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ABSTRACT
Blockchain is a distributed and decentralized ledger for record-

ing transactions. It is maintained and shared among the

participating nodes by utilizing cryptographic primitives. A

consensus protocol ensures that all nodes agree on a unique

order inwhich records are appended. However, current block-

chain solutions are facing scalability issues. Many methods,

such as Off-chain and Directed Acyclic Graph (DAG) solu-

tions, have been proposed to address the issue. However,

they have inherent drawbacks, e.g., forming parasite chains.

Performance, such as throughput and latency, is also im-

portant to a blockchain system. Sharding has emerged as a

good candidate that can overcome both the scalability and

performance problems in blockchain. To date, there is no

systematic work that analyzes the sharding protocols. To

bridge this gap, this paper provides a systematic and compre-

hensive review on blockchain sharding techniques. We first

present a general design flow of sharding protocols and then

discuss key design challenges. For each challenge, we ana-

lyze and compare the techniques in state-of-the-art solutions.

Finally, we discuss several potential research directions in

blockchain sharding.
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1 INTRODUCTION
The blockchain has become a key technology for imple-

menting distributed ledgers. It allows a group of partici-

pating nodes (or parties) that do not trust each other to

provide trustworthy and immutable services. Distributed

ledgers were initially used as tamper-evident logs to record

data. They are typically maintained by independent parties

without a central authority, for example, in systems like

SUNDR [95], SPORC [66], and Tamper-Evident Logging [53].

The blockchain became popular because of its success in

crypto-currencies, e.g., Bitcoin [107]. Blockchain stands in

the tradition of distributed protocols for both secure mul-

tiparty computation and replicated services for tolerating

Byzantine faults [101]. With blockchain, a group of parties

can act as a dependable and trusted third party for main-

taining a shared state, mediating exchanges, and providing

a secure computing engine [34].

Consensus is one of the most important problems in block-

chain, as in any distributed systems where many nodes must

reach an agreement, even in the presence of faults. Current

consensus algorithms are only applicable to small-scale sys-

tems because of complexity, e.g., the Practical Byzantine

Fault Tolerance protocol (PBFT) [37] with less than 20 partic-

ipating nodes. Scalability is an issue that has to be addressed

before adopting blockchain in large-scale applications. Re-

cently, many solutions have been proposed to achieve the

scale-out throughput by allowing participating nodes only

to acquire a fraction of the entire transaction set, for ex-

ample, an Off-chain solution [114], Directed Acyclic Graph

(DAG) [115] and blockchain sharding [100]. However, the off-

chain solution is more subject to forks and the transactions

in the DAG layout are not organized in a chain structure.

Among all proposed methods, sharding schemes seem to be

the most effective candidate as it can overcome both perfor-

mance and scalability problems. A sharding scheme splits the

processing of transactions among smaller groups of nodes,

called shards. As a result, shards can work in parallel to max-

imize the performance and improve the throughput while

requiring significantly less communication, computation,

and storage overhead, allowing the scheme to work in large

systems [141].

Particularly, sharding technology utilizes the concept of

committees. The term committee is also used to refer to a

subset of participating nodes that collaborate to finish a spe-

cific function. The notion of committees in the context of

consensus protocols was first introduced by Bracha [25] to

reduce the round complexity of Byzantine agreement. Using

committees to reduce the communication and computation

overhead of Byzantine agreement dates back to the work
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of King et al. [88, 89]. However, they provided only theoret-

ical results and the techniques cannot be directly used in

a blockchain setting. Sharding-based blockchain protocols

can increase the transaction throughput when more partic-

ipants join the network because more committees can be

formed to process transactions in parallel. The total num-

ber of transactions processed in each consensus round by

the entire network is multiplied by the number of commit-

tees. For security reasons, a sharding scheme needs to fairly

and randomly divide the network into small shards with the

vanishing probability of any shard having an overwhelming

number of adversaries.

Although sharding is promising, it still faces many spe-

cific design challenges. We need to identify key components

in blockchain sharding, understand the challenges in each

component, and systematically study potential solutions to

each challenge. To date, there has been no systematic and

comprehensive study or review on blockchain sharding. To

fill the gap, this paper presents a comprehensive and system-

atic study of sharding techniques in blockchain. We identify

the key components in sharding schemes and the major chal-

lenges in each component. As a systematization of knowl-

edge on blockchain sharding, we also analyze and compare

the state-of-the-art solutions.

The rest of the paper is organized as follows. Section 2

introduces various models and taxonomies of blockchain

systems. Section 3 gives an overview of sharding. Section 4

discusses consensus protocols. Section 5 presents the ap-

proaches to generating epoch randomness. Section 6 dis-

cusses how to deal with cross-sharding transactions. Sec-

tion 7 discusses the reconfiguration of epochs. Section 8

compares the state-of-the-art sharding protocols. Section 9

concludes this paper.

2 PRELIMINARIES
This section introduces various models and taxonomies for

blockchain protocols, followed by discussion on typical block-

chain settings and scalability issues. In this paper, we con-

sider the terms node, replica, party, entity, and participant
having the same meaning as participating node.

2.1 Models in Blockchain
2.1.1 Communication Models. A consensus protocol for dis-

tributed systems is greatly dependent on the underlying

communication network. Typically, we can categorize com-

munication networks into three types [5]: strongly synchro-

nous, partially synchronous, and asynchronous. A network

is said to be strongly synchronous if there exists a known

fixed bound, δ , such that every message takes at most δ time

units to travel from one node to another in the network. A

network is said to be partially synchronous if there exists a

fixed bound, δ , on the network delay and one of the following
conditions holds: 1) δ always holds, but is unknown; 2) δ is

known, but only starts at some unknown time. A network is

said to be asynchronous if there is no upper bound on the net-

work delay. It is worth mentioning that the communication

network models also vary by the network adversarial models,

e.g., adversarial network scheduling models and oblivious

adversarial models [6].

A consensus protocol must meet three requirements [103]:

(a) Non-triviality. If a correct entity outputs a value v , then
some entity proposed v ; (b) Safety. If a correct entity outputs
a value v , then all correct entities output the same value

v; (c) Liveness. If all correct entities initiated the protocol,

then, eventually, all correct entities output some value. Note

that Fisher, Lynch and Paterson (FLP) [68] proved that a

deterministic agreement protocol in an asynchronous net-

work cannot guarantee liveness if one entity may crash, even

when links are assumed to be reliable. In an asynchronous

system, one cannot distinguish between a crashed node and

a correct one. Theoretically, deciding the full network’s state

and deducing from it an agreed-upon output is impossible.

However, there exist some extensions to circumvent the FLP

result to achieve an asynchronous consensus, e.g., random-

ization, timing assumptions, failure detectors, and strong

primitives [6].

2.1.2 Fault Models. We distinguish two types of fault con-

sensus: crash fault-tolerant consensus (CFT) and non-crash

(Byzantine) fault-tolerant consensus (BFT) [98]. Different

failure models have been considered in the literature, and

they have distinct behaviors. In general, a crash fault is where

a machine simply stops all computation and communication,

and a non-crash fault is where it acts arbitrarily, but can-

not break the cryptographic primitives, e.g., cryptographic

hashes, MACs, message digests, and digital signatures. For

instance, in a crash fault model, nodes may fail at any time.

When a node fails, it stops processing, sending, or receiv-

ing messages. Typically, failed nodes remain silent forever

although some distributed protocols have considered node

recovery. Tolerating the crash faults (e.g., corrupted par-

ticipating nodes) as well as network faults (e.g., network

partitions or asynchrony) reflects the inability of otherwise

correct machines to communicate among each other in a

timely manner. This reflects how a typical CFT fault affects

the system functionalities. At the heart of these systems

typically lies a CFT-based state-machine replication (SMR)

primitive [39]. However, these systems cannot deal with

non-crash faults, which is also called Byzantine failure. In

Byzantine failure models, failed nodes may take arbitrary

actions, including sending and receiving messages that are

specially crafted to break the consensus process.
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Classic CFT and BFT explicitly model machine faults only.

These are then combined with an orthogonal network fault

model, for either synchronous or asynchronous networks.

Thus, the related work can be classified into four categories:

synchronous CFT [52], asynchronous CFT [109], synchro-

nous BFT [59], and asynchronous BFT [76] [36]. The Byzan-

tine setting is of relevance to security-critical settings and

traditional consensus protocols that tolerate crash failures

only.

2.2 BFT Consensus Scalability
Sharding a blockchain largely relies on BFT consensus pro-

tocols to reach consensus. However, most BFT protocols are

limited in their scalability, either in terms of network size

(e.g., number of nodes) or the overall throughput. The de-

sign space for improving them is vast. We will use Practical

BFT (PBFT) [37] as an example to explain BFT scalability.

The original PBFT protocol requires n = 3f + 1 nodes to

tolerate up to f Byzantine faults. It has been shown not to

scale beyond a dozen nodes due to its quadratic communi-

cation complexity [58]. Typically, scaling protocols for BFT

focuses on either reducing the number of nodes required

to tolerate f Byzantine faults [15, 44], or reducing the pro-

tocol’s communication complexity to allow larger network

sizes [90].

Reducing the number of nodes. To tolerate f Byzantine

nodes that can equivocate in a quorum system like PBFT,

quorums must be intersected by at least f + 1 nodes [102].
Consequently, if a BFT protocol requires n = 3f + 1, its

quorum size is at least 2f + 1. The smaller n means the

lower communication cost incurred in tolerating the same

number of faults; it also means that for the same number of

nodes n, the network can tolerate more faulty nodes. One

way to reduce the number of nodes is to randomly select

a small set of consensus nodes, as a committee, to run a

consensus process. A smaller consensus committee can lead

to better throughput, as a smaller committee attains higher

throughput due to lower communication overhead. Sharding

technology reduces the consensus process within one shard.

