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Abstract. Automatic search methods have been widely used for cryptanalysis of block
ciphers, especially for the most classic cryptanalysis methods – differential and linear crypt-
analysis. However, the automatic search methods, no matter based on MILP, SMT/SAT
or CP techniques, can be inefficient when the search space is too large. In this paper, we
propose three new methods to improve Matsui’s branch-and-bound search algorithm which
is known as the first generic algorithm for finding the best differential and linear trails.
The three methods, named Reconstructing DDT and LAT According to Weight, Executing
Linear Layer Operations in Minimal Cost and Merging Two 4-bit S-boxes into One 8-bit
S-box respectively, can efficiently speed up the search process by reducing the search space
as much as possible and reducing the cost of executing linear layer operations. We apply our
improved algorithm to DESL and GIFT, which are still the hard instances for the automatic
search methods. As a result, we find the best differential trails for DESL (up to 14 rounds)
and GIFT-128 (up to 19 rounds). The best linear trails for DESL (up to 16 rounds), GIFT-
128 (up to 10 rounds) and GIFT-64 (up to 15 rounds) are also found. To the best of our
knowledge, these security bounds for DESL and GIFT under single-key scenario are given
for the first time. Meanwhile, it is the longest exploitable (differential or linear) trails for
DESL and GIFT. Furthermore, benefiting from the efficiency of the improved algorithm, we
do experiments to demonstrate that the clustering effect of differential trails for 13-round
DES and DESL are both weak.3
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1 Introduction

Differential cryptanalysis [6] and linear cryptanalysis [19] are two of the most fundamental methods
for cryptanalysis of block ciphers. The first and the most important step of differential cryptanalysis
(or linear cryptanalysis) is to find differential trails (or linear trails) with high probabilities (or large
correlations). Therefore, how to find effective differential or linear trails has become a hot issue for
cryptographers.

At EUROCRYPT’94 [20], Matsui proposed a branch-and-bound depth-first search algorithm,
which presents an efficient automatic search algorithm to find the best differential trails and linear
trails of DES. Differential trails with highest probability or linear trails with largest correlation
are called the best. However, Matsui’s method is not efficient enough for some other block ciphers
such as DESL and FEAL. At CRYPTO’95 [22], Moriai et al. improved Matsui’s algorithm. They
introduced the concept of search patterns to reduce unneccessary search candidates and found
the best n-round linear trails of FEAL (n ≤ 32). At FSE’97 [3], Aoki et al. further improved
the search algorithm by proposing the pre-search strategy to discard unsatisfiable search patterns.
They determined all the best differential trails of FEAL up to 32 rounds. In [5], Bao et al. proposed

3 This is a manuscript version of the artical published in The Computer Journal. The final version is
aviliable at https://doi.org/10.1093/comjnl/bxaa090.
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three strategies to speed up the search algorithm. They got good results on the best differential and
linear trails of NOEKEON and SPONGENT. Bao’s three strategies can efficiently speed up the
search process. However, it needs quite complex programming skills to implement their strategies.

The idea of search patterns and the pre-search strategy are hard to implement when the weights
of the differential or linear trails of the target cipher are not integers. The definitions of the weight
of difference propagation (or linear correlation) and the weight of differential (or linear) trail are
given in Sect.2.1. For example, the weights of the difference propagations of S-boxes in DESL are
not all integers. It is not convenient for DESL to perform the pre-search phase, since assigning
decimal weights to every single round is difficult. In [3], Aoki et al. provided a version of pre-
search algorithm that specially designed for decimal weights, but this algorithm is complicated to
implement.

In recent years, Mixed-Integer Linear Programing (MILP) based method has been very popular
in constructing automatic search algorithm in differential and linear cryptanalysis [21,26,24,25,23].
MILP-based method is convenient to programing. But when the block size or the round number of
the target cipher is large, the size of the corresponding MILP model will be too large. There are some
papers [28,17] using MILP-based method to study the security of GIFT-128. But they can only get
differential trails under some limitations and they cannot estimate the best difference propagation
probabilities when the round number is large. In [23], Sun et al. applied MILP-based method to
search differential trails of DESL, but they can only found a 10-round single-key differential trail
of DESL with probability 2−52.25.

The weights of the difference propagations of the S-boxes in DESL and GIFT and the weights
of the linear propagations in DESL are not all integers. As mentioned above, the original Matsui’s
method and the MILP-based method are both not efficient enough to search the best differential
trails of DESL or GIFT-128, and it is really complicated to apply the idea of search patterns to
accelerate the search process.

How to find multiple differential or linear distinguishers [8] is another problem that researchers
pay attention [2,11,14]. In [2], Abdelraheem et al. presented a time-memory trade-off method
to search the multipule linear trails of SIMON. They combined the trails found by constructing
multi-round correlation submatrixes and by Mixed Integer Programming model. In [14], Mathias
et al. proposed a breadth-first search algorithm. The algorithm represents the problem of searching
multiple differential or linear trails as the problem of finding many long paths through a multistage
graph.

1.1 Our Contributions

In this paper, we apply three methods to speed up the original Matsui’s algorithm. By these
three speeding-up methods, we can efficiently prune unsatisfiable candidates and reduce the cost
of executing linear layer operations:

– Reconstructing DDT and LAT According to Weight method is very helpful to reduce
the complexity of the search process. We apply this method to prune unsatisfiable candidates
by sorting the input and output differences according to their weights.

– Executing Linear Layer Operations in Minimal Cost method can be used to reduce
the cost of P permutation and E expansion. By constructing linear layer table and executing
look-up-table operations by SSE instructions, we can implement linear layer operations of each
round with 2 XOR operations of 128-bit variables.

– Merging Two 4-bit S-boxes into One 8-bit S-box method is used to speed up the search
process when the number of S-box is large. In the case of GIFT, by merging two consecutive
4 × 4 S-boxes into one 8 × 8 S-box, we can further reduce the cost of executing linear layer
operations.

We use our improved search algorithm to search the best differential trails and linear trails of
DES, DESL, GIFT-64 and GIFT-128. The results are helpful for estimating the security of DESL,
GIFT-64 and GIFT-128 against differential and linear cryptanalysis. Besides, we do experiments
to estimate the clustering effect of differential trails for 13-round DES and DESL.
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We use method 1 and method 2 to accelerate the search process of DES and DESL. Method 1,
method 2 and method 3 are all used to accelerate the search process of GIFT-64 and GIFT-128.

For DES and DESL, our experimental results presented in Table 3 show that the first two
methods bring an acceleration by a factor of 26-173. For GIFT-64 and GIFT-128, our experimental
results presented in Table 4 show that the third method brings an acceleration by a factor of 2-4.
All of the experiments and results in this paper are obtained and timed on a PC with Intel(R)
Core(TM) i7-6700 3.40 GHz CPU, and 16 GB RAM, using single-thread program in C.

Results on DES and DESL:

– For DES. We find the best differential trails for up to 18 rounds4. The best difference prob-
ability of 18-round DES is 2−69.84. The results are summarized in Table 3. We find the best
linear trails of DES for up to 22 rounds. The best linear correlation of 22-round DES is 2−32.46.
The results are summarized in Table 5.
We confirm the results on the best difference and linear probability of DES provided in [20,22].
As we can see from Table 3, our new methods can efficiently speed up the search process.

