
Polynomials Whose Secret Shares Multiplication Preserves
Degree for 2-CNF Circuits Over a Dynamic Set of Secrets

Daniel Berend1,2, Dor Bitan1, Shlomi Dolev2

1Department of Mathematics, Ben-Gurion University
2Department of Computer Science, Ben-Gurion University

Abstract. One of the most interesting research topics in cryptography is �nding
e�cient homomorphic encryption schemes, preferably information-theoretically
secure, which are not based on unproven computational hardness assumptions.
The most signi�cant breakthrough in this �eld was made by Gentry [12] in 2009,
and since then, there were various developments.

We suggest here an information-theoretically secure secret sharing scheme that
e�ciently supports one homomorphic multiplication of secrets in addition to ho-
momorphic additions of, practically, any number of such multiplied secrets. In
particular, our scheme enables sharing a dynamic set of secrets amongst N par-
ticipants, using polynomials of degree N − 1. Quadratic functions and 2-CNF
circuits over the set of secrets can then be homomorphically evaluated, while no
information is revealed to any single participant, both before and after the com-
putation. Our scheme is statistically secure against coalitions of less than N − 1
participants. One possible application of our scheme is a secure homomorphic
evaluation of multi-variate quadratic functions and 2-CNF circuits.

1

1 Introduction

Consider the following scenario. A user is holding some data and wishes to outsource the storage of this data
to an untrusted server while enabling the server to perform computations over the data. A vast amount of papers
were written on this problem in the past four decades. This work is based on the information-theoretically secure
and distributed approach.

The security of cryptographic schemes may be either information-theoretic or computational. In information-

theoretically secure schemes, the security of the system is derived purely from information theory and depends
neither on the computing power of the adversary nor on any computational hardness assumptions. It is possible
in such schemes that some information about the plaintext will be revealed to an adversary by the ciphertext,
but that leakage of information can be quanti�ed by statistical tools and may be controlled by an appropriate
choice of parameters. Information-theoretically secure schemes, in which there is negligible leakage of information,
are often called statistically information-theoretic secure, or simply statistically secure. Information-theoretically
secure systems, in which there is absolutely no leakage of information, are perfectly secure schemes. These schemes
constitute an important class of cryptographic schemes, in which not only will any adversary be unable to decrypt
an encrypted message, but it will gain absolutely no information about the plaintext from the ciphertext.

The second type of security is computational security. It refers to cryptographic schemes that are based on
computational hardness assumptions. Speci�cally, a certain function f is assumed to be easy to compute but hard
to invert. This f is used to construct a cryptographic system, such that breaking the system is strongly related to
inverting f . The security of these schemes is based on two unproven assumptions: (a) there is no e�cient algorithm
that inverts f , (b) the adversary does not have enough computing power to break the system in a reasonable time.
Therefore, if an information-theoretically secure scheme provides certain performances, it will be preferred over
a computationally secure scheme that provides similar performances. Still, computationally secure cryptographic
schemes are considered reliable for many uses, often providing acceptable security, and are used in practice.

Secret sharing is a fundamental cryptographic primitive, in which shares of a secret value are distributed to a set
of participants in such a way that only authorized sets of participants can reconstruct the secret, while unauthorized
sets cannot gain information about it. The set of all authorized sets of participants is the access structure of the
scheme. An access structure is, of course, closed under containment (i.e., a set containing an authorized set is also
authorized) and thus can be de�ned by its minimal authorized subsets. Since secret sharing was �rst introduced
by Shamir [19] and Blakley [3] (independently) in 1979, it is an active �eld of research in cryptography.

In Shamir's secret sharing scheme, the secret s is an element of the �nite �eld Fp and is shared by a dealer

amongst a set of N participants (where p > N) in the following way. Each participant Pi, 1 ≤ i ≤ N , is assigned
by the dealer with an element αi of F×p , where the αi's are distinct. Random elements aj of Fp, 1 ≤ j ≤ t− 1, are

picked by the dealer. Let f be the polynomial de�ned by f(x) = s+
∑t−1
j=1 ajx

j . Each participant Pi gets the value
f(αi). It was proved by Shamir [19] that, in this way, every group of t participants will be able to reconstruct s, but
no group of t − 1 participants gains any information about s. These properties are derived directly from the fact
that a polynomial of degree t− 1 is uniquely determined by its values at t points. Shamir's secret sharing scheme is
one of the most in�uential schemes [6,7,8,9,10,11], as it is perfect information-theoretically secure. It may be used
to build schemes that enable secure outsourcing of computations.

As mentioned above, secret sharing has been an active �eld of research for almost four decades. Some of the
research topics are: �nding schemes for general access structures, �nding veri�able schemes, reducing the size
of the shares, constructing secret-sharing-based cryptographic primitives, and �nding schemes with homomorphic
properties.

Our research focuses on the last topic. Let us describe the main ideas concerning homomorphic secret sharing.
Assume s1, . . . , sd are secrets that were shared amongst several participants P1, . . . , PN . Each participant, Pj , is

holding a share of each of the secrets, denoted: s1j , . . . , sdj . Denote sadd =
∑d
i=1 si. If Pj can use the shares it

is holding to construct a value (sadd)j , such that it is a share of sadd, and such that sadd can be reconstructed by
an authorized set, the scheme is additively homomorphic. Similarly, the scheme is multiplicatively homomorphic if
s1j , . . . , sdj can be used by Pj to construct a share (smult)j of smult := Πd

i=1si. If a scheme is both additively and
multiplicatively homomorphic, it is fully homomorphic. If a scheme supports an arbitrary number of homomorphic
additions and a bounded number of homomorphic multiplications (or vice versa) it is somewhat homomorphic. Such
homomorphic properties of cryptographic systems are important attributes. One prominent property of Shamir's
scheme is that it is additively homomorphic. This property is based on the fact that the sum of polynomials of

2

degree ≤ t − 1 is again a polynomial of degree ≤ t − 1. Unfortunately, since the product of two polynomials of
degree ≤ t− 1 is in general of a higher degree, Shamir's scheme is not multiplicatively homomorphic. As the degree
of the polynomial gets larger, a larger coalition is required in order to extract the secret.

Homomorphic properties are important attributes not only of secret sharing schemes but also of general crypto-
graphic schemes. In particular, assume π is a cryptographic system, m is a message and c its encryption, denoted
Encπ(m). Let f be a function de�ned over the message space of π. How, if at all, can c be publicly converted
into an encryption of f(m)? This interesting question is a main subject of research in cryptography. If we assume
that the messages and the ciphertexts are elements of a �eld or a ring (as is often the case), then a more speci�c
form of that question is as follows. Let m1, . . . ,md be messages, and c1, . . . , cd their encryptions. Can c1, . . . , cd
be used to publicly generate cadd= Encπ

(∑d
i=1mi

)
or cmult= Encπ

(
Πd
i=1mi

)
? If it is possible to use c1, . . . , cd to

publicly generate cadd = Encπ
(∑d

i=1mi

)
(respectively, cmult = Encπ

(
Πd
i=1mi

)
), then π is additively homomorphic

(respectively, multiplicatively homomorphic). If both tasks can be carried out, then π is a fully homomorphic en-

cryption (FHE) system. There are several single-operation homomorphic schemes, such as the RSA cryptosystem,
which is multiplicatively homomorphic (but cannot support homomorphic additions, and is only computationally
secure), and Shamir's secret sharing scheme, which is additively homomorphic (but cannot support homomorphic
multiplications).

Midway between single-operation homomorphic encryption systems and FHE systems are somewhat homo-

morphic encryption systems. These systems are additively homomorphic and also support a bounded number of
homomorphic multiplications (or multiplicatively homomorphic and support a bounded number of homomorphic
additions). To make this concept clear, we modify the above de�nitions. In the above de�nition of an additively
(respectively, multiplicatively) homomorphic cryptographic system, d could be arbitrarily large. Now we de�ne
a cryptographic system to be d1-additively homomorphic (respectively, d1-multiplicatively homomorphic) if it is
additively (respectively, multiplicatively) homomorphic for d ≤ d1. Thus, additively homomorphic systems are
∞-additively homomorphic, and multiplicatively homomorphic systems are ∞-multiplicatively homomorphic.