However, in this scenario, the security of each shard, e.g.,

the ratio of the number of faulty nodes to the size of a shard,

will be the top concern. It can be mitigated by utilizing some

mechanisms, e.g., the epoch randomness, to guarantee the

“good majority” for each shard with a high probability [100].

Another way to reduce the number of nodes is to uti-

lize techniques to get down the n from 3f + 1 to 2f + 1.

Those techniques are mainly based on leveraging external

components (e.g., the trusted hardware) or lessening the sys-

tem models. For example, BFT-TO [48], a hardware-assisted

BFT, with less replicas, shows that it is possible to imple-

ment a Byzantine SMR algorithm with only 2f + 1 replicas

by expending the system with a simple trusted distributed

component. Similarly, there exist a few other algorithms to

achieve the consensus with less replicas, such as A2M-BFT-

EA [44], MinBFT [133], MinZyzzyva [133], EBAWA [132],

CheapBFT [82], and FastBFT [97]. Besides, there also exist

some other work to achieve the same purpose by lessening

the system models. For example, the work in [1] improves

the BFT threshold to 2f + 1 by utilizing a relaxed synchrony

assumption.

Reducing communication complexity. PBFT protocol has

been perceived to be a communication-heavy protocol. There

is a long-standing myth that BFT is not scalable to the num-

ber of participants n, since most existing solutions incur the

message transmission of O(n2), even under favorable net-

work conditions. As a result, existing BFT chains involve very

few nodes (e.g., 21 in [75]). Even with a reduced network size,

PBFT still has a communication complexity of O(n2). Byz-
coin [90] proposed an optimization wherein the leader uses

a collective signing protocol (CoSi) [128] to aggregate other

node’s messages into a single authenticated message. By do-

ing so, each node only needs to forward its messages to the

leader and verify the aggregate message from the latter. In

this way, by avoiding broadcasting, the communication com-

plexity is reduced to O(n). Besides, there is some work [56]

on utilizing trusted execution environments (TEEs) (e.g., In-

tel SGX [50]) to scale distributed consensus. TEEs provide a

protected memory and isolated execution so that the regular

operating systems or applications can neither control nor

observe the data being stored or processed inside them [64].

Generally, a trusted hardware can only crash but not be

Byzantine. However, introducing trusted hardware into con-

sensus nodes is expensive, and specific knowledge is needed

to implement the protocol. Similarly, the security in this cate-

gory can be mitigated by using cryptograhic primitives, such

as threshold signatures [23] [125].

By splitting a network into multiple committees, sharding

technology reduces the number of consensus nodes within

committees and further reduces the communication com-

plexity.

2.3 Scalability in Sharding Blockchain
The blockchain scalability can be evaluated by two metrics:

transaction throughput (e.g., the maximum rate at which the

blockchain can process transactions) and latency (e.g., the

time to confirm that a transaction has been included in the

blockchain). Blockchain with message communication com-

plexityO(n) per node, where n is the number of participating

nodes, is typically referred to as a “scalable" blockchain since

its throughput will not decrease with the number of par-

ticipating nodes and the communication capacities in the
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network. Sharding is one such solution that fairly and ran-

domly divides the network into small shards with vanishing

probability of any shard having an overwhelming number

of adversaries.

In general, when considering scalability in sharding, it

is restricted to approaches targeting the blockchain’s core

design, e.g., on-chain solutions, rather than techniques that

delegate to parallel off-path blockchain instances such as

sidechains (one of the off-chain solutions) [12]. Sharding

based blockchain systems typically operate in epochs (e.g.,
one epoch specifies the maximum time to form one block):

the assignment of nodes to committees is valid only for the

duration of that epoch. The number of committees scales

linearly to the amount of computational power available in

the system, and the number of nodes within a committee can

be flexible. Thus, as more nodes join the network, the trans-

action throughput increases without adding to the latency,

since messages needed for consensus are decoupled from

computation and broadcast of the final block to be added to

the blockchain. However, sharding a blockchain is difficult

because it must ensure some properties, e.g., a transaction

(i.e., spending some cryptocurrencies) is only executed once

on the entire network. If a transaction that should happen

only once executes more than once, it goes into a situation

of double spending [116]. Thus, we need to understand the

essential components on sharding-based blockchain system.

3 SHARDING OVERVIEW
Originally, sharding is a type of database partitioning tech-

nique that separates a very large database into much smaller,

faster, more easily managed parts called data shards [99]. The

term shard represents a small part of the whole set. Tech-

nically, sharding is a synonym for horizontal partitioning,

which makes a large database more manageable. The key

idea of sharding in blockchain is to partition the network

into smaller committees, each of which processes a disjoint

set of transactions (or a “shard"). Specifically, the number of

committees grows linearly in the total computational power

of the network. And each committee has a reasonably small

number of members so they can run a classic Byzantine con-

sensus protocol to decide their agreed set of transactions in

parallel.

3.1 Problem Definition
Assume that there exist n participating nodes having the

same computational power, a fraction f of which is con-

trolled by a Byzantine adversary. The network accepts trans-

actions per block, e.g., a transaction i in block j is repre-

sented by an integer x ji ∈ ZN , where ZN [38] is the ring of

integers modulo N . All nodes have access to an externally-

specified constraint function C : ZN → {0, 1} to determine

the validity of each transaction. The sharding protocol is

to seek a protocol Π running between nodes which out-

puts a set X which contains k separate “shards" or subsets

Xi = {x
j
i }(1 ≤ j ≤ |Xi |) such that the following conditions

hold:

• Agreement. Honest nodes agree on X with a probability

of at least 1 − 2−λ , for a given security parameter λ.
• Validity. The agreed shard X satisfies the specified con-

straint function C , e.g., ∀i ∈ {1...k},∀x ji ∈ Xi ,C(x
j
i ) = 1.

• Scalability. The value of k grows almost linearly with

the size of the network.

The goal of sharding is to split the network into multiple

committees, each processing a separate set of transactions

(e.g., Xi ) called a shard, and the number of shards k grows

near linearly on the size of a network. Each shard needs to

get an agreement localized within a small committee, which

makes the consensus procedure more efficient. Typically, the

computation and bandwidth used per node stay constant

regardless of n and k . For instance, in blockchain, once the

network agrees on the set X , it can create a cryptographic

digest of X and form a hash-chain with previously agreed

sets in the previous runs of Π, which serve as a distributed

ledger of transactions.

3.2 Sharding Overview
Typically, the sharding protocol proceeds in epochs, each

of which decides on a set of values X =
⋃

2
s

i=1Xi where 2
s

is the number of subsets Xi . The key idea is to automati-

cally parallelize the available computation power, dividing it

into several smaller committees, each processing a disjoint

set of transactions or shards. We take Elastico [100] as an

example. The number of committees grows proportionally

to the total computation power in the network. All com-

mittees, each of which has a small constant number c of

members, run a classical BFT consensus protocol internally

to agree on one block. For a decentralized system, it needs

first to define the membership, and there exist several ways

to resolve a membership, e.g., proof-of-work (PoW) [62],

proof-of-stake (PoS) [87], proof-of-storage [142], and proof-

of-personhood [24]. A permissionless sharding protocol typ-

ically consists of five critical components in each consensus

round.

1). Identity establishment and committee formation. To

join in the protocol, each node needs to establish an identi-

tye.g., an identity consisting of a public key, an IP address and

a proof-of-work (PoW) solution. Each node then is assigned

to a committee corresponding to its established identity. In

this process, the system needs to prevent the Sybil iden-

tity [60]. However, for a permissioned blockchain, it does

not require this process.
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2). Overlay setup for committees. Once the committees are

formed, each node communicates to discover the identities

of other nodes in its committee. For a blockchain, an overlay

of a committee is a fully connected subgraph containing all

the committee members. Typically, this process can be done

with a gossip protocol [70].

3). Intra-committee consensus. Each node within a com-

mittee runs a standard consensus protocol to agree on a

single set of transactions. In this process, all honest members

must agree on the proposed block within its committee.

4). Cross-shard transaction processing. The transaction

should be atomically committed in the whole system. For

cross-shard transactions, the related shards need to get con-

sistency. Typically, this process requires a kind of “relay"

transaction to synchronize among related shards.

5). Epoch reconfiguration. To guarantee the security of

the shards, the shards need to be reconfigured, requiring

a randomness. This randomness will be used for the next

epoch.

The above five points are the most critical components

for a permissionless blockchain sharding.

To design a sharding protocol, it needs to deal with several

key challenges. The first challenge is how to uniformly split

all nodes into several committees so that each committee has

the majority honest with high probability. Good randomness

is a critical component to partially address this challenge,

which provides high-entropy output [49]. However, achiev-

ing good randomness in a distributed network is a known

hard problem. Section 5 will provide a detailed discussion

on epoch randomness. The state-of-the-art solution can only

tolerate a small fraction of maliciousness (e.g., 1/6), with

excessive message complexity [7]. Typically, the adversary

is not static and can adaptively observe all the protocol runs.

The second challenge is how to guarantee that the adversary

does not gain a significant advantage in biasing its opera-

tions or creating Sybil identities (if in public blockchain).

Thus, due to the Byzantine faults and network delays in real

networks, the sharding protocol must tolerate a varied rate

of nodes creation and inconsistency in views of committee

members. For a permissionless blockchain, the protocol also

needs to deal with one more challenge since the nodes have

no inherent identities or external PKI to trust. A malicious

node can simulate many virtual nodes, thereby creating a

large set of sybils [108]. Thus, the protocol must provide an

effective mechanism to establish their identities to limit the

number of Sybil identities created by malicious nodes.

