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Abstract

We present a generalized inner product argument and demonstrate its applications to pairing-based
languages. We apply our generalized argument to proving that an inner pairing product is correctly
evaluated with respect to committed vectors of n source group elements. With a structured reference
string (SRS), we achieve a logarithmic-time verifier whose work is dominated by 6 log n target group
exponentiations. Proofs are of size 6 log n target group elements, computed using 6n pairings and 4n
exponentiations in each source group.

We apply our inner product arguments to build the first polynomial commitment scheme with succinct
(logarithmic) verification, O(

√
d) prover complexity for degree d polynomials (not including the cost to

evaluate the polynomial), and a CRS of size O(
√
d). Concretely, this means that for d = 228, producing

an evaluation proof in our protocol is 76× faster than doing so in the KZG [KZG10] commitment scheme,
and the CRS in our protocol is 1, 000× smaller: 13MB vs 13GB for KZG. This gap only grows as the
degree increases. Our polynomial commitment scheme is applicable to both univariate and bivariate
polynomials.

As a second application, we introduce an argument for aggregating n Groth16 zkSNARKs into an
O(log n) sized proof. Our protocol is significantly more efficient than aggregating these SNARKs via
recursive composition [BCGMMW20]: we can aggregate about 130, 000 proofs in 25min, while in the
same time recursive composition aggregates just 90 proofs.

Finally, we show how to apply our aggregation protocol to construct a low-memory SNARK for
machine computations. For a computation that requires time T and space S, our SNARK produces proofs
in space Õ(S + T ), which is significantly more space efficient than a monolithic SNARK, which requires
space Õ(S · T ).
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1 Introduction

An inner product argument proves that an inner product relation holds between committed vectors. In this
work, we present a new construction of inner product arguments for pairing-based languages that yields a
logarithmic time verifier — a significant improvement over the linear time verifier of previous work. We
use our new inner product argument to build (1) a new polynomial commitment scheme that achieves novel
asymptotic characteristics of succinct verification and opening proofs that can be computed in time square
root of the polynomial degree as well as a square root sized SRS; and (2) a new approach for aggregation
of Groth16 general-purpose SNARKs [Gro16] useful for verifiable computation, avoiding the expensive
costs of recursive proving circuits. We provide an open-source Rust implementation1 of all our protocols
and applications and benchmark them against the state of the art. Our benchmarks show that the asymptotic
improvements translate to significant practical gains.
Inner product arguments. Inner product arguments (IPA) are core components of many primitives,
including zero-knowledge proofs and polynomial and vector commitment schemes [BCCGP16; BBBPWM18;
WTSTW18; LMR19; BGH19; BCMS20]. Despite the fact that the inner product arguments constructed
in these works largely share the same core strategy as the original protocol in [BCCGP16], they all spend
significant effort in reproving security to accommodate for minor changes (introduced for efficiency and/or
application-specific purposes). This repeated effort adds significant overhead in the process of auditing the
security of inner product arguments, and enables errors to slip through unnoticed. Our first contribution is
an abstraction of previous work into a generalized inner product argument (GIPA). While the techniques in
GIPA are not novel, they do provide a unified view of all prior work, enabling simpler exposition and simpler
security proofs. In particular, this means that our single security proof suffices to prove the security of all prior
GIPA instantiations [BCCGP16; BBBPWM18; LMR19], as well as the protocols introduced in this paper.

We additionally prove security for the non-interactive variant of GIPA in a generalization of the algebraic
group model [FKL18], which we dub the algebraic commitment model. Because GIPA is a public-coin
protocol, it can be transformed to a non-interactive argument using the Fiat–Shamir heuristic, and it is
this variant that is used in applications— non-interactive Bulletproofs secures almost 2 billon USD of
Monero [O’L18]. However, due to a technicality about modeling random oracles in recursive arguments (the
generic transformation leads to a super-polynomial extractor), prior works provided no satisfactory security
proof for these non-interactive variants. Our security proof remedies this oversight, and we envisage that our
techniques may be useful in proving the security of other non-interactive and recursive protocols [BFS20].
Reducing verification cost. Making use of the high level GIPA blueprint, our second contribution is a
protocol for reducing the verifier cost for specific inner product arguments over pairing-based languages. For
a committed vector length of n, we reduce the verifier cost from O(n) for existing protocols [LMR19], to
O(log n), which is an exponential improvement. To do this, we introduce a new pairing-based commitment
scheme with structured keys and prove its security. We then exploit a special structure of the “homomorphic
collapsing” execution of GIPA (first observed in [BGH19]) with our commitment scheme. In particular, the
outsourced computation is reduced to opening a KZG polynomial commitment scheme. We rely on a trusted
setup that is updatable [GKMMM18] and can be used for languages of different sizes (up to some maximum
bound specified by the SRS).

Equipped with our new logarithmic-time verifier for inner products over pairing-based languages, we next
turn to apply our techniques to two applications: (1) polynomial commitments, and (2) SNARK aggregation.
Polynomial commitments. Polynomial commitment (PC) schemes [KZG10] are commitment schemes
specialized to work with polynomials. A committer outputs a short commitment to a polynomial, and then

1https://github.com/scipr-lab/ripp
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later may convince a verifier of correctness of an evaluation of that committed polynomial at any point via a
short evaluation proof, or “opening”. PC schemes have been used to reduce communication and computation
costs in a vast breadth of applications including proofs of storage and replication [XYZW16; Fis18],
anonymous credentials [CDHK15; FHS19], verifiable secret sharing [KZG10; BDK13], and zero-knowledge
arguments [WTSTW18; MBKM19; Gab19; Set20; GWC19; XZZPS19; CHMMVW20].

In this work, we use a combination of inner product arguments in order to build a pairing-based polynomial
commitment scheme that requires a universal structured reference string of size only

√
d when committing to

degree d polynomials, and where proving an evaluation claim only requires O(
√
d) cryptographic operations.

We achieve this while maintaining constant-sized commitments, O(log d)-sized evaluation proofs, and
O(log d) verifier time.

This compares to a linear sized CRS for the widely used KZG [KZG10] commitment scheme. Concretely,
this means that for polynomial of degree 222, KZG requires a large SRS of size ∼ 400MB. This can cause
deployment hurdles in applications in decentralized systems, as this SRS needs to be stored by every prover.
For example, in SNARKs relying on polynomial commitments [GWC19; CHMMVW20], the degree of the
polynomial is roughly the size of the circuit, which can be large [Ben+14; WZCPS18]. A large SRS also has
a non-trivial impact on security [GGW18]. In contrast, the SRS of our protocol has size 3MB, which is over
130× smaller, making deployment much easier.

Furthermore, as noted above, computing an evaluation proof requires only O(
√
d) cryptographic

operations, which is much better than KZG, which requires O(d) cryptographic operations. This is important
for applications such as vector commitments [LY10] and proofs of space [Fis19], where a polynomial is
committed to just once, but the commitment is opened at many different evaluation points.
SNARK aggregation. A SNARK aggregation protocol takes as input many SNARK proofs and outputs a
single aggregated proof that can be verified more quickly than individually verifying each SNARK. This
is useful for applications where the batch of proofs will be verified many times by different clients. For
example, this is the case in applications that aim to improve the scalability of decentralized blockchains by
using SNARKs to prove the correctness of state transitions [Whi; BMRS20].

We use our inner product arguments to design an aggregation protocol for Groth16 [Gro16] SNARKs
that enjoys the following efficiency properties when aggregating n proofs: (a) aggregation requires O(n)
cryptographic operations, (b) the aggregated proof has size O(log n), and (c) verification requires O(log n)
cryptographic operations, and O(n) field operations.

Our protocol offers asymptotic and concrete improvements over prior approaches that aggregate proofs
via recursive composition. In more detail, these approaches create (another) SNARK for the circuit that
contains n copies of the Groth16 verifier circuit [BCTV14a; BCGMMW20]. This entails constructing
arithmetic circuits for computing pairings, which is expensive (for example, computing a pairing on the
BLS12-377 curve requires ∼ 15, 000 constraints [BCGMMW20]). In contrast, our protocol “natively” works
with pairing-based languages. This results in the following efficiency savings: (a) our protocol does not
have to reason about about arithmetic circuits for computing pairings, (b) our protocol does not have to
compute FFTs, which require time O(n log n), and (c) our protocol does not require special cycles or chains
of curves [BCTV14a; BCGMMW20]. Put together, these savings allow us to aggregate proofs over ∼ 1400×
faster than the recursive approach. Furthermore, our procol requires the verifier to only perform O(n) field
operations, as opposed to O(n) cryptographic operations for the recursive approach.
Low-memory SNARKs for machine computations. We leverage our aggregation protocol to construct
a low-memory SNARK for (non-deterministic) machine computations. In more detail, if for a machine
M , checking an execution transcript requires space S and time T , then our SNARK prover takes space
Õ(S + T ) to produce a proof for that execution. In comparison, constructing a monolithic proof for the entire
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computation at once requires space Õ(S · T ), whereas the only other solution for constructing low-memory
SNARKs for machine computations requires recursive composition of proofs [BCCT13], which is concretely
expensive, as demonstrated above.
Summary of contributions.
• We provide a unifying generalization of inner product arguments, identifying and formalizing the

appropriate doubly-homomorphic commitment property.
• We prove security of the non-interactive Fiat-Shamir transform of this protocol, implying security for the

entire family of protocols.
• We provide a new set of inner product arguments for pairing-based languages that improve verifier

efficiency from linear to logarithmic by introducing a trusted structured setup.
• We construct a new polynomial commitment scheme with constant-sized commitments, opening time

square root in the degree and square root sized CRS. The opening verifier runs in logarithmic time and
opening proofs are logarithmic in size.

• We design an aggregator for Groth16 [Gro16] pairing-based SNARKs that produces an aggregated
proof of logarithmic size. We apply our aggregator to construct a low-memory SNARK for machine
computations without relying on recursive composition.

• We implement our inner product argument protocols and applications in Rust and evaluate their efficiency
against state-of-the-art protocols. We find that our polynomial commitment scheme is over 14× faster to
open than a KZG commitment [KZG10] for polynomials of degree 106, and that our aggregation scheme
aggregates proofs over 1400× faster than the alternative two-chains approach.

Additional constructions with a transparent setup. Prior versions of this work concentrate more closely
on protocols that do not require a trusted setup. In Appendices B and C we include two of these constructions
that we consider to be of independent interest, but that we decided to remove from the main body for reasons
of conciseness.

In Appendix B we discuss an outsourcing argument for demonstrating that n pairings have been correctly
computed. The prover computes 2n pairings, the proofs consist of 2 log(n) target group elements, and the
verifier computes 2 log(n) target group operations in addition to 2n source group exponentiations (n in each
group). The writing style focuses on clarity rather than on generalisation and we recommend the less familiar
reader to focus on this appendix before reading the generalisation in Section 4. In Appendix C we discuss
how the outsourcing argument is applicable to BLS signatures.
Related work. Lai, Malavolta, and Ronge [LMR19] introduced an inner product argument for pairing based
languages. Their scheme runs over a transparent setup and is secure under the SXDH assumption. Their work
improves on Groth and Sahai Proofs [GS08] which are a method to prove pairing-based languages under
zero-knowledge without reducing to NP. Their proving costs are dominated by a linear number of pairings,
their proof sizes are logarithmic and their verifier running costs are dominated by a linear number of group
exponentiations. Our pairing based IPA’s have much lower verification costs but we use a trusted setup. Our
generalized IPA argument can be used to greatly simplify the security proofs for their Theorems 3.2, 4.1, 4.2
and 4.3, and we prove security of a non-interactive variant in the algebraic commitment model.