Finding FHE schemes is an active �eld of research in cryptography. The �rst to propose a computationally
secure FHE method was Gentry [12]. Unfortunately, the time complexity of the current implementations is too
high to make the scheme practical. Earlier, Rabin and Ben-Or [17] had suggested a veri�able secret sharing scheme,
in which a secret is shared amongst a group of participants in such a way that the secret can be extracted by a
su�ciently large set of participants, even if some of them are malicious, as long as the majority are honest. The
results are information-theoretically secure, with exponentially small error probability. A protocol for multi-party
computation is also suggested in [17], but it requires ongoing communication between the participants.

Sander et al. [19] proposed a system to evaluate NC1 circuits on encrypted values, considering the following
case: Alice holds an input x, and Bob is holding a circuit C. We would like Alice to be able to compute C(x),
while keeping her input x private, and Bob keeping his circuit C private as well. A main drawback of the system
is that the ciphertext length grows exponentially in the depth of the circuit. Their system is based on random
self-reducible probabilistic encryption, which may be either computationally or information-theoretically secure.
Either way, under the suggested protocol, Alice's input is computationally private, while Bob's circuit remains
information-theoretically private.

Cramer et al. [6] suggested a way to construct a multi-party computation protocol based on any linear secret
sharing scheme. Some of their results are information-theoretically secure, while others assume the existence of a
trapdoor one-way permutation, or the computation hardness of a certain function, based on the Di�e-Hellman en-
cryption system. Either way, their protocols require ongoing communication between the participants, proportional
to the depth of the arithmetic circuit. Speci�cally, when regarding Shamir's secret sharing scheme, multiplication
of secrets is possible only if the encrypting polynomials are taken to be of smaller degree to begin with.

In 2005, Boneh et al. [4] proposed a computationally secure public key encryption scheme and showed how it
can be used to evaluate 2-DNF circuits over ciphertexts. Their scheme is somewhat homomorphic − additively
homomorphic and 2-multiplicatively homomorphic. Since Gentry published his (theoretical and computationally
secure) FHE scheme in 2009, there were further developments in this �eld. Dolev et al. [11] used Shamir's standard
scheme for information-theoretically secure multi-party evaluation of RAM programs, where the parties obliviously
run a given RAM program over given input. Their solution is based on secure multi-party computation and requires
ongoing communication between parties and an external entity called reducer, and hence implies high overhead.

Brakerski and Perlman [5] suggested a computationally secure FHE scheme that can be carried out by an
unbounded number of participants. Let N be the number of parties whose ciphertexts have been introduced into

3

the computation so far (inputs from more participants can join the computation later). They used the multi-
key approach and obtained a scheme with fully dynamic properties, O(N) ciphertext expansion, and O(N) space
complexity for an atomic homomorphic operation. Unfortunately, their results are only theoretical, as their scheme
is time-wise impractical.

We discussed above two de�nitions of fully homomorphic encryption systems � one regarding a general cryp-
tographic system, and one regarding secret sharing schemes. The main di�erence between the two is that, while in
a private/public key encryption systems the ciphertext c is being held by a single entity, in a secret sharing scheme
c is distributed amongst several participants. Moreover, we do not regard the set of all shares as an encryption
of m, since jointly, they contain all the information needed to extract m. The shares of m can be regarded as an
encryption of m only if held by di�erent entities, or by sets that are not in the access structure of the scheme.

Regarding this last distinction, and to conclude, one may characterize cryptographic schemes according to the
following criteria: Is Encπ(m) held by a single entity (or distributed between several)? Is the scheme fully homomor-
phic (or somewhat homomorphic / single-operation homomorphic / not supporting any homomorphic operations)?
Is the scheme information-theoretically secure (or computationally secure)? Is the scheme practical? No system
is known that answers `yes' to all of the above-mentioned questions. Fully homomorphic systems with a single
ciphertext holder, such as Gentry's [12] and Brakerski and Perlman's [5], are neither information-theoretically se-
cure nor are they practical. No information-theoretically secure scheme is fully homomorphic, and no practical
scheme is fully homomorphic. The scheme suggested by Boneh et al. [4] is a single-entity, somewhat homomorphic,
computationally secure and practical scheme.

Our contribution. The main result we obtain in this work is a new textitfunction sieving method. It yields
1-homomorphic multiplicative pairs of polynomials, which enables us to adjust Shamir's secret sharing scheme to
support one homomorphic multiplication of secrets, shared using polynomials of degree N − 1 and carried by N
participants, keeping it perfectly secure against an attack of a single curious participant and statistically secure
against an attack of a coalition of up to N −2 curious participants. We use the statistical di�erence function [13, p.
106] to measure the possible leakage of information against such an attack, and show that it is ≈ 2

pN−1−k , where k is
the size of the coalition. Of course, one can support homomorphic multiplications of secrets by taking polynomials
of a smaller degree to begin with. For example, one can use Shamir's original scheme to share two secrets amongst
four participants using linear polynomials, enabling one homomorphic multiplication of secrets, but in this way,
the security will be compromised, since any coalition of two participants can easily determine the exact value of
the secrets. In our scheme, for example, we can use cubic polynomials to share secrets among four participants
in such a way that no coalition of two participants can �nd the secrets. Our scheme is based on a sophisticated
way of choosing the polynomials in a correlated way. Regarding the questions stated above, the scheme we suggest
here is a secret sharing scheme, i.e., Encπ(m) is distributed between several machines. Our scheme is somewhat
homomorphic, as we support one (restricted) multiplication and consecutive additions. Our scheme is practical, and
most importantly, it is information-theoretically secure, with perfect security against a single curious participant
attack, and statistical security against an attack of a coalition of up to N − 2 curious participants. Moreover, our
scheme enables homomorphic evaluation of quadratic functions and 2-CNF circuits over a dynamic set of secret
shares. Of course, one can support homomorphic evaluation of quadratic functions and 2-CNF circuits by sharing,
along with each pair of secrets, their product, or using Beaver's pre-processing method (as suggested in [2]). But in
this way, if new secrets are expected to be joined with the primary ones, then one must keep all the primary secrets
in memory, in order to enable the homomorphic computations over the enlarged set of secrets. Our scheme enables
additional secrets to be shared over time, while in each stage: a) quadratic functions and 2-CNF circuits over the
new set of secrets can be homomorphically and securely evaluated; b) the dealer is not required to store the values
of the already-shared secrets in memory, but only the non-free (secret-independent) coe�cients of the polynomial
that are meant to be used to encrypt the future secrets.

Organization. In Section 2, we introduce the function sieving method and our scheme for secret sharing and
multiplication of two secrets amongst N participants using polynomials of degree N − 1. In Section 3, we prove the
correctness of the scheme and discuss its security against an attack of one curious participant and against an attack
of a coalition of up to N − 2 curious participants. In Section 4, we describe how to use our scheme to perform
statistically secure homomorphic evaluation of quadratic functions and 2-CNF circuits over a dynamic set of secret
shares. Section 5 presents our conclusions.

4

2 Homomorphic Multiplication of Secret Shares

In this section, we introduce our secret sharing scheme based on Shamir's secret sharing scheme. The scheme will
enable us to share two secrets amongst N participants using polynomials of degree N−1, perform one homomorphic
multiplication of the secrets and consecutive homomorphic additions with further secrets, without increasing the
number of participants required to extract the result. We will show that the scheme has perfect security against
an attack of a single participant. We also prove that our scheme is statistically secure against coalitions of up to
N − 2 participants. The security of our scheme is not based on any computational hardness assumption.