4 CONSENSUS PROTOCOLS
Sharding on blockchain requires consensus protocols to

agree on the proposed blocks. However, capturing a rep-

resentative and longitudinal view of a topic in blockchain

consensus is challenging [13]. Different consensus protocols

function differently in the overall sharding procedure. This

section presents the state-of-the-art consensus protocols for

blockchain sharding in a general way.

4.1 Consensus Classification
In general, protocols can be put in two categories when

being used in the blockchain sharding: PoX and BFT. We

know Proof-of-Work (PoW) mechanism on Bitcoin [107] and

Proof-of-Stake (PoS) on Ethereum [85]. Technically speaking,

PoW and PoS are not the decent “consensus protocol", whose
mechanisms are used for determining the membership or

the stake in a Sybil-attack-resistant fashion. Due to historical

reasons, e.g., Bitcoin used PoW as a “consensus" protocol

to build a bitcoin blockchain, we literally categorize them

into consensus protocols. For example, in a hybrid consensus

(e.g., ByzCoin [90] and Hybrid Consensus [110]), the decent
consensus protocol (the algorithm for agreement on a shared

history) is separable from and orthogonal to the membership

Sybil-resistance scheme (e.g., PoW). Here we use Proof-of-X
(PoX) to represent all alternatives of proof-of-something (in-

cluding PoW and PoS), and use BFT to represent Byzantine-

based consensus protocols. In a sharding scheme, both PoX

and BFT work together to achieve the consensus process.

Roughly speaking, both protocols have different tasks in

an overall sharding scheme, which is a dynamic committee

based scheme. PoX is typically used for committee formation

(e.g., PoW in Elastico [100]) to establish the committee mem-

bers and these corresponding identifies, while BFT is used for

the intra-committee consensus, which is used within a com-

mittee to form the blocks. Thus, it is necessary to introduce

both PoX and BFT separately.

4.1.1 PoX. Most PoX-based consensus protocols require

that the participating node has some kinds of efforts or re-

sources to prove its validity as a miner. We take PoW and

PoS as examples to illustrate the PoX mechanisms.

PoW is also calledNakamoto consensus in blockchain after
its originator [62], proposed in 1992, for spam Email protec-

tion. In PoW, the nodes that generate hashes are calledminers
and the process is referred to asmining. When applying PoW

as a general consensus in blockchain, it is subject to vari-

ous kinds of attacks [107], such as forks, double-spending

attacks, and 51% attacks. These are the general problems in

PoW consensus. However, when implementing PoW into

blockchain sharding protocols, due to running PoW locally,

special care is required, e.g., selfish mining [65]. Selfish min-

ing allows colluding miners to generate more valid blocks

than their computing power would normally allow if they

were following the standard protocol. These valid blocks

are typically generated ahead of time, so that the colluding

miners withhold blocks that they have found, and then select
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a favorite one to maximize these advantages, e.g., controlling

one shard. Thus, applying PoW into blockchain sharding

requires an agreed epoch randomness for each epoch. Still,

most of the state-of-the-art sharding protocols use PoW to

establish the membership for a shard.

Compared to PoW, PoS protocols replace wasteful com-

putations with useful “work" derived from the alternative

commonly accessible resources. For example, participants

of PoS vote on new blocks weighted by their in-band invest-

ment such as the amount of currency held in the PPCoin

blockchain [87]. In general, PoS has a candidate pool which

contains all qualified participants called stakeholders (e.g.,

the amount of stake is larger than a threshold value) [17] [57].

A common approach is to randomly elect a leader from the

stakeholders, which then appends a block to the blockchain.

However, in blockchain sharding, PoS may be subject to the

grinding attacks [45], in which a miner re-creates a block

multiple times until it is likely that the miner can create a

second block shortly afterward. We should mention that

PoS is not just one but instead a collection of protocols.

There exist many PoS alternatives, such as Algorand [72],

Ouroboros [85], Ouroboros Praos [57], Ethereum [139], etc.

Besides the main PoS protocol, there exist other PoX-based

alternatives, which require miners to hold or prove the own-

ership of assets. We list three alternatives: proof-of-deposit
(PoD) [93], proof-of-burn (PoB) [111] and proof-of-coin-age
(PoCA) [86]. Readers are referred to the corresponding papers
for their details.

4.1.2 BFT. Most shard-based systems use classic BFT con-

sensus protocols, e.g., PBFT, as its intra-shard consensus

protocol. In this section, we focus on discussing the poten-

tial BFT consensus protocols, or their novel compositions

which can be tailored for use as the consensus protocols, in

blockchains. Roughly speaking, BFT protocols can be clas-

sified into two categories: leader-based BFT and leaderless

BFT. Most BFT protocols are leader-based, e.g., PBFT or BFT-

SMaRt [18]; and leaderless protocols include SINTRA [32]

and HoneyBadger [106].

Actual systems that implement PBFT or its variants are

much harder to find than systemswhich implement Paxos/VSR

[131]. BFT-SMaRt [126], launched around 2015, is a widely

tested implementation of BFT consensus protocols. Similar

to Paxos/VSR, Byzantine consensus, such as PBFT and BFT-

SMaRt, expects an eventually synchronous network to make

progress. Without this assumption, only randomized pro-

tocols for Byzantine consensus are possible, e.g., SINTRA

(relying on distributed cryptography) [32] and HoneyBad-

ger [106], which can achieve ennventual consensus on an

asynchronous network.

Still, many well-known blockchain projects use PBFT and

BFT-SMaRt protocols. For example, Hyperledger Fabric [3]

and Tendermint Core [26] implement PBFT as these consen-

sus protocols; Symbiont [129] and R3 Corda [80] use BFT-

SMaRt as their consensus protocols. We briefly discuss these

two leader-based BFT consensus protocols, which can be

used as intra-shard consensus process.

PBFT. PBFT can tolerate up to 1/3 Byzantine faults. We

briefly describe its consensus procedures. One replica, the

primary/leader replica, decides the order for clients’ requests,
and forwards them to other replicas, the secondary replicas.

All replicas together then run a three-phase (pre-prepare/

prepare/commit) agreement protocol to agree on the order

of requests. Each replica processes every request and sends

a response to the corresponding client. The PBFT protocol

has the important guarantee that safety is maintained even

during periods of timing violations, progress only depends

on the leader. On detecting that the leader replica is faulty

through the consensus procedure, the other replicas trigger

a view-change protocol to select a new leader. The leader-

based protocol works very well in practice and is suitable in

blockchain, however, it is subject to scalability issues.

BFT-SMaRt. BFT-SMaRt implements a BFT total-ordermul-

ticast protocol for the replication layer of coordination ser-

vice [18]. It assumes a similar system model as BFT SMR [36]

[46]: n ≥ 3f + 1 replicas to tolerate f Byzantine faults, and

unbounded number of faulty-prone clients and eventual syn-

chrony to ensure liveness. Typically, the BFT-SMaRt consists

three key components: Total Order Multicast [123], State

Transfer [19], and Reconfiguration [29]. We refer interested

readers to [19, 29, 123] for the details.

Besides the above legacy leader-based BFT protocols and

the mentioned BFT protocols in Section 2.2, there exist sev-

eral variants or newly invented algorithms, e.g., Hotstuff [140],

Tendermint [26], and Ouroboros-BFT [84]. Due to the page

limit, we refer interested readers to the corresponding refer-

ences for the details.

We now briefly discuss the leaderless BFT protocols. This

type of BFT protocols mainly target on the asynchronous set-

tings, which are based on the randomized atomic broadcast

protocols. Unlike existing weakly/partially synchronous pro-

tocols, in an asynchronous network, messages are eventually

delivered but no other timing assumption is made, as defined

in Section 2.1. We take SINTRA [32] and HoneyBadger [106]

as examples to describe the leaderless BFT protocols.

SINTRA [32]. SINTRA is a Secure INtrusion-Tolerant Repli-

cation Architecture for coordination in asynchronous net-

works subject to Byzantine faults. It is a system implemen-

tation based on the asynchronous atomic broadcast proto-

col [30], which consists of a reduction from atomic broadcast

(ABC) to common subset agreement (ACS), as well as a reduc-

tion from ACS to multi-value validated agreement (MVBA).
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Security is achieved through the use of threshold public-key

cryptography, in particular through a cryptographic com-

mon coin based on the Diffie-Hellman problem that undelies

the randomized protocols in SINTRA.

HoneyBadger [106]. HoneyBadgerBFT essentially follows

asynchronous secure computing with optimal resilience [16],

which uses reliable broadcast (RBC) and asynchronous bi-

nary Byzantine agreement (ABA) to achieve ACS. HoneyBad-

ger cherry-picks a bandwidth-efficient, erasure-code RBC

(AVID broadcast) [33] and the most efficient ABC to realize.

Specifically, HoneyBadger uses threshold signature to pro-

vide common coins for randomized ABA protocol, which

achieves a higher throughput by aggressively batching client

transactions.

Besides the above two leaderless BFT protocols, there exist

some other peer-reviewed and non-peer-reviewed works,

such as BEAT [61], and DBFT [51].

4.2 Committee Configuration
In the sharding protocol, the membership of a shard is dy-

namically changed in each epoch to guarantee safety and

security. A reconfigurable committee needs some mecha-

nisms to track committee membership. This is related to

how to configure the committees. Typically, there are four

ways to configure a committee within the consensus process:

static, rolling (single), full, and rolling (multiple).

