
Improving Password Guessing via
Representation Learning

Dario Pasquini1,2,3, Ankit Gangwal1,4, Giuseppe Ateniese1, Massimo Bernaschi3, and Mauro Conti4

1Stevens Institute of Technology, USA
2Sapienza University of Rome, Italy

3Institute of Applied Computing, CNR, Italy
4University of Padua, Italy

{dpasquin, agangwal, gatenies}@stevens.edu, massimo.bernaschi@cnr.it, conti@math.unipd.it

Abstract—Learning useful representations from unstructured
data is one of the core challenges, as well as a driving force,
of modern data-driven approaches. Deep learning has demon-
strated the broad advantages of learning and harnessing such
representations.

In this paper, we introduce a deep generative model represen-
tation learning approach for password guessing. We show that an
abstract password representation naturally offers compelling and
versatile properties that open new directions in the extensively
studied, and yet presently active, password guessing field. These
properties can establish novel password generation techniques
that are neither feasible nor practical with the existing probabilis-
tic and non-probabilistic approaches. Based on these properties,
we introduce: (1) A general framework for conditional password
guessing that can generate passwords with arbitrary biases; and
(2) an Expectation Maximization-inspired framework that can
dynamically adapt the estimated password distribution to match
the distribution of the attacked password set.

I. INTRODUCTION

Text-based passwords remain the most common form of
authentication, as they are both easy to implement and familiar
to users. However, text-based passwords are vulnerable to
guessing attacks. These attacks have been extensively studied,
and their analysis is still an active area of research. Modern
password guessing attacks are founded on the observation that
human-chosen passwords are not uniformly distributed in the
password space (i.e., all possible strings). This is due to the
natural preference for choosing (easily-)memorable passwords
that cover only a small fraction of the exponentially large pass-
word space. Consequently, real-world password distributions
are typically composed of several dense zones that can be
feasibly estimated by an adversary to perform password-space
reduction attacks [58]. Along that line, several probabilistic
approaches have been proposed [42], [27], [56]. These tech-
niques - under different assumptions - try to directly estimate
the probability distribution behind a set of observed passwords.
Such estimation is then used to generate suitable guesses and
perform efficient password guessing attacks.

Orthogonal to the current lines of research, we demonstrate
that an adversary can further expand the attack opportunities

1This paper appears in the proceedings of the 42nd IEEE Symposium on
Security and Privacy (Oakland) S&P 2021.

rossyou

rockype

rockyoud

rockyae

rickyou

rockywu

roskyou

rockytu

roskywu

rockyde

rockyor

nockyou

roskyak

rockyok

rockyoe

rockywe

rackyou

joskyou

rockydu

roc3you

jockyou
rockyol

jockywu

tockyou

rockyout

rockyog

rickyeu

ros7yog
rockypu

rockyau

nickyou ros7you

jos3you

nickyout

rockyom

rockyru

rockyju

rocky9u

ros3you

rickyom

nockyok

toskyou

rockyiu

jos7you

rockynu

roccyou

rockyous
rockyte

joskwou

rockdok

roskyok

ruckyou

roscyou

noskyou

roskwou

rockyak

josmyou

nockyor

ros6you

romkyou

rockwou

rockywut

rockywus

rockyje

roskyol

jockyol

roskypu

roc3yor

nockyous

rockyne

roskyoe

roskyam

ras7yok

rickypu
rockyeu

rockowu rockyse

nockywu

rosmyou

rickyde

jockyok

rocksok

joskwog

rockyig

19s7dam

joskyoe

tos7you

toe7you

ros7yoknws6you

jas7you

roc7you

rockywes

roskyog

roskyde

rockywud

toc3you

joskyok

rocksom

roc3yom

roskyae

roskyor

rockyuu

rockywed

joskyoud

roszyou

rickyoe

rickyok

nockyout

rockysu

toekyou

ram6you

roc3yok

nockyiu

ros3yok

ros3dok

rockyam

nockwou

nockyog

roskyau

rockyjud

noc3you

joskwoud

roc3dok

rackywu

roskyoud

joc3you

ros7yoe

rac3you

poc3you

rickywu

ruckyau

rockwok

rickysu

joe7you

ros7youd

ras6yok

rockcok

toe3you

roc3yog

rackyoe

ros6dok

tozmyou

tos7yok noskyok

nos7you

nockyon

rom6you

jos7wou

rocky1u

rockyoes

rickyuu

rac3yok

nockyoud

rockygu

tockwou

rocksam

ryskyoe
rosmyoe

jos7yout

gos7you

jockdok

rockyie

joekwou

rosmwou

rackyog

roskyout

roc3yol

tockyoud

rocky9m

rac3dok

raskyok

ros7yol

toelyou

tos6you

rockyped

rickyoud

roskydu

nockyoe
rickyeg

joskype

ros7dokrockyee

ras7yoeroskdok
jockwou

rocky1k

rockyar

nos6you

rackyom

rockcom

jos6you

rocmyou

roskyag

rys6yoe

roskytu

ros7yak

rackyde

toc7you

raskyou

tosmyou

ryc3dom

rockytj

ryc3you

twe6you
1943som

jas7yog

tos7yol

rackywe

roc3sok

tos7yog

rockysud

tockyoe

roskyie

jockyout

rocky9k

rockoou

rys6yae
ros6yoe

jockyom
rocksoe

rockawe

racksou

ros3yog

roskyomrocky5u

rickyau

nockyol

jockywe

roseyou

tockyor

jockyoe

rac7you

josmwou

roc7yor

rackyau

nos6yam

toekyout

rockyag

joskyog

ros5you

rzskyou

noc3yoe

rackyok

rockyre

roczyou

noe7you

roskatu

rickyout

rocksou

tos3you

rzc3yoe

rockypes

noc3yok

rommyok

jos6wou

joc7you

roc3yoe

nockywus

nos3you

rockawu

rockyou

Fig. 1. A small section of the induced latent space around the latent point
for the password “rockyou”.

by leveraging representation learning techniques [18]. Rep-
resentation learning aims at learning useful and explanatory
representations [18] from a massive collection of unstructured
data. By applying this general approach on a corpus of
leaked passwords [12], we demonstrate the advantages that an
adversary can gain by learning a suitable representation of the
observed password distribution, rather than directly estimating
it. In this paper, we show that this type of representation allows
an attacker to establish novel password guessing techniques
that further threaten password-based authentication systems.

We model the representation of passwords in the latent
space of (1) an instance of Generative Adversarial Net-
works (GANs) [30] generator and (2) an instance of Wasser-
stein Auto-Encoders (WAEs) [51]. This type of representation,
thanks to its inherent smoothness [18], enforces a semantic
organization in the high-dimensional password space. Such an
organization mainly implies that, in the latent space of the
generator, respective representations of semantically-related
passwords are closer. As a result, geometric relations in the
latent space directly translate to semantic relations in the
data space. A representative example of this phenomenon is
loosely depicted in Fig. 1, where we show some latent points



(with their respective plain-text passwords) localized in a small
section of the induced latent space.

We exploit such geometric relations to perform a peculiar
form of conditional password generation. Namely, we charac-
terize two main properties: password strong locality and pass-
word weak locality. These locality principles enforce different
forms of passwords organization that allow us to design two
novel password guessing frameworks, Conditional Password
Guessing (CPG) and Dynamic Password Guessing (DPG). We
emphasize that the state-of-the-art approaches are unable to
perform such types of advanced attacks or, if somehow altered,
become very inefficient. The major contributions of our work
are as follows:

1) We are the first to demonstrate the potential of using fully
unsupervised representation learning in the password
guessing domain.

2) We introduce a probabilistic and completely unsupervised
form of template-based passwords generation. We call
this framework CPG. CPG generates arbitrarily biased
passwords that can be used: (1) by an adversary to
increase the impact of side channels and similar password
attacks [16], [41], [54], [17]; or (2) by a legitimate user to
recover his/her password. We show the efficiency of CPG
against existing solutions via experimental evaluations.

3) We introduce the concept of DPG: DPG is the password
guessing approach that dynamically adapts the guessing
strategy based on the feedback received from the in-
teraction with the attacked passwords set. We build an
Expectation Maximization-inspired DPG implementation
based on the password locality enforced by the deep
generative model. DPG shows that an attacker can consis-
tently increase the impact of the attack by leveraging the
passwords successfully guessed during a running attack.

It is important to highlight that ongoing developments in deep
generative frameworks would naturally translate into further
improvements in our approach.

Organization: Section II gives an overview of the funda-
mental concepts related to our work. Here, we also present
our model improvements and the tools upon which our core
work is based. We introduce password locality along with
CPG in Section III and DPG in Section IV. The evaluation
of our proposed techniques is presented in their respective
sections. Section V briefly discusses relevant previous works.
Section VI concludes the paper, although supplementary in-
formation is provided in the Appendices.

II. BACKGROUND AND PRELIMINARIES

In Section II-A, we briefly introduce deep generative models
and related concepts that are important to understand our work.
In Section II-B, we present the two deep generative models
that we use as fundamental building blocks in our approach.

A. Deep Generative Models

A deep generative model is a probabilistic model trained
to perform implicit estimation of an unknown target data

distribution p∗(x), given a set of observable data (i.e., a train-
set) [30], [29]. In the process, a deep neural network is used to
parametrize the description of the underlying data distribution.

In contrast to the common prescribed probabilistic mod-
els [24], implicit probabilistic models do not explicitly esti-
mate the probability density of data; they instead approximate
the stochastic procedure that generates data [43].

In the general case, deep generative models are latent vari-
able models. That is, the network is implicitly guided to learn
a set of latent variables that unfold the complex interactions
among the factors describing data. During the training, a
prior distribution is imposed on the learned latent variables so
that we can eventually sample realizations of them after the
training. Such a prior, referred to as prior latent distribution
or ṗ(z) in this paper, is an easy-to-sample, uninformative
and factorized prior. Its factorized form indicates that the
network assigns a disjointed semantic meaning to each latent
variable, and, consequently, learns a disentangled latent data
representation for the input domain. In other words, the latent
representation is modeled to capture the posterior distribution
of the underlying explanatory factors of the observed data [48].

A generative network is a deterministic mapping function
G : Z → X between the latent space Z : Rk and the data
space X (i.e., where the observed data is defined), specifically,
a bridge between ṗ(z) and the distribution p(x) learned
by the model. More formally, under this construction, the
probabilities of data instances have the following form:

p(x) = p(x | z; θ)ṗ(z), (1)

where θ is the set of learnable parameters of the generator.
Typical choices for ṗ(z) are N (0, I) or U [0, 1] [29].

Sampling points z from the latent space according to
ṗ(z) and then mapping them in the data-space through the
generator, is equivalent to sampling data points from the data
space X according to p(x). During this operation, we can
generally also consider an arbitrary p(z) that can be different1

from ṗ(z). In the rest of this paper, we will refer to the
probability density function p(z) of the latent space with the
general term of latent distribution.

Additionally, the smoothness of the generator forces a
geometric organization in the learned latent space. Similar
to the feature embedding techniques [31], [37], indeed, the
latent representations of semantically bounded data points
show strong spatial coherence in the latent space [48].

We build our password guessing approach on top of two
interchangeable deep generative model frameworks, namely,
Generative Adversarial Networks and Autoencoders.

a) Generative Adversarial Networks (GANs): The GANs
framework learns a deep generative model by following an
adversarial training approach. The training process is guided
by a second network D (i.e., the critic/discriminator), which
gives a density estimation-by-comparison [43] loss function
to the generative network G (i.e., the generator). The adver-
sarial training bypasses the necessity of defining an explicit

1At a cost of representing a distribution different from p∗(x).



likelihood-function and allows us to have a good estimation
of very sharp distributions [29].
During the training, latent points z are directly sampled from
ṗ(z) and given as input to G. In turn, the latter maps those in
the data-space, where they are fed to the network D. The critic,
receiving both ground-truth data instances from the train-set
and generating data from G, is trained to allocate density only
to real data instances. The generator G, instead, is adversarially
trained to force D to arrange probability estimates on the
output of G(z). The optimization follows from a coordinate
minimization of the losses of the two networks.

b) Autoencoders (AE): An Autoencoder is a deep gen-
erative model that conceptually compounds of two networks:
an encoder network Enc : X → Z and a decoder network
Dec : Z → X. The resulting aggregate model is generally
trained to learn a form of identity function: x = Dec(Enc(x)),
or a more useful variation of it. Unlike GANs, no adversarial
training is exploited during the training; typically, a maximum
likelihood approach is used, instead. Once trained, the network
Dec can serve as a data generator where meaningful latent
points are fed as input to it. However, to allow for efficient
sampling from the latent space, an AE needs a form of explicit
regularization during the training; that is, the latent space must
be forced to be coherent with a chosen prior latent distribution.
Widely known AEs implementing this strategy are described
in [36], [40], [51].