– For DESL. We find the best differential trails for up to 14 rounds. The best difference prob-
ability of 14-round DESL is 2−68.78. The results are summarized in Table 3. We find the best
linear trails of DESL for up to 16 rounds. The best linear correlation of 16-round DESL is
2−32.98. The results are summarized in Table 5.
To the best of our knowledge, we find the longest exploitable best differential and linear trails
for DESL. In [24], the authors found a 10-round differential trail with probability 2−52.25, and
there is no previous results on linear trails of DESL.

– Demonstrating the Clustering Effect. In [12], it has been mentioned that the differential
and linear clustering effect of DES are both weak. But no experimental result was provided to
demonstrate this conclusion.
In this paper, we conduct experiments applying the improved Matsui’s algorithm to search the
clustering effect of differential trails for 13-round DES and DESL. Through the experiments in
Sect.6, we find that the clustering effect of differential trails for 13-round DES and DESL are
both weak.

Results on GIFT:

– For GIFT-64. We find the best differential trails for up to 14 rounds. The best difference
probability of 14-round GIFT-64 is 2−68.000. The results are summarized in Table 4. We find
the best linear trails of GIFT-64 for up to 15 rounds. The best linear correlation of 13-round
GIFT-64 is 234.00. The results are summarized in Table 6.
We find the longest exploitable best linear trails of GIFT-64 and we confirm the results on the
best difference probability of GIFT-64 provided in [27].

– For GIFT-128. We find the best differential trails for up to 19 rounds. The best difference
probability of 19-round GIFT-128 is 2−110.830. The results are summarized in Table 4.
We find the best linear trails of GIFT-128 for up to 10 rounds. The best linear correlation of
10-round GIFT-128 is 2−26.00. The results are summarized in Table 6.
We find the longest exploitable best differential and linear trails for GIFT-128. The results
on the best difference probabilities and best linear correlations provided in this paper are the
tightest security bounds of GIFT-128, which are found for the first time.

To illustrate the efficiency of our improved algorithm, we compare our results on the weight of
the best differential trails with previous work in Table 1.

We find no result on the best linear trails of DESL or GIFT from previous work.
Since the weights of the linear propagations of S-boxes in GIFT are integers, Bao’s algorithm can
be very suitable to search the best linear trails of GIFT. We compare our results on the weight of
the best linear trails with the results of Bao’s algorithm in Table 2.

4 The round number of DES is 16.
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Table 1. The weight of the best differential trails

DESL GIFT-64 GIFT-128

n
Bn

(ours)
Bn

([23])
n

Bn

(ours)
Bn

([27])
n

Bn

(ours)
Bn

([17])
7 29.25 7 28.415 28.415 14 79.000 79∗

8 37.59 8 38.000 38.000 15 85.415 86∗

9 41.76 9 42.000 42.000 16 90.415 91∗

10 49.79 52.52∗ 10 48.000 48.000 17 96.415 97∗

11 52.71 11 52.000 52.000 18 103.415 103.415∗

12 58.10 12 58.000 58.000 19 110.830 115∗

13 60.78 13 62.000 62.000 20 121.415∗ 121.415∗

14 68.78 14 68.000 68.000 21 126.415∗ 126.415∗

1 n : the round number. Bn : the weight of the best differential trails
of n-round.

2 ∗ : the authors cannot guarantee that it is the best weight.

Table 2. The weight of the best linear trails

GIFT-64 GIFT-128

n Bn
t

(ours)
pre-search
workload

t
([5])

n Bn
t

(ours)
pre-search
workload

t
([5])

9 20 41.47s 1 0.00s 5 7 0.05s 10 47.44s
10 25 0.85h 1 0.23h 6 10 1.77s 6 0.63s
11 29 8.83h 2 36.54h 7 13 19.38s 5 0.01s
12 31 0.73h 2 1.73s 8 17 0.50h 4 24.03s
13 34 3.15h 2 35.45h 9 22 44.09h 3 1.01h
14 37 5.12h 1 0.18s 10 26 20.9d 3 36.72h
15 40 4.59h 1 24.26s
1 n : the round number. Bn : the weight of the best linear trails of n-round.
2 t : the search time.

As shown in Table 2, for SPN block ciphers, when the weights are all integers, Bao’s algorithm
is more efficient than our improved Matsui’s algorithm. But we need to state that: The improved
Matsui’s algorithm in this paper is easier to implement, and is more convenient to be
applied in situations when the weights are not all integers.

In addition, the improved Matsui’s algorithm can be used to search the best differential trails
and best linear trails for other primitives, estimate the clustering effect and search the multiple
differential distinguishers or multi-dimensional linear distinguishers.

1.2 Organization

The paper is organized as follows. Some definitions and symbolic conventions are presented in
Sect.2. Meanwhile, we introduce the three block ciphers: DES, DESL and GIFT and Matsui’s
search algorithm in Sect.2. In Sect.3, we propose our three speeding-up methods. Sect.4 and Sect.5
give the experimental results on the best differential and linear trails of DES, DESL and GIFT,
providing justification for the efficiency of the three speeding-up methods. Sect.6 gives experimental
results on estimating the clustering effect of differential trails for 13-round DES and DESL. Sect.7
is the conclusion and discussion.
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2 Preliminaries

In [20], Matsui illustrated the duality between differential cryptanalysis and linear cryptanalysis. In
this paper, we take differential cryptanalysis as an example to explain our speeding-up
methods.

2.1 Notations and Definitions

The notations we use are similar to those in [20]. We use the sum of the weights of the round
differential trails to characterize the best differential trails.

Xi, Yi : the input and the output of the round function Fi

Xt
i , Y

t
i : the input and the output of the t-th S-box

∆Xi, ∆Yi, ∆Xt
i , ∆Y t

i : the differential value of Xi, Yi, X
t
i and Y t

i

ΓXi, ΓYi : the masking value of Xi and Yi

Ki : the round key of the round function Fi

⊕ , • : the bitwise XOR operation and AND operation

P (x) : P permutation on 0-1 string x

E ◦ P (x) : composition of P permutation and E expansion on 0-1 string x

parity(x)
def
= x0 ⊕ x1 ⊕ · · · ⊕ xn−1, in which x = x0||x1|| · · · ||xn−1 is 0-1 string

Definition 1 ([12]). The correlation C(a
′
, b

′
) between the linear propagation (a

′
, b

′
) over the

transformation h is defined as:

C(a
′
, b

′
) = 2Prob{parity(a • a

′
) = parity(h(a) • b

′
)} − 1 (1)

a
′
is the input mask and b

′
is the output mask, a traverses all the input values of h.

Definition 2 ([12]). The weight of a difference propagation (a
′
, b

′
) is the negative of the binary

logarithm of the difference propagation probability over the transformation h, i.e.,

wr(a
′
, b

′
) = −logProbh(a

′
,b

′
)

2 (2)

a
′
is the input difference and b

′
is the output difference.

Definition 3 ([12]). The weight of a linear correlation C(a
′
, b

′
) is the negative of the binary

logarithm of the absolute value of C(a
′
, b

′
) over the transformation h, i.e.,

wr(a
′
, b

′
) = −log|C(a

′
,b

′
)|

2 (3)

a
′
is the input mask and b

′
is the output mask.