We begin with a brief overview of our methods and constructions. Assume s1 and s2 are two secrets that were
shared by Shamir's scheme amongst N participants, Pj , 1 ≤ j ≤ N , using two polynomials of degree N − 1, f1 and
f2, respectively. For convenience we denote from now on n = N − 1. Each Pj holds a share of each of the secrets:(
αj , f1(αj)

)
and

(
αj , f2(αj)

)
. As Shamir's scheme is additively homomorphic, the points

(
αj , f1(αj) + f2(αj)

)
for

1 ≤ j ≤ n + 1 are shares of s1 + s2. Interpolation of these points will yield the unique polynomial of degree ≤ n
going through them, which is f1 + f2, whose value at 0 is s1 + s2. Now, as Shamir's scheme is not multiplicatively
homomorphic, the points

(
αj , f1(αj) · f2(αj)

)
are in general not shares of s1 · s2. The polynomial f1 · f2 is of degree

≤ 2n. Hence, 2n + 1 points are required to determine it, so that the n + 1 points we have do not su�ce. I.e., no
information regarding the secrets may be gained by the n + 1 points we have. If one insists on interpolating the
points

(
αj , f1(αj) · f2(αj)

)
, that interpolation will yield some polynomial g of degree ≤ n. It might be the case,

though, that g(0) = s1 · s2. When does it happen? We seek pairs of polynomials to be used with Shamir's scheme
that yield g(0) = s1 ·s2. We call this procedure function sieving, and as we will show below, it yields 1-homomorphic
multiplicative pairs of polynomials, which are pairs of polynomials that meet the required condition. We will show
that, given the αj 's, these pairs are independent of the secrets and can be determined according to the other coef-
�cients of the polynomials (i.e., all coe�cients except for the free terms, which are the secrets).

2.1 Function sieving

Assume that the �eld Fp, in which the secrets s1 and s2 reside, is such that p ≡ 1 (mod n + 1). In that case,
since F×p is cyclic, it contains a primitive root of unity of order n + 1. Let α be such a root. For 1 ≤ j ≤ n + 1

denote αj := αj , and assign to each participant Pj the value αj .
Let ai, bi ∈ Fp, 1 ≤ i ≤ n, and consider the polynomials

f1(x) = s1 +

n∑
i=1

aix
i, f2(x) = s2 +

n∑
i=1

bix
i,

in Fp[x]. Share the secrets s1, s2 amongst the participants using f1, f2. Namely, distribute to each Pj the values
f1(αj), f2(αj).

Let
yj = f1(αj) · f2(αj), 1 ≤ j ≤ n+ 1.

The pairs (αj , yj) ∈ F2
p are n+ 1 distinct points through which the polynomial (f1 · f2)(x) passes. Since f := f1 · f2

is of degree ≤ 2n, it is uniquely determined by 2n+1 points. Since there are only n+1 points (αj , yj), interpolation
of them will certainly not yield (f1 · f2)(x). Nevertheless, let g(x) be the interpolation polynomial for the n + 1
points, (αj , yj).

Obviously, g is of degree ≤ n. Since f and g agree on the roots of ψ, we have g(x) ≡ f(x) (mod ψ(x)), where

ψ(x) =

n+1∏
j=1

(x− αj).

5

Since the αj 's are all the roots of unity of order n+ 1, we have

ψ(x) = xn+1 − 1. (2.1.1)

Hence, it is easy to compute g. In fact, denote

f(x) = s1s2 +

2n∑
i=1

cix
i.

We have xn+1 ≡ 1 (mod ψ(x)), and therefore

g(x) ≡ f(x) ≡ s1s2 + cn+1 +

n∑
i=1

(ci + cn+1+i)x
i (mod ψ(x)).

This in turn implies that g(0) = s1s2 + cn+1.
Thus, if we take f1 and f2 such that cn+1 = 0, we get g(0) = f(0). Now, cn+1 =

∑n
i=1 aibn+1−i. Hence, instead

of picking the coe�cients of f1 and f2 uniformly at random, we pick them in such a way that cn+1 = 0. This is,
in essence, the function sieving process. Instead of using Shamir's secret sharing scheme with random polynomials
from Fp[x], we use it with polynomials f1, f2, for which cn+1 = 0, which compels g(0) = f(0). Such a pair (f1, f2)
is a 1-homomorphic multiplicative pair of polynomials.

We de�ne the set of acceptable coe�cients for these pairs

Vp :=

{
(a1, . . . , an, b1, . . . , bn) ∈ F2n

p

∣∣∣∣ n∑
i=1

aibn+1−i = 0, a 6= 0 6= b

}
∪
{

0 ∈ F2n
p

}
,

where a = (a1, . . . , an) and b = (b1, . . . , bn).1

Next, since elements should be picked from Vp, we must de�ne a probability measure on it. First, we compute
the cardinality of Vp.

Proposition 1: |Vp| = (pn − 1)(pn−1 − 1) + 1.
Proof: The element 0 ∈ F2n

p contributes 1 to |Vp|. The n-tuple (a1, . . . , an) may be chosen in pn − 1 di�erent
ways. For each of these, the n-tuple (b1, . . . , bn) is required to satisfy

n∑
i=1

aibn+1−i = 0.

Since (a1, . . . , an) 6= 0, this equation has pn−1 − 1 non-zero solutions (b1, . . . , bn). All in all, we get (pn − 1)(pn−1 −
1) + 1 elements in Vp. �

De�ne a probability measure Q on Vp by:

Q(v) =

{
1
pn , v = 0 ∈ F2n

p ,
1

pn(pn−1−1) , v 6= 0.

One veri�es readily, using Proposition 1, that Q is indeed a probability.

The set Vp and the probability measure Q are used in the next section, where we present the multiplication
scheme.

1Each of the 0's refers to the zero vector of the vector space it belongs to.

6

2.2 The scheme

We now present our secret sharing scheme. A single homomorphic multiplication of two secrets is supported, to
which further secrets can be added homomorphically. Assume a dealer D has two secrets s1, s2 ∈ Fp and private
connection channels with N participants Pi, 1 ≤ j ≤ N . As a preliminary phase, the dealer D assigns to each
participant Pj an αj = αj ∈ F×p , where α is a primitive root of unity of order N . The scheme stages are as follows:

Algorithm 1: Sharing secrets and computing product

1. The dealer D picks an element (a1, . . . , an, b1, . . . , bn) ∈ Vp according to the distribution Q.
2. D sets f1(x) = s1 +

∑n
i=1 aix

i and distributes the value f1(αj) to each participant Pj.
3. D sets f2(x) = s2 +

∑n
i=1 bix

i and distributes the value f2(αj) to each participant Pj.
4. Each Pj computes yj = f1(αj) · f2(αj) in Fp and sends yj back to D.

5. D �nds the unique polynomial g(x) over Fp that goes through (αj, yj).
6. D calculates s = g(0).

As one can see, we use here a polynomial of degree n to represent each of the secrets, and yet we are able to
reconstruct their product with only n+ 1 participants (versus 2n+ 1 that would be needed originally).

Regarding stage 1 of the protocol, a simple way to Q-pick a suitable element is to create an array with the
elements of the set Vp and insert the element 0 ∈ F2n

p into the array pn−1− 2 more times. Then, picking an element
uniformly at random from that array is equivalent to Q-picking an element of Vp. 2 In stage 5, since 1 ≤ i ≤ n+ 1,
the polynomial g is obviously of degree ≤ n.3

We note that one may use Beaver triples, as suggested by Beaver in [2], to support homomorphic multiplication
of secret shares, but this method requires sharing, along with the secret, an ancillary correction term to be used by
the parties in the multiplication stage. This results in doubling the space complexity of the scheme.

3 The Main Results

The scheme correctness. We now prove the correctness of the scheme. Namely, we prove the following proposi-
tion:

Proposition 2: The value s, calculated at stage 6 of Algorithm 1, is equal to s1 · s2.

Proof: The proposition follows directly from the function sieving process, described in Section 2. The coe�-
cients of the polynomials f1, f2 were picked from Vp, and hence

∑n
i=1 aibn+1−i = 0. By (2.1.1), the αjs were picked

in such a way that ψ(x) = xn+1 − 1. In stage 5 of the scheme, the dealer �nds a polynomial g of degree ≤ n such
that g(αj) = yj for 1 ≤ j ≤ n+ 1. This implies that

g(x) ≡ (f1 · f2)(x) = s1s2 +

2n∑
i=1

cix
i

≡ s1s2 + cn+1 +

n∑
i=1

(ci + cn+1+i)xi (mod ψ(x)).

