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Abstract Middle-Product Learning With Errors (MP-LWE) is a variant of the LWE
problem introduced at CRYPTO 2017 by Rosca et al [RSSS17]. Asymptotically, the
theoretical results of [RSSS17] suggest that MP-LWE gives lattice-based public-key
cryptosystems offering a ‘security-risk vs. efficiency’ trade-off: higher performance
than cryptosystems based on unstructured lattices (LWE problem) and lower risk
than cryptosystems based on structured lattices (Polynomial/Ring LWE problem).
However, although promising in theory, [RSSS17] left the practical implications of
MP-LWE for lattice-based cryptography unclear.

In this paper, we show how to build practical public-key cryptosystems with
strong security guarantees based on MP-LWE. On the implementation side, we present
optimised fast algorithms for computing the middle-product operation over polyno-
mial rings Zq[x], the dominant computation for MP-LWE-based cryptosystems. On
the security side, we show how to obtain a nearly tight security proof for MP-LWE
from the hardest Polynomial LWE problem over a large family of rings, improving
on the loose reduction of [RSSS17]. We also show and analyze an optimised crypt-
analysis of MP-LWE that narrows the complexity gap to the above security proof. To
evaluate the practicality of MP-LWE, we apply our results to construct, implement
and optimise parameters for a practical MP-LWE-based public-key cryptosystem,
Titanium, and compare its benchmarks to other lattice-based systems. Our results
show that MP-LWE offers a new ‘security-risk vs. efficiency’ trade-off in lattice-based
cryptography in practice, not only asymptotically in theory.
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1 Introduction

1.1 Background

Until quite recently, there have been two quite distinct approaches to lattice-based
cryptography. The first ‘low security risk’ oriented approach is based on unstructured
lattices, using the Learning With Errors (LWE) problem [Reg05]. The lack of any
special structure in the LWE problem allows it to enjoy strong security guarantees,
such as a security reduction from the worst-case hardness of lattice problems over
all lattices [Reg05]. Yet the drawback of this approach is the large matrices involves
and consequent relatively heavy computational cost of the resulting cryptosystems,
such as Frodo [BCD+16] and FrodoKEM [ABD+17].

The second ‘high performance’ oriented approach is based on structured lattices,
specifically using the Polynomial/Ring Learning With Errors (PLWE/RLWE) prob-
lems [SSTX09,LPR10,BV11]. The polynomial rings Rq,f = Zq[x]/(f(x)) for a fixed
ring polynomial f(x) (e.g. cyclotomic polynomials of the form f(x) = xn + 1 for
n a power of 2) underlying this approach permit the use of succinct matrices and
fast polynomial arithmetic based on the number theoretic transform (NTT), lead-
ing to low computational and storage costs of the resulting cryptosystems, such as
New Hope [ADPS16]. However, the high efficiency of this approach comes with a
higher security risk. Specifically, the ring polynomial f(x) is fixed at design time
and the cryptosystem security relies on security of PLWEf (i.e., the PLWE prob-
lem in the specific ring Rq,f defined by f). Unfortunately, the dependence of the
hardness of PLWEf on the choice of f is not very well understood. For example,
it is known that certain choices of f lead to either an insecure PLWEf with small
errors relative to the underlying lattice geometry [EHL14,ELOS15,CIV16,Pei16], or
to efficient subexponential approximation factor quantum algorithms for the related
approximate shortest vector problem in ideals of the polynomial ring Z[x]/(f(x))
(for certain cyclotomic f ’s) [CDPR16,CDW16]. Thus, there is a security risk in fix-
ing f today in a cryptosystem, as future attacks on PLWEf for the potentially weak
f used in the cryptosystem may be discovered. We remark that the Module Poly-
nomial LWE problem (as used in [BDK+17,DKRV17]) also has a similar potential
risk, since the module is defined over a fixed polynomial ring, and attacks on the
ring could translate into attacks on the module [AD17]. 1

Recently, the theoretical foundations for a new third ‘intermediate’ approach was
introduced [RSSS17], seeking to achieve an intermediate point in the ‘security-risk
vs. efficiency’ trade-off curve, sitting in between the unstructured lattice (LWE) first
approach and the structured lattice (PLWE) second approach above. To obtain a
lower security risk than reliance on PLWEf/RLWEf (or Module-RLWE) over a single
fixed ring Zq[x]/(f(x)), this approach, initiated by Lyubashevsky [Lyu16] for the
design of digital signatures and extended by Rosca et al. [RSSS17] for design of
public-key encryption, aims at problems that are provably as hard as PLWEf for
the hardest f in a large family of polynomials, to hedge against the weakness of
specific polynomial rings, while achieving a better efficiency than schemes based on

1 We remark that the risk for Module PLWE may be lower than for PLWE since existing
‘direct’ attacks on Module Polynomial LWE problem require a larger module rank to be solved
than for attacks on the PLWE instance. But [AD17] shows at least asymptotically that, at the
cost of polynomially-larger error parameter, a poly-time PLWE attack over the ring trnslates
into a poly-time Module PLWE attack over the same ring.
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unstructured LWE, by working over polynomial rings of the form Zq[x] (with no
fixed ring modulus f). In particular, [RSSS17] introduced a new variant of LWE over
the ring Zq[x] called Middle-Product LWE (MP-LWE), and gave a polynomial time
security reduction from (decision) PLWEf to (decision) MP-LWE of parameter n, for
every monic f of degree n whose constant coefficient is coprime with q. The middle-
product operation underlying MP-LWE consists of a multiplication in the ring Zq[x]
followed by a truncation of coefficients, keeping only the middle coefficients.

While the work of [RSSS17] provides a promising theoretical foundation for
the third ‘intermediate’ risk-performance balance approach to lattice-based cryp-
tography based on the MP-LWE problem, the practical significance of the results
in [RSSS17] is unclear on several fronts, as follows.

Firstly, it is not investigated in [RSSS17] how to devise optimised algorithms
and cryptosystem parameters to efficiently compute the middle-product opera-
tion underlying MP-LWE over Zq[x] (as opposed to the ring multiplication over
Zq[x]/(f(x)) used in optimised algorithms for PLWEf based cryptosystems like New
Hope [ADPS16]). Consequently, the work of [RSSS17] leaves open the important
question of what practical cryptosystem performance is achievable with such opti-
mised algorithms and parameters at a given security level, compared to performance
achievable by state of the art cryptosystems based on the classical LWE and PLWE
approaches.

Secondly, the security reduction in [RSSS17] is not tight. Specifically, in the re-
duction presented in [RSSS17] from PLWEf to MP-LWE, the error standard deviation
parameter is amplified by the reduction by a large (though polynomial in the dimen-
sion) factor linear in the so-called ‘Expansion Factor’ of f (introduced in [LM06]) and
a dimension parameter d. Consequently, the result in [RSSS17] as it stands does not
give meaningful concrete security guarantees unless performance is hugely sacrificed
(to the point that it may not be better in practice than the lower risk unstructured
LWE based approach).

Thirdly, from a practical lattice cryptanalysis perspective, the result in [RSSS17]
says that MP-LWE is at least as hard as PLWEf but leaves the possibility that
MP-LWE is much harder, since the dimension of the secret vector in the latter is
significantly larger than in the former. This highlights the need for cryptanalysis of
MP-LWE to study this potential complexity gap.

1.2 Our Contributions

In this paper, we show how the Middle Product LWE (MP-LWE) problem can be
applied to obtain practical public-key cryptosystems based on the ‘intermediate’
risk-performance balance approach initiated in [RSSS17], by addressing the above
mentioned shortcomings left open in the work of [RSSS17]. Specifically, we present
the following contributions: 2

– Optimised Middle Product Algorithms: We present (Sec. 3) practical and opti-
mised fast algorithms for the middle-product operation underlying MP-LWE. Our
algorithm is a generalisation of the Number Theoretic Transform (NTT)-based

2 Compared to [RSSS17], in this paper, we present research contributions of original NIST-
Titanium [SSZa]. The implementation is further improved over that in [SSZa] and the contri-
butions listed here are all new compared to [RSSS17].
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algorithm of [HQZ04] to allow for flexible choice of dimensions of the argument
polynomials (which is needed to optimise MP-LWE-based cryptosystem param-
eters for efficiency). We also show how to optimise this algorithm further by
introducing a ‘Partial MP− NTT’ algorithm that exploits the sparse input and
output of the NTTs used within the middle-product computation.

– Tight Security Proof for MP-LWE: We present (Sec. 4.1) a refined concrete anal-
ysis of tightness of the security reduction in [RSSS17] from PLWEf (for some
fixed ring polynomial f) to MP-LWE. We define a measure of this tightness as
a property of f called the geometric factor of f , and we present a natural large
polynomial family F with an optimal geometric factor of 1. Consequently, we
obtain tight security reduction (in terms of error parameter amplification) to
MP-LWE from the PLWEf hardness assumption with respect to any f in the
family F , closing the tightness issue of the reduction in [RSSS17]. Our reduc-
tion can be applied to give concrete hardness guarantees for practical parameter
selection (see Sec. 5).

– Improved Cryptanalysis of MP-LWE: Based on a simple observation exploiting
the sparse structure of the MP-LWE matrix, we present and analyse an optimised
variant of the ‘primal’ lattice attack on MP-LWE and show that it asymptotically
closes the dimension complexity gap between PLWEf and MP-LWE problems
mentioned above, as the number t of MP-LWE samples increases, for a fixed
modulus q. In practice, for smaller values of t, our attack leaves a remaining
approximation factor gap of q1/t between the two problems.

– Application to a practical MP-LWE-based cryptosystem: Titanium: To show the
practical utility of our results, we present (Sec. 5) the optimised parameters
and implementation performance benchmarks of an MP-LWE-based public-key
cryptosystem called Titanium (which has been submitted to the NIST PQC pro-
cess [NISa]), whose implementation is based on our fast middle product algorithm
and whose parameters choice take into account our tight security reduction to
give strong concrete security guarantees with respect to the hardest PLWEf over
f in our family F . In particular, we show how to choose parameter sets for
Titanium for a range of desired security levels, such that the main computational
cost of our middle product operations reduces to NTT computations in dimension
256. The use of NTT in dimension 256 as a subroutine has proved to yield a high
computational efficiency as well as flexibility and reusability of NTT code for
different security levels in recent Module-RLWE based cryptosystem implementa-
tions [BDK+17]. We show that our Titanium MP-LWE-based implementation can
also enjoy similar flexibility and core NTT code reusability properties. Our per-
formance benchmarks for Titanium show a significant speedup compared to state
of the art cryptosystems based on the unstructured LWE problem, while posing a
lower security risk than structured lattice schemes over a fixed polynomial ring.

– Worst-case hardness problem underlying Titanium: Titanium is submitted to the
NIST PQC process [NISa], which is still under way. The security analysis in
the NIST PQC submission [SSZa] of Titanium bases security on the hardness of
MP-LWE and hence, via our tight reduction above, on the average-case hardness
of PLWEf over f in our ring family F . As further qualitative evidence for the
security of Titanium, we show that MP-LWE (and hence Titanium security) is
tightly as hard as PLWEf over f in another family F0 (a slight generalization of
the family F above), which in turn enjoys a provable average case hardness based
on the worst-case module lattice problems over many rings in F0, as established
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by a set of recent results from [RWS17] (whereas such a worst-case hardness
guarantee for PLWE over f in F is not known). However, we only view this
worst-case result as qualitative hardness evidence, since in common with other
worst-case to average reductions [RWS17,LPR10], this worst-case reduction is
not tight and also requires larger error standard deviations than those used in
practical cryptosystems like Titanium.

We believe our results constitute a step forward towards extending the practical
applicability of the ‘intermediate risk-performance’ (MP-LWE based) approach to
lattice-based cryptography to other cryptographic primitives.

2 Preliminaries

We use the following notations:

– For k > 0, and a ring R, we let R<k[x] denote the set of polynomials with
coefficients in R of degree < k.

– Given a polynomial a = a0 + a1x+ · · ·+ ak−1x
k−1 ∈ R<k[x], we let

PolToVec(a) := a = (a0, . . . , ak−1)T ∈ Rk,

and Rev(a) = (ak−1, . . . , a0)T ∈ Rk. The latter notation is extended to the
corresponding polynomial too. For two polynomials a and b (not necessarily with
same degree), it is easy to check that:

Rev(a · b) = Rev(a) · Rev(b). (1)

– Given two polynomials a = a0 + a1x + · · · + ak−1x
k−1 ∈ R<k[x] and b = b0 +

b1x+ · · ·+ bm−1x
m−1 ∈ R<m[x], we denote by a · b ∈ R<k+m−1[x] the ordinary

polynomial product of a and b over R[x].
– Let da, db, d, k be integers such that da + db − 1 = d + 2k. The middle-product
�
d

: R[x]<da ×R[x]<db → R[x]<d is the map:

(a, b) 7→ a�
d
b =

⌊
(a · b) mod xk+d

xk

⌋
,

in which the notation b·/xkc means that we divide by xk as a power series in
x and drop the terms cjxj with j < 0. We use the same notation �

d
for every

da, db such that da + db − 1− d is non-negative and even.
– Let f be a polynomial of degree m with coefficients in ring R. We define Mf as

the (Hankel) matrix in Rm×m such that for any 1 ≤ i, j ≤ m, the coefficient
(Mf )i,j is the constant coefficient of xi+j−2 mod f .