In Table 1, we compare the efficiency of various polynomial commitment schemes. Kate et al.[KZG10]
introduced a pairing based polynomial commitment scheme with constant sized proofs. Their scheme is secure
under an updatable setup in the algebraic group model. Groth [Gro11] designed a pairing based “batch product
argument” secure under SXDH. This argument that can be seen as a form of polynomial commitment scheme
and our two-tiered polynomial commitment techniques were inspired by this work. Under discrete-logarithm

5



polynomial
commitment

communication complexity transparent
setup

time complexity

CRS commitments openings d = 220 Commit Open Verify

Kate et al.[KZG10] d G1 1 G1 1 G1 96b no d G1 d G1 1 P,G1

Bulletproofs [BBBPWM18] d G1 1 G1 log(d) G1 1.3 KB yes d G1 d G1 d G1

Hyrax [WTSTW18]
√
d G1

√
d G1 log(d) G1 33 KB yes d G1

√
d G1

√
d G1

DARKs [BFS20] d GU 1 GU log(d) GU 8.6 KB yes d GU d log(d) GU log(d) GU

Virgo [ZXZS20] 1 1 H log(d)2 H 183 KB yes d log(d) H d log(d) H log(d)2 H
Groth [Gro11] 3

√
d G2

3
√
d GT

3
√
d G1 25 KB yes d G1

2
3
√
d G1

3
√
d P

This work
√
d G2 1 GT log(d) GT 2.5 KB no d G1

√
d P log(d)GT

Table 1: Efficiency comparisons for polynomial commitment schemes. All numbers are given asymptotically.
We use G1,G2,GT to represent groups in a bilinear map, P to represent pairings, GU to represent groups of
unknown order, and H to represent hash functions. For simplicity we only specify the dominant costs e.g., if
there are d G1 and d G2 group exponentiations we simple write d G2. Column 5 is the expected size of one
commitment plus one opening proof at d = 220 over a BN256 curve.

assumptions, Bayer and Groth designed a zero-knowledge proving system to show that a committed value is
the correct evaluation of a known polynomial [BG13]. Both the prover and verifier need only compute a
logarithmic number of group exponentiations, however verifier costs are linear in the degree of the polynomial.
Wahby et al. proved that it is possible to use the inner product argument of Bulletproofs [BBBPWM18] to
build a polynomial commitment scheme [WTSTW18]. Bowe et al. [BGH19] argued that the inner product
argument of Bulletproofs is also highly aggregatable, to the point where aggregated proofs can be verified
using a one off linear cost and an additional logarithmic factor per proof. Attema and Cramer[AC20] recently
provided an orthogonal generalization of the inner product argument. They show that the inner product
argument can be seen as a black box compression mechanism for sigma protocols and show that it can be
used as a proof system for secret shared data.

Polynomial commitment schemes have also been constructed using Reed-Solomon codes [ZXZS20].
These commitments use highly efficient symmetric key primitives, however the protocols that use them
require soundness boosting techniques that result in large constant overheads. Bünz et al.[BFS20] designed
a polynomial commitment scheme in groups of unknown order such as RSA groups or class groups with
efficient verifier time and small proof sizes. However, it requires super-linear commitment and prover time.

Asymptotically, our scheme positions itself competitively among state-of-the-art PCs (see Table 1). In
terms of concrete efficiency, the trusted setup scheme of Kate et al. [KZG10] allows for constant proof sizes
and verifier time (versus our logarithmic results), whereas our protocol offers quadratic improvements to
opening efficiency and the maximum degree polynomial supported by a SRS of a given size.

Prior aggregatable SNARKs have relied on efficiently expressing SNARK verifiers as as arithmetic
circuits [BCTV14b; BCGTV13]. For pairing based SNARKs this was achieved through the use of pairing-
friendly cycles [BCTV14a] or two-chains [BCGMMW20]. Known cycles and two-chains for the 128-bit
security level require roughly 768-bit curves, versus the roughly 384-bit curves used when recursion is not
necessary (∼ 10× performance hit in practice [SCI]). Bowe et al. introduce a novel approach to recursive
SNARKs that works in cycles of non pairing friendly curves [BGH19]. Bünz et al. [BCMS20] generalize
and formalize this approach. Chiesa et al. build a post-quantum recursive SNARK [COS20]. For all of
these approaches we expect to significantly improve on prover time because we do not rely on expensive NP
reductions.
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2 Technical Overview

2.1 GIPA

The first contribution of our paper is a generalized inner product argument we denote GIPA. At a high
level, our protocol generalizes the protocols of [BCCGP16; BBBPWM18] as follows. The protocols of
[BCCGP16; BBBPWM18] enable proving the correctness of inner products of scalar vectors committed
via the Pedersen commitment scheme [Ped92]. Our protocol generalizes their techniques to enable proving
the correct computation of a large class of inner products between vectors of group and/or field elements
committed to using (possibly distinct) doubly homomorphic commitments. We explain in more detail below.
Starting point: inner product arguments. The inner product argument (IPA) by [BCCGP16] enables a
prover to convince a verifier that two committed vectors (using Pedersen vector commitments) have a publicly
known inner product. It does this by elegantly rescaling the committed vectors to half their size in each round.
In each round the verifier sends a random challenge, which the prover uses to take a linear combination of the
right and left half of the committed vectors, and they both rescale the commitment keys accordingly.

After log2m such reduction step the prover simply opens the commitment and the verifier checks that the
product relation holds. In Bulletproofs [BBBPWM18] the authors improve on the IPA by committing to the
two vectors and the scalar in a single commitment, while maintaining the halving structure of the argument.
This enables sending just two commitments per round.

We observe that the same argument structure works for a much wider class of commitment schemes.
In particular we require only that the commitment scheme is binding and has the homomorphic properties
that enable the rescaling step. This property is that the commitment scheme is doubly homomorphic, i.e.,
homomorphic over the messages and the commitment keys.
Doubly homomorphic commitments. At a high level, a doubly homomorphic commitment scheme is
a binding commitment scheme (Setup,CM) where the key space K, message spaceM, and commitment
space C form abelian groups of the same size such that CM((ck1 + ck2); (M1 + M2)) = CM(ck1,M1) +
CM(ck1;M2) + CM(ck2,M1) + CM(ck2,M2) .

The Pedersen commitment CM(g,a) →
∏
i g
ai
i is the doubly homomorphic commitment used in

Bulletproofs. Lai, Malavolta, and Ronge [LMR19] used a doubly homomorphic commitment for bilinear
groups where the committed vectors consist of group elements in a bilinear group: CM(v,v′,w,w′;A,B)→∏
i e(vi, Ai)e(Bi, wi),

∏
i e(v

′
i, Ai)e(Bi, w

′
i) .

In some of our protocols the verifier already has access to one of the committed vectors. For instance, in
the polynomial commitment scheme the verifier can simply compute the vector consisting of the monomials
of the evaluation point. Such protocols are also captured by our abstraction since the identity commitment is
doubly homomorphic. In the actual protocols, the prover doesn’t send any scalings of these vectors, and the
verifier simply computes them directly.
Generalized Inner Product Argument. Building on our generalization of commitment schemes that work
for inner product arguments, GIPA also generalizes the types of inner products that can be proven between
committed vectors. It can be used not only to show inner products between field elements, but for arbitrary
inner product maps 〈·, ·〉 that are bilinear, i.e., for which 〈a+ b, c+ d〉 = 〈a, c〉+ 〈a,d〉+ 〈b, c〉+ 〈b,d〉 .
It immediately follows our generalized argument works for bilinear pairings. We apply GIPA to three different
inner products:

〈·, ·〉 : Gm
1 ×Gm

2 7→ GT , 〈A,B〉 =
∏m−1
i=0 e(Ai, Bi)

〈·, ·〉 : Gm
1 × Fm 7→ G1, 〈A, b〉 =

∏m−1
i=0 Abii

〈·, ·〉 : Fm × Fm 7→ F, 〈a, b〉 =
∑m−1

i=0 aibi

7



We refer to the first inner product as the inner pairing product.
Security Proof. We prove both the interactive and the non-interactive variant ofGIPA to be knowledge-sound.
The interactive security proof shows the (k1, . . . , kr)-special soundness of GIPA protocols, which implies
knowledge-soundness via a recent result of Attema and Cramer [AC20] (previous interactive security proofs
showed only witness-extended emulation). In particular, we reduce the security of any GIPA instantion to the
binding of its commitment scheme.

We also prove knowledge-soundness of the non-interactive version of GIPA given by the Fiat-Shamir
transform. It is known from folklore that applying the Fiat-Shamir transformation to a r-round interactive
argument of knowledge with negligible soundness error yields a non-interactive argument of knowledge in
the random oracle model where the extractor E runs in time O(tr) for an adversary that performs at most
t = poly(λ) random oracle queries. GIPA has logm rounds form = poly(λ) so this transformation yields
a super-polynomial extractor. Given this, we directly prove the security of the non-interactive argument
in the algebraic commitment model , a generalization of the algebraic group model [FKL18]. In essence,
whenever the prover outputs a commitment he must also give an opening to it with respect to some linear
combination of commitment key. Our security proof yields an efficient linear-time extractor and negligible
knowledge-soundness. Given the generality of GIPA this also yields the first tight security analysis of
non-interactive Bulletproofs [BCCGP16; BBBPWM18] and the many related protocols [LMR19; BGH19;
BCMS20].
TIPP andMIPP. Generically GIPA protocols have logarithmic communication but linear verifier time as
computing the final commitment key takes a linear number of operations. We introduce TIPP, a logarithmic
verifier variant for the inner pairing product andMIPP for the multi-exponentiation inner product.2 These
schemes use universal and updatable structured references string as commitment keys. Their commitments
are based on that of Abe et al. [AFGHO16], where given a commitment key (v0, v1) ∈ G2 the commitment to
(A0, A1) ∈ G2

1 is given by e(A0, v0)e(A1, v1), and the KZG polynomial commitment [KZG10].
Instead of the verifier having to compute the verification key itself, we leverage a recent insight by

Bowe, Grigg, and Hopwood [BGH19]. The final commitment key in GIPA can be viewed as a polynomial
commitment to a degreem polynomial that can be evaluated in logm time. Using the structured setup we
can outsource computing the commitment key to the prover. The verifier simply verifies that the commitment
key was computed correctly. This amounts to evaluating the polynomial at a random point and checking a
KZG [KZG10] polynomial commitment proof.

2.2 Applications

We show how to use instantiations of our generalized inner product argument to obtain interesting applications:
a polynomial commitment scheme where computing evaluation proofs for polynomials of degree d requires
onlyO(

√
d) cryptographic operations, and a protocol for aggregating n Groth16 SNARKs [Gro16] to produce

an aggregrate proof of size O(log n) and verifiable in time O(log n).

