Trading Accumulation Size for Witness Size: A Merkle Tree
Based Universal Accumulator via Subset Differences

Mahabir Prasad Jhanwar Pratyush Ranjan Tiwari
mahavir.jhawar@gmail.com pratyushranjan.tiwari@gmail.com
Ashoka University, India Ashoka University, India
Abstract

Merkle-type trees are widely used to design cryptographic accumulators. The primary
advantage in using Merkle tree for accumulators is that they only assume existence of collision-
resistant hash functions. Merkle tree based accumulators produces constant size accumulation
values. But, the size of the witness is always logarithmic in the number of values accumulated,
opposed to the constant size witness as exhibited by some of the other popular accumulators
that uses number theoretic techniques and problems. Surprisingly, there exists no Merkle
tree based accumulator that provides a trade-off between accumulation size and witness size.
Such a trade-off is warranted, as argued in this paper, in a situation where witnesses are
stored in memory constrained devices and are being moved around continuously, as opposed
to the accumulation values that remain stationary, often in devices with moderate storage
capacity. In this paper we propose a Merkle-tree based accumulator scheme assuming only
collision-resistant hash functions exist. Our scheme allows witness of size that is in general
strictly less than logarithmic in the number of values accumulated, and in some cases reduces
to constant size. The trade-off cost results in an increased accumulation size.

1 Introduction

A basic cryptographic accumulator scheme (AC) facilitates optimal verification methods for set-
membership relations [BAM93, BP97]. Briefly, given aset X = {z1,...,2,}, an AC scheme simul-
taneously does the following tasks: (1) Accumulate: produces a short representation of X denoted
as Accy, and (2) Membership Witness Generation: for every x € X, it produces an accompanying
short membership witness wit,. Later, by exhibiting the valid tuple (z, wit,, Accx), a prover can
convince any third party that = is indeed a member of a certain set whose short representation is
given by Accx. The immediate security requirement is that it should be computationally infeasi-
ble to find a valid pair (z*, wit,+) for any x* ¢ X. Accumulator schemes that in addition support
non-membership witness proofs are called universal accumulators [LLX, CHKO12, BLL00]. In
particular, for a fixed domain M, and for any set X C M, a universal accumulator scheme can
produce both a membership witness for element € X and a non-membership witness for an
element 2’ € M\ X that are to be validated against the succinct representation Accx of X. Dy-
namic accumulators [CL0O2, Ngu05, DT08, CKS09, WWPO08, CF13] are an extension that allows
computation of Accys using only Accx and x, where X' = X U {z} (addition) or X’ = X \{x}
(removal) and update existing witnesses accordingly, without the need to fully recompute these
values on each addition or removal.

Accumulators have proven to be a very strong mathematical tool with applications in a
variety of privacy preserving technologies such as efficient time-stamping [BAM93|, accountable
certificate management [BLLOO], authenticated dictionaries [GTHO02]. Accumulators are also

used as building block in anonymous credential systems and group signatures [Nyb96, Ngu05,
CKS09], ring signatures [DKNS04], redactable signatures [PS14], sanitizable signatures [CJ10],
P-homomorphic signatures [ABCT12], and Zerocoin [MGGR] (an extension of the cryptographic
currency Bitcoin), etc.

Building accumulator schemes whose security is based on cryptographic hardness assump-
tions that are both standard and minimal is an important goal in this area. Number theoretic
problems such as the strong RSA problem [BdM93, BP97], discrete logarithm problem variants
[Ngu05, DT08, CKS09, GOP*16, AN11], Paillier trapdoor permutation [WWPO08], lattices and
others [LLNW16, JS15, CF13, TX03, Lip12] have been used to construct several accumulator
schemes. These schemes achieve better functionality and are compact i.e., they produce constant
accumulation size and witness size. But, on the other hand, these schemes are also limited by
the fact that the underlying assumptions are often non-standard and strong.

There exists a line of work that employ only collision-resistant hash functions to build secure
accumulator schemes [BLL00, BLL02, CHKO12, BC14]. Unlike number theoretic constructions,
these schemes do not require the accumulator manager to be trusted. But, a bottleneck for
these schemes is that they are no longer compact - there is an increase in witness size which
is logarithmic in the number of values accumulated. In this setting the schemes are designed
based on Merkle type trees (also called hash trees). A Merkle tree is a labeled tree, with the
leaves labeled by different values H(x), where x € X and H is a collision-resistant hash function.
The labels of sibling nodes are hashed using H in order to compute the label associated to their
parent node, and so on and so forth, until a value for the root of the tree is obtained. The tree’s
root value is then defined as the accumulator value of the set of values associated to the leaves
of the tree. For example, given a set X = {1, x9,x3, 24}, the short representation of X is the
value Accx = H(H (H(z1)||H (z2))||H (H (z3)||H(x4))). A witness wit,, that an element z; has
in a set whose short representation is Accy is the set of O(log|X|) nodes along the Merkle tree
needed to trace the exact path from H(xz;) to the root node.