In the rest of the paper, we make no distinction between
the decoder network Dec and the GAN generator; we refer to
either of them as G. In the same way, we employ E to refer
to the encoder network used to model the inverse mapping in
both models: G−1 : X → Z. For the AE, this network is
Enc, whereas, for the GAN, it is the network described in the
Appendix C.

B. Password guessing with deep generative models

Hitaj et al. in their seminal work PassGAN [35] trained a
GAN generator as an implicit estimator of password distribu-
tions. PassGAN harnesses an off-the-shelf Wasserstein GAN
with gradient penalty [33] over a residual-block-based archi-
tecture [34]. It assumes a latent space with a standard normal
distribution as its prior latent distribution and dimensionality
equal to 128. The model is trained on the RockYou [12]
password leak, and only passwords with 10 or fewer char-
acters were considered. Despite its underlying potential, the
password guessing approach presented in PassGAN suffers
from technical limitations and inherent disadvantages in its
application.2 Most limitations can be addressed as shown in
Section II-B1. However, some limitations are intrinsic to the
model itself. A prominent example is the model’s inability
to assign probabilities to the produced guesses consistently
and thus sort them based on popularity. This drawback might
make the GAN approach undesirable in a standard trawling
scenario. However, in the present work, we show the existence

2As a matter of fact, PassGAN requires up to ten times more guesses to
reach the same number of matched passwords as the probabilistic and non-
probabilistic competitors.

of novel and valuable properties intrinsic to the class of deep
generative models. Abstracting the underlying model under
the perspective of representation learning, we prove that these
properties can be used to devise unique guessing techniques
that are infeasible with any existing approaches.

Next, we introduce the necessary improvements to the
original PassGAN construction (Section II-B1). In Section
II-B2, we introduce a different and novel deep generative
model in the password guessing domain.

1) Improved GAN model: The password guessing approach
presented in PassGAN suffers from an inherent training in-
stability. Under such conditions, the generator and the critic
cannot carry out a sufficient number of training iterations.
This may lead to an unsuitable approximation of the target
data distribution and reduced accuracy in the password guess-
ing task. In the original model, the discrete representation of
the strings (i.e., passwords) in the train-set3 introduces strong
instability for two main reasons: (1) The discrete data format
is very hard to reproduce for the generator because of the
final softmax activation function, which can easily cause a
low-quality gradient; and (2) the inability of the generator
to fully mimic the discrete nature of the train-set makes it
straightforward for the critic to distinguish between real and
generated data. Hence, the critic can assign the correct “class”
easily, leaving no room for an enhancement of the generator,
especially in the final stages of the training.

To tackle the problems above, we apply a form of stochastic
smoothing over the representation of the strings contained in
the train-set. This smoothing operation consists of applying
an additive noise of small magnitude over the one-hot encod-
ing representation of each character. The smoothing opera-
tion is governed by a hyper-parameter γ, which defines the
upper-bound of the noise’s magnitude. We empirically chose
γ = 0.01 and re-normalize each distribution of characters
after the application of the noise. This smoothing operation
has a significant impact on the dynamics of the training, al-
lowing us to perform 30 times more training iterations without
training collapse [21]. We keep the general GAN framework
mostly unchanged because of the excellent performance of the
gradient-penalty-WGAN [33].

With our improvements in the training process, we can
exploit a deeper architecture for both the generator and the
critic. We substitute the plain residual blocks with deeper
residual bottleneck blocks [34], leaving their number intact.
We find the use of batch normalization in the generator to be
essential for increasing the number of layers of the networks
successfully.

The new architecture and the revised training process allow
us to learn a better approximation of the target password distri-
bution, and consequently, outperform the original PassGAN. A
comparison between the original and our improved approach
is reported in TABLE I. In this experiment, both models are
trained on 80% of RockYou leak and compared in a trawling

3Each string is represented as a binary matrix obtained by the concatenation
of the one-hot encoded characters.



attack4 on the remaining 20% of the set. As the 20% test-
set does not contain passwords present in the train-set, the
performance of a model in this test demonstrates its ability to
generate new valid passwords, excluding over-fitting artifacts.
In this work, we use the improved settings described in the

TABLE I
THE MATCHED PASSWORDS BY PASSGAN AND OUR IMPROVED MODEL

OVER THE ROCKYOU TEST-SET

Number
guesses

PassGAN
(%)

Our GAN
(%)

1 · 108 6.72 9.51
1 · 109 15.09 23.33
1 · 1010 26.03 40.48
2 · 1010 29.54 45.55
3 · 1010 31.60 48.40
4 · 1010 33.05 50.34
5 · 1010 34.19 51.80

present section. We train three different generators, using a
80-20% split of RockYou leak, considering passwords with a
maximum length of 10, 16, and 22, respectively.

2) Autoencoder for password guessing: To highlight the
generality of the proposed approaches, we introduce a second
and novel deep generative model for password guessing. It is
based on Wasserstein Autoencoder (WAE) [51] with moment
matching regularization applied to the latent space (called
WAE-MMD [51]). To allow for sampling from the latent
space, WAE regularizes the latent space to make it coherent
with a chosen prior latent distribution.

A WAE learns a latent representation that shares several
properties with the one coming from the GAN-based tech-
nique. Nevertheless, these models naturally provide a very
accurate inverse mapping, i.e., Enc, which makes the model
superior to the default GAN-based one in certain scenarios.

To add further regulation to the WAE, we train the model
as a Context AE (CAE) [47]. During every iteration of the
training process of a CAE, the encoder receives a noisy version
x̃i of the input password xi. The noisy input is obtained
by removing each of the characters in the password x with
a certain probability p = ε

|xi| where |xi| is the number of
characters in the password, and ε is a hyper-parameter fixed
to 5 in our setup. Our model receives the mangled input x̃i,
and then it is trained to reproduce the complete password
as the output (x = Dec(Enc(x̃))); that is, the model must
estimate the missing characters from the context given by
the available ones. Furthermore, the CAE training procedure
allows us to contextualize the wildcard character that we will
use in Section III-B. We refer to our final model as the Context
Wasserstein Autoencoder, or CWAE.

We set up the CWAE with a deeper version of the archi-
tecture used for the GAN generator. We use the same prior
latent distribution of our GAN generator, i.e., N (0, I) with a
dimension of 128. The training process is performed over the
same train-sets of the GAN.

4Under the same configuration proposed in [35].

III. CONDITIONAL PASSWORD GUESSING (CPG) AND
PASSWORDS STRONG LOCALITY

In this section, we present the first contribution of our paper,
i.e., the password locality concept, and its possible applications
for password guessing. In Section III-A, we describe the most
natural form of locality that we call password strong locality.
In Section III-B, we demonstrate the practical application
of password locality by introducing a technique that we
call “password template inversion” for conditional and partial
knowledge passwords generation. Finally, we demonstrate the
advantages that our technique offers over existing probabilistic
and non-probabilistic password models.

A. Password strong locality and localized sampling

As we briefly introduced in Section II-A, the latent rep-
resentation learned by the generator enforces geometric con-
nections among latent points that share semantic relations in
the data space. As a result, the latent representation maintains
“similar” instances closer.

In general, the concept of similarity harnessed in the latent
space of a deep generative model solely depends on the mod-
eled data domain (e.g., images, text) and its distribution. How-
ever, external properties can be incentivized by the designer
via injection of inductive bias during the training. An example
is reported in Appendix A. In the case of our passwords latent
representations, the concept of similarity mainly relies on a
few key factors such as the structure of the password, the
occurrence of common substrings, and the class of characters.
Fig. 2 (obtained by t-SNE [39]) depicts this observation
by showing a 2D representation of small portions around
three latent points (corresponding to three sample passwords
“jimmy91”, “abc123abc”, and “123456”) in the latent
space. Looking at the area with password “jimmy91” as the
center, we can observe how the surrounding passwords share
the same general structure (5L2D, i.e., 5 letters followed by 2
digits) and tend to maintain the substring “jimmy” with minor
variations. Likewise, the area with the string “abc123abc”
exhibits a similar phenomenon, where such a string is not
present in the selected train-set and does not represent a
common password template.

We loosely name password strong locality the representa-
tion’s inherent property of grouping together passwords that
share very fine-grained characteristics. The password strong
locality property asserts that latent representation of pass-
words sharing some specific characteristics, such as identical
substrings and structure, are organized in close proximity to
each other. In Section IV-A, we will show that strong locality
also implies a weaker but general form of semantic bounding,
which we refer to as weak locality.

The strong locality becomes particularly compelling when
selecting where to focus on the sampling operation during the
password generation process. Indeed, since different classes
of passwords are organized and bounded into different
zones of the underlying space, it is possible to generate
specific classes of passwords by sampling from specific
areas of it. We leverage this technique to induce arbitrary



Fig. 2. 2D representation of small portions around three latent points
corresponding to three sample passwords “jimmy91”, “abc123abc”, and
“123456” in the latent space learned from the RockYou train-set. Note: for
the sake of better illustration, the image has been cropped.

biases in the generation process.5 However, we must first
define a meaningful and practical way to express such biases,
that is, to localize the zones of the latent space we are
interested in.

One naive solution resorts to a prototype password x to
guide the localization process. In particular, we can generate
passwords strictly related to the chosen prototype password
x, by fetching latent points around the latent representation
z of x (i.e., x = G(z)). Thanks to the strong locality, the
obtained latent points should be valid latent representations
of passwords with an arbitrary strong relation with x. In this
context, we refer to the chosen x (or its corresponding latent
representation z) with the term pivot. The three dark red boxes
in Fig. 2 are the pivot points in the latent space for their
corresponding passwords.

To infer the latent representation z from x, we use the
encoder network described in Section II-B2, as that z = E(x).
We highlight that, being this process general and model-
independent, other deep generative models such as [25], [36],
[40] can be used as well.

Once we obtain the intended pivot z, we can easily generate
coherent passwords by restricting the generator’s sampling in a
confined area of the latent space around z (loosely represented
by the small dashed circles in Fig. 2). To that purpose, we
consider a new latent distribution for the generator. The new
distribution has the latent representation of the pivot password
as its expected value and an arbitrarily small scale. To remain
coherent with prior latent distribution and partially avoiding

5From the model’s point of view, this is equivalent to changing the latent
distribution, and in particular, reallocating its expected value to a different
zone of the latent space.

TABLE II
THE FIRST-TEN PASSWORDS OBTAINED WITH DIFFERENT VALUES OF σ

STARTING FROM THE PIVOT STRING “jimmy91”

σ=0.05 σ=0.08 σ=0.10 σ=0.15

jimmy91 jimmy99 mnmm988 jimmy91992
jimmy11 micmy91 tbmmy98 jrm6998
jimmy21 jimsy91 jismyo15 sirsy91
jimmy88 mimmyo1 jizmyon jrz4988
jimmy81 jbmmy88 j144988 Rimky28
jimmy98 simmy98 jbmm998 missy11

mimmy98 dijmy91 timsy91 jimmy119
jimmy28 jimmy98 jrm4985 sikjy91
simmy91 timsy91 jhmmy88 licky916
mimmy91 jnmm988 jhmm988 gimjyon

distribution mismatch for the sampled points [57], we chose
a Gaussian distribution: N (z, σI).