Definition 4 ([12]). The weight of a differential (or linear) trail Q over an iterative transformation
H is the sum of the weights of its differential (or linear) steps, i.e.,

wr(Q) =
∑
i

wh(i)

r (qi−1, qi) (4)

The iterative transformation H is a sequence of r transformations:

H = h(r) ◦ · · · ◦ h(2) ◦ h(1) (5)

The differential (or linear) trail Q over H consists of a sequence of r+1 difference (or linear mask)
values:

Q = (q(0), q(1), · · · , q(r−1), q(r)) (6)



6 Fulei Ji, Wentao Zhang, and Tianyou Ding

In the case of differential cryptanalysis, we calculate the weights of the difference propaga-
tion probabilities:

(∆Xi,∆Yi)
def
= −logProb{Fi(Xi⊕∆Xi,Ki)=Fi(Xi,Ki)⊕∆Yi}

2

[w1, w2, · · · , wt]
def
= Σt

i=1wi

Bn
def
= min[(∆X1,∆Y1), (∆X2,∆Y2), · · · , (∆Xn,∆Yn)]

Note:

∆Xi = ∆Xi−2 ⊕ E ◦ P (∆Yi−1), 3 ≤ i ≤ n, in the case of DES and DESL;

∆Xi = P (∆Yi−1), 2 ≤ i ≤ n, in the case of GIFT.

In the case of linear cryptanalysis, we calculate the weights of the linear correlations:

(ΓXi, ΓYi)
def
= −1− log

|Prob{parity(Xi•ΓXi)=parity(Fi(Xi,Ki)•ΓYi)}−1/2|
2

[w1, w2, · · · , wt]
def
= Σt

i=1wi

Bn
def
= min[(ΓX1, ΓY1), (ΓX2, ΓY2), · · · , (ΓXn, ΓYn)]

Note:

ΓYi = ΓYi−2 ⊕ E ◦ P (ΓXi−1), 3 ≤ i ≤ n, in the case of DES and DESL;

ΓXi = P (ΓYi−1), 2 ≤ i ≤ n, in the case of GIFT.

2.2 Description of Feistel Block Cipher DES and DESL

The Data Encryption Standard [15] (DES) was developed at IBM and adopted by the U.S. National
Bureau of Standards as the standard cryptosystem for sensitive but unclassified data. DES is a
Feistel structure block cipher whose block size is 64 bits and key size is 56 bits. The round number
of DES is 16. We illustrate the Feistel structure and the round function of DES in Fig.1. We refer
readers to [15] for more details of DES.
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– There are 8 different S-boxes in DES. We denote them as Si, 1 ≤ i ≤ 8. For each S-box, it
takes an input of 6 bits and gives an output of 4 bits.

– E is a bitwise expansion. It takes an input of 32 bits and gives an output of 48 bits. P is a
bitwise permutation. It takes an input of 32 bits and gives an output of 32 bits.

DESL [16] is a lightweight variant of DES. DESL is almost the same as DES, except that it uses
a single S-box instead of 8 different S-boxes as DES. The designers adapted the DES S-box design
criteria and proposed the S-box used in DESL. Using the well designed S-box, DESL is stronger
than DES in resisting differential and linear cryptanalysis. We refer readers to [16] for more details
of DESL.

2.3 Description of SPN Block Cipher GIFT

GIFT [4] is an SP-network lightweight block cipher. GIFT has two versions named in GIFT-64
and GIFT-128, whose block sizes are 64 and 128 bits respectively, and round numbers are 28 and
40 respectively. The key length of GIFT-64 and GIFT-128 are both 128 bits.

Recently, Banik et al. proposed a lightweight Authenticated Encryption (AE) scheme GIFT-
COFB based on GIFT-128, which is one of the Round 1 Candidates of NIST Lightweight Crypto
Standardization process [1].

There are 32 same 4 × 4 S-boxes in GIFT-128 and 16 same 4 × 4 S-boxes in GIFT-64. The
round function of GIFT-128 is shown in Fig.2. We refer readers to [4] for more details of GIFT.

Fig. 2. Two rounds of GIFT-128 [1]

2.4 Matsui’s Search Algorithm

Matsui’s algorithm works by induction on the number of rounds and derives the best n-round
weight Bn from the knowledge of all i-round best weight Bi (1 ≤ i ≤ n− 1). The program requires
an initial value for Bn, which is represented as Bcn. It works correctly for any Bci as long as
Bci ≥ Bi (1 ≤ i ≤ n− 1).

The original search algorithm is recursive and targets DES. Alg.1 and Alg.2 show the details
of Matsui’s search algorithm targets Feistel cipher and SPN cipher respectively.

3 Our New Speeding-up Methods

Overall Strategy In order to speed up Matsui’s search algorithm, we need to further study the
inner details of Matsui’s algorithm and the objective block ciphers: DES, DESL, GIFT.

We speed up the search process in the following two ways:
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Algorithm 1 Matsui’s Algorithm Targets Feistel Cipher

Input: n (≥ 4); B1, B2, · · · , Bn−1; Bcn
Output: Bn = Bcn; the best differential trails of round n

1: Procedure Round-1:
2: for each candidate of ∆X1 do
3: w1 ← min∆Y1(∆X1,∆Y1)
4: if [w1, Bn−1] ≤ Bcn then
5: call Round-2
6: end if
7: end for

8: Procedure Round-2:
9: for each candidate of ∆X2 and ∆Y2 do

10: w2 ← (∆X2,∆Y2)
11: if [w1, w2, Bn−2] ≤ Bcn then
12: call Round-3
13: end if
14: end for
15: Procedure Round-i, 3 ≤ i ≤ n− 1:

16: for each candidate of ∆Yi do
17: ∆Xi ← ∆Xi−2 ⊕ E ◦ P (∆Yi−1)
18: wi ← (∆Xi, ∆Yi)
19: if [w1, · · · , wi, Bn−i] ≤ Bcn then
20: call Round-(i+1)
21: end if
22: end for

23: Procedure Round-n:
24: ∆Xn ← ∆Xn−2 ⊕ E ◦ P (∆Yn−1)
25: wn ← min∆Yn(∆Xn,∆Yn)
26: if [w1, w2, · · · , wn] ≤ Bcn then
27: Bcn = [w1, w2, · · · , wn]
28: end if
29: return to the upper procedure

1 As mentioned in [22], the complexity of the search process for the n-round best trails is domi-
nated by the number of candidates in Procedure Round-1 and Procedure Round-2. We apply
the speeding-up method in Sect.3.1 to prune unsatisfiable candidates as soon as we can;

2 When we get a new candidate of ∆Yi, we need to calculate E ◦ P (∆Yi) or P (∆Yi). We apply
the speeding-up methods in Sect.3.2 and Sect.3.3 to reduce the cost of executing linear layer
operations.