Static: In a static setting, the committee members are not

periodically changed, which is a typical configuration in

permissioned systems. For example, Hyperledger [3] and

RSCoin [55] are based on this setting, where committee mem-

bers have known and trusted identities and its threat model

does not include Sybil attacks.

Rolling (Single): The committee is updated in a sliding

window fashion, where new nodes are added to the current

committee and the oldest members are ejected. ByzCoin [90]

adopts this scheme, in which each node has a voting power

proportional to the number of mining blocks it has in the

current window.

Full: This scheme is a lottery-based mechanism, such as

Algorand [72] and SnowWhite [54], to select the committee

members for each epoch using randomness generated based

on previous blocks.

Rolling (Multiple): The committee swaps outmultiplemem-

bers each time. For example, Omniledger [91] uses cryp-

tographic sortition to select a subset of committees to be

swapped out and replaced with new members. This is done

in a way that the ratio between honest and Byzantine mem-

bers in a committee is maintained.

We should mention that many blockchain mechanisms for

committee configuration are not orthogonal and potentially

complementary, instead of mutually exclusive. For example,

a large HyperLedger-like permissioned system could serve

as a big “directory" from which an OmniLedger-like random

committee selection could take place. Similarly, a ByzCoin-

like rolling committee selection mechanism based on PoX

(e.g., PoW or PoS) could be used to drive the selection of mul-

tiple independent committees for OmniLedger-like sharded

consensus, not just a signle committee as in ByzCoin.

In a sharding-based protocol, to maintain the committee’s

safety and security, it typically adopts either full or rolling
(multiple) committee configuration schemes. To configure

or reconfigure the committees, a good epoch randomness is

required.

5 EPOCH RANDOMNESS
In blockchain sharding protocols, when multiple nodes are

involved in a consensus protocol, an important issue is how

the participating nodes are assigned to which committee so

that the generated committee is “fair". For example, each

generated committee requires that it has a majority of hon-

est nodes, and the ratio of faulty nodes should not exceed a

threshold that the consensus protocol specified for that shard.

One approach to assigning nodes to committees is done stat-

ically according to a specified policy, in which it assumes the

existence of a random source or a trusted third party, e.g.,

RSCoin [55]. However, such approach can be problematic

in a permissionless setting, which requires a shared random

coin [47] [73]. Another approach is to dynamically allocate

nodes to committees. This dynamic allocation should be a

randomized process, aiming to stop an adversary from con-

centrating its presence in one committee, and exceeding the

Byzantine tolerance threshold. However, generating good

randomness in a distributed manner is a known hard prob-

lem. For example, the distributed random number generator

in [7] can only tolerate up to 1/6 fraction of Byzantine nodes,

while still incurring a high message complexity. There exist

other randomness generation schemes with different goals

or sychrony [83] settings, such as AVSS [30] and APSS [143]

for asynchronous communication model, RandHound and

RandHerd [127] for scalability in synchronous communica-

tion model. In this section, we discuss the potential epoch

randomness for sharding-based protocols, and summarize

the start-of-the-art epoch randomness generation for block-

chain.

5.1 Properties of Epoch Randomness
To generate a seed for sharding securely without requiring a

trusted randomness beacon [55] or binding the protocol to

PoX, a good distributed randomness generation is required to
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meet with several features: public-verifiability, unbiasability,

unpredictability, and availability.

1). Public-Verifiability: A third party, e.g., not directly par-

taking processes, should also be able to verify generated

value. As soon as a new random beacon value becomes avail-

able, all parties can verify the correctness of the new value

using public information only.

2). Bias-Resistance: This is the assurance that any single

participant or a colluding adversary cannot influence the

future randomness beacon values to its own advantage.

3). Unpredictability: Participants (either correct or adver-
sarial) should not be able to predict or precompute future

random beacon values in advance.

4). Availability: This property shows that any single partic-
ipant or a colluding adversary should not be able to prevent

the progress.

5.2 Randomness Generation Methods
Roughly speaking, there exist several ways to generate ran-

domness, which can be considered as the baseline of bias-

resistance randomness generation. This section introduces

these baselines, including Verifiable Random Function (VRF)

[105], Verifiable Secret Sharing (VSS) [67], Public Verifiable

Secret Sharing (PVSS) [124], and Verifiable Delay Functions

(VDF) [21] [113].

5.2.1 VRF. Intuitively, the idea behind a VRF is that Alice

asks Bob to compute a function fs on some input x . Only
Bob is able to compute fs as its result is dependent on some

secret value s , which only Bob knows. The result v = fs (x)
has the property of being unique and computationally indis-

tinguishable from a truly random string v ′ of equal length.
Alice wants to be sure that Bob indeed provided the unique

correct result of the computations [14]. Formally, VRFs ad-

dress the issue of unverifiability of Pseudo-Random Func-

tions (PRFs). Consider the case where a party computing

fs (x1), fs (x2), ..., fs (xn) claims the corresponding outputs are

o1,o2, ...,on . Without knowledge of s , an observer cannot ver-
ify that applying fs to xi indeed yields the corresponding

output oi . As soon as s gets published, future output values
are not indistinguishable from truly random strings anymore.

They get fully predictable and can be efficiently computed

by any party.

To obtain verifiability without compromising the unpre-

dictability property of future outputs, a party knowing the

seed s publishes v = fs (x) together with a proof proo fx .
This proof allows verification of the fact that v = fx (x)
indeed holds without revealing s . It is crucial that a party
knowing s can only construct a valid proof for a unique v
for every x [105]. However, for the proof itself, there is no

uniqueness requirement. Some proposed solution is based

on interactive zero-knowledge proofs [105]. However, in-

teractive zero-knowledge proofs incur high communication

complexity.

5.2.2 VSS. Secret sharing is a scheme to distribute a se-

cret S among a certain number of participants, each one

receiving a part of the secret, called a share. Shares can be

combined by collaborating participants to reconstruct the

original secret. A (t,n)-secret sharing scheme is that any

group of t (or more) out of n participants can recover S from

their shares. Shamir’s secret sharing protocol [120] is based

on polynomial interpolation. The key idea behind it is the fact

that given t points (x1,y1), (x2,y2), ..., (xt ,yt ) with different

x-coordinates, there is a unique polynomial p(x) of degree
(t − 1) going through all of the points. However, Shamir’s

secret sharing protocol is based on an important assumption:

the participants assume that they are given correct shares.

And this limits the ability to apply this scheme in, e.g., fault-

tolerant or even trust-less distributed systems. For example,

this assumption does not hold in Byzantine fault tolerance

systems. Thus, a verifiable secret sharing (VSS) is required

to protect against malicious dealers/participants.

5.2.3 PVSS. A PVSS scheme [124] [118] makes it possible

for any party to verify secret-shares without revealing any

information about the secrets or the shares. During the share

distribution phase, for each trustee i , the dealer produces
an encrypted share Ei (si ) along with a non-interactive zero-

knowledge proof (NIZK) [41] to prove that Ei (si ) correctly en-
crypts a valid share si of s . During the reconstruction phase,

trustees recover s by pooling t properly-decrypted shares.

They then publish s along with all shares and NIZK proofs

showing that the shares were properly decrypted. There also

exist some optimized PVSS schemes, such as SCRAPE [35].

Typically, PVSS runs in three steps:

1). The dealer chooses a degree t − 1 secret sharing poly-
nomial s(x) =

∑t−1
j=0 ajx j and creates, for each trustee i ∈

{1, ...,n}, an encrypted share Ŝi = X s(i)
i of the shared secret

S0 = Gs(0)
. The dealer also creates commitments Aj = Haj

,

where H , G is a generator of д, and for each share a NIZK

encryption consistency proof P̂i , Afterwards, the dealer pub-
lishes Ŝi , P̂i and Aj .

2). Each trustee i verifies his share Ŝi using P̂i and Aj , and

if valid, publishes the decrypted share Si = (Ŝi )
x−1i together

with z NIZK decryption consistency proof Pi .
3). The dealer checks the validity of Si against Pi , discards

invalid shares and, if there are at least t out of n decrypted

shares left, recovers the shared secret S0 through Lagrange

interpolation.

We should notice that VRFs play a different role from VSS

and PVSS: VRFs allow individual parties to produce verifi-

able randomness, while both VSS and PVSS allow groups



SoK: Sharding on Blockchain AFT ’19, October 21–23, 2019, Zurich, Switzerland

of parties to produce collective randomness, a.k.a “common

coins".

As a brief comparison between VSS and PVSS, VSS aims

to resist malicious share holders, in which there is a verifica-

tion mechanism for each share holder to verify validity of its

share, while in PVSS, not just the participants can verify their

own shares, but anybody can verfiy that the participants re-

ceived correct shares. However, most existing PVSS schemes

are complex and inefficient, especially in computation. PVSS

schemes are typically “single-use", while VSS schemes and

the distributed key generation (DKG) algorithms built from

them can produce multi-use distributed threshold key pairs.

5.2.4 VDF. Essentially, a verifiable delay function (VDF) re-

quires a specified number of sequential steps to evaluate, yet

produce a unique output that can be efficiently and publicly

verified. VDFs have many applications in decentralized sys-

tems, including public randomness beacons, leader election

in consensus protocols, and proofs of replications. A VDF is a

function f : X → Y that takes a prescribed time to compute,

even on a parallel computer. However, once computed, the

output can be quickly verified by anyone. Moreover, every

input x ∈ X must have a unique valid output y ∈ Y. Spe-
cially, a VDF that implements a function X → Y is a tuple

of three algorithms:

• Setup(λ,T ) → pp is a randomized algorithm that takes a

security parameter λ and a time boundT , and outputs public
parameters pp.
• Eval(pp, x) → (y, π ) takes an input x ∈ X and outputs

a y ∈ Y and a proof π .
• Veri f y(pp, x,y, π ) → {accept, reject} outputs accept if

y is the correct evaluation of the VDF on input x .
If (y, π ) ← Eval(pp, x) then Veri f y(pp, x,y, π ) = accept ,

for all x ∈ X and pp output by Setup(π ,T ). Besides, a VDF
must satisfy three properties: ϵ-evaluation time, sequentiality

and uniqueness. We refer interested readers to [21, 22, 113]

for the details.