According to the concept of password locality, the strength
of the semantic relation between a sampled latent point and
its pivot should be proportional to the spatial distance between
them. Consequently, the chosen value of σ (i.e., standard
deviation) offers us a direct way to control the level of
semantic bounding existing in the generated passwords. This
intuition is better explained by TABLE II, where passwords
obtained with different values of σ for the same pivot password
are reported. Lower values of σ produce highly aligned
passwords, whereas larger values of σ allow us to explore
areas far from the pivot and produce a different type of
“similar” passwords. As shown in TABLE II, all the pass-
words generated with σ = 0.05 retained not only the
structure of the pivot (i.e., 5L2D), but also observed minor
variations coherent with the underlying password distribution.
Of note, passwords generated with σ = 0.15 tend to escape the
password template imposed by the pivot and reaching related-
but-dissimilar password structures (e.g., “jimmy91992” and
“j144988”).

B. Localized passwords generation with password template
inversion

As briefly discussed in Section III-A, the password locality
property offers a natural way to generate a very specific/con-
fined class of passwords for a chosen pivot, a task accom-
plished by exploiting an encoder network E. This encoder is
trained to approximate the inverse function G−1, and it is the
only tool we have to explore the latent space meaningfully. The
default behavior of the encoder is to take as an input a string s
and precisely localize the corresponding latent representation
in the latent space. As shown in TABLE II, sampling from a
distribution centered on the obtained latent point, allows us to
generate a set of related passwords. However, this approach
alone is not sufficient within the password guessing scenario.

In this section, we show that it is possible to “trick”
the encoder network into further localizing general classes
of passwords. We can arbitrarily define these classes via a
minimal template, which expresses the definition of the target
password class.



The encoder network can be forced to work around a spe-
cific password definition by introducing a wildcard character
into its alphabet. The wildcard character - represented by the
symbol ‘∗’ in the present paper - can be used as a placeholder
to indicate an unspecified character. For instance, the template
“jimmy∗∗” expresses a class of passwords starting with
the string “jimmy” followed by two undefined characters.
When the encoder inverts this string, the obtained latent point
represents the center of the cluster of passwords in the latent
space with a total length of 8 characters and a prefix “jimmy”.
Therefore, sampling around this latent point allows us to
generate good instantiations (according to p(x)) of the input
template. Column A of TABLE III shows an example for the
template “jimmy∗∗”. In practice, we implement this behavior
by mapping a wildcard character to an empty one-hot encoded
vector when the matrix corresponding to the input string is
given to the encoder. The wildcard characters can be placed
in any position to define an arbitrarily complex password
template; some examples are reported in TABLE III.

Relying on this technique, the template inversion guides us
towards the most plausible zone of the latent space. When
we sample from that zone, the wildcards are replaced with
high-probability characters according to the distribution p(x),
i.e., the probability distribution modeled by the generator. This
phenomenon can be observed in the generated samples (Col-
umn A of TABLE III): wildcards in most of the generated pass-
words have been replaced with digits to conceivably reproduce
the frequent password pattern ‘lower case string+digits’ [52].
On the contrary, passwords from the template “∗∗∗∗∗91” are
reported in Column E of TABLE III. In this example, we ask
the generator to find 7-character long passwords where the
last two characters are digits. Here, the generated passwords
tend to lie towards two most likely password classes for this
case, i.e., ‘lower case string+digits’ complementary to the
previous case and ‘all digits.’ As the localized zone of the
latent space is a function of all the observed characters, the
same template with more observable digits (e.g., Column F
of TABLE III) ends up generating all digits passwords with
higher probability.

C. Conditional Password Guessing (CPG)

One of the most significant limitations of available proba-
bilistic guessers is their intrinsic rigidity. The inductive bias
imposed on such models allows them to be extremely suitable
for general trawling attacks, yet it causes them to fail at
adapting to different guessing scenarios. For instance, they fail
to handle a natural as well as a general form of conditional
password generation, such as the template-based one that we
proposed in Section III-B. Despite the limitations of existing
approaches, generating guesses under arbitrary biases is a
useful and helpful procedure. This applies to both security
practitioners and common users. Some examples are below:
• An attacker can be interested in generating an arbitrary

number of guesses having a particular structure or com-
mon substring. For instance, an attacker might want to
generate passwords containing the name of the attacked
web application as substring.6

• A conditional password generation capable of working
with partial knowledge can be used by an attacker to
improve the impact of side-channel attacks targeting user
input [16], [41], [54], [17]. These attacks often recover
only an incomplete password (e.g., some characters) due
to their accuracy. An attacker can leverage conditional
password generation mechanisms to input missing char-
acters and recover the target password.

• Similarly, a legitimate user can be interested in recovering
her/his forgotten password while remembering a partial
template, for example, “***Jimmy**1**8#”.

In this direction, conditional password generation is particu-
larly difficult for autoregressive password guessers, such as the
RNN-based ones (e.g., FLA [42]). Indeed, these approaches, in
the general case, are unable to assign a probability to missing
characters of a template efficiently; the forward-directionality,
intrinsic in their generation process, eliminates the possibility
of an efficient appreciation of wildcards occurring before a
given substring (e.g., the case in Columns C and E of TA-
BLE III). In these cases, the probability of an exponential
number of passwords could be computed before using the

6It has been widely observed that many users tend to incorporate such
names in their passwords.

TABLE III
AN EXAMPLE OF EXPLOITING STRONG LOCALITY PROPERTY OVER A GENERATOR TRAINED ON ROCKYOU TRAIN-SET FOR SOME PASSWORD

TEMPLATES. PASSWORDS ARE GENERATED BY SAMPLING 10000 STRINGS WITH α = 0.8 AND REPORTED IN DECREASING FREQUENCY ORDER.

A B C D E F G H I L M

jimmy∗∗ jimmy∗∗∗∗ ∗∗jimmy ∗∗mm∗91 ∗∗∗∗∗91 12∗∗∗91 A∗∗∗∗∗ ∗∗∗A∗∗∗ Ra∗∗∗∗91 (∗∗∗1∗∗∗) ∗∗∗#∗∗!!!

jimmy11 jimmybean majimmy summy91 1111991 1231991 Andres RONALDO Raider91 (2001999) 123#1!!!!
jimmy13 jimmybear mujimmy sammy91 9111991 1211991 ANDRES MALANIA Rainer91 (1701939) tom#!!!!!
jimmy01 jimmy1001 mojimmy tommy91 a111991 1221991 Andrea MANANA1 Rain1991 (toe1234) bom#!!!!!
jimmy12 jimmyjean myjimmy tammy91 jan1991 1201991 A10123 SALAN11 Raidel91 (13@1932) Bom#1!!!!
jimmy10 jimmylove 12jimmy mommy91 cao1991 1271991 Angela RATALIS Ranger91 (gar1k()) Bam#99!!
jimmy20 jimmy2004 jojimmy jimmy91 ban1991 1234591 A12123 123A123 Rana1991 (1031123) 190#1!!!!
jimmy21 jimmy1234 gojimmy gimmy91 5121991 1219991 Andrey BRIANA1 Raid1991 (1231234) abc#2!!!!
jimmy16 jimmybabe jjjimmy iammy91 man1991 1205091 ANDREY MALA123 Raynay91 (sot123)) 123#11!!!’
jimmy19 jimmygirl aajimmy mimmy91 1811991 1280791 ABC123 AAIANA1 Rayder91 (Go)12(7) Bom##!!!!
jimmyes jimmy1000 m0jimmy sommy91 jao1991 12g1991 ABERES BALAND1 RaIN1991 (11 199%) 123#16!!!



characters in the template to prune the visit tree. This is
the case of the template reported in Column E, where the
required computational cost for these approaches is not far
from computing all the passwords into the chosen probability
threshold and filter the ones coherent with the template. More
generally, these approaches cannot be efficiently applied when
a large number of wildcards is considered. Sampling from the
posterior distribution over the missing variables (i.e., wild-
cards), indeed, is intractable for not minimal alphabets; for
instance, for an alphabet of size |Σ| , it requires O(|Σ|) runs
of network inference per step of Gibbs sampling or iterated
conditional modes [20]. Yet, they can handle the generation for
a special case of templates (e.g., Column A and Column B),
where the prefix of the template is fully known, and no
observable character appears among the wildcards.

To generate over arbitrary templates, a possible trivial
approach for autoregressive models would be to enumerate
passwords according to the chosen cut-off probability and
then filter the ones compatible with the chosen bias. However,
this solution has two main drawbacks. First, this operation
is costly, as well as storage-demanding. More significantly,
such an approach can easily become intractable for small cut-
off probability values, as the enumeration could require an
exponential-scale cost due to the unpruned visit of the space.
The second and more substantial limitation of this approach
resides in the difficulty of generating relative low-probability
guesses. In other words, if the chosen bias results in
candidate passwords having low probabilities (according to
the estimated password distribution), those will be unlikely
generated during the enumeration process, at least, for a
reasonable cut-off probability. In turn, this translates into the
impossibility of enumeration-based approaches to generate the
number of valid guesses required to a sound password guessing
attack.

By contrast, conditional password generation can seamlessly
be implemented within our representation-learning-based ap-
proach and its locality property. The password organization
imposed by this locality principle maintains similar passwords
bounded in a precise zone of the latent space. Localizing such
zones using the template inversion technique and sampling
from them allow us to enumerate biased passwords with
minimal effort. We can conditionally produce suitable guesses
for each meaningful bias, even if this yields low probabil-
ity passwords. Algorithm 1 briefly formalizes this approach.
Chosen a template t, we use the encoder network E to obtain
the latent representation zt of t. Then, we sample latent points
from a distribution centered in zt and with scale σ. During the
process, we filter the guesses coherent with t (if statement at
line 6). The effectiveness of this conditional guesses generation
process will be demonstrated in the next section.

D. Evaluation

In this section, we evaluate our proposed CPG framework
against the state-of-the-art password guessers.

1) Biased test-sets creation: To create a suitable scenario
to evaluate our conditional generation technique CPG, we cast

Algorithm 1 Conditional Password Guessing (CPG)
Input: Template: t, Int: n, Real: σ
Output: Passwords set: X
1: X = {}
2: zt = E(t)
3: for i:=1 to n do
4: zi ∼ N (zt, σI)
5: xi = G(zi)
6: if xi ` t then
7: X = X ∪ {xi}
8: end if
9: end for

10: return X

a set of biased password test-sets. In our setup, a bias ti is
a password template; a string ti ∈ {Σ ∪ {∗}}∗ where Σ is
the password alphabet (210 unicode characters in our case)
and ∗ is the wildcard character. Every password template
ti is randomly extracted from a password sampled from a
validation set Xv . We chose the LinkedIn [9] password leak
as the validation-set. From this set, we keep passwords with
length 16 or less, obtaining 6 · 107 unique passwords, which
is ∼ 5 times the RockYou train-set used to train our model.

More precisely, sampled a ground-truth password x from
Xv , we derive ti by substituting (with a certain probability p)
each character in x with a wildcard (e.g., from x=“jimmy1991”
to t=“∗i∗my∗∗∗1”). In our setup, we select p = 0.5. In
this process, we select only those of the produced templates
that contain at least 4 observable characters and at least 5
wildcards. The latter constraint aims at rendering not trivial a
brute-force solution (∼ 3 · 1011).

After obtaining a large enough collection of valid templates,
we create a set of biased password test-sets. This is achieved
by collecting all the passwords matching the templates in Xv

with an exhaustive search. More precisely, for each template,
we collect all the instances x of Xv , such that x satisfies the
template ti; that is, the set Xti

v = {x|x ∈ Xv ∧x ` ti}. Based
on the cardinality of the various Xti

v , we divide those into four
classes:

1) Tcommon, if |Xti
v | ∈ [1000, 15000]

2) Tuncommon, if |Xti
v | ∈ [50, 150]

3) Trare, if |Xti
v | ∈ [10, 15]

4) Tsuper-rare, if |Xti
v | ∈ [1, 5]

Eventually, each of the 4 classes of templates composes of 30
different template sets (i.e., Xti

v ). Samples of these templates
and respective matching passwords are reported in TABLE XI
in Appendix F.

In the next section, we will use the created biased password
sets to evaluate the proposed CPG framework with a set of
probabilistic and non-probabilistic state-of-the-art password
guessers. We evaluate the ability of each guesser to match
the passwords contained in every biased set Xti

v .
2) Results: We perform our guessing attack using the

CWAE. This model showed slightly better performance than
the GAN approach in this guessing scenario.7 We report results
for the model trained on passwords with a maximum length

7This is due to the higher quality of the encoder network included with the
auto-encoder.



of 16, as no consistently different results have been obtained
with models trained on password lengths 10 and 22.

