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Abstract

An intensive effort by the cryptographic community to minimize the round complexity of
secure multi-party computation (MPC) has recently led to optimal two-round protocols from
minimal assumptions. Most of the proposed solutions, however, make use of a broadcast channel
in every round, and it is unclear if the broadcast channel can be replaced by standard point-
to-point communication in a round-preserving manner, and if so, at what cost on the resulting
security.

In this work, we provide a complete characterization of the trade-off between number of
broadcast rounds and achievable security level for two-round MPC tolerating arbitrarily many
active corruptions. Specifically, we consider all possible combinations of broadcast and point-to-
point rounds against the three standard levels of security for maliciously secure MPC protocols,
namely, security with identifiable, unanimous, and selective abort. For each of these notions and
each combination of broadcast and point-to-point rounds, we provide either a tight feasibility or
an infeasibility result of two-round MPC. Our feasibility results hold assuming two-round OT
in the CRS model, whereas our impossibility results hold given any correlated randomness.
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1 Introduction
Round complexity is an important efficiency measure of secure multi-party computation protocols
(MPC) [67, 40], with a large body of research focusing on how it can be minimized. The “holy grail”
in this thread has been two-round protocols, as single-round MPC for a large set of functions cannot
be achieved [43]. The first solutions to this problem were based on strong cryptographic assumptions
(FHE [5, 59], iO [34], witness encryption [42], and spooky encryption [26]), whereas more recent
results showed how to build two-round MPC resilient to any number of active corruptions from
standard assumptions, such as two-round oblivious transfer (OT) [33, 10, 11] or OT-correlation
setup and one-way functions (OWF) [35] (we discuss the state of the art in Section 1.1).

The advantage of such two-round MPC protocols, however, is often dulled by the fact that
the protocols make use of a broadcast channel in the case of malicious adversaries. Indeed, in
practice such a broadcast channel is typically not available to the parties, who instead need to
use a broadcast protocol over point-to-point communication for this task. Classical impossibility
results from distributed computing imply that any such deterministic protocol tolerating (up to)
t corruptions requires t+ 1 rounds of communication [28, 27]; these bounds extend to randomized
broadcast, showing that termination cannot be guaranteed in constant rounds [18, 52]. Even
when considering expected round complexity, randomized broadcast would require Ω(n/(n − t))
rounds [30] when the adversary can corrupt a majority of parties (i.e., t ≥ n/2), and expected
two rounds are unlikely to suffice for reaching agreement, even with weak guarantees, as long as
t > n/4 [24] (as opposed to expected three rounds [58]). Furthermore, while the above lower
bounds consider broadcasting just a single message, known techniques for composing randomized
broadcast protocols with non-simultaneous termination require a multiplicative blowup of c > 2
rounds [55, 8, 53, 23, 21].

The above state of affairs motivated a line of work investigating the effect in the round com-
plexity of removing the assumption of broadcast from two-round MPC protocols [49, 51, 60, 2, 4].
In order to do so, however, one needs to settle for weaker security definitions. In other words, one
needs to trade off security guarantees for lower round complexity.

In this work, we fully characterize the optimal trade-off between security and use of broadcast
in two-round MPC protocols against a malicious adversary who corrupts any number of parties:
In a nutshell, for each of the three standard security definitions that are achievable against such
adversaries in the round-unrestricted setting—namely, security with identifiable, unanimous, or
selective abort—we provide protocols that use the provably minimal number of broadcast rounds
(a broadcast round is a round in which at least one party broadcasts a message using a broadcast
channel). Our positive results assume, as in the state-of-the-art solutions, existence of a two-round
oblivious transfer (OT) protocol in the CRS model (alternatively, OT-correlation setup and OWF),
whereas our impossibility results hold for any correlated randomness setup.

1.1 Background

Starting with the seminal works on MPC [67, 40, 9, 17, 65], a major goal has been to strike a
favorable balance between the resources required for the computation (e.g., the protocol’s round
complexity), the underlying assumptions (e.g., the existence of oblivious transfer), and the security
guarantees that can be achieved.

Since in the (potentially) dishonest-majority setting, which is the focus in this work, fairness
(either all parties learn the output or nobody does) cannot be achieved generically [19], the standard
security requirement is weakened by allowing the adversary to prematurely abort the computation
even after learning the output value. Three main flavors of this definition—distinguished by the
guarantees that honest parties receive upon abort—have been considered in the literature:
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1. Security with identifiable abort [50, 20] allows the honest parties to identify cheating parties
in case of an abort;

2. security with unanimous abort [40, 29] allows the honest parties to detect that an attack took
place, but not to catch the culprits; and, finally,

3. security with selective (non-unanimous) abort [41, 49] guarantees that every honest party either
obtains the correct output from the computation or locally detects an attack and aborts.

We note in passing that the above ordering reflects the strength of the security definition, i.e.,
if a protocol is secure with identifiable abort then it is also secure with unanimous abort; and if a
protocol is secure with unanimous abort, then it is also secure with selective abort. The opposite
is not true in general.

A common design principle for MPC protocols, used in the vast majority of works in the
literature, is to consider a broadcast channel as an atomic resource of the communication model. The
ability to broadcast messages greatly simplifies protocols secure against malicious parties (see, e.g.,
the discussion in Goldreich’s book [39, Sec. 7]) and is known to be necessary for achieving security
with identifiable abort [20]. Indeed, broadcast protocols that run over authenticated channels exist
assuming a public-key infrastructure (PKI) for digital signatures [27], with information-theoretic
variants in the private-channels setting [63]. Therefore, in terms of feasibility results for MPC,
the broadcast resource is interchangeable with a PKI setup. In fact, if merely unanimous abort is
required, even this setup assumption can be removed [29].1

However, as discussed above, in terms of round efficiency, removing the broadcast resource is
not for free and one needs to either pay with more rounds to emulate broadcast [27, 30], or lessen
the obtained security guarantees. However, very few generic ways to trade-off broadcast for weaker
security have been proposed. A notable case is that of Goldwasser and Lindell [41], who showed how
to compile any r-round MPC protocol π that is designed in the broadcast model into a 2r-round
MPC protocol over point-to-point channels at the cost of settling for the weakest security guarantee
of selective abort, even if the original protocol π was secure with unanimous or identifiable abort.
Interestingly, since as mentioned earlier broadcast protocols are expensive in terms of rounds and
communication, most (if not all) practical implementations of MPC protocols use this compiler and
therefore can only achieve selective abort [56, 57, 44, 54, 66, 45].

But even at this security cost, the compiler from Goldwasser and Lindell [41] does not achieve a
round-preserving reduction as it induces a constant multiplicative blowup in the number of rounds.
The reason is that, in a nutshell, this compiler has every broadcast round being emulated by a
two-round echo multi-cast approach, where every party sends the message he intends to broadcast
to all other parties, who then echo it to ensure that if two honest parties received inconsistent
messages everyone can observe. Such a blowup is unacceptable when we are after protocols with
the minimal round complexity of two rounds.

Two-round MPC protocols in the malicious setting were first explored in [37, 38], while recent
years have witnessed exciting developments in two-round MPC [49, 5, 34, 31, 42, 51, 59, 26, 16,
12, 32, 33, 10, 60, 36, 1, 64, 35, 3, 11, 2, 4, 25]. The current state of the art can be summarized as
follows:

Garg and Srinivasan [33] and Benhamouda and Lin [10] showed how to balance between the
optimal round complexity and minimal cryptographic assumptions for MPC in the broadcast
model, by showing that every function can be computed with unanimous abort using two
broadcast rounds, assuming two-round oblivious transfer (OT) and tolerating t < n corruptions.

1In some cases, the PKI assumption can be removed even for the strong notion of guaranteed output delivery,
see [20, 22].
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In the honest-majority setting, Ananth et al. [2] and Applebaum et al. [4] showed that security
with selective abort can be achieved using two point-to-point rounds assuming OWF.
Patra and Ravi [60] showed that in the plain model (without any setup assumptions, such as
a PKI) security with unanimous abort cannot be achieved in two point-to-point rounds, and
even if the first round can use a broadcast channel. As pointed out in [62], the lower-bounds
proofs from [60] do not extend to a setting with private-coins setup.
While advancing our understanding of what kind of security can be achieved in two rounds, the

picture derived from the results above is only partial and does not resolve the question of whether
the feasibility results can be pushed further. For example, is it possible to obtain identifiable abort
via two broadcast rounds for t < n? Is it possible to achieve selective abort via two point-to-point
rounds for t < n? What security can be achieved when broadcast is used only in a single round in
a two-round MPC protocol? This motivates the main question we study in this paper:

What is the tradeoff between the use of broadcast and achievable security
in two-round MPC?

1.2 Our Contributions

We devise a complete characterization of the feasibility landscape of two-round MPC against arbi-
trarily many malicious corruptions, with respect to the above three levels of security (with abort)
depending on availability of a broadcast channel. Specifically, we consider all possible combi-
nations of broadcast and point-to-point rounds—where a point-to-point round consists of only
point-to-point communication whereas in a broadcast round at least one party uses the broadcast
channel—i.e., no broadcast round, one broadcast round, and two broadcast rounds.

Our results are summarized in Table 1. For simplicity we prove our positive results secure
against a static t-adversary, for t < n. Although we do not see a specific reason why an adaptive
adversary cannot be tolerated, treating this stronger case would need a careful modification of
our arguments; we leave a formal treatment of an adaptive adversary as an open question. All
our negative results hold for a static adversary, and hence also for an adaptive adversary, since
the latter is a stronger adversary. We note that due to the ordering in strength of the security
definitions discussed above, any positive (feasibility) result implies feasibility for any column to its
left in the same row, and an impossibility result implies impossibility for any column to its right in
the same row.

rounds security with abort
first second selective unanimous identifiable

BC BC 3 3 GS [33],BL [10] 3 Cor 1.1 ([33, 10])
P2P BC 3 3 Thm 4.1 7 Thm 3.9
BC P2P 3 7 Thm 3.3 7

P2P P2P 3 Thm 4.1 7 Thm 3.3 7

BC - 7 HLP [43] 7 7

Table 1: Feasibility and infeasibility of two-round MPC facing a static, malicious (n−1)-adversary.
Feasibility results hold assuming two-round OT in the CRS model. Impossibility results hold given
any correlated randomness. A corollary with a citation of a paper should be interpreted as corollary
of the results of the paper that was not explicitly stated in the paper.

Next, we give a more detailed description of the results and how they complement the current
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landscape.

Two broadcast rounds MPC. First, as a justification of our search for round-optimal protocols,
we observe that as a straightforward corollary of Halevi et al. [43], we can exclude the existence
of a single-round general MPC protocol—i.e., MPC for any function. This is true for any of the
three security definitions, independently of whether or not the protocol uses a broadcast channel.
We can thus focus our attention to protocols with two rounds.

Let us first consider the case where both rounds use a broadcast channel. A simple observation
reveals that in this case the strongest notion of security with identifiable abort is feasible. Indeed,
the recent results by Garg and Srinivasan [33] and Benhamouda and Lin [10] prove that assuming
two-round OT, every function can be securely computed with unanimous abort, tolerating static,
malicious corruptions of any subset of the parties.2 A simple corollary shows that when starting with
an inner protocol that is secure with identifiable abort (e.g., the GMW protocol [40]), the compiled
protocol will also be secure with identifiable abort. The proof follows directly by inspecting either
one of the proofs of [33, 10]. For completeness, we state this as a corollary below.

Corollary 1.1 ([33, 10]). Assume the existence of a two-round OT protocol secure against a static
malicious adversary in the CRS model and let t < n. Then, every efficiently computable n-party
function can be securely computed with identifiable abort in the CRS model using two broadcast
rounds tolerating a static malicious t-adversary.

This leaves open the cases of both rounds being point-to-point rounds, and of one broadcast
round and one point-to-point round, which constitute our main contributions. Interestingly, in the
latter case the order of the rounds makes a difference on what security can be achieved.

1.2.1 Impossibility results

We start our investigation with proving the lower bounds illustrated in Table 1. Towards this
goal, we describe a simple three-party function which, due to its properties, can be used in all the
associated lower bounds. At a very high level, the chosen function f enjoys two core properties that
will be crucial in our impossibility proofs: First, the function takes two inputs from a dedicated
party, say P3, but in any evaluation, the output depends on only one of these values (which of the
two inputs is actually used is mandated by the input of the other two parties). Second, f has input
independence with respect to P1’s input, i.e., an adversary corrupting P2 and P3 cannot bias their
inputs depending on P1’s input. (See Section 3 for the function’s definition.)

