A concrete instantiation of Bulletproof zero-knowledge
proof

Andrey Jivsov
crypto@brainhub.org

Abstract. This work provides an instantiation of the Bulletproof zero-knowledge algorithm in modulo
prime number fields. The primary motivation for this work is to help readers understand the steps of
the Bulletproof protocol.

1 Introduction

This work provides specific steps suitable for an implementation of the work by Biinz et al.
[1]. We work around the following difficulties:

— Lack of concise protocol steps. Multiple alternative steps are provided in [1].

— It is difficult to follow the entire algorithm due to its complexity. A cookbook-like steps
are desired.

— Some quantities are left unspecified, e.g. they require solving equations.
— Only an interactive version is defined.

— Arithmetic in the composite order of a group G is undefined, yet the algorithm is defined
via exponentiation modulo prime number, a group of composite order.

— Random quantities should be derived via KDF for the benefit of low-entropy environments
and easier testing.

This work condenses 45 pages of [1] into an algorithm that should be easier to understand
to an implementer and easier to maintain in the future.

2 Notations

We follow notations in [1] with following additional notations.

|| denotes concatenation. a < a - b means that after this line the value of a equals to the
previous value of a times b. This is a local operation limited to the relevant function, e.g. we
don’t change the global a.

G™ is used to denote "positive” half of elements in G, as defined in sec. 3. We use G
for comparison or for public elements in G.

2
3 Group operations in G modulo safe prime

In this section we clarify details for the operations in G.

We instantiate G as operations modulo safe prime ¢. The p used with [1]is p = (¢—1)/2,
and is a prime as well.

Many intermediate steps in Bulletproof algorithm are exponentiations of elements in
G. For example, for a ¢ € G, we might need to calculate ¢g®*. How is the operation a - b
performed in this example, given that the group order of G is 2p, a composite number? In
general, some operations, such as a multiplicative inverse, are undefined in the group mod
2p. Some software libraries, such bn. js [2], and methods, such as Motgomery multiplication
[3], are unsuitable for an even modulo arithmetic.

We adopts the following approach, similiar to [4].

All operations on the exponenet are performed modulo p. This reduction of an exponenet,
v.s. 2p, affects the resulting elelement in G in such a way that it loses the sign of the element in
G, in other words, we lose track of whether the result should have been x or —x = g—1z € G.

To see why, consider that Va,y : x > y (mod 2p) we must have z = p + y as the only
choice. Observe that g? = {1, —1} (mod ¢) € G, which explains the above reference to the
sign.

We next define the subgroup G* of G that we will use shortly:

T={VaeG:z<p} (1a)

We next define the mapping G — G via canonical(-) operation.

A canonical representation of any x € G, via a mapping G — G, is defined as follows:
Ve e G

. N ifr<(¢g—1)/2=p

canonical(x) = {q 2 otherwise (2a)

The canonical() operation returns the smallest element of two, which can be naturally
encoded in a fewest number of bits. The following properties of canonical() follow from the
above definitions. For any x,a,b,c € G:

canonical(x) € G* (3a)
canonical(x) = canonical(—x) (3b)
canonical(x) <z < p<q (3¢c)
Vx < p: canonical(x) = z (3d)
canonical(canonical(a) - canonical(b)) = canonical(a - b) (3e)
canonical(canonical(a) - canonical(b) - canonical(c)) = canonical(a - b - ¢) =
c

anonical(canonical(a - b) - ¢)) (3f)

4 The algorithm

In the following algorithm that is an adaptation of [1] the Prover convinces the Verifier that
it knows a public commitment V' to a secret value v, and provides a proof that 0 < v < 2™
n must be a power of 2.

We are achieving two main properties:

— Homomorthic property. For two pairs of (commitment, secret value), (V,,v,) and
(Vb,v), we can generate the commitment to the sum of secret values v, + v, simply as
Vo - V.

— Protection from negative secret values. The main contribution of [1] and this work
is to provide a publicly verifiable statement that a secret value v is non-negative and less
than a specified maximum.