In our setup, we follow the CPG described in Section III-C.
More precisely, for each biased password set Xti

v , we invert
the template ti using the encoder network. Then we sample
password around the obtained latent vector using standard-
deviation σ = 0.8 (see Algorithm 1). We generate n = 107

valid passwords for each template, and then we compute the
cardinality of the intersection of the generated guesses with
Xti
v to calculate the number of the guessed passwords.
We compare our CPG with five state-of-the-art guessers;

namely, OMEN [27] and FLA [42] for the fully-probabilistic,
PCFG [56] for token-based probabilistic, and HashCat [3] for
non-probabilistic class. Additionally, we compare against a
min-auto configuration [53].
As these guessers are not able to perform a natural form
of conditional password generation, we exploit the naive
approach discussed in Section III-C; that is, we generate a
large number of passwords in default mode and then filter the
guesses coherently with the requested bias. In particular, we
produced 1010 passwords for each approach. Details on the
specific setup of these tools follow:
• OMEN: We trained the Markov chain using the same

train-set used for our deep generative model (i.e., 80%
RockYou). After that, we generated 1010 sorted guesses.

• PCFG: Like in the OMEN case, we used the train-set
employed for the training of our deep generative model
to infer the grammar.

• HashCat: We performed a mangling rules-based attack
leveraging the train-set used for the training of our deep
generative model as a dictionary (considering only unique
passwords sorted by frequency), and we use Password-
sPro [6] as the set of rules. We chose the latter based on
a suitable number of rules (i.e., 3120) that allowed us to
produce a suitable number of guesses.

• FLA: We trained the largest model described in [42],
i.e., an RNN composed of three LSTM layers of 1000
cells each and two fully connected layers. The training is
carried out on the same train-set used for our model.

• CMU-PGS: In CMU Password Guessability Service
(PGS) [13], the passwords are guessed according to the
min-auto configuration [53], where guesses of multi-
ple tools (i.e., FLA, Hashcat, John The Ripper, PCFG,
Markov Model) are combined. We query the guess-
numbers via the web interface and consider passwords
requiring fewer than 1010 guesses. Recommended tools
setup and “1class1” have been used.

When we test each of these guessers in the conditional
generation, we transform each template in a regular expression
(i.e., replacing the wildcards with the point operator) and
extract all the guesses matching the template in the 1010

generated passwords. Then, we compute the cardinality of the
intersection of the correct guesses with each Xti

v to explicit
the number of the guessed passwords.

The mean percentage of guessed passwords for each tem-
plates class is reported in TABLE IV. Coherently with the

discussion done in Section III-C, our CPG framework allows
us to produce a large number of biased guesses, and it matched
a large portion of passwords accordingly.

TABLE IV
AVERAGE MATCHED PASSWORDS (AND RELATIVE STANDARD DEVIATION)

OVER THE BIASED PASSWORDS TEST-SET DIVIDED INTO 4 CLASSES.

Templates
class OMEN HashCat

(PasswordPro) PCFG FLA CMU-PGS
(min-auto)

Our CPG
(CWAE)

Common
[1000-1500]

0.4383
(± 0.1835)

0.5563
(± 0.1274)

0.7546
(± 0.092)

0.7936
(± 0.0757)

0.8617
(± 0.0517)

0.8136
(± 0.0641)

Uncommon
[50-150]

0.2744
(± 0.1322)

0.3656
(± 0.1897)

0.5794
(± 0.1987)

0.6365
(± 0.1137)

0.7208
(± 0.1015)

0.8606
(± 0.0686)

Rare
[10-15]

0.1182
(± 0.1272)

0.2007
(± 0.1655)

0.4013
(± 0.2514)

0.3983
(± 0.1827)

0.5102
(± 0.2005)

0.8482
(± 0.1444)

Super-Rare
[1-5]

0.0555
(± 0.1448)

0.0900
(± 0.1700)

0.1527
(± 0.2298)

0.1500
(± 0.2961)

0.2277
(± 0.2763)

0.7722
(± 0.2910)

As anticipated, CPG maintains a high match ratio (i.e., >
70%) for each template class independently of the correspond-
ing passwords’ low probabilities. In contrast, other guessers
are not able to produce such a specific class of passwords.
Therefore, they provide shallow coverage of the rare templates.
This is also true for the min-auto attack, where heterogeneous
guesses from multiple tools are combined. For instance, the
min-auto approach would require three orders of magnitude
more guesses to match the same number of passwords as ours
in the edge-case of the Super-Rare templates. Interestingly,
given the strong bias imposed during the generation, CPG
matches most passwords of other single guessers also under
the common templates case. The second best guesser turns out
to be FLA that matches a comparable number of passwords
as ours in the case of common templates and matches an
acceptable number of passwords in the uncommon and rare
classes (i.e., ≥ 40%). Note that we limited our CPG to
generate 107 guesses per template; however, more biased
passwords can be sampled in a linear cost.

IV. DYNAMIC PASSWORD GUESSING (DPG) AND
PASSWORDS WEAK LOCALITY

In this section, we present our major contribution, i.e., Dy-
namic Password Guessing. In Section IV-A, we outline the
concept of password weak locality. Section IV-B introduces
DPG from theoretical (Section IV-B1) as well as practical
(Section IV-B2) viewpoints.

A. Password weak locality

The embedding properties of the latent representation map
passwords with similar characteristics close to each other
in the latent space. We called this property strong locality,
and we exploited it to generate variants of a chosen pivot
password or template (discussed in Section III-A). In that case,
the adjective “strong” highlights the strict semantic relation
among the generated set of passwords. However, the same
dynamics enable a broader form of semantic bounding among
passwords. This latter property partially captures the general
features of the entire password distribution. Such features
could be very abstract properties of the distribution, such as the
average passwords length and character distribution ascribable



to password policies. We refer to this observed property as
password weak locality to contrast it with the strong locality.

As a representative example, Fig. 3 depicts the 2D repre-
sentation of passwords from myspace [10], hotmail [4], and
phpbb [11] on the latent space learned by a generator.8 We
can observe that the passwords coming from the same dataset
tend to be concentrated in the latent space and do not spread
abruptly all over the spectrum. The dimensionality of the
fraction of latent space covered by an entire password set
(the red parts in Fig. 3 (a), (b), and (c) clearly depends on
the heterogeneity of its passwords. Passwords from smaller
sets (e.g., myspace) are concentrated in restricted and dense
zone of the latent space, whereas passwords from larger sets
(e.g., as phpbb) tend to cover a more significant section while
they are still tightly knitted.

In the following sections, we will present evidence of this
locality property, and we will show how to exploit it to
improve password guessing.

B. DPG for covariate shift reduction

First, we present the theoretical motivation behind DPG in
Section IV-B1 followed by its instantiation in Section IV-B2.

1) Theoretical motivation: Probabilistic password guessing
tools implicitly or explicitly attempt to capture the data dis-
tribution behind a set of observed passwords, i.e., the train-
set. This modeled distribution is then used to generate new
and coherent guesses during a password guessing attack. A
train-set is usually composed of passwords that were pre-
viously leaked. By assumption, every password-set leak is
characterized by a specific password distribution p∗(x). When
we train the probabilistic model, we implicitly assume p∗(x)
to be general enough to well-represent the entire class of
password distributions. This generality is essentially due to the
fact that the real-word password guessing attacks are indeed
performed over sets of passwords that potentially come from
completely different password distributions. As a matter of

8It is important to emphasize that these graphical depictions are obtained
by a dimension reduction algorithm. Hence, they do not depict latent space
accurately. So, they merely serve as a representative illustration. We will verify
our assumption empirically later in the paper.

fact, we typically do not have any information about the attack-
set distribution. This can indeed be completely different from
the one used for model training. As a representative example,
different password policies or users’ predominant languages
can cause the test-set’s distribution to differ from the train-set’s
distribution drastically. This discrepancy in the distribution of
the train-set and test-set is a well-known issue in the domain of
machine learning, and it is referred to as covariate shift [49].

As stated above, typically, we do not know anything about
the distribution of the attacked-set. However, once we crack
the first password, we can start to observe and model the
attacked distribution. Every new successful guess provides
valuable information that we can leverage to improve the
quality of the attack, i.e., to reduce the covariate shift. This
iterative procedure recalls a Bayesian-like approach since
there is continuous feedback between observations and the
probability distribution.

For fully data-driven approaches, a naive solution to in-
corporate the acquired information from successful guesses
is to fine-tune the model to change the learned password
distribution. However, prescribed probabilistic models such
as FLA directly estimate the password distribution using a
parametric function:

p(x) = p(x; θ), (2)

where θ is the set of weights of a neural network. In this
case, the only possibility of modifying the distribution p(x)
in a meaningful way is to act on θ by harnessing the learning
process. However, this is not an easy/attractive solution mainly
because the new guessed passwords are potentially inadequate
representatives9 and will not force the model to generalize over
the new information. Additionally, the computational cost of
fine-tuning the network is considerable, and the final results
cannot be guaranteed due to the sensitivity of the learning
process.

Similar to FLA, our generative model also exploits a neural
network as an estimator. However, its modeled distribution is

9A very few guessed passwords against a dataset of millions of unknown
passwords.

(a) myspace (b) hotmail (c) phpbb

Fig. 3. Password Weak Locality: 2D visualization of the latent points for three different passwords sets for a generator trained on the RockYou train-set. The
red points represent the latent points corresponding to the passwords in the respective password set whereas the blue points loosely represent the dense part
of the latent space. Please refer to the color version for better illustration.



a joint probability distribution, shown in Eq. 3:

p(x) = p(x, z) = p(x | z; θ)p(z), (3)

where p(z) is referred to as the latent distribution.
As introduced in Section II-A, when p(z) = ṗ(z) (i.e., prior

latent distribution), p(x | z; θ)p(z) acts as a good approx-
imation of the target data distribution (i.e., the distribution
followed by the train-set). Nevertheless, p(z) can be arbi-
trarily chosen and used to indirectly change the probability
distribution modeled by the generator. The RHS of the Eq. 3
clearly shows that θ is not the only free parameter affecting the
distribution of the final passwords. Indeed, p(z) is completely
independent of the generator, and so it can be modified
arbitrarily without acting on the parameters of the neural
network.

This possibility, along with the passwords locality of the
latent space, allows us to correctly and efficiently generalize
over the new guessed passwords, leading the pre-trained
network to model a password distribution closer to the guessed
ones. It is noteworthy that this capability of generalizing over
the new points is achieved via the weak locality and not
from the neural network itself. The intuition here is that
when we change p(z) to assign more density to a specific
guessed password x, we are also increasing the probability
of its neighboring passwords that, due to the weak locality
property, share similar characteristics. This, in turn, makes
it possible to highlight the general features of the guessed
passwords (e.g., structure, length, character set, etc.).

Thus, by controlling the latent distribution, we can in-
crease the probabilities of the zones potentially covered by
the passwords coming from the target distribution. We call
this technique Dynamic Password Guessing (DPG). In the
case of homogeneous distribution (e.g., myspace), we can
narrow down the solution space around the dense zones, and
avoid exploring the entire latent-space. On the other hand, for
passwords sets sampled from distributions far from the one
modeled by the generator, we can focus on zones of the latent
space, which, otherwise, would have been poorly explored. In
both cases, we can reduce the covariate shift and improve the
performance of the password guessing attack.

In a broad sense, DPG can potentially adapt to very pe-
culiar password distributions; distributions induced from
the contexts where no suitable train-sets can be collected.
E.g., passwords created under an unmatched composition
policy or rare/unobserved users’ habits. As long as the gen-
erator has a non-zero probability of generating such rare
passwords, the feedback given from the correct guesses
can consistently be used to reweigh the latent distribution
and mimic the unknown target password distribution. We
will validate this claim in the next section.

2) Practical implementation: In this section, we cover DPG
from a practical viewpoint. Algorithm 2 briefly describes DPG.

In Algorithm 2, O represents the target set of passwords,
Z is the collection of all the passwords guessed by the
generator, and α is defined as the hot-start parameter of
the attack, an element that we describe later in this section.