3.1 Reconstructing DDT and LAT According to Weight

In Sect.3.1, We take Alg.1 and DES as an example to illustrate how to construct new
look-up tables. Alg.1 is a branch-and-bound algorithm, pruning unsatisfiable candidates by the
inequalities set in each round. In [20], Matsui suggested that we should try ∆Xj

i and ∆Y j
i in

order of the magnitude of (∆Xj
i ,∆Y j

i ). In [5], Bao et al. also searched ∆Xj
i and ∆Y j

i in order of
their weights. Inspired by their ideas, we reconstruct the difference distribution table in Procedure
Round-1, Round-2 and Round-i (3 ≤ i ≤ n − 1) respectively, ranking the input-output difference
pairs in order of their weights. With the help of the new look-up tables, we can efficiently search
the input-output difference pairs with large weights and throw away input-output difference pairs
with small weights as soon as possible. By doing this, we can significantly accelerate the search
process.

There are 9 different weights of the difference propagations for each S-box in DES: 5.00, 4.00,
3.42, 3.00, 2.68, 2.42, 2.20, 2.00, 0.00. We use a table to denote this weight set. The elements are
sorted in a descending order:

WeightTable[9]= {5.00, 4.00, 3.42, 3.00, 2.68, 2.42, 2.20, 2.00, 0.00}

In Procedure Round-1 Since the output difference has no effect on the subsequent search pro-
cess, we only care about the input difference and their weights. We construct one table to classify
the input differences of each S-box according to the corresponding weights:

DDTwX[SboxN][WeightN][InN]
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Algorithm 2 Matsui’s Algorithm Targets SPN Cipher

Input: n (≥ 3); B1, B2, · · · , Bn−1; Bcn
Output: Bn = Bcn; the best differential trails of round n

1: Procedure Round-1:
2: for each candidate of ∆Y1 do
3: w1 ← min∆X1(∆X1,∆Y1)
4: if [w1, Bn−1] ≤ Bcn then
5: call Round-2
6: end if
7: end for

8: Procedure Round-i, 2 ≤ i ≤ n− 1:
9: ∆Xi ← P (∆Yi−1)

10: for each candidate of ∆Yi do
11: wi ← (∆Xi,∆Yi)

12: if [w1, · · · , wi, Bn−i] ≤ Bcn then
13: call Round-(i+1)
14: end if
15: end for

16: Procedure Round-n:
17: ∆Xn ← P (∆Yn−1)
18: wn ← min∆Yn(∆Xn∆Yn)
19: if [w1, w2, · · · , wn] ≤ Bcn then
20: Bcn = [w1, w2, · · · , wn]
21: end if
22: return to the upper procedure

– SboxN represents the index of the S-box. It ranges from 1 to 8. WeightN represents the index
of the weights. It ranges from 0 to 8. InN represents the index of the input difference. It ranges
from 0 to 63.

– DDTwX[t][j][r] represents the r-th input difference of the t-th S-box with a weightWeightTable[j].

In Procedure Round-2 We care about the input-output difference pairs and their weights. We
construct two tables:

DDTXorder[SboxN][WeightN][InN]
DDTYorder[SboxN][WeightN][OutN]

– InN represents the index of the input difference. OutN represents the index of the output
difference. The range of these two values depends on the choice of the S-box. For DES, InN
and OutN range from 0 to 267 respectively.

– DDTXorder[t][j][r] represents the r-th input difference of the t-th S-box with a weightWeightTable[j].
Its corresponding output difference is DDTYorder[t][j][r].

In Procedure Round-i, 3 ≤ i ≤ n − 1 Since the input difference is fixed, we care about the
corresponding output differences and their weights. We construct two tables:

DDTY[SboxN][InV][OutN]
DDTYw[SboxN][InV][OutN]

– InV represents the value of the input difference. It ranges from 0 to 63. OutN represents the
index of the output difference. It ranges from 0 to 15.

– DDTY[t][j][r] represents the r-th output difference of the t-th S-box whose input difference is
j. Its corresponding weight is DDTYw[t][j][r].

– We rank the output differences of each input difference in order of their weights: if r1 < r2 ,
then DDTYw[t][j][r1] ≤ DDTYw[t][j][r2].

The accelerated Procedure Round-i, 1 ≤ i ≤ n− 1 using new look-up tables is shown in Alg.3.
We omit the constraints between the the input differences of adjacent S-boxes in Alg.3.

In Procedure Round-1. For the t-th S-box, we traverse the weights of its difference propagations
from WeightTable[8] to WeightTable[0]. If WeightTable[j] does not satisfy the inequality:

[w1, Bn−1] ≤ Bcn (7)
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Algorithm 3 Our Search Approach for DES and DESL

Input: n (≥ 4); B1, B2, · · · , Bn−1; Bcn; WeightTable[9]
Output: Bn = Bcn; the best differential trails of n-round

1: Generate Tables :
2: DDTwX[SboxN][WeightN][InN]
3: DDTXoder[SboxN][WeightN][InN]
4: DDTYoder[SboxN][WeightN][OutN]
5: DDTY[SboxN][InV][OutN]
6: DDTYw[SboxN][InV][OutN]
7: EPtable[SboxN][OutV][LocN]

8: Procedure Round-1:
9: w1 ← 0,∆X1 ← 0, t← 1

10: Function Sbox-1(t, w1):
11: for j = 8 to 0 do
12: α← w1 +WeightTable[j]
13: if [α,Bn−1] ≥ Bcn then
14: break
15: else
16: for each DDTwX[t][j][r] do
17: ∆Xt

1 ← DDTwX[t][j][r]
18: if t < 8 then
19: call Sbox-1(t+ 1, α)
20: else
21: w1 ← α
22: call Round-2
23: end if
24: end for
25: end if
26: end for

27: Procedure Round-2:
28: w2 ← 0,∆X2 ← 0,∆Y2 ← 0, t← 1
29: Function Sbox-2(t, w2):
30: for j = 8 to 0 do
31: α← w2 +WeightTable[j]
32: if [w1, α,Bn−2] ≥ Bcn then
33: break
34: else
35: for each DDTXoder[t][j][r] do
36: ∆Xt

2 ← DDTXoder[t][j][r]
37: ∆Y t

2 ← DDTYoder[t][j][r]
38: if t < 8 then

39: call Sbox-2(t+ 1, α)
40: else
41: w2 ← α
42: call Round-3
43: end if
44: end for
45: end if
46: end for

47: Procedure Round-i, 3 ≤ i ≤ n− 1:
48: ∆Xi ← ∆Xi−2 ⊕ E ◦ P (∆Yi−1), t← 1
49: wi ← DDTYw[1][∆X1

i ][0] + · · · +
DDTYw[8][∆X8

i ][0]
50: ∆Y 1

i ← DDTY[1][∆X1
i ][0]

51: · · ·
52: ∆Y 8

i ← DDTY[8][∆X8
i ][0]

53: Function Sbox(i, t, wi):
54: wi ← wi −DDTYw[t][∆Xt

i ][0]
55: for each DDTYw[t][∆Xt

i ][r] do
56: αi ← wi +DDTYw[t][∆Xt

i ][r]
57: if [w1, w2, · · · , wi−1, αi, Bn−i] ≥ Bcn then
58: break
59: else
60: ∆Y t

i ← DDTY[t][∆Xt
i ][r]

61: if t < 8 then
62: call Sbox(i, t+ 1, αi)
63: else
64: wi ← αi

65: call Round-(i+ 1)
66: end if
67: end if
68: end for

69: Procedure Round-n:
70: ∆Xn ← ∆Xn−2 ⊕ E ◦ P (∆Yn−1)
71: wn ← min∆Yn(∆Xn,∆Yn)
72: if [w1, w2, · · · , wn] ≤ Bcn then
73: Bcn = [w1, w2, · · · , wn]
74: end if
75: return to the upper procedure
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then we can prune the input differences with weights range from WeightTable[j] to WeightTable[0].
In Procedure Round-2. For the t-th S-box, we traverse its weights from WeightTable[8] to

WeightTable[0]. For each satisfiable WeightTable[j], we traverse the corresponding input differences
and output differences.