Besides the above randomness generation baselines, there

exist other works, such as random zoo [94], determinis-

tic threshold signatures [20] and distributed key genera-

tion [83].

5.3 Comparison
Epoch randomness generation in sharding protocols can

be treated as a separate module to provide randomness, so

that the node can be fairly assigned to the shards according

to the public randomness. Thus, any efficient randomness

generation algorithm can be implemented as a separated

module.

We provide a comparison of the state-of-the-art epoch ran-

domness generation schemes, and discuss these approaches.

In our comparison, we do not only consider the protocols

specifically targeted at implementing random beacons, but

also by including approaches that can readily provide ran-

dom beacon functionality as a product of their intended ap-

plications, such as a provision of a distributed public ledger.

Our comparison mainly focuses on the network models, its

achieved properties, complexity evaluation metrics, and the

baseline technology. However, we must mention that some

characteristics were not specified or not available, so we

left them blank. Table 1 shows a comparison for generating

public-verifiable randomness for blockchain. About the com-

plexity evaluation, n refers to the number of the participants

in the overall network, and if the protocols are based on

clusters/subsets, c denotes the size of some subset of nodes.

And then the value c is protocol dependent, and is typically

a constant and negligible factor for the resulting complexity

in practice.

6 CROSS-SHARD TRANSACTIONS
To scale blockchain, transactions need to be distributed among

multiple committees (or shards), and each shard processes a

subset of transactions in parallel. Typically, a transaction

may have multiple inputs and outputs. However, due to

sharding technology, the inputs and outputs of a transac-

tion might be in different shards, and these transactions

are called cross-shard (or inter-shard) transactions. Due to
random distribution of the transactions in sharding proto-

cols, a cross-shard transaction can be considered as a global

transaction, which should be executed by different shards.

To achieve a global consistency among different shards, we

need to carefully handle the cross-shard transactions. Taking

Unspent Transaction-Output (UTXO) model as an example,

it is expected that the majority of transactions (e.g., more

than 90% in [91]) are cross-sharded in a traditional model,

where UTXOs are randomly assigned to shards for process-

ing [100] [55]. For the Account/Balance transaction model,

the cross-shard transactions also can reach up to 90% when

the number of shards is more than 64 [137].

To enable value transfer between different shards thereby

achieving shard interoperability, supporting for cross-shard

transactions is crucial in any sharded-ledger system. In this

section, we first describe a general transaction model, Un-

spent Transaction-Output (UTXO), and present its poten-

tial issues in blockchain sharding protocols. Then we dis-

cuss potential techniques (e.g., atomic commit) to deal with

cross-shard transactions. Finally, we present the state-of-the-

art approaches to cope with the cross-shard transactions in

sharding.
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Table 1: A comparison for generating public-verifiable randomness for blockchain
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Cachin et al. [31]

Async

yes uniq. thr. sig. ✓ ✓ ✓ O(n2) O(n) O(1)
RandShare [127] no PVSS ✗† ✓ ✓ O(n3) O(n3) O(n3)
Algorand [72]

Semi-Syn

no VRF 10
−12 ↗ ✗ O(cn)∗ O(c)∗ O(1)∗

Ouroboros Praos [57] no VRF ✓ ↗ ✗ O(n)∗ O(1)∗ O(1)∗

Ouroboros [85]

Syn

no PVSS ✓ ✓ ✓ O(n3) O(n3) O(n3)
Proof-of-Work [107] no hash func. ✓ ↗ ✗ O(n) very high

≀ O(1)
Proof-of-Delay [27] no hash func. ✓ ✓ ✓ O(n) very high

≀ O(loд∆)◦

Caucus [10] no hash func. ✓ ↗ ✗ O(n) O(1) O(1)
Dfinity [79] yes

⊕
BLS sig. 10

−12 ✓ ✓ O(cn) O(c) O(1)
Scrape [35] no PVSS ✓ ✓ ✓ O(n3) O(n2) O(n2)

RandHound [127] no PVSS 0.08% ✓ ✓ O(c2n) O(c2n) O(c2n)
RandHerd [127] yes

⊕
PVSS/Cosi 0.08% ✓ ✓ O(c2loдn)‡ O(c2loдn) O(1)

HydRand [117] no PVSS ✓ ✓↗ ✓ O(n2) O(n) O(n)
▽
provides an upper bound of failure probability for the parameterized protocol.

∗
represents that the randomness generation approach is not in a standalone way, it requires additional communication and

verification steps for underlying consensus protocols or implementation of e.g., bulletin board. In this table, these steps are not

counted into the complexity.

↗
provides the probabilistic guarantees for unpredictability, which quickly, e.g., exponentially in the waiting time, get stronger

as the longer a client waits after it commits to using a future protocol output. However, in HydRand, the unpredictability can be

reached with certainty only after f rounds.

⊕
In Dfinity and RandHerd, nodes are split into smaller groups, and within each of these groups, a distributed key generation

protocol is required.

†
means that the protocol only provides liveness with additional synchrony assumption.

‡
depends on the relation between n and c . For example, assume that each node only sends a single message during the process

of generating a round’s randomness, already yields a complexity of O(n), which is higher than the stated O(c2loдn) for a constant
group size c and large n.
◦
means the verification process is executed within a smart contract via an interactive challenge/response protocol. The logarithmic

complexity O(∆) depends on security parameter ∆.
≀
shows the complexity is not dependent on the number of nodes n.

6.1 Transaction Model
UTXO model is adopted by most blockchain protocols and

distributed applications. It represents each step in the evalu-

ation of a data object as a separate atomic state of the ledger.
Such a state is created by a transaction and destroyed (or “con-

sumed") by another unique transaction occurring later [3].

More specifically, in a typical UTXO model, an input repre-

sents the value that is to be spent and output represents the

new value that is created in response to the input values’

consumption. We can think of inputs and outputs represent-

ing different phases of the state of the same asset (e.g., in

asset management), where state includes its ownership (or

shares). Clearly, an input can be used only once, and stops

being considered in the system.

In a UTXO model, input fields implicitly or explicitly refer

output fields of other transactions that have not yet been
spent. At the validation time, verifiers need to ensure that the

outputs referenced by the inputs of the transactions have not

been spent and upon transaction-commitment we see them

as spent. However, in a multi-shard system, some transac-

tions might involve a coordination between multiple shards.

Such transactions might require to access or manipulate the

state that is handled by different shards. The inter-shard

consensus ensures that this takes place consistently and

atomically across all involved shards.

A simple but inadequate strawman approach to a cross-

shard transaction, is to concurrently send a transaction to

all the corresponding shards for processing. However, for
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a cross-shard transaction, due to the separated verification

processes, some shards might commit this transaction while

others might abort it. In such a case the UTXOs at the shard

who accepted the transactions are lost as there is no straight-

forward way to roll back a half-committed transaction, with-

out adding exploitable race conditions. Thus, we require to

ensure the consistency of transactions between shards, to

prevent double spending and to prevent unspent funds from

being locked forever.

6.2 Atomic Commit
In multi-shard blockchain, it requires to guarantee the global

transactions with the properties of ACID [134]: Atomicity,

Consistency, Isolation, and Durability. Atomic Commitment

(AC) protocol was intially proposed to handle the global

ACID transactions [78]. To ensure the transaction atomicity

in a blockchain sharding, we require the participants to agree

on one output for the transaction: either commit or abort,

but not both.

One of the earliest and most commonly used protocols for

atomic commitment is the two-phase commit (2PC) proto-

col [74]. In a 2PC protocol, the global transaction manager

(or called coordinator node) sends a “prepare" message to

all local transactions. The local transactions try to become

ready to commit, i.e., reach the ready state. In this state, a

local transaction has successfully finished all its actions. To

be able to follow a global commit decision, the changes of

the local transactions are written to a stable storage. Differ-

ent to the committed state, it is still possible to abort a local

transaction in the ready state [77]. In other words, the local

transaction is able to follow either a global commit or abort

decision.

When it is required that every correct participant even-

tually reaches an outcome despite the failure of other par-

ticipants, the problem is called Non-Blocking Atomic Com-
mitment (NB-AC) [11]. Solving this problem enables correct

participants to relinquish resources (e.g., locks) without wait-

ing for crashed participants to recover. The 2PC algorithm

solves AC but not NB-AC, whereas the three-phase commit

(3PC) algorithm [121] [122] solves NB-AC in synchronous

systems (when communication delays and process relative

speeds as bounded). The 3PC protocol introduces an addi-

tional pre-commit state between the ready and commit states,
which ensures that there is no direct transaction between

the non-committable and committable states. This simple

modification makes the 3PC protocol non-blocking under

node failure. However, compared to the 2PC protocol, the

3PC protocol acts as the major performance suppressant in

the design of efficient distributed systems. It can be easily

observed that the addition of the pre-commit state leads to
an extra phase of communication among the nodes. Thus,

it is necessary to design an efficient commit protocol for

geo-scale systems.

However, neither 2PC nor 3PC can be directly applied

to the blockchain sharding schemes without modification.