The variable platent in the pseudo-code, represents the latent
distribution from which we sample latent points. The pro-
cedure makeLatentDistribution returns the latent distribution
induced from the group of guessed passwords Zi at step i.
Leveraging the maximum-likelihood framework, we choose
such a distribution to maximize the probability of the set
of observed passwords Xi = {G(z) | z ∈ Zi}. This is
accomplished by considering a latent distribution p(z | Zi)
conditioned to the set of passwords guessed at each step i.
The final password distribution represented by the generator
during DPG is reported in Eq. 4.

p(x) = p(x | z; θ)p(z | Zi). (4)

As a natural extension of the proximity password generation
harnessed in Section III-B, we choose to represent p(z | Zi)
as a finite mixture of isotropic Gaussians. In particular, the
mixture is composed of n Gaussians, where: (1) n is the
number of the latent points in Zi; and (2) for each zj ∈ Zi,
a Gaussian is defined as N (zj , σI) with center as zj and a
fixed standard deviation σ.

When the probability of a password, i.e., xj = G(zj), is
known, we weight the importance of the jth distribution as
P (xj); otherwise a uniform distribution among the Gaussians
is assumed. In the reported experiments, we always used
uniform weighting. Equation 5 defines the probability density
function of the latent space.

p(z | Zi) =

n∑
j=0

P (G(zj)) · N (z | zj , σI). (5)

Every new guessed password x introduces a new Gaussian
centered at z to the mixture. Consequently, every new guessed
password contributes to changes in the latent distribution
p(z | Zi) by moving the density of the distribution in the
zone of the latent space where it lies. Fig. 4 visualizes this
phenomenon.

In the context of DPG, the GAN generator performs slightly
better than CWEA. For this reason, all the experiments re-
ported in this section are obtained with our GAN generator
trained on the RockYou train-set. Fig. 5 depicts the perfor-
mance comparison between a static attack (e.g., PassGAN)
and DPG over the three passwords sets. Adaptively changing
the latent distribution allows us to boost the number of guessed
passwords per unit of time. Importantly, this improvement

Algorithm 2 Dynamic Password Guessing (DPG)
Input: Set: O, Int: α
1: i = 0
2: platent = ṗ(x)
3: Z = {}
4: foreach z ∼ platent do
5: x = G(z)
6: if x ∈ O then
7: i+ +
8: Zi = Z = Z ∪ {z}
9: if i ≥ α then

10: platent = makeLatentDistribution(Zi)
11: end if
12: end if
13: end for



(a) Actual attacked set (b) 104 generation (c) 105 generation (d) 106 generation (e) 107 generation

Fig. 4. 2D visualization of: (a) the entire hotmail dataset (red-part) mapped on the latent space learned from the RockYou train-set and (b-e) the latent space
in four progressive attack steps for DPG on the hotmail test-set. The red markers portray the guessed passwords at each step (i.e., the Zi), whereas the color
intensity of the blue regions depicts the probability assigned from the used latent distribution (i.e., mixture of Gaussians) to the latent space.

(a) myspace (b) hotmail (c) phpbb

Fig. 5. The performance gain obtained by DPG (with α = 0.15) with respect to static attack for three different test-sets

comes without any additional information or assumption over
the attacked passwords set. In addition, the computational
overhead due to the new sampling technique is negligible.
The steep improvement in the performance obtained with
DPG supports our view that reducing the covariate shift is
a sound strategy.

The sudden growth in the guessed passwords in DPG
(shown in Fig. 5) is due to the hot-start or α parameter; in
DPG, we use the prior latent distribution until a predetermined
number (α) of passwords has been guessed. After that, we start
to use the conditional latent distribution p(z | Zi). The reason
is that if DPG starts with the very first guessed password,
then the latent distribution can be stuck in a small area of
the latent space. However, launching DPG after guessing a
sufficient number of passwords (i.e., after finding a set of
uncorrelated latent points in the latent space) gives us the
possibility to match a heterogeneous set of passwords, which
correctly localize the dense zones of the latent space where

the attacked passwords are likely to lie.
The final hyper-parameter of our attack is the standard

deviation (σ) assigned to every Gaussian in the mixture.
Under the Kernel Density Estimation (KDE) perspective, σ
represents the bandwidth of our Gaussian kernels. In the
guessing scenario, instead, this value defines how far we want
to sample from the clusters of observed passwords. A larger
value of σ allows us to be less biased and explore a wider
zone around the guessed passwords; whereas a smaller value
enables a more focused inspection of the latter. Appendix D
better explicates the effect of σ and α on DPG.

In Fig. 6, we report a direct comparison of the proposed
DPG against the state-of-the-art password models for three
password leaks. For the comparison, we used the same tools
and configurations described in Section III-D1.10 In the figure,
DPG refers to the dynamic guessing attack, whereas SPG to

10For the min-auto, we do not use CMU-PGS [13] directly given their limits
on the number of queries allowed and the cardinality of the tested sets.

0.0 0.2 0.4 0.6 0.8 1.0
Generated passwords 1e9

0.0

0.2

0.4

0.6

0.8

1.0

M
ac

th
ed

 p
as

sw
or

ds
 (%

)

0.0 0.2 0.4 0.6 0.8 1.0
Generated passwords 1e9

0

10

20

30

40

50

60

70

M
ac

th
ed

 p
as

sw
or

ds
 (%

)

min-auto min-auto+DPG DPG SPG FLA PCFG hashcat OMEN

0.0 0.2 0.4 0.6 0.8 1.0
Generated passwords 1e10

0

20

40

60

M
ac

th
ed

 p
as

sw
or

ds
 (%

)

(a) LinkedIn

0.0 0.2 0.4 0.6 0.8 1.0
Generated passwords 1e10

0

20

40

60

M
ac

th
ed

 p
as

sw
or

ds
 (%

)

(b) Youku

0.0 0.2 0.4 0.6 0.8 1.0
Generated passwords 1e9

0

20

40

60

M
ac

th
ed

 p
as

sw
or

ds
 (%

)

(c) Zomato

Fig. 6. Performance of various password models on three password leaks. For DPG, we used σ = 0.35 and α = 10%.



the static one. min-auto is obtained by combining the guesses
of FLA, Hashcat, OMEN, and PCFG. min-auto+DPG is then
obtained by adding DPG to the min-auto ensemble. Fig. 6 (a)
reports the results for the LinkedIn leak. Here, the dynamic
adaptation allows us to guess up to 10% more passwords
then the static approach. However, it cannot directly match
the performance of FLA and PCFG in this general case.
Nevertheless, our models behave better than mangling rules
and the Markov model. Given the different nature of the
dynamic guessing strategy, combining DPG with min-auto
permits us to guess more passwords. We will better motivate
this phenomenon in the next section.

Consistently better results are observed as soon as we con-
sider leaks that exhibit peculiar biases in their password dis-
tributions. Fig. 6 (b) reports the results for the leak Youku [8],
[1] - a Chinese video hosting service. In this case, the inherent
distribution shifts induced by a different class of users causes
a substantial covariate shift phenomenon. Here, the dynamic
adaptation allows us to guess more passwords than the other
tools; DPG improves guess after guess, each time evolving
and eventually surpassing the min-auto configuration obtained
by combining all other models.

Even more interesting results can be observed when we
consider leaks that introduce heavier biases. Fig. 6 (c) reports
the results for the Zomato [15], [14] leak. This leak is an
extreme case since ∼ 40% of its content includes random
tokens of six alphanumeric characters. That creates a sharply
segmented bimodal distribution that can be detected and
efficiently captured by DPG. In this instance, the dynamic
adaptation of the latent space allows us to guess up to
∼ 5 times more passwords than the static attack (i.e., SPG),
allowing our model to match more than 50% of the set in
less than 109 iterations. On the other hand, static approaches,
including min-auto, cannot match the performance of DPG in
this extreme case. Of note, adding DPG to the ensemble of
min-auto (i.e., min-auto+DPG) allows us to guess ∼ 70% of
the set.

The last two examples highlight the ability of DPG to adapt
to the target password distribution. However, the result of the
LinkedIn leak tells us that the dynamic attack cannot directly
match the performance of the state-of-the-art solutions in case
there is no evident covariate shift. In the next section, we will
show that the DPG algorithm is indeed useful also in such
cases, as it soundly permits to guess peculiar passwords of
the attacked distribution that would be otherwise ignored.

3) The impact of the dynamic adaptation: In this section,
we clarify the effect of the dynamic latent adaptation over
the password distribution originally modeled from the deep
generative model. To this end, we compare the probability of
the guessed passwords according to different password distri-
butions, namely, (1) the distribution of the train-set and (2) the
distribution of the attacked-set of passwords. To soundly
represent and generalize such probability distributions, we rely
on FLA [42] as an explicit password mass estimator. We train
two instances of FLA on the two passwords sets and use the
trained models to infer probabilities over the password guessed
during the dynamic and static attacks.

Fig. 7 summarizes our measurements for the phpbb pass-
word leak (i.e., the attacked distribution). Here, the cumulative
probability of the guessed password is reported for both
dynamic and static attacks. In particular, Fig. 7 (a) describes
the probabilities assigned from the probability distribution
of the train-set (i.e., the FLA instance trained on RockYou),
whereas Fig. 7 (b) reports the same data points, but computed
according to the probability distribution of the attacked-set
(i.e., the FLA instance trained on phpbb).

When we perform DPG, we expect the password distribu-
tion represented from the deep generative model to gradually
diverge from the one learned at training time. Fig. 7 (a)
graphically describes this phenomenon; here, we note how the
latent adaptation is causing the model to guess passwords that
have a lower probability according to the train-set distribution.
More interestingly, whereas the discrepancy between the mod-
eled and the train distribution grows, the discrepancy sharply
reduces for the attacked distribution. Fig. 7 (b) explicates
the convergence process towards the latter. Furthermore, this
figure gives us a piece of more valuable information. It shows
that the DPG guesses passwords that have high-probability ac-
cording to the attacked distribution, i.e., passwords associated
with a higher number of users in the attacked service. Sudden
jumps in the latter cumulative probability curve, indeed, can
be attributed to the event of guessing such high-probability
passwords. To note, once we guess a first high-probability
password, we start sampling new guesses around it, guessing
more high-probability passwords consequently and making
those jumps even steeper.

Relying on the same example, more practical results can be
appreciated when we consider the adversarial interpretation.
Fig. 7 (c) reports the cumulative guess-number graph for the
static and dynamic attacks measured using the FLA instance
trained on RockYou (i.e., the train-set of our model). The esti-

2500 5000 7500 10000 12500 15000 17500 20000 22500
#guessed passwords

0.00010

0.00012

0.00014

0.00016

0.00018

0.00020

0.00022

0.00024

0.00026

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y
gu

es
se

d 
pa

ss
wo

rd
s

static
dynamic

(a) Probability according to train-set

2500 5000 7500 10000 12500 15000 17500 20000 22500
#guessed passwords

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

Cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y
gu

es
se

d 
pa

ss
wo

rd
s

static
dynamic

(b) Probability according to attackes-set

2500 5000 7500 10000 12500 15000 17500 20000 22500
#guessed passwords

1011

1012

1013

1014

Cu
m

ul
at

iv
e 

gu
es

s-
nu

m
be

r
gu

es
se

d 
pa

ss
wo

rd
s (

lo
g)

static
dynamic

(c) Guess-number according to train-set

Fig. 7. Cumulative statistic for a guessing attack over phpbb. The figures report the password guessed in the first 109 guesses for both static and dynamic.



TABLE V
EXAMPLE OF PECULIAR PASSWORDS GUESSED VIA DPG FOR FOUR PASSWORD LEAKS. THE REQUIRED NUMBERS OF GUESSES (I.E., G) ARE REPORTED

FOR BOTH FLA AND OUR DPG. THESE PASSWORDS HAVE BEEN OBTAINED BY ORDERING ALL THE GUESSED PASSWORDS OF THE DPG ATTACKS IN
DECREASING ORDER BASED ON THE GUESS-NUMBER ASSIGNED FROM FLA . THE TABLE REPORTS THE FIRST 15 ENTRIES OF THE LIST FOR EACH LEAK.