In Procedure Round-i, 3 ≤ i ≤ n−1. For the t-th S-box, its input difference is ∆Xt
i . We traverse

its weights in the order: DDTYw[t][∆Xt
i ][0], DDTYw[t][∆Xt

i ][1], · · · and the corresponding output
differences. If DDTYw[t][∆Xt

i ][j] does not satisfy the inequality:

[w1, w2, · · · , wi, Bn−i] ≤ Bcn (8)

then we don’t need to traverse DDTYw[t][∆Xt
i ][m] (m ≥ j).

3.2 Executing Linear Layer Operations in Minimal Cost

In Sect.3.2,We take Alg.3 and DES as an example. The implementation of P and E operations
is one of the most costly parts of the search process and it is efficient to execute linear layer
operations by looking up tables. In [5], Bao et al. proposed a speeding-up method named Trailing
in Minimal Changes Order Strategy. They constructed one table to implement nonlinear layer and
linear layer operations at once.

Inspired by Bao’s method, we construct one table to execute the P permutation and the E
expansion at once. According to Alg.3, we find that when we traverse the output differences of the
t-th S-box of the i-th round, the only difference between the new output difference value ∆Yinew

and the old output difference value ∆Yiold is ∆Y t
i . So we build the linear-layer table according to

each single output difference of each S-box. Further more, in order to use the SSE instructions, we
split the 32-bit output of E ◦ P (·) into eight 4-bit values.

The new table is:

EPtable[SboxN][OutV][LocN]

– SboxN represents the index of the S-box. It ranges from 1 to 8. OutV represents the value of
the output difference. It ranges from 0 to 15. LocN represents the index of the output after
executing P and E operations. It ranges from 0 to 7.

– EPtable[t][j][r] represents that: for the t-th S-box whose output difference is j, after executing
the P permutation and the E expansion, the r-th value of the output is EPtable[t][j][r].

With the help of EPtable[SboxN][OutV][LocN] table and SSE instructions, the cost of executing
linear layer operations can be reduced in two sides:

1 The cost of executing P and E operations can be reduced from 7 XOR operations to 2 XOR
operations

– In general, we look up the EPtable[SboxN][OutV][LocN] table to determine the value of
E ◦P (∆Yi) when we generate a new value of ∆Yi. We use the SSE instructions to execute
the look-up-table operations. To generate the value of E ◦ P (∆Yi), we need to perform 7
XOR operations of 128-bit variables.

– When we traverse the output difference of the t-th S-box of the i-th round, the only d-
ifference between the new output difference value ∆Yinew and the old output difference
value ∆Yiold is ∆Y t

i . So we can calculate E ◦ P (∆Yinew) using E ◦ P (∆Yiold) and EPt-
able[SboxN][OutV][LocN]. Then we only need to perform 2 XOR operations of 128-bit
variables to generate the value of E ◦ P (∆Yinew).

For example When we traverse the fourth S-box of round-i, if the output difference changes
from

∆Yiold := 0x1, 0x3, 0xe, 0x5, 0xf, 0x2, 0x1, 0x3 (9)

to
∆Yinew := 0x1, 0x3, 0xe, 0x7, 0xf, 0x2, 0x1, 0x3 (10)
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then we can calculate E ◦ P (∆Yinew) as follows:

E ◦ P (∆Yinew) = E ◦ P (∆Yiold)⊕ EPtable[4][0x5]∗ ⊕ EPtable[4][0x7]∗ (11)

EPtable[i][j]∗ := ∗(( m128i∗)EPtable[i][j] (12)

2 The cost of calculating ∆Xt
i (1 ≤ t ≤ 8) from ∆Xi (3 ≤ i ≤ n) can be reduced to only one

memory copy operation.
In Procedure Round-i (3 ≤ i ≤ n), once we get ∆Xi ← ∆Xi−2 ⊕ E ◦ P (∆Yi−1), we need to
determine the value of each ∆Xt

i (1 ≤ t ≤ 8).
– In the original look-up-table method, when we get the value of ∆Xi, we need to perform

7 bitwise shifting operations and 8 bitwise AND operations to get each ∆Xt
i (1 ≤ t ≤ 8).

– In our method, we define ∆Xi as a 128-bit variable and define ∆X1
i ,∆X2

i , · · · ,∆X8
i as

an array. The length of each ∆Xt
i (1 ≤ t ≤ 8) in the array is 16-bit. Then using the SSE

instructions, we can get the values of eight ∆Xt
i (1 ≤ t ≤ 8) by only 1 memory copy

operation.

The speeding-up methods presented in Sect.3.1 and Sect.3.2 are also applied in the search
process of GIFT. The improved search approach is shown in Alg.45.

Compared with Alg.3, there are two new tables in Alg.4:

DDTwY[SboxN][WeightN][OutN]
Ptable[SboxN][OutV][LocN]

– DDTwY[t][j][r] represents the r-th output difference of the t-th S-box with a weightWeightTable[j].
– We split the output of P (·) into sixteen 8-bit values. LocN represents the index of the output

after executing the P permutation. It ranges from 0 to 15.
– Ptable[t][j][r] represents that: for the t-th S-box whose output difference is j, after executing

the P permutation, the r-th value of the output is Ptable[t][j][r].

3.3 Merging Two 4-bit S-boxes into One 8-bit S-box

In Sect.3.3, We take GIFT-128 as an example. There are 32 4 × 4 S-boxes in GIFT-128. To
minimize the cost of linear layer operations, we merge the two consecutive 4×4 S-boxes into
one 8× 8 S-box. The original 32 S-boxes of GIFT-128 is as follows:

S1, S2, S3, · · · , S31, S32 (13)

We mark the original version of GIFT-128 as the old-version GIFT-128. There are 16 8 × 8
S-boxes in the new-version GIFT-128:

SS1, SS2, SS3, · · · , SS15, SS16 (14)

The relationship between S1, S2, · · · , S32 and SS1, SS2, · · · , SS16 is that, if we have:

Y 2·i−1 = S2·i−1[X
2·i−1] (15)

Y 2·i = S2·i[X
2·i], (16)

then we have:
Y 2·i−1||Y 2·i = SSi[X

2·i−1||X2·i] (17)

in which 1 ≤ i ≤ 16.
Using this speeding-up method, we can efficiently speed up the search process of GIFT-128.

There are two advantages of applying this speeding-up method:

1 There are 16 8-bit S-boxes in the new-version GIFT-128. It is very convenient to store 16 8-bit
values with a 128-bit variable, so we can easily use the SSE instructions just as in Alg.3;

2 We combine the difference traversal of two 4-bit S-boxes into one 8-bit S-box. When we generate
a new output difference of SSr, the cost of executing the P permutation can be reduced.