1.1 Owur Contributions

A typical straight forward application of accumulators is that they can be used to implement
membership testing systems such as authenticated dictionaries. The later system involve three
parties: a trusted source, an untrusted directory, and a user. The source defines a finite set
X C M of elements. A short representation Accx of X is published, and users can obtain it in
an authenticated manner. The directory maintains the sets {wit, | z € X} and {wit, | z € M\ X}.
The user performs membership queries on the set X of the type ”is element z in set X7”. To
experience faster response and avoid network latency, instead of contacting the source directly,
the users query the directory. The directory provides the user with a yes/no answer to the
query together with a witness wit,, which yields a proof of the answer. The user then verifies
the proof based on z,wit,, and Accx. Another typical membership testing system is the usual
plain authentication system where the parties involve are users and a resource carrying system
holding all user-credentials. The set X defines the collection of all user-identities. The resource
system stores Accx. Witnesses wit, are distributed to each user z € X. Later, in order to access
the resource system, a user can prove membership in X by revealing their identity z and the
witness wit,. It is important to note that, in both applications, the witnesses are continuously
moved around, whereas the accumulation data Accx remains static. To instantiate these systems,
the number theoretic accumulators will prove to be a better choice then the simple Merkle tree
based accumulators. The later schemes will make these systems communication heavy due to
the increased witness sizes. An immediate question that can be asked here is that can we have
a Merkle tree based accumulator scheme that can trade accumulation size for witness size. An

increase in accumulation size for such a trade-off scheme is tolerable given that the accumulation
data is static and is stored in devices that are not resource constrained. The decrease in witness
size on the other hand is welcome as witnesses are moved around continuously and often stored
in resource constrained devices such as smart cards.

To our best knowledge, there exists no Merkle tree based accumulator scheme that trades
accumulation size for witness size. In this paper, we propose a Merkle tree based accumulator
scheme that achieves the same. Our scheme allows witness size that is in general strictly smaller
than a size that is logarithmic in the number of values accumulated. This is achieved at a cost
that increases the accumulation size. The novelty of our construction is that it employs, for the
first time, a well known subset covering technique called subset difference method [NNLO1] to
the setting of Merkle tree to achieve this tradeoff.

2 Preliminaries

Definition 1 (Collision-resistant Hash Family) A \-bit hash function family is keyed func-
tion family Hy = {Hy : {0,1}* — {0,1} }xer. The function family Hy is said to be collision
resistant if, for every polynomial time adversaries A, there exists a negligible function negl(\)
such that

Plk & K;ai,oo & A(K) | @1 # w2 and Hy(1) = Hy(2)] < negl())

2.1 Merkle Trees

A tree is a simple, undirected, connected graph without cycles. We particularly consider rooted
trees, i.e., trees with a distinguished root node. The nodes adjacent to the root node are called
its children; each child can be considered, in turn, the root of a subtree. Children of the same
node are siblings of each other. Nodes that have no children are called leaves, and all other
nodes are called internal. A rooted tree is 2-regular or binary if each node is either a leaf or
possesses exactly two child nodes. The level/depth L of a node indicates its distance to the root,
where we assign level L = 0 to the root node. In this paper we focus on binary trees of constant
depth d, i.e., where all leaves have the same level L = d. We denote such a tree by BT,;. We let
LN(BT,) denotes the set of all leaf nodes of BT, and its size is given by |[LN(BTy)| = 2¢. The
total number of nodes in BTy is 29! — 1. We let N = 2¢ and label nodes of BT, using numbers
inl,...,2N — 1 as follows: the root node is labeled with 1, if parent is labeled with 7 then the
left child is labeled with 2¢ and the right child is labeled with 2i + 1. We let v; denote the node
labeled with i, 1 <1i < 2N —1; for example the root node is denoted by v;. For a node v;, sibl(v;)
denotes its sibling, parent(v;) denotes the parent node of v;, and child(v;) (when v; is a non-leaf
node) denotes a child node of v;.

For a node v; € BTy, the subtree rooted at v; is denoted by T;, and 5; denotes the set of all
leaf nodes of Tj, i.e., S; = LN(T;). For any v;,v; € BT4, we let T; ; denote the subtree T;\T) -
the subgraph obtained by taking away T} from T;, and subsequently S; ; = LN(T; ;).