LinkedIn Guess o2linkedln w2linkedln ydlinkedln linked6in6 j*linkedln linked!in. wslinked1n linkedgcin linked6in2 lslinkedln wtlinkedln 9auiirji g2linkedln cslinkedln ymlinkedln
FLA G 8.2 · 1015 6.3 · 1015 3.6 · 1015 3.6 · 1015 3.0 · 1015 2.8 · 1015 2.6 · 1015 2.5 · 1015 1.4 · 1015 1.4 · 1015 1.3 · 1015 1.2 · 1015 1.2 · 1015 1.1 · 1015 1.0 · 1015
DPG G 3.4 · 109 3.1 · 109 3.6 · 109 4.3 · 109 4.3 · 109 4.8 · 109 4.4 · 109 2.1 · 109 5.6 · 109 4.5 · 109 4.5 · 109 5.5 · 109 3.4 · 109 4.4 · 109 5.2 · 109

Youku Guess guoxuange2 xuhaidong7 caoxia521. woailc521. woyijiu521 woaicyhx0 xuhaidong1 woaifiy520 yishwng521 woshiqujie yixuan520. slllong520 woaifuyao woshiqutao liu19981.6
FLA G 2.5 · 1015 1.7 · 1015 1.3 · 1015 9.6 · 1014 7.3 · 1014 6.5 · 1014 6.4 · 1014 6.4 · 1014 5.3 · 1014 5.1 · 1014 5.0 · 1014 5.0 · 1014 4.9 · 1014 4.7 · 1014 4.6 · 1014
DPG G 3.2 · 109 3.9 · 109 3.5 · 109 3.7 · 109 3.5 · 109 3.3 · 109 3.9 · 109 3.8 · 109 3.7 · 109 3.0 · 109 3.8 · 109 3.2 · 109 1.4 · 109 2.4 · 109 1.3 · 109

Zomato Guess z0mato2016 z0mato2015 zomato9a00 2defd0 zomat 997 3aee0f zomato 496 zomato 443 zomato.921 zomato 591 zomato 543 0def0a zomato 441 zomato 948 zomato 376
FLA G 1.9 · 1014 1.5 · 1014 1.2 · 1014 7.3 · 1013 4.0 · 1013 3.8 · 1013 3.5 · 1013 3.4 · 1013 3.2 · 1013 3.1 · 1013 3.1 · 1013 3.0 · 1013 2.9 · 1013 2.9 · 1013 2.8 · 1013
DPG G 4.5 · 108 7.7 · 108 7.8 · 108 5.1 · 108 1.0 · 109 8.1 · 108 8.0 · 108 1.1 · 109 1.1 · 109 1.1 · 109 1.0 · 109 4.5 · 108 1.1 · 109 1.1 · 109 1.2 · 109

phpbb Guess phpbb3.14 phpbb0472 phpbb4s2 phpbb7825 phpbbid12 phpbb8424 phpbb3546 phpbb4291 phpbb8686 phpbb9801 phpbb1902 phpbb5682 sksdbles phpbb1298 phpbb2625
FLA G 2.1 · 1014 2.1 · 1013 2.0 · 1013 1.3 · 1013 1.0 · 1013 9.9 · 1012 8.0 · 1012 7.2 · 1012 5.5 · 1012 5.4 · 1012 4.5 · 1012 4.5 · 1012 3.8 · 1012 3.8 · 1012 3.2 · 1012
DPG G 2.4 · 108 6.5 · 108 4.8 · 108 4.2 · 108 1.2 · 108 1.1 · 108 1.3 · 108 1.0 · 108 1.4 · 108 2.0 · 108 2.3 · 108 1.7 · 108 1.2 · 108 1.8 · 108 1.1 · 108

mated cumulative guess-number of the dynamic attack is two
magnitudes larger than that of the static attack. Considering
FLA’s accuracy [28], this result confirms that DPG can induce
the generation of passwords that have low belief according to
the train-set distribution. Moreover, this example shows how
DPG can induce the earlier generation of passwords that would
require multiple magnitude more guesses to be produced for
equivalent state-of-the-art password guessers, such as FLA.
In the reported example, we generate 109 guesses, matching
several passwords that would require up to 1014 iterations from
FLA (and others; see Appendix F). Table V reports some of
those.
We replicated the same analysis on different password leaks,
observing the same general behavior. We reported high-guess-
number passwords for those other sets as additional examples
in Table V. The listed guesses in the table give a clear intuition
over the nature of such peculiar passwords. These are induced
from unique biases of the attacked distribution. More evident
examples are the passwords based on the name of web services
that dominate the table. These are indeed the prime examples
of peculiar passwords, as they univocally bound to the specific
password distribution. More heterogeneous guesses can be
observed in the row dedicated to the Youku leak. Here, DPG
captured passwords composed of peculiar dictionary entries
that are not well represented in the train-set of the model
(i.e., RockYou).
Additionally, the guess-numbers reported in Table V indicate
that these are passwords that are considered secure by state-
of-the-art tools, but that can be easily guessed through DPG.
Indeed, our experiments show that DPG allows us to guess
passwords that are unique to the attacked password set.
Such passwords, given their arbitrary distance from the
general password distribution, can be soundly guessed
only by leveraging additional sources of information over
the attacked password space. DPG distills this necessary
knowledge directly through an unsupervised interaction
with the attacked set. This allows the guessing attack to
automatically focus on unique modalities of the target
password distribution that would otherwise be under-
represented or ignored.

V. RELATED WORK

Systematic studies on password guessing date back to
1979 [44], and probably, password guessing attacks have
existed since the inception of the concept of passwords [19].
Since a vast number of works have been proposed in this
active area of research, we limit the discussion to the most
relevant contributions and solutions that are highly related to
our proposals.

Dictionary-based attack and its extensions were among the
first forms of elegant guessing techniques (as opposed to
brute-forcing). Among dictionary attacks, the extension with
mangling-rules [44] widely demonstrated its effectiveness on
the trawling attack scenario [2]. Despite its simplicity, this
attack approach persists nowadays in the form of highly
tuned off-the-shelf software: John The Ripper (JTR) [7] and
HashCat [3]. Due to their efficiency and easy customization,
these tools are the primary weapons of professional secu-
rity practitioners [53]. Subsequently, probabilistic approaches
naturally found their application in the password guessing
domain. Narayanan et al. [45] apply a Markovian filter to
reduce the searching space of a guessing attack drastically.
Dürmuth et al. [27] extend that approach by introducing an
improved version of the guesses enumeration algorithm in
OMEN. Weir et al. [56] introduced Probabilistic Context-
Free Grammars (PCFGs) in the password guessing domain. In
particular, Weir et al. proposed a technique capable of inferring
grammars from a set of observed passwords and use those to
cast new password guesses.

Ciaramella et al. [22] introduced neural networks for pass-
word guessing in their seminal work. In the same line of
development, Melicher et al. [42] proposed FLA (Fast, Lean,
and Accurate) that uses recurrent neural networks [32], [50]
to estimate the password distribution. This model follows the
same estimation procedure of Markov models but relaxes the
underlying n-markovian assumption. FLA can generate new
guesses by performing an enumeration of the password space
via a tree traversal algorithm.

Similarly to our conditional generation framework, different
works have focused on creating a specific class of password
variations for a given starting password [46], [23], [55],
primarily with the intention of modeling credential tweaking
attacks. Credential tweaking is a targeted attack where the
adversary knows the targeted user’s credentials for one or more



services and attempts to compromise accounts of the same user
on other services. Different from credential stuffing, here the
user’s passwords are supposed to be “tweaked” versions11 of
the known ones. In this direction, Pal et al. [46] proposed novel
attack/defense techniques for credential tweaking. Both the
attack and defense techniques are built on top of a password
similarity concept. They model a specific form of semantic
similarity by using a supervised dataset of user-password pairs.
They assume the distributional hypothesis for passwords to be
true, and define two passwords to be ‘similar’ if they are often
chosen together by users. The proposed attack technique is
based on a probabilistic neural model, and it aims to produce
tweaked variations of an input password for a tweaking
attack. Their technique is based on constructing an embedding
space that is used to estimate the similarity between chosen
passwords. This similarity measure is then used to build a
“personalized password strength meter” that aims to spot
the use of a tweaked password by the user at password
creation time. In contrast to our password representation, their
embedding space does not allow for sampling operation and
passwords generation.

VI. CONCLUSION AND FUTURE WORKS

We presented a complete paradigm shift in the task of
password guessing that is orthogonal to the current research
directions. We demonstrated that locality principles imposed
by the latent representation of deep generative models open
new practical and theoretical possibilities in the field. Based
on these properties, we propose two new password guessing
frameworks, i.e., CPG and DPG. The CPG framework enables
the conditional generation of arbitrarily biased passwords. We
empirically demonstrated its inherent advantages with respect
to well-established state-of-the-art approaches. In addition, the
DPG framework demonstrates that the knowledge from freshly
guessed passwords can be successfully generalized and used to
mimic the target password distribution. More importantly, this
guessing technique allows the generation of passwords that are
peculiar for the attacked password distribution, and that would
require an impractical effort to be guessed by other guessers.

AVAILABILITY

The code, pre-trained models, and other materials related to
our work are publicly available at [5].

REFERENCES

[1] “Chinese Video Service Giant Youku Hacked; 100M Accounts Sold on
Dark Web”. https://tinyurl.com/yb78uxnh.

[2] “Cracking Passwords 101”. https://tinyurl.com/y268xahe.
[3] “hashcat”. https://tinyurl.com/y636jsz9.
[4] “Hotmail Password Leak”. https://tinyurl.com/yyr2je4m.
[5] “Improving Password Guessing via Representation Learning”. https:

//github.com/pasquini-dario/PLR.
[6] “InsidePro-PasswordsPro Rules”. https://tinyurl.com/vd9jzaz.
[7] “John the Ripper”. https://tinyurl.com/j91l.
[8] “Leak Youku”. https://tinyurl.com/y9f2xez6.
[9] “LinkedIn Password Leak”. https://tinyurl.com/yxf7f5gv.

[10] “MySpace Password Leak”. https://tinyurl.com/y433aaah.

11The user can create such password variations to accommodate passwords
composition policies of different services.

[11] “phpbb Password Leak”. https://tinyurl.com/yxonf7um.
[12] “RockYou Password Leak”. https://tinyurl.com/af858jc.
[13] “The Carnegie Mellon University Password Research Group’s Password

Guessability Service”. https://tinyurl.com/y9362h6z.
[14] “Zomato hacked: Security breach results in 17 million user data stolen”.

https://tinyurl.com/y8xec7sr.
[15] “Zomato Password Leak”. https://tinyurl.com/ya3sthdp.
[16] Kamran Ali, Alex X Liu, Wei Wang, and Muhammad Shahzad.

Keystroke Recognition Using WiFi Signals. In ACM MobiCom, pages
90–102, 2015.

[17] Davide Balzarotti, Marco Cova, and Giovanni Vigna. Clearshot: Eaves-
dropping on Keyboard Input from Video. In IEEE S&P, pages 170–183,
2008.

[18] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation
Learning: A Review and New Perspectives. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 35(8):1798–1828, 2013.

[19] Hossein Bidgoli. Handbook of Information Security, Information War-
fare, Social, Legal, and International Issues and Security Foundations,
volume 2. John Wiley & Sons, 2006.

[20] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal
Jozefowicz, and Samy Bengio. Generating sentences from a continuous
space. In Proceedings of The 20th SIGNLL Conference on Compu-
tational Natural Language Learning, pages 10–21, Berlin, Germany,
August 2016. Association for Computational Linguistics.

[21] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large Scale GAN
Training for High Fidelity Natural Image Synthesis. arXiv preprint
arXiv:1809.11096, 2018.

[22] Angelo Ciaramella, Paolo D’Arco, Alfredo De Santis, Clemente Galdi,
and Roberto Tagliaferri. Neural Network Techniques for Proactive
Password Checking. IEEE Transactions on Dependable and Secure
Computing, 3(4):327–339, 2006.

[23] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and
XiaoFeng Wang. The Tangled Web of Password Reuse. In NDSS
Symposium, pages 1–15, 2014.