For different blockchain sharding schemes, they might have

different assumptions among the shards, e.g., the trustwor-

thiness among shards. A practical cross-shard commit ap-

proach depends on its assumptions and the threat models

used. For example, Interledger [130] protocol enables trans-

fers between ledgers, and ledger-provided escrow removes

the need to trust these connectors (e.g., each connector func-

tions as a trusted third party to provide the service to the

payment sender [81]). Analogized to the blockchain shard-

ing scheme, it assumes that different shards (or alternatively

blockchain) that we want to perform atomic transactions

across are mutually distrustful, e.g., one might fail to be

secure and/or live. The mutual distrusts can further lead

to DoS “account lockout" attacks, which is why all these

Interledger-type protocols require complex timeout-based

recovery mechanisms. In contrast, OmniLedger relies on

the fact that all shards can be assumed “by construction"

to be both safe and live, which means that the simple 2PC

approach works fine in that context, and the NB-AC problem

does not need to be solved in that threat model. But in Om-

niLedger the shards have to trust each other. If we weaken

the security of OmniLedger’s shard selection so that shards

no longer fully trust each other, then we need to bring back

more complex cross-shard commit protocols.

Thus, for different blockchain sharding schemes, they

might have different mechanisms to deal with the the cross-

shard transactions. We will discuss these different solutions

for specific sharding schemes.

6.3 Methods to Deal with Cross-shard
Transactions

Instead of presenting all possible AC protocols, this section

presents several state-of-the-art schemes to deal with cross-

shard transactions. Some of these schemes do not use the

term “shard" but instead using “committee" to deal with the

cross-committee transactions, both have the same meaning,

i.e., one transaction involving multiple independent entities.

However, some sharding protocols, such as Elastico, do not

provide a clear or separated process to deal with the cross-

shard transactions.

6.3.1 RSCoin. RSCoin [55] is a cryptocurrency framework

in which central banks maintain complete control over the

monetary supply, but rely on a distributed set of authori-

ties, or mintettes, to prevent double-spending. The mintettes

process the lower-level blocks, which form a potentially cross-

referenced chain. The communication between committee

members takes place indirectly through the client, and it also
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relies on the client to ensure completion of the transactions.

A client first gets signed “clearance" from the majority of the

mintettes that manage the transaction inputs. Next, the client

sends the transaction and signed clearance to mintettes cor-

responding to transaction outputs. The mintettes check the

validity of the transaction and verify signed evidence from

input mintettes that the transaction is not double-spending

any inputs. If the checks pass, the mintettes append the trans-

action to be included in the next block. The system operates

in epochs: at the end of each epoch, mintettes send all cleared

transactions to the central bank, which collates transactions

into blocks that are appended to the blockchain.

However, client/user-driven atomic commit protocols are

vulnerable to DoS if the client stops participating and the

inputs are locked forever. These systems assume that clients

are incentivized to proceed to the unlock phase. Such incen-

tives may exist in a cryptocurrency application where an

unresponsive client will lose its own coins if the inputs are

permanently locked, but do not hold for a general-purpose

platform where inputs may have shared ownership. Besides,

RSCoin relies on a two-phase commit protocol executed

within each shard which, unfortunately, is not Byzantine

fault tolerant and can result in double spending attacks by a

colluding adversary.

6.3.2 Chainspace. Chainspace [2] is a recently proposed,

sharded smart contract platform with privacy built in by

design. To enable scalability on Chainspace, the nodes are

organized into shards that manage the state of objects, keep

track of their validity, and record transactions committed

or aborted. The nodes ensure that only valid transactions,

consisting of encrypted or committed data, along with the

zero-knowledge proofs that assert their correctness, end up

on their shard of the blockchain. The nodes communicate

with the other shards to decide whether to accept or reject

a transaction via inter-shard consensus. Instead of a client-

driven approach, Chainspace runs an atomic commit proto-

col collaboratively between all the concerned committees.

This is achieved by making all the committees act as a re-

source manager for the transactions they manage. To do this,

Chainspace proposes a protocol called Sharded Byzantine
Atomic Commit or S-BAC, which combines existing Byzan-

tine agreement and atomic commit protocols in a novel way.

In S-BAC Byzantine agreement securely keeps a consensus

on a shard of 3f + 1 nodes in total, containing up to f ma-

licious nodes. Atomic commit runs across all shards that

contain objects which the transaction relies on. The transac-

tion is rejected unless all of the shards accept to commit the

transaction.

6.3.3 OmniLedger. OmniLedger [91] uses a Byzantine shard

atomic commit (Atomix) protocol to atomically process trans-

actions across committees, such that each transaction is ei-

ther committed or aborted. Since both deploying atomic

commit protocols and running BFT consensus are unnec-

essarily complex, atomix uses a lock-then-unlock process.

OmniLedger intentionally keeps the shards’ logic simple and

makes any direct shard-to-shard communication unneces-

sary by tasking the client with the responsibility of driving

the unlock process while permitting any other party (e.g.,

validators or even other clients) to fill in for the client if a spe-

cific transaction stalls after being submitted for processing.

Atomix takes a three-step (initialize/lock/unlock) protocol to
deal with cross-shard UTXO transactions. More specifically,

the client first gossips the cross-shard transactions to all

their input shards. Then, OmniLedger takes a two-phase ap-

proach to handle atomic commit, in which each input shard

first locks the corresponding input UTXO(s) and issues a

proof-of-acceptance, if the UTXO is valid. The client collects

responses from all input committees and issues an “unlock to

commit" to the output shard. Interested readers are referred

to [91] for the details.

Both OmniLedger and RSCoin heavily rely on the client

to proceed with the cross-shard transactions, thus both pro-

tocols assume that the client is the honest part. Typically,

OmniLedger allows the output committee to verify transac-

tions independently; the transactions have to be gossiped to

the entire network and one proof needs to be generated for a

batch of transactions, potentially incurring some communi-

cation overhead. Besides, OmniLedger depends on the client

to retrieve the proof which incurs extra burden on typically

lightweight client nodes.

6.3.4 RapidChain. In RapidChain [141], the user does not

attach any proof to transaction. It lets the user commu-

nicate with any committee who routes transaction to its

output committee via the inter-committee routing protocol.

RapaidChain considers a simple UTXO transaction tx =<
(I1, I2),O > that spends coins I1, I2 in shard S1 and S2, re-
spectively, to create a new coin O belonging to shard S3.
The RapidChain engine executes tx by splitting it into three

sub-transactions: txa =< I1, I
′
1
>, txb =< I2, I

′
2
>, and

txc =< (I
′
1
, I ′
2
),O >, where I ′

1
and I ′

2
belong to S3. txa and

txb essentailly transfer I1 and I2 to the output shard, which

are spent by txc to create the final output O . All thress sub-
transactions are single-shard. In case of failures, when, for

example, txb fails while txa succeeds, RapidChain sidesteps

atomicity by informing the owner of I1 to use I ′
1
for future

transactions, which has the same effect as rolling back the

failed tx . The cross-shard transaction in RapidChain has

largely relied on the inter-committee routing scheme which

enables the users and committee leaders to quickly locate
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to which committees they should send their transaction.

To achieve this, RapidChain builds a routing overlay net-

work, at the committee level, which is based on a routing

algorithm of Kademlia [104]. Specifically, each RapidChain

committee maintains a routing table of loд(n) records which
point to loд(n) different committees which are distance 2

i

for 0 ≤ i ≤ loдn − 1 away.
For cross-shard transactions in RapidChain, one drawback

is that, for each transaction, it creates three different transac-

tions to exchange information among shards. This inherently

increases the number of transactions to be proceeded, and

the communication by sending the extra transactions back to

its input committees also increases. It uses the committee’s

leader to produce these transactions without considering the

status of a leader (e.g., malicious leader). Also, the input com-

mittees include the created new transaction into its leader.

This behavior to some extent modifies the originality of trans-

actions. Besides, the cross-shard transaction largely depends

on the routing algorithm, which is a potential bottleneck.

6.3.5 Discussion. Sharding protocols reduce the communi-

cation, computation and storage requirements of each node

by dividing the blockchain into partitions, each stored by one

of the committees. The cross-shard transactions, however,

makes the verification more challenging. Thus, an efficient

mechanism to deal with the cross-shard transactions is cru-

cial in the design of a practical blockchain sharding protocol.

Intuitively, there exist some fallacies about the client (who

is a coordinator to handle cross-shard transactions) or the

shard consensus leader. Taking OmniLedger and RSCoin

as examples, one fallacy is that if the client performs some

malicious behaviors, then the protocol could not proceed suc-

cessfully. This is not the fact. Both RSCoin and OmniLedger

have backup “garbage collection" strategies that enable the

ledger (or other clients) to complete or abort cross-shard

transactions that failed or malicious clients might leave un-

completed. It is not a complicated process, and just a matter

of ensuring that the “lock" phase records all the cross-shard

transaction information that a future garbage-collector or

other interested client needs to complete or abort the trans-

action that has an account of interest locked. Another fallacy

is that the OmniLedger uses the leader of a shard to issue

and indicate acceptance or rejection; this might involve some

problems, especially if the leader is a malicious one. This is

also not true. An OmniLedger shard’s leader is merely the

leader of a PBFT-sytle Byzantine consensus group, and has

no power to carry out any (malicious) behaviors itself with-

out getting them validated by a majority of honest nodes

within the same group. In other words, the “accept" or “re-

ject" decision, like all decisions that an OmniLedger shard

makes, are products of (and layered on top of) the PBFT state

machine, and thus will always be “correct" and “honest"

and “non-malicious" because of PBFT, unless the system’s

basic security invariants are broken, e.g., leading to fully-

compromised with too many corrupted nodes.