Definition 2 (BTg) Let M = {xo,...,29a_1} and H : M x M — M be a collision-resistant
hash function. A perfect full binary tree BTy is said to model M under H if leaf nodes of BTq4
are set to the following values: v; = H(Z; moq (24))s 24 <4 <291 1. The resulting tree will be
denoted by BT g ar.

Definition 3 (Merkle Tree) Let M = {x¢,..., 291} and H : M x M — M be a collision-
resistant hash function. Let BT models M under H. The BTy is said to be Merkle tree if

the internal nodes of BT g ar are set recursively as follows
vi = H(vyllvgitr), i=27—1,...,1
The resulting tree is denoted by MTy rr. For example, the Figure 1 represents MT3 pr.

Definition 4 (Exact Path) Let u,u’ € MTg s be two distinct nodes such that u is an ancestor
of u'. The exact path from u' to u, denoted as EP_,,, is a sequence of nodes EP_y,, = (up_1 =
W w9, ..., u1,ug = u) such that, fori=1,... ¢, u;—1 is a child of u;. For example, in Figure
1, the ezact path EP,,,—,, = (v10, v5,v2,01).

Definition 5 (Pseudo Path) For an exact path EPy ., = (up—1 = v/ ;up_o,... ,ui,up = u)
in MTg s, its corresponding pseudo path, denoted as PP,/ _,,, is a sequence of nodes PP,/ _,, =
(Ve—1,vV¢—2,...,v1) such that

H(... H(H (ugr o) Joe—2)]| ... llor) = u

For example, in Figure 1, the pseudo path PPy, = (vi1,v4,v3).

vz = H (v ||vr)

|’U5 = H(vigl|v11) | ’vﬁ = H(via||lv13) ‘ vy = H(vi4vis)
vg = vg = V10 = v11 = v12 = v13 = v14 = 15 =
H{(x0) H(zy) H(z2) H(x3) H(zy4) H(zs) H(xg) H(x7)

Figure 1: Merkle Tree

Definition 6 (Steiner Tree) Let R C LN(BT,). The Steiner tree ST(R) induced by R on BT,
s a subgraph of BTy that only retains nodes and edges present on the exact paths from the root
node vy to leaf nodes in R respective.

2.2 Subset Covering

The construction of our accumulator scheme uses a well known subset covering algorithm, called
subset difference (SD) method, due to Naor, Naor and Lotspiech (NNL) [NNLO1]. In [NNLO1],
a broadcast encryption was proposed using subset difference method. In the following we first
recall the concept of subset covering and then present the NNL subset difference method.

Definition 7 (Subset Covering) For a non-empty set M, a subset-cover algorithm defines a
collection of subsets S C 2M such that the following holds: for any R C M there exits a sub
collection CVp = {S1,...,5m | Si € S8} that partition M\R, i.e.,

M\R = Ug,ecvySi and S;NS; = ¢ for every S;, S; € CVR,i # j.

2.2.1 Subset Difference [NNLO01]: A Subset Covering Method

The subset difference method is given by the algorithms (SD.SetUp, SD.Cover):

e SD.SetUp(M) : The input to the algorithm is a set M = {zg,...,zy_1}, where N = 24
and d € N. Tt defines a collection of subsets S C 2™ as follows:

— Construct a binary tree BT, of constant depth d. Assign elements of M to its leaf
nodes, i.e., for i in 2¢ <4 < 291 — 1 leaf node v; = 7; poq (24)-
— Define S = {S;; | (vi,vj € BT4) A (v; is an ancestor of v;)}, where S; j = LN(T3\T}).

e SD.Cover(BT,4, R) : This algorithm takes a set R C M as input and computes a cover
CVgr C S for M\R i.e., CVp partitions M\R. The algorithm works iteratively: at each
stage it removes nodes from the Steiner tree ST induced by R while building CVz and
finally stops when the updated STg is left with only one node.

1. Set CVg = ¢, the empty set.
2. Find two leaves v;,v; in STg such that the least common ancestor lca(v;,v;) of v;
and v; satisfies the following property: the set of leaf nodes of the subtree, rooted
at lca(v;,v;), does not contain any leaf node from STp other than v;,v;. Suppose
Ica(vi,vj) = vy, where t € [2N — 1]. Then vy and vy are respectively the left and
the right child of v;.
2a. If vy # v;, then update CVrp = CVR U {Sa;}; likewise, if vo;11 # vj;, update
CVg = CVR U {Sa11,5}

2b. Update STg by removing all descendants of v;. The updated STgr now has v; as
its leaf.