4.1 KDFs

We generate multiple pseudo-random values in this algorithm. There are two sets of these
values: private and public.

i is the public identifier of the secret, an integer, as shown in the table 1. The size of the
field that encodes ¢, j, and k is 1 byte.

H256 is a cryptographic hash function with 256-bit output, such as SHA2-256 or Kec-
cak256.

The size of the field that encodes any element in Z, is [log2(p)/8] bytes. The element is
stored in the big-endian format.

We use the following helper function to build KDFs.

KDFlInternal(s, i, j) :
if(loga(s) > 256) : s = H256(s)
K=s®(i -2%dj
m = [logs(p)/256]
VEk € [1,m] : r = H256(K||1)||...H256(K||k)...||H256 (K ||m) mod p

return r

The lowest bit of H256(K||m) is the lowest bit of the value before reduction mod p.

The private values are generated from the 256-bit seed SeedPriv with two KDF functions
KDFPrivl and KDFPrivN, as shown next. These functions return values in the range r : 0 <
r<p.

SeedPriv & 12° Prover ganerates this seed

KDFPrivl(i) = KDFInternal(SeedPriv, i, 0) return an integer € 7Z,

KDFPrivN(z,n) :
Vj € [1,n] : r; = KDFInternal(SeedPriv, i, j)

return r = (ry, 7y, ...1,) return a vector € Z,

Public values are generated with functions KDFPubl and KDFPubN as follows. These
functions return values r in the range 0 < r < p.

KDFPubl(s,q) :
r = KDFInternal(s, i, 0)
re|r/2]-2+1 eliminate a 0

return r € Z;”

KDFPubN(s, i,n) :
Vj € [1,n] : r; = KDFInternal(s, , j)
Viell,n]:rj« |rj/2]-2+1 eliminate a 0

return r = (ry, 7y, ...1,) return a vector € Z,"

Table 1. Identifier values for pseudo-random values.

Private ID Value Use
BULLETPROOF_ID_H 1 Generator h
BULLETPROOF_ID_U 2 Generator u
BULLETPROOF_ID_VG 3 Generator g
BULLETPROOF_ID_VH 4 Generator h
BULLETPROOF_ID_RCPT_GAMMA 5 Pedersen blinding value

6

7

8

BULLETPROOF_ID_RCPT_MASK Secret mask to hide v
BULLETPROOF_ID_ALPHA Blinding value a
BULLETPROOF_ID_SL Exponenent sy,

BULLETPROOF_ID_SR 9 Exponenent sr
BULLETPROOF_ID_RHO 10 Exponenent p
BULLETPROOF_ID_Y 11 Base for vector y™
BULLETPROOF_ID_Z 12 z to construct r(X)
BULLETPROOF_ID_TAU1 13 Blinding for ¢;
BULLETPROOF_ID_TAU2 14 Blinding for ¢
BULLETPROOF_ID_X 15 Sample value z for I(X),r(X)

BULLETPROOF_ID_INNER_ARG XU 16 Exponent challenge for u in InnerProductArgumentProver
BULLETPROOF_ID_INNER_ARG.VX 17 Vector x used as challenges in InnerProductArgumentProver

4.2 Public parameters

We first define public parameters.

Parameters:

p — prime, such that ¢ = p- 2+ 1 is also prime

g,h,u;g, h 5 generators of unknown relationship to each other € G; G"

g=3

h = KDFPub1(¢, BULLETPROOF_ID_H)
u = KDFPub1(¢, BULLETPROOF_ID_U)
g = KDFPubN(q, BULLETPROOF_ID_VG)
h = KDFPubN(q, BULLETPROOF,ID,VH)

€eG
eG
eG"
eG"

(7a)

p is large subgroup size. ¢ is the prime used for modulo reduction of elements in G. By
construction, 5 generators above or their scalars, as appropriate, are less than p.