We note in passing that all our impossibility results hold assuming an arbitrary private-coin
setup and are therefore not implied by any existing work. As a result, wherever in our statements
broadcast is assumed for some round, the impossibility holds even if point-to-point channels are also
available in this round. The reason is that as our proofs hold assuming an arbitrary private-coins
setup (e.g, a PKI), the setup can be leveraged to implement secure point-to-point communication
over broadcast (using encryption). Thus, adding point-to-point communication in a broadcast
round cannot circumvent our impossibilities. This is not necessarily the case when no setup is
allowed by the proof, which is an additional justification for proving impossibilities which hold
even assuming setup.

Here is how we proceed in gradually more involved steps to complete the impossibility landscape:
As a first, easy step we show, using the line of argumentation of HLP [43], that our function f is one
of the functions which cannot be computed in a single round even against any one party being semi-
honest. This excludes existence of single-round maliciously secure generic MPC protocol against

2In fact, [10] also requires NIZK, but this assumption can be removed (see [11]).
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dishonest majorities, even if the single round is a broadcast round, and even if we are settling
for security with selective abort and assume an arbitrary correlated-randomness setup (last row in
Table 1).

Unanimous abort requires second round over broadcast. Next, we turn to two-round
protocols and prove impossibility for securely computing f with unanimous abort when only the
first round might use broadcast, i.e., the second round is exclusively over point-to-point (rows 3
and 4 in Table 1). This implies that under this communication pattern, security with identifiable
abort is also impossible. Looking ahead, this impossibility result is complemented by Theorem 4.1
(Item 2), which shows that security with selective abort can be achieved in this setting.

The proof is somewhat involved, although not uncommon in lower bounds, but can be sum-
marized as follows: We assume, towards a contradiction, that a protocol π computing f with
unanimous abort exists. We then look at an adversary corrupting P1 and define a sequence of
worlds in which P1’s second-round messages are gradually dropped—so that in the last world, (the
adversarial) P1 sends no messages to the other parties. By sequentially comparing neighboring
worlds, we prove that in all of them, the parties cannot abort and they have to output the output
of the function evaluated on the original inputs that were given to the parties. However, as in the
last scenario P1 sends no message in the second round, this means that P2 and P3 can compute
the output (which incorporates P1’s input) already in the first round. This enables a rushing ad-
versary corrupting P2 and P3 to evaluate f(x1, x2, x3) on his favorite inputs for x2 and x3 before
even sending any protocol message, and depending on the output y decide whether he wants to
continue playing with those inputs—and induce the output y = f(x1, x2, x3) on P1—or change his
choice of inputs to some x′2 and x′3 and induce the output y′ = f(x1, x

′
2, x
′
3) on P1. This contradicts

the second property of f , i.e., input independence with respect to P1’s input against corrupted P2
and P3.

We note in passing that a corollary of [60, Thm. 5] (explicitly stated in the full version [61,
Cor. 1]) excluded security with unanimous abort for the case of an honest majority, but only for
protocols that are defined in the plain model, without any trusted setup assumptions. Indeed,
as pointed out by the authors in [62], their proof technique does not extend to the setting with
private-coin setup. In more detail, and to illustrate the difference, consider the setting where the
first round is over broadcast (and possibly point-to-point channels) and the second is over point-
to-point. The argument for ruling out unanimous abort in [61, Cor. 1] crucially relies on P3 not
be able to distinguish between the case where P2 does not send messages to P1 (over a private
channel) and the case where P1 claims not to receive any message. However, given a PKI and a
CRS for NIZK, the private channel can be emulated over the broadcast message, and the sender
can prove honest behaviour. In this case, P3 can detect the event where P2 is cheating towards P1
in the first round; hence, P1 and P3 can jointly detect the attack.

Identifiable abort requires two broadcast rounds. As a final step, we consider the case
where only the second round might use broadcast—i.e., the first round is over a point-to-point
channel. In this case we prove that security with identifiable abort is impossible (row 2 in Table 1).
This result, which constitutes the core technical contribution of our work, is once again, comple-
mented by a positive result which shows how to obtain unanimous abort with this communication
pattern (Theorem 4.1). The idea of the impossibility proof is as follows: Once again we start with
an assumed protocol π (towards contradiction) and compare two scenarios, where the adversary
corrupts P1 in the first and P2 in the second. The adversary lets the corrupted party run π, but
drops any message exchanged between P1 and P2 in the first (point-to-point) round. By comparing
the views on the two scenarios we show that aborting is not an option. Intuitively, the reason is
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that identifiable abort requires the parties to agree on the identity of a corrupted party; but the
transcripts of the two executions are identical despite the corrupted party’s identity being different,
which means that if the parties try to identify a cheater, they will get it wrong (with noticeable
probability) in one of the two scenarios.

Subsequently, we compare the world where P2 is corrupted with one where the adversary cor-
rupts also P1 but has him play honestly; the correctness of the protocol (and the fact that the
protocol machines are not aware of who is corrupted) ensures that despite the fact that P1 is cor-
rupted, his initial input will be used for computing the output of the honest party (which recall
cannot abort as its view is identical to the other two scenarios). In this world, P2 sends nothing
to P3 in Round 1, but P1 and P3 exchange their first-round messages. Therefore, a rushing ad-
versary can obtain P3’s second-round message before sending any message on behalf of P2. Using
this information, the adversary can run in its head two executions of the protocol using the same
messages for P3 (and same first-round messages for P1) but on different inputs for P2. This will
allow extracting both inputs of P3, thereby violating the first property of the function discussed
above.

Note that this proof is more involved than the previous one excluding unanimous abort. For
example, while the previous proof merely required the adversary to “bias” the output, the current
proof requires the adversary to extract both inputs of the honest P3; essentially, we use the indis-
tinguishable hybrids to construct an extractor. Indeed, the above is only a sketch of the argument,
and the formal proof needs to take care of a number of issues: First, since an honest P3 can detect
that P2 is cheating, the security definition only guarantees that P3’s output will be consistent with
some input value of P2. In that case, it is not clear that the adversary can have strategies which
yield both inputs of P3, which would exclude the possibility of the above attack. We prove that this
is not the case, and that using the honest strategy, the adversary can induce an execution in which
the different input distributions required by the proofs are used in the evaluation of the function.
Second, in order to extract the two inputs of P3, the adversary needs to know the output as well as
the effective corrupted inputs on which the function is evaluated under our above attack scenarios.
We ensure this by a simple syntactic manipulation of the function, i.e., by requiring each party to
locally (and privately) output its own input as used in the evaluation of the function’s output.

Observe that although our results are proved for three parties, they can be easily extended to
n parties by a standard player-simulation argument [46]—in fact, because our adversary corrupts
2 out of the 3 parties, our result exclude any adversary corrupting t ≥ 2n/3 of the parties.

1.2.2 Feasibility results

Next, we proceed to provide matching upper bounds, showing that security with unanimous abort
is feasible when the second round is over broadcast (even if the first round is over point-to-point),
and that security with selective abort can be achieved when both rounds are over point-to-point
channels. Our results are based on the compiler of Ananth et al. [2], who focused on information-
theoretic security of two-round MPC in the honest-majority setting.3 Ananth et al. [2], initially
adjusted the two-round protocol from [1] to provide information-theoretic security with unanimous
abort in the broadcast model (for NC1 circuits), and then compiled it to provide security with
selective abort over point-to-point channels.4

3A similar technique was used by Garg et al. [35] to compile two-round MPC to a client-server MPC, albeit in the
semi-honest setting.

4We note that the approach of Applebaum et al. [4] does not extend to the dishonest-majority setting in a
straightforward way.
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Compiling two-broadcast-round protocols. We start by presenting an adaptation of the
compiler from [2] to the dishonest-majority setting. Let πbc be a two-round MPC protocol in the
broadcast model that is secure with unanimous abort. We first discuss how to compile πbc to a
protocol in which the first round is over point-to-point and the second round is over broadcast.

In the compiled protocol, every party Pi starts by computing its first-round message in
πbc, denoted m1

i . In addition, Pi considers its next-message function for the second round
second-msgi(xi, ri,m1

1, . . . ,m
1
n) (that computes Pi’s second round message based on its input

xi, randomness ri, and all first-round messages). Each party “hard-wires” its input and random-
ness to the circuit computing second-msgi such that given all first-round messages as input, the
circuit outputs Pi’s second-round message. Next, Pi garbles this circuit and secret-shares each
input label using an additive secret-sharing scheme. In the first round of the compiled protocol,
each party sends to each other party over private channels his first-round message from πbc and
one share of each garbled label. (Note that for all the parties, the “adjusted” second-round
circuits should receive the same input values, i.e., the first-broadcast-round messages.)
In case Pi didn’t receive messages from all other parties he aborts. Otherwise, Pi receives from
every Pj the message m1

j→i (i.e., first-round messages of πbc) and for each input wire of the
next-message function of Pj , two shares: one for value 0 and the other for value 1 (recall that
each bit that is broadcasted in the first round of πbc forms an input wire in each circuit). In
the second round, every party sends to all other parties the garbled circuit as well as one share
from each pair, according to the messages received in the first round (m1

1→i, . . . ,m
1
n→i).

Next, every party reconstructs all garbled labels and evaluates each garbled circuit to obtain
the second-round messages of πbc. Using these messages the output value from πbc is obtained.

Proof intuition. Intuitively, if all honest parties receive the same “common part” of the first-
round message (corresponding to the first broadcast round of πbc), they will be able to reconstruct
the garbled labels and obtain the second-round message of each party by evaluating the garbled
circuits. Note that since the second round is over broadcast, it is guaranteed that all honest parties
will evaluate the same garbled circuits using the same garbled inputs, and will obtain the same
output value. If there exists a pair of parties that received different first-round messages, then none
of the parties will be able to reconstruct the correct labels.

Given an adversaryAout to the outer protocol (that uses a first point-to-point round) a simulator
Sout is constructed using a simulator Sin for the inner protocol (in the broadcast model). At a high
level, Sout will use Sin to simulate the first-round messages of the honest parties, send them (with
the appropriate synthetic adjustments) to Aout, and get the corrupted parties’ first-round messages.

In case they are not consistent, Sout will send abort to the trusted party and resume by simulating
garbled circuits that output dummy values in the second round—this is secure since the labels
for these garbled circuits will not be revealed.
In case they are consistent, Sout will use the inner simulator Sin to extract the input values
of the corrupted parties and send them to the trusted party. Once receiving the output, Sout
can hand it to Sin who outputs the second-round messages for the honest parties. Next, Sout
will use these messages to simulate the garbled circuits of the honest parties and hand them to
Aout. Based on the response from Aout (i.e., the second-round messages) Sout will send abort
or continue to the trusted party and halt.
We remark that the proof in [2] also follows this intuition; however, that proof uses specific

properties of the (simulator for the) broadcast-model protocol constructed in [2] (which in turn
is based on the protocol from [1]). Our goal is to provide a generic compiler, which works for
any two-round broadcast-model protocol, and so our use of the simulator for the broadcast-model
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protocol must be black-box. For that purpose, we devise non-trivial new simulation techniques,
which we believe might be of independent interest. Our proof can be adapted to demonstrate
that the original compilation technique of [2] is, in fact, generic, i.e., can securely compile any
broadcast-hybrid protocol.

To explain the technical challenge and our solution, let us discuss the above issue in more detail:
Recall that the security definition for the stand-alone model5 from [39] guarantees that for every
adversary there is a simulator for the ideal computation (in the current case, ideal computation
with unanimous abort). The simulator is invoked with some auxiliary information, and starts
by sending to the trusted party inputs for the corrupted parties (or abort). Upon receiving the
output value, the simulator responds with abort/continue, and finally generates its output which is
computationally indistinguishable from the view of the adversary in a protocol (where the honest
parties’ outputs are distributed according to the extracted corrupted-parties’ inputs).