2c. Go to Step 2.

3. If STg is left with only one leaf, then do the following. Let v; be the leaf. STg is set
to vy, the root. Update CVp = CVR U {S},}.

4. The algorithm stops by outputting the updated CVg.

Lemma 1 (Correctness [NNLO1]) The sub-collection CVR, as described above, partitions
M\R, i.e., M\R = Us, ;ecvySij and S;j N Sy j = ¢ for every S; j, Sy j € CVg.

Lemma 2 (Covering Size [NNLO1]) For any R C LN(BTy), the size of the covering set is
|CVR| < 2r — 1, where r = |R|. Furthermore, if the set M is random, then the average number
of subsets in CV g is 1.25r.

In Figure 2 below, we depict a sample run of the subset difference method.

2.3 Cryptographic Accumulators

A static universal accumulator scheme allows to produce a short representation of a large set
X C M, called accumulator/accumulation of X and is denoted by Accx, subject to which the
scheme can also produce, for every x € M, a witness wit, attesting to the fact that x € X or
x € M\X. Based on z, wit, and Accy, anyone can later verify whether 2 € X or z € M\ X. We
now give a formal definition of a universal cryptographic accumulator scheme.

Definition 8 (Static Universal Accumulator Scheme) A static universal accumulator scheme
AC for a domain M is a tuple of PPT algorithms (Setup, Accumulate : P(M) — A, WitGen :
M x P(M) — W, Verify : X x W x A — {mem,non-mem, L}, where P(M)={X | X C M} is
the power set of M, A is the domain for accumulation values, and W is the domain for witnesses.
The algorithms work as follows.

[vs =mo] [vo=11] [vio =22] [vn1 = 73] [vi2 = 24] [v13 = 5] [via = 6] [v15 = 77]

Figure 2: Subset Difference Method: For M = {x,...,z7}, BT3 is constructed. For every 4
in 1 <4 < 15, the node with label 7 is denoted by v;. The elements in M are assigned to leaf nodes
as discussed above. Take R = {vg,v11,u13,v14}. Then, the Steiner tree STg induced by R is given by
color-filled nodes. The covering set CV g is constructed iteratively as follows. Consider a pair of leaf nodes
(vsg,v11) in STr. The lca(vs,v11) = v2 and the subtree (of STg) rooted at vy has no leaf nodes from
STg other than vs,v;1. For the children vy, vs of ve, the CVg is set to CVg = {Sy8,55,11}. The STg is
updated by removing all descendants of v, and making it a leaf node. Next, for (v13,v14), similarly Sg 13
and S714 are added to CVp and making vs a leaf node for STg. The updated STg is now left with leaf
nodes vy, v3 and the root vy. Step 2 of SD.Cover(BT,4, R) finally updates ST g such that it is left with only
v1. The cover is finally given by CVg = {S4s, 5511, 56,13, 57,14}

e Setup(1?): This algorithm is run by the accumulation manager. It takes as input a security
parameter 1*, and the domain set M. The algorithm outputs an auxiliary information
auxps. The auxps will be an implicit input to both Accumulate and WitGen.

o Accumulate(X,auxys): This algorithm is run by the accumulator manager. It takes as
input a set X C M and produces a succinct representation Accx of X, also called the
accumulation of X.

e WitGen(z, X, auxys): This algorithm is run by the accumulation manager. It takes as input
an element x € M, a set X C M and produces a witness wit, € W.

o Verify(x,w,,c): This algorithm is run by any third party. It takes as input an element x €
M, a witness witz, and an accumulation value Accx, and it outputs “mem/non-mem/L”.

Definition 9 (Correctness) The correctness of a universal accumulator scheme requires that
for valid auxp; & Setup(1*), X C M, and x € M, the following holds true:

mem, ifeeX
Verify(z, WitGen(x, X, auxys), Accumulate(X, auxys)) = ¢ non-mem, if z € M\X
1, otherwise

Definition 10 (Security) A wuniversal accumulator scheme is called secure if, for all domain
sets M, all A € N, and for all polynomial time (in \) adversaries A, there exists a negligible
function negl(X\) such that:

Plauxys, < Setup(11); (X*, 2* € M, wit,-, wit),.) < A(auxys) | Verify(z*, wity, Accx+)

/

= mem A Verify(z*, wit,., Accx+) = non-mem] < negl(\). (1)

where the probability P[] is computed over the randomness of the algorithms.