How to efficiently handle the cross-shard transactions

is a fundamental topic in most blockchain sharding proto-

cols. When designing an efficient mechanism to deal with

cross-shard transactions, it requires to consider several sig-

nificant factors, e.g., the atomic commitment scheme within

the shard, the communication complexity among the shards

(e.g., the number of message exchanges), and the transac-

tion model. Technically, the transaction model affects the

cross-shard transaction mechanism significantly. We should

notice that for different applications, they might adopt dif-

ferent transaction models. Currently, most of the state-of-

the-art sharding protocols are still based on the traditional

cryptocurrency-based UTXO model. However, for different

transaction models, it might result different storage require-

ments [135] [136].

Besides the garbage-collection mechanisms, there exist

some blockchain protocols, such as SideCoin [92] and Roller-

Chain [43], utilizing the distributed state snapshotting mech-

anism [40] to record the blockchain’s recent status. And this

state snapshotting mechanism can be applied into sharding

blockchain, e.g., RapidChain, to check the cross-shard trans-

actions much quicker, and it also can be used to reconfigure

the committees of next epoch.

7 EPOCH RECONFIGURATION
Sharding protocols partition the consensus nodes into differ-

ent shards, so that each shard can process the transactions

in parallel, and hence improve the scalability of the whole

system. However, partitioning the nodes into shards in block-

chain sharding introduces new challenges when dealing with

the phenomenon of the churn. For example, corrupted nodes

could strategically leave and rejoin the shards, so that even-

tually they can take over one of the shards and break the

security guarantees of the blockchain protocol. Moreover, the

adversary can actively corrupt a constant number of uncor-

rupted nodes in each epoch even if no nodes join/rejoin [141].

Most current sharding protocols did not explicitly provide

the approaches to deal with the epoch reconfiguration. How-

ever, the epoch reconfiguration is critical to guarantee the

security of blockchain system.

Clearly, to prevent attacks from the adversary, e.g, cor-

rupting a specific shard, the adversary should not have the

knowledge, in advance, how the partition (reconfiguration)

process works. This requires that the partition process should

not be affected by the adversary who do not know which

participating nodes will be assigned to which shard ahead.

Also, for each shard working correctly, it must guarantee

that the majority of participating nodes within each shard
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(e.g., at least 2/3 of the shard members) are honest and fol-

low the consensus protocol. One simple and naive way is to

leverage the randomness, discussed in Section 5. By applying

the randomness on epoch reconfiguration, the probability

of one shard being bad is negligible (e.g., less than 10
−7
). In

this section, we present several state-of-the-art schemes to

deal with epoch reconfiguration, which typically rely on the

(modified) epoch randomness and the specific mechanisms

together. We call epoch reconfiguration and shard reconfig-

uration interchangeably in this section.

7.1 Hash + Final Committee
One simple and naive approach for epoch reconfiguration

is to re-elect all committees periodically faster than the ad-

versary’s ability to generate the churn. A previous approach

is used to generate epoch randomness [8]. However, this so-
lution tolerates at most 1/6 fraction of malicious nodes and

only works for a small network since it essentially bears

an excessive message complexity. The cryptographic hash

operations can be used to achieve the same purpose at some

extent. In the last step of Elastico [100], it takes a similar

but optimized approach via the final committee (or called

consensus committee) to achieve epoch reconfiguration. The

final committee at the final step generates a set of random

strings used for next epoch. In general, Elastico consists of

two main phases for epoch reconfiguration.

In the first phase of the reconfiguration, each member of

the final committee chooses a r -bit random string Ri and
sends a hash H (Ri ) to everyone in that committee. The final

committee then runs an interactive consistency protocol to

agree on a single set of hash values S [112] and broadcasts

S to everyone in the network. This set S contains at least

2c/3 (where c is the size of the final committee) hash values

and serves as a commitment to the random strings. In the

second phase, eachmember of the final committee broadcasts

a message containing the random string Ri itself to everyone
(i.e., not just to the final committee). This phase starts only

after the agreement of S is done, i.e., having 2c/3 signatures
on S . This is to guarantee that honest members release their

commitments only after they are sure that the committee has

agreed on S and the adversary cannot change its commitment.

After the second phase, each node in this system has received

at least 2c/3 and at most 3c/2 pairs of Ri and H (Ri ) from
members of the final committee, since the honest members

follow the protocol, while the malicious nodes may choose

not to release their commitments. Nodes discard any random

strings Ri that do not match the commitments H (Ri ). Finally,
the agreed-to set S is used to configure the next epoch.

However, there exist several weaknesses in this kind of

epoch reconfiguration. First, re-generating all the commit-

tees is very expensive due to the large overhead of the boot-

strapping protocol. Second, maintaining a separate ledger

for each committee is challenging when several committee

members may be fully replaced in every epoch. Third, the

randomness used in each epoch can be biased by an adver-

sary, and hence, compromise the committee selection process

and even allow malicious nodes to precompute PoW puzzles.

Besides, Elastico requires a trusted setup for generating an

initial common randomness that is revealed to all parties at

the same time.

7.2 DRG + PoW + Cuckoo Rule
RapidChain adopts a different approach to handle partial

issues in Elastico via Cuckoo rule [9] [119]. In general, the

epoch reconfiguration has three components: offline PoW,

epoch randomness generation, and reconfiguration process.

The reconfiguration process uses Cuckoo rule to re-organize

only a subset of shard members during the reconfiguration

event that shards are balanced with respect to their sizes as

nodes join or leave the network.

RapidChain relies on PoW to protect against Sybil attack

by requiring every node who wants to join or stay in the

protocol to solve a PoW puzzle. In each epoch, a fresh puzzle

is generated based on the epoch randomness so that the

adversary cannot precompute the solutions ahead of the

time to compromise the committees. All nodes in RapidChain

solve a PoW offline without making the protocol stop and

wait for the solution. Thus, the expensive PoW calculations

are performed off the critical latency path. The reference

committee (CR ) in RapidChain is responsible to check the

PoW solutions of all nodes at the start of each epoch, and then

agrees on a reference block consisting of the list of all active

nodes for that epoch as well as their assigned committees.

To compute an offline PoW solution, an epoch randomness

generation process is needed, in which the members of the

reference committee run a distributed random generation
(DRG) protocol to agree on an unbiased random value. CR
includes the randomness in the reference block so that other

committees can randomize their epochs. RapidChain uses a

verifiable secret sharing (VSS) of Feldman [67] to generate

an unbiased randomness within the reference committee.

Any new node who wishes to join the system can contact

any node in any committees at any time and request the

randomness of this epoch as a fresh PoW puzzle.

To assign the nodes to shards, it first maps each node to

a random position in [0, 1) using a hash function. Then the

range [0, 1) is partitioned into k regions of size k/n, and a

committee is defined as the group of nodes that are assigned

to O(loд(n)) regions, for some constant k . Awerbuch and
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Scheideler [9] propose the Cuckoo rule to ensure that the set

of committees created in the range [0, 1) remain robust to

join-leave attacks. Based on this rule, when a node wants to

join the network, it is placed at a random position x ∈ [0, 1),
while all nodes in a constant-sized interval surrounding x
are moved (or cuckoo’ed) to a new random position in [0, 1).
It is proved that given ε ≤ 1/2 − 1/k in a steady state, all

regions of size O(loд(n))/n have O(loд(n)) nodes (i.e., they
are balanced) of which less than 1/3 are faulty, with high

probability, for any polynomial number of rounds.

7.3 VRF + Global Reconfiguration
Similar to Elastico, OminiLedger also runs a global recon-

figuration protocol at each epoch, e.g., once a day, to allow

new participants to join the protocol. The protocol generates
identities and assigns participants to shards using a slow

identity blockchain protocol that assumes the synchronous

channels. In each epoch, a fresh randomness is generated

using a bias-resistant random generation protocol that relies

on a verifiable random function (VRF) [105] for unpredicat-

ble leader election in a way similar to the lottery algorithm

of Algorand [72]. Then, the protocol uses the elected leader

as the client in the RandHound [127] protocol to generate

the epoch randomness.

More specifically, at the beginning of an epoch, each valida-

tor computes a ticket which contains all properly registered

validators of the current epoch (e.g., as stored in the identity

blockchain) and the view counter. Validators then gossip

these tickets with each other for a time δ , after which they

lock in the lowest-value valid ticket they have seen thus far

and accept the corresponding node as the leader of the Rand-

Hound protocol run. Once the validators have successfully

completed a run of RandHound and the leader has broadcast

randomness together with its correctness proof, each of the

registered validators can verify and use this randomness to

compute a permutation, and subdivide the result into ap-

proximately equally-sized buckets, thereby determining the

assignment of nodes to shards.

8 STATE-OF-THE-ART SHARDING
PROTOCOLS

This section summaries a comparison of the state-of-the-art

blockchain sharding protocols in amore general way.We first

summarize and compare several state-of-the-art blockchain

sharding protocols, and then briefly discuss other protocols

to deal with the scalability in blockchain.

8.1 Comparision of State-of-the-art
Sharding Protocols

Table 2 provides a comprehensive comparison for the current

classic blockchain sharding protocols. Instead of consider-

ing the individual protocols, we map out the landscape by

extracting and evaluating the high-level design themes in

blockchain sharding schemes. The system designer can have

a general overview on these blockchain sharding schemes.

In this section, the terms committee and shard have the same

meaning.

In this comparison, we mainly focus on four aspects: pro-

tocol settings, intra-committee consensus, inter-committee

consensus, as well as safety and their performances. Note

that some properties have already been described in the pre-

vious sections. The protocol settings show how the protocols

set up in an overall perspective, such as committee forma-

tion, network model. The intra-committee consensus shows

how to achieve a consensus within a committee, and the

inter-committee consensus shows how to achieve an agree-

ment among different committees. Finally, we compare their

safety aspects and the achieved performance.