2.2.1 Polynomial commitment

Following Groth [Gro11] we use two-tiered homomorphic commitments: i.e. commitments to commitments.
Suppose we wish to commit to a polynomial

f(X,Y ) = f0(Y ) + f1(Y )X + . . .+ fm−1(Y )Xm−1 =
∑m−1

i=0 fi(Y )Xi.

2We actually introduce two variants of MIPP: MIPPu, where both the vectors are committed, and MIPPk where the verifier already
knows the exponent, but it’s of a structured form.
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We can view this polynomial in matrix form

f(X,Y ) = (1, X,X2, . . . , Xm−1)


a0,0 a0,1 a0,2 . . . a0,`−1
a1,0 a1,1 a1,2 . . . a1,`−1
a2,0 a2,1 a2,2 . . . a2,`−1
...

. . .
...

am−1,0 am−1,1 am−1,2 . . . am−1,`−1




1
Y
Y 2

. . .
Y `−1


One first computes commitments A0, . . . , Am−1 to f0(Y ), . . . , fm−1(Y ). Next one commits to the commit-
ments A0, . . . , Am−1.

On receiving an opening challenge (x, y) the prover evaluates the first tier at x to obtain a commitment A
to f(x, Y ). This is done usingMIPP. The prover then opens the second tier commitment A at y in order to
obtain ν = f(x, y). This is done using a KZG univariate polynomial commitment scheme [KZG10]. To
apply our prover efficient polynomial commitment scheme to univariate polynomials, commit to f(X,Xn)
and open at (x, xn).

Note that form ≈ ` ≈
√
d both theMIPP and the KZG commitment are only of square root size. This

results in a square root reference string. In order to achieve square root prover time (in addition to evaluating
the polynomial) the prover needs to store the A0, . . . , Am−1 when committing to the polynomial. Using these
values the resulting MIPP can be opened in O(m) = O(

√
d) time.

2.2.2 SNARK aggregation and proofs of machine computation

Pairing-based SNARKs such as Groth16 can be proven and verified using only algebraic operations (e.g.,
field operations, group operations and pairings). This means we can aggregate by applying TIPP to the
Groth16 verifier equations, such that whenever TIPP verifies the aggregator must have seen some verifying
proof. In particular, to aggregate n Groth 16 proofs {(Ai, Bi, Ci)}ni=1 ∈ G1 ×G2 ×G1, one first computes
commitments to the Ai, Bi, Ci values. Then the prover computes

∏n
i=1 e(Ai, Bi)

r2i and
∏n
i=1C

r2i
i for some

random value r and proves these are correct using our pairing based arguments. Finally the verifier checks
that these values satisfy a randomized version of the Groth16 verifier equations. Overall the prover only
performs one field multiplication per instance and O(log(n)) cryptographic operations for the TIPP protocol.
Low-memory SNARKs for machine computation. We leverage our aggregation protocol in to construct
a low-memory SNARK for (non-deterministic) machine computations that requires time Õ(T ) and space
Õ(S + T ) to produce a proof to for a machine computation that requires space S and time T . This is much
better than a monolithic proof for the entire computation at once, which requires time Õ(S · T ). Crucially,
our protocol does not rely on recursive composition of proofs [BCCT13], which was the prior solution for
constructing low-memory SNARKs.

Our approach proceeds by producing an individual proof for each machine step, aggregates these individual
proofs, and then additionally speeds up the checks relating to the state between machine steps via techniques
based on polynomial commitments. See Section 8 for details.

3 Notation

We denote by [n] the set {1, . . . , n} ⊆ N. We use a = [ai]
n
i=1 as a short-hand for the vector (a1, . . . , an),

and [ai]
n
i=1 = [[ai,j ]

m
j=1]

n
i=1 as a short-hand for the vector (a1,1, . . . , a1,m, . . . , an,1, . . . , an,m); |a| denotes

the number of entries in a. We analogously define {ai}ni=1 with respect to sets instead of vectors. If x is a
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binary string then |x| denotes its bit length. For a finite set S, let x $←− S denote that x is an element sampled
uniformly at random from S. We also write x $←− A() to denote an algorithm A sampled and used randomness
in the computation of x.
Inner pairing product notation. We introduce some special notation related to our inner pairing product
argument, some of which is borrowed from the Pedersen inner product introduced in [BBBPWM18]. We write
group operations as multiplication. For a scalar x ∈ F and vectorA ∈ Gn, we letAx = (Ax1 , . . . , A

x
n) ∈ Gn,

and for a vector x = (x0, . . . , xm−1) ∈ Fn we let Ax = (Ax00 , . . . , A
xm−1

m−1 ). For a bilinear group
(G1,G2,GT , q, g, h, e) (see Appendix A.1) and pair of source group vectors A ∈ Gn

1 , B ∈ Gn
2 we define

A ∗B =
∏n
i=1 e(Ai, Bi). For two vectorsA,A

′ ∈ Gn we letA ◦A′ = (A0A
′
0, . . . , Am−1A

′
m−1).

LetA‖A′ = (A0, . . . , An−1, A
′
0, . . . , A

′
m−1) be the concatenation of two vectorsA ∈ Gn andA′ ∈ Gm.

To denote slices of vectors given A ∈ Gn
· and 0 ≤ ` < n − 1 we write A[:`] = (A0, . . . , A`−1) ∈ G` and

A[`:] = (A`, . . . , An−1) ∈ Gn−`.
Languages and relations. We write {(x) : p(x)} to describe a polynomial-time language L ⊆ {0, 1}∗
decided by the polynomial-time predicate p(·). We write {(x;w) : p(x,w)} to describe a NP relation
R ⊆ {0, 1}∗×{0, 1}∗ between instances x and witnessesw decided by the polynomial-time predicate p(·, ·).
Security notions. We denote by λ ∈ N a security parameter. When we state that n ∈ N for some variable
n, we implicitly assume that n = poly(λ). We denote by negl(λ) an unspecified function that is negligible in
λ (namely, a function that vanishes faster than the inverse of any polynomial in λ). When a function can be
expressed in the form 1− negl(λ), we say that it is overwhelming in λ. When we say that algorithm A is
an efficient we mean that A is a family {Aλ}λ∈N of non-uniform polynomial-size circuits. If the algorithm
consists of multiple circuit families A1, . . . ,An, then we write A = (A1, . . . ,An).
Arguments of knowledge and Commitments. We use several standard notions in this paper such as
interactive arguments of knowledge and commitments. For completeness, we include their definitions in
Appendix A.

4 Generalized Inner Product Argument (GIPA)

We now generalize the inner product argument (IPA) from [BCCGP16; BBBPWM18] to work for all “doubly
homomorphic” inner product commitments. The generalized inner product argument (GIPA) protocol is
described with respect to a doubly homomorphic inner product commitment and an inner product map defined
over its message space. All of the inner pairing product arguments in this paperas well as the discrete-log inner
product argument from [BCCGP16; BBBPWM18] can be described as instantiations of GIPA, sometimes
with non-black-box optimizations that do not work generally. The generalized version enables us to simplify
the proof of security of the specific instantiations presented in the rest of the paper and provides a “compiler”
that lets the reader plug in their own computationally binding “inner product commitment” to obtain a new
inner product argument (of knowledge).
Protocol intuition. The protocol works by reducing the instance from sizem tom/2 each round. As an
intuition, we will show how to reduce an instance with 2 expensive mappings ~ to an instance with just a
single ~. Given a1, a2, b1, b2 a prover wants to convince a verifier that (a1 ~ b1) + (a2 ~ b2) = c for an
expensive map~. To do this the prover sends cross terms l = a1~ b2 and r = a2~ b1. The verifier then sends
a challenge x. Note that for a′ = x · a1 + a2 and b′ = x−1 · b1 + b2 we have that a′ ~ b′ = x · l+ c+ x−1 · r.
Since the prover has to commit to the cross terms l and r before knowing x, if x is uniformly sampled from
a sufficiently large space then checking this latter equation implies that c = (a1 ~ b1) + (a2 ~ b2) with
overwhelming probability.
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Prove(〈group〉, ck = (ck1, ck2, ck3); (a, b)) Verify(〈group〉, ck, C)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .If m = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a ∈M1, b ∈M2 Return CM (ck; (a, b, a ~ b)) == C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Else m ≥ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m′ = m/2 m′ = m/2

zL = 〈a[m′:], b[:m′]〉

zR = 〈a[:m′], b[m′:]〉

CL = CM(ck1, ck2, ck3; a[m′:]‖0,0‖b[:m′], zL)

CR = CM(ck1, ck2, ck3; 0‖a[:m′], b[m′:]‖0, zR)

CL, CR ∈ Image(CM)

x ∈ Fp x
$←− Fp

a′ = a[:m′] + x · a[m′:]

b′ = b[:m′] + x−1 · b[m′:]
ck′1 = ck1,[:m′] + x−1 · ck1,[m′:] ck′1 = ck1,[:m′] + x−1 · ck1,[m′:]
ck′2 = ck2,[:m′] + x · ck2,[m′:] ck′2 = ck2,[:m′] + x · ck2,[m′:]

C′ = Collapse(x · CL + C + x−1 · CR)
Recurse on (〈group〉, (ck′1, ck′2, ck3), (a′, b′)) Recurse on (〈group〉, (ck′1, ck′2, ck3), C′)

Figure 1: Generalized inner product argument. Cases are based on the length m of the message (and
correspondingly commitment key) vectors. Here, 0 is the vector containingm′ sequential group identity elements
for the appropriate group.

GIPA extends this idea to work for committed vectors a1,a2, b1, b2. It relies on doubly homomorphic
commitments with a commitment key ck where CM(ck,a) = CM(x−1 · ck, x · a).

4.1 Doubly homomorphic commitments

We can apply GIPA over any commitment scheme which is “doubly-homomorphic.” For example, consider
the Pedersen commitment scheme:

Setup(1λ)→ ck CM(ck,a)→ c

Return (g1, . . . , gm)
$←− G Return ga11 · · · gamm

(1)

This scheme allows us to commit to elements in the message spaceM = Fmp under commitment keys in the
key space K = Gm for a group G of prime order p. We denote the key space (i.e., the image of the setup
algorithm) by K. The commitment space is additively homomorphic because for all a, b ∈M and g ∈ K we
have that ga · gb = ga+b. The key space is also homomorphic because for all g,w ∈ K and a ∈M we have
that ga ·wa = (g ◦w)a. Thus, we consider the Pedersen commitment scheme to be doubly-homomorphic
(i.e., homomorphic in both the commitment space and the key space).

Definition 1 (Doubly homomorphic commitment scheme). A commitment scheme (Setup,CM) (see Defini-
tion 9) is doubly homomorphic if (K,+), (M,+) and (Image(CM),+) define abelian groups such that for
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all ck, ck′ ∈ K andM,M ′ ∈M it holds that
1. CM(ck;M) + CM(ck;M ′) = CM(ck;M1 +M ′)
2. CM(ck;M) + CM(ck′;M) = CM(ck + ck′;M)

Observe that if CM is doubly homomorphic then for all x ∈ Zp it holds that CM(x · ck;M) = CM(ck;x ·M).

4.2 Inner Product

We consider inner products as bilinear maps from two equal-dimension vector spaces over two groups to a
third group.