4.3 Prover steps

v is low-entropy private value. Prover performs the following steps to produce V', a hiding

commitment to it, and a proof that 0 < v < 2™.

v = KDFPriv1(BULLETPROOF_ID_GAMMA)
V=n"g"
M = H256(p||g|1]|g][h][V)
ar, (ap,2") =wv
ap=ar — 1"

« = KDFPriv1(BULLETPROOF_ID_ALPHA)
A= hagaLhaR

s;, = KDFPrivN(BULLETPROOF_ID_SL, n)
sr = KDFPrivN(BULLETPROOF_ID_SR, n)

p = KDFPriv1(BULLETPROOF_ID_RHO)

S = hPgSLhse

t + H256(M||A||S)

y = KDFPub1(¢,BULLETPROOF_ID_Y)

z = KDFPubl (¢, BULLETPROOF_ID_Z)
I(X)=(ap—2z-1")4+s;- X
r(X)=y"o(ag+2-1"+sp-X)+2°-2"
tX) = UX),r(X))y =tog+t1- X +ta- X?

lp=a;, —2-1"

11:SL

a secret € Zj,

comm. to v, € G

comm. to pub. params and V'

Compose ar, € Z;
€7z,
€ Zy

comm. to a;, and ag, € G
€Z,
€7,
€ Z,

comm. to sy,sg, € G
transcript

ez,

p
€ Z,
€ Z,[X]
€ Zy[X]
€ Zp[X]
free term, see (8h), € Z

term at X, see (8h), € Z;

—~
co
53

~—

—~
0 8]
o
~

ro=y"o(agr +z-1") 4+ 2%. 2"

=y"osg
to = (lo, To)
t1 = (li,ro) + (lo,r1)
ty = (Li,ry)

71 = KDFPrivl(BULLETPROOF_ID_TAU1)
Ty = KDFPriVl(BULLETPROOF,ID,TAUQ)
T = g
Ty = g'2h™
t < H256(M||A||S||T1||T2)
x = KDFPubl(¢, BULLETPROOF _ID X)
1=1(X=2)=1y+s, =z

r=r(X=z)=ro+r; -z

A:<l>r>
T =To @+ Tz + 2y
p=a+p-x

Wo=h""Vie 1],
W = (h, b By, hT) =he
P/:gl_(h/)r

Seed = t « H256(M||A||S||T1| T3] [£]| 72| 12)

a, b, L17 .. Llog2 Rl, ceey Rlogz(n) -

free term, see (8i), € Z;
term at X, see (8i), € Z,
€Z,

€Z,

€7,

€Z,

€7,

Pedersen comm. to ¢, € G
Pedersen comm. to t9, € G
transcript

€ Z,

Evaluate (8h) at =, € Z,
Evaluate (8i) at x, € Z;
€7,

blinding for #; see (8a), € Z,
a, p blind A, S; (8d), (8¢),€ Z,
€eG

eG"

€eG

compete transcript and Seed

(80)

a,b € Zy,rest € G

InnerProductArgumentProver(g, h', u, P', 1,1, r, Seed)

Finally, Prover sends the following quantities to the Verifier:

(9a)

V see (8b),e G

A, S, see
11,15, see

a, b7 L17 .. Llogg

8j), (8

t, 7., see (8m) - (8
Rl, . 7Rl092 (n)

, (8e), €

k), € G
n), €z
see (9a)

4.4 Verifier steps

Verifier starts with the input received from the Prover, as specified at the end of the sec. 4.3,
copied immediately below.

v
Aa Sa
T17T27

T
a, b7 L17) Llogg(n)7 R17 ooy RZOQQ(n)

Verifier calculates the following pseudo-random values from the above public values:

Ty, 1 -y Tlogy(n) 85 (15a), (15b)

Verifier performs the following steps:

50,) = (= =) (17,37 — (17, 2) =AYy -2)

g_£+5(y’z)h_TIVZZT$Tx ; 1
bi,) = 1 if the (loge(n) — j)th bit of i —11is 1
“J) =\ =1 otherwise

equiv. to (14a) (13a)

Vi€ [1,n] do
loga(n)
H x; ld) € Z,
li=s-a+z € Zy
A CEN BN B ez,
done
1= (l,....0») €7,
r= (1., €Z,
loga(n -1
g‘hru%'@b—f)hm—ls—f(H Ly R) 21 (13b)

For higher performance (13a) and (13b) should be be combined and then the calculation
performed via multi-exponentiation.