3 A Universal Accumulator Scheme via Subset Difference Method

We now present our scheme. The parameters of our scheme involves:

e a security parameter A € N;
e a message set M = {xq,...,2x_1} (we assume N = 2? for some d € N);
e a family H, = {H}, : {0,1}* — {0,1}*} of A-secure collision-resistant hash functions;

The scheme is described as follows:

e SetUp(1*): Given A and M = {x,...,zx_1} as inputs, it proceeds as follows:

Sample a A-secure collision-resistant hash function H = Hy : {0,1}* — {0,1}* € H,.
— Build a binary tree BT, 3 modelling M under H (see Definition 2).
Turn BTg ps into Merkle tree MTg as (see Definition 3).

The algorithm sets auxiliary information auxy;* to MTg s and H. The auxys will be
an implicit input to both Accumulate and WitGen algorithms.

e Accumulate(X C M, auxys): For an arbitrary set X C M, its accumulation value Accx is
generated as follows:

— Let X = {zj,,...,xj_,} for some jo,...,5:—1 € {0,...,N —1}. Using aux, find iy
in 29 < <29 1 (k =0,...,t — 1) such that v;, = H(x;,) € LN(BT4n),
k=0,...,t—1. Set X' = {viy,...,v;,_, } and R' = LN(BT4)\X'.

Run subset cover algorithm (§ 2.2.1) SD.Cover(BTg s, R') on R’ to obtain CVpr.
Suppose CVR/ = {Si17j17 cee ,SZ'TJT}. Set Index(CVR/) = {(il,jl), Ceey (’L'r,jr)}. Clearly,
1<ip,jp <2N —1for 1 <k <r.

For each (ix,ji) € Index(CVgr), get v;,,vj, (with the associated values) from the
Merkle tree MTy ps.

Finally, the accumulation of X is set to:

Accy = {Mem = (viy, ..., i,), Non-Mem = (vj,, .. .,vjr)}.

e WitGen(xz € M, X C M, Accx,auxys): On input = € M, it computes a witness as follows.

— (Case 1) x € X: In this case, a membership witness is issued as follows. As CVp
partitions X', there exists a unique (7,) € Index(CVg/) for which S; ; has a leaf node
v, = H(x), where 2¢ < p < 29+1 The membership witness is set to the pseudo path
from v, to v; as follows:

'The auxiliary information is to be stored by the accumulator manager who issues accumulator values and
generates membership witnesses. The aux is not used to verify correctness of accumulation values nor to check
the validity of membership witnesses.

wit, = PP'U;,%UZ' = ((Sibl(vu)a (_1)Ib|5ib|<v”), (Sibl(prnt(v,,)), (—1)Ib|5ib|(Pmt(vu)))’
(sbl(prnt(prnt(1,))), (—1) Bt .., (), (1))),

where nc,, (v;) is the children of v; which is not on the exact path from v; to v,, and
Ibl, denotes the label of the node v.

— (Case2) x € M\X: In this case a non-membership witness is issued as follows. There
exists a unique S; j € CV g such that 7} has the leaf node v, = H(x), where 2¢ < v <
24+1 and LN(7;) N X’ = ¢. The non-membership witness is set to the pseudo path
from v, to v; as follows:

wit, = PPy, .y, = ((sibl(v,,), (—1)"hicon) (sibl(prnt(v,)), (—1)"Plbiemn),

(sibl(prnt(prnt(vy))), (_1)|b|sibl(prnt(prnt(vy))))’ . (nCvU (Uj), (_1)Ib|nva(Uj))>’

where nc,, (v;) is the children of v; which is not on the path from v; to v,, and Ibl,
denotes the label of the node v.

e Verify(z,wit,, Accx): Suppose, wit, = ((UQZ,TZ),(’ng_l,Tg_ﬂ,...,(Ugl,Tl)),g < d. The

verification algorithm proceeds as follows: Let V; = H(x). It computes the exact path

from V; to a node in Mem/Non-Mem as follows. Recursively compute V;’s, i =¢—1,...,0,
the internal nodes on the exact path from V; to this node as follows:

V: = { H(‘/jH»la/U@H_l) Ti+1 = -1
‘ H(vai+17 ‘/;,-I—l) Ti+1 — 1

Thus, EPy, v, = (Vi, Vi1, ..., Vi, Vo). The algorithm finally outputs “mem” /“non-mem” /“L”
as follows:

— Case 1: Vy = v;, € mem for some kin 1 < k <.

1, if 4 inl<n</{-1withV, € -
Output — if 3 ann 1.n <n< wi » € non-mem 2)
mem, otherwise
— Case 2: Vy = vj, € non-mem for some kin 1 <k <.
1, ifda inl <np</{-—1with V,, € mem
Output = ' o - = W g (3)
non-mem, otherwise

— Output L, otherwise.