Definition 2 (Inner product map). A map ~ :M1 ×M2 →M3 from two groups of prime order p to a third
group of order p is an inner product map if for all a, b ∈M1 and c, d ∈M2 we have that

(a+ b) ~ (c+ d) = a~ c+ a~ d+ b~ c+ b~ d

Given an inner product ~ between groups we define the inner product between vector spaces 〈, 〉 :Mm
1 ×

Mm
2 →M3 to be 〈a, b〉 :=

∑m
i=1 ai ~ bi

We use three different inner products in this paper. For the Pedersen commitment described above we
have that ~ is multiplication between elements in Fp and 〈, 〉 is the dot product. In TIPP we have that
~ : G1 ×G2 → GT and A~B = e(A,B). In this case we refer to the resulting protocols as inner pairing
product arguments. InMIPPwe use the inner product~ : G×F→ G andA~b = Ab, a multiexponentiation
inner product.
Inner product commitment. We further define an inner product commitment which consists of a doubly
homomorphic commitment with a message space that is the Cartesian product of three message subspaces
and an inner product that maps the first two message subspaces to the third. For GIPA the committed vectors
and commitment keys halve in every round. If the commitments are constant sized, we can add commitments
of different length. If not, we need to assume that the commitment key has a collapsing property such that
additions of commitments are still well defined: Concretely we require that there exists a collapsing function
Collapse to reduce the size of commitments with repeated entries. For example consider a commitment scheme
with commitment key g1, g2, g3, g4 ∈ G4 that commits to (a1, a2, a3, a4) ∈ F4 as [ga11 , g

a2
2 , g

a3
3 , g

a4
4 ]. Then

whenever (a1, a2) = (a3, a4) the collapsing function outputs the shorter commitment [(g1g3)
a1 , (g2g4)

a2 ]
under a compressed commitment key.

Definition 3 (Inner product commitment). Let (Setup,CM) be a doubly homomorphic commitment with
message spaceM =Mm

1 ×Mm
2 ×M3 and key space K = Km1 ×Km2 ×K3 defined for allm ∈ [2j ]j∈N,

where |Mi| = |Ki| = p is prime for i ∈ [3]. Let ~ :M1 ×M2 →M3. We call ((Setup,CM),~) an inner
product commitment if there exists an efficient deterministic function Collapse such that for allm ∈ [2j ]j∈N,
M ∈M, and ck, ck′ ∈ K such that ck3 = ck′3 it holds as

Collapse

CM

 ck1‖ck′1
ck2‖ck′2
ck3

∣∣∣∣∣∣
M1‖M1

M2‖M2

M3

 = CM

 ck1 + ck′1
ck2 + ck′2
ck3

∣∣∣∣∣∣
M1

M2

M3

 .

We refer to the requirement above as the collapsing property.

Let ((Setup,CM),~) be a binding inner product commitment as defined above. In Fig. 1 we present a
generalized inner product argument defined for allm ∈ [2j ]j∈N. We prove that this protocol is an argument
(resp., proof) of knowledge when instantiated with a computationally (resp., statistically) binding inner
product commitment. The proof of the following theorem is presented in Appendix D.1.
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Theorem 1 (GIPA knowledge-soundness). If ((Setup,CM),~) is a computationally (resp., perfectly) binding
inner product commitment, then (Setup,Prove,Verify), where CM and ~ instantiate the Prove and Verify
algorithms presented in Fig. 1, has perfect completeness ( Definition 5) and computational (resp., statistical)
knowledge-soundness ( Definition 6) for the relation

RIPA =

{ (
ck ∈ Km1 ×Km2 ×K3 C ∈ Image(CM);a ∈Mm

1 , b ∈Mm
2

)
:

C = CM (ck; (a, b, 〈a, b〉))

}
.

Non-interactive argument. In order to turn the public-coin interactive argument into a non-interactive
proof we rely on the Fiat-Shamir heuristic. This results in all challenges being generated from a cryptographic
hash function instead of by a verifier.

Theorem 2. If ((Setup,CM),~) is a computationally (resp., perfectly) binding inner product commitment
then in the algebraic group model and modeling Hash as a random oracle FS − Transform(GIPA) is a
non-interactive argument of knowledge Definition 7 against an efficient t-query adversary in the random
oracle model.

Efficiency. Letm be a power of 2 and ` = log2m, the number of rounds in the GIPA protocol. The prover
communication consists of 2` commitments, 1M1 element, and 1M2 element. When the commitment
scheme used is constant-sized, an instantiation of GIPA produces log-size proof. The prover makes 2
commitments to (m + 1)-element messages in the first round, 2 commitments to (m/2 + 1)-element
messages in the second, and 2 commitments to (m/2i−1 + 1)-element messages in the i-th. It holds that
2 ·
∑`

i=1

(
m

2i−1 + 1
)

= 4m + 2` − 4 ≈ 4m. So we say the prover commits to a total of 4m elements.
Before computing these commitments, however, the prover first must compute the zL and zR inner products,
similarly requiring 2m invocations of ~ on 4m elements. Upon receiving the 2 commitments sent each
round, the verifier uses them along with the challenge xi it sampled that round to compute C ′, requiring 2`
multiplications in Image(CM).

The prover and verifier each compute ck′ in each round, requiring 2m multiplications in K. Some
extensions of the GIPA protocol we’ll introduce later use trusted setups to produced structured commitment
keys. In these protocols, the verifier doesn’t compute ck′ themself in each round, but instead is sent the
final rescaling ck ∈ K1 ×K2 ×K3 that can be seen as a polynomial commitment in the verifiers challenges
because of how the commitment key was structured. The verifier asks for an opening at a random point,
which they can check with a small constant number of multiplications and pairings, and O(`) field operations.
This technique achieves a log-time verifier.

The prover alone computes a′ and b′, requiring m multiplications in each ofM1 andM2. In some
instantiations of GIPA, one or both of the vectors inM1 andM2 are included in full in the public input (i.e.,
the commitment performs the identity map on these inputs). In this case the verifier computes a′ and/or b′

themself.

4.3 Instantiation

GIPA can be instantiated with different commitments and inner product maps. In Bulletproofs [BBBPWM18]
it is instantiated with the generalized Pedersen commitment defined above, where K = Gm × Gm × Gm,
M = Fmp × Fmp × Fp, and ~ is the field addition operation. The reader can verify the commitment is a
binding, doubly-homomorphic commitment scheme if the DL assumption holds for G.
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As a second example, in [LMR19] GIPA is instantiated for the inner pairing product a~ b ≡ e(a, b) using
the public-coin setup commitment scheme

CM((v,w,1); (A,B,A ∗B)) = (A ∗ v,w ∗B,A ∗B) .

Parts of the commitment may be computable directly from inputs to the verifier. For efficiency reasons the
prover would not have to transmit that part of the commitment. We can formulate instantiations of GIPA for
the inner pairing product map and the identity commitment scheme, which is perfectly (and thus statistically)
binding.
An improvement on [LMR19]. GIPA also directly yields an improvement to the protocol presented
in [LMR19] for proving knowledge of committed vectors of source group elements such that their inner pairing
product is a public target group element. Replacing Lai et al.’s commitment scheme with [AFGHO16] results
in a 2 times faster prover and verifier for the relation while retaining the same proof size and assumptions.

5 Log-time verifier inner pairing product arguments

We present three inner product protocols that build on GIPA with the use of a trusted setup. Informally, these
protocols prove the following relations:
(1) TIPP: An inner pairing product argument that proves Z ∈ GT is the inner pairing product between

committed vectorsA ∈ Gm
1 andB ∈ Gm

2 .
(2) MIPPu: An unknown-exponent multiexponentiation inner product argument that proves U ∈ G1 is the

multiexponentiation product between committed vectorsA ∈ Gm
1 and b ∈ Fm.

(3) MIPPk: A known-exponent multiexponentiation inner product argument that proves U ∈ G1 is the
multiexponentiation inner product between a committed vector A ∈ Gm

1 and an uncommitted vector
b ∈ Fm.
Our arguments achieve log-time verification by building on a recent observation about inner product

arguments by Bowe, Grigg, and Hopwood [BGH19]. A specially structured commitment scheme allows
the prover to send the final commitment key and a succinct proof (as a KZG polynomial opening) of its
correctness, which is verified via a log-time evaluation of the polynomial and two pairings.

5.1 Inner product commitments with structured setup

We construct inner product commitments for our arguments that are structured-key variants of the pairing-based
commitment for group elements introduced by Abe et al. in [AFGHO16] and of the Pedersen commitment for
field elements [Ped92]. The setup algorithms for the inner product arguments are input a security parameter λ
and a max instance sizem ∈ {2n}n∈Z+ . A type 3 bilinear group description 〈group〉 ← SampleGrp3(1

λ) is

sampled. The structured setup proceeds by sampling random trapdoor elements α, β $←− F, and constructing
the prover and verifier keys (SRS) as follows for generators g ∈ G1 and h ∈ G2:

(〈group〉, pk = (
[
gα

i
]2m−2
i=0

,
[
hβ

i
]2m−2
i=0

), vk = (gβ, hα))
$←− Setup(1λ,m)

The inner product commitment keys are derived by taking the even powers from the prover SRS as

w =
[
gα

2i
]m−1
i=0

and v =
[
hβ

2i
]m−1
i=0

. They are used as keys for the following inner product commitments.
Observe that the vector commitment components of these inner product commitments are simply the
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structured-key variants of [AFGHO16] and [Ped92]. The inner product values U,Z and the known vector b
are committed to as the identity with keys initialized to 1.
(1) TIPP: CMTIPP((v,w, 1GT ); A,B, Z) := (A ∗ v,w ∗B, Z)

(2) MIPPu: CMMIPP-u((v,w, 1GT ); A, b, U) := (A ∗ v,wb, U)

(3) MIPPk: CMMIPP-k((v,1F, 1GT ); A, b, U) := (A ∗ v, b, U)

It follows directly from the q-ASDBP assumption (Assumption 1) that these commitments are binding
with respect to both the commitment key and the proving SRS. Note that the commitment keys only use even
powers of trapdoor elements. This is to prevent an adversary from using (gβ, hα) to find collisions in the
commitment scheme—observe that e(g, hα) · e(gα, h−1) = 1GT . The proving SRS requires all powers in
order to compute the succinct KZG polynomial opening proofs for the final commitment keys. This is the
reason for our introduction of a new security assumption.
KZG polynomial commitments. As mentioned, we make use of the KZG polynomial commitment
scheme [KZG10] which commits to polynomials of some max degree n. For polynomial f(X) =

∑n−1
i=0 aiX

i

where a = [ai]
n−1
i=0 , the commitment is computed with an analogously-structured trapdoor commitment key

ck =
[
gα

i
]n−1
i=0

as KZG.CM(〈group〉, ck,a) = cka.
To open a point (x, y) where y = f(x), To prove that y = f(x) at a point x, KZG uses the

polynomial remainder theorem which says f(x) = y ⇔ ∃q(X) : f(X) − y = q(X)(X − x). The
proof is just a KZG commitment to the quotient polynomial q(X) where if q(X) has coefficients
b, then KZG.Open(〈group〉, ck,a, x) = ckb. The verifier key consists of hα, and the verifier runs
KZG.Verify(〈group〉, hα, C,W, y) for commitment C and opening W and checks that e(Cg−yW y, h) =
e(W,hα). The KZG polynomial commitment scheme is extractable by Proposition 1.