8

4.5 Verifier steps for a given {1, r}. Debug only.

This section exists for implementation testing. It offers an easier method to check that
0 <wv < 2" based on 1, r directly, without InnerProductArgumentProver.

0y, z) = (= = 2%) - (1",y") — 2°(1",2") = (2 =27 nz:l?/ — 22" - 1),€Z,
i=0
gthm Z VT o) TE . TS check that £ = t(z) = tg + t1x + tox® (14a)
P=A-5%.g % (W)Y +"2 compute a commitment to [(x),r(x),€ G
PEn-g (h")* check that [(x),r(z) are correct
i (Lir) check that # is correct, € Z,

5 Inner-Product Argument for the Prover

This section defines a subroutine used in the main algorithm in sec. 4.

The following InnerProductArgumentProver is an adaptation of Protocol 1 and Protocol
2 from [1], limited to the prover. We removed recursion, merged two protocols, removed
steps not used by the prover, made the protocol non-inteactive, and introduced additional
quantities to improve readability, such as (15d) - (15e).

n > 2, which is also a power of 2, is required. The parameters have following membership:
g.heG", PeG,ceZyabelZ,

InnerProductArgumentProver(g, h, u, P, ¢, a, b, Seed) :

x,, = KDFPub1(Seed, BULLETPROOF_ID_INNER ARG XU) € Z, (15a)
P+ P-u™° reassign
u — ut reassign
x = KDFPubN(Seed, BULLETPROOF _ID_INNER_ARG_VX) € Z;" (15b)

Vi € [1,logz2(n)] do :
n' =n/2 {n/2,n/4,..1} (15c)

(az,agr) = a = (ain], aw)) split in half (15d)
(br,bg) =b = (bimy, b)) split in half
(. 8r) = & = (8], 8n')) split in half
(hp,hg) =h = (hpny, hyy) split in half (15e)
cr = (ar, bg) €Z,

CR = (aR, bL> c Zp

Li = g2 hbeyer G
R; = ngth uR eG
z; ! . . .

g g, ogp reassign; size is halved

h«+ hj o h?l reassign; size is halved

a<ap-x;+ag- xi_l € Ly reassign; size is halved

b <+ by - a:l-_l +br-2; € Z, reassign; size is halved
done
Return

a,b single element in a, b, € Z,

Ll;"'7Llog2(n) eG

Ry, ..., Riogy(n) cG

,7;2 x,_z
Internal consistency check: g®htu® = P Hé‘fi(") LR, immediately before the Return
statement.

6 Remaining work

— Describe the algorithm in the elliptic curve group with prime group order (beneficial for
storage efficiency and simpler).

— Expand to aggregation of proofs and verifies (sec 4.3 and 6.2 of [1]).

— Add multi-exponentiation (sec. 3.1 of [1]).

— Add multi-exponentiation to aggregated proofs (sec 6.2 of [1]).

References

1. Bunz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short Proofs for Confidential
Transactions and More. Cryptology ePrint Archive, Report 2017/1066 (2017) https://eprint.iacr.org/2017/
1066.

2. Indutny, F.: BigNum in pure javascript. GitHub source code (2019) https://github.com/indutny/bn. js/.

3. Montgomery, P.L.: Modular multiplication without trial division. Math. Comp. 44, 519-521 (1985) https://doi.
org/10.1090/50025-5718-1985-0777282-X.

4. Jivsov, A.: Compact representation of an elliptic curve point. Internet draft (2014) https://tools.ietf.org/
id/draft-jivsov-ecc-compact-05.html.

https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/1066
https://github.com/indutny/bn.js/
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://tools.ietf.org/id/draft-jivsov-ecc-compact-05.html
https://tools.ietf.org/id/draft-jivsov-ecc-compact-05.html

	Introduction
	Notations
	Group operations in G modulo safe prime
	The algorithm
	KDFs
	Public parameters
	Prover steps
	Verifier steps
	Verifier steps for a given {l, r}. Debug only.

	Inner-Product Argument for the Prover
	Remaining work