A toy example describing an instance of our scheme is discussed in Figure 3.

3.1 Security
Theorem 1 For all domain sets M, all A € N, and for all polynomial time (in \) adversaries
A, there ezists a negligible function negl(\) such that:
Plauxys, « Setup(11); (X* C M, z* € M, wity~, wit.) < A(auxyy) | Verify(z*, wity~, Accx+)
= mem A Verify(z*, wit,., Accx+) = non-mem| < negl()).

where the probability P[-] is computed over randomness in the Setup algorithm.

v10||v11 v12Hv13

AN A

vg = Vg = v10 = v11 = V12 = V13 = V14 = V15 =

H (o) H(21) H () H(x3) H(24) H (5) H () H(z7)

Figure 3: A Toy Example: (1) SetUp: For M = {zy, ..., 27}, construct the Merkle tree MT 4 5 under
H as above. (2) Accumulate: Let X = {x1,z2, 26, 27}. Compute R’ = LN(BT3)\X’ = {vs,v11, v12,v13},
where X' = {H(z) | € X}. The color filled nodes denote the Steiner tree STg/ induced by R’.
Run SD.Cover(BT3, R’) to obtain CVgrr = {S4s,S55.11,53,6}. The accumulation of X is set to Accy =
{Mem = (v4, v5,v3), Non-Mem = (vs,v11,v6)}. (3) WitGen: Membership witnesses to z1,x2,z¢ and 7
are given by wity, = (vs, (—=1)%), wity, = (v11, (=1)M), wity, = ((v15, (—1)'®), (v6, (—=1)%)) and wit,, =
((v14, (=1)™), (vg, (—1)5)) respectively. Non-membership witness to zo,zs, 4,25 are given by wit,, =
(vg), wity, = (1)11)7 wit,, = (’U13, (—1)13) and wit,, = (1112, (—1)12) respectively. Note that, all witnesses
are strictly smaller than the logarithmic height d = 3. (4) Verify: On input (xq,wit,, = (vs,1), the
verification step outputs mem by checking that H(vs, H(z1)) = H(vs,v9) = v4 € mem and EP,,_,,, =
(vg,v4) has no internal nodes on it from Non-Mem. Similarly, Verify(xg,wit,, = ((v15,—1), (v, 1))
outputs mem as H(vg, H(H (z4),v15)) = H(ve, H(v14,v15)) = H(vg,v7) = v3 € Mem and EPU14—>U3 =
(v14,v7,v3) has not internal nodes coming from Non-Mem. Where as, Verify(z,, wit,, = (vi3, (—1)'?)
outputs non-mem as H(H(x4),v13) = H(v12,v13) = v¢ € Non-Mem and EP, , ,,, = (v12,vs) has no
internal nodes on it from Mem. Similarly, Verify(xo, wit,, = (vs)) outputs non-mem as H(xo) = vs €
Non-Mem.

Proof: An immediate way to attack the scheme is when the adversary can find a pair of elements
x1,x2 € M such that H(z1) = H(z2). It can then choose an X* C M such that z; € X* and
x9 € M\ X*. It finally sets * = 1, membership witness wit,» to the membership witness wit,
for z1, and non-membership witness wit,. to the non-membership witness wit,, for z5. Clearly,
Verifiy(x*, witg+, Accx+) = Verifiy(z1, wit,,, Accx+) = mem, and Verify(z*, wit,., Accx~) = Verify
(21, witg,, Accx+) = non-mem. But the probability that adversary can find such a collision is
negligible due the collision resistant property of the underlying hash family. Therefore, except
a negligible probability, we assume that for every x1,x9 € M, x1 # xo implies H(x1) # H(x2).
We now show that, for any x € M, X C M, an adversary cannot simultaneously produce both
membership and non-membership witnesses. The proof below considers the following two cases.

Casel: Assume z € X. Thus H(z) € X'. As CVg partition X', there exists a unique
Sij € CVgp such that H(z) € S;; = LN(T;\T;). Therefore a valid membership witness for
r exists and it is equal to PPg(;)_,,, where v; is the root node for subtree 7T; (see Figure 4).
We now show that a non-membership witness for x cannot be issued simultaneously. Assuming
otherwise, let wit}, be such that Verify(z, wit},, Accx) = non-mem. This implies wit}, = PP ;) ., ,
where v, € Non-Mem and EP(,)_,, doesn’t have any internal node belonging to Mem. Clearly,
k p> i. Therefore k < i. But, this implies that the exact path EPy,),,,, computed using
PP H(2)—v,, must contain v; as an internal node. This is true as H(x) is a leaf node of T;. This
is a contradiction as v; € Mem and therefore Verify(x, wit),, Accx) will output L.

