. An excellent account on the octic
reciprocity can be found in [1, Chapter 9]. See also [3].

Let ( = (s = ‘/75(1 +14) be a primitive 8" root of unity. Let also e = 1++/2 = 14+ +(71
The field Q(¢) = Q(i, /2) is biquadratic and its group of units is (¢, €). The Galois group of
Q(¢)/Q contains the four automorphisms oy,: ¢ — ¢* with k € {1,3,5,7}. For an element
a € Z[C], we write o = ox(a). The (absolute) norm of « is given by N(«a) = ajazasay.

An element o = ag+ a1¢ + a¢% + a3 € Z[(] is said to be primary if « =1 (mod 2+ 2¢)
or, equivalently, if

{a0+a1+a2+a351 (mod 4),

ap=ay=a3=0 (mod 2).

Proof. By definition, e must be such that (o — 1) oc 2(1 + ¢). Since 1 — ¢* = 2, we have
(ao—1)+a1C+a2C2+a3C3 o ((ao—1)+a1€+a2(2+a3C3)(1—()(1+C2) o a0—1+a1—a2+a3 _'_ —a0+1+a1+a2—a3<+
4

2(1+0) 1 = 1
do—l-ataptay (24 —gotliai—axtas (3 The condition is satisfied provided that ag — 1+ a3 —
ast+a3s=—aqy+14+a+a—a3=a—1—a;+a+a3=—-a+1+a —a+a3 =0
(mod 4); that is, ag + a; + as + a3 = 1 (mod 4) and 2a; = 2a3 = 2a3 =0 (mod 4). O

Proposition 1. Let o € Z[(] such that (14 () f a. Then there is a unit v € Z[(] such that
a =va® with o primary.

Proof. Let a = ag+ a;C + as¢* + az¢3. The condition (14 () f o implies ag+a; +as+az = 1
(mod 2).

1. Suppose first that ag # a; (mod 2) (and thus a; = az (mod 2)). Noting that a ~ a (72 =
as + az¢ — apC? — a1¢3, we can assume that ag = 1 (mod 2) and a; = 0 (mod 2).
(a) If a; = a3 = 0 (mod 2) then a = ag + a1 + a2(? + a3 with ag = 1 (mod 2) and
a; =ay =a3 =0 (mod 2).
(b) If a; = a3 =1 (mod 2), we replace a with ae™! and get

046_1Zg—ao—i‘al—a3)+(a0—a1+a2)C+(a1—a2+a3)C2+(—ao+a2—a3)C3
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=1 (mod 2) =0 (mod 2) =0 (mod 2) =0 (mod 2)

By possibly multiplying by —1 = (* yields a primary element.



2. Suppose now that ag = ay (mod 2) (and a; # a3 (mod 2)). Then multiplying a by ¢!
yields o (7! = a; + asl + asC® — ap¢®. We so obtain a case similar to Case 1.

Consequently, in all cases, o can be expressed as a = v a* with a* primary and v = (*€ for
some 0 < k< 7and! e {0,1}. O
The main result is the octic reciprocity law; see |1, Theorem 9.19].

Theorem 1 (Octic Reciprocity). Let o and A be co-prime primary elements of Z[(].
Let Ny, Ny and N3 respectively denote the relative norms of the extensions Q(¢)/Q(q),
Q0)/Q(v/=2) and Q(C)/Q(VZ); and write Ny (a) = a(a)? + b(a)?, Nx(a) = c(a)? + 2d(a)’,
N3(a) = e(a)? — 2f(a)?, and similarly for X\. Then'
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Letting o = ag + a1¢ + a2¢* + a3¢3, a direct calculation shows that ajos = (ag® — as® +
2a1a3) + (—a? +as? +2aga2)i, aras = (ag — a® +as? — as?) + (apay + apaz — aras + azaz)v/—2,
and ajor = (ag? + a? + ai® + a) + (apa; — agas + ayas + aszas)V/2 [, Exerc. 5.21]. This yields
a(a) = ag® — a® + 2a,a3, b(a) = —a® + az + 2apas,” d(a) = apay + agaz — aas + azasz, and
fla) = apar — apas + aras + azas.