Given an adversary Aout for the compiled protocol π, we would like to use the security of πbc to
construct a simulator Sout and simulate the “common part” of the honest parties’ messages (i.e., the
messages m1

i→j from an honest Pi to a corrupted Pj). However, the adversary Aout induces multiple
adversaries for πbc, one for every honest party and it is not clear which simulator (i.e., for which
of these adversaries) should be used. In fact, before interacting with Aout and sending him the
first-round messages of honest parties, Sout should first run one (or a few) of the aforementioned
simulators to get the inputs for the corrupted parties, invoke the trusted party with the input
values, and get back the output. (At this point the simulator is committed to the corrupted
parties’ inputs.)6 Only then can Sout send the output back to the inner simulator(s) and get the
view of the inner adversary (adversaries) in the execution, and use it to interact with Aout.
Receiver-specific adversaries. To solve this conundrum, we construct our simulator as follows:
For every honest party Pj we define a receiver-specific adversary Ajin for πbc, by forwarding the first-
broadcast-round messages to Aout and responding with the messages Aout sends to Pj (recall that
Aout can send different messages to different honest parties in π). By the security of πbc, for every
such Ajin there exists a simulator Sjin.

To define the simulator Sout (for the adversary Aout), we use one of the simulators Sjin corre-
sponding to the honest parties. Sout initially receives from Sjin either the corrupted parties’ inputs
or an abort message, and forwards the received message to the trusted party. If Sjin does not abort,
Sout receives back the output value y, forwards y to Sjin and receives the simulated second-round
messages from Sjin’s output. Next, Sout invokes Aout and simulates the first-round messages of π
(using the simulated first-round messages for πbc obtained from Sjin), receives back the first-round
messages from Aout, and checks whether these messages are consistent. If so, Sout completes the
simulation by constructing simulated garbled circuits that output the correct second-round mes-
sages (if Aout’s messages are consistent, the simulated messages by Sjin are valid for all honest
parties). If Aout’s messages are inconsistent, Sout simulates garbled circuits that output dummy
values (e.g., zeros), which is acceptable since the Aout will not learn the labels to open them. We
refer the reader to Section 4.2 for a detailed discussion and a formal proof.

5Our choice to describe the results in the stand-alone model is for simplicity and for providing stronger impossibility
results. Our feasibility results extend to the UC framework [14] via standard technical adjustments, as our simulators
are black-box and straight-line. We note that the same simulation techniques discussed in this section are also needed
for adjusting the proof to the UC model.

6This is challenging because we use the broadcast-hybrid protocol in a black-box manner. Restricting to subclasses
of protocols with specific properties—e.g., the view of the adversary in the first round is distributed independently
of the function’s output—may enable more straightforward simulation strategies.
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Selective abort via two point-to-point rounds. After showing that the compiler from [2]
can be adjusted to achieve unanimous abort when the first round is over point-to-point and the
second is over broadcast, we proceed to achieve selective abort when both rounds are over point-
to-point, facing any number of corruptions. The main difference from the previous case is that
the adversary can send different garbled circuits to different honest parties in the second round,
potentially causing them to obtain different output values, which would violate correctness (recall
that the definition of security with selective abort permits some honest parties to abort while other
obtain the correct output, but it is forbidden for two honest parties to obtain two different output
values). However, we reduce this attack to the security of πbc and show that it can only succeed
with negligible probability. See Section 4.3 for details.

Organization of the paper. Preliminaries are presented in Section 2. In Section 3 we present
our impossibility results and in Section 4 our feasibility results.

2 Preliminaries
In this section, we introduce some necessary notation and terminology. We denote by κ the security
parameter. For n ∈ N, let [n] = {1, · · · , n}. Let poly denote the set of all positive polynomials
and let PPT denote a probabilistic algorithm that runs in strictly polynomial time. A function
ν : N→ [0, 1] is negligible if ν(κ) < 1/p(κ) for every p ∈ poly and large enough κ. Given a random
variable X, we write x← X to indicate that x is selected according to X.

2.1 Garbling Schemes

We now give a formal definition of a garbling scheme [67, 7].

Definition 2.1. A projective garbling scheme is a pair Π = (Garble,Eval) such that:
(GC,K) ← Garble(1κ, C): on input the security parameter 1κ and a Boolean circuit C :
{0, 1}` → {0, 1}m, the garbling algorithm outputs a garbled circuit GC and ` pairs of gar-
bled labels K = (K0

1 ,K
1
1 , . . . ,K

0
` ,K

1
` ). For simplicity, we assume that for every i ∈ [`] and

b ∈ {0, 1}, it holds that Kb
i ∈ {0, 1}κ.

y = Eval(GC,K1, . . . ,K`): on input a garbled circuit GC and ` garbled labels K1, . . . ,K` the
evaluation algorithm outputs a value y ∈ {0, 1}m.

We require the following properties from a garbling scheme:

Correctness. For any Boolean circuit C : {0, 1}` → {0, 1}m and x = (x1, . . . , x`) ∈ {0, 1}` it
holds that

Pr [Eval(GC,K[x]) 6= C(x)] = negl(κ),

where (GC,K)← Garble(1κ, C) with K = (K0
1 ,K

1
1 , . . . ,K

0
` ,K

1
` ), and K[x] = (Kx1

1 , . . . ,Kx`
` ).

Privacy. There exists a PPT simulator SimGC such that for every PPT adversary A∣∣∣Pr
[
Exptgarble

Π,A,SimGC(κ, 0) = 1
]
− Pr

[
Exptgarble

Π,A,SimGC(κ, 1) = 1
]∣∣∣ ≤ negl(κ),

where the experiment Exptgarble
Π,A,SimGC(κ, b) is defined as follows:

1. The adversary A specifies C : {0, 1}` → {0, 1}m and x = (x1, . . . , x`) ∈ {0, 1}`.
2. The challenger responds as follows:
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If b = 0 set (GC,K) ← Garble(1κ, C) with K = (K0
1 ,K

1
1 , . . . ,K

0
` ,K

1
` ). Responds with

(GC,K[x]), where K[x] = (Kx1
1 , . . . ,Kx`

` ).
If b = 1, respond with (GC,K1, . . . ,K`)← SimGC(1κ, C, C(x)).

3. The adversary outputs a bit b′, which is the output of the experiment.

2.2 Security Model

We provide the basic definitions for secure multiparty computation according to the real/ideal
paradigm (see [39, 13, 14] for further details), capturing in particular the various types of unsuc-
cessful termination (“abort”) that may occur. For simplicity, we state our results in the stand-alone
setting, however, all of our results can be extended to the UC framework [14].

Real-world execution. An n-party protocol π = (P1, . . . , Pn) is an n-tuple of PPT interactive
Turing machines. The term party Pi refers to the i’th interactive Turing machine. Each party
Pi starts with input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. Without loss of generality, the
input length of each party is assumed to be the security parameter κ. An adversary A is another
interactive TM describing the behavior of the corrupted parties. It starts the execution with input
that contains the identities of the corrupted parties and their private inputs, and an additional
auxiliary input. The parties execute the protocol in a synchronous network. That is, the execution
proceeds in rounds: Each round consists of a send phase (where parties send their messages from
this round) followed by a receive phase (where they receive messages from other parties). The
adversary is assumed to be rushing, which means that he can see the messages the honest parties
send in a round before determining the messages that the corrupted parties send in that round.

The parties can communicate in every round over a broadcast channel or using a fully connected
point-to-point network. The communication lines between the parties are assumed to be ideally
authenticated and private (and thus the adversary cannot modify messages sent between two honest
parties nor read them).7

Throughout the execution of the protocol, all the honest parties follow the instructions of the
prescribed protocol, whereas the corrupted parties receive their instructions from the adversary.
The adversary is considered to be actively malicious, meaning that he can instruct the corrupted
parties to deviate from the protocol in any arbitrary way. At the conclusion of the execution,
the honest parties output their prescribed output from the protocol, the corrupted parties do not
output anything and the adversary outputs an (arbitrary) function of its view of the computation
(containing the views of the corrupted parties). The view of a party in a given execution of the
protocol consists of its input, its random coins, and the messages it sees throughout this execution.

Definition 2.2 (Real-world execution). Let π = (P1, . . . , Pn) be an n-party protocol and let I ⊆ [n]
denote the set of indices of the parties corrupted by A. The joint execution of π under (A, I) in the
real model, on input vector x = (x1, . . . , xn), auxiliary input aux and security parameter κ, denoted
REALπ,I,A(aux)(x, κ), is defined as the output vector of P1, . . . , Pn and A(aux) resulting from the
protocol interaction.

Ideal-world execution (with abort). We now present standard definitions of ideal compu-
tations that are used to define security with identifiable abort, unanimous abort, and selective
(non-unanimous) abort. For further details see [41, 50, 20].

7Private channels can be realized over authenticated channels without increasing the round complexity given a
PKI for public-key encryption.
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An ideal computation with abort of an n-party functionality f on input x = (x1, . . . , xn) for
parties (P1, . . . , Pn) in the presence of an adversary (a simulator) S controlling the parties indexed
by I ⊆ [n], proceeds via the following steps.

Sending inputs to trusted party: An honest party Pi sends its input xi to the trusted party. The
adversary may send to the trusted party arbitrary inputs for the corrupted parties. Let x′i be
the value actually sent as the input of party Pi.

Trusted party answers adversary: The trusted party computes y = f(x′1, . . . , x′n). If there are cor-
rupted parties, i.e., if I 6= ∅, send y to S. Otherwise, proceed to step Trusted party answers
remaining parties.

Adversary responds to trusted party: The adversary S can either select a set of parties that will not
get the output by sending an (abort,J ) message with J ⊆ [n] \ I, or allow all honest parties
to obtain the output by sending a continue message.

Trusted party answers remaining parties: If S has sent an (abort,J ) message with J ⊆ [n] \ I and
I 6= ∅, the trusted party sends ⊥ to every party Pj with j ∈ J and y to every Pj with
j /∈ J ∪I. Otherwise, if the adversary sends a continue message or if I = ∅, the trusted party
sends y to Pi for every i /∈ I.

Outputs: Honest parties always output the message received from the trusted party while the
corrupted parties output nothing. The adversary S outputs an arbitrary function of the
initial inputs {xi}i∈I , the messages received by the corrupted parties from the trusted party
and its auxiliary input.

Definition 2.3 (Ideal computation with selective abort). Let f : ({0, 1}∗)n → ({0, 1}∗)n be
an n-party functionality and let I ⊆ [n] be the set of indices of the corrupted parties. Then, the joint
execution of f under (S, I) in the ideal computation, on input vector x = (x1, . . . , xn), auxiliary
input aux to S and security parameter κ, denoted IDEALsl-abort

f,I,S(aux)(x, κ), is defined as the output
vector of P1, . . . , Pn and S resulting from the above described ideal process.

We now define the following variants of this ideal computation:
Ideal computation with unanimous abort. This ideal computation proceeds as in Defini-
tion 2.3, with the difference that in order to abort the computation, the adversary simply sends
abort to the trusted party (without specifying a set J ). In this case, the trusted party responds
with ⊥ to all honest parties. This ideal computation is denoted as IDEALun-abort

f,I,S(aux)(x, κ).
Ideal computation with identifiable abort. This ideal computation proceeds as the ideal
computation with unanimous abort, with the exception that in order to abort the computation,
the adversary chooses an index of a corrupted party i∗ ∈ I and sends (abort, i∗) to the trusted
party. In this case, the trusted party responds with (⊥, i∗) to all parties. This ideal computation
is denoted as IDEALid-abort

f,I,S(aux)(x, κ).

Security definitions. Having defined the real and ideal computations, we can now define security
of protocols.

Definition 2.4. Let type ∈ {sl-abort, un-abort, id-abort}. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-
party functionality. A protocol π t-securely computes f with “type” if for every PPT real-world
adversary A, there exists a PPT adversary S, such that for every I ⊆ [n] of size at most t, it holds
that {

REALπ,I,A(aux)(x, κ)
}

(x,aux)∈({0,1}∗)n+1,κ∈N

c≡
{

IDEALtype
f,I,S(aux)(x, κ)

}
(x,aux)∈({0,1}∗)n+1,κ∈N

.
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3 Impossibility Results
In this section, we prove our impossibility results. Concretely, in Section 3.1, we argue that there
is no single-round maliciously secure generic MPC protocol against dishonest majorities, even if
the single round is a broadcast round, and even if we are settling for security with selective abort
and we assume an arbitrary correlated-randomness setup. Subsequently, in Section 3.2, we prove
that no generic two-round MPC protocol can achieve security with identifiable abort, while making
use of broadcast in only one of the two rounds. This holds irrespective of whether the broadcast
round is the first or second one. Towards this goal, we start by proving that no two-round protocol
in which the broadcast round is first—i.e., the second round is over point-to-point—can achieve
identifiable abort. This is proved in Theorem 3.3; in fact, the theorem proves a stronger statement,
namely, that there is a function f such that no protocol with the above structure can securely
compute f with unanimous abort.8

Theorem 3.3 implies that the only option for a two-round protocol with only one broadcast round
to securely compute f with identifiable abort, is if the broadcast round is the second round—i.e., the
first round is over point-to-point. We prove (Theorem 3.9) that this is also impossible, i.e., f cannot
be computed by such a protocol. This proves that the result from Theorem 4.1 (Item 1), which
achieves security with unanimous abort in this case, is also tight and completes the (in)feasibility
landscape for two-round protocols. Furthermore, we note that all the results proved in this section
hold for both computational and information-theoretic security, even if we assume access to an
arbitrary correlated-randomness setup.