Hence g(0) = s1s2 + cn+1 ≡ s1s2 (mod ψ(x)). �
Note that g may now be treated as if it was originally used to share s1 · s2 amongst N participants, since each of

them is now holding yj . Hence, further secrets can be shared and homomorphically added to s1 · s2 as in Shamir's
standard scheme.

2Clearly, one can use the proof of Proposition 1 to implement stage 1 in time O(n).
3In fact, given the yj 's, g(0) can be computed without �nding g. That procedure is not of our main interests.

7

The scheme security. We now analyze the scheme security against curious participants' attacks. We will show it
has perfect security against one participant attack and statistical security against an attack of a coalition of size up
to N − 2, and compute the statistical di�erence. To conclude such arguments, �rst, we must make our assumptions
clear. We assume the following:

� Assumption 1: The pair of secrets (s1, s2) ∈ F2
p is arbitrary. To be precise, we assume they are picked

according to an arbitrary distribution Γ, on which we have no assumptions.

� Assumption 2: The prime p, the distribution Γ, the set Vp and the distribution Q over it are public. Namely,
if we denote by S1 and S2 the Fp-valued random variables indicating the Γ-picked secrets, then the probability
P [(S1, S2) = (s1, s2)] is known for each pair (s1, s2) ∈ F2

p.

� Assumption 3: The element (a1, . . . , an, b1, . . . , bn) ∈ Vp, that is Q-picked during stage 1 of the scheme, is
kept secret. So are the values f1(αj) and f2(αj), 1 ≤ j ≤ N , that D sends to each participant Pj at stages
2 and 3 of the scheme. In the single participant attack scenario, Pj does not know f1(αi) and f2(αi) for
i 6= j. In the scenario of an attack of a coalition of k participants, we assume, without loss of generality, that
P1, . . . , Pk are curious participants that join their shares in an attempt to �nd the secrets, but they do not
know the shares of other participants.

3.1 Perfect security against single participant attack

In order to show that our scheme has perfect security against one curious participant attack, we need to show that,
when Pj receives information from D during stages 2 and 3 of the scheme, he gains absolutely no information about
the values of s1 and s2. We can summarize the information that Pj receives during stages 2 and 3 of the scheme
by the following equations:

s1 +

n∑
i=1

aiα
i
j = yj ,

s2 +

n∑
i=1

biα
i
j = y′j .

(3.1.1)

The unknowns in these equations are s1, s2, ai and bi, 1 ≤ i ≤ n, while all other quantities are known parameters
to Pj . We start with

Theorem 1: For an arbitrary �xed α ∈ F×p denote u =

(∑n
i=1 aiα

i∑n
i=1 biα

i

)
. Under the above assumptions,

P [u =
(x
y

)
] = 1

p2 , for every
(x
y

)
∈ F2

p.

Proof of Theorem 1: Call u the result vector. Since p and α are set, u depends only on the Q-choice of v ∈ Vp.
For v = (a1, . . . , an, b1, . . . , bn) ∈ Vp, denote:

Mv =
(
a1 ... an
b1 ... bn

)
∈M2×n(Fp).

We de�ne a mapping µα : Vp → F2
p by

µα(v) = Mv

(
α
...
αn

)
.

For convenience denote µ = µα. Thus,

P [u =
(x
y

)
] = P [µ(v) =

(x
y

)
].

To compute P [u =
(x
y

)
], we �rst partition F2

p into four subsets Uj , 1 ≤ j ≤ 4:

� U1 = {
(
0
0

)
} ⊂ F2

p.

� U2 = {
(
x
0

)
∈ F2

p | x 6= 0}.

8

� U3 = {
(
0
y

)
∈ F2

p | y 6= 0}.

� U4 = {
(x
y

)
∈ F2

p | x 6= 0, y 6= 0}.

We will compute P [u =
(x
y

)
] for

(x
y

)
∈ Uj for each j separately.

Starting with j = 1. We look for elements v ∈ Vp such that:

µ(v) =
(

0

0

)
. (3.1.2)

Of course, v = 0 ∈ F2n
p is a solution of (3.1.2). Assume v = (a1, . . . , an, b1, . . . , bn) ∈ Vp is such that v 6= 0 and Mv

is a solution of (3.1.2). Namely:

I

n∑
i=1

aiα
i = 0,

II

n∑
i=1

biα
i = 0,

III

n∑
i=1

aibn+1−i = 0,

(3.1.3)

where (a1, . . . , an) 6= 0 6= (b1, . . . , bn). Each solution for (3.1.3) gives a suitable element of Vp. Now, (3.1.3)I is
a linear equation in n variables ai. Since the trivial solution is not acceptable, it has pn−1 − 1 possible solutions
(a1, . . . , an). For each of these solutions, (3.1.3)II-(3.1.3)III is a linear system of two equations in n variables bi. If
the equations are independent, the system has pn−2 − 1 non-trivial solutions (b1 . . . , bn). Can they be dependent?
If they are, there is a c ∈ Fp such that c ·αi = an+1−i for 1 ≤ i ≤ n. By (3.1.3)I we get then

∑n
i=1 c ·αn+1−i ·αi = 0,

so that n · c · αn+1 = 0. Each of the factors is non-zero, and hence (3.1.3)II-(3.1.3)III are independent. All in all,
we get (pn−1 − 1)(pn−2 − 1) solutions (a1, . . . , an, b1, . . . , bn) 6= 0.

We conclude that
P [u =

(
0
0

)
] = 1 ·Q(0) + (pn−1 − 1)(pn−2 − 1) ·Q(v0),

where v0 is any non-zero element of Vp. That is

P [u =
(
0
0

)
] = 1 · 1

pn
+

(pn−1 − 1)(pn−2 − 1)

pn(pn−1 − 1)
=

1

p2
.

We move to U2. Thus, we are looking for elements v ∈ Vp such that

µ(v) =
(
x

0

)
, (x 6= 0). (3.1.4)

Similarly to the computation of
∣∣µ−1((00))∣∣, we get the system

I

n∑
i=1

aiα
i = x,

II

n∑
i=1

biα
i = 0,

III

n∑
i=1

aibn+1−i = 0,

(3.1.5)

where (a1, . . . , an) 6= 0 6= (b1, . . . , bn), x 6= 0, and each solution of (3.1.5) gives a suitable element of Vp. (3.1.5)I is a
non-homogenous linear equation in n variables ai, and hence has pn−1 solutions, 0 is not one of which. For each of
these solutions, (3.1.5)II-(3.1.5)III is a system of two linear equations in n variables bi. If they are independent, it

9

has pn−2− 1 non-zero solutions for bi. Assume they are dependent. Hence, there is c ∈ Fp such that c ·αn+1−i = ai
for 1 ≤ i ≤ n. By (3.1.5)I we get then

∑n
i=1 c · αn+1−i · αi = x. Then n · c · αn+1 = x, which gives c = xn−1.

Hence, there is exactly one solution ai for (3.1.5)I that yields dependent equations (3.1.5)II-(3.1.5)III. Namely, for
ai = c ·α−i = xn−1α−i the system (3.1.5)II-(3.1.5)III is dependent, and hence has pn−1 − 1 non-zero solutions. All
in all, we get that ∣∣µ−1((x0))∣∣ = (pn−1 − 1) · (pn−2 − 1) + 1 · (pn−1 − 1) = pn−2(pn−1 − 1).

We use that and the fact that the trivial solution is not in µ−1
((

x
0

))
to compute

P [u =
(
x
0

)
] = P [µ(v) =

(
x
0

)
] = P [v ∈ µ−1

(
(x0)
)
] =

pn−2(pn−1 − 1)

pn(pn−1 − 1)
=

1

p2
.

The computation of P [u =
(x
y

)
] for

(x
y

)
∈ U3 is analogous, which implies P [u =

(
0
y

)
] = 1

p2 for y 6= 0.