5.2 Final commitment keys

Recall inGIPA, the verifier is required to perform a logarithmic amount of work to verify the final commitments
CL and CR, using the challenges of each round of recursion to transform the commitments homomorphically.
Assuming the commitments are of constant size this means that the verifier can efficiently check that
these values are correct. However, the verifier must also perform a linear amount of work in rescaling the
commitment key ck. Thus to achieve logarithmic verification time, when instantiating GIPA we need to
avoid having the verifier rescale the commitment keys. We do this by outsourcing the work of rescaling the
commitment keys to the prover.

The prover will compute the final commitment keys and then prove that they are well-formed, i.e., that
they are exactly what the verifier would have computed in an unmodified instantiation of GIPA. Recall, we

have structured our commitment keys as w =
[
gα

2i
]m−1
i=0

and v =
[
hβ

2i
]m−1
i=0

. Without loss of generality,
we will present the approach inspired by techniques from [BGH19] with respect to proving well-formedness
of the final commitment key for w ∈ G1; the techniques will apply analogously to v ∈ G2.

In each round of GIPA, the commitment key is homomorphically rescaled by the round challenge x as:

w′ = w[:m/2] ◦wx
[m/2:] =

[
gα

2i(1+xαm+2i)
]m/2−1
i=0

.

Repeating this rescaling over ` = logm recursive rounds with challenges x = [xj ]
`
j=0, we claim (and show

using an inductive argument in Proposition 1) that the final commitment key w takes the form:

w = g
∏`
j=0

(
1+x`−jα

2j+1
)
.
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Prove(〈group〉, f(X), g = [gα
i

]2m−2
i=0 ) Verify(〈group〉, (f(X), hα))

w = KZG.CM(〈group〉, g, f(X)) w ∈ G1

z ∈ Fp z
$←− Fp

π = KZG.Open(〈group〉, g, f(X), z) π ∈ G1 Return KZG.Verify(〈group〉, hα, w, π, f(z))

Figure 2: The argument (of Rck) used to allow a prover to prove well-formedness of the final structured
commitment key. The final commitment key w is interpreted as a KZG polynomial commitment that the prover
must open at a random point. Shown for w ∈ G1, but holds analogously for v ∈ G2.

We can then view this final commitment key w as a KZG polynomial commitment to the polynomial fw(X)
defined below (and analogously v as the commitment to fv(X)):

fw(X) =
∏̀
j=0

(
1 + x`−jX

2j+1
)

fv(X) =
∏̀
j=0

(
1 + x−1`−jX

2j+1
)

Thus, to prove the well-formedness of the final commitment keys, the prover will prove the following
relationRck making direct use of the KZG polynomial opening proof. Again, without loss of generality, the
relation is presented with respect to the final commitment key w ∈ G1.

Rck =
{ (

〈group〉, w ∈ G2, f(X), hα ; g = [gα
i
]2m−2i=0

)
: w = gf(α)

}
Our protocol for provingRck is given in Fig. 2. At a high level, the verifier produces a challenge point

z ∈ F. If the prover can provide a valid KZG opening proof of fw(z) for commitment w, then the verifier
accepts. We formally prove the security of this argument system in Lemma 4 in the algebraic group model.

5.3 TIPP: Inner pairing product

The TIPP protocol allows a prover to show that for T,U, Z ∈ GT , they knowA ∈ G1 andB ∈ G2 such that
T and U are pairing commitments toA andB, and Z is the inner pairing product Z = A ∗B.

This description is not quite general enough to cover the needs of our applications, such as batch verification.
For example, to check thatm pairing equations are simultaneously satisfied (i.e., that [Zi = e(Ai, Bi)]

m−1
i=0 ),

it is not sufficient to prove that Πm−1
i=0 e(Ai, Bi) = Πm−1

i=0 Zi. Rather, instead you must prove the inner pairing
product of a random linear combination defined by verifier challenge r ∈ F: Πm−1

i=0 e(Ai, Bi)
ri = Πm−1

i=0 Z
ri
i .

We support this by modifying the TIPP relation to include the linear combination challenge r. For
notational simplicity, we will use powers of two (matching that of our commitment keys) and define a public
vector of field elements r = [r2i]2m−2i=0 . The prover first commits to T and U , and then the verifier send a
random field element r.

Thus, the TIPP relation is captured formally as follows:

RTIPP =


 〈group〉, gβ ∈ G1, h

α ∈ G2, T, U, Z ∈ GT , r ∈ F ;

w = [gα
2i

]m−1i=0 ,A ∈ Gm
1 , v = [hβ

2i
]m−1i=0 ,B ∈ Gm

2 ,

r = [r2i]m−1i=0 ∈ Fm

 :

T = A ∗ v ∧ U = w ∗B ∧ Z = Ar ∗B

 .
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Observe that if T = A ∗ v is a commitment toA, then T = Ar ∗ vr−1 is a commitment toAr under the
commitment key vr−1 . Intuitively, the argument proceeds by having the prover act as if it is working with
a rescaled commitment key v′ = vr−1 . TIPP runs the GIPA protocol with CMTIPP where the collapsing
function is defined as the identity, Collapseid(C) = C, over message (Ar,B, Z = Ar ∗B) and commitment
key (v′ = vr−1

,w, 1GT ). Since all components of the commitment are compact, the identity collapsing
function is sufficient.

Lastly, since the protocol is run over a rescaled commitment key v′, the polynomial with which the
prover proves the well-formedness of the final commitment key is also rescaled. It is as follows (derived in
Proposition 1):

f ′v(X) =
∏̀
j=0

(
1 + x−1`−j(rX)2

j+1
)

A full description of the protocol is given in Figure 3. Because the protocol is public-coin, we can transform
the interactive argument into a non-interactive proof using the Fiat-Shamir heuristic. In later sections, we may
overload TIPP.Prove and TIPP.Verify as their non-interactive counterparts in which the prover will output a
proof π that will be taken as an additional input by the verifier. This will be the case for MIPPu and MIPPk
as well.
Communication and time complexity. Table 2 gives an overview of the communication and time complexity
of our inner product protocols. Here we provide accounting for TIPP. The prover SRS consists of 2m
elements in G1 and 2m elements in G2. The SRS consists only of monomials and therefore is updatable. The
verifier’s SRS consists of the group description, 1 elements in G1 and 1 elements in G2.

We calculate the prover computation. Our recursive argument requires log(m) rounds. The left and right
commitments at each recursive round of GIPA require a total of 6m pairings to compute: 3m in the first
round, 3m

2 in the second round, and 3m
2j−1 in the j-th round. Homomorphically rescaling the commitment keys

(v,w) and the messages (A,B) require a total of 2m exponentiations in each source group. The prover for
the final commitment key costs 2m group exponentiations in each source group (for each commitment key).
In total this sums to 6m pairings, 4m G1 exponentiations and 4m G2 exponentiations.

Regarding proof size, we have 6 log(m) GT elements from the recursive argument, 1 G1 element and 1
G2 element from the final openings, and 2 G1 elements and 2 G2 elements from the final commitment key
argument (i.e., w, v, and their proofs of correctness).

The verifier computes 7 pairings: 3 from the recursive argument and 4 from the final commitment
key argument. Homomorphically rescaling the commitments in the recursive argument requires 6 log(m)
exponentiations in GT . The verifier also computes f(z) in the final commitment key argument which costs
2` = 2 log2(m) field multiplications and additions.
Security. Here we prove soundness for TIPP in the algebraic group model.

Theorem 3 (Computational knowledge-soundness TIPP). The protocol defined in Section 5.3 for the NP
relationRTIPP has computational knowledge-soundness (Definition 6) against algebraic adversaries under
the q-ASDBP and 2q-SDH assumptions.

Proof. The commitment scheme CM((v′,w, 1), (A′,B, Z)) = (A′ ∗ v′, w ∗B, Z) = (T,U, Z) is doubly
homomorphic: the key spaceGm

2 ×Gm
1 ×F is homomorphic underG2 multiplication,G1 multiplication, and

F addition. The message space Gm
1 ×Gm

2 ×GT is homomorphic under the respective group multiplications.
The commitment space GT ×GT ×GT is homomorphic under GT multiplication. All groups have prime
order p for p > 2λ. The commitment scheme is also binding by the q-ASDBP assumption. This means that
the commitment scheme is an inner product commitment. Thus either the adversary convinces the verifier of

17



TIPP.Prove(〈group〉, pk = (
[
gα

i
]2m−2
i=0

,
[
hβ

i
]2m−2
i=0

), (T,U, Z, r), (A,B,w,v, r))

↔ TIPP.Verify(〈group〉, vk = (gβ, hα), (T,U, Z, r)) :
1. Prover rescalesA and v with respect to linear combination challenge r:

A′ = Ar v′ = vr−1
.

Run GIPA:
2. Prover and verifier run GIPA with CMTIPP and Collapseid with some minor changes:

GIPACM-TIPP.Prove(〈group〉, (v′,w, 1GT ), (A′,B))↔ GIPACM-TIPP.Verify(〈group〉, ·, (T,U, Z))

(a) The verifier does not take as input a commitment key, and does not perform commitment key
rescalings during GIPA execution. The verifier takes as output the final commitment C, the final
message values (A,B), and the recursive round challenges x = [xj ]

logm
j=0 .

(b) The prover stores the recursive round challenges x and the final commitment keys (v, w) =
(ck1, ck2).

(c) The prover sends the final commitment keys (v, w) to the verifier.
Prove well-formedness of final commitment keys:
3. Define the following polynomials for ` = logm:

fw(X) =
∏̀
j=0

(
1 + x`−jX

2j+1
)

f ′v(X) =
∏̀
j=0

(
1 + x−1`−j(rX)2

j+1
)

4. Prover and verifier run the argument from Figure 2 for each final commitment key v and w:

CK.Prove(〈group〉, fw(X),
[
gα

i
]2m−2
i=0

)↔ CK.Verify(〈group〉, (w, fw(X), hα))

CK.Prove(〈group〉, f ′v(X),
[
hβ

i
]2m−2
i=0

)↔ CK.Verify(〈group〉, (v, f ′v(X), gβ))

5. Verifier returns 1 if the above arguments accept and if CMTIPP((v, w, 1GT ); (A,B, e(A,B))) == C.

Figure 3: TIPP argument of knowledge for inner pairing product between committed vectors.

incorrect w, v, or by Theorem 1 an adversary that breaks knowledge-soundness can extract a validm-ASDBP
instance. An algebraic adversary that convinces a verifier of incorrect w, v can extract a valid 2m-SDH
instance by Lemma 4.