A simple function. Before starting our sequence of impossibility results, we first introduce a
simple function which we will use throughout this section. Consider the following three-party
public-output function (i.e., all three parties receive the output): The parties, P1, P2, and P3, hold
inputs x1 ∈ {0, 1}×{0, 1}, x2 ∈ {0, 1} and x3 ∈ {0, 1}κ×{0, 1}κ, respectively, where x1 = (x1,1, x1,2)
and x3 = (x3,1, x3,2). For a bit b we denote by bκ the string resulting from concatenating κ times
the bit b (recall that κ denotes the security parameter). The function is defined as follows:

f(x1, x2, x3) =

 xκ1,1 ⊕ xκ2 ⊕ x3,1, if x1,2 = x2

xκ1,1 ⊕ xκ2 ⊕ x3,2, if x1,2 6= x2.

Note that in the above function, the first bit of P1, i.e., x1,1 contributes to the computed XOR,
whereas the relation between the second bit of P1, i.e., x1,2, and the input-bit x2 of P2 is the one
which defines which of the x3,1 or x3,2 will be used in the output. One can easily verify that the
following is a more compact representation of f :

f(x1, x2, x3) = xκ1,1 ⊕ xκ2 ⊕ x3,1+(x1,2⊕x2).

The latter representation will be useful in the proof of Theorem 3.9.
As discussed in the introduction, the above function enjoys the following two useful properties:

First, it is impossible in the ideal world (where parties and an adversary/simulator have access
to a TTP for f) for the simulator to learn both inputs of P3 even if he corrupts both P1 and P2.
Second, assuming the input x1,1 of P1 is chosen uniformly at random, it is impossible for a simulator
corrupting P2 and P3 to fix the output to 0. We prove these two properties in the corresponding
theorems where they are used.

8Recall that there is a trivial reduction from security with unanimous abort to security with identifiable abort:
Run the protocol and in case it aborts with the ID of some party Pi, output abort and ignore the identity of the
corrupted party.
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3.1 Impossibility of Single-Round MPC

As a simple corollary of HLP [43] (see also [60]), we can exclude the existence of a semi-honestly
secure MPC protocol for the above function. For completeness, we sketch the proof in Appendix A.

Corollary 3.1 ([43]). The function f cannot be computed with selective abort by a single-round
protocol tolerating one semi-honest corrupted party.

Extending Corollary 3.1 to the multi-party case (involving more than three parties) follows using
a player-simulation argument, and the following facts that are implied by our definition of security
with selective abort: (1) If the adversary follows his protocol, the evaluation cannot abort even
if parties are corrupted; this follows from the non-triviality condition and the fact that when the
adversary follows the protocol with his corrupted parties, the protocol cannot deviate based on the
fact that parties are corrupted; (2) for such an honest-looking adversary [15], the protocol achieves
all the guarantees required for semi-honest security—i.e., there is a simulator which simulates the
adversary’s entire view from the inputs and outputs of corrupted parties. We refer to Appendix A
for a proof.

Corollary 3.2. For n ≥ 3, there exist an n-party function fn for which there is no single-round
protocol π which securely computes fn with selective abort against even a single corruption. The
statement is true even if π uses a broadcast channel in its single round.

3.2 Impossibility of Single-Broadcast Two-Round MPC

Having excluded the possibility of single-round MPC protocols, we next turn to two rounds.
Throughout this section, we prove impossibility statements for three-party protocols (for the func-
tion f). As discussed in the introduction, all our statements can be directly extended to the
multi-party setting using the straightforward extension of f to n parties (cf. function fn in Corol-
lary 3.2).

3.2.1 Impossibility of Unanimous Abort when Broadcast is First Round

We start by proving impossibility of security with unanimous abort for f against corrupted ma-
jorities. Analogous to [43] we will say that an adversary learns the residual function f(x1, ·, ·) to
denote the event that the adversary learns enough information to locally and efficiently compute
f(x1, x

∗
2, x
∗
3) on any (and as many) inputs x∗2 and x∗3 as he wants.

Theorem 3.3. There exists no two-round protocol π which securely computes f with unanimous
abort against corrupted majorities while making use of the broadcast channel only in the first round
(i.e., where the second round is over point-to-point channels). The statement is true even assuming
an arbitrary correlated randomness setup.

Proof. Towards a contradiction, assume that there is protocol π = (π1, π2, π3), where πi is the
code (e.g., interactive Turing machine) of Pi, for computing f with unanimous abort which uses
broadcast in its first round, but only point-to-point in the second round. Consider executions of π
on uniformly random inputs x1 and x2 for P1 and P2 and on input x3 ∈ {(0κ, 1κ), (1κ, 0κ)} from P3
in the following scenarios (see Figure 1 for an illustration). In all four scenarios, the adversary uses
the honest input for the corrupted party and allows him to execute his honest protocol on uniform
random coins, but might drop some of the messages the corrupted party’s protocol attempts to
send in Round 2.
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Scenario 1 Scenario 2 Scenario 3 Scenario 4

Round 1

Round 2

π1

π2 π3

π1

π2 π3

π1

π2 π3

π1

π2 π3

π1

π2 π3

π1

π2 π3

π1

π2 π3

π1

π2 π3

Figure 1: The scenarios from the proof. All protocols are executed as specified; whenever an arrow is
present it indicates that the message that the corresponding protocol would send is indeed sent; missing
arrows indicate that respective messages are dropped. A shade on the background of a protocol indicates
that the corresponding party is corrupted (but the adversary still executes the respective protocol on the
honest input, but might drop some messages).

Scenario 1: The adversary corrupts P1, plays the first round according to π but sends no messages
in the second round.

Scenario 2: The adversary corrupts P1, plays both rounds according to π, but does not send his
second-round message towards P3; party P2 receives his second-round message according to
the honest protocol.

Scenario 3: The adversary corrupts P1 but plays the honest protocols in both rounds.

Scenario 4: No party is corrupted.

The proof of the theorem proceeds as follows: By a sequence of comparisons between the four
scenarios we show that in Scenario 1, π2 and π3 cannot abort and will have to produce output
equal to f(x1, x2, x3) with overwhelming probability despite the fact that P1 sends no message in
Round 2. This means that a (rushing)9 adversary corrupting P2 can learn the residual function
f(x1, ·, ·) already in Round 1 and before committing to any inputs for P2 and P3. This allows him
to choose corrupted inputs depending on (the honest input) x1 violating the security (in particular
the input-independence property)10 of π. The formal argument follows. For notational clarity, we
will denote the message that Pi sends to Pj over a point to point channel in round ρ by mρ,i→j ; if
in round ρ a party Pi broadcasts a messages, we will denote this message by mρ,i→∗.

Claim 3.4. In Scenario 3, parties P2 and P3 output f(x1, x2, x3) with overwhelming probability.

Proof. The claim follows by the correctness of the protocol π. Indeed, the views of P2 and P3
in Scenario 3 are distributed identically to their views in Scenario 4. This means that on any
inputs x1, x2, x3 for protocols π1, π2, π3, the output of P2 and P3 in Scenario 3 must be identically

9Our impossibility results consider standard, worst-case and rushing adversaries. One might investigate how the
landscape looks like against non-rushing adversaries, but this is typically considered too strong an assumption for
protocols, as it implies feasibility of fair exchange (a task impossible in the standard rushing-adversary with dishonest
majority realm) and even in a single round. We do not consider this theoretical question here.

10Informally, input independence, a property implied by the standard simulation-based security definition (see
Section 2.2), requires that the adversary cannot choose his inputs depending on the inputs of honest parties.
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distributed to his output in Scenario 4; however, by the security (in particular the correctness) of
π this output will be f(x1, x2, x3) with overwhelming probability.

Claim 3.5. In Scenario 2, parties P2 and P3 output f(x1, x2, x3) with overwhelming probability.

Proof. The view of P2 in Scenario 2 is identically distributed to his view in Scenario 3. As before,
this means that his output in Scenario 2 must be identical to that in Scenario 3, which, as proved
in the previous claim, equals f(x1, x2, x3) with overwhelming probability—in particular P2 does
not abort. However, by the unanimous abort requirement, the fact that (the honest) P2 does not
abort means that (the also honest) P3 also does not abort except with negligible probability. But
then, the correctness of π (recall that f has the same output for all honest parties) implies that
with overwhelming probability the output of P3 will also be f(x1, x2, x3).

Claim 3.6. In Scenario 1, parties P2 and P3 output f(x1, x2, x3) with overwhelming probability.

Proof. The proof is similar to the above claim: The view of P3 in Scenario 2 is identically distributed
to his view in Scenario 1. As before, this means that on any inputs x1, x2, x3 for π, P3’s output in
Scenario 2 must be identical to that in Scenario 1, which, as proved in the previous claim, equals
f(x1, x2, x3) with overwhelming probability—in particular P3 does not abort. However, by the
unanimous abort requirement, the fact that (the honest) P3 does not abort means that P2 also
does not abort except with negligible probability. But then, the correctness of π (recall that f has
the same output for all honest parties) implies that with overwhelming probability the output of
P2 will also be f(x1, x2, x3).

Claim 3.7. An adversary corrupting P2 and P3 can learn the residual function f(x1, ·, ·) before P2
or P3 send any message.

Proof. Recall that, from the last claim, in Scenario 1, both P2 and P3 output f(x1, x2, x3) with
overwhelming probability. However, since in this scenario P1 does not send anything in Round 2,
this implies that there exists an adversary A corrupting P2 and P3, who can with overwhelming
probability already compute the residual function f(x1, ·, ·) using only the messagem1,1→∗ which P1
broadcasts in round 1. Indeed, such an adversary needs to simply run the following strategy: receive
m1,1→∗ from P1; simulate P2 and P3 on any inputs x∗2 and x∗3; simulate the first-round messages
m1,2→∗ and m1,3→∗ (i.e., the messages that π2 and π3 would broadcast if they were allowed to
execute π); simulate the second-round messages m2,2→1,m2,2→3,m2,3→1,m2,3→2 of P2 and P3 on
inputs, the (simulated) first-round messages, and the actual first-round messages received from P1,
and output their output. It follows from Claim 3.6 that this attack will output f(x1, x

∗
2, x
∗
3) except

with negligible probability. Note that in this attack, A did not need to send any message to P1.
Furthermore, this attack can be repeated from the point of receiving m1,1→∗ with any inputs for
P2 and P3.

To complete the proof of the theorem, we show that existence of the above adversary A implies
an adversary A′ that can break the security (in particular, the input independence) of π. Intuitively,
A′ will corrupt P2 and P3 and use the strategy of the adversary A from the above claim to learn
the residual function before committing to his own input to f ; thus A′ is free to choose this inputs
for P2 and P3 depending on x1. We next provide a formal proof of this fact by describing a strategy
for biasing the output (depending on x1) which cannot be simulated

Concretely, consider the following A′ that corrupts P2 and P3: A′ receives m1,1→∗ from P1 and
using A, for x∗2 = 0 and x3,1∗ = 0κ and x3,2∗ = 1κ, A′ computes y = f(x1, 0, (0κ, 1κ)). Then,
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dependent on whether y is 0κ or 1κ—observe that by definition of the function, these are the only
two possible outcomes given the above inputs of P3—A′ distinguishes two cases:

Case 1: If y = 0κ then execute the honest protocol for P2 and P3 with these inputs, i.e., x2 = 0
and x3,1 = 0κ and x3,2 = 1κ.