5 ns represents the number of the S-boxes. For GIFT-128, ns = 16; for GIFT-64, ns = 8.
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Algorithm 4 Our Search Approach for GIFT

Input: n (≥ 3); B1, B2, · · · , Bn−1; Bcn; WeightTable[10]; ns : the number of the S-boxes
Output: Bn = Bcn; the best differential trails of n-round

1: Generate Tables :
2: DDTwY[SboxN][WeightN][OutN]
3: DDTY[SboxN][InV][OutN]
4: DDTYw[SboxN][InV][OutN]
5: Ptable[SboxN][OutV][LocN]

6: Procedure Round-1:
7: w1 ← 0,∆Y1 ← 0, t← 1
8: Function Sbox-1(t, w1):
9: for j = 9 to 0 do

10: α← w1 +WeightTable[j]
11: if [α,Bn−1] ≥ Bcn then
12: break
13: else
14: for each DDTwY[t][j][r] do
15: ∆Y t

1 ← DDTwY[t][j][r]
16: if t < ns then
17: call Sbox-1(t+ 1, α)
18: else
19: w1 ← α
20: call Round-2
21: end if
22: end for
23: end if
24: end for

25: Procedure Round-i, 2 ≤ i ≤ n− 1:
26: ∆Xi ← P (∆Yi−1), t← 1
27: wi ← DDTYw[1][∆X1

i ][0] + · · ·

28: +DDTYw[ns][∆Xns
i ][0]

29: ∆Y 1
i ← DDTY[1][∆X1

i ][0]
30: · · ·
31: ∆Y ns

i ← DDTY[ns][∆Xns
i ][0]

32: Function Sbox(i, t, wi):
33: wi ← wi −DDTYw[t][∆Xt

i ][0]
34: for each DDTYw[t][∆Xt

i ][r] do
35: αi ← wi +DDTYw[t][∆Xt

i ][r]
36: if [w1, · · · , wi−1, αi, Bn−i] ≥ Bcn then
37: break
38: else
39: ∆Y t

i ← DDTY[t][∆Xt
i ][r]

40: if t < ns then
41: call Sbox(i, t+ 1, αi)
42: else
43: wi ← αi

44: call Round-(i+ 1)
45: end if
46: end if
47: end for

48: Procedure Round-n:
49: ∆Xn ← P (∆Yn−1)
50: wn ← min∆Yn(∆Xn,∆Yn)
51: if [w1, w2, · · · , wn] ≤ Bcn then
52: Bcn = [w1, w2, · · · , wn]
53: end if
54: return to the upper procedure

For example If the output difference of SSr changes from 0x12 to 0x35, then we only need 2
XOR operations (0x12 → 0x35) of 128-bit variables to generate P (∆Y ). While in the search
of the old-version GIFT-128, we need 4 XOR operations (0x1→ 0x3, 0x2→ 0x5 respectively)
of 128-bit variables.

The idea of merging S-boxes is a time-memory trade-off method. In [13], Daemen
et al. introduced the structure of the (AES) super box. They combined four 8-bit S-boxes into
one 32-bit S-box. In Sect.3.3, we combine two 4-bit S-boxes into one 8-bit S-box. Both of the
two methods are aimed at reducing the cost of linear layer operations over the search
process.

4 Experimental Results on Best Differential Trails

4.1 DES and DESL

We have searched the best differential trails and the weights of the best differential trails of DES
and DESL with Alg.3. Table 3 summarizes our experimental results. Table 14 in Appendix A shows
one of the best 12-round differential trails of DESL.
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Table 3. The weights of the best differential trails of DES and DESL

DES DESL
n Bcn Bn t0 (s) t1 (s) t2 (s) Bcn Bn t1 t2
4 10 9.61 4.83 0.23 0.04 10 9.02 0.14s 0.06s
5 14 13.22 57.34 2.91 0.88 15 14.05 12.44s 4.80s
6 20 19.96 303.26 20.68 2.63 23 22.19 0.67h 569.55s
7 24 23.61 338.31 20.61 1.96 30 29.25 11.00h 2.96h
8 31 30.48 436.82 45.00 6.31 38 37.59 15.35h 6.66h
9 32 31.48 3.66 0.16 0.03 42 41.76 812.45s 293.78s
10 39 38.35 7.80 0.90 0.30 50 49.79 2.99h 1.55h
11 40 39.35 3.72 0.16 0.03 53 52.71 326.29s 96.70s
12 47 46.22 7.61 0.90 0.16 59 58.10 148.37s 72.81s
13 48 47.22 3.75 0.15 0.04 61 60.78 0.73s 0.30s
14 55 54.10 7.61 0.90 0.16 69 68.78 40.49s 11.15s
15 56 55.10 3.81 0.14 0.04
16 62 61.97 7.55 0.88 0.12
17 63 62.97 3.83 0.16 0.03
18 70 69.84 7.65 0.91 0.15
1 n : the round number. Bn : the weight of the best differential trails of
n-round. Bcn : the initial value of Bn.

2 t0 : the search time of the original Matsui’s method (Alg.1).
3 t1 : the search time of applying the speeding-up method in Sect.3.1.
4 t2 : the search time of applying the speeding-up methods in Sect.3.1
and Sect.3.2.

4.2 GIFT

We have searched the best differential trails and the weights of the best differential trails of GIFT-
64 and GIFT-128 with Alg.4. Table 4 summarizes our experimental results. Table 15 in Appendix
A shows one of the best 19-round differential trails of GIFT-128. Table 16 in Appendix A shows
one of the best 14-round differential trails of GIFT-64.

5 Experimental Results on Best Linear Trails

5.1 DES and DESL

We have searched the best linear trails and the weights of the best linear trails of DES and DESL
with the variant of Alg.36. Table 5 summarizes our experimental results. Table 14 in Appendix A
shows one of the best 16-round linear trails of DESL.

5.2 GIFT

We have searched the best linear trails and the weights of the best linear trails of GIFT-64 and
GIFT-128 with the variant of Alg.4. Table 6 summarizes our experimental results. Table 15 in
Appendix A shows one of the best 10-round linear trails of GIFT-128. Table 16 in Appendix A
shows one of the best 13-round linear trails of GIFT-64.

6 We refer readers to [20] to get the transformation method.
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Table 4. the weights of the best differential trails of GIFT

GIFT-64 GIFT-128
n Bcn Bn t2 (s) Bcn Bn t1 t2
3 7.0 7.000 0.01 7.0 7.000 0.02s 0.00s
4 11.5 11.415 0.00 11.5 11.415 0.05s 0.02s
5 17.0 17.000 0.02 17.0 17.000 0.60s 0.21s
6 22.5 22.415 0.09 22.5 22.415 1.65s 0.62s
7 28.5 28.415 0.64 28.5 28.415 9.93s 3.74s
8 39.0 38.000 66.01 39.0 39.000 7.58h 2.23h
9 43.0 42.000 26.75 45.5 45.415 1.88h 0.66h
10 49.0 48.000 71.85 49.5 49.415 0.39h 0.13h
11 53.0 52.000 23.22 54.5 54.415 0.50h 0.17h
12 59.0 58.000 31.62 60.5 60.415 1.11h 0.38h
13 63.0 62.000 5.15 68.0 67.830 6.67h 2.24h
14 69.0 68.000 6.99 79.0 79.000 - 257.13h
15 86.0 85.415 435.72h 144.80h
16 90.5 90.415 24.42h 8.39h
17 97.0 96.415 66.74h 21.93h
18 103.5 103.415 - 102.48h
19 111.0 110.830 - 363.90h
20 121.5 ≤121.415 - -
21 126.5 ≤126.415 - -
1 t1 : the search time of applying the speeding-up methods in Sec-
t.3.1 and Sect.3.2.