The (reversed) coefficient vector of the middle-product of two polynomials is in fact
equal to the product of the Toeplitz matrix associated to one polynomial by the
(reversed) coefficient vector of the second polynomial.

Lemma 1 Let d, k > 0. Let r ∈ R<k+1[x] and a ∈ R<k+d[x] and b = r �
d
a. Then

Rev(b) = Toepd,k+1(r)·Rev(a). In other words, we have b = Rev
(

Toepd,k+1(r) · Rev(a)
)
.
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The middle-product is an additive homomorphism when either of its inputs is fixed.
As a consequence of the associativity of matrix multiplication and Lemma 1, the
middle-product satisfies the following associativity property, which is crucial to the
correctness of Titanium (see Section 5).

Lemma 2 ([RSSS17]) Let d, k, n > 0. For all r ∈ R[x]<k+1, a ∈ R[x]<n+1,
s ∈ R[x]<n+d+k, we have r �

d
(a�

d+k s) = (r · a)�
d
s.

3 Fast Middle Product Algorithm and Optimisations

A previous work [HQZ04] proposed fast variants of both the Karatsuba multiplication
based algorithm and the Fast Fourier Transform (FFT) based algorithm to efficiently
compute the special case middle product of the form a�n b, when a ∈ Z<nq [x], and
b ∈ Z<2n−1

q [x]. In this section, we generalize the FFT-based approach of [HQZ04] to
give a middle product algorithm using the NTT for the general case of a �d b, a ∈
Z<daq [x], and b ∈ Z<dbq [x]. In addition, we further optimise our algorithm for the case
where the dimension da and db share a large common factor, by applying the partial
NTT transformation similar to [SB93]. We did not look much at other polynomial
multiplication techniques like Karatsuba.3 We prefer the flexibility of NTT, i.e. the
ability to do pre-computations in key generation algorithm (e.g. sampling the secret
in the NTT domain, and pre-computation of NTT), and the ability to reduce our
various large dimensions to a single core NTT routine in dimension 256.

For a vector a ∈ Zdim
q with prime q and 0 ≤ k ≤ dim−1, we let

NTTdim (ω′dim,a)k =
dim−1∑
i=0

ai · (ω′dim)i·k,

NTT−1
dim (ω′dim,a)k = dim−1 ·

dim−1∑
i=0

ai · (ω′dim)i·k,

where the ω′dim is a fixed primitive dim-th root of unity ωdim ∈ Zq or its inverse
ω−1

dim.
The function Zpad (dim,a) pads a vector a = (a0, . . . , ak−1) ∈ Zkq to the dimen-

sion dim with zeros:

Zpad (dim,a) = (a0, . . . , ak−1, 0, . . . , 0) ∈ Zdim
q .

The following Lemma shows how the well-known NTT-based algorithm can be
employed to compute a polynomial multiplication.

Lemma 3 For polynomial a ∈ Z<daq [x], b ∈ Z<dbq [x], and integer dim ≥ da + db− 1,
let a = Zpad (dim,PolToVec (a)) ∈ Zdim

q , and b = Zpad (dim,PolToVec (b)) ∈ Zdim
q ,

the (zero-padded) coefficient vector of the polynomial product a · b ∈ Z<da+db−1
q [x]

can be computed as:

NTT−1
dim
(
ω−1

dim,NTTdim (ωdim,a) ◦ NTTdim (ωdim,b)
)
,

where ◦ is the point-wise multiplication of two vectors.
3 For an attempt to employ Karatsuba for MP computation, the interested reader is refered

to https://github.com/kzoacn/PolyMultiply.
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Algorithm 1 : Generalised MP-NTT

Input: a ∈ Z<daq [x], and b ∈ Z<dbq [x].
Output: c′ = PolToVec(a�d b) ∈ Zdq .
1: function MP-NTT(a, b)
2: Let dim be a NTT dimension such that dim ≥ db.
3: Let ωdim denote the dim-th root of unity.
4: Compute a′ = NTTdim (ωdim,Zpad (dim,PolToVec (Rev (a)))) ∈ Zdim

q .
5: Compute b′ = NTTdim

(
ω−1

dim,Zpad (dim,PolToVec (b))
)
∈ Zdim

q .
6: Compute c = NTT−1

dim (ωdim,a′ ◦ b′) ∈ Zdim
q .

7: Let c′ = (c0, . . . , cd−1) ∈ Zdq .
8: end function

3.1 Generalised Middle Product Algorithm

To compute a�d b, for a ∈ Z<nq [x], and b ∈ Z<n+d−1
q [x], a naive approach computes

and keeps the middle d coefficients of a·b ∈ Z<2n+d−2
q [x], by computing three NTTdim

such that dim ≥ 2n + d − 2, according to Lemma 3. A faster algorithm [HQZ04]
works for the special case when d = n (i.e., computing a �n b, for a ∈ Z<nq [x], and
b ∈ Z<2n−1

q [x]), based on the 2n-dimensional Fast Fourier Transform (FFT). In this
case, this algorithm reduces the lower bound of the NTT dimension from 3n − 2 to
2n, which saves about 1/3 of the NTT computation time.

However, the constraint that the number of the coefficients in the MP result is
equal to the dimension of a for a� b, is too restrictive for both the parameter choice
and the efficient implementation of MP-based cryptosystems. Here, we observe a
generalisation of an algorithm given in [HQZ04] by removing this limitation. For some
arbitrary integers da, db, d, and k, such that da + db − 1 = d + 2k, the generalised
MP-NTT in Algorithm 1 computes a �d b using the NTT, for a ∈ Z<daq [x], and
b ∈ Z<dbq [x].

Theorem 1 (Adapted from [HQZ04], Th. 11) Let Mp,q,n : R<p [x]×R<q [x]→
R<n [x], and Πn,p,q : R<n [x]×R<p [x]→ R<q [x], be the bilinear forms defined by:

Mp,q,n (y, z) =

( ∑
j+k=i+p−1

yjzk

)
0≤i<n

,

Πn,p,q (x, y) =

( ∑
i+j=k

xiyj

)
0≤k<q

.

Then, for any (X,Y, Z) ∈ R<n [x]×R<p [x]×R<q [x], we have:

(X|Mp,q,n(Y,Z)) = (Πn,p,q(X,Rev (Y ))|Z) ,

where | denotes the canonical inner product of two vectors of the same length. For
q = n+ p− 1, Πn,p,q is X · Y , and Mp,q,n is Y �n Z.

We now show that Algorithm 1 computes the middle product.

Lemma 4 Let a ∈ Z<daq [x], b ∈ Z<dbq [x], and c = MP-NTT (a, b). Then

c = PolToVec(a�d b) ∈ Zdq .
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Proof For integers da, db, and d, such that db = da+d−1, c ∈ Z<dq [x], a ∈ Z<daq [x],
and b ∈ Z<dbq [x], we write Πd,da,db (c,Rev (a)) as:

Πd,da,db (c,Rev (a)) = dim−1 ·
dim−1∑
m=0

(
ωm·idim|c

) (
ωm·jdim|Rev (a)

)
ω−m·kdim mod q,

where 0 ≤ i, j, k < dim, and the NTT dimension dim ≥ db. Then, by Theorem 1, we
have:

(c|Mda,db,d(a, b)) = (Πd,da,db(c,Rev (a))|b)

= dim−1 ·
dim−1∑
m=0

(
ωm·idim|c

) (
ωm·jdim|Rev (a)

) (
ω−m·kdim |b

)
mod q.

Let a′ = PolToVec (Rev (a)), b = PolToVec (b), and c = PolToVec (a�d b). We have:

c = Mda,db,d (a, b) = dim−1 ·
dim−1∑
m=0

(
ωm·jdim|Rev (a)

) (
ω−m·kdim |b

)
ωm·idim mod q

= dim−1 ·
dim−1∑
m=0

(
ωm·idim

)
(NTTdim (ωdim,a′)m)

(
NTTdim

(
ω−1

dim,b
)
m

)
= NTT−1

dim
(
ωdim,NTTdim (ωdim,a′) ◦ NTTdim

(
ω−1

dim,b
))

= MP-NTT (a, b) ,

for 0 ≤ i, j, k < dim, and NTTdim (ωdim,a)m is the m-th coordinate of the NTT
result. ut

3.2 Partial MP-NTT

Let dim ≥ db > da in computation of MP-NTT (a, b), with a ∈ Z<daq [x], and
b ∈ Z<dbq [x]. The Algorithm 1 needs to pad vectors PolToVec (a) and PolToVec (b) to
dimension dim, before passing both vectors to the NTTdim. The naive NTT imple-
mentation is relatively inefficient for such a vector with many zero coordinates, due
to the unnecessary additions, subtractions, and multiplications with zero. However,
for the NTT dimension dim = dim1 · dim2, and some integer m ≤ dim1, if the co-
ordinates of the input vector a satisfy ai = 0 for all i ≥ m · dim2, we can compute
the NTT transformation by only using the first m · dim2 coordinates (partial NTT
transformation), which avoids the unnecessary computations with zeros.

The partial NTT is similar to the FFT decomposition in [SB93]. Let us de-
note ωdim1 = ωdim2

dim , and ωdim2 = ωdim1
dim . For some integer m ≤ dim1, the partial

NTTdim (ωdim,a) transformation that only uses the first m · dim2 coordinates, can
be written as:

NTTdim (ωdim,a)j1+dim1 ·j2
=

dim2 −1∑
i2=0

[
ωi2·j1

dim ·

(
m−1∑
i1=0

adim2 ·i1+i2 · ω
i1·j1
dim1

)]
· ωi2·j2

dim2
,

for 0 ≤ j1 < dim1, and 0 ≤ j2 < dim2. Similarly, the MP-NTT only requires the
first d coordinates output of NTT−1, and the naive NTT−1 implementation wastes
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Algorithm 2 : Partial NTT Algorithm: NTT-Pdim

Input: m, ω′dim, and a, satisfying dim = dim1 ·dim2, and ai = 0 for all i ≥ m · dim2.
Output: Partial Permdim

(
NTTdim

(
ω′dim,a

))
∈ Zdim

q transformation.
1: function NTT-Pdim(m,ω′dim,a)
2: for n2 = 0, . . . ,dim2−1 do
3: Let a′1 be the computation result of classical NTTm→dim1 (a, n2).
4: Set

(
an2 , adim2 +n2 , . . . , a(dim1 −1)·dim2 +n2

)
= a′1.

5: end for
6: for n1 = 0, . . . ,dim1−1 do
7: for n2 = 0, . . . , dim2−1 do
8: Set adim2 ·n1+n2 = adim2 ·n1+n2 · ω′

n1n2
dim .

9: end for
10: end for
11: for n1 = 0, . . . ,dim1−1 do
12: Let a2 be the decimation

(
an1·dim2 , an1·dim2 +1 . . . , a(n1+1)·dim2 −1

)
of a.

13: Let a′2 be the computation result of radix-2 NTTdim2

(
ω′dim2

,a2
)
.

14: Set
(
an1·dim2 , an1·dim2 +1 . . . , a(n1+1)·dim2 −1

)
= a′2.

15: end for
16: end function

lots of CPU time in computing the unnecessary coordinates. If we only need the first
m · dim2 coordinates output for some integer m ≤ dim1, we can also rewrite the
NTT−1 decomposition similar to [SB93], for 0 ≤ j1 < m, and 0 ≤ j2 < dim2:

NTT−1
dim (ωdim,a)j2+dim2 ·j1

=

dim−1 ·

{dim1 −1∑
i1=0

[
ωi1·j2

dim ·

(dim2 −1∑
i2=0

adim1 ·i2+i1 · ω
i2·j2
dim2

)]
· ωi1·j1

dim1

}
.