Case 2: If y = 1κ, then execute the honest protocol for P2 and P3 with the inputs of P3 swapped,
i.e., x2 = 0 and x3,1 = 1κ and x3,2 = 0κ.

Note that in both cases P1 witnesses a view which is indistinguishable from the honest proto-
col with inputs: x2 = 0 and x3,1 = 0κ and x3,2 = 1κ (Case 1) or x2 = 0 and x3,1 = 1κ and
x3,2 = 0κ (Case 2); hence, the correctness of π implies that with overwhelming probability if
y = f(x1, 0, (0κ, 1κ)) = 0κ then P1 will output it, otherwise, i.e., if y = f(x1, 0, (0κ, 1κ)) = 1κ he
will output y = f(x1, 0, (1κ, 0κ)); but in this latter case y = 0κ by the definition of f . Hence, this
adversary always makes P1 output 0κ.

To complete the proof we prove that in an ideal evaluation of f with an honest P1 and corrupted
P2 and P3, if P1 uses a uniformly random input and no abort occurs, then the output can be 0κ
with probability at most 1/2± negl(κ).

Claim 3.8. For any simulator S corrupting P2 and P3 and not causing the ideal execution to abort,
if P1’s input is chosen uniformly at random, then for any choice of inputs for P2 and P3, there exist
a string z ∈ {0, 1}κ such that the output of P1 will be z or z̄ each with probability 1/2± negl(κ).

Proof. Let X1 = (X1,1, X1,2), X2, X3 = (X3,1, X3,2) denote the random variables corresponding to
the inputs of the parties, P1, P2, and P3, respectively. Then, the output of f can be described as the
random variable Z = Xκ

1,1⊕Xκ
2 ⊕X3,1+(X1,2⊕X2). Since P1 chooses his input uniformly at random,

the distribution of X1,1 is uniform and independent of the joint distribution of (X1,2, X2, X3).
Hence, for any choice of input x2 and x3 of the simulator S for P2 and P3, and any choice of
x1,2 from P1, the output of the function f will be either z = xκ2 ⊕ x3,1+(x1,2⊕x2) if x1,1 = 0 or
z′ = xκ2 ⊕ x3,1+(x1,2⊕x2) + 1κ = z̄, if x1,1 = 1. But since x1,1 is chosen uniformly and independently
of any other input, each of z and z̄ might occur with probability 1/2.

The above claim implies that for any simulator, with probability at least 1/2 the output will
be different than 0κ. Hence the adversary A′ (who, recall, always fixes the output to 0κ) cannot be
simulated which contradicts the assumed security of π.

3.2.2 Impossibility of Identifiable Abort

Next, we proceed to the proof of our second, and main, impossibility theorem about identifiable
abort. For this proof we make the following modification to f : In addition to its output from
f , every party Pi is required to locally output his own input xi. We denote this function by f̂ .
Specifically, the output of f̂ consists of two parts: A public part that is identical to f , which is the
same for all parties (without loss of generality, we will use f(x1, x2, x3) to denote this part), and a
private part which for each Pi is its own input.

f̂(x1, x2, x3) =
(
(y, x1), (y, x2), (y, x3)

)
where y = f(x1, x2, x3).

We remark that impossibility for such a public/private output function f̂ implies impossibility of
public output functions via the standard reduction of private to public input functions (see [39]).
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Theorem 3.9. The function f̂ cannot be securely computed with identifiable abort by a three-party
protocol that uses one point-to-point round and one broadcast round, tolerating (up to) two corrupted
parties. This is true even assuming an arbitrary correlated-randomness setup.
Proof. Assume, towards a contradiction, that a protocol π exists for the function f̂ . First, note that
due to Theorem 3.3, the broadcast round cannot be the first round. (This holds because security
with identifiable abort implies security with unanimous abort.) Hence, the first round of π must
be the point-to-point round and the second can be a broadcast round. In the following, we will
assume that the second round uses only the broadcast channel; this is without loss of generality as
we allow π to be in the correlated-randomness model, which means that parties might share keys
that they can use to emulate point-to-point communication over the broadcast network. (Proving
impossibility in the correlated-randomness model implies impossibility in the plain model.)

Consider the parties P1, P2, and P3 holding uniformly chosen inputs x1, x2, and x3 for f̂ . Let
πi denote the code executed by Pi in π (i.e., Pi’s protocol machine), and consider the following
scenarios (also illustrated in Figure 2):

Scenario 1 Scenario 2 Scenario 3

Round 1

Round 2

π1

π2 π3

π1

π2 π3

π1

π2 π3

π1

π2 π3

π1

π2 π3

π1

π2 π3

Figure 2: The scenarios from the proof. All protocols are executed as specified. A shade on the background
of a protocol indicates that the corresponding party is corrupted (the adversary still executes the respective
protocol on the honest input, but may drop some messages). A solid arrow indicates that the message
that the corresponding protocol would send is indeed sent; cut arrows indicate that respective messages are
dropped, where we illustrate which adversarial behavior is the reason for dropping a message by scissors;
bold arrows indicate that this second-round message depends on the protocol having seen some incomplete
transcript (due to dropped messages) in the first round and might therefore adapt its behavior accordingly.

Scenario 1: The adversary corrupts only P3 and has him play π3, but drops the message m1,3→2
that π3 sends to P2 in the first round (i.e., the message is never delivered to π2) and does
not deliver to π3 the message m1,2→3 received from P2 in the first round. Other than this
intervention, all machines execute their prescribed code and all other messages are sent and
delivered as specified by the protocol π.
In particular, the instance of π3 which the adversary emulates is not aware that the message
m1,3→2 (which it generated and tried to send to π2 in the first round) was never delivered,
and is not aware that P2 did send a message m1,2→3 in the first round, which was blocked. In
other words, the internal state of π2 (resp., π3) reflects the fact that the message to π3 (resp.,
π2) is sent, but the message from π3 (resp., π2) did not arrive.

Scenario 2: The adversary corrupts only P2 and has him play π2 with the modification that he
drops the first-round message m1,3→2 received from P3 (again, the message is never delivered
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to π2) and the message m1,2→3 that π2 sends to P3. Other than this specific intervention,
all machines execute their prescribed code and all other messages are sent and delivered as
specified by the protocol π.
In particular, the simulated instance of π2 is not aware that its first round message m1,2→3
for P3 was never delivered, and is not aware that P3 did send the message m1,3→2 in the first
round, which was blocked, as above.

Scenario 3: The adversary corrupts P1 and P2. Both parties play exactly the same protocol as
in Scenario 2.

First we observe the following: In all three scenarios the three machines witness the same
interaction— i.e., their (joint) internal states are identically distributed. Indeed, all three adversar-
ial strategies have the effect of execution of the prescribed protocol without the first message from
π3 to π2 and from π2 to π3. Since π1, π2, and π3 are protocol-machines (interactive algorithms),
their behavior cannot depend on who is corrupted. This means that their (joint) output (distri-
bution) in Scenario 1 must be indistinguishable (in fact, identically distributed) to their output in
Scenarios 2 and 3.

Now consider an execution of this protocol on uniformly random inputs. We consider the fol-
lowing two cases for Scenario 1, where the probabilities are defined over the choice of the correlated
randomness, the random coins used by the protocols, and the randomness used for selecting the
inputs, and analyze them in turn.

Case 1: The honest parties abort (with noticeable probability). We prove that if an
abort occurs with noticeable probability, then the security of the protocol is violated: Due to the
identifiability requirement, if in Scenario 1 there is an abort, then both π1 and π2 need to output
the identity of P3 (as a cheater) as he is the only corrupted party. However, since as argued above
the output distributions in the two scenarios are indistinguishable, the fact that in Scenario 1, π1
aborts with the identity of P3 with noticeable probability implies that also in Scenario 2, π1 will
also abort identifying P3 with noticeable probability.

By the assumption that π is secure with identifiable abort—which implies that honest parties
agree on the identity of a corrupted party in case of abort—the latter statement implies that in
Scenario 2, with noticeable probability, π3 will abort with the same cheater, i.e., the honest party
P3 (who is running π3) will abort identifying itself as a cheater contradicting the fact that π is
secure with identifiable abort. (Security with identifiable abort only allows an abort identifying
a corrupted party.) This means that the protocol cannot abort with noticeable probability which
leaves Case 2, below, as the only alternative.

Case 2: The honest parties do not abort (with overwhelming probability). We prove
that an adversary corrupting P1 in addition to P2 can learn both x3,1 and x3,2 with noticeable
probability, which is impossible in an ideal evaluation of f̂ , as follows. Observe that since, in this
case, the probability of aborting in Scenario 1 is negligible and the joint views of the parties are
indistinguishable between the two scenarios, the probability that an abort occurs in Scenario 2
or Scenario 3 is also negligible. Furthermore, because Scenario 3 consist of the same protocols in
exactly the same configuration and with the same messages dropped, the output of the protocols
in Scenario 3 is distributed identically to the output of the protocol in Scenario 2, namely it is the
output of the function on the actual inputs of P1 and P3 and some input from P2.

Next, observe that the security of π for this case implies that for every adversary in Scenario
2 there exists a simulator corrupting P2. Let A2 denote the adversary that chooses an input
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for π2 uniformly at random and plays the strategy specified in Scenario 2, and let S2 denote
the corresponding simulator. Denote by X∗2 the random variable corresponding to the input x∗2
that S2 hands to the functionality for f̂ on behalf of P2, and denote by X1 = (X1,1, X1,2) and
X3 = (X3,1, X3,2) the random variables corresponding to the inputs of the honest parties. The
following claim states that X∗2 might take any of the values 0 or 1 with noticeable probability.

Claim 3.10. For each b ∈ {0, 1}, Pr [X∗2 = b] is noticeable.

Proof. First we note that due to input independence—i.e., because in the ideal experiment the
simulator needs to hand inputs corresponding to the corrupted parties before seeing any information
about the honest parties’ inputs—it must hold that Pr [X∗2 = b] = Pr [X∗2 = b | X1, X3]. Hence, it
suffices to prove that Pr [X∗2 = x∗2 | X1, X3] is noticeable for each of the two possible input choices
x∗2 ∈ {0, 1} for the simulator. Assume towards a contradiction that this is not true. This means
that with overwhelming probability the simulator always inputs the same x∗2 = b. Without loss of
generality, assume that b = 0 (the argument for b = 1 is symmetric). Since the protocol aborts only
with negligible probability, security implies that the distribution of the public output for every Pi
with this simulator S2 is (computationally) indistinguishable from f(X1, 0, X3) = Xκ

1,1⊕X3,(1+X1,2).
However, since S2 is a simulator for π with adversary A2 who uses a uniform input in his π2

emulation, this implies that the interaction of the protocols π1, π2, and π3 in Scenario 2 must also
have as public output a value with distribution indistinguishable fromXκ

1,1⊕X3,(1+X1,2). Now, using
the fact that the views which the protocol machines in Scenario 2 and 1 are indistinguishable,11

we can deduce that the public output in Scenario 1 needs to also be distributed indistinguishably
from Xκ

1,1 ⊕X3,(1+X1,2).
However, in Scenario 1, party P2 is not corrupted which means that the public output dis-

tribution needs to be indistinguishable from f(X1, X2, X
∗
3 ), where X∗3 = (X∗3,1, X∗3,2) is the input

distribution of the simulator S3 for the corrupted P3, existence of which is implied by the security
of π. But this means that S3 will have to come up with X∗3 such that the public-output distribution
f(X1, X2, X

∗
3 ) = Xκ

1,1⊕Xκ
2 ⊕X∗3,1+(X1,2⊕X2) is distributed indistinguishably from Xκ

1,1⊕X∗3,(1+X1,2).
Since X∗3 cannot depend on X1 or X2, this is impossible.

The following claim follows directly from Claim 3.10 and the security of π (recall that we are
under the assumption that Scenario 2 terminates without abort except with negligible probability).

Claim 3.11. For any inputs x1 and x3 for protocol-machines π1 and π3 in Scenario 2, the proba-
bility (over the input-choice of x2 and the local randomness r2 given to π2) that the public output
is xκ1,1 ⊕ xκ2 ⊕ x3,1 (i.e., x1,2 = x2) is noticeable, and so is the probability that the public output
xκ1,1 ⊕ xκ2 ⊕ x3,2 (i.e., x1,2 6= x2).

The final claim that we prove provides the attack discussed at the beginning of the proof for
Case 2.