2 t2 : the search time of applying the speeding-up methods in Sec-
t.3.1, Sect.3.2 and Sect.3.2.

3 - : the values that we have not got.

6 Experimental Results on Estimating the Differential Clustering
Effect of DES and DESL

Let PD denote the plaintext difference and CD denote the ciphertext difference. Let Bun denote
the upper bound of Bn. In all the experiments of Sect.6, we try to find all the differential trails
with weights Bn satisfying Bn ≤ Bun.

6.1 DES

In [7], Biham et al. proposed a key recovery attack on 16-round DES using a 13-round differential
trail with weight 47.22. In Sect.6.1, we estimate the clustering effect of differential trails for 13-
round DES based on Alg.3. We focus on PD, CD and the weights of the differential trails.

Experiment 1 The 13-round differential trail used in [7] is as follows7:

PD = 19600000 00000000, CD = 19600000 00000000 (18)

First of all, we try to find different differential trails satisfying equation (12). Table 7 summarizes
the experimental results.

We set Bu13 = 65 , but there is still only one differential trail satisfying equation (18). Therefore,
the clustering effect of differential trail satisfying equation (18) is weak.

7 All the plaintext differences and ciphertext differences given below are in hexadecimal form.
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Table 5. The weights of the best linear trails of DES and DESL

DES DESL
n Bcn Bn t (s) Bcn Bn t
4 4 3.03 0.003 5 4.02 0.01s
5 5 4.71 0.010 6 5.22 0.00s
6 8 7.03 0.043 10 9.05 6.37s
7 9 8.03 0.020 13 12.57 0.39h
8 10 9.71 0.004 16 15.53 6.66h
9 13 12.07 0.083 17 16.49 3.22s
10 14 13.39 0.009 20 19.32 10.30s
11 15 14.07 0.003 22 21.32 10.92s
12 16 15.75 0.002 25 24.15 37.74s
13 18 17.42 0.019 25 24.74 0.01s
14 20 19.75 0.030 28 27.57 0.29s
15 21 20.75 0.006 30 29.57 0.54s
16 23 22.42 0.008 33 32.98 72.55s
17 25 24.78 0.045
18 27 26.10 0.011
19 27 26.78 0.001
20 29 28.46 0.003
21 31 30.14 0.037
22 33 32.46 0.038
1 n : the round number. Bn : the weight of the best
linear trails of n-round. Bcn : the initial value of Bn.

2 t : the search time of applying the speeding-up meth-
ods in Sect.3.1 and Sect.3.2.

Table 6. The weights of the best linear trails of GIFT

GIFT-64 GIFT-128
n Bcn Bn t1 Bcn Bn t1
3 3.00 3.00 0.00s 3.00 3.00 0.00s
4 5.00 5.00 0.00s 5.00 5.00 0.01s
5 7.00 7.00 0.00s 7.00 7.00 0.05s
6 10.00 10.00 0.01s 10.00 10.00 1.77s
7 13.00 13.00 0.11s 13.00 13.00 19.38s
8 16.00 16.00 1.48s 17.00 17.00 0.50h
9 20.00 20.00 41.47s 22.00 22.00 44.09h
10 25.00 25.00 0.85h 26.00 26.00 20.9d
11 29.00 29.00 8.83h
12 31.00 31.00 0.73h
13 34.00 34.00 3.15h
14 37.00 37.00 5.12h
15 40.00 40.00 4.59h
1 t1 : the search time of applying the speeding-up
methods in Sect.3.1, Sect.3.2 and Sect.3.2.

Table 7. Results of Experiment 1

parameters results
Bu13 PD CD number of trails search time
65 19600000 00000000 19600000 00000000 1 2.81h
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Experiment 2 We try to find other 13-round differential trails with small weight and strong
clustering effect, and we hope to find 13-round differential hulls with weight smaller than 47.22.

We increase the value of Bu13 and count the number of differential trails with weight satisfying
B13 ≤ Bu13. Table 8 summarizes the experimental results.

Table 8. Results of Experiment 2

parameters results

Bu13 number of trails
number of trails with the same

plaintext and ciphertext difference
search time

51 55 0 2.17m
52 203 0 11.69m
53 531 0 81.17m

As we can see from Table 8, setting Bu13 = 53, we get 531 differential trails, but there is still
no two trails sharing the same PD and CD.

Experiment 3 In Experiment 2, setting Bu13 = 51, we get 55 differential trails. Among the 55
trails, there are four trails with weights smaller than 50. The PD and CD of these four trails are
shown in Table 9.

Table 9. Four differential trails with the smallest weights of 13-round DES

number PD CD weight
1 19600000 00000000 19600000 00000000 47.22
2 1b600000 00000000 1b600000 00000000 47.22
3 00196000 00000000 00196000 00000000 48.00
4 000003d4 00000000 000003d4 00000000 48.56

Table 10. Results of Experiment 3

parameters results
Bu13 PD CD number of trails search time
56 1b600000 00000000 1b600000 00000000 1 8.53s
56 00196000 00000000 00196000 00000000 1 10.03s
56 000003d4 00000000 000003d4 00000000 1 7.28s

Similar to Experiment 1, we explore the clustering effect of the differential trail No.2 to No.4.
Table 10 summarizes the experimental results. Setting Bu13 = 56 , we still cannot find new
differential trails sharing the same PD and CD with differential trail No.2, No.3 or No.4 in Table
9.

The experimental results of Experiment 1 to 3 show that the clustering effect of differential
trails for 13-round DES is weak.

6.2 DESL

As we can see from Table 3, the weight of 12-round best differential trails of DESL is 58.10, which
is larger than the key size 56. In order to construct 16-round key recovery attack on DESL, we
estimate the differential clustering effect of 13-round DESL.
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Experiment 4 We try to find 13-round differential trails with small propagation weight and
strong clustering effect. Hopefully, we want to find 13-round differential hulls with weight smaller
than 56.

We increase the value of Bu13 and count the number of differential trails with weight satisfying
B13 ≤ Bu13. Table 11 summarizes the experimental results.

Table 11. Results of Experiment 4

parameters results

Bu13 number of trails
number of trails with the same

plaintext and ciphertext difference
search time

62 52 0 16.78s
63 214 0 73.40s
65 1137 0 1277.17s

Through Experiment 4, we cannot find two trails having the same PD and CD. We get two
trails with weight 60.78 and 16 trails with weight 61.37. 61.37 is the second smallest weight of 13-
round DESL differential trails. The PD and CD of these trails are shown in Table 12. Considering
the symmetry of encryption and decryption process of DESL, there are actually one trail with
weight 60.78 and eight trails with weight 61.37.