Case2: Assume x € M\ X. There exists a unique S; ; € CV s such that H(z) is the leaf node
of Tj and LN(T;) N X’ = ¢. Therefore a valid non-membership witness for exists and it is equal
to PP H(z)—v;» Where vj is the root node for subtree T;. We now show that a membership witness

o)
o

‘ i
S g
S/ ’
/ @ :
J

Figure 4: Casel

for x cannot be issued simultaneously. Assuming otherwise, let wit, be a membership witness for
x. This implies wit; = PPg(;),, , where vy € Mem and the exact path EPg(;),,, doesn’t have
any internal node belonging to Non-Mem. Clearly, k¥ = ¢ will not work. For any other choice,
k¥ jas LN(T;) N X’ = ¢. Therefore k < j. But, this implies that the exact path EP ;) ,
computed using PP g(;)_,, , must contain v; as an internal node. This is true as H(z) is a leaf
node of T;. This is a contradiction as v; € Non-Mem and therefore Verify(x, wit,, Accx) will
output L.

3.2 [Efficiency

The primary motivation behind this work is to find a way that takes us beyond the logarithmic
size bottleneck for witnesses, a typical for Merkle tree based accumulator schemes. First, unlike
the existing Merkle tree based schemes, we have elements admitting different witness sizes. In
particular, assuming Accx = {Mem = (v;,,...,v;),Non-Mem = (vj,,...,v;)}, all members
in X NS, ; admit witnesses of size d — r, where 2" < 7, < 2rt1 _ 1. Similarly, the witness
size for non-members under Tj, is d — s < d — r, where 2° < ji < 25T1 — 1. Clearly, Max =
max{size(wit,) | z € M} < d. For S;, j,, closer the node v;, is to the root, greater is the witness
size for members in S; ;. The node v;, gets closer to the root only if the portion X N S;, j, is
contiguous. For randomly selected X C M, the probability is exponentially low for X to have
larger contiguous subsets. Smaller contiguous subsets X N S;, j, lead to near constant witness
sizes for members in S;, j, . However, the decrease in witness size is achieved at a cost that affects
accumulation size. As noted in Theorem 2, for a random set X of size r, the number of sets in
CVp is roughly 1.25r, which implies |Accx| = [Mem| + |[Non-Mem| ~ 2.5r. One might conclude
if this is worse than that of a trivial solution for accumulators, i.e., for X = {x1,...,2,}, set
Accx = {H(x1),...,H(zy)}; and identities themselves constitute witnesses. But, this trivial
solution works for accumulators that only output membership witnesses. If this trivial solution
is to be extended for a universal accumulator, the accumulation size will directly depend on
|IM| (Accx ={H(z) | x € X}U{H(x) | € M\X}) and not on X, and therefore not work.
Also, in addition, one discards the trivial solution as it doesn’t go well in keeping basic privacy
properties. For example, the trivial system reveals the size of X, and also Accx is vulnerable to
offline dictionary attacks as it holds H(z)’s as it is.

10

4 Conclusions

In this work, we have proposed a Merkle tree based static universal accumulator scheme as-
suming only collision-resistant hash functions exists. Our scheme achieves a tradeoff between
accumulation size and witness size. Such a tradeoff for Merkle tree based accumulators was not
known to exist earlier. The proposed scheme used a well known subset covering technique called
the Subset Difference method to the setting of Merkle trees to achieve this tradeoff. We found
that the problem of achieving a trade off between accumulation and witness size is not easy. We
consider our proposed solution to be a stepping stone in this direction for a better tradeoff.

References

[ABC+12]

[AN11]

[BC14]

[BAM93]

[BLLOO]

[BLLOZ]

[BP97]

[CF13]

[CHKO12]

[CJ10]

[CKS09]

Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi Shelat, and
Brent Waters. Computing on authenticated data. In TCC, volume 7194 of Lecture
Notes in Computer Science, pages 1-20. Springer, 2012.

Tolga Acar and Lan Nguyen. Revocation for delegatable anonymous credentials. In
PKC, volume 6571 of LNCS, pages 423—-440. Springer, 2011.

Dan Boneh and Henry Corrigan-Gibbs. Bivariate polynomials modulo composites
and their applications. In Palash Sarkar and Tetsu Iwata, editors, ASTACRYPT,
volume 8873 of Lecture Notes in Computer Science, pages 42—62. Springer, 2014.

Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized
alternative to digital sinatures (extended abstract). In FUROCRYPT, volume 765
of Lecture Notes in Computer Science, pages 274—285. Springer, 1993.

Ahto Buldas, Peeter Laud, and Helger Lipmaa. Accountable certificate management
using undeniable attestations. In ACM CCS, pages 9-17, 2000.

Ahto Buldas, Peeter Laud, and Helger Lipmaa. Eliminating counterevidence with
applications to accountable certificate management. Journal of Computer Security,
10(3):273-296, 2002.

Niko Bari and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In EUROCRYPT, volume 1233 of Lecture Notes in Computer
Science, pages 480-494. Springer, 1997.

Dario Catalano and Dario Fiore. Vector commitments and their applications. In
PKC, volume 7778 of Lecture Notes in Computer Science, pages 55—72. Springer,
2013.

Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo. Strong ac-
cumulators from collision-resistant hashing. International Journal of Information
Security, 11(5):349-363, 2012.

Sébastien Canard and Amandine Jambert. On extended sanitizable signature
schemes. In CT-RSA, volume 5985 of Lecture Notes in Computer Science, pages
179-194. Springer, 2010.

Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based on
bilinear maps and efficient revocation for anonymous credentials. In PKC, volume
5443 of Lecture Notes in Computer Science, pages 481-500. Springer, 2009.

11

[CL02]

[DKNS04]

[DTO8]

[GOP*16]

[GTHO2]

[JS15]

[Lip12]

[LLNW16]

[LLX]

IMGGR]

[Ngu05]

[NNLO1]

[Nyb96]

[PS14]

[TX03]

Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In CRYPTO, volume 2442 of Lecture
Notes in Computer Science, pages 61-76. Springer, 2002.

Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup. Anonymous
identification in ad hoc groups. In FUROCRYPT, volume 3027 of Lecture Notes in
Computer Science, pages 609-626. Springer, 2004.

Ivan Damgard and Nikos Triandopoulos. Supporting non-membership proofs with
bilinear-map accumulators. IACR Cryptology ePrint Archive, 2008:538, 2008.

Esha Ghosh, Olga Ohrimenko, Dimitrios Papadopoulos, Roberto Tamassia, and
Nikos Triandopoulos. Zero-knowledge accumulators and set algebra. In ASTACRYPT,
volume 10032 of LNCS, pages 67-100, 2016.

Michael T. Goodrich, Roberto Tamassia, and Jasminka Hasic. An efficient dynamic
and distributed cryptographic accumulator. In ISC, volume 2433 of LNCS, pages
372-388. Springer, 2002.

Mahabir Prasad Jhanwar and Reihaneh Safavi-Naini. Compact accumulator using
lattices. In SPACE, volume 9354 of LNCS, pages 347-358. Springer, 2015.

Helger Lipmaa. Secure accumulators from euclidean rings without trusted setup. In
ACNS, volume 7341 of LNCS, pages 224-240. Springer, 2012.

Benoit Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge ar-
guments for lattice-based accumulators: Logarithmic-size ring signatures and group
signatures without trapdoors. In EUROCRYPT, volume 9666 of LNCS, pages 1-31.
Springer, 2016.

Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with efficient non-
membership proofs. In ACNS, Lecture Notes in Computer Science.

Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anony-
mous distributed e-cash from bitcoin. In IEEE Symposium on Security and Privacy.
IEEE Computer Society.

Lan Nguyen. Accumulators from bilinear pairings and applications. In CT-RSA,
volume 3376 of Lecture Notes in Computer Science, pages 275-292. Springer, 2005.

Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for
stateless receivers. In Joe Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in
Computer Science, pages 41-62. Springer, 2001.

Kaisa Nyberg. Fast accumulated hashing. In FSE, volume 1039 of Lecture Notes in
Computer Science, pages 83-87. Springer, 1996.

Henrich Christopher Pohls and Kai Samelin. On updatable redactable signatures. In
ACNS, volume 8479 of Lecture Notes in Computer Science, pages 457—475. Springer,
2014.

Gene Tsudik and Shouhuai Xu. Accumulating composites and improved group sign-
ing. In ASTACRYPT, volume 2894 of LNCS, pages 269-286. Springer, 2003.

12

[WWPO08] Peishun Wang, Huaxiong Wang, and Josef Pieprzyk. Improvement of a dynamic
accumulator at ICICS 07 and its application in multi-user keyword-based retrieval
on encrypted data. In APSCC, pages 1381-1386. IEEE Computer Society, 2008.

13