Claim 3.12. An adversary A corrupting both P1 and P2 can learn both x3,1 and x3,2 with noticeable
probability.

Proof. We consider the following adversary A corrupting parties P1 and P2. A uses the protocols
π1 and π2 as follows:

11Note that although parties P3 and P2 are corrupted in these scenarios, the corresponding adversary still executes
π3 and π2, respectively and has some transmitted message dropped. Hence, we can define the view of these protocols
in this concrete attack scenario although they are controlled by the adversary.
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During the first (point-to-point) round of π: A chooses uniform input and randomness (x1, r1)
for π1, computes π1’s first-round messages m1,1→2 and m1,1→3 for π2 and π3 and sends m1→3
to P3 on behalf of P1. A does not send anything to π3 on behalf of P2 in this first round.
A receives the first-round messages from P3 for both P1 and P2, denoted m1,3→1 and m1,3→2,
respectively. This completes the first round.
In the second round, A (playing a rushing strategy) receives π3’s broadcast message, denote it
as m̄2,3→∗, and conducts the following experiment:
1. It simulates two independent executions of π2 with independent uniformly chosen

(input,randomness)-pairs (x(1)
2 , r

(1)
2 ) and (x(2)

2 , r
(2)
2 ). We refer to the execution with input

and randomness (x(i)
2 , r

(i)
2 ) as “Execution i.” Each Execution i yields a first-round message

m
(i)
1,2→1 and m(i)

1,2→3 that π2 on input (x(i)
2 , r

(i)
2 ) would send to π1 and π3, respectively, in

the first round of π.
2. A ignores m(i)

1,2→3 and simulates sending m(i)
1,2→1 to π1 as π2’s first-round message to π1. A

also delivers m1,1→2 to π2 as π1’s first-round message in both executions.

3. In each Execution i, A computes the messages m̄(i)
2,2→∗ and m̄

(i)
2,1→∗ that π2 and π1 would

broadcast in the second round. It hands m̄2,3→∗ and m̄(i)
2,2→∗ (resp., m̄

(i)
2,1→∗) to π1 (resp.,

π2) as the broadcast round messages of π3 and π2 (resp., π1) and computes the output of
π1 and π2.

4. A denotes the public output of π1 and π2 in Execution i as y(i) and their private outputs as
y

(i)
1 = (y(i)

1,1, y
(i)
1,2) and y(i)

2 , respectively; A computes and outputs z(1) = y(1)⊕(y(1)
1,1)κ⊕(y(1)

2 )κ

and z(2) = y(2) ⊕ (y(2)
1,1)κ ⊕ (y(2)

2 )κ.
By design of the above experiment, one can verify that the joint view of π1 and π2 in Execution i
is identically distributed to their joint view in Scenario 3 with inputs x1 and x3 for P1 and P3,
respectively, and uniformly chosen input and randomness for π2. This, in turn (as discussed in
the beginning of the proof) is identically distributed to the joint view in Scenario 2 with inputs
x1 and x3 for P1 and P3, respectively, and uniformly chosen input and randomness for π2. Hence,
y

(1)
1 = y

(2)
1 = x1,12 and y(i) = f(x1, x

(i)∗
2 , x3), where x(i)∗

2 is the effective input of the adversary
which is distributed indistinguishably from the random variable X∗2 from Claim 3.10 (i.e., it has
noticeable probability to take any of the values 0 or 1). Using Claim 3.11 and the definition of the
function this implies that, with noticeable probability, z(1) and z(2) are the two private inputs x3,1
and x3,2 of π3 (in some order).

Finally, we observe that, by the definition of the function, the probability that a simulator S for
the adversary A from Claim 3.12 (who corrupts P1 and P2) outputs both inputs of π3 is negligible.
Hence, Claim 3.12 contradicts the assumed security of π.

4 Feasibility of Two-Round MPC with Limited Use of Broadcast
In this section, we present our feasibility results, showing how to compute any function with unan-
imous abort when only the second round of the MPC protocol is over broadcast, and with selective

12Observe that the security definition would, in principle, allow that a corrupted P1 would induce a different
effective input x∗1 than his original input x1, as long as jointly with P2’s input they induce the same distribution of
f ; this however cannot be the case with the above adversary for our function, as π1 is required to include its own
input to its private output and, from the indistinguishability of Scenarios 2 and 3, this private output has to be his
honest input.

20



abort purely over pairwise channels. More formally:

Theorem 4.1. Assume the existence of a two-round maliciously secure OT protocol, let f be an
efficiently computable n-party function, and let t < n. Then,
1. f can be securely computed with unanimous abort, tolerating a PPT static, malicious t-

adversary, by a two-round protocol in which the first round is over private channels and the
second over broadcast.

2. f can be securely computed with selective abort, tolerating a PPT static, malicious t-adversary,
by a two-round protocol over private channels.

The proof of Theorem 4.1 follows from Lemmas 4.3 and 4.9 (proven in Sections 4.2 and 4.3,
respectively) that show how to compile any two-broadcast-round protocol secure with unanimous
(resp., selective) abort by a black-box straight-line simulation, to the desired result. Theorem 4.1
follows from that fact, and the two-broadcast-round MPC protocols presented in [33, 10].

The only cryptographic assumption used in our compiler is a garbling scheme that is used to
garble the second-round next-message function of the protocol. As observed in [2], for the protocol
from [33] the second-round next-message function is in NC1. Therefore, by using information-
theoretic garbling schemes for NC1 [47, 48] and the information-theoretic two-broadcast-round
protocol of [35] (in the OT-correlation model, where parties receive correlated randomness for
precomputed OT [6]), we obtain the following corollary.

Corollary 4.2. Let f be an efficiently computable n-party function and let t < n. Then,
1. f can be computed with information-theoretic security and unanimous abort in the OT-

correlation model, tolerating a static, malicious t-adversary, by a two-round protocol in which
the first round is over private channels and the second over broadcast.

2. f can be computed with information-theoretic security and selective abort in the OT-correlation
model, tolerating a static, malicious t-adversary, by a two-round protocol over private channels.

Structure of two-round protocols. Before proving Theorem 4.1, we present the notations
that will be used for the proof. We consider n-party protocols defined in the correlated-randomness
hybrid model, where a trusted party samples (r1, . . . , rn)← Dcorr from some predefined efficiently
sampleable distribution Dcorr, and each party Pi receives ri at the onset of the protocol. For
simplicity, and without loss of generality, we assume that the random coins of each party are a part
of the correlated randomness. The probabilities below are over the random coins for sampling the
correlated randomness and the random coins of the adversary.

The two-round n-party protocol is then defined by the set of three functions per party
{(first-msgi, second-msgi, outputi)}i∈[n]. Every party Pi operates as follows:

The first-round messages are computed by the function (m1
i→1, . . . ,m

1
i→n) = first-msgi(xi, ri),

which is a deterministic function of his input xi and randomness ri. If the first round is over
broadcast it holds that m1

i→1 = . . . = m1
i→n, and we denote the unique message as m1

i .
The second-round messages are computed by the next-message function (m2

i→1, . . . ,m
2
i→n) =

second-msgi(xi, ri,m1
1→i, . . . ,m

1
n→i), which is a deterministic function of xi, ri and the first-

round message m1
j→i received from each Pj . As before, if the second round is over broadcast

we denote the unique message as m2
i .

The output is computed by the function y = outputi(xi, ri,m1
1→i, . . . ,m

1
n→i,m

2
1→i, . . . ,m

2
n→i),

which is a deterministic function of xi, ri and the first-round and second-round messages.
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4.1 Compiling Two-Broadcast-Round Protocols

In this section, we present a compiler which transforms a two-broadcast-round MPC protocol into
a two-round protocol suitable for a point-to-point network. The compiler is based on the compiler
presented in Ananth et al. [2], which considered information-theoretic honest-majority protocols
that are executed over both private point-to-point channels and a broadcast channel. We adapt
this compiler to the dishonest-majority setting, where the input protocol is defined purely over a
broadcast channel. The compiler is presented in Figure 3.

Let πbc be a two-round MPC protocol in the broadcast model. Initially, every party “hard-
wires” his input and randomness to the circuit computing the second-round next-message function
second-msgi,x,r(m1, . . . ,mn) on the first-broadcast-round messages. Next, each party garbles this
circuit and secret-shares each label using an additive secret-sharing scheme.

In the first round, each party sends to each other party over private channels13 his first-round
message from πbc and one share of each garbled label. Note that all of these “adjusted” second-
round circuits (one circuit generated by each party) should receive the same input values, i.e.,
the first-broadcast-round messages. For each input wire, corresponding to one broadcast bit, each
party receives two shares (one for value 0 and the other for value 1). In the second round, every
party sends to all other parties the garbled circuit as well as one share from each pair, according
to the messages received in the first round. Since each party sends the same second-round message
to all others, each party can either send the second-round message over a broadcast channel (in
which case it is guaranteed that all parties receive the same messages) or multicast the message
over (authenticated) point-to-point channels.

Next, every party reconstructs all garbled labels and evaluates each garbled circuit to obtain
the second-round messages of πbc. Using these messages each party can recover the output value
from πbc.

4.2 Unanimous Abort with a Single Broadcast Round

We start by proving that the compiled protocol π = Comp(πbc) (see Figure 3) is secure with
unanimous abort when the second-round message is over a broadcast channel. Intuitively, if all
honest parties receive the same “common part” of the first-round message (corresponding to the
first broadcast round of πbc), they will be able to reconstruct the garbled labels and obtain the
second-round message of each party by evaluating the garbled circuits. Note that since the second
round is over broadcast, it is guaranteed that all honest parties will evaluate the same garbled
circuits using the same garbled inputs, and will obtain the same output value. If there exist a
pair of parties that received different first-round messages, then none of the parties will be able to
reconstruct the correct labels.

The security of the compiled protocol reduces to the security of the broadcast-model protocol;
however, some subtleties arise in the simulation. The simulation of the garbled circuits requires the
simulated second-round messages for πbc (as this is the output from the garbled circuit). To simulate
the second-round message of πbc, the simulator must obtain the output value that corresponds to
the input values that are extracted from the corrupted parties in the first round. However, since the
adversary can send different first-round messages to different honest parties over the point-to-point
channels, there may be multiple input values that can be extracted—in fact, the messages received
by every honest party can define a different set of input values for the corrupted parties.

13Private channels can be realized over authenticated channels without additional rounds assuming a public-key
infrastructure (PKI) for public-key encryption.
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In more detail, given an adversary A for the compiled protocol π, we construct a simulator
S. We would like to use the security of πbc to simulate the “common part” of the honest parties’
messages. However, the adversary A induces multiple adversaries for πbc, one for every honest
party. For every honest party Pj we define a receiver-specific adversary Aj for πbc, by forwarding
the first-broadcast-round messages to A and responding with the messages A sends to Pj (recall
that A can send different messages to different honest parties in π). By the security of πbc, for
every such Aj there exists a simulator Sj .

Protocol π = Comp(πbc)
Common input: A two-broadcast-round protocol πbc, represented by the set of functions
{first-msgi, second-msgi, outputi}i∈[n] and a garbling scheme (Garble,Eval).
Private input: Every party Pi has a private input xi ∈ {0, 1}∗.
Correlated randomness: The correlated randomness (r1, . . . , rn) ← Dπbc

corr (for πbc) is sampled
at the onset of the protocol, and every party Pi receives ri.
Notation: For every i ∈ [n], denote by Ci,x,r(m1, . . . ,mn) the Boolean circuit with hard-wired
values x and r that upon receiving n inputs m1, . . . ,mn, computes second-msgi(x, r,m1, . . . ,mn).
For simplicity, assume that each first-round message is `-bits long, hence each such circuit has
L = n · ` inputs bits.
The protocol:
• First round: Every party Pi proceeds as follows.

1. Let m1
i = first-msgi(xi, ri) be Pi’s first-broadcast-round message in πbc.

2. Compute (GCi,Ki)← Garble(1κ, Ci,x,r), where Ki = (K0
i,1,K

1
i,1, . . . ,K

0
i,L,K

1
i,L).

3. For every λ ∈ [L] and b ∈ {0, 1}, sample n uniformly random strings Kb
i→1,λ, . . . ,K

b
i→n,λ,

conditioned on Kb
i,λ =

⊕
j∈[n] K

b
i→j,λ.