Protocol Settings: Committee formation refers to the cri-

teria used to allow nodes to join a committee, which describes

the mechanisms to establish the membership, e.g., member-

ship based on PoW or PoS. This is an important aspect of

decentralized and permissionless systems to thwart Sybil

attacks. However, for permissioned blockchain, e.g., RSCoin,

we do not need to deal with Sybil attacks, since permissioned

systems operate in a relatively trust environment where

the participating nodes are granted committee membership

based on these organizational policy. Consistency shows the

likelihood that the system will reach a consensus on the

proposed value, typically, it can be either strong or weak. In

general, classic BFT protocols offer strong consistency, but

are subject to the scalability issue. Network Model shows the
synchrony of the underlying communication network. Typi-

cally, the communication networks can be categorized into

three types: strongly synchronous, partially synchronous,

and asynchronous.

Intra-Committee Consensus: Committee Configuration
represents how the committee members are assigned to the

committee in a single committee setting, e.g., either the mem-

bers serve on the committee permanently (static) or they are

changed at regular intervals (rolling or swap) for the epoch-

based protocols. Incentives show the mechanisms that keep

participating nodes motivated to participate in the consensus

process and follow its rules. We distinguish the incentives

in two aspects: one is the join process, and the other is the

participating process. Leader indicates, within a specific com-

mittee, where the leader comes from. It can be either elected
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Table 2: A comparison for sharding blockchain protocols

RSCoin
[55]

Chainspace
[2]

Elastico
[100]

OmniLedger
[91]

RapidChain
[141]

Committee
Formation Permissioned Flexible PoW Pow/PoX Offline PoW

Strong
Consistency ✓ ✓ ✓ ✓ ✓

Network Model ! Async Partial Sync. Partial Sync. Sync.

Single
Intra-committee

Consensus

Committee
Configuration Static Flexible Full Swap

Rolling

(subset)

Partical Swap

Incentives
(join, participate) (-, -) (✗, ✗) (✓, ✗) (✓, ✗) (✓, ✗)

Leader Internal Internal Internal Internal Internal

Msg. Compl† O(n) O(n2) O(n2) O(n) O(n)

Multiple
Inter-committee

Consensus

Inter-Committee
Configuration ✗ ✗

Dynamic

(Random)

Dynamic

(Random)

Dynamic

(Random)

Mediated Client ✗ ! Client ✗

Incentives ✗ ✗ ! ✗ ✗

Safety

TX Censorship
Resistance ✓ ✓ ✗ ✓ ✓

DoS
Resistance ✓ ✓∗ ✓ ✓ ✓

Adversary
Model 33% 33% 33% 33%

‡
33%

Performance
Throughput 2k tx/s

1
350 tx/s

2
16 blocks in 110s

3 ≈10k tx/s
4 ≈7,300tx/s 5

Scalable ✓ ✓ ✓ ✓ ✓

Latency <1s <1s 110s for 16 blocks ≈1s 8.7s for 7300tx

✓: has property; ✗: does not have property; ∗: partially has property; −: means the property does not apply to the given category;

!: means the value is missing;
†
: means message complexity.

‡
: each shard tolerates 1/3-fraction adversary, and the overall protocol tolerates only 1/4.

1
: 3 nodes/committee and 10 committee in total;

2
: 4 nodes/committee and 15 committees in total;

3
: 100 nodes/committee and 16

committees in total;
4
: 72 nodes/committee (12.5% adversary) and 25 committees in total;

5
: 250 nodes/committee and 4000 nodes in

total.

among the current committee (internally), externally, or flexi-

ble (e.g., through the specified smart contracts). For the listed

schemes, all leaders come internally from its committee mem-

bers. Msg. Complexity shows the communication complexity

within one committee at the message level, where n refers

to the number of participating nodes.

Inter-Committee Consensus: Inter-committee configu-
ration shows how the members are assigned to the commit-

tees in a multiple-committee setting, which can be either

static or dynamic. A dynamic approach is typically based on

the randomness generated from the previous epoch.Mediated
indicates how to mediate the cross-sharding transactions. It

can be optionally mediated by an external resource, e.g., the

client. Incentives indicates, for mediators, whether they will

get some rewards for their mediation efforts.

Safety and Performance: For safety, we focus on the

resistance against an adversary. TX Censorship Resistance
shows the system’s resilience to the proposed transactions

being suppressed (i.e., censored) by malicious nodes involved

in consensus process.DoS Resistance represents the resilience
of the nodes involved in consensus to Denial-of-service (DoS)

attacks. If the participants of the consensus protocol are

known in advance, an adversary may launch a DoS attack

against them. Adversary Model represents the fraction of

malicious or faulty nodes that the consensus protocol can

tolerate (e.g., the protocol still works correctly despite the

presence of such nodes). Note that for different adversary

models, it might have different resistance rates. In this com-

parison, the adversary models are all based on the Byzantine

setting. For performance, we target at analyzing its through-

out, latency and scalability. Throughput is the maximum rate

at which transactions can be agreed upon by the consensus

protocol; latency represents the time it takes from when a

transaction is proposed until consensus has been reached on

it. Scalability shows if the system has the ability to achieve

greater throughput when consensus involves a larger num-

ber of nodes. All the listed schemes in Table 2 can scale.
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8.2 Discussion
Besides the sharding-based blockchain protocols summa-

rized in Table 2, there exist other alternatives to deal with

scalability issues, which are conceptually similar to the men-

tioned sharding-based protocols, e.g., Monoxide [137] and

SSChain [42].

Monoxide utilizes the concept of asynchronous consensus

zones, in which each zone is conceptually a shard. Instead

of utilizing UTXO transaction models, this protocol is based

on the account/balance transaction model, which is similar

to a bank account model. It proposes an eventual atomicity
scheme, by relying on the relay transactions, to ensure the

atomicity of transactions across zones. For the consensus

protocol, Monoxide builds on the PoW scheme in general,

and it uses the Chu-ko-nu mining scheme, which allows a sin-

gle PoW solution to create multiple blocks at different zones

simultaneously, to ensure the effective mining power in each

zone to be at the same level of the entire network. Concep-

tually, Monoxide can be categorized as a kind of blockchain

sharding scheme.

SSChain utilizes a two-layer architecture to eliminate the

data migration overhead in reshuffling scheme. In SSChain,

participating nodes can freely join in one or more shards

without reshuffling network periodically. In this two-layer

structure, the first layer is the root chain network, which has

a significantly large portion (e.g., over 50%) of computing

power over the whole network, while the second layer is

the shard networks, in which each shard maintains disjoint

ledgers and independently processes a disjoint subset of

transactions. In the words, the root chain maintains security

of the system, while shards improve the throughput and

decrease storage requirements.

There also a large number of non-peer reviewed block-

chain sharding protocols in the literature, e.g., Aspen [71],

Blockclique [69], Ethereum 2.0 [28], etc. Due to the page limit,

the interested reader are referred to the provided references

for their details.

It is necessary to briefly discuss the techniques to handle

the blockchain scalability (including sharding protocols) in

general. There exists two main-stream solutions: off-chain

solutions [114] [63] and DAG solutions [115].

Off-chain Solutions. In this solutions, each node holds its

transactions locally, referred as “off-chain", and only sends

a description or the eventual outcome of these transactions

to the “main chain", referred as “on-chain". However, there

is no guarantee on the validity of the “off-chain" transac-

tions, either validation node are introduced to validate and

endorse these transactions, or economical deposit should be

provided for the transactions. And, the validity condition

might be compromised due to centralization or the economi-

cal constraint. There exist several key chellenges in off-chain

solutions, e.g., the way to keep the state consistency (and

final conformation of transactions) between “off-chains" and

the “on-chain" in real-time (or acceptable time) manner, the

centralization and security issues in the “off-chains" which

rely on intermediaries to aggregate and settle transactions

off-chain.

Directed Acyclic Graph (DAG) Solutions. In DAG, the trans-

actions are not structured in a chain, but in a graph. The

validity is dependent on the (directly or indirectly) outgoing

edges of the transaction, which represents the nodes that

have validated it. A scale-out throughput can be achieved

if the acquirement of the complete graph is not obligated

for all nodes. And, the validity of the transaction might be

compromised due to its dependency on the validators. Also,

there exist some probability that the valid transactions are

appended to the parasite chains [115].

Sharding Solutions. Besides the common issues discussed

in this paper, there exist some potential research topics on

blockchain sharding, such as horizontal sharding (e.g., Chan-

nels [4]) and heterogeneous sharding (e.g., nodes with dif-

ferent capacity), and application-specific blockchain shard-

ing schemes (e.g., sharding schemes targeted to industrial

Internet of Things (IIoT) [136] [138]). Sharding based block-

chain systems make trade-offs between the scalability of

throughout, storage efficiency, and security [96]. A widely

open fundamental question is that Is there a blockchain design
that simultaneously scales throughput, storage efficiency, and
security?

9 CONCLUSION
This paper presents a Systematization of Knowledge for

sharding on blockchain. We identified key components and

challenges in sharding. The publicly verifiable randomness is

critical for placing participating nodes uniformly into shards.

Within each shard, a consensus protocol is needed to reach

an agreement on the blocks. BFT-based protocols are domi-

nating in existing solutions. For the cross-shard transactions,

the protocol needs to guarantee the atomic properties. Fi-

nally, a reconfiguration process is needed at the end of an

epoch. We analyzed several well-known blockchain shard-

ing protocols and then discussed several potential research

directions.
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