These two NTT decompositions can be viewed as the combination of two sub-
dimension NTTs on dimension dim1 and dim2, respectively. We denote these two
sub-dimension NTTs as NTTdim1 and NTTdim2 . For an efficient implementation of an
MP-based cryptosystem, we suggest all the NTT dimensions to share a large power-
of-two common factor dim2, and the remaining factor dim1 in each NTT dimension
to be some small arbitrary integer (around or less than 10). Therefore, we achieve an
efficient implementation, by combining an efficient radix-2 NTTdim2 algorithm for the
large shared sub-dimension dim2, which has the time complexity O (dim2 · log dim2)
operations in Zq; and classical matrix multiplication NTTdim1 algorithms with com-
plexity O

(
(dim1)2) operations in Zq, for those small sub-dimensions dim1. A good

choice of dim2 is 256, which has proved high efficiency in recent Module-RLWE im-
plementations [BDK+17], and therefore the MP-based cryptosystem implementa-
tion can also achieve similar flexibility and reusability of code, compared to the
Module-RLWE based schemes.

On input a ∈ Z`q, Algorithm Perm lets a′i = a(i mod dim2)·dim1 +bi/ dim2c for i < `,
and outputs a′ ∈ Z`q. On the other hand, on input a ∈ Z`q, Algorithm InvPerm
lets a′i = a(i mod dim1)·dim2 +bi/ dim1c for i < `, and outputs a′ ∈ Z`q. We give the
pseudocode of our partial NTT implementations in Algorithm 2 and 3, respectively.
Note that both the output of NTT-Pdim and the input of NTT-P−1

dim are permuted
by Permdim, and NTT-P−1

dim is the step-by-step reversal of NTT-Pdim.

9



Algorithm 3 : Partial NTT inverse algorithm: NTT-P−1
dim

Input: m, ω′dim, and a. Assume dim = dim1 · dim2, and a is permutated by Permdim.
Output: the first m · dim2 coordinates of the NTT−1

dim

(
ω′dim, InvPermdim (a)

)
.

1: function NTT-P−1
dim(m,ω′dim,a)

2: for n1 = 0, . . . ,dim1−1 do
3: Let a2 be the decimation

(
an1·dim2 , an1·dim2 +1 . . . , a(n1+1)·dim2 −1

)
of a.

4: Let a′2 be the computation result of radix-2 NTTdim2

(
ω′dim2

,a2
)
.

5: Set
(
an1·dim2 , an1·dim2 +1 . . . , a(n1+1)·dim2 −1

)
= a′2.

6: end for
7: for n1 = 0, . . . ,dim1−1 do
8: for n2 = 0, . . . , dim2−1 do
9: Set adim2 ·n1+n2 = adim2 ·n1+n2 · ω′

n1·n2
dim .

10: end for
11: end for
12: for n2 = 0, . . . ,dim2−1 do
13: Let a′1 be the computation result of classical NTTdim1→m (a, n2).
14: Set

(
an2 , adim2 +n2 , . . . , a(m−1)·dim2 +n2

)
= a′1.

15: end for
16: for i = 0, . . . ,m · dim2−1 do
17: Set ai = ai · dim−1.
18: end for
19: end function

Algorithm 4 : Partial MP-NTT-P

Input: a ∈ Z<daq [x], and b ∈ Z<dbq [x].
Output: c′ = PolToVec(a�d b) ∈ Zdq .
1: function MP-NTT-P(a, b)
2: Let dim = dim1 · dim2 be the minimal multiple of dim2 satisfying dim ≥ db.
3: Let ωdim denote the dim-th root of unity.
4: Let ma ≤ dim1 be the minimal integer such that da ≤ ma · dim2.
5: Compute a′ = NTT-Pdim (ma, ωdim,Zpad (ma · dim2,PolToVec (Rev (a)))) ∈ Zdim

q .
6: Let mb ≤ dim1 be the minimal integer such that db ≤ mb · dim2.
7: Compute b′ = NTT-Pdim

(
mb, ω

−1
dim,Zpad (mb · dim2,PolToVec (b))

)
∈ Zdim

q .
8: Let mc ≤ dim1 be the minimal integer satisfying d ≤ mc · dim2.
9: Compute c = NTT-P−1

dim (mc, ωdim,a′ ◦ b′) ∈ Zmc·dim2
q .

10: Let c′ = (c0, . . . , cd−1) ∈ Zdq .
11: end function

Given NTT dimension dim = dim1 ·dim2, a ∈ Z<daq [x], and b ∈ Z<dbq [x], such
that da ≤ ma · dim2 and db ≤ mb · dim2, for some integer ma,mb ≤ dim1, we
present the MP-NTT-P algorithm merged with the partial NTT transformations in
Algorithm 4.

Lemma 5 Given NTT dimension dim = dim1 · dim2, a ∈ Z<daq [x], and b ∈ Z<dbq [x],
such that da ≤ ma · dim2 and db ≤ mb · dim2, for some integer ma,mb ≤ dim1, we
have

MP-NTT-P (a, b) = MP-NTT (a, b) .

Let Tdim2 denote the running time of the radix-2 NTT subroutine for dimension dim2,
which is the dominate part of NTT-P’s running time. Therefore, the MP-NTT-P

10



algorithm has time complexity (Zq operations) of about:

3 · (dim1 ·Tdim2 ) +O (dim) .

Note that in the above estimate, we neglected quadratic run-time dependence on
classical NTT for dimension dim1, since we assume dim1 = O(1) is small in our case.

Compared to the implementation submitted in [SSZa], our new implementation
4 merges the modulo q reductions among the intermediate levels of the NTT (i.e.
we do not perform reductions on each level) to improve the efficiency. In addition,
we acknowledge the issues mentioned in [Sei18], that the compiler may not generate
constant time executable code for the modulo arithmetic (i.e. the “%” operator) in C
programming language. We examined our previous implementation by a code review,
and replaced all the modulo arithmetic by either the Montgomery reduction or the
Barrett reduction implemented in constant time [Har14].

4 Tighter Security Analysis of MP-LWE

In this Section, we present a tighter security analysis of the MP-LWE problem than
previously known, to improve the applicability of the security analysis to practical
schemes. In particular, we tighten the analysis from both the security proof and
cryptanalysis directions to close the gap between them and establish a ‘near equiv-
alence’ between MP-LWE and PLWEf (for f in a large family) as follows:

(1) For the security proof direction, we show how to remove the (polynomial in di-
mension) amplification factor in error standard deviation of the security reduction
in [RSSS17] from the PLWEf problem (for some f) to the MP-LWE problem, by
optimising the reduction and specializing it to a more restricted, but still huge,
class of f ’s. This shows that MP-LWE is concretely at least as hard as PLWEf for
a large class of f ’s and the same error distribution, not only asymptotically up
to polynomial approximation factors as in the reduction of [RSSS17].

(2) For the cryptanalysis direction, we analyse a simple optimisation of generic LWE
lattice attacks, which takes advantage of the sparse block Toeplitz structure of
the matrix underlying MP-LWE, and show that this closes the gap in optimum
lattice dimension for attacking MP-LWE versus the dimension for attacking the
underlying PLWEf problem, leaving only a gap factor q1/t, in the uSVP approxi-
mation factor needed for solving the two problems, assuming t MP-LWE samples
in the MP-LWE instance. This gap factor tends to 1 as t grows, so for sufficiently
large t, t-sample MP-LWE is concretely no harder than PLWEf for a large class of
f ’s (for small t, the concrete hardness of MP-LWE may be higher than PLWEf ).

4.1 Tighter MP-LWE security proof from hardest PLWEf in a family

We recall the definition of the PLWEf problem (originally defined as the search
variant in [SSTX09] and as the decision variant in [BV11]) and the MP-LWE problem
defined in [RSSS17] (for convenience, our definition uses discrete error distributions
rather than continuous distributions used in [RSSS17]).

4 Available at https://github.com/raykzhao/Titanium.
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Definition 1 (PLWEfq,t,χ Problem) Let q ≥ 2, m, t > 0, f a polynomial of degree
m, χ a distribution over Z[x]/f . The (decision t-sample) Polynomial LWE Problem
PLWEfq,t,χ consists in distinguishing between t samples of the form (ai, bi = ai ·s+ei)
(where s ←↩ (U(Zq[x]/f)), ai ←↩ U(Zq[x]/f) and ei ←↩ χ for i = 1, . . . , t) and t
independent samples from U(Zq[x]/f × Zq[x]/f), with non-negligible advantage.

Definition 2 (MP-LWEq,n,d,t,χ Problem) Let n, d > 0, q ≥ 2, and a distribution χ
over Z<d[x]. The (decision t-sample) Middle-Product LWE Problem MP-LWEq,n,d,t,χ
consists in distinguishing between t samples of the form (ai, bi = ai�d s+ei) (where
s←↩ U(Z<n+d+1

q [x]), ai ←↩ U(Z<nq [x]), and ei ←↩ χ for i = 1, . . . , t) and t independent
samples from U(Z<nq [x]× Z<dq [x]), with non-negligible advantage.

Geometric factor of a polynomial. A close look at the reduction of [RSSS17] from
MP-LWE to PLWEf for a ring polynomial f , shows that the reduction amplifies the
standard deviation of the error distribution by a factor that depends on a certain
matrix Md′

f related to f (this matrix also distorts the shape of the error distribution
in the reduction). Consequently, the tightness of the reduction is dictated by this
matrix. Accordingly, we call this matrix the geometric matrix of f , and we also define
as a measure of error standard deviation amplification factor the geometric factor of
f . These are precisely defined as follows.

Definition 3 (Geometric Matrix/Factor) Given a monic polynomial f of degree
n, and an integer d′ ≤ n, its d′-geometric matrix Md′

f is defined as the top d′ rows
of the Hankel matrix Mf having anti-diagonal element ADiagj(Mf ) as the constant
coefficient of the polynomial xj−1 mod f , for j = 1, . . . , 2m−1. The geometric factor
Gd
′(f) of f is defined as Gd′(f) = ‖Md′

f ‖. For a family F of polynomials of degree
≥ d′, we define its geometric factor G(F) as the maximum of Gd′(f) over all f in F .

We can now state the core result of [RSSS17] as follows.

Theorem 2 (Adapted from [RSSS17], Le. 3.7) Let n, d′, t > 0, q ≥ 2, and
let f denote a polynomial f ∈ Z[x] that is monic, has constant coefficient coprime
with q, and has degree m in [d′, n]. Let χe,P denote a PLWE error distribution over
Z[x]/f (i.e., over Zm in the coefficient representation of Z[x]/f), and let χe,MP
denote a MP-LWE error distribution over Z<d′ [x] (i.e., over Zd in the coefficient
representation of Z<d[x]) defined in the coefficient representation by

χe,MP
def= J ·Md′

f · χe,P, (2)

where J is the matrix for the coefficient reversal function Rev (with 1’s on the anti-
diagonal and 0’s elsewhere).

Then any attack against MP-LWEq,n,d′,t,χe,MP with run-time TMP-LWE and advan-
tage εMP-LWE, implies an attack against the PLWEfq,t,χe,P problem with run-time

TPLWE ≈ TMP-LWE (3)

and distinguishing advantage

εPLWE ≥ εMP-LWE. (4)
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For general f , the geometric matrix Md′

f of f is closely related to the structure
of f , and this causes the distribution χe,MP to also depend on the structure of f .
However, the overall goal of [RSSS17] was to reduce from PLWEf for a large family
of f ’s to MP-LWE with a single χe,MP distribution that is independent of f . In
the full security reduction of [RSSS17] (see Theorem 3.6 there), this is achieved by
setting χe,MP as a spherical Gaussian distribution and adding a ‘noise unskewing’
step in the reduction to ‘unskew’ the covariance matrix back to a diagonal matrix.
Then the main result (Theorem 3.6) in [RSSS17] is that PLWEf with a spherical
Gaussian error distribution with standard deviation α · q reduces to MP-LWE with a
spherical Gaussian error distribution with standard deviation α′ · q amplified by the
d′-geometric factor of f , i.e., α′ = Gd

′(f) · α = ‖Md′

f ‖ · α.
In [RSSS17], it is observed (Lemma 3.7 of [RSSS17]) that the geometric factor can

be upper bounded by the expansion factor EF(f) of f (defined in [LM06]) as follows:
‖Md′

f ‖ ≤ ‖Mf‖ ≤ deg(f) · EF(f). Then using known bounds on EF(f) from [LM06],
this leads to bounds on the geometric factor of f . However, this leads to large upper
bounds on the geometric factor, and therefore a loose reduction (e.g. even for ‘nice’
polynomials like f = xm + 1, we have EF(f) = 2 but this only gives Gd′(f) ≤ 2d,
which is a large bound on the geometric factor which is linear in the dimension
parameter d).