4. Send to every party Pj the message (m1
i , {K0

i→j,λ,K
1
i→j,λ}λ∈[L]).

• Second round: In case party Pi did not receive a message from some other party, he aborts;
otherwise, Pi proceeds as follows.
1. Let (m1

j→i, {K0
j→i,λ,K

1
j→i,λ}λ∈[L]) be the first-round message received from Pj .

2. Denote the concatenation of all the messages m1
j→i as

(µi,1, . . . , µi,L) := (m1
1→i, . . . ,m

1
n→i) ∈ {0, 1}L.

3. Send to all the parties the message (GCi, {K
µi,λ
1→i,λ}λ∈[L], . . . , {K

µi,λ
n→i,λ}λ∈[L]).

• Output: In case party Pi did not receive a message from some other party, he aborts; otherwise,
Pi proceeds as follows.
1. Let (GCj , {K1→j,λ}λ∈[L], . . . , {Kn→j,λ}λ∈[L]) be the second-round message received from

party Pj .
2. For every j ∈ [n] and λ ∈ [L], reconstruct each garbled label as

Kj,λ =
⊕
h∈[n]

Kj→h,λ.

3. For every j ∈ [n], evaluate the garbled circuit received from Pj as

m2
j = Eval(GCj ,Kj,1, . . . ,Kj,L).

(If any of the evaluations fails, abort.)
4. Compute and output y = outputi(xi, ri, (m1

1→i, . . . ,m
1
n→i), (m2

1, . . . ,m
2
n)).

Figure 3: Compiling two-broadcast-round MPC protocols into two P2P rounds.
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To define the simulator S (for the adversary A), we use one of the simulators Sj corresponding
to the honest parties (the choice of which simulator to use is arbitrary). S initially receives from
Sj either the corrupted parties’ inputs or an abort message, and forwards the received message to
the trusted party. If Sj does not abort, S receives back the output value y, forwards y to Sj and
receives the simulated second-round messages from Sj ’s output. Next, S invokes A and simulates
the first-round messages of π (using the simulated first-round messages for πbc obtained from Sj),
receives back the first-round messages from A, and checks whether these messages are consistent.
If so, S completes the simulation by constructing simulated garbled circuits that output the correct
second-round messages (if A’s messages are consistent, the simulated messages by Sj are valid for
all honest parties). If A’s messages are inconsistent, S simulates garbled circuit that output dummy
values (e.g., zeros), which is ok since the A will not learn the labels to open them.

Lemma 4.3. Let f be an efficiently computable n-party function and let t < n. Let πbc be a two-
broadcast-round protocol that securely computes f with unanimous abort by a black-box straight-line
simulation and assume that garbling schemes exist. Consider the protocol π = Comp(πbc) where
the first round is over secure point-to-point channels and the second round is over broadcast. Then,
π securely computes f with unanimous abort.

Proof. Let A be an adversary attacking protocol π and let I ⊆ [n]. Without loss of generality, we
assume that A is deterministic and that the output of A consists of his entire view during the pro-
tocol, i.e., the auxiliary information, the input and correlated randomness of all corrupted parties,
and the messages received by honest parties during the protocol. Let SimGC be the simulator for
the garbling scheme. We will construct a simulator S as follows.

Receiver-specific adversaries. We start by defining the class of adversarial strategies {Aj}j /∈I
for the protocol πbc. For every j /∈ I, adversary Aj starts by invoking A on his input xi correlated
randomness ri and auxiliary information aux.

Upon receiving the first-broadcast-round message m1
h from an honest party Ph in πbc, Aj

samples a uniformly random κ-bit string Kb
h→i,λ for every i ∈ I, every λ ∈ [L], and every

b ∈ {0, 1}. Next, Aj sends to A the message (m1
h, {K0

h→i,λ,K
1
h→i,λ}λ∈[L]) on behalf of the

honest Ph to every corrupted Pi over the point-to-point channel in π. For every g /∈ I, denote
m1
h→g = m1

h.
Let (m1

i→h, {K0
i→h,λ,K

1
i→h,λ}λ∈[L]) be the message sent by A on behalf of every corrupted

Pi to every honest Ph in π. Aj broadcasts the message m1
i→j for every corrupted party Pi in

the protocol πbc (i.e., the messages sent by corrupted parties to Pj in π).
Upon receiving the second-round message m2

h from an honest party Ph in πbc, Aj invokes the
garbling-scheme simulator to obtain (GCh,Kh,1, . . . ,Kh,L) ← SimGC(1κ, Ch,m2

h) (where Ch is
the circuit computing second-msgh with input and randomness set to 0). Denote

(µh,1, . . . , µh,L) := (m1
1→h, . . . ,m

1
n→h) ∈ {0, 1}L.

Next, for every λ ∈ [L] and i ∈ I, denote Kh→i,λ = K
µh,λ
h→i,λ; Aj samples random shares

Kh→g,λ for g /∈ I conditioned on Kh,λ =
⊕

i∈[n]Kh→i,λ, and sends to A the message
(GCh, {K1→h,λ}λ∈[L], . . . , {Kn→h,λ}λ∈[L]) as the second-round broadcast message of Ph in π.

Let (GCi, {K1→i,λ}λ∈[L], . . . , {Kn→i,λ}λ∈[L]) be the broadcast message received from A on
behalf of Pi; denote Ki→h,λ = K

µh,λ
i→h,λ (based on the first-round message from Pi), let Ki,λ =⊕

h∈[n]Ki→h,λ, and compute m2
i = Eval(GCi,Ki,1, . . . ,Ki,L).

Finally, Aj broadcasts the messages m2
i for every corrupted Pi in πbc, outputs whatever A

outputs, and halts.
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By the security of πbc, for every j /∈ I there exists a simulator Sj for the adversarial strategy Aj
such that for every auxiliary information aux and input vector x = (x1, . . . , xn) it holds that

REALπbc,Aj(aux),I(κ,x) c≡ IDEALun-abort
f,Sj(aux),I(κ,x).

Every simulator Sj starts by sending input values to his trusted party x′j = {x′i,j}i∈I . Upon
receiving the output value y, the simulator Sj sends a message abort/continue, and finally outputs
the simulated view of the adversary, consisting of its input and the simulated messages of πbc:

VIEWj = ( ˆauxj , {(x̂ji , r̂
j
i )}i∈I , m̂

1,j
1 , . . . , m̂1,j

n , m̂2,j
1 , . . . , m̂2,j

n ).

The simulator. Denote by SRS = Sj for the minimal j /∈ I (RS stands for receiver specific). The
simulator S starts by invoking SRS on his input, and receiving back the input values x′ = {x′i}i∈I
or an abort message. S forwards whatever he received to the trusted party. If SRS did not abort,
S receives back the output value y and forwards y to SRS. Next, SRS outputs the simulated view

VIEWRS = ( ˆaux, {(x̂i, r̂i)}i∈I , m̂1
1, . . . , m̂

1
n, m̂

2
1, . . . , m̂

2
n).

The simulator S proceeds as follows:
1. S invokes A on his inputs and the simulated correlated randomness for corrupted parties.
2. S samples a uniformly random κ-bit string Kb

h→i,λ for every i ∈ I, every λ ∈ [L], and every
b ∈ {0, 1}. Next, S sends the message (m1

h, {K0
h→i,λ,K

1
h→i,λ}λ∈[L]) on behalf of the honest Ph

to every corrupted Pi.
3. Let (m1

i→h, {K0
i→h,λ,K

1
i→h,λ}λ∈[L]) be the message sent by A on behalf of every corrupted Pi

to every honest Ph.
4. If it holds that for every i ∈ I there exists a value m̂1

i such that m1
i→h = m̂1

i for every h /∈ I
(i.e., A sent consistent messages), proceed as follows:

For every honest party Ph, invoke the garbling-scheme simulator on the simulated mes-
sage m̂2

h to obtain (GCh,Kh,1, . . . ,Kh,L) ← SimGC(1κ, Ch, m̂2
h) (where Ch is the circuit

computing second-msgh with input and randomness set to 0).
Denote

(µh,1, . . . , µh,L) := (m̂1
1, . . . , m̂

1
n) ∈ {0, 1}L.

For every λ ∈ [L] and i ∈ I, denote Kh→i,λ = Kµλ
h→i,λ. Sample random shares Kh→g,λ for

g /∈ I conditioned on Kh,λ =
⊕
i∈[n]Kh→i,λ.

Send to A the message (GCh, {K1→h,λ}λ∈[L], . . . , {Kn→h,λ}λ∈[L]) as the second-round
broadcast message of Ph in π.

5. If there exists i ∈ I and h, h′ /∈ I such that m1
i→h 6= m1

i→h′ (i.e., A sent inconsistent messages),
proceed as follows:

Send abort to the trusted party computing f (unless already done so).
For every honest party Ph, invoke the garbling-scheme simulator on a dummy value to
obtain (GCh,Kh,1, . . . ,Kh,L)← SimGC(1κ, Ch, 0L).
For every g /∈ I let m1

h→g = m̂1
h and denote

(µh,1, . . . , µh,L) := (m1
1→h, . . . ,m

1
n→h) ∈ {0, 1}L.

For every λ ∈ [L] and i ∈ I, denote Kh→i,λ = K
µh,λ
h→i,λ. Samples random shares Kh→g,λ for

g /∈ I.
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Sends to A the message (GCh, {K1→h,λ}λ∈[L], . . . , {Kn→h,λ}λ∈[L]) as the second-round
broadcast message of Ph in π.

6. Let (GCi, {K1→i,λ}λ∈[L], . . . , {Kn→i,λ}λ∈[L]) be the broadcast message received from A on
behalf of Pi. If A sent consistent first-round messages and SRS did not abort, denote
Ki→h,λ = Kµλ

i→h,λ (based on the first-round message from Pi), and check two things:
That all garbled circuit of the corrupted parties can be evaluated, i.e., for every i ∈ I, let
Ki,λ =

⊕
h∈[n]Ki→h,λ, and compute m2

i = Eval(GCi,Ki,1, . . . ,Ki,L).
That the adversary sent the correct shares for the honest parties’ garbled labels, i.e., for
every i ∈ I and h /∈ I, check that Kh→i,λ = Kµλ

h→i,λ.
If any of these checks fails, S sends abort to the trusted party computing f ; otherwise S sends
continue.

7. Finally, S outputs whatever A outputs, and halts.

Proving real/ideal indistinguishability. We now turn to prove that the joint output of the
honest parties and of the adversary in the ideal and real executions are computationally indistin-
guishable. This is done by defining a sequence of hybrid games.

The game HYB1
π,I,A. In this game, the simulator has access to the internal state of the trusted

party computing f : it can see the input values of the honest parties and choose their output values.
The simulator emulates the honest parties in the protocol π towards the adversary A based on their
input values and sets the output for each honest party according to its output in the simulation.
Clearly, HYB1

π,I,A and REALπ,I,A are identically distributed.

The game HYB2
π,I,A. In this game, we modify HYB1

π,I,A as follows. The simulator first invokes
the receiver-specific simulator SRS, receives back x = {x′i}i∈I or abort and forwards the received
message to the trusted party computing f . If SRS did not abort, S receives back the output value
y and sends it to SRS. Next, S emulates towards A the honest parties on their inputs (as in
HYB1). S checks if A sends inconsistent first-round messages; if so S sends abort to the trusted
party. Otherwise, S checks to see that the corrupted parties’ garbled circuits from the second-round
messages can be evaluated with the garbled labels sent by A, and that A sent the correct shares of
the honest parties’ garbled labels corresponding to the first-round messages. If so, S sends continue;
otherwise S sends abort.

Claim 4.4. HYB1
π,I,A and HYB2

π,I,A are computationally indistinguishable.

Proof. The claim follows by the security of πbc and the correctness of the garbling scheme.
In case A sends inconsistent first-round messages the honest parties in π will abort, hence also

in HYB1. In HYB2, S will send abort to the trusted party in that case, ensuring the honest parties
will abort in HYB2 as well.

In case A sends consistent first-round messages, then the execution of π will correspond to
an execution of πbc in the following sense. A gets the garbled labels for evaluating the garbled
circuits and obtains the second-round messages for πbc; thus, A gets to learn the output value.
Next, A sends garbled circuits and garbled labels by the corrupted parties. If these garbled circuits
cannot be evaluated with the garbled labels, all honest parties in π will abort. Similarly, if A sends
incorrect shares for honest parties’ garbled labels the parties in π will abort. In either case, S sends
abort to the trusted party. If all garbled circuits evaluate properly and produce the second-round
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messages for the corrupted parties, the ability to distinguish between HYB1 and HYB2 translates to
the ability to distinguish between SRS and the receiver-specific adversary for πbc.