Table 12. Nine differential trails with the smallest weights of 13-round DESL

B13 number PD CD
60.78 1 027c0400 00000040 027a0400 00000040

61.37 2 027a0401 00000040 027c0400 00000040
61.37 3 027c0400 00000040 026a0400 00000040
61.37 4 027c0400 00000040 007a0400 00000040
61.37 5 027c0400 00000040 007a0401 00000040
61.37 6 027a0400 00000040 026c0400 00000040
61.37 7 027a0400 00000040 007c0401 00000040
61.37 8 027a0400 00000040 027c0401 00000040
61.37 9 007c0400 00000040 027a0400 00000040

Experiment 5 We explore the clustering effect of differential trails in Table 12. Table 13 sum-
marizes the experimental results.

We set Bu13 = 70, and set the value of PD and CD same as the No.1 trail in Table 12:

PD = 027c0400 00000040, CD = 027a0400 00000040 (19)

We find three trails satisfying equation (19). The weight of these three trails are: 65.17, 67.56 and
60.78.

As we can see from Table 13, we get one differential hull with weight 60.70 and eight differential
hulls with weight 61.29. These differential hulls are useless for 16-round key recovery attack of
DESL.

The experimental results of Experiment 4 and 5 show that the clustering effect of differ-
ential trails for 13-round DESL is weak.

7 Conclusion and Future Work

In this paper, we improve Matsui’s search algorithm of searching the best differential and linear
trails by applying three new speeding-up methods. The key idea of our speeding-up methods is to
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Table 13. Results of Experiment 5

parameters results

Bu13
number in
Table 12

number of trails sum of weights search time

70 1 3 60.70 1141.01s

70 2 3 61.29 333.46s
70 3 3 61.29 1142.66s
70 4 3 61.29 1144.72s
70 5 3 61.29 1139.02s
70 6 3 61.29 601.44s
70 7 3 61.29 594.18s
70 8 3 61.29 602.26s
70 9 3 61.29 624.57s
1 Set the value of PD and CD according to Table 12.

prune unsatisfiable candidates as soon as we can and to decrease the cost of linear layer operations.
With the help of the improved algorithm, we find the best differential and linear trails of Feistel
block cipher DESL and SPN block cipher GIFT-128 and GIFT-64. We also estimate that the
clustering effect of differential trails for 13-round DES and DESL are both weak.

In the end, we would like to propose some problems deserving further investigation.

– As shown in Table 4, our improved search algorithm is not efficient enough to find the best
differential trails for GIFT-128 when n ≥ 19. It is because that when the value of Bcn −Bn−1

is large, there would be too many candidates. We hope to find some ways to prune unsatisfiable
candidates more efficiently.

– Since the speeding-up methods proposed in this paper can help to prune unsatisfiable candi-
dates quickly and decrease the cost of linear layer operations, they can also be used to speed
up the search of related-key differential distinguishers.
In [24,25,10,9,18], some related-key differential distinguishers of GIFT, PRESENT, DESL and
LBlock have been found utilizing MILP-based or SMT-based methods. In the following work,
we are going to adjust Alg.3 and Alg.4 to adapt for the related-key scenario. We will research
whether we can find better related-key differential distinguishers for GIFT, PRESENT, DESL,
LBlock and other lightweight block ciphers.
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A Examples of the Best Trails

Table 14. A best 12-round differential trail with propagation probability 2−58.10 and a best 16-round
linear trail with linear correlation 2−32.98 of DESL

12-round differential trail 16-round linear trail
r ∆Xr ∆Yr wr r ΓXr ΓYr wr

1 000000000200 00000070 2.42 1 440000000011 f000000f 2.83
2 000358000000 00080000 4.68 2 000000004000 00000c00 2.00
3 000000000000 00000000 0.00 3 880000000012 d000000f 3.42
4 000358000000 00080000 4.68 4 000000000000 00000000 0.00
5 000000000200 00000060 3.00 5 880000000012 d000000f 3.42
6 0003f8008000 00a40500 9.61 6 000000004000 00000c00 2.00
7 0000001a2a58 00004002 11.83 7 480000000011 f000000f 2.83
8 0003f4008000 00a40500 9.42 8 000000000000 00000000 0.00
9 000000000200 00000060 3.00 9 480000000011 f000000f 2.83
10 000354000000 00080000 4.87 10 000000004000 00000c00 2.00
11 000000000000 00000000 0.00 11 880000000012 d000000f 3.42
12 000354000000 00480000 4.61 12 000000000000 00000000 0.00

13 880000000012 d000000f 3.42
14 000000004000 00000c00 2.00
15 480000000011 f000000f 2.83
16 000000000000 00000000 0.00
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Table 15. A best 19-round differential trail with propagation probability 2−110.830 and a best 10-round
linear trail with linear correlation 2−26.00 of GIFT-128

19-round differential trail 10-round linear trail
r ∆Xr wr r ΓXr wr

1 0a000000600c00000000000000000000 6.000 1 00000000000001600000000000000160 4.00
2 00000000106000000000000000000000 5.000 2 0000000000000000000c000c00000000 2.00
3 00000000000000000000000000a00000 2.000 3 00000000000000000000000000001100 3.00
4 00000010000000000000000000000000 3.000 4 0000000000000000000000000000000c 1.00
5 00000000080000000000000000000000 2.000 5 00000000000000000000000200000000 1.00
6 00140000000a00000000000000000000 5.000 6 00000000000000000000020000000100 3.00
7 00000000000000004040000020200000 8.000 7 00000000000000000000080800000000 2.00
8 00005050000000000000505000000000 12.000 8 00000000000005000000000000000500 4.00
9 0000000000000000000000000a000a00 4.000 9 00000000000000000000000000040004 2.00
10 00000000000000110000000000000000 6.000 10 00000000000000440000002200000000 4.00
11 00080000000c00000000000000000000 4.000
12 00000000000000002020000010000000 8.000
13 000050400000a0200000000000000000 9.000
14 05010000000000000505000000000000 12.000
15 a000a000000000000000000000000000 4.000
16 00000000000000001100000000000000 6.000
17 0000600000000000000000000000c000 4.000
18 00000000020000020000000000000000 4.000
19 00200000000400000002000000400000 6.830

Table 16. A best 14-round differential trail with propagation probability 2−68.00 and a best 13-round
linear trail with linear correlation 2−34.00 of GIFT-64

14-round differential trail 13-round linear trail
r ∆Xr wr r ΓXr wr

1 0000600000006000 4.00 1 0c0c000000000000 2.00
2 0000500000005000 6.00 2 0000100000001000 2.00
3 0000020200000000 4.00 3 0000000000000808 2.00
4 0000050000000500 6.00 4 0000000500000005 2.00
5 0202000000000000 4.00 5 0808000002020000 4.00
6 0000500000005000 6.00 6 0000505000005050 4.00
7 0000020200000000 4.00 7 00000a0a00000a0a 6.00
8 0000050000000500 6.00 8 000000000a0a0000 3.00
9 0202000000000000 4.00 9 0000000000a00000 1.00
10 0000500000005000 6.00 10 0000000000000020 2.00
11 0000020200000000 4.00 11 0000000800000000 1.00
12 0000050000000500 6.00 12 0000040000000100 2.00
13 0202000000000000 4.00 13 0200000000080400 3.00
14 0000500000005000 4.00
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