Instead, here we obtain a much tighter upper bound on the geometric factor by
directly bounding it from its definition, taking into account the restriction to the
first d′ rows of Mf to improve our geometric factor bound to the optimal value of 1
for a suitable large family of polynomials. Moreover, we show that for this family,
the geometric matrix of f is a projection matrix, so that even the error distribution
shape is preserved exactly, making the overall reduction more general in terms of
error distribution than the overall reduction of [RSSS17], which was restricted to
Gaussian error distributions. This allows the reduction to not only be quite tight
(to allow a meaningful setting of our parameters based on the hardness of PLWE)
but also to be applicable to efficiently sampleable error distributions; in particular,
it can be applied with the centered binomial difference distribution [ADPS16] (see
our Titanium cryptosystem in the following Section).

To obtain our tight reduction, we apply Theorem 2 to the following ring polyno-
mial family F :

Definition 4 (Ring polynomial family F) For integers n ≥ m′ ≥ d′, we denote
by F(n,m′, d′) the set of ring polynomials f of the form

f(x) = xm +
∑
i≤`(m)

fi · xi (5)

with
m′ ≤ m ≤ n, (6)

and
`(m) = min(m/2 + 1,m+ 1− d′), (7)

and
f0 ∈ {−1, 1}. (8)

We choose F as a hardness basis for our security proof of MP-LWE because:
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– If m′ ≤ (1− ε′)n for a constant ε′ > 0, F contains an exponentially large (in n)
number of polynomials (rings).

– It potentially (for a suitable choice of d′,m′ and n) contains known ring modulus
polynomials previously used in lattice-based cryptography, such cyclotomic poly-
nomials xm + 1 (for m a power of 2), used in encryption schemes since [SSTX09]
and later in New Hope [ADPS16], as well as non-cyclotomic polynomials such as
xm − x− 1 (for m prime) used in NTRU Prime [BCLvV16].

– MP-LWE enjoys a tight reduction from the hardest ring in the family, due to the
family’s optimal d′-geometric factor of 1, by the results summarized below, and
the reduction preserves the shape of the distribution if the latter is balanced and
has independent coordinates.

The following proposition and its corollary show that F has an optimal geometric
factor.

Proposition 1 Let f(x) = xm +
∑

i≤` fi · x
i, with ` ≤ m/2 + 1. Then,

ADiag1(Mf ) = 1 (9)

and
ADiagj(Mf ) = 0 if 2 ≤ j ≤ m or m+ 2 ≤ j ≤ 2m− `, (10)

and
ADiagj(Mf ) = −f0 if j = m+ 1 (11)

and
ADiagj(Mf ) = f2m+1−j · f0 if 2m− `+ 1 ≤ j ≤ 2m− 1. (12)

Proof From the definition of Mf , we have ADiagj(Mf ) = (xj−1 mod f(x)) mod x for
1 ≤ j ≤ 2n− 1. From this (9) and (10) for j ≤ m follow immediately. For j = m+ 1,
we have xm mod f(x) = −

∑
i≤` fi ·x

i from the definition of f , which gives (11). For
m+2 ≤ j ≤ 2m−`, we have xj−1 mod f(x) = xj−m−1 ·(−

∑
i≤` fi ·x

i) mod f(x) = 0
since j−m−1+` ≤ m−1, giving (10). Finally, for 2m−`+1 ≤ j ≤ 2m−1, we have
xj−1 mod f(x) = xj−m−1 · (−

∑
i≤` fi · x

i) mod f(x) = −
∑

i≤` fi · x
i+j−m−1 mod

f(x). Using (xi+j−m−1 mod f(x)) mod x = −f0 if i + j − m − 1 = m (i.e., i =
2m+ 1− j) and (xi+j−m−1 mod f(x)) mod x = 0 if m+ 1 ≤ i+ j−m− 1 ≤ 2m− `,
we get (12). ut

For f as in Proposition 1, the first d′ rows of Mf contain elements from anti
diagonals 1, . . . ,m+ d′− 1. Therefore, if the condition 2m− `+ 1 > m+ d′− 1 holds
(or equivalently, ` ≤ m + 1− d′), the condition (12) is never satisfied in the first d′
rows of Mf , so the non-zero columns of Md′

f are orthogonal and (using |f0| = 1) have
unit norm (with one ‘1’ coordinate and the rest 0). We therefore obtain the following
corollary, which is our main result in this Section.

Corollary 1 For integers n and d′ ≤ m′ ≤ n, the family F(n,m′, d′) in Def. 4 has
geometric factor G(F) = 1.

Corollary 2 For integers n and d′ ≤ m′ ≤ n, let t > 0, q ≥ 2, and f denote a
polynomial f ∈ F(n,m′, d′) of degree m in [m′, n]. Let χe,P denote a PLWE error
distribution over Z[x]/f (i.e., over Zm in the coefficient representation of Z[x]/f)
that has independent identically distributed coordinates, i.e., χe,P = χmc for some
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distribution χc over Z which is balanced (i.e., χc(x) = χc(−x) for all x ∈ Z). Let
χe,MP = χd

′

c .
Then any attack against MP-LWEq,n,d′,t,χe,MP with run-time TMP-LWE and advan-

tage εMP-LWE, implies an attack against the PLWEfq,t,χe,P problem with run-time

TPLWE ≈ TMP-LWE (13)

and distinguishing advantage

εPLWE ≥ εMP-LWE. (14)

In particular, this reduction holds for χc = BinDiff(η) (i.e., χe,MP = BinDiff(η)d+k),
the error distribution specified for Titanium-CPA.

Proposition 1 together with Corollary 2 show that for f in family F(n,m′, d′), the
reduction from PLWE to MP-LWE is tight in terms of error variance, and moreover
preserves the shape of the distribution, under mild conditions. They also show that
the error distribution in MP-LWE can be exactly the same as in PLWE. This al-
lows us to compute practical concrete parameters based on the hardness of PLWE,
compared to using the impractical parameters one would get with the loose reduc-
tion in [RSSS17]. Variables m′ and n are the min/max degree of ring polynomial in
family whose hardest PLWE complexity is relied upon. As m′ decreases, the family
grows (reducing the risk) but hardness of PLWE in the rings of lowest dimension
m′ decreases. We chose m′ in Table 1 minimal while guaranteeing PLWE security in
dimension m′ exceeds the desired level.

4.2 A variant tight reduction from a ring-family with worst-case hardness

In this subsection, we prove in Corollary 3 a slight variant of the tight reduction
in Corollary 2. The variant reduction maintains the tightness of Corollary 2, but
applies to a more general family of ring polynomials F0 in which the condition (8)
on the constant coefficient f0 of f is replaced with the much weaker condition that
that coefficient is coprime to q (see Definition 5). This more general class F0 has
the advantage that it contains many rings over which the average-case hardness of
certain PLWE problems is known [RWS17] to be related to the hardness of worst-
case lattice problems. Namely, such a worst-case to average-case reduction could be
derived by combining Theorem 2.13 in Sec. 3 of [RWS17] with the results of Sec. 4
of [RWS17], and the results of [LS15] and [AD17] (see Fig. 1 of [RWS17]; we remark
that the condition on the size of f0 is needed by Theorem 4.7 of [RWS17]). Therefore,
Corollary 3 below shows that the hardness of MP-LWE can be related to the hardness
of worst-case module lattice problems over many rings (via PLWE over F0 rather than
PLWE over F). Although the error variance needed for those worst-case reductions to
hold is much larger than that used in the MP-LWE instances underlying Titanium, we
view these worst-case to average-case reductions as additional qualitative evidence
for the hardness of PLWE over F0. In particular, it shows that the extra restriction
(7) we introduce on the PLWE family F0 (versus the family used in [RSSS17] and
the worst-case reduction for MP-LWE in [RWS17]) to achieve a tight reduction from
MP-LWE to PLWE still leaves many rings in the family for which PLWE has a hardness
reduction from worst-case problems.
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Definition 5 (Ring polynomial family F0) For integers d′ ≤ m′ ≤ n, we denote
by F0(n,m′, d′) the set of ring polynomials f satisfying conditions (5), (6) and (7)
and the condition that the constant coefficient f0 of f is coprime to q (but f0 does
not need to satisfy (8)).

The variant reduction in Corollary 3 below reduces from a PLWE instance over a
ring of dimension ≥ d′ to only d′ − 1 MP-LWE samples (one sample less than the d′
MP-LWE samples provided by Corollary 3). To apply Corollary 3 to the hardness of
Titanium (which relies on the (d+k)-sample MP-LWE), we therefore set d′ = d+k+1
(whereas we could set d′ = d + k when applying Corollary 2, i.e. this just increases
the minimal PLWE dimension d′ for the hardness basis of Titanium by 1).

Corollary 3 For integers n and d′ ≤ m′ ≤ n, let t > 0, q ≥ 2, and f denote a
polynomial f ∈ F0(n,m′, d′) of degree m in [m′, n]. Let χe,P denote a PLWE error
distribution over Z[x]/f (i.e., over Zm in the coefficient representation of Z[x]/f)
that has independent identically distributed coordinates, i.e., χe,P = χmc for some
distribution χc over Z which is balanced (i.e., χc(x) = χc(−x) for all x ∈ Z). Let
χe,MP = χd

′−1
c .

Then any attack against MP-LWEq,n,d′−1,t,χe,MP with run-time TMP-LWE and ad-
vantage εMP-LWE, implies an attack against the PLWEfq,t,χe,P problem with run-time
TPLWE ≈ TMP-LWE and and distinguishing advantage εPLWE ≥ εMP-LWE.

Proof Given a PLWEfq,t,χe,P instance, we first apply Theorem 2 to reduce it to a
MP-LWEq,n,d′,t,χe,MP instance. By Lemma 1, this instance can be written in the form

Jd
′
· bi = Toepd

′,n(ai) · Jn+d′ · s + Jd
′
·Md′

f · ei, (15)

where ei is sampled from the PLWE error distribution χe,P = χmc . By Proposition 2
and the condition (7), the matrix Jd′ ·Md′

f has as its top (d′ − 1) rows the matrix

[
0(d′−1)×(m−(d′−1))| − f0 · Id

′−1
]
,

where Id′−1 denotes the (d′ − 1)-dimensional identity matrix. Therefore, dropping
the last row of (15) gives

Jd
′−1 · b′i = Toepd

′−1,n(ai) · Jn+d′−1 · s′ − f0 · e′i, (16)

where b′i, s′, and e′i consist of the last (d′−1) coordinates of bi, s, and ei, respectively.
Multiplying (16) by −f−1

0 gives the desired MP-LWEq,n,d′−1,t,χe,MP instance

Jd
′−1 · b′′i = Toepd

′−1,n(ai) · Jn+d′−1 · s′′ + e′i, (17)

where b′′i = −f−1
0 · b′i and s′′ = −f−1

0 · s′. It is easy to see that the reduction also
maps uniformly random bi’s to uniformly random b′′i ’s, as claimed. ut
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Table 1 Concrete polynomial family (F) parameters for Titanium cryptosystem.

Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256
mmin = m′ 654 770 896 1230 1486 1998
mmax = n 684 800 1024 1280 1536 2048

`(m′) = m′ − d′ 142 35 128 462 462 718
lo bnd on log3(|F|) 172 65 256 512 512 768

power-of-two inclusion X X

4.2.1 Example of Concrete Ring Polynomial families:

Table 1 shows our parameter choices for the family F(n,m′, d′) used as the PLWEf
hardness basis for our Titanium cryptosystem parameter sets by applying Corollary 2
(see following Section for more details on Titanium). Note that degree of polynomials
in F range from mmin = m′ up to mmax = n, and the largest non-leading monomial
degree of polynomials in F is `(m′) = mmin − d′. We also show a lower bound
on the number of polynomials in the family, just counting those with ±1 non-zero
coefficients, showing the huge size of our concrete families. We remark that a recent
result [RWS17] gives worst-case to average case hardness results for a family similar
to our family F , assuming the error distribution coefficient standard deviation is
sufficiently large (however this value is larger than we use in our practical parameter
choices in Titanium, so the results of [RWS17] do not apply to our parameter settings).

4.3 Tighter cryptanalysis of MP-LWE

4.3.1 Lattice attacks on MP-LWE:

Let n′ = n + d′ − 1. We recall that an MP-LWEq,n,d′,t,χe,MP instance is of the form
(ai, bi = ai�d+k s+ei)i≤t ∈ (Z<nq [x]×Zd+k

q [x])t with the secret key s ∈ Z<n′q [x]. The
search attack on MP-LWE consists in recovering s from (ai, bi)i≤t. Viewing MP-LWE
as a special case of an LWE instance in dimension n′ = n + d + k − 1, any of the
known algorithms for the search (rather than decision) variant of LWE could be
used. In particular, we could use a search variant of the ‘dual lattice’ attack applied
to MP-LWE. One such variant that seems to give the lowest complexity is based on
Kannan’s embedding method [Kan87] to convert the LWE instance to a ‘unique SVP’
instance, as analysed by Albrecht et al. in [AFG13] and Alkim et al. in [ADPS16]. We
describe the improved [ADPS16] variant of this attack below (we call it the ‘primal
embedding attack’), and then we explain how to optimise it to take advantage of the
special Toeplitz structure of the MP-LWE matrix.