The game HYB3
π,I,A. In this game, we modify HYB2

π,I,A as follows. For every honest party Ph,
instead of computing the shares of the garbled labels Kb

h→i,λ such that Kb
h,λ =

⊕
i∈[n]K

b
h→i,λ, the

simulator sends random shares from each honest party Ph to each corrupted Pi.
If the first-round messages received from A are consistent (i.e., every corrupted party sent
the same “common part” to all honest parties) then denote Kh→i,λ = Kµλ

h→i,λ (where the
concatenated “broadcasted” string is (µ1, . . . , µL)), sample random shares Kh→g,λ for g /∈ I
conditioned on Kh,λ =

⊕
i∈[n]Kh→i,λ, and send the second-round message using these shares.

If not, denote Kh→i,λ = K
µi,λ
h→i,λ (where the concatenated first-round messages Ph received is

(µi,1, . . . , µi,L)), sample random shares Kh→g,λ for g /∈ I (without any constraints), and send
the second-round message using these shares.

Claim 4.5. HYB2
π,I,A and HYB3

π,I,A are identically distributed.

Proof. The only difference between the hybrids is when A sends inconsistent first-round messages.
In HYB1, for every h /∈ I and λ ∈ [L], the adversary can choose to see either a share of K0

h,λ or
K1
h,λ, but he will not get sufficiently many shares to reconstruct any of the garbled labels. In HYB2,

the adversary receives random κ-bit strings that are independent of the actual garbled labels. As
the additive secret sharing has perfect security, the hybrids are identically distributed.

The game HYB4
π,I,A. In this game, we modify HYB3

π,I,A as follows. Instead of generating the gar-
bled circuits honestly, the simulator generates simulated garbled circuits. S computes the second-
round messages from the emulated execution with A as in HYB3, i.e., the message m2

h sent by every
h /∈ I. Next, S computes (GCh,Kh,1, . . . ,Kh,L) ← SimGC(1κ, Ch,xh,rh ,m2

h) (where Ch,xh,rh is the
circuit second-msgh with hard-wires input xh and randomness rh).

Claim 4.6. HYB3
π,I,A and HYB4

π,I,A are computationally indistinguishable.

Proof. The proof follows by a standard hybrid argument by considering n+1 intermediate hybrids,
where in the j’th hybrid the garbed circuits of a party Ph with h ≤ j are simulated as in HYB4,
and for h > j are computed as in HYB3. The 0’th hybrid correspond to HYB3 and the n’th hybrid
correspond to HYB4. Each neighboring intermediate hybrids are computationally indistinguishable
by the security of the garbling scheme.

The game HYB5
π,I,A. In this game, we modify HYB4

π,I,A as follows. Let Ch be the circuit
second-msgh with hard-wired input and randomness set to 0.

If the first-round messages sent by A are consistent, S simulates the garbled circuit for Ch and
the message m2

h (as computed in HYB4) as (GCh,Kh,1, . . . ,Kh,L)← SimGC(1κ, Ch,m2
h).

If the first-round messages sent by A are inconsistent, S simulates the garbled circuit for the
circuit Ch and a dummy output value (e.g., 0L) as (GCh,Kh,1, . . . ,Kh,L)← SimGC(1κ, Ch, 0L).

Claim 4.7. HYB4
π,I,A and HYB5

π,I,A are computationally indistinguishable.

Proof. The proof follows by a standard hybrid argument as before, by replacing the garbled circuits
one by one. When the first-round messages are inconsistent, the adversary does not learn the labels
for evaluating the garbled circuits, and therefore by the security of the garbling scheme, neighboring
intermediate hybrids are computationally indistinguishable.
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The game HYB6
π,I,A. In this game, we modify HYB5

π,I,A as follows. Instead of computing the hon-
est parties’ messages based on their input values, S uses the simulated messages as generated by SRS.
That is, the first-round messages from an honest Ph to a corrupted Pi consist of m̂1

h and random
shares for the labels. The second round message by Ph (when A’s first-round messages are consis-
tent) is based on (GCh,Kh,1, . . . ,Kh,L)← SimGC(1κ, Ch, m̂2

h) (rather than SimGC(1κ, Ch,m2
h)).

Claim 4.8. HYB5
π,I,A and HYB6

π,I,A are computationally indistinguishable.

Proof. In HYB6, the simulator uses the simulated messages by the receiver-specific simulator SRS,
in particular, all honest parties’ messages correspond to the messages sent to party Pj (where j /∈ I
index used to define SRS). In HYB5, A learns the second-round messages for πbc only when sending
consistent first-round messages (except for negligible probability), so all honest parties receive the
same messages as Pj . The claim now follows by the security of πbc, since any distinguisher between
HYB5 and HYB6 can be used to distinguish between the simulation of SRS and the real execution
with the receiver-specific adversary.

In fact, the proof relies on the ability of SRS to extract the corrupted parties’ inputs from the
first-round messages, and so even by “rewinding” A, i.e., by sending to A the simulated first-round
messages that are obtained from the output of SRS, it is guaranteed that A will not switch the
corrupted parties’ inputs to different values. The ability of SRS to extract the corrupted parties’
inputs from their first-round messages follows from the assumption that SRS is straight-line and
black-box. Indeed, for two-round MPC protocols a straight-line and black-box simulation implies
that property, since otherwise, if the corrupted parties’ input can only be extracted from the
second-round messages, the adversary will be able to choose which input values to use (i.e., which
second-round messages to send) as a function of the output; therefore, the input-independence
property will not be satisfied.

This concludes the proof of Lemma 4.3 since in HYB6
π,I,A the simulator does not need to have

access to the internals of the trusted party computing f , and it behaves exactly as the simulator S
for the adversary A; hence, HYB6

π,I,A and IDEALun-abort
f,I,S are identically distributed.

4.3 Selective Abort with Two Point-To-Point Rounds

We proceed by proving our second result, that the compiled protocol π = Comp(πbc) of Figure 3 is
secure with selective abort when the second-round message is over a point-to-point channel. The
main difference from the previous case (Section 4.2) is that the adversary can send different garbled
circuits to different honest parties in the second round, potentially causing them to obtain different
output values, which would violate correctness (recall that the definition of security with selective
abort permits some honest parties to abort while other obtain the correct output, but it is forbidden
for two honest parties to obtain two different output values.)

Lemma 4.9. Let f be an efficiently computable n-party function and let t < n. Let πbc be a two-
broadcast-round protocol that securely computes f with unanimous abort by a black-box straight-line
simulation and assume that garbling schemes exist. Consider the protocol π = Comp(πbc) where
both rounds are over secure point-to-point channels. Then, π securely computes f with selective
abort.

Proof. The proof follows in a similar way to the proof of Lemma 4.3. We will indicate the differences
in the simulation and the indistinguishability proof. Let A be an adversary attacking protocol π
and let I ⊆ [n].
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Receiver-specific adversaries. This class of adversaries in defined as before, with the exception
that the second-round messages sent by A from a corrupted Pi may not be the same for all honest
parties. For j /∈ I, the adversary Aj for the protocol πbc, receives from A all second-round messages
for π, and for very i ∈ I, broadcasts the messages sent by Pi to Pj . As before, by the security of
πbc, for every j /∈ I there exists a simulator Sj for the adversarial strategy Aj such that

REALπbc,Aj(aux),I(κ,x) c≡ IDEALun-abort
f,Sj(aux),I(κ,x).

The simulator. Denote by SRS = Sj for the minimal j /∈ I. The simulator S starts by invoking
SRS on his input. If SRS responds with abort, then S sets J = [n] \ I and sends (abort,J ) to the
trusted party (meaning that no honest party will obtain the output); if SRS responds with the input
values x′ = {x′i}i∈I for the corrupted parties, S forwards these values to the trusted party, receives
back the output value y, and sends y to SRS. Next, SRS outputs the simulated view

VIEWRS = ( ˆaux, {(x̂i, r̂i)}i∈I , m̂1
1, . . . , m̂

1
n, m̂

2
1, . . . , m̂

2
n).

The simulator proceeds as in the proof of Lemma 4.3 with the following differences:
1. In Step 5 (when A send inconsistent first-round message), instead of simply sending abort to

the trusted party, S sets J = [n] \ I and sends (abort,J ).
2. In Step 6, S performs the check of the second-round messages sent by A for every honest party.

Let J be the set of honest parties for which the check fails; S sends (abort,J ) to the trusted
party (i.e., the parties in J will abort, and parties in [n] \ (I ∪ J ) will receive the output).

Proving real/ideal indistinguishability. The difference in the hybrid argument used in the
proof of Lemma 4.3 lies in the game HYB2

π,I,A. In this hybrid, the simulator changes the way the
honest parties’ output values are computed: from the output as obtained from the execution of π
(which is the case in HYB1) to the output of the trusted party based on the messages sent by S.

The game HYB2
π,I,A is therefore adjusted as follows. The simulator first invokes the receiver-

specific simulator SRS. If SRS sends abort, S sends (abort, [n] \ I) to the trusted party. If SRS sends
x = {x′i}i∈I the simulator forwards the received message to the trusted party, receives back the
output value y, and sends it to SRS. Next, S emulates towards A the honest parties on their inputs
(as in HYB1). S checks if A sends inconsistent first-round messages; if so S sends (abort, [n] \ I)
to the trusted party. Otherwise, S checks for every honest party to see that the corrupted parties’
garbled circuits from the second-round messages can be evaluated with the garbled labels sent by
A, and that A sent the correct shares of the honest parties’ garbled labels corresponding to the
first-round messages. Let J denote the set of honest parties for which the check failed. S sends
(abort,J ) to the trusted party.

Proving computational indistinguishability of HYB1
π,I,A (as defined in the proof of Lemma 4.3)

and the adjusted HYB2
π,I,A follows as before with one additional subtlety. A corrupted Pi can send

two different garbled circuits GCi and G̃Ci that on the same garbled labels will produce two different
second-round messages m2

i and m̃2
i . The proof follows in that case since these two messages can

lead to different valid (i.e., non-aborting) output values only with negligible probability. Otherwise,
the adversary will be able to choose which second-round message to send for Pi in the broadcast-
model protocol πbc, which will lead to a different output value, after receiving all of the protocol’s
messages; in this situation, the input-independence property will not be satisfied.
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A Supplementary Proofs
Corollary 3.1 ([43]). The function f cannot be computed with selective abort by a single-round
protocol tolerating one semi-honest corrupted party.

Proof. HLP considered the model of “MPC on the Web” in which a server is permanently online,
and parties appear in turns, interact with the server to provide their inputs to the computation, and
disappear. In that model, they proved that there are functions that cannot be securely computed
even in the semi-honest setting. This fact proves this corollary as follows: First, observe that this
impossibility can be applied to f . Towards a contradiction, assume that there exists a single-round
semi-honest protocol π for f . Then, a rushing adversary corrupting P1 can wait until he receives
the messages from P2 and P3 and, before sending his own message, compute the outcome of f
on x1 = 0 and on x1 = 1. Clearly, one of the two evaluations will yield x3,1 ⊕ xκ2 and the other
x3,2 ⊕ xκ2 . However, in an ideal evaluation of f the simulator can produce at most one of the two
values, yielding a contradiction to the security of π.

Corollary 3.2. For n ≥ 3, there exist an n-party function fn for which there is no single-round
protocol π which securely computes fn with selective abort against even a single corruption. The
statement is true even if π uses a broadcast channel in its single round.

Proof. First we observe that, as discussed above, the statement holds for f for the case of three
parties by considering the honest-looking adversary that uses the strategy from Corollary 3.1. The
proof then follows trivially by a player-simulation argument: Let fn be the n-party function among
parties in P = {P1, . . . , Pn} in which for i ∈ {1, 2, 3}, party Pi has the same inputs and outputs
as in f , whereas any P ∈ P \ {P1, P2, P3} has the empty string as its input and output. It is
straightforward to verify that the honest-looking adversary who corrupts P1 and plays the same
strategy as the adversary attacking the three-party evaluation of f learns both inputs of P3 and,
therefore, cannot be simulated.
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