[24] Peter J Diggle and Richard J Gratton. Monte Carlo Methods of Inference
for Implicit Statistical Models. Journal of the Royal Statistical Society:
Series B (Methodological), 46(2):193–212, 1984.

[25] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial
Feature Learning. arXiv preprint arXiv:1605.09782, 2016.

[26] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro,
Alex Lamb, Martin Arjovsky, and Aaron Courville. Adversarially
Learned Inference. arXiv preprint arXiv:1606.00704, 2016.

[27] Markus Dürmuth, Fabian Angelstorf, Claude Castelluccia, Daniele Per-
ito, and Abdelberi Chaabane. OMEN: Faster Password Guessing using
an Ordered Markov Enumerator. In ESSoS, pages 119–132, 2015.

[28] Maximilian Golla and Markus Dürmuth. On the Accuracy of Password
Strength Meters. In ACM CCS, pages 1567–1582, 2018.

[29] Ian Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks.
arXiv preprint arXiv:1701.00160, 2016.

[30] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative Adversarial Nets. In NIPS, pages 2672–2680, 2014.

[31] Palash Goyal and Emilio Ferrara. Graph Embedding Techniques,
Applications, and Performance: A Survey. Elsevier Knowledge-Based
Systems, 151:78–94, 2018.

[32] Alex Graves. Generating Sequences with Recurrent Neural Networks.
arXiv preprint arXiv:1308.0850, 2013.

[33] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron C Courville. Improved Training of Wasserstein GANs. In
NIPS, pages 5767–5777, 2017.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. In CVPR, pages 770–778,
2016.

[35] Briland Hitaj, Paolo Gasti, Giuseppe Ateniese, and Fernando Perez-Cruz.
PassGAN: A Deep Learning Approach for Password Guessing. In ACNS,
pages 217–237, 2019.

[36] Diederik P Kingma and Max Welling. Auto-encoding Variational Bayes.
arXiv preprint arXiv:1312.6114, 2013.

[37] Yang Li and Tao Yang. Word Embedding for Understanding Natural
Language: A Survey. In Springer Guide to Big Data Applications, pages
83–104. 2018.

[38] Junyu Luo, Yong Xu, Chenwei Tang, and Jiancheng Lv. Learning
Inverse Mapping by Autoencoder based Generative Adversarial Nets.



In International Conference on Neural Information Processing, pages
207–216. Springer, 2017.

[39] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using
t-SNE. Journal of Machine Learning Research, 9:2579–2605, 2008.

[40] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfel-
low, and Brendan Frey. Adversarial Auto-Encoders. arXiv preprint
arXiv:1511.05644, 2015.

[41] Philip Marquardt, Arunabh Verma, Henry Carter, and Patrick Traynor.
(sp)iPhone: Decoding Vibrations From Nearby Keyboards Using Mobile
Phone Accelerometers. In ACM CCS, pages 551–562, 2011.

[42] William Melicher, Blase Ur, Sean M Segreti, Saranga Komanduri, Lujo
Bauer, Nicolas Christin, and Lorrie Faith Cranor. Fast, Lean, and
Accurate: Modeling Password Guessability using Neural Networks. In
USENIX Security Symposium, pages 175–191, 2016. GitHub Repo:
https://tinyurl.com/y9o7jdd8.

[43] Shakir Mohamed and Balaji Lakshminarayanan. Learning in Implicit
Generative Models. arXiv preprint arXiv:1610.03483, 2016.

[44] Robert Morris and Ken Thompson. Password Security: A Case History.
Communications of the ACM, 22(11):594–597, 1979.

[45] Arvind Narayanan and Vitaly Shmatikov. Fast Dictionary Attacks on
Passwords using Time-space Tradeoff. In ACM CCS, pages 364–372,
2005.

[46] Bijeeta Pal, Tal Daniel, Rahul Chatterjee, and Thomas Ristenpart.
Beyond Credential Stuffing: Password Similarity Models using Neural
Networks. In IEEE S&P, pages 1–18, 2019.

[47] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and
Alexei A Efros. Context Encoders: Feature Learning by Inpainting. In
IEEE CVPR, pages 2536–2544, 2016.

[48] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Rep-
resentation Learning with Deep Convolutional Generative Adversarial
Networks. arXiv preprint arXiv:1511.06434, 2015.

[49] Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert MÃžller.
Covariate Shift Adaptation by Importance Weighted Cross Validation.
Journal of Machine Learning Research, 8(May):985–1005, 2007.

[50] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating Text
with Recurrent Neural Networks. In ICML, pages 1017–1024, 2011.

[51] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard
Schoelkopf. Wasserstein Auto-Encoders. arXiv preprint
arXiv:1711.01558, 2017.

[52] Blase Ur, Fumiko Noma, Jonathan Bees, Sean M Segreti, Richard Shay,
Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. I Added ‘!’at
the End to Make It Secure: Observing Password Creation in the Lab.
In SOUPS, pages 123–140, 2015.

[53] Blase Ur, Sean M Segreti, Lujo Bauer, Nicolas Christin, Lorrie Faith
Cranor, Saranga Komanduri, Darya Kurilova, Michelle L Mazurek,
William Melicher, and Richard Shay. Measuring Real-world Accuracies
and Biases in Modeling Password Guessability. In USENIX Security
Symposium, pages 463–481, 2015.

[54] Martin Vuagnoux and Sylvain Pasini. Compromising Electromagnetic
Emanations of Wired and Wireless Keyboards. In USENIX Security
Symposium, pages 1–16, 2009.

[55] Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and Xinyi Huang.
Targeted Online Password Guessing: An Underestimated Threat. In ACM
CCS, pages 1242–1254, 2016.

[56] Matt Weir, Sudhir Aggarwal, Breno De Medeiros, and Bill Glodek.
Password Cracking using Probabilistic Context-free Grammars. In IEEE
S&P, pages 391–405, 2009.

[57] Tom White. Sampling Generative Networks. arXiv preprint
arXiv:1609.04468, 2016.

[58] Roman V Yampolskiy. Analyzing User Password Selection Behavior
for Reduction of Password Space. In ICCST, pages 109–115, 2006.

APPENDIX A
INDUCING PECULIAR PASSWORD LATENT ORGANIZATIONS

VIA INDUCTIVE BIAS

Given the absence of precise external bias, the generative
models used to learn the latent password representation is free
to choose arbitrary spatial arrangements among passwords. In
the general case, our generators learn the latent representation
that best supports the extremely general generative task im-
posed during the training. However, this may not be optimal.

For instance, the latent spaces learned by our technique tend
to keep passwords with similar length very close to each
other. The reason is that the length of a password is modeled
as one of the core explanatory factors [18] by the latent
representation. As a result, passwords with different lengths
are distributed far from each other, which is good for DPG
but undesirable in other cases. For instance, it may be better
to generate passwords that share specific substrings, but that
do not have comparable length.

Luckily, this type of specialization is possible within our
frameworks. Our deep learning approach is highly versatile,
and password organizations that present a peculiar feature can
be obtained through the injection of inductive bias during the
learning process.

Focusing on the AE (Section II-B2), we can indeed induce
structure preferences in the latent space organization through
regularizations during training. For instance, we can easily
reduce the length-based clustering phenomenon described
above by acting on the character deletion process used in
Section II-B2. In the normal case, we learn a latent representa-
tion by training the auto-encoder at reconstructing artificially
mangled passwords, where each character in the input string
is removed with a certain probability. Differently, we can
delete a group of k continuous characters given a randomly
chosen starting position i. For instance, with k = 5, a
password “jimmy1991” can become “jimm*****” with i = 4;
otherwise “*****991” with i = 0. Intuitively, the generator
collects in the same location passwords that share common
substrings, regardless of their length. For instance, given the
mangled password “jimmy*****”, the generator should be
able to recover the passwords “jimmy”, “jimmyjimmy” and
“jimmy123”, eventually forcing their latent representations to
be close to each other.

As an example, we compare passwords sampled from
CWAE trained with different approaches, namely, using the
character deletion approach discussed in Section II-B2 (here,
referred to as Simple) and using the group deletion approach
discussed above (referred to as Mask). Table VI reports
password sampled around the pivot “iloveyou1” for the two
CWAEs. Compared to Simple, passwords sampled from the
Mask model tend to have heterogeneous lengths which are
arbitrarily different from the one of the pivot.

TABLE VI
PASSWORDS SAMPLED AROUND THE PIVOT “iloveyou1” FOR TWO CWAES
TRAINED WITH DIFFERENT REGULARIZATION. THE SAME VALUE OF σ IS

USED FOR BOTH MODELS.

Simple Mask

iloveyou13 iloveyou1234
iloveyou12 iloveyou14
iloveYou1 iloveyou12ao
iLoveyou1 iloveyou1222
iloveyou* iloveyou17a
Iloveyou1 iloveyou12arham
iloheyou1 iloveyou14om
ilOveyou1 iloveyou123o
iloveyou11a iloveyou1444
iloveyou1a iloveyou12a4mom1



APPENDIX B
GUESS GENERATION PERFORMANCE

For the sake of completeness, we report performance anal-
ysis of our methods and other probabilistic models, namely,
OMEN and PCFG. We exclude FLA [42] in this comparison,
as to the best of our knowledge, its enumeration algorithm do
not produce sorted password in a stream, i.e., password must
be first pre-computed and then used for the guessing attack.
Moreover, during our experiments, generating 1010 guesses
required more than two weeks on an NVIDIA Quadro P6000
and Intel Xeon CPU E5645.12

Benchmarks are performed without considering the latency
induced from the hash computation; only the guess-generation
cost is evaluated. However, we write the guesses on disk. For
each tested tool, we generate 108 passwords and collect the
required execution time. Then, we compute the throughput of
the generated guesses per second (g/s). Our implementations
come with two options: (1) we allow the generation of
duplicate guesses; and (2) we filter repeated guesses from the
output stream by using a bloom filter. The former option is
useful when fast hash functions are considered while the latter
is better suited for slow hash functions. For other tools, we
evaluate the implementation using the default settings. Data
are reported for both GAN and CWAE models. We perform
the tests on an NVIDIA DGX2 machine with NVIDIA V100s
(32GB device memory). Table VII reports the collected data.

TABLE VII
DATA COLLECTED FOR PERFORMANCE ANALYSIS

OMEN PCFG GAN GAN
(filtered) CWAE CWAE

(filtered)

512820 g/s 114810 g/s 303951 g/s 80321 g/s 237529 g/s 64197 g/s

Among the tested tools, OMEN is the fastest. It is indeed
shipped with a C implementation while PCFG and ours are
implemented in python language. Considering raw hashes
(i.e., 0 work factor), on the same hardware setup, hashcat
can compute ∼ 60000 bcrypt hashes per second on a single
GPU. This number becomes 1894.5 Mg/s when a fast hash
function, such as SHA-3 512, is used. Considering a single
iteration of bcrypt as a baseline for secure password storing,
all the tested tools can saturate the hashing pipeline when
bruteforce-aware hashing algorithms are employed, but they
fail when fast hash functions are considered. It is important
to highlight that the use of fast hash functions is not a secure
choice to store passwords.

APPENDIX C
LEARNING THE INVERSE MAPPING FOR THE GAN MODEL

To fully exploit the properties offered by the learned latent
representation of passwords, we need a way to explore the
latent space efficiently. Therefore, our primary interest is to

12We failed to deploy FLA’s implementation on our most performing
machine that we used for the other benchmarks.

understand the relation between the observed data (i.e., pass-
words) and their respective latent representations; in particular,
their position within the latent space. A direct way to model
this relation is to learn the inverse of the generator function
G−1 : X→ Z. GANs, by default, do not need to learn those
functions because that requirement is bypassed by the adver-
sarial training approach. To do so, framework variations [25],
[26] or additionally training phases [38] are required.