The generic primal ‘embedding attack’ Let t′ = t · d′. The ‘embedding at-
tack’ [Kan87,AFG13] consists in rewriting the MP-LWEq,n,d′,t,χe,MP instance (ai, bi =
ai �d′ s+ ei)i≤t ∈ (Z<nq [x]× Zd′q [x])t as an LWE instance (A,b) ∈ Zt′×n′q × Zt′q over
Zq, where b = A · s + e. We use a subset of m∗ ≤ t′ = t · d′ samples (rows) of the
instance to give the sublattice LWE instance (A∗,b∗ = A∗ · s + e∗) ∈ Zm∗·n′q × Zm∗q ,
where the sublattice dimension m∗ is chosen by the attacker to optimise the attack
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(see below). The attack constructs a (column) basis matrix Ā∗ ∈ Zm∗×m∗ for the
m∗-dimensional LWE (primal) lattice Lq(A∗) = {A∗ · u + q · Zm∗ : u ∈ Zn′q } and
builds a basis B ∈ Z(m∗+1)×(m∗+1) for an embedding lattice L(B) of the form

B =
(

Ā∗ b∗
0T 1

)
,

The (m∗ + 1)-dimensional embedding lattice L(B) generated by the columns of B
therefore contains an embedding of the LWE primal lattice Lq(A∗) and the target
LWE vector b∗. In particular, the embedding lattice L(B) contains the short vector
v = (e, 1)T of norm ‖v‖ ≈ ‖e∗‖. By running a lattice basis reduction algorithm
on B, the attack aims at recovering v as one of the vectors in the reduced basis
(which immediately reveals the error e∗ and then the secret s). There are several
analyses/variants of the success condition (and complexity) of this attack in the liter-
ature. Here, we evaluate it using the heuristic analysis approach of [ADPS16], based
on the block-structure of the BKZ lattice reduction algorithm and the Geometric
Series Assumption for the output basis, which tends to give lower (and probably
more realistic) complexity estimates than more rigorous approaches [AFG13].

The primal attack analysis of [ADPS16] assumes that the BKZ reduction algo-
rithm is applied to B and applies the Geometric Series Assumption (GSA) [Sch03]
to model the BKZ output basis Gram-Schmidt norms ‖b∗i ‖ (i = 0, . . . ,m∗) as
a geometric series; namely, since the lattice determinant is with high probability
det(L(B)) = det(Lq(A∗) = qm

∗−n′ , we have:

‖b∗i ‖ = δ(b)m
∗−2i · q

m∗−n′
m∗+1 , i = 0, . . . ,m∗. (18)

The heuristic in [ADPS16] is that if the attack fails to recover the short vector v from
the BKZ reduced basis, the projection πS(v) of v onto the vector space S spanned
by the last b BKZ GSO vectors b∗m∗+1−d, . . . ,b∗m∗+1 should behave as a random
b-dimensional projection, with expected norm ‖πS(v)‖ ≈

√
b · α · q. On the other

hand, BKZ reduction ensures that ‖b∗m∗+1−d‖ is the norm of the shortest non-zero
vector in the projection of L(B) onto S. Therefore, under these heuristics, if the
condition ‖b∗m∗+1−d‖ >

√
b ·α ·q holds, a failure of the BKZ reduced basis to contain

v implies a contradiction, so we expect that the reduced basis will contain v when
the latter condition holds. Based on the GSA (18), this gives the heuristic attack
success condition (with high probability) if

f2(m∗, b) def= δ(b)2b−1−(m∗+1) · q1− n′
m∗+1 >

√
b · α · q. (19)

For each fixed b, f2(m∗, b) can be minimized with respect to m∗, with the optimum
choice of m∗ = m∗opt being

m∗opt(b)+1 ≈
√
n′ log q
log δ(b) and f2(m∗opt(b), b) ≈ δ(b)

2b−1−
√

n′ log q
log δ(b) ·q1−

√
n′ log δ(b)

log q . (20)

The expected classical (resp. quantum) log time complexity of the primal embedding
attack, according to analysis approach 2 is,

λC,emb,2 = log2(TCBKZ(b)) and λQ,emb,2 = log2(TQBKZ(b)) (21)
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where the classical and quantum BKZ run-time is estimated [LMvdP15] by

TCBKZ(b) = 20.292·b+o(b) and TQBKZ(b) = 20.265·b+o(b), (22)

respectively, on quantum and classical computing model. Following the conserva-
tive ‘core-hardness’ methodology used in [ADPS16,BCD+16], we estimate the BKZ
running-time by only counting the time of a single SVP oracle call.

Optimised primal ‘embedding attack’ against MP-LWE Our PLWEf -based complexity
lower bounds on MP-LWE in the previous Section reduce from PLWE with a secret
polynomial of dimension ≤ n, but the above ‘generic’ embedding attack against
MP-LWE works on the MP-LWE secret in a larger dimension n′ = n + d′ − 1. Thus
there is an apparent complexity gap of d′− 1 in the secret vector dimension between
those lower and upper bounds. We now explain a simple optimisation of the generic
‘embedding attack’ against MP-LWE that takes advantage of the ‘block Toeplitz’
structure of the MP-LWE matrix to give a lower complexity attack on MP-LWE,
closing some of this apparent complexity gap.

Our optimised attack is based on the following simple observation about MP-LWE,
which allows us to reduce the dimension of the MP-LWE secret when selecting the
optimum dimension for the primal attack.

Proposition 2 For integers q, n, d′, t and an error distribution χc over Z, let χd
′

c be
the distribution over Zm consisting of d′ independent samples from χc. Then for any
d∗ with 1 ≤ d∗ ≤ d′, there is a polynomial time reduction from MP-LWEq,n,d′,t,χd′c to
MP-LWEq,n,d∗,t,χd∗c .

Proof Given an instance (ai, bi = ai �d′ s + ei)i≤t ∈ (Z<nq [x] × Zd′q [x])t of
MP-LWEq,n,d′,t,χe,MP and d∗ ≤ n, the reduction maps it to (ai, b′i), where b′i = b bi

xd′−d∗
c

consists of the top d∗ coefficients of b. Indeed, by Lemma 1, we have Rev(bi) =
Toepd

′,n(ai) · Rev(s) + ei, and since the top d∗ rows of Toepd
′,n(ai) consists of the

smaller Toeplitz matrix Toepd
∗,n(ai) concatanated with a d∗×d′−d∗ matrix of zeros

on the right, we have Rev(b′i) = Toepd
∗,n(ai) · Rev(s′) + e′i, i.e., b′i = ai �d∗ s′ + e′i

for i = 1, . . . , t, where s′ = b s
xd′−d∗

c consists of the top n + d∗ − 1 coefficients of
s and e′i = b s

xd′−d∗
c consists of the top n + d∗ − 1 coefficients of ei (note that the

dimension n+ d∗ − 1 of the secret s′ is smaller than the dimension n+ d′ − 1 of s).
The reduction also maps uniform bi’s to uniform b′i’s. ut

To obtain our improved embedding attack on MP-LWE, we apply Proposition 2
with d∗ = m∗/t before applying the original embedding attack, where m∗ is an
optimised dimension for the embedding attack. This gives us LWE instance with
respect to a lower dimensional secret s′ ∈ Zn+m∗/t−1

q consisting of the top n+m∗/t−1
coefficients of the original n′ = n+d′−1 dimensional MP-LWE secret s. Therefore, our
sublattice LWE instance in the optimised attack has the form (A∗,b∗ = A∗ ·s∗+e∗) ∈
Zm

∗×(n+m∗/t−1)
q × Zm∗q , where we also remove the last d′ − m∗/t columns of A to

form A∗.
The analysis of this attack proceeds identically to the analysis of the generic

attack above, replacing generic condition (19) with the MP-LWE-optimised attack
success condition

f2(m∗, b) def= q−1/t · δ(b)2b−1−(m∗+1) · q1−n−1/t
m∗+1 >

√
b · α · q. (23)
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Minimising the left-hand side of (19) with respect to the lattice dimension m∗ gives
the optimum valuesm∗opt(b) + 1 ≈

√
(n−(1+1/t)) log q

log δ(b) and

f2(m∗opt(b), b) ≈ q−1/t · δ(b)2b−1−
√

(n−1/t) log q
log δ(b) · q1−

√
(n−1/t) log δ(b)

log q

(24)

Notice that the optimum sublattice dimension m∗opt(b) in our optimised MP-LWE at-
tack is the optimum dimension for a primal attack on LWE with a secret of dimension
n− (1+1/t) ≈ n (versus the unoptimised MP-LWE attack above that corresponds to
LWE with secret dimension n′ = n+ d′− 1). Thus this attack closes the ‘LWE secret
dimension gap’ of d′− 1 mentioned above. However, the remaining overhead for this
attack over the standard embedding attack on LWE in dimension n is the extra factor
q1/t in the Hermite Factor function f2, which is a constant between 3 and 4 for our
parameter settings (we refer to Table 7 in Section 5 for concrete security estimates
quantifying this gap). We leave it as an open problem to find improved optimised
attacks on MP-LWE that also close this remaining gap.

We remark that the ‘optimised embedding attack’ on MP-LWE as described above
only recovers the first n + m∗/t coefficients of the n′-dimensional MP-LWE secret
s. But assuming n > d′ (this assumption holds for our Titanium parameters in
the following Section), this constitutes more than half of the coefficients of s. The
remaining coefficients of s can then be recovered by either repeating the attack using
the last n + m∗/t coefficients of s (which doubles the run-time), or (at even lower
complexity) by solving the remaining (d′ −m∗/t)-dimensional LWE instance in the
last coefficients of s.

5 Titanium: A practical application to MP-LWE

In this Section, we specify our Titanium-CPA and Titanium-CCA algorithms in formats
suitable for correctness and security analysis. The design for the IND-CPA secure
version of Titanium, to be called here Titanium-CPA, is based on the MP-LWE-based
public-key cryptosystem described in Section 4 of [RSSS17].

5.1 Overview of [RSSS17] cryptosystem

The public key consists of t MP-LWE samples of the form pk = (ai, bi = ai �d+k s+
ei)1≤i≤t, where ai ∈ Z<nq [x] are uniformly random polynomials, s ∈ Z<n+k+d−1

q [x] is
a uniformly random secret key polynomial, and ei ∈ Z<d+k

q [x] are error polynomials
with ‘small’ coefficients sampled from an appropriate error distribution χe, which is
a rounded continuous Gaussian distribution in [RSSS17]. The secret key is sk = s.
To encrypt a message m ∈ {0, 1}<d[x], the encryption algorithm uses an analogue of
Regev’s encryption scheme [Reg05], computing

c1 =
∑

1≤i≤t

ri · ai and c2 =
∑

1≤i≤t

ri �d bi +m · bq/2c,

using random polynomials ri with ‘small’ coefficients sampled from an appropri-
ate error distribution χr, which is uniform on binary coefficients in [RSSS17]. The
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decryption algorithm decrypts a ciphertext (c1, c2) by exploiting the associativity
property of middle-product (Lemma 2); r�

d
(a�

d+k s) = (r · a)�
d
s, which implies

that the decryption algorithm can compute

c1 − c2 �d s =
∑

1≤i≤t

ri �d ei +m · bq/2c ≈ m · bq/2c,

since
∑

1≤i≤t ri �d ei is ‘small’ compared to q/2 with overwhelming probability for
appropriate choice of parameters. Then m can be recovered (except with negligible
error probability) in decryption by rounding c1 − c2 �d s to a multiple of bq/2c.

5.2 Titanium parameters

The scheme is an adaptation of Regev’s cryptosystem from [Reg09] but adapted to
give a security reduction from the MP-LWE problem introduced in [RSSS17]. Our
scheme relies on the following parameters and probability distributions:

– Main Parameter notions:
– n - dimension of public key polynomials ai,
– k - degree of encryption randomness polynomials ri,
– d - dimension of message polynomial enc(µ),
– t - number of public key polynomials ai,
– q - ciphertext modulus,
– p - plaintext modulus,
– cmp - number of chopped ciphertext least significant bits, and
– d1, d2, d3 - NTT dimensions.

– Distribution (χe and χr) Sampling Parameters:
– η - number of trials parameter of BinDiff error distribution χe,
– b1 - log (base 2) of first χr interval half size B1/2,
– b2 - log (base 2) second χr interval half size B2/2,
– Ndec1 - number of coefficients in χr in B1 interval, and
– Ndec - total number of coefficients.