As stated, the reciprocity law requires @ and A being primary. Suppose that « is such
that (1 4+ () 1 «, but is not necessarily primary. Then from Proposition 1, we can write
a = (P a* for some 0 < k < 7 and [ € {0,1}, with a* primary. We note o* = primary(«)
and (k,l) = v(«). Likewise, suppose that A is such that (1 + ¢) t A and is not necessarily
primary. Then A = (¥ ¢’ \* with \* = primary(\) and (K, ') = v()).

We assume (1 + () 1 \. Putting all together, when (1 + () t «, we have:

(6] o Ck ¢l o*
PY R P e PN by Proposition 1
[)\L [)\*L [)\*L L\*L {)\*L y Proposition

E(a(A*)—144b(A*)+26(A*)d(A*)+2d(A*)2)  1(d(A*)=8b(A*)—b(A*)d(A*)—2d(A*)2)
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by Theorem 1

A* (N(@*)—D)(NA)—1) | dA*)f(a®)—d(@®)f(A*)
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' We note that a factor —% is missing in the expression given in [/, Theorem 9.19].

2 The first formula listed in [4, Exerc. 5.21] actually corresponds to —b.



where KC(X) = L[a(A%) — 1+ 46(A%) + 26(A)d(X*) + 2d(\*)2], L(N) = J[d(A%) — 3b(A*) —
b(A*)d(N*)—2d(A*)?] and T (a*, X*) = 15 [(N(a*) = 1) (N(A*) = 1)+4d(A*) f (") —4d (o) f(A7)].
When (1 + () | «, we have:

5. - L

_ {a/ (1+ C)} (IO (mod 8) by Theorem 1
o,

where Z(A*) = §(a(A*) — 1+ b(A*) 4 6d(A*) + b(A*)? 4 2b(A*)d(A*) + d(X*)*/2). These two

observations lead to Algorithm 1.

Algorithm 1: Computing H
8

Data: a, A € Z[(] with o and X co-prime, and (14 () t A
Result: [%] € {£1, +i, £¢, +i¢)

A < primary(A); ] «~0
while N(a) #1 d
if(14+¢) |« then
a+—af/(l1+Q)
j<j+Z(\) (mod 8)
else
(k,1) + v(a); a < primary(«)
Ji+EKLN)+1LA) 4+ T(a,\) (mod 8)
(a,\) + (A mod a, @)

end

end

(k,1) < v(a); a « primary(«)

[wo, w1, uz,us] < amod 8 k< k+wuo—1; 1+ I+ us
JJj+EKA)+1LA) (mod 8)

return ¢’

At the end of the while-loop, « is transformed into a primary unit, say v*. Letting

v* mod 8 = ug + u1¢ +uaC? +u3C® = [ug, uy, us, ugl, it turns out that the possible values are
4

[1,0,0,0], [1,4,0,4], [5,6,0,2], [5,2,0,6], respectively corresponding to [ﬁ—:] = [%} , [%] ,

|:C462:| |:<466:| s s ®
e RN Pu

As a reminder, a ring R is said norm-FEuclidean or Fuclidean with respect to the norm N

if for every «, 8 € R,  # 0, there exist 7, p € R such that & = 871+ p and N(p) < N(5).

The correctness of the algorithm is a consequence of the fact that Z[(] is norm-Euclidean [5]:

when « is replaced by A mod «, its norm decreases. Also, when « is divided by (1 + (), its

norm is divided by 2 since N(1 + ¢) = 2. Therefore, in all cases, the norm of « is decreasing
and eventually becomes 1.




Remark 1. Letting a = ag + a1¢ + a2(? + a3(?, the condition (1 + ¢) | @ simply amounts to
verify whether ag+ a1 + as + a3 = 0 (mod 2); in this case, a/(1+¢) = 3(ao+ a1 —az +az) +
%(—CLO +a; +as — CL3)C + %(CLO —a; +as + CL3)C2 + %(—ao +a; —as + a3)(’3.
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