To avoid any source of instability in the original training
procedure, we opt to learn the inverse mapping only after the
training of the generator is complete. This is accomplished
by training a third encoder network E that has an identical
architecture as the critic, except for the size of the output layer.
The network is trained to simultaneously map both the real
(i.e., data coming from the train-set) and generated (i.e., data
coming from G) data to the latent space. Specifically, the loss
function of E is mainly defined as the sum of the two cyclic
reconstruction errors over the data space. This is presented
in the following:

L0 = Ez[d(G(z), G(E(Gt(z))))],

L1 = Ex[d(x,G(E(x)))].
(6)

In Eq. (6), the function d is the cross-entropy whereas x and z
are sampled from the train-set and the prior latent distribution,
respectively. The variable t in L0 refers to the temperature of
the final softmax layer of the generator. In Eq. (6), we do not
specify temperature on a generator notation when it is assumed
that it does not change during the training. The combination
of these two reconstruction errors aims at forcing the encoder
to learn a general function capable of inverting both the true
and generated data correctly. As discussed in Section II-B1,
the discrepancy between the representation of the true and
generated data (i.e., discrete and continuous data) is potentially
harmful to the training process. To deal with this issue, we
anneal the temperature t in loss term L0 during the training.
We do that to collapse slowly the continuous representations of
the generated data (i.e., the output of the generator) towards the
same discrete representation of the real data (i.e., coming from
the dataset). Next, an additional loss term, shown in Eq. 7, is
added forcing the encoder to map the data space in a dense
zone of the latent space (dense with respect to the prior latent
distribution).

L2 = Ez[d(z, E(G(z)))]. (7)

Our final loss function for E is reported in Eq. 8. During the
encoder training, we use the same train-set that we used to
train the generator, but we consider only the unique passwords
in this case.

LE = αL0 + βL1 + γL2. (8)

The information about the hyper-parameters we used is listed
in TABLE VIII.



TABLE VIII
HYPER-PARAMETERS USED TO TRAIN OUR ENCODER NETWORK

Hyper-parameter Value

α 0.2
β 0.2
γ 0.6
Batch size 64
Learning rate 0.001
Optimizer Adam
Temperature decay step 250000
Temperature limit 0.1
Temperature scheduler polynomial
Train iteration 3 · 105

APPENDIX D
ON THE IMPACT OF HYPER-PARAMETERS ON DPG

In this section, we briefly consider the impact of the two
hyper-parameters of DPG over the quality of the attack.

Fig. 8 depicts a comparison among the static attack, a DPG
with α = 15%, and a DPG with α = 0% (i.e., no hot-start).
These results confirm that the absence of hot-start indeed
affects and eventually degrades the performance of DPG.

Fig. 8. The impact of α on the performance of DPG for phpbb test-set

Fig. 9 depicts the effect of different values of σ on the
performance of DPG. Smaller values of α yields better overall
results. This outcome suggests that it is not necessary to
sample too far from the dense zones imposed by Zi, and
rather a focused exploration of those zones is beneficial. This
observation is perfectly coherent with the discussed locality
property, giving further support to the speculated ability of
the latent space of capturing and translating general features
of an entire password distribution in geometric relations.

Fig. 9. The impact of σ on the performance of DPG for phpbb test-set

APPENDIX E
CWAE DETAILS

We build the CWAE architecture leveraging the same
resenet-like structure used for the GAN generator, which is
summarized in TABLE IX. TABLE X reports the hyper-
parameters used during the training of the model. Here, λ
is the weight assigned to the latent divergence term in the

TABLE IX
CWAE ARCHITECTURE SCHEME

Encoder
cov1d[5, 128, same, linear]
ResblockBottleneck1D[128, batchnorm=false]
ResblockBottleneck1D[128, batchnorm=false]
ResblockBottleneck1D[128, batchnorm=false]
ResblockBottleneck1D[128, batchnorm=false]
ResblockBottleneck1D[128, batchnorm=false]
ResblockBottleneck1D[128, batchnorm=false]
ResblockBottleneck1D[128, batchnorm=false]
Reshape[-1]
FullyConnected[128, linear]

Decoder
FullyConnected[MaxPasswordLength · 128, linear]
Reshape[MaxPasswordLength, 128]
ResblockBottleneck1D[128, batchnorm=false]
ResblockBottleneck1D[128, batchnorm=false]
ResblockBottleneck1D[128, batchnorm=false]
ResblockBottleneck1D[128, batchnorm=false]
ResblockBottleneck1D[128, batchnorm=false]
ResblockBottleneck1D[128, batchnorm=false]
ResblockBottleneck1D[128, batchnorm=false]
cov1d[1, AlphabetCardinality, same, linear]

loss function, i.e., Maximum Mean Discrepancy (MMD) for
our case. We use a standard softmax-crossentropy for the
distance measure in the data space. The parameter ε controls
the character-deletion probability used during the training (dis-
cussed in Section II-B2). For more fine-grained information,
please refer to our project page (see Section Availability).

TABLE X
HYPER-PARAMETERS USED TO TRAIN OUR CWAE

Hyper-parameter Value

λ 8.0
Batch size 256
Learning rate 0.0001
Optimizer Adam
Train Epochs 25
ε 5.0

APPENDIX F
SUPPLEMENTARY TABLES & FIGURES

Here, we present supplementary data related to our work.
TABLE XI lists the samples of password templates and their
respective matching passwords.. Table XII extends Table V for
the attack on the LinkedIn set. We report the guess-numbers for
John the Ripper, Hashcat, Markov Model, and PCFG. These
value have been obtained via the CMU-PGS [13], [53]. Note
that PGS sets up its models with a different ground-truth; our
train-set is just a subset of the one used from PGS.

In the table, the underscore symbol ‘ ’ indicates that the
password model failed to match the password. The column
‘DPG G.’ reports the guess-number of the dynamic attack. The
passwords are sorted using the same criteria used in Table V.
We report the top 100 entries.



TABLE XI
SAMPLES OF PASSWORD TEMPLATES AND RESPECTIVE MATCHING PASSWORDS.

Tcommon Tuncommon Trare Tsuper-rare

*a*e*on** ri***19** *ol*nd*** Bi**o**1* **n1**0*0 ***dy*78* a*6*4*0** **j99*9** *n****0!! k*****kbn **sb*9*8* *YR**R*U*

Cameron4$ rizal1982 Colinda23 BigCorp11 Mon171050 sandy@786 a06142001 sbj991980 Qny1960!! ktyzhekbn mosby9382 PYR@GR@UP
cameron64 rissi1909 yolanda#1 BigFoot13 Len112080 sandy6789 a26042004 tej991991 ando140!! kgn5*5kbn elsb1968! MYRATROUT
CabeZone1 rimpy1984 Noland405 Bishon111 ben101010 goody1785 ab6643014 Lwj990922 vny@@00!! ktrnhjkbn lksbs9080
madelon13 riana1976 noland339 Bigfoot1# chn102030 cindy2785 a76645090 nhj990920 lnb7280!! kbnkbnkbn ldsbc9886
Camerone3 rinni1970 rolando13 Bingo2011 Jan172010 maddy2789 a1644104a naj999999 anaid60!!
cameronq2 richu1989 roland589 Biddoma12 van102030 buddy8780 a26547054 Slj999999 @ngel20!!
makedon24 rinks1978 Rolando85 Bigboy117 jan152000 brady1785 a06042007 jjj999999 QnA2010!!
Kameron76 rinat1978 roland006 Biofoto10 ten142000 maddy@786 a8674600Z msj991987 Annie20!!
cameron46 risco1969 RolandD50 Biologo12 jan142000 sandy7780 a76042074 99j99a99k Annie10!!
Nakedone1 riken1970 Jolanda48 BioComp10 l4n1n402 Toodys781 am68400en dej991976 inusa20!!

TABLE XII
GUESS-NUMBERS OF THE TOP PECULIAR PASSWORD GUESSED FROM DPG

FOR LinkedIn LEAK.

Guessed P. DPG G. JTR G. Hashcat G. Markov G. PCFG G.

o2linkedln 3.4 · 109
w2linkedln 3.1 · 109
ydlinkedln 3.6 · 109
linked6in6 4.3 · 109
j*linkedln 4.3 · 109
linked!in. 4.8 · 109 2.1 · 1014

wslinked1n 4.4 · 109
linkedgcin 2.1 · 109
linked6in2 5.6 · 109 1.7 · 1014
lslinkedln 4.5 · 109
wtlinkedln 4.5 · 109

9auiirji 5.5 · 109 7.6 · 1013
g2linkedln 3.4 · 109
cslinkedln 4.4 · 109
ymlinkedln 5.2 · 109
linked4in6 4.4 · 109 2.2 · 1014
fvlinkedln 4.7 · 109
jslinkedln 3.7 · 109
jzlinkedln 5.1 · 109
sslinkedln 4.4 · 109
grlinkedln 4.7 · 109

linkedm1x1 2.5 · 109
svlinked1n 5.1 · 109
m1linkedln 3.8 · 109
linkedi9in 2.7 · 109 6.7 · 1011

mnlinkedln 3.7 · 109
etlinkedln 4.9 · 109
forc3link 2.1 · 109 8.6 · 1011 1.0 · 109 4.3 · 1011
5.linkedin 4.7 · 109 8.8 · 1011
link4rfxa 4.8 · 109 4.2 · 1011

g0linked1n 2.5 · 109 1.3 · 1014
linkedm1m1 2.9 · 109 6.7 · 1011
56linkedln 4.6 · 109
Rbnoi076 2.0 · 109 4.2 · 1013
linkedtgin 1.9 · 109
linked8in4 5.6 · 109 2.0 · 1014
linked!in1 4.4 · 109 4.1 · 1013
imlindedin 4.9 · 109
linkedkbin 2.9 · 109
linked9in6 4.2 · 109
htlinkedln 4.8 · 109
golinkedln 5.2 · 109
ozlinkedln 5.1 · 109
o.linkedin 4.3 · 109 6.7 · 1011 6.3 · 1011
linkedwcz 2.9 · 109 2.9 · 1013
linked iin 5.0 · 109 4.6 · 1013
linkedrcin 1.6 · 109
42linkedln 4.5 · 109

linkedcmw4 3.1 · 109
mmlinkedln 3.7 · 109

2xrilidi 5.1 · 109 1.8 · 1013
dslinkedln 4.3 · 109
linkedtdin 2.1 · 109
linked1.in 3.2 · 109 2.0 · 1014
linked4in2 4.4 · 109 8.6 · 1013
linked4in4 4.1 · 109 6.7 · 1011 1.0 · 1014
linked.4in 3.2 · 109 2.2 · 1014
pdlinkedln 4.2 · 109
oklinkedln 5.2 · 109
Or2nge47 1.7 · 109 1.1 · 1011
z1linkedin 4.3 · 109 6.7 · 1011 8.8 · 1010
linkednxin 1.4 · 109
53linkedln 4.9 · 109
linkedctq 2.8 · 109 2.7 · 1013

odlinkedln 3.5 · 109
omlinkedln 3.9 · 109
eu293634r 2.3 · 109 5.4 · 1013
hklinked1n 5.0 · 109
linkedfsin 2.0 · 109 6.7 · 1011
lf00garl 4.3 · 109 8.8 · 1011 2.6 · 1012

y9linkedin 5.3 · 109 9.2 · 1011
linked87ln 2.5 · 109 1.1 · 1014
linked544y 2.8 · 109 8.9 · 1013
xbCA0N 1.9 · 109
linktebow 9.1 · 108 2.8 · 1013
y2linkedin 4.5 · 109 4.1 · 1011

linkedmiam 3.7 · 109
73linkedln 4.1 · 109
alasEN00 4.4 · 108 9.3 · 1011
h9linkedin 4.5 · 109 7.9 · 1011
linkedkbl 1.9 · 109 6.7 · 1011 2.6 · 1013
T8wtas00 5.7 · 108 5.3 · 1013
linkedw3s 4.0 · 109
44linkedln 4.7 · 109
unpceddi 5.1 · 109 2.4 · 1011
linkedwge 1.1 · 109 6.7 · 1011 2.5 · 1013
linked39in 2.3 · 109 1.1 · 1014
linked99ln 2.3 · 109 8.7 · 1013
linke14din 3.1 · 109 1.8 · 1013
gxlinkedln 3.3 · 109
linkedkpin 1.2 · 109
gonulelif 2.5 · 109 2.5 · 1013

linkedcsun 2.1 · 109
lclinkedln 4.4 · 109
9.linkedin 4.7 · 109 1.1 · 1012
grswbon3 2.5 · 109 2.7 · 1012
snlinkedln 4.8 · 109