Now, knowing
∣∣µ−1(Uj)∣∣ for 1 ≤ j ≤ 3, we subtract from

∣∣Vp∣∣ and get
∣∣µ−1(U4)

)∣∣ = (p− 1)2 · pn−2(pn−1 − 1).
Observe that so far, for a speci�c j ∈ {1, 2, 3}, all elements of Uj had the same size of preimage under µ. If we

show that the same holds for U4 as well, then together with the fact that
∣∣U4

∣∣ = (p−1)2 we get that
∣∣µ−1((xy))∣∣ =

pn−2(pn−1 − 1) for
(x
y

)
∈ U4. This in turn will imply that

P [u =
(x
y

)
] = P [µ−1(v) =

(x
y

)
] = pn−2(pn−1 − 1) ·Q(v) =

pn−2(pn−1 − 1)

pn(pn−1 − 1)
=

1

p2

for
(x
y

)
∈ U4. Thus, all that is left is to show is that all elements of U4 actually have the same size of preimage

under µ.
To this end, we de�ne a family of transformations Tk,l over Vp. For arbitrary �xed k, l ∈ F×p , let Tk,l : Vp → Vp

be de�ned by:
Tk,l(a1, . . . , an, b1, . . . , bn) = (ka1, . . . , kan, lb1, . . . , lbn).

The map Tk,l is clearly bijective. In fact, the number and positions of zeros in v (if any) are the same as in Tk,l(v).
The set Vp and some of its subsets have important properties regarding Tk,l:

� Vp is Tk,l-invariant : If v = (a1, . . . , an, b1, . . . , bn) ∈ Vp, then
∑n
i=1 aibn+1−i = 0. It immediately follows

that Tk,l(v) = kl
∑n
i=1 aibn+1−i = 0. Hence Tk,l(v) is indeed in Vp.

� The sets µ−1(Uj) are Tk,l-invariant: If v = (a1, . . . , an, b1, . . . , bn) ∈ Vp, and µ(v) ∈ Uj for a certain j,
then:

µ(v) =
(
a1 ... an
b1 ... bn

)(α
...
αn

)
=

(∑n
i=1 a1α

i∑n
i=1 b1α

i

)
∈ Uj .

We have:

µ
(
Tk,l(v)

)
=
(
ka1 ... kan
lb1 ... lbn

)(α
...
αn

)
=

(∑n
i=1 ka1α

i∑n
i=1 lb1α

i

)
.

Then

µ
(
Tk,l(v)

)
=

(
k
∑n
i=1 a1α

i

l
∑n
i=1 b1α

i

)
.

Since k, l 6= 0, an entry of µ(v) vanishes if and only if the corresponding entry of µ
(
Tk,l(v)

)
does. Namely, if

µ(v) ∈ Uj , then µ
(
Tk,l(v)

)
∈ Uj . We conclude that the sets µ−1(Uj) ⊆ Vp are invariant under Tk,l.

Now, let
(x
y

)
,
(
x′

y′
)
∈ Uj for some 1 ≤ j ≤ 4. Take v = (a1, . . . , an, b1, . . . , bn) ∈ µ−1

(
(xy)
)
. We have µ(v) =

10

(∑n
i=1 a1α

i∑n
i=1 b1α

i

)
=
(x
y

)
. Put:

k =

{
x′

x , x 6= 0,

1, x = 0,
, l =

{
y′

y , y 6= 0,

1, y = 0.

We get µ
(
Tk,l(v)

)
=

(
k
∑n
i=1 a1α

i

l
∑n
i=1 b1α

i

)
=

(
x′
x x
y′
y y

)
=
(
x′

y′
)
. Thus, for every v ∈ µ−1

(
(xy)
)
we have Tk,l(v) ∈ µ−1

(
(x
′

y′)
)

for appropriate k, l. This implies that
∣∣µ−1((xy)

)∣∣ =
∣∣µ−1((x′y′))∣∣ for (xy), (x′y′) ∈ Uj . To conclude, for a given j, all

elements of Uj have the same probability. �

We use Theorem 1 to prove the perfect security of our scheme in this scenario. We claim now

Proposition 2: P [(S1, S2) = (s1, s2) | (3.1.1)] = P [(S1, S2) = (s1, s2)].

Proof: Denote:
θ = P [(S1, S2) = (s1, s2) | (3.1.1)].

Explicitly4,

θ = P

[
(S1, S2) = (s1, s2)

∣∣∣∣∣ s1+∑n
i=1 aiα

i=y

s2+
∑n
i=1 biα

i=y′

]
Hence

θ = P
[
(S1, S2) = (s1, s2)

∣∣∣u =
(
y−s1
y′−s2

)]
=
P
[
(S1, S2) = (s1, s2) ∩ u =

(
y−s1
y′−s2

)]
P
[
u =

(
y−s1
y′−s2

)] .

According to Theorem 1, we have P
[
u =

(x
y

)]
= 1

p2 . Hence, the values of u are independent of (S1, S2), so that

θ =
P [(S1, S2) = (s1, s2)] · 1

p2

1
p2

= P [(S1, S2) = (s1, s2)].

�

3.2 Security against coalitions of k < N − 1 curious participants

We now turn to analyze the scheme's security against a coalition of k participants for k < N − 1. Without loss
of generality, we consider the coalition {P1, . . . , Pk}. We will refer to this coalition as the adversary . As in the
preceding scenario, we can summarize the information the adversary is holding by the system of 2k equations:

s1 +

n∑
i=1

aiα
i
1 = y11, . . . , s1 +

n∑
i=1

aiα
i
k = y1k,

s2 +

n∑
i=1

biα
i
1 = y21, . . . , s2 +

n∑
i=1

biα
i
k = y2k

(3.2.1)

The unknowns in these equations are ai, bi, s1, s2, while all other parameters are known to the adversary. We will
now prove two useful results concerning this scenario. First, given (3.2.1), all p2 options for (s1, s2) ∈ F2

p are possible.
Second, given a pair of secrets, the shares y11, . . . , y1k, y21, . . . , y2k distribute almost uniformly. We will soon make

this statement precise by analyzing how the matrix
(
y11 ... y1k
y21 ... y2k

)
is distributed overM2×k(Fp), given a pair of secrets

4We omit the index j and write α, y, y′.

11

(s1, s2), and show that this distribution is statistically close to the uniform distribution. Let (s1, s2) be a pair of

secrets, and Y(s1,s2) be theM2×k(Fp)-valued random variable indicating the matrix
(
y11 ... y1k
y21 ... y2k

)
induced by (s1, s2).

We will show that the statistical di�erence [12] between the distributions Y(s1,s2) and the uniform distribution over

M2×k(Fp) is ≈ 1
pn−k

. Since statistical di�erence is a metric, we will conclude by the triangle inequality that the

statistical di�erence between two such distributions, Y(s1,s2) and Y(s′1,s′2), is no more than ≈ 2
pn−k

.
To this end, we need the following theorem. Denote

U =

(∑n
i=1 aiα

i
1, . . . ,

∑n
i=1 aiα

i
k∑n

i=1 biα
i
1, . . . ,

∑n
i=1 biα

i
k

)
.

We call U the result matrix.
Theorem 2: The distribution of the result matrix is given by

P
[
U =

(y1 ... yk
y′1 ... y

′
k

)]
=


1
pn + (pn−k−1)(pn−k−1−1)

pn(pn−1−1) ,
(y1 ... yk
y′1 ... y

′
k

)
=
(
0 ... 0
0 ... 0

)
,

pn−k−1(pn−k+p−1)
pn(pn−1−1) ,

(y1 ... yk
y′1 ... y

′
k

)
∈ Ω,

pn−k−1(pn−k−1)
pn(pn−1−1) , otherwise,

where Ω is a proper subset of M2×k(Fp), with cardinality of (pk − 1)(pk−1 − 1).

Proof of Theorem 2: Since p and α1, . . . , αk are set, the result matrix U depends only on the Q-choice of
v ∈ Vp. Using the same notation for Mv as in the proof of Theorem 1, we state the connection between U and v.
For α1, . . . , αk ∈ F×p , we de�ne a mapping ρ : Vp →M2×k(Fp) by

ρ(v) = Mv

(α1 ... αk
...