5.3 Titanium-CPA Algorithms

We give the Titanium-CPA algorithms here. Let χe = (BinDiff(η)d+k)t, where BinDiff(η)
is the ‘binomial difference’ distribution over Z with parameter η, i.e., the distri-
bution of the random variable X − Y when random variables X,Y are indepen-
dently sampled from the binomial distribution with number of trials parameter η,
a positive integer, and success probability in each trial parameter 1/2. Let also
χr = ZeIntU(B1)Ndec1 ×ZeIntU(B2)Ndec−Ndec1 be the distribution of (r1, . . . , rt), where
the first Ndec1 coefficients (in the concatenated vector of Ndec = t ·(k+1) polynomial
coefficients) are independently sampled (pseudorandomly) from the zero-excluded
interval uniform distribution ZeIntU(B1) with even parameter B1 = 2b1+1, and the
remaining Ndec −Ndec1 coefficients of (r1, . . . , rt) are independently sampled (pseu-
dorandomly) from the zero-excluded interval uniform distribution ZeIntU(B2) with
even parameter B2 = 2b2+1. Then to encrypt a message m ∈ Z<dp [x], we have Algo-
rithm 6.
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Algorithm 5 : Titanium-CPA.KeyGen

Input: 1λ.
Output: pk and sk.
1: function KeyGen(1λ)
2: Let s←↩ U(Z<n+d+k−1

q [x]).
3: Let (ā1, . . . , āt)←↩ U(Z<nq [x])t.
4: Let (e1, . . . , et)←↩ χe ∈ (Z<d+k

q [x])t.
5: for i ≤ t do
6: Let bi = Rev(āi)�d+k s+ ei ∈ Z<d+k

q [x].
7: end for
8: Let pk = ((ā1, . . . , āt), (b1, . . . , bt)) and sk = s.
9: end function

Algorithm 6 : Titanium-CPA.Encrypt

Input: pk and m.
Output: ct = (c′1, c′2).
1: function Encrypt(pk,m)
2: Let (r1, . . . , rt)←↩ χr ∈ (Z<k+1

q [x])t.
3: Let c′1 =

∑t

i=1 ri · āi
4: Let c′2 =

∑t

i=1 Rev(ri)�d bi + bq/pc ·m ∈ Z<dq [x].
5: end function

The rounding algorithm Round divides each coefficient of its argument polynomial
by bq/pc and rounds the result to the nearest integer mod q, rounding up if the
division is an odd integer multiple of 1/2 (we assume that q is odd and the argument
polynomial coefficients are reduced mod q into the interval {−bq/2c, . . . , bq/2c}).

5.3.1 Differences between Titanium-CPA and the cryptosystem in [RSSS17]:

We now summarize the main differences between Titanium-CPA and the scheme
from [RSSS17]:

– Optimised ri distribution χr: In [RSSS17], the ri’s are chosen with uniformly
random binary coefficients. In Titanium-CPA, we allow the ri coefficients to be
bigger and tune their variance to optimise the resulting key and ciphertext length,
as well as the algorithm run-times, for a given security and decryption error
probability level. In particular, although increasing the variance of the ri’s implies
a corresponding increase in the decryption noise term

∑
1≤i≤t ri �d ei (which

tends to increase the decryption error probability and a corresponding increase
in q to compensate), on the other hand the larger entropy of higher variance ri’s
reduces the number t of required MP-LWE samples in the public-key to satisfy the
LHL entropy condition for the security proof, and a reduced t has a significant
improvement on both computation and key length, even if q is increased up to
some point. It turns out that optimal values for the variance of the ri to minimise
the public-key length are typically significantly larger than 1.

– Optimised ei distribution χe: In [RSSS17], the ei error (noise) distribution χe
is chosen as an integer-rounded continuous Gaussian distribution, but sampling
from this distribution tends to be computationally expensive. Instead, Titanium-CPA
uses a ‘binomial difference’ distribution BinDiff as also used in New Hope [ADPS16]
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Algorithm 7 : Titanium-CPA.Decrypt

Input: sk and ct.
Output: m′.
1: function Decrypt(sk, ct)
2: Let c′ = c′2 − Rev(c′1)�d s ∈ Z<dq [x].
3: Let m′ = Round(bq/pc, c′) ∈ Z<dp [x].
4: end function

and Kyber [BDK+17]. This distribution is efficiently sampleable, and approx-
imates a Gaussian distribution. Importantly, our optimisation of the security
reduction of [RSSS17] from PLWEf for f in our ring polynomial family F to
MP-LWE preserves the BinDiff distribution exactly (in shape and variance), so
we are still able to provably lower bound the security of Titanium-CPA based on
the assumed security of PLWEf with the BinDiff distribution. As the distribution
variance we use 2, which also matches previous choices [BDK+17].

– Ciphertext length compression: To reduce the length of our scheme’s ciphertext,
we also apply a ciphertext compression optimisation technique (used also in pre-
vious lattice-based schemes) by chopping off cmp least-significant bits of the
coefficients of c2. This reduces ciphertext length at the cost of a larger decryp-
tion error probability. However, as the compression error term is added to the
already existing decryption error term, a certain amount of compression can be
achieved almost ‘for free’, i.e., with little effect on the overall decryption error
term and hence decryption error probability. Note that we always choose cmp in
a manner that while we still meet the probability of error goals, the number of
remaining bits in c2 be a multiple of 8 (for packing/unpacking purposes to one
or two bytes).

5.4 Titanium-CCA Algorithms

Our KEM Titanium-CCA applies a variant of the Fujisaki-Okamoto (FO) trans-
form [FO99] from [HHK17] to our IND-CPA encryption scheme Titanium-CPA to
turn the latter into an IND-CCA KEM. These algorithms are given in Appendix B.

5.5 Correctness and Security of Titanium

5.5.1 Correctness:

A concrete correctness analysis of Titanium is given in Appendix A, in which we prove
and analyse the correctness of our Titanium algorithms using Hoeffding bounds (in
contrast to bounds derived from central limit theorem (CLT)). We also explicitly
derive the probability of decryption failure pe.

5.5.2 IND-CPA of Titanium-CPA from MP-LWE hardness:

We base IND-CPA security of Titanium-CPA on the Middle-Product LWE prob-
lem [RSSS17] (MP-LWE). We show that, under appropriate choice of parameters, the

23



IND-CPA security of Titanium-CPA is as hard as the MP-LWE problem. The proof is
based on adapting the Leftover hash Lemma (LHL) based argument from [RSSS17],
with relatively mild changes and generalisations to account for the relatively mild
differences between Titanium-CPA and the encryption scheme presented in [RSSS17].

Theorem 3 (IND-CPA of Titanium-CPA from MP-LWE, adapted
from [RSSS17]) Assume that

q is prime , (25)

and the following Leftover Hash Lemma (LHL) condition holds:

t ≥
2 · (log(∆−1

LHL)− 1) + (n+ d+ k) · log q
(k + 1) · bLHL

, (26)

where
bLHL

def= ρ · (b1 + 1) + (1− ρ) · (b2 + 1), (27)

and
ρ

def= Ndec1
Ndec

, with Ndec
def= (k + 1) · t. (28)

Then any IND-CPA attack against Titanium-CPA with run-time T and advantage
ε, implies an attack against the MP-LWEq,n,d+k,Dαq problem with run-time

TMP-LWE ≈ T (29)

and distinguishing advantage

εMP-LWE ≥ ε/2−∆LHL. (30)

The proof is given in Appendix C.

5.6 Parameter sets

5.6.1 Parameter selection procedure:

We summarize the main aspects of our parameter selection procedure based on the
goals set in Chapter 6 of document in NIST-Titanium [SSZb] and security evaluation
as:

– Fix p = 2 and d = 256 to support 256 bit plaintexts.
– Fix n, and k + 1 < n at multiples of 256 (or slightly smaller), integer t and η

satisfying algebraic attack constraint [ADPS16,BCD+16].
– Determine NTT dimensions d1, d2, d3 as a multiple of 256 (see Section 3):

– Let β1 = d(d+ k)/256e and d1 = β1 · 256.
– Let β2 = d(n+ k)/256e and d2 = β2 · 256.
– Let β3 = d(n+ d+ k − 1)/256e and d3 = β3 · 256.

– Pick the smallest q and a bLHL satisfying (for cmp = 0):
– NTT constraint: q = 1 (mod l · 256), where l = lcm(β1, β2, β3).
– Leftover hash Lemma (LHL) constraint: t ≥ tLO +0.01, where tLO is the LHL-

based lower bound on t in right-hand side (RHS) of (26), where we set ∆LHL
according to our goal (see (6.70) in Document in NIST-Titanium [SSZb]).
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– pe constraint: Upper bound on decryption error probability pe bounded using
RHS of inequality (40) in Appendix A is less than the RHS of our goal (see
(6.71) in Document in NIST-Titanium [SSZb]) with a 5% safety margin.

– Let b1 = bbLHLc − 1 and b2 = b1 + 1 and compute Ndec1 ∈ Z such that Eq. (27)
is satisfied.

– Let λPLWE,C and λPLWE,Q quantum and classical attack log complexities against
PLWE(f) for f ∈ F(n,m′, d′) of minimum degree m′ and maximum degree n
evaluated in (6.36) in Document in NIST-Titanium [SSZb].

– Choose ciphertext compression parameter cmp > 0 subject to pe constraint
above.

– If λPLWE,C and λPLWE,Q satisfy our security goal (see (6.69) in Document in NIST-
Titanium [SSZb]), return parameter set. Else, restart with new n, k, t values.

5.6.2 Recommended parameter sets:

We specify total of 6 different parameters sets Toy64, Lite96, Std128, Med160, Hi192,
Super256, intended to correspond to the brute force key search security level of
a symmetric key cipher with key bit lengths 64, 96, 128, 160, 192, 256, respectively.
This means that any attack that breaks the security of our scheme must require
computational resources comparable to or greater than those required for key search
on a block cipher with a 64, 96, 128, 160, 192, 256-bit key, respectively.

The classical attack gate complexity level goal for the six parameter
sets / symmetric-key search security levels, is denoted by λC with λC ∈
{79, 111, 145, 175, 207, 272} corresponding to ≈ 215 gates cost for each symmetric-
key cipher evaluation. Similarly, the quantum attack gate complexity level goal for
the six parameter sets / symmetric-key search security levels, is denoted by λQ with
λQ ∈ {106, 140, 170, 202, 233, 298} − log2(MD), intended to estimate the circuit gate
complexity of quantum key search attacks under the assumption that the quantum
attack circuit depth is restricted to MD (denoted by MAXDEPTH in [NISa]).

In the following Tables, we give recommended core and error distribution and
randomness, and NTT parameters of the following 6 parameter sets: Toy64, Lite96,
Std128, Med160, Hi192, Super256. In Table 2, we specify the core parameters of our
Titanium-CPA and Titanium-CCA schemes corresponding to each parameter set. For
different MD, we have different goals and minimum achieved security levels. The er-
ror distribution χe sampling parameter η for both Titanium-CPA and Titanium-CCA
is set to 4. We also let p = 2 everywhere. In Table 3, we present the NTT and
fast middle-product NTT dimensions for each parameter sets of Titanium-CPA and
Titanium-CCA. In Table 4, we present the relevant randomness sampling parame-
ters for each parameter sets of Titanium-CPA and Titanium-CCA. In Tables 5-6, we
show the goal and achieved pe of Titanium-CPA and Titanium-CCA schemes, respec-
tively. Note that the pe goal for Titanium-CPA schemes are set to 2−30 and pe’s for
Titanium-CCA are with respect to MD = 40.

5.6.3 Best known attacks on Titanium-CPA/Titanium-CCA - Complexity estimates:

We summarize in Table 7 the computed complexities of best known attacks, λbstatk,
on PLWE instances corresponding to our scheme parameter sets. The table also in-
cludes, for comparison, the PLWE complexity goals for achieving our target scheme
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Table 2 Determined Titanium-CPA and Titanium-CCA core parameters.

CPA Params Toy64 Lite96 Std128 Med160 Hi192 Super256
n 684 800 1024 1280 1536 2048
k 255 479 511 511 767 1023
d 256 256 256 256 256 256
t 10 8 9 9 7 7
q 240641 84481 86017 301057 737281 1198081

cmp 10 9 9 11 12 13
CCA Params Toy64 Lite96 Std128 Med160 Hi192 Super256

n 684 800 1024 1280 1536 2048
k 255 479 511 511 767 1023
d 256 256 256 256 256 256
t 10 9 10 10 8 8
q 471041 115201 118273 430081 783361 1198081

cmp 11 9 9 11 12 13

Table 3 The NTT parameters for Titanium-CPA and Titanium-CCA.