5.4 MIPPu: Multiexponentiation with unknown field vector

In the MIPPu protocol, a prover demonstrates knowledge for pairing commitment T ∈ GT and KZG
commitment B ∈ G2 of A ∈ Gm

1 as the opening of T and b ∈ Fm as the opening of B where U =∏m−1
i=0 Ar

2ibi
i for a public field element r. The public field element r, as in Section 5.3, allows the argument

to be used for random linear combinations.
The MIPPu relation is captured formally as follows:
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communication complexity time complexity

|SRS| |π| Prove Verify

TIPP 2m G1 + 2m G2 6 logm GT + 3 G1 + 3 G2 4m G1 + 4m G2 + 6m P 7 P + 6 logm GT
MIPPu m G1 + 2m G2 2 logm GT + 3 G1 + 2 G2 + 1 F 3m G1 + 3m G2 + 2m P 6 P + 2 logm GT
MIPPk 2m G2 2 logm GT + 1 G1 + 2 G2 m G1 + 3m G2 + 2m P 4 P + 2 logm GT + logm F

Table 2: Efficiency table for TIPP,MIPPk, and MIPPu. The verifier keys are succinct.

RMIPP-u =


 〈group〉, gβ ∈ G1, h

α ∈ G2, T ∈ GT , B, U ∈ G1, r ∈ F ;

w = [gα
2i

]m−1i=0 ,A ∈ Gm
1 ,v = [hβ

2i
]m−1i=0 , b ∈ Fm,

r = [r2i]m−1i=0 ∈ Fm

 :

T = A ∗ v ∧ B = wb ∧ U = Ar◦b

 .

TheMIPPu argument proceeds analogously to TIPP if using the inner product commitment CMMIPP-u

where kU is initialized to 1GT :
CMMIPP-u((v,w, kU ); A, b, U) := (A ∗ v,wb, kUU)

However, we make a small optimization by replacing the above commitment scheme with a modified
scheme CM′MIPP-u with a commitment size consisting only of one element inGT (concretely∼25% reduction
in size). Recall, the proof sizes are logarithmic with respect to the commitment, so cutting the commitment
size by 25% more or less cuts the proof size by the same proportion.

Using CM′MIPP-u adds two additional random group elements ĥ1, ĥ2
$←− G2 to the prover key and verifier

key (pk, vk) during setup. After setting (T,B,U, r), the verifier samples values (c1, c2)
$←− F and sends them

to the prover. The prover and verifier then each set ĥ′1 = ĥc11 and ĥ′2 = ĥc22 . The values ĥ′1 and ĥ′2 become
part of the commitment key for the following inner product commitment:

CM′MIPP-u((v,w, (ĥ′1, ĥ
′
2)); A, b, U) := (A||wb||U) ∗ (v||ĥ′1||ĥ′2)

The prover then proceeds analogously to TIPP. First, running GIPA with CM′MIPP-u with the identity
collapsing function over message (Ar, b, U = Ar◦b) and commitment key (v′ = vr−1

,w, (ĥ′1, ĥ
′
2)). The

verifier runs with commitment C = T · e(B, ĥ′1) · e(U, ĥ′2. The final commitment keys w and v are proved
with respect to the same polynomials fw(X) and f ′v(X).

A full description of the protocol is given in Figure 4. Soundness follows for algebraic adversaries from
the q-ASDBP and the q-SDH assumptions and the algorithm is proven secure in Theorem 7 deferred to
Appendix D.4.

5.5 MIPPk: Multiexponentiation with known field vector

In the MIPPk protocol a prover demonstrates knowledge of A ∈ Gm
1 such that A commits to pairing

commitment T under v and U = Ab for a public vector b ∈ Fm.
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MIPPu.Prove(〈group〉, pk = (
[
gα

i
]2m−2
i=0

,
[
hβ

i
]2m−2
i=0

, ĥ1, ĥ2), (T,B,U, r), (A, b,w,v, r))

↔ MIPPu.Verify(〈group〉, vk = (gβ, hα, ĥ1, ĥ2), (T,B,U, r)) :

1. Verifier samples (c1, c2)
$←− F and sends them to prover.

2. The prover and verifier set ĥ′1 = ĥc11 and ĥ′2 = ĥc22 .
3. Verifier sets T ′ = T · e(B, ĥ′1) · e(U, ĥ′2).
4. Prover rescalesA and v with respect to linear combination challenge r:

A′ = Ar v′ = vr−1
.

Run GIPA:
5. Prover and verifier run GIPA with CMMIPP′-u with some minor changes:

GIPACM′-MIPP-u.Prove(〈group〉, (v′,w, (ĥ′1, ĥ′2)), (A′,B))↔ GIPACM′-MIPP-u.Verify(〈group〉, ·, T ′)
(a) The verifier does not take as input a commitment key, and does not perform commitment key

rescalings during GIPA execution. The verifier takes as output the final commitment C, the final
message values (A,B), and the recursive round challenges x = [xj ]

logm
j=0 .

(b) The prover stores recursive round challenges x and final commitment keys (v, w) = (ck1, ck2).
(c) The prover sends the final commitment keys (v, w) to the verifier.

Prove well-formedness of final commitment keys:
6. Define the following polynomials for ` = logm:

fw(X) =
∏̀
j=0

(
1 + x`−jX

2j+1
)

f ′v(X) =
∏̀
j=0

(
1 + x−1`−j(rX)2

j+1
)

7. Prover and verifier run the argument from Figure 2 for each final commitment key v and w:

CK.Prove(〈group〉, fw(X),
[
gα

i
]2m−2
i=0

)↔ CK.Verify(〈group〉, (w, fw(X), hα))

CK.Prove(〈group〉, f ′v(X),
[
hβ

i
]2m−2
i=0

)↔ CK.Verify(〈group〉, (v, f ′v(X), gβ))

8. Verifier returns 1 if above arguments accept and if CM′MIPP-u((v, w, (ĥ′1, ĥ
′
2)); (A,B, e(A,B))) = C.

Figure 4: MIPPu argument of knowledge for multiexponentiation inner product between committed vectors.

The MIPPk relation is captured formally as follows:

RMIPP-k =


(
〈group〉, gβ ∈ G1, T ∈ GT , U ∈ G1, b ∈ F ;

A ∈ Gm
1 ,v = [hβ

2i
]m−1i=0 , b = [bi]m−1i=0

)
:

T = A ∗ v ∧ U = Ab

 .

For the known vector multiexponentiation inner product, we use an inner product commitment that
commits to the vector b as itself using a key kb initialized to 1F. Since the commitment is no longer compact,
we use a collapsing function that collapses the vector by adding the first and second halves. This provides the
required homomorphic properties of Definition 3.

CMMIPP-k((v,kb, 1GT ); A, b, U) := (A ∗ v, [kb,ibi]m−1i=0 , U)

20



MIPPk.Prove(〈group〉, pk = (
[
hβ

i
]2m−2
i=0

, ĥ), (T,U, b), (A,v, b = [bi]m−1i=0 ))

↔ MIPPk.Verify(〈group〉, vk = (gβ, ĥ), (T,U, b)) :

1. Verifier samples c $←− F and sends to prover.
2. The prover and verifier set ĥ′ = ĥc.
3. Verifier sets T ′ = T · e(U, ĥ′).
Run GIPA:
4. Prover and verifier run GIPA with CM′MIPP-k and Collapse

′
MIPP-k with some minor changes:

GIPACM′-MIPP-k.Prove(〈group〉, (v′,1, ĥ′), (A, b))↔ GIPACM′-MIPP-k.Verify(〈group〉, ·, (T ′, ·))
(a) The prover does not send the commitment to b in each round.
(b) The verifier does not take as input a commitment key, and does not perform commitment key

rescalings during GIPA execution. The verifier takes as output the final commitment C, the final
message value A, and the recursive round challenges x = [xj ]

logm
j=0 .

(c) The prover stores the recursive round challenges x and the final commitment key v = ck1.
(d) The prover sends the final commitment key v to the verifier.

Prove well-formedness of final commitment key:
5. Define the following polynomials for ` = logm:

fv(X) =
∏̀
j=0

(
1 + x−1`−jX

2j+1
)

6. Prover and verifier run the argument from Figure 2 for final commitment key v:

CK.Prove(〈group〉, fv(X),
[
hβ

i
]2m−2
i=0

)↔ CK.Verify(〈group〉, (v, fv(X), gβ))

7. Verifier computes b′ =
∏`
j=0

(
1 + x−1`−jb

2j
)
.

8. Verifier returns 1 if above argument accepts and if CM′MIPP-u((v, 1G1 , ĥ
′); (A, b′, Ab

′
)) = (C, b′).

Figure 5: MIPPk argument of knowledge for multiexponentiation inner product between a committed vector of
group elements and a known structured vector of field elements.

CollapseMIPP-k(C = (CA,Cb, CU )) = (CA, [Cb,i + Cb,(i+m
2
)]
m
2
−1

i=0 , CU )

If we were to run GIPA naively with this commitment, the proof size would be linear in the length of b.
However, we can use a similar to trick to how we calculate the final commitment keys (Section 5.2). Instead
of sending the commitment to the rescaled message b at each recursive round, we observe that rescaling
the structured vector b leads to a closed-form expression of the final b′ message using recursive challenges
x = [xj ]

logm
j=0 (follows from Proposition 1): b′ =

∏`
j=0

(
1 + x−1`−jb

2j
)
. This value b′ can be computed in

logm time by the verifier and allows for the prover to omit the commitment to b, bringing the proof size back
to logarithmic inm.

In addition, as in Section 5.4 for MIPPu, we provide an optimized inner product commitment scheme
CM′MIPP-k with commitment size equal to one element of GT (when using the above trick to omit b). The
commitment CM′MIPP-u adds one additional random group element ĥ $←− G2 to the prover key and verifier key
(pk, vk) during setup. After setting (T,U, b), the verifier samples value c $←− F and sends it to the prover. The
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prover and verifier then each set ĥ′ = ĥc. The value ĥ′ becomes part of the commitment key for the following
inner product commitment:

CM′MIPP-k((v,kb, ĥ
′); A, b, U) := ((A||U) ∗ (v||ĥ′), [kb,ibi]m−1i=0 )

Collapse′MIPP-k(C = (CA||U , b = [bi]m−1i=0 )) = (CA||U , [Cb,i + Cb,(i+m
2
)]
m
2
−1

i=0 )

A full description of the protocol is given in Figure 5. Soundness follows for algebraic adversaries from
the q-ASDBP and the q-SDH assumptions and the algorithm is proven secure in Theorem 6 deferred to
Appendix D.4.

6 Log-time verifier polynomial commitments with square root SRS

In this section we introduce a polynomial commitment (PC) scheme with a square root sized SRS and
opening time, and logarithmic proof sizes and verifier time. We use a two-tiered homomorphic commitment
algorithm similar to the one from [Gro11] but with structured keys. We first describe how our PC can
be used for bivariate polynomials, and then present a simple way to use it for univariate polynomials as
well. In Appendix E, we show how these polynomial commitments can be made hiding for zero-knowledge
applications.

6.1 Two-tiered inner product commitment

We describe a two-tiered inner product commitment for bivariate polynomials. It is based on the [Gro11]
two tiered commitment. We use the structured-key variant of the [AFGHO16] commitment introduced
in Section 5.1 to commit to the KZG commitments [KZG10]. A brief description of KZG commitments was
also given in Section 5.1. We describe our polynomial commitment in Figure 6.