...
αn1 ... αnk

)
.

Thus:
P [U =

(y1 ... yk
y′1 ... y

′
k

)
] = P [ρ(v) =

(y1 ... yk
y′1 ... y

′
k

)
].

Let
(y1 ... yk
y′1 ... y

′
k

)
∈ M2×k(Fp). We compute P [U =

(y1 ... yk
y′1 ... y

′
k

)
] by �nding the number of elements v ∈ Vp for

which ρ(v) =
(y1 ... yk
y′1 ... y

′
k

)
, and use the probability Q de�ned above. These elements are exactly the elements

(a1, . . . , an, b1, . . . , bn) ∈ Vp with (a1, . . . , an) 6= 0 6= (b1, . . . , bn) that solve the system of equations

I1

n∑
i=1

aiα
i
1 = y1,

...
...

Ik

n∑
i=1

aiα
i
k = yk,

II1

n∑
i=1

biα
i
1 = y′1,

...
...

IIk

n∑
i=1

biα
i
k = y′k,

III

n∑
i=1

aibn+1−i = 0.

(3.2.2)

12

We solve (3.2.2) and analyze the number of solutions for given y1, . . . , yk, y
′
1, . . . , y

′
k. The sub-system (3.2.2)I1-

. . . -(3.2.2)Ik consists of k independent equations with n variables a1, . . . , an. Its independence follows from the
fact that the matrix of the coe�cients (αij)i,j is a sub-matrix of Vandermonde matrix with distinct generators

α1, . . . , αk. Hence, (3.2.2)I1-. . . -(3.2.2)Ik has pn−k solutions (a1, . . . , an). For each of them, the system (3.2.2)II1-
. . . -(3.2.2)IIk-(3.2.2)III consists of k + 1 equations with n variables b1, . . . , bn. Is this system independent? The
equations (3.2.2)II1-. . . -(3.2.2)IIk are independent for the same reason that (3.2.2)I1-. . . -(3.2.2)Ik are. Hence, we
only need to �nd out whether (3.2.2)III is dependent of (3.2.2)II1-. . . -(3.2.2)IIk. This may happen only if there

exist c1, . . . , ck ∈ Fp, such that an+1−i =
∑k
j=1 cj · αij for all 1 ≤ i ≤ n. Replacing i for n + 1 − i and using the

fact that αn+1
j = 1, we get equivalently that ai =

∑k
j=1 cj · α

−i
j . Now, ai must satisfy (3.2.2)I1-. . . -(3.2.2)Ik, so we

replace each ai in (3.2.2)I1-. . . -(3.2.2)Ik with
∑k
j=1 cj · α

−i
j and get

I1

n∑
i=1

αi1 ·
(k∑
j=1

cj · α−ij
)

= y1,

...
...

Ik

n∑
i=1

αik ·
(k∑
j=1

cj · α−ij
)

= yk.

(3.2.3)

Given y1, . . . , yk, this is a system of k equations with k unknowns c1, . . . , ck. Write (3.2.3) in the form

I1

k∑
j=1

cj ·
n∑
i=1

(αj
α1

)i
= y1,

...
...

Ik

k∑
j=1

cj ·
n∑
i=1

(αj
αk

)i
= yk.

(3.2.4)

Now,

n∑
i=1

(αj
αl

)i
=


∑n
i=1 1 = n, j = l,

αj
αl
·
1−
(
αj
αl

)n
1−

αj
αl

=
αj ·
(
1−
(
αj
αl

)−1
)

αl−αj = −1, j 6= l.

Hence, we may write (3.2.4) in the form (n . . . −1
...

. . .
...

−1 . . . n

)(c1
...
ck

)
=

(y1
...
yk

)
. (3.2.5)

The matrix A on the left-hand side of (3.2.5) has n's on the main diagonal and −1 elsewhere. Namely, it can be
generated by cyclic permutations of its �rst row (or column). A matrix like that is a circulant matrix. We compute
its determinant using [13] (or directly) to get det(A) = (n−k+ 1)(n+ 1)k−1. Since k < n < p, we have det(A) 6= 0,
and hence A is invertible. Denote c = (c1, . . . , ck)T and y the result vector of (3.2.5). We solve (3.2.5) to get the
unique solution of this system

c = A−1y. (3.2.6)

For given y = (y1, . . . , yk)T , set c = A−1y. Then a0 = (a1, . . . , an) with ai =
∑k
j=1 cjα

−i
j is a solution for

(3.2.2)I1-. . . -(3.2.2)Ik for which the left-hand side of (3.2.2)III is dependent of the left-hand side of (3.2.2)II1-. . . -
(3.2.2)IIk. Any other solution (a1, . . . , an) 6= a0 of (3.2.2)I1-. . . -(3.2.2)Ik yields an independent system (3.2.2)II1-
. . . -(3.2.2)IIk-(3.2.2)III. For such a0, the right-hand side of (3.2.2)III will be dependent of the right-hand side of

(3.2.2)II1-. . . -(3.2.2)IIk if
∑k
j=1 y

′
j · cj = 0. Denoting (y′1, . . . , y

′
k)T = y′, we write that condition equivalently as

13

〈y′, c〉 = 0.

To conclude, given
(y1...yk
y′1...y

′
k

)
∈ M2×k(Fp), set c = A−1y and a0 = (a1, . . . , an) with ai =

∑k
j=1 cjα

−i
j . If

〈y′, A−1y〉 = 0 then a0 is a solution of (3.2.2)I1-. . . -(3.2.2)Ik for which (3.2.2)II1-. . . -(3.2.2)IIk-(3.2.2)III has p
n−k

solutions. If 〈y′, A−1y〉 6= 0 then a0 is a solution of (3.2.2)I1-. . . -(3.2.2)Ik for which (3.2.2)II1-. . . -(3.2.2)IIk-(3.2.2)III
has no solutions.

We can now count the total number of solutions (a1, . . . , an, b1, . . . , bn) of (3.2.2) in each of the following cases.

� Case 1. y = y′ = 0.
In this case, one solution is the trivial solution, (a1, . . . , an, b1, . . . , bn) = 0. By (3.2.6) we get here c = 0,
implying a0 = 0. Now, (3.2.2)I1-. . . -(3.2.2)Ik has pn−k solutions (a1, . . . , an). The solution a0 yields pn−k

solutions (b1, . . . , bn) for (3.2.2)II1-. . . -(3.2.2)IIk-(3.2.2)III. Amongst them, only b = 0 is acceptable, but we
have already counted it. So we are left with pn−k − 1 solutions a for (3.2.2)I1-. . . -(3.2.2)Ik. Each of these
yields pn−k−1 solutions b for (3.2.2)II1-. . . -(3.2.2)IIk-(3.2.2)III. The vector b = 0 is always one of them, so we
omit it. All in all we get a total of 1 + (pn−k − 1)(pn−k−1 − 1) valid solutions for (3.2.2).

� Case 2. y = 0, y′ 6= 0.
By (3.2.6) we get again c = 0, implying a0 = 0. Since y′ 6= 0, b = 0 is not a solution of (3.2.2)II1-. . . -(3.2.2)IIk,
we obtain no valid solutions for a0 = 0. Each of the other pn−k − 1 solutions a of (3.2.2)I1-. . . -(3.2.2)Ik yields
pn−k−1 solutions b of (3.2.2)II1-. . . -(3.2.2)IIk-(3.2.2)III, all of which are valid. All in all we get a total of
pn−k−1(pn−k − 1) valid solutions for (3.2.2).

� Case 3. y′ = 0, y 6= 0.
Analogous to Case 2.

� Case 4. y 6= 0 6= y′ with 〈y′, A−1y〉 6= 0.
In this case there are no solutions with a = 0 or b = 0. Here, a0 is a solution for (3.2.2)I1-. . . -(3.2.2)Ik
which yields no solution of (3.2.2)II1-. . . -(3.2.2)IIk-(3.2.2)III. For each of the other pn−k − 1 solutions of
(3.2.2)I1-. . . -(3.2.2)Ik there are pn−k−1 solutions of (3.2.2)II1-. . . -(3.2.2)IIk-(3.2.2)III. Hence, we get a total
of pn−k−1(pn−k − 1) valid solutions for (3.2.2).