CPA Params Toy64 Lite96 Std128 Med160 Hi192 Super256
d1 512 768 768 768 1024 1280
d2 1024 1280 1536 1792 2304 3072
d3 1280 1536 1792 2048 2560 3328

CCA Params Toy64 Lite96 Std128 Med160 Hi192 Super256
d1 512 768 768 768 1024 1280
d2 1024 1280 1536 1792 2304 3072
d3 1280 1536 1792 2048 2560 3328

Table 4 The randomness χr sampling params for Titanium-CPA and Titanium-CCA.

CPA Params Toy64 Lite96 Std128 Med160 Hi192 Super256
b1 7 5 5 7 8 8
b2 8 6 6 8 9 9

Ndec 2560 3840 4608 4608 5376 7168
Ndec1 1488 1496 2568 3816 3384 3848

CCA Params Toy64 Lite96 Std128 Med160 Hi192 Super256
b1 7 5 4 6 7 7
b2 8 6 5 7 8 8

Ndec 2560 4320 5120 5120 6144 8192
Ndec1 328 4168 208 2248 4704 5904

Table 5 The target and achieved probability of error pe of Titanium-CPA scheme.

CPA Param. Toy64 Lite96 Std128 Med160 Hi192 Super256
Goal Ach. Goal Ach. Goal Ach. Goal Ach. Goal Ach. Goal Ach.

log2(p−1
e ) 30 30 30 31 30 33 30 41 30 37 30 72
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Table 6 The target and achieved probability of error pe of Titanium-CCA scheme.

CCA Param. Toy64 Lite96 Std128 Med160 Hi192 Super256
Goal Ach. Goal Ach. Goal Ach. Goal Ach. Goal Ach. Goal Ach.

log2(p−1
e ) 79 85 111 158 143 161 175 199 206 218 271 354

Table 7 Best known attack complexity (MP-LWE Core-SVP or Brute force/Grover) on
Titanium-CPA/Titanium-CCA.

Par. Set Classical Quantum

λbstatk λPLWE,mmax λPLWE,mmin λC λbstatk λPLWE,mmax λPLWE,mmin λQ

CCA,Toy64 125 90 85 79 113 83 78 66
CPA,Toy64 134 97 91 79 121 89 84 66

CCA, Lite96 181 129 123 111 164 118 113 98
CPA, Lite96 194 133 127 111 176 122 116 98

CCA, Std128 236 176 149 143 214 161 136 130
CPA, Std128 251 182 171 143 228 166 156 130

CCA,Med160 272 205 195 175 245 187 178 162
CPA,Med160 272 211 201 175 245 194 184 162

CCA,Hi192 272 243 233 207 245 222 214 193
CPA,Hi192 272 244 235 207 245 224 215 193

CCA, Super256 272 333 323 272 245 305 296 258
CPA, Super256 272 333 327 272 245 305 299 258

security levels based on our parameter selection approach. In this Table, the clas-
sical columns give the corresponding claimed PLWE complexities λPLWE,mmin and
λPLWE,mmax for PLWE with dimensions mmin and mmax corresponding to the mini-
mum and maximum degrees of polynomials in our family F . The claimed quantum
PLWE complexities λPLWE,mmin and λQ,PLWE,mmax for PLWE with dimensions mmin
and mmax computed based on our dual attack ‘core SVP hardness’ methodology
(which we recall, assumes conservatively, an unlimited quantum circuit depth).

5.6.4 Comparison of Titanium with other lattice-based schemes:

Table 8 shows a brief comparison of Titanium-CPA and Titanium-CCA with other
lattice-based schemes showing how ours offer an ‘intermediate’ point in terms of
security guarantees versus efficiency.

In particular, we point out the following:

– Efficiency Aspects: For our Std128 parameter set, our Titanium-CPA ciphertexts
are significantly smaller in size (3.2 times factor) compared to the LWE-based
IND-CPA scheme Frodo [BCD+16] at a higher security level. In handshake proto-
cols, the quantity |pk|+ |ct| is the main communication size, for which we could
save ≈ 4.3 Kilo Bytes (KB) compared to Frodo [BCD+16]. Our key generation,
encryption, and decryption time are also faster by factors of 1.8, 2.7, and 1.5
compared to Frodo [BCD+16], respectively. Note that we could even save more
in these efficiency aspects once AVX2 optimisation techniques are employed. The
pe for Frodo is set to be 2−30, while ours is 2−33.
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We also compare the efficiency aspects of Titanium-CCA (and its AVX2 optimised
version) to that of Kyber [BDK+17] and FrodoKEM [ABD+17] (and their AVX2
version, respectively). With a smaller quantum security claim, our ciphertexts,
secret key, and public key are 3, 6.9, and 15 times larger than the corresponding
quantities in Kyber. Our key generation, encapsulation, and decapsulation times
are slower by factors of 6.5, 4.3, and 4.4 compared to Kyber [BDK+17], respec-
tively. However in case of FrodoKEM, where we take only the plain cSHAKE128
implementation from [ABD+17] (for a more fair comparison with Titanium, that
uses SHAKE256), we see that with a higher quantum security claim, our ci-
phertexts, secret key, and public key are .5, 1.2, and 2.7 times smaller than
the corresponding quantities in FrodoKEM. Our key generation, encapsulation,
and decapsulation times are faster by factors of 4.5, 6.2, and 5.4 compared to
FrodoKEM [ABD+17], respectively. An implementation with AES instructions
and an AVX2 optimised version can also be found in [SSZb] and compared ac-
cordingly. Note that the claimed quantum security for Titanium is based on com-
plexity of lattice attacks against the PLWE problem, which is a lower bound on the
security of Titanium. However, the best known lattice attacks against Titanium
(breaking MP-LWE problem) have a much higher complexity, while the claimed
quantum security for Frodo, FrodoKEM, and Kyber correspond to actual at-
tacks on the schemes (breaking the PLWE or LWE problem). Thus, our claims for
Titanium may actually be very pessimistic in comparison.

– Security Guarantees: We have qualitatively achieved/provided better security
proof guarantees than other structured (RLWE-based) schemes; Titanium-CPA
security is provably (and tightly) as hard as the hardest instance of PLWE in a
family of polynomial rings of size at least 3256, hedging against weakness of a few
special (e.g. cyclotomic) rings, whereas Kyber [BDK+17] relies on Module-RLWE
over a single specific power-of-2 cyclotomic ring in dimension 256.

A well known way of partially protecting encryption schemes against future im-
provements in attack complexity is to simply take a large security ‘safety margin’.
Namely, by scaling up the security parameters of the scheme to increase the bit-
security of a scheme to s times the desired value λ against currently best known
attacks, we protect against future attack bit-security improvements by up to a fac-
tor s. As an additional comparison with our scheme, in the last two rows of Ta-
ble 8, we give the parameters for two such ‘scaled up’ versions of Kyber [BDK+17],
Kyber6912 and Kyber2302, whose security parameter (the underlying module lattice
rank m) was scaled up to give approximately the same |pk| + |ct| size and |ct| size,
respectively as Titanium-CCA.Std128 (we also change the other parameters to ap-
proximately preserve the decryption error probability; the Kyber6144 parameter set
is (n,m, ks, ke, q, rqk, rqc, rq2) = (256, 24, 3, 3, 15361, 212, 212, 23) and the Kyber2304
parameter set is (n,m, ks, ke, q, rqk, rqc, rq2) = (256, 9, 3, 3, 15361, 212, 212, 23)). The
‘quantum security’ columns shows the security achieved by these variants against
best known primal attacks, computed using a modified version of the python script
supplied by the Kyber authors [DLL+]. We conclude that Kyber6912 and Kyber2304
achieves the 128-bit security goal as long as the bit complexity of attacks on
Module-LWE of rank k = 27, (respectively k = 9) over the specific cyclotomic ring
Z[x]/(x256 +1) improve in future by a factor less than ≈ 12.1 (respectively ≈ 4.1). In
contrast, with approximately the same communication costs, Titanium-CCA.Std128
achieves the 128-bit security goal even if future attacks for module LWE over cy-
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Table 8 Comparison of Titanium-CPA and Titanium-CCA with Frodo and Kyber. Bench-
mark CPUs used: Intel Xeon E5 2.6GHz (Frodo), Intel i7-6700 (FrodoKEM), Intel i7-7700K
(Titanium) and Intel i7-4770K (Kyber).

Scheme Quantum Security Security Guarantees Efficiency Aspects
Problem Family Size Size (Bytes) Cycles

Frodo [ABD+17] 130 LWE n/a |pk| = 11296 KeyGen : 2938000
|sk| = 11280 Encrypt : 3484000
|ct| = 11288 Decrypt : 338000

Titanium-CPA.Std128 155 MP-LWE ≥ 3256 |pk| = 14720 KeyGen : 1619550
|sk| = 32 Encrypt : 1262047
|ct| = 3520 Decrypt : 217612

Titanium-CPA.Std128 155 MP-LWE ≥ 3256 |pk| = 14720 KeyGen : 828542
(AVX2 optimised) |sk| = 32 Encrypt : 742541

|ct| = 3520 Decrypt : 116311

Kyber [BDK+17] 161 Module-LWE n/a |pk| = 1088 KeyGen : 276720
|sk| = 2368 Encaps. : 332800
|ct| = 1184 Decaps. : 376104

Titanium-CCA.Std128 134 MP-LWE ≥ 3256 |pk| = 16352 KeyGen : 1806119
|sk| = 16384 Encaps. : 1446751
|ct| = 3552 Decaps. : 1671578

FrodoKEM-640-cSHAKE [ABD+17] 103 LWE 1 |pk| = 9616 KeyGen : 8297000
|sk| = 19872 Encaps. : 9082000
|ct| = 9736 Decaps. : 9077000

Kyber [BDK+17] 161 Module-LWE 1 |pk| = 1088 KeyGen : 77892
(AVX2 optimised) |sk| = 2368 Encaps. : 119652

|ct| = 1184 Decaps. : 125736

Titanium-CCA.Std128 134 MP-LWE ≥ 3256 |pk| = 16352 KeyGen : 934051
(AVX2 optimised) |sk| = 16384 Encaps. : 865352

|ct| = 3552 Decaps. : 986905
FrodoKEM-640-cSHAKE 103 LWE n/a |pk| = 9616 KeyGen : 4212000

(AVX2 optimised) |sk| = 19872 Encaps. : 4671000
|ct| = 9736 Decaps. : 4672000

Kyber6144 [BDK+17] 1557 Module-LWE n/a |pk| = 9248 n/a
|sk| = 20064 n/a
|ct| = 9312 n/a

Kyber2304 [BDK+17] 521 Module-LWE n/a |pk| = 3488 n/a
|sk| = 7584 n/a
|ct| = 3552 n/a

clotomic rings improve by an arbitrary factor, as long as the complexity of PLWE
over some non-cyclotomic ring in our family remains approximately unchanged. Our
approach therefore offers security guarantees against ‘security collapse’ due to break-
through advances in cryptanalysis of specific rings. Such guarantees cannot be prac-
tically achieved using simple scaling up of schemes based on fixed rings.
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A Concrete correctness conditions of Titanium-CPA and computation of
pe

This Section contains the proof of correctness for our Titanium-CPA algorithm and explains our
method of computing a numerical provable upper bound on the error probability of decryption,
that is also used in our IND-CCA security proof. We first define the concept of δ-correct
Titanium-CPA.

Definition 6 Our Titanium-CPA scheme is called δ-correct if for any functions f , we have

Pr

[
Decrypt(sk, ct) 6= m :

{
(pk, sk)← KeyGen;
m = f(pk, sk);
ct← Encrypt(pk,m)

]
≤ δ. (31)

We remark that the above definition of decryption error probability over the choice of both pub-
lic key and encryption randomness (for any, even key-dependent, messages), matches the defi-
nition of δ-correctness in [HHK17], which allows us to apply the security analysis of [HHK17]
to the Fujisaki-Okamoto transform applied to Titanium-CPA, which yields our Titanium-CCA
scheme.
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From now on, we let pe denotes the LHS of (31). We now analyse the correctness of
Titanium-CPA. Let us first expand the main operation in decryption of Titanium-CPA:

c′ = c′2 − Rev(c′1)�d s

=
t∑
i=1

Rev(ri)�d bi + bq/pc ·m− Rev

(
t∑
i=1

ri · āi

)
�d s

=
t∑
i=1

Rev(ri)�d (Rev(ai)�d+k s+ ei)

+ bq/pc ·m−
t∑
i=1

Rev(ri) · Rev(ai)�d s (32)

=
t∑
i=1

Rev(ri) · Rev(ai)�d+k s+
t∑
i=1

Rev(ri) · ei

+ bq/pc ·m−
t∑
i=1

Rev(ri) · Rev(ai)�d s (33)

= bq/pc ·m+
t∑
i=1

Rev(ri)�d ei ∈ Zdq [x],

where (32) and (33) are obtained using (1) and Lemma 2, respectively. Therefore, in Decryption
algorithm of Titanium-CPA we have

m′ = Round
(
bq/pc, c′

)
= Round

(
bq/pc, bq/pc ·m+

t∑
i=1

Rev(ri)�d ei

)
= m,

if
∑t

i=1 Rev(ri)�d ei computed over Zdq [x] (i.e., with reduction mod q) has coefficients smaller
than bq/pc/2, i.e., if ∥∥∥∥∥

t∑
i=1

Rev(ri)�d ei

∥∥∥∥∥
∞

< bq/pc/2, (34)

with the computations performed over Zd[x]. We upper bound the probability pe that (34)
does not hold, over the choice of the encryption randomness (r1, . . . , rt) from the distribution
χr and the choice of key generation errors (e1, . . . , et) from the distribution χe.