To commit to a polynomial f(X,Y ) =
∑m−1

j=0 fj(Y )Xj given commitment key ck = (g,v, ĥ), the
committer computes m KZG polynomial commitments A = [Aj ]

m−1
j=0 to y-polynomials f = [fj(Y )]m−1j=0

where say fj(Y ) has coefficients aj = [ai,j ]
`−1
i=0 : Aj = KZG.CM(g,aj) = gaj = g

∑`−1
i=0 ai,jα

i
. The

committer then computes the pairing commitment [AFGHO16] to the KZG commitments

T = A ∗ v =

m−1∏
j=0

e(Aj , vi) =

m−1∏
j=0

e(Aj , h
β2j

) .

Thus, T = e(g, h)
∑`−1,m−1
i,j=0 ai,jα

iβ2j

, and this commitment is binding under the q-ASDBP assumption and
the q-SDH assumption.

6.2 Two-tiered opening

Our opening algorithm proves a commitment T to a polynomial f(X,Y ) evaluates to ν at a point (x, y) ∈ F2.
We proceed in three steps. First the prover produces an opening for an outer tier partial evaluation
U = f(x, Y ) =

∏m−1
i=0 Ax

i

i for a point x ∈ F. Observe that U is a KZG commitment to the univariate
polynomial f(x, Y ) =

∑`−1
j=0(

∑m−1
i=0 ai,jx

i)Y j . Second the prover produces aMIPPk proof (see Section 5.5)
that U is the inner product of the opening to T and the vector x = (1, x, . . . , xm−1). Third the prover produce
a KZG proof that ν is the evaluation of U at y. The prover returns U and the two proofs. The verifier simply
checks the two proofs.
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Setup(1λ, `,m) :

〈group〉 ← SampleGrp3(1
λ)

ĥ
$←− G2; α, β

$←− F
g ← [gα

i
]`−1i=0

v ← [hβ
2i

]m−1i=0

ck← (〈group〉, g,v, ĥ)

ek← (〈group〉, g, [hβi ]2m−2i=0 , ĥ)

vk← (〈group〉, gβ, hα, ĥ)
Return (ck, vk)

Open(ek, T, (x, y), ν, f(X,Y ), [Aj ]
m−1
j=0 )

(〈group〉, g, pk, ĥ)← ek

U ←
∏m−1
j=0 Ax

i

j

π1 ← MIPPk.Prove(〈group〉, (pk, ĥ), (T,U, x), (A,v,x))
π2 ← KZG.Open(〈group〉, g, f(x, Y ), ν)
Return (U, π1, π2)

CM(ck, f(X,Y )) :

[Aj ]
m−1
j=0 ←

∏`−1
i=0 g

ai,j
i

T ←
∏m−1
j=0 e(Aj , vj)

Return T

Check(vk, (T, (x, y), ν), (U, π1, π2))

b1 ← MIPPk.Verify(〈group〉, (gβ, ĥ), (T,U, x), π1))
b2 ← KZG.Verify(〈group〉, hα, U, π2, y)
Return b1 ∧ b2

Figure 6: A two-tiered inner product commitment.

Theorem 4. If there exists a bilinear group sampler SampleGrp3 that satisfies the q-ASDBP assumption
in G2 and the q-SDH assumption, then the protocol in Fig. 6 is a polynomial commitment scheme with
computational extractability against algebraic adversaries.

Note that computing the partial opening U takes m` G1 exponentiations if computing from scratch.
Instead, if the KZG commitments to the y-polynomialsA are given as input, U can be computed with onlym
G1 exponentiations. Thus, we pass A, which was already computed during commitment, as auxiliary data to
the opening algorithm to facilitate our square root degree opening time.

6.3 Supporting univariate polynomials

If we have a univariate polynomial, then we set `m = d for d the degree of f(X) and fi(Y ) = ai` +
ai`+1Y + . . .+ a(i+1)`−1Y

`−1 =
∑`−1

j=0 ai`+jY
j . Observe now that p(X,Y ) =

∑m−1
i=0 fi(Y )Xi is such that

p(X`, X) = f(X) Thus we commit to f(X) by committing to p(X,Y ). To evaluate f(X) at x the prover
evaluates the first tier at x` and the second at x. If ` ≈ m then we have square root values fi(X) which each
have degree square root in d. Hence our IPP arguments are ran over a square root number of commitments,
which is what makes our verifier complexity and SRS size square root.

6.4 Evaluation

In Figure 7, we compare the performance for of our polynomial commitment scheme against the state-of-the-art
KZG commitment scheme. In optimizing the IPA commitment scheme, we found that the MIPPk proof was
more expensive than the KZG proof. Therefore, it makes sense to skew the split of the polynomial so the
MIPPk proof is over a smaller vector than the KZG proof. We found a skew of κ = 16 to be optimal, leading
to a split ofm =

√
d
κ and ` = κ

√
d; this explains the hitch in the plots until the optimal tradeoff is able to be

made at d = 210.
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Figure 7: Measured performance of the IPA polynomial commitment.

Both KZG and our IPA produce commitments of constant size (a single G1 element for KZG and a single
GT element for IPA). The differences are that KZG allows for constant opening proof sizes and constant
verifier time (versus our logarithmic opening sizes and verifier time), whereas IPA allows for square root
opening time and SRS size (compared to the linear complexity of KZG).

These asymptotic differences result in significant concrete tradeoffs between the two schemes. As
expected, the IPA commitment, while expensive for low degree polynomials due to overhead of the inner
product argument, quickly becomes much faster to compute opening proofs with breakeven degree being
d ≈ 2000; at d = 106, IPA is 14× faster, and at d = 250× 106 is 80× faster. Similar savings are made with
respect to prover SRS size. For degree 106, IPA requires an SRS of size 800KB, 60× smaller than the 50MB
SRS required by KZG. In contrast, the IPA verifier time and opening size grow logarithmically and thus
do not get too large; verifier time remains below 50ms even for polynomials of degree d = 250× 106, and
opening proof size remains below 4KB.

7 Aggregating SNARK proofs

We now discuss how the inner pairing product can be used to verify that n independently generated SNARK
proofs on independent instances can be aggregated to a O(log(n)) sized proof. While zk-SNARKs have
constant-sized proofs and verifiers, in many settings such as blockchains a verifier needs to read and verify
many proofs created by independent provers. We show how the TIPP protocol run by an untrusted aggregator
can be used to aggregate these proofs into a small logarithmic sized proof. The verifiers only need to check the
aggregated proof to be convinced of the existence of the underlying pairing-based SNARKs. The protocol can
be made non-interactive and publicly verifiable using the Fiat-Shamir transform. This results in a logarithmic
sized aggregation of n SNARKs without the need for expensive pairing-friendly cycles of elliptic curves.

To date the most efficient zkSNARK is due to Groth [Gro16] and consists of 3 group elements and 3
pairings to check. We thus choose to describe our methods with respect to Groth16, but note that they apply
more generally to pairing based SNARKs that do not use random oracles. We present only the Groth16
verifier and not the prover, for it is the verification equations that we aim to prove are satisfied.
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7.1 Groth 2016 background

We describe our protocol for aggregating Groth16 SNARKs recalling the following facts:
• Structure of the verification key vk: The verification key is of the form:

vk := (p = gρ, q = hτ , [sj = g(βuj(x)+αvj(x)−wj(x))]2`j=1, d = hδ) .

Here ρ, τ, δ, x ∈ F are secrets generated (and discarded) during the generation of the proving and verification
keys, and ui(X), vi(X), wi(X) are public polynomials that together define the QAP representation of the
computation being checked.

• Structure of the proof π: The proof π is of the form π := (A,B,C) ∈ G1 ×G2 ×G1is of the form:
• Verifier’s checks: On input a verification key vk, an NP instance x := (a1, . . . , am) ∈ Fm, and a proof
π = (A,B,C), the verifier checks that e(A,B) = e(p, q) · e(

∏2`
j=1 s

aj
1,j , h) · e(C, d).

7.2 Our aggregation protocol

Setup(〈group〉, [pki, vki]
n
i=1):

1. Sample α, β $←− F.
2. Construct commitment key for the commitment scheme from Section 5.1:

ck〈group〉 := (〈group〉,w = [gα
2i

]n−1i=0 ,v = [hβ
2i

]n−1i=0 ).
3. Construct TIPP SRS: srsTIPP ← TIPP.Setup(〈group〉,R〈group〉, α, β).
4. For each i ∈ [n], parse vki as (〈group〉,Ri, p, q, [si,j ]`j=1, di).
5. Commit to instance-specific elements from Groth16 verification keys:

(a) Set d := [d1, . . . , dn].
(b) Commit to d: Cd := CM(ck〈group〉,d) = w ∗ d.
(c) For each j ∈ [`], commit to sj : Csj := CM(ck〈group〉, sj = [si,j ]

n
i=1) = sj ∗ v.

6. Set prover key pkagg := ([pki]
n
i=1, ck〈group〉, srsTIPP, [Csj ]

`
j=1

, Cd,d).
7. Set verifier key vkagg := ([vki]

n
i=1, ck〈group〉, (h

α, gβ), [Csj ]
`
j=1

, Cd).

Agg(pkagg, [(xi, πi)]
n
i=1):

1. Compute (πagg, r) := AggHelper(pkagg, [(xi, πi)]
n
i=1,⊥), and output πagg.

Verify(vkagg, [xi = [ai,j ]
`
j=1]

n

i=1
, πagg):

1. For each j ∈ [`], compute Zsj :=
∏n
i=1 s

ai,jr
2(i−1)

i,j .
2. Check that VerifyHelper(vkagg, [Zsj ]

`
j=1

, πagg,⊥) = (1, r).

Figure 8: Aggregation of Groth16 SNARKs

Our aggregation protocol is described in Fig. 8. Givenn instances [[ai,j ]
`
i=0]

n−1
j=0 and proofs [(Aj , Bj , Cj)]

n−1
j=0 ,

checking each equation separately requires performing 3n pairings and n` exponentiations. To reduce this
computation to a single verification, the verifier can take a random linear combination between all equations.
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Figure 9: Measured performance of TIPP aggregation of SNARK proofs compared to the cost of proving a one
layer of recursion inside a SNARK.

That is, the verifier samples r $←− F, sets r = (1, r2, . . . , r2n−2) and then checks whether

A−r ∗B = e(p
∑n−1
j r2j , q) · e(

∏̀
i=1

s
∑n−1
j=0 ai,jr

2j

i , h) · e(
n−1∏
j=0

Cr
2j

j , d) , (2)

If this equation holds then with overwhelming probability each individual verification holds. It therefore
suffices to check this one pairing product instead of checking all SNARKs individually.

Our aggregator uses an aggregator helper (Fig. 10) as a subroutine that is also used in our the complexity-
preserving SNARKs. The aggregator helper is where the bulk of the algorithm is described. The aggregator
helper allows for additional proof components to be sent before the challenge r is computed. Here those proof
elements will just be ⊥. The aggregator helper generates a commitment to A, B and C. These are hashed to
get the challenge r. Then the prover computesAr ∗B and Cr and proves using inner product arguments
that these are correct. The verifier checks the proof and also that Eq. (2) is satisfied.