� Case 5. y 6= 0 6= y′ with 〈y′, A−1y〉 = 0.
As in the previous case, there are no solutions with a = 0 or b = 0. Here, a0 is a solution of (3.2.2)I1-. . . -
(3.2.2)Ik which yields pn−k solutions of (3.2.2)II1-. . . -(3.2.2)IIk-(3.2.2)III. For each of the other pn−k − 1
solutions of (3.2.2)I1-. . . -(3.2.2)Ik there are p

n−k−1 solutions for (3.2.2)II1-. . . -(3.2.2)IIk-(3.2.2)III. Hence, we
get a total of pn−k−1(pn−k − 1) + pn−k = pn−k−1(pn−k + p− 1) valid solutions for (3.2.2).

Denote
Ω =

{(y1...yk
y′1...y

′
k

)
∈M2×k(Fp)

∣∣∣y 6= 0 6= y′, 〈y′, A−1y〉 = 0
}
.

To compute |Ω|, observe that y can be chosen in pk−1 di�erent ways. For each of these, the condition 〈y′, A−1y〉 = 0
is a linear equation with pk−1 solutions. We omit the trivial solution and get |Ω| = (pk − 1)(pk−1 − 1). By the
de�nition of Q, the rest follows. �

An immediate consequence of Theorem 2 is that, given (3.2.1), all p2 options for (s1, s2) ∈ F2
p are indeed possible:

If the adversary is holding
(
y11 ... y1k
y21 ... y2k

)
∈M2×k(Fp), then, for each of the p2 possible pairs of secrets (s1, s2) ∈ F2

p,

there is a single suitable
(
y1 ... yk
y′1 ... y

′
k

)
∈M2×k(Fp). This matrix is:(

y1 ... yk
y′1 ... y

′
k

)
=
(
y11−s1 ... y1k−s1
y21−s2 ... y2k−s2

)
.

Since all matrices
(
y1 ... yk
y′1 ... y

′
k

)
∈ M2×k(Fp) occur with positive probability, the adversary simply does not have

enough information in order to determine the secrets. Now, not all elements
(
y1 ... yk
y′1 ... y

′
k

)
have the same probability.

According to Theorem 2, exactly (pk − 1)(pk−1 − 1) + 1 out of the p2k elements of M2×k(Fp) have a slightly larger

14

probability. We use the statistical di�erence function [12] to measure the leakage of information: If (s1, s2) is a pair

of secrets, we denote by Y(s1,s2) the M2×k(Fp)-valued random variables indicating the matrix
(
y11 ... y1k
y21 ... y2k

)
induced

by (s1, s2), over the Q-picking of v from Vp. We compute the statistical di�erence SD(Y(s1,s2),U) between the
distribution Y(s1,s2) and the uniform distribution over M2×k(Fp):

SD(Y(s1,s2),U) =
1

2
·

∑
Y ∈M2×k(Fp)

∣∣∣∣∣P [Y(s1,s2) = Y
]
− P

[
U = Y

]∣∣∣∣∣
=

1

2
·

∑(
y1 ... yk
y′1 ... y

′
k

)
∣∣∣∣∣P
[(

s1+
∑n
i=1 aiα

i
1 ... s1+

∑n
i=1 aiα

i
k

s2+
∑n
i=1 biα

i
1 ... s2+

∑n
i=1 biα

i
k

)
=
(
y1 ... yk
y′1 ... y

′
k

)]
− 1

p2k

∣∣∣∣∣
=

1

2
·

∑(
y1 ... yk
y′1 ... y

′
k

)
∣∣∣∣∣P
[(∑n

i=1 aiα
i
1 ...

∑n
i=1 aiα

i
k∑n

i=1 biα
i
1 ...

∑n
i=1 biα

i
k

)
=
(
y1−s1 ... yk−s1
y′1−s2 ... y

′
k−s2

)]
− 1

p2k

∣∣∣∣∣.
Using Theorem 2, a straightforward computation yields

SD(Y(s1,s2),U) =
(pk − pk−1 + 2)(pk − 1)(pk−1 − 1)

p2k(pn−1 − 1)
≈ p3k−1

p2k · pn−1
=

1

pn−k
.

Since the statistical di�erence is a metric, by the triangle inequality we get that

SD(Y(s1,s2), Y(s′1,s′2)) ≈
2

pn−k

for any couple of distributions induced by pairs of secrets, (s1, s2), (s′1, s
′
2) ∈ F2

p.

4 Applications

Our scheme can be used to perform homomorphic evaluation of quadratic functions over variables s1, . . . , sm, and
arbitrarily long 2-CNF circuits. A quadratic function over the variables s1, . . . , sm is of the form

F (s1, . . . , sm) =
∑

1≤i,j,≤m

rijsisj +

m∑
k=1

tksk + c,

with rij , tk, c ∈ Fp. There are p
1
2 (m

2+3m+2) such functions. We can use our scheme to homomorphically evaluate F .

For each of the m2+m
2 pairs of variables si, sj , use our scheme to generate a pair of 1-homomorphic-multiplicative-

polynomials fij , fji, and distribute si, sj amongst the participants. This pre-processing stage requires O(m2)
communication, but now F can be homomorphically evaluated in a straightforward way. Each participant Pl
simply evaluates F over its shares of the secrets and sends the result yl to the dealer. The dealer in turn calculates
the polynomial g going through the points (αl, yl) with g(0) = F (s1, . . . , sm).

Communication complexity of the aforementioned scheme may be reduced in the cost of lower security parame-
ters. We now show how one can adjust the suggested scheme and achieve a scheme with O(m) cyphertext instead of
O(m2). Pick an element v = (a1, . . . , an, b1, . . . , bn) from Vp under the condition that

∑n
i=1 aiα

i
l 6= 0 6=

∑n
i=1 biα

i
l for

1 ≤ l ≤ N . Pick k1, . . . , km, l1, . . . , lm from Fp uniformly at random and set fj(x) = sj + kj
∑n
i=1 aix

i, and hj(x) =
sj + lj

∑n
i=1 bix

i, 1 ≤ j ≤ m. Distribute to participant Pl the 2m vector
(
f1(αl), . . . , fm(αl), h1(αl), . . . , hm(αl)

)
.

Now, each participant evaluates F over his shares of the secrets. The linear parts of F are computed by each
participant using either fk or hk. The quadratic parts of F are evaluated by each participant as fi(αl) · hj(αl).
This scheme is perfectly secure against a single participant attack, but is insecure against coalitions of two or more
participants.

In various applications, the number of variables is growing over time. In that case, the method described

15

above can be modi�ed to allow new variables to be joined with the primary ones. Explicitly, assume a dealer has
s1, . . . , sm ∈ Fp, and sm+1, . . . , sm+k are k more variables whose value may not be determined yet, and are expected
to be determined and joined with s1, . . . , sm in the future. We wish to share s1, . . . , sm amongst N participants,
in a way that: (a) enables homomorphic evaluation of quadratic functions over the m variables; (b) will enable to
share, in the future, the k additional variables amongst the participants; (c) will enable homomorphic evaluation of
quadratic functions over the m+ k variables. We wish to achieve all that without keeping s1, . . . , sm in memory.