We recall that χr has the form:

χr = ZeIntU(B1)Ndec1 × ZeIntU(B2)Ndec−Ndec1 ,

i.e., the first Ndec1 integer coefficients of the concatenated coefficient vectors of the ri’s are
sampled from ZeIntU(B1) and the remainingNdec−Ndec1 coefficients sampled from ZeIntU(B2).
Also, χe samples each integer coefficient of (e1, . . . , et) from the BinDiff(η) distribution. For
i = 1, 2, let us define the distributions χi over Z as the distribution of the product (over Z)
of a sample from ZeIntU(Bi) and an independent sample from BinDiff(η). Let us define r̄i
as Rev(ri). Then we observe that for each 1 ≤ i ≤ t, each coefficient of r̄i �d ei is an inner
product between a row of Toepd,k(r̄i) and the coefficient vector ei of ei. Therefore, by the
independence of the ri and ei coefficients, the distribution of each coefficient of

∑t

i=1 r̄i�d ei
is the distribution of a sum

∑Ndec
i=1 xi of independent random variables xi, where xi is sampled

from the distribution χi with

χi :=
{
χ1 1 ≤ i ≤ Ndec1,
χ2 Ndec1 < i ≤ Ndec.

(35)
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The probability of error p̄e for any fixed coordinate of the message can therefore be upper
bounded as follows:

p̄e = Pr

[
N∑
i=1

xi ≥ bq/pc/2

]
,

with xi distributed as in (35). Since the xi’s are independent with E[xi] = 0 for 1 ≤ i ≤ Ndec,
we have

p̄e = Pr

[
Ndec∑
i=1

xi ≥ bq/pc/2

]
(36)

= Pr

[
exp

(
s ·

Ndec∑
i=1

xi

)
≥ exp (s · bq/pc/2)

]
(37)

≤
E
[
exp
(
s ·
∑Ndec

i=1 xi
)]

exp (s · bq/pc/2)
(38)

=
E
[∏Ndec

i=1 exp (s · xi)
]

exp (s · bq/pc/2)

=

∏Ndec
i=1 E [exp (s · xi)]
exp (s · bq/pc/2)

, (39)

where (37) is true because the mapping x 7→ exp(s · x) is monotonically increasing, (38) is
obtained using Markov inequality [BLM13], and (39) is valid due to the fact that xi’s are
independent of each other. Let us further define

Mχj (s) := Ex←↩χj [exp(s · x)],

for j ∈ {1, 2}. Therefore, (39) can be re-written as:

p̄e ≤

∏Ndec
i=1 E [exp (s · xi)]
exp (s · bq/pc/2)

=
M
Ndec1
χ1 (s)MNdec−Ndec1

χ2 (s)
exp (s · bq/pc/2)

. (40)

In order to minimize p̄e, one needs to find s that minimizes (40). Letting

f(s) :=
M
Ndec1
χ1 (s)MNdec−Ndec1

χ2 (s)
exp (s · bq/pc/2)

,

one can differentiate f to find the critical point s∗, such that f(s∗) = 0 minimizing the right
hand side of (40). The well-known bi-section method is now used to numerically evaluate s∗
and hence p̄eHoeffding such that p̄e ≤ p̄eHoeffding. The above analysis and a union bound over the d
coordinates of

∑t

i=1 r̄i�d ei ensures that our Titanium-CPA is pHoeffding
e ≤ d · p̄eHoeffding-correct.

Instead of the above Hoeffding approach, one could use CLT heuristic analysis to upper
bound (36). In particular, by the independence of the xi’s, we can approximate the distribution
of
∑Ndec

i=1 xi by a Gaussian distribution with mean µ and standard deviation σ that we can
explicitly compute and then use standard Gaussian tail bounds to bound pe. To be more
precise, a straightforward computation using the independence of the xi, and that the standard
deviation of χe is

√
2η/4 =

√
η/2 shows that the standard deviation of

∑Ndec
i=1 xi is given by

σ =
√

(B2
eff/12 +Beff/4 + 1/6) · (η/2) ·Ndec, (41)

where
Beff =

√
ρB2

1 + (1− ρ)B2
2 ,

and
ρ = Ndec1/Ndec.
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Table 9 The values of zHoeffding in (44) and zclt defined in (43) for Titanium-CPA.

Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256
zHoeffding 7.39 7.45 7.63 8.32 8.06 10.61

zclt 7.55 7.64 7.83 8.58 8.26 10.93

Table 10 The values of zHoeffding in (44) and zclt defined in (43) for Titanium-CCA.

Parameter Toy64 Lite96 Std128 Med160 Hi192 Super256
zHoeffding 11.42 15.25 15.36 17.00 17.74 22.45

zclt 11.67 15.61 15.69 17.43 18.23 23.26

Using a standard Gaussian tail bound along with union bound over the d coordinates as above,
one gets

pclt
e ≤ (2d) · exp(−z2

clt/2), (42)

where
zclt = bq/pc/(2σ). (43)

Furthermore, using union bound one can calculate zHoeffding such that the calculated pHoeffding
e

satisfies the following inequality

pHoeffding
e ≤ (2d) · exp(−z2

Hoeffding/2). (44)

In Tables 9-10, we compare our derived zHoeffding in (44) with that of zclt in (43) for our different
parameter sets. The results suggest that our provable Hoeffding bounds on the decryption error
probability are close optimal, as they are not much higher than the bounds obtained from the
CLT heuristic.

A.1 Concrete correctness condition of Titanium-CCA

We similarly define the following correctness for Titanium-CCA

Definition 7 Our Titanium-CCA scheme is called δ-correct if

Pr[Decrypt(sk, ct) 6= k|(pk, sk)← KeyGen; (k, ct)← Encrypt(pk)] ≤ δ.

As we follow the KEM construction given in [HHK17], the following result is outstanding.

Lemma 6 If Titanium-CPA is δ-correct and G and H are random oracles, then our Titanium-CCA
is δ-correct.

B Titanium-CCA Algorithms

We use hash functions for our Titanium-CCA. Cryptographic Hash functions G and H are
modelled as a ‘random oracle’ in the security analysis, and are instantiated using the SHAKE256
mode in [NISb].

C Leftover Hash Lemma and Proof of Theorem 3

We use the following variant of the Leftover hash Lemma (LHL)[DORS08].
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Algorithm 8 : Titanium-CCA.KeyGen

Input: 1λ.
Output: pk and sk.
1: function KeyGen(1λ)
2: Let (sk.cpa, pk.cpa) = Titanium-CPA.KeyGen(1λ).
3: Let rdec←↩ U(byte32).
4: Let sk = (sk.cpa, rdec, pk.cpa) and pk = pk.cpa.
5: end function

Algorithm 9 : Titanium-CCA.Encrypt

Input: pk.
Output: ct and ss.
1: function Encrypt(pk)
2: Sample m←↩ U(byte32).
3: Let (seedenc.cpa, dcca) = G(m) ∈ byte32 × byte32.
4: Let ct.cpa = Titanium-CPA.Encrypt(pk,m).
5: Let ct = (ct.cpa, dcca)
6: Let ss = H(m, ct) ∈ byte32.
7: end function

Algorithm 10 : Titanium-CCA.Decrypt

Input: sk and ct.
Output: ss.
1: function Decrypt(sk, ct)
2: Let m′ = Titanium-CPA.Decrypt(sk.cpa, ct.cpa).
3: Let (seedenc.cpa′, dcca′) = G(m′) ∈ byte32 × byte32.
4: Let ct.cpa′ = Titanium-CPA.Encrypt(pk,m′).
5: if (ct.cpa′, dcca′) = (ct.cpa, dcca) then
6: Let ss = H(m′, ct).
7: else
8: Let ss = H(rdec, ct).
9: end if
10: end function

Lemma 7 Let X,Y, Z denote finite sets. Let H be a universal family of hash functions h :
X → Y . Let f : X → Z be arbitrary. Then for any random variable T taking values in X, we
have:

∆ ((h, h(T ), f(T )), (h, U(Y ), f(T ))) ≤
1
2
·
√
γ(T ) · |Y | · |Z|,

where γ(T ) = maxt∈X Pr[T = t].

We will apply the LHL to the following universal hash family that arises in our construction.

Lemma 8 (Adapted from [RSSS17]) Let q, k, d ≥ 2, q prime, and Suppr ⊆ Z<k+1
q [x].

For (bi)i ∈ (Z<d+k
q [x])t, we let h(bi)i denote the map that sends (ri)i≤t ∈ (Suppr)t to

∑
i≤t ri�d

bi ∈ Z<dq [x]. Then the hash function family (h(bi)i )(bi)i is universal.

Proof Our aim is to show that for r1, . . . , rt not all 0 in Suppr, we have

Pr
(b
i
)i,(b′i)i

[∑
i≤t

ri �d bi =
∑
i≤t

ri �d b
′
i

]
= q−d.

W.l.o.g. we may assume that r1 6= 0. By linearity, it suffices to prove that for all y ∈ Z<dq [x],

Pr
b1

[
r1 �d b1 = y

]
= q−d.
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Let j be minimal such that the coefficient in xj of r1 is non-zero and hence co-prime to q.
Then the equation r1�d b1 = y restricted to entries j+ 1 to j+ d is a triangular linear system
in the coefficients of b1 with diagonal coefficients invertible mod q. The map b1 7→ r1 �d b1
restricted to these coefficients of b1 is hence a bijection. This gives the equality above.

C.1 Proof of Theorem 3

Proof We summarize the modifications of the argument in [RSSS17] and the concrete reduction
cost. The proof consists in three games (let pi be the attacker A’s success probability in Gamei).

– Game0 : The original IND-CPA game.
– Game1 : Instead of generating pk = (āi, bi)i≤t with bi = ai �d+k s+ ei ∈ Z<d+k

q [x] using
Titanium-CPA.KeyGen, where we define ai = Rev(āi) for i = 1, . . . , t, the challenger sets
bi ←↩ U(Z<d+k

q [x]) independently of ai.
We can construct a distinguishing attacker against MP-LWEq,n,d+k,Dαq given t samples,
that has run-time TMP-LWE = T + O(t · (n + d + k) · log q) and distinguishing advantage
εMP-LWE = |p1− p0|. Given t MP-LWE samples (a′i, b

′
i)i≤t, the MP-LWE attacker computes

āi = Rev(a′i) and bi = b′i for i = 1, . . . , t, and sets pk = (āi, bi)i≤t as the public key.
If (a′i, b

′
i) have the MP distribution (resp. uniform distribution), then (āi, bi)i≤t have the

correct public key distribution as in Game0 (resp. Game1), using the fact that Rev is an
injective mapping on Z<nq [x].

– Game2 : Instead of generating the second challenge ciphertext component c2 as c′2 =∑t

i=1 Rev(ri)�d bi + bq/pc ·m ∈ Z<dq [x], the challenger sets c2 ←↩ U(Z<dq [x]), but leaves
c1 =

∑
i≤t ri ·ai as before. By the Leftover Hash Lemma 7 with γ(T ) = B

Ndec1
1 ·BNdec−Ndec1

2
the (exponential of) the inverse min-entropy of the input (Rev(r1), . . . ,Rev(rt)) to the
universal hash family in Lemma 8, |Y | = qd the hash output space size, and |Z| = qn+k

the size of the leakage space due to c1, the statistical distance between the distributions
of the challenge ciphertext in Game2 and Game1 is at most ∆LHL if the condition

1
2
·
√
B
−Ndec1
1 ·B−(Ndec−Ndec1)

2 qn+d+k ≤ ∆LHL (45)

holds, which is equivalent to (26), using the definitions Ndec
def= (k+ 1) · t, B1 = 2b1+1 and

B2 = 2b2+1.

In the last game, the attacker’s view is independent of the encrypted challenge message, so
p2 = 1/2. It follows that |p0− p2| = |p0− 1/2| = ε/2 ≤ |p1− p0|+ |p2− p1| ≤ εMP-LWE +∆LHL,
which gives (30).
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