We now demonstrate how these dynamic properties are obtained. For each of the pairs of variables si, sj ,
1 ≤ i ≤ m, i ≤ j ≤ m, use our scheme to generate a 1-homomorphic-multiplicative-pair of polynomials, fij , fji,
and distribute si, sj amongst N participants. As in the non-dynamic version, quadratic functions over s1, . . . , sm
can now be homomorphically evaluated. For each of the pairs si, sj , 1 ≤ i ≤ m, m + 1 ≤ j ≤ m + k, use our
scheme to generate a 1-homomorphic-multiplicative-pair of polynomials, fij , fji. Assuming sm+1, . . . , sm+k are not
known yet, for m + 1 ≤ j ≤ m + k let the free coe�cient of fji be zero, and keep fji in memory. Distribute si
to the participants using the �rst of each pair of 1-homomorphic-multiplicative polynomials, i.e., using fij . Now,
when the values of sj , m + 1 ≤ j ≤ m + k, are determined, add each of them to the corresponding polynomial
fji, 1 ≤ i ≤ m, and distribute sj amongst the participants. In addition to that, for each pair of variables si, sj ,
m + 1 ≤ i ≤ m + k, i ≤ j ≤ m + k, generate a 1-homomorphic-multiplicative-pair of polynomials, fij , fji, and
distribute si, sj amongst the participants. Now, quadratic functions over the m+ k variables, s1, . . . , sm+k, can be
homomorphically evaluated in a straightforward way as in the non-dynamic version described above.

A 2-CNF expression over literals s1, . . . , sm is an expression of the form (si1 ∨ si2) ∧ · · · ∧ (si2t−1 ∨ si2t). As
we work in Fp, we replace the logic values True and False with the elements 1 and 0 in Fp, respectively (other
elements of Fp are not logically de�ned). Logic operations are replaced with Fp operations as follows. Given literals
s1 and s2, disjunction is implemented by s1 + s2 − s1s2 and conjunction is considered as addition in Fp. Negation
of s1 is 1 − s1. Then, a 2-CNF expression of length 2t is a multi-variable quadratic function, and is assigned
True if the function is evaluated to t ∈ Fp, and False otherwise. There are 22m

2+m such expressions that can be
homomorphically evaluated using our scheme.

5 Conclusions

We have proposed a scheme to perform a multiplication over secret shares without increasing the number of
participants required to extract the product. In our scheme, we have dealt with N participants and used polynomials
of degree N−1. We have shown how to use our scheme to perform homomorphic and secure evaluation of quadratic
functions and 2-CNF circuits over a dynamic set of secret shares with O(m2) ciphertext.

Of course, one can use Shamir's scheme and enable homomorphic multiplication of secrets by just taking the
polynomials to be of lower degree to begin with, but such a solution yields a smaller secret share threshold. E.g.,
if one runs Shamir's standard secret sharing scheme with four participants, and would like to be able to extract a
product of two secrets, he/she would be obligated to work with linear polynomials. In that case, if an adversary
manages to discover two of the shares of a certain secret, then the secret is revealed. If one tried to work with
quadratic polynomials in the standard scheme, then the product polynomial would be of degree 4, and it requires
5 participants to extract the product. In our scheme, even if an adversary manages to reveal two out of four shares
of a certain secret, the secret is information-theoretically kept. We proved that each of the participants holding two
correlated secret shares gains absolutely no information about the secrets (even if knowing the αi that was assigned
to him/her by the Dealer). We also proved that a coalition of up to N − 2 curious participants still cannot reveal
the exact value of (s1, s2), and that the statistical di�erence is negligible.

Moreover, one can use Shamir's scheme to enable homomorphic evaluation of quadratic functions and 2-CNF
circuits over secret shares by sharing, for each pair of secrets, their product. This solution also results in O(m2)
ciphertext, but in this solution, one must keep the secrets in memory in order to allow new secrets to be joined
with the primary ones. In our scheme, the primary secrets are not required to be stored in memory once they were
shared.

Our scheme can be used to reduce the communication complexity of cryptographic systems as Shamir secret
shared database [2], secure multi-party computation [9], secret shared random access machine [11] and in outsourcing
of computations, such as in cloud computing, when statistical security may su�ce.

The scheme we suggest here is somewhat surprising. We multiply two shares of degree N − 1-polynomial-shared
secrets and manage to extract the product using no more than the N participants we began with, proving it to be

16

information-theoretically secure. The innovation is in the function sieving method and in the way we built the set
Vp and de�ned the probability Q over it. Finally, we believe that our approach and proof techniques may open an
opportunity for fruitful research on multi-party computation, as well as other applications.

Acknowledgments. This research was partially supported by the Rita Altura Trust Chair in Computer Sciences;
the Lynne and William Frankel Center for Computer Science; grant of the Ministry of Science, Technology and
Space, Israel, and the National Science Council (NSC) of Taiwan; the Ministry of Foreign A�airs, Italy; the Ministry
of Science, Technology and Space, Infrastructure Research in the Field of Advanced Computing and Cyber Security
and the Israel National Cyber Bureau, the Milken Families Foundation Chair in Mathematics.
With pleasure, we thank Amos Beimel and Niv Gilboa for useful inputs.

References

[1] Avni, H., Dolev, S., Gilboa, N. and Li, X. (2016). SSSDB: Database with private information search. In Algo-

rithmic Aspects of Cloud Computing (pp. 49-61). Springer International Publishing.

[2] Beaver, D. (1991, August). E�cient multi-party protocols using circuit randomization. In Annual International
Cryptology Conference (pp. 420-432). Springer, Berlin, Heidelberg.

[3] Blakley, G. R. (1979). Safeguarding cryptographic keys. Proc. of the 48th National Computer Conference 1979

(pp. 313-317).

[4] Boneh, D., Goh, E. J. and Nissim, K. (2005, February). Evaluating 2-DNF formulas on ciphertexts. In Theory

of Cryptography Conference (pp. 325-341). Springer, Berlin-Heidelberg.

[5] Brakerski, Z. and Perlman, R. (2016). Lattice-based fully dynamic multi-key FHE with short ciphertexts. In
Annual Cryptology Conference (pp. 190-213). Springer, Berlin-Heidelberg

[6] Cramer, R., Damgård, I. and Maurer, U. (2000). General secure multi-party computation from any linear secret-
sharing scheme. In Advances in Cryptology-EUROCRYPT 2000 (pp. 316-334). Springer, Berlin-Heidelberg.

[7] Dawson, E. and Donovan, D. (1994). The breadth of Shamir's secret-sharing scheme. Computers and Security

13(1) (pp. 69-78).

[8] Dolev, S., Garay, J., Gilboa, N. and Kolesnikov, V. (2009). Swarming secrets. In 47th Annual Allerton Conference

on Communication, Control, and Computing (pp. 1438-1445).

[9] Dolev, S., Gilboa, N. and Li, X. (2015). Accumulating automata and cascaded equations automata for commu-
nicationless information-theoretically secure multi-party computation. In Proceedings of the 3rd International

Workshop on Security in Cloud Computing (pp. 21-29).

[10] Dolev, S., Lahiani, L. and Yung, M. (2007). Secret swarm unit reactive k-Secret sharing. In Progress in

Cryptology-INDOCRYPT 2007 (pp. 123-137). Springer, Berlin-Heidelberg.

[11] Dolev, S. and Li, Y. (2016). Secret Shared Random Access Machine. In Algorithmic Aspects of Cloud Computing
(pp. 19-34). Springer International Publishing.

[12] Gentry, C. (2009). Fully homomorphic encryption using ideal lattices. In Symposium on Theory of Computing

(pp. 169-178).

[13] Goldreich, O. (2009). Foundations of cryptography: volume 2, basic applications. Cambridge University Press.

[14] Gray, R. M. (2006). Toeplitz and circulant matrices: A review. Foundations and Trends in Communications

and Information Theory 2(3) (pp. 155-239).

[15] Macdonald, I. G. (1998). Symmetric functions and Hall polynomials. Oxford University Press.

[16] Micciancio, D. (2010). A �rst glimpse of cryptography's Holy Grail. Communications of the ACM 53(3) (pp.
95-96).

17

[17] Rabin, T. and Ben-Or, M. (1989). Veri�able secret sharing and multiparty protocols with honest majority. In
Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing (pp. 73-85).

[18] Sander, T., Young, A. and Yung, M. (1999). Non-interactive cryptocomputing for NC 1. In Foundations of

Computer Science, 1999, 40th Annual Symposium. (pp. 554-566). IEEE

[19] Shamir, A. (1979). How to share a secret. Communications of the ACM, 22(11) (pp. 612-613).

[20] Shannon, C. E. (1949). Communication theory of secrecy systems. Bell Labs Technical Journal, 28(4) (pp.
656-715).

18