7.3 Evaluation

In Figure 9, we compare the performance for aggregating varying numbers of SNARK proofs using
our aggregation protocol, aggregating by using two-chains recursive SNARKs [BCGMMW20], and not
aggregating at all (i.e., sending all proofs individually). The two-chains recursive approach proves inside
another SNARK that each of the aggregated SNARKs are valid. The verification time for no aggregation
consists of a single batched pairing check.

While our protocol does not produce constant-sized proofs, it provides orders of magnitude improvements
in setup size and aggregation time; allowing for a 900× speedup in aggregating 64 proofs, the maximum
size the two-chains approach was able to aggregate on our 250GB benchmark machine before running out of
memory3. In the same time it takes to aggregate 64 proofs with the two-chains approach our protocol can
aggregate 65k proofs into a 35KB proof that takes 300ms to verify.

3The memory issues stem from the requirement to compute a large fast furrier transform
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AggHelper(pkagg, [(xi, πi)]
n
i=1, x):

1. Parse pkagg as ([pki]
n
i=1, ck〈group〉, srsTIPP, [Csj ]

`
j=1

, Cd,d).
2. For each i ∈ [n]:

(a) Parse xi as (ai,1, . . . , ai,`), and πi as (Ai, Bi, Ci) ∈ G1 ×G2 ×G1.
(b) Obtain vki from pki, and parse vki as (〈group〉,Ri, p, q, [si,j ]`j=1, di).

Commit to elements of Groth16 proofs:
3. SetA := (A1, . . . , An), B := (B1, . . . , Bn), and C := (C1, . . . , Cn).
4. Commit to proof elements:

CA := CM(ck〈group〉,A) = A ∗ v CB := CM(ck〈group〉,B) = w ∗B
CC := CM(ck〈group〉,C) = C ∗ v

Prove that the instances and proofs satisfy the verifier’s checks:
5. Compute challenge r := Hash(x,CA, CB, CC), and set r := (1, r2, . . . , r2n−2).
6. Compute the inner-pairing products ZAB := Ar ∗B and ZCd := Cr ∗ d.
7. Compute a TIPP proof πTIPP,AB asserting that (CA, CB, ZAB, r) is a valid instance ofR〈group〉.
8. Compute a TIPP proof πTIPP,C asserting that (CC , Cd, ZCd , r) is a valid instance ofR〈group〉.
Construct aggregation proof:
9. Output the aggregation proof

πagg :=

commitments (CA, CB, CC)
inner-pairing
products ZAB, ZCd

TIPP proofs (πTIPP,AB, πTIPP,C)

.

VerifyHelper(vkagg, [Zsj ]
`
j=1

, πagg, x):
1. Parse vkagg as ([vki]

n
i=1, ck〈group〉, (h

α, gβ), [Csj ]
`
j=1

, Cd).

2. Parse πagg as

commitments (CA, CB, CC)
inner-pairing
products ZAB, ZCd

TIPP proofs (πTIPP,AB, πTIPP,C)

.

Check that the instances and proofs satisfy the verifier equations.
3. Compute challenge r := Hash(x,CA, CB, CC).
4. Check that ZAB = Ar ∗B: TIPP.Verify(SRS, (CA, CB, ZAB, r), πTIPP,AB) = 1.
5. Check that ZCd = Cr ∗ d: TIPP.Verify(SRS, (CC , Cd, ZCd , r), πTIPP,C) = 1.
6. Check that ZAB = e(p, q)

∑n
i=1 r

2(i−1) · e(
∏`
j=1 Zsj , h) · ZCd .

Figure 10: Aggregation Helper functions

8 Low-memory SNARKs for machine computations

We now show how to leverage our aggregation protocol in Section 7 to construct a low-memory SNARK for
(non-deterministic) machine computations. A machine computationM consists of a repeated computation P
over a fixed number of registers. An external memory of size S that P can read and write to can be modeled
using techniques for online memory checking [BCCT13; BCGT13; BEGKN91] in which the memory is
represented as a Merkle tree. In this case, an arithmetic circuit C for computation P can be built such that
|C| = polylog(S). Taking this same approach, we prove Theorem 5, which states that if for a machine
computationM which executes using memory S over T repeated steps of computation P , then our SNARK
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MSNARK.Setup(〈group〉,M, n):
1. Obtain step circuit P ′ fromM , and compute (pk, vk) := Groth16.Setup(〈group〉, P ′).
2. For each i ∈ [n], set (pki, vki) := (pk, vk).
3. Construct aggregation keys: (pkagg, vkagg) := Agg.Setup(〈group〉, [pki, vki]

n
i=1).

4. For each i ∈ [n], parse vki as (〈group〉,Ri, p, q, [si,j ]2`j=1, di).
5. For each j ∈ [2`], commit to sj : Csj := CM(ck〈group〉, [s1,j ]

n
i=1) = sj ∗ v.

6. Sample γ $←− F.
7. Compute commitment key for KZG10: ckKZG = (〈group〉, g = [gγ

i

]n−1
i=0 , h

γ).
8. Set verifier key vkM := (vkagg, [Csj ]2`

j=1
, hγ).

9. Set prover key pkM := (pkagg, vkM , [pki]
n
i=1, ckKZG).

Figure 11: Setup for our low-memory SNARK for machines.

prover takes time Õ(|C| · T ) and space Õ(|C|+ T + S) to produce a proof for that execution.
In comparison, constructing a monolithic proof for the entire computation at once requires the same time,

but incurs a space usage of Õ(|C| ·T +S). The only other solution for constructing low-memory SNARKs for
machine computations requires recursive composition of proofs [BCCT13]. Recursive composition achieves
a further improved space usage of Õ(|C|+ S), but the time to prove, while asymptotically is equivalent to
the previous solutions, is concretely very expensive.

Definition 4 (Machine relation). For a Turing machineM with step computation P , the NP relationRM is
the set of of instance-witness pairs (y, w) = ((x, T ), w), such thatM accepts (x,w) after at most T steps
applying P .

Theorem 5. Let RM be a machine relation for some machine M with step computation P that can be
represented with arithmetic circuit C. Then there exists a SNARK forRM where
(1) Setup takes time O(Tmax + |C|), where Tmax is an upper bound on the number of computation steps.
(2) Proving takes time Õ(|C| ·T ) and uses space Õ(|C|+T +S), where S is the space required to compute

M and T is the number of computation steps.
(3) Verification takes time O(log(T )).
(4) Proof size is O(log(T )).

8.1 Overview of solution

LetM be a machine, such that each step performs some computation P , and the state at the end of the i-th
timestep consists of ` registers (ri,1, . . . , ri,`), where ` = polylog(S).

We describe our setup, prove and verify functions in Figures 11, 12, and 13. Our solution, as described,
keeps the witness elements (w1, . . . , wn) perfectly hidden. This is due to the fact that Groth 16 proofs are
perfectly zero-knowledge. However we warn the reader that the elements in the registers a, b are not hidden.
Further work would need to be performed to make our solution zero-knowledge.

Our protocol can be extended to support the case where the each step of the machine computation is a
different function. For example, our protocol can support the case where first ten steps check a hash function
evaluation, while the next ten steps verify signatures. For simplicity of exposition, our protocol description
considers only the single function case.
Attempt #1: Just aggregate. A first idea would be to generate a Groth16 SNARK for each step, and then
to aggregate the proofs for all steps using the protocol of Section 7. In more detail, the setup algorithm first
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MSNARK.Prove(pkagg,x,w):
1. Parse pkM as (pkagg, vkM , [pki]

n
i=1, ckKZG), and parse vkM as (vkagg, [Csj ]2`

j=1
, hγ).

2. From (x,w), obtain the execution transcript transcript.
3. For each i ∈ [n]:

(a) Obtain the i-th state ([ai,j ]
`
j=1, [bi,j ]

`
j=1) and i-th witnesswi from transcript.

(b) Compute πi = (Ai, Bi, Ci) := Groth16.Prove(pki, ([ai,j ]
`
j=1, [bi,j ]

`
j=1),w).

(c) Parse pki to obtain vki, and parse vki as 〈group〉,Ri, p, q, [si,j ]2`j=1, di.
Commit to each instance xi:
4. For each j ∈ [`], compute a KZG10 commitment to [ai,j ]

n
i=1 and [bi,j ]

n
i=1:

Cφj := KZG.CM(ckKZG, [ai,j ]
n
i=1),

Cφ`+j := KZG.CM(ckKZG, [bi,j ]
n
i=1).

Prove relation between committed instances:
5. Compute challenge point x := Hash(Cφ1 , . . . , Cφ2`).
6. For each j ∈ [`]:

(a) Construct “instance-checker” polynomial pj(X) :=
∑
i(ai,j − bi,jx)Xi.

(b) Prove the claim that “pj(x) = a1,j − bn,jxn”: νj
$←− KZG.Open(ckKZG, pj , x).

Prove satisfaction of Groth16 verifier equations:
7. (πagg, r) := Agg.AggHelper(pkagg, [(xi, πi)]

n
i=1, x).

Prove that validity of committed instances:
8. For each j ∈ [`], set Zsj :=

∏n
i=1 s

ai,jr
2(i−1)

i,j , and Zs`+j :=
∏n
i=1 s

bi,jr
2(i−1)

i,(`+j) .
9. For each j ∈ [2`]:

Prove that (Csj , Cφj , Zsj , r) ∈ RMIPP: πMIPP,j := MIPPu.Prove((Csj , Cφj , Zsj , r)).

10. Output the proof

πM :=

 commitments ([Cφj ]2`
j=1

) instance proofs [νj ]
`
j=1

group elements [Zsj ]2`
j=1

MIPP proofs [πMIPP,j ]
2`
j=1

aggregation proof πagg

.

Figure 12: Prover for our low-memory SNARK for machines.

MSNARK.Verify(vkagg, [a1,j ]
`
j=1, [bn,j ]

`
j=1, πagg):

1. Parse vkM as (vkagg, [Csj ]2`
j=1

, hγ).

2. Parse πagg as

 commitments ([Cφj ]2`
j=1

) instance proofs [νj ]
`
j=1

group elements [Zsj ]2`
j=1

MIPP proofs [πMIPP,j ]
2`
j=1

aggregation proof πagg

.

Check relation between committed instances:
3. Compute challenge point x := Hash(Cφ1 , . . . , Cφ2`).
4. For each j ∈ [`]:

(a) Compute the commitment C := CφjC
−x
φ`+j

.
(b) Compute the expected evaluation y := a1,j − bn,jxn.
(c) Check the KZG10 evaluation proof: KZG.Verify(hγ , C, y, νj) = 1.

Check validity of aggregated proofs:
5. Compute (b, r) := Agg.VerifyHelper(vkagg, [Zsj ]2`

j=1
, πagg, x), and check b = 1.

Check validity of committed instances:
6. For each j ∈ [2`]:

(a) Check that (Csj , Cφj , Zsj , r) is a valid instance ofRMIPP: MIPPsrs.Verify((Cs`+j , Cφ`+j , Zsj , r), πMIPP,j) = 1.

Figure 13: Verifier for our low-memory SNARK for machines.
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invokes (pk, vk) := Groth16.Setup(1λ, P ′), where P ′ is an arithmetic circuit that takes as public input 2`
field elements (a1, . . . , a`, b1, . . . , b`), and checks that P , when invoked on a register assignment (a1, . . . , a`)
produces registers whose assigned value is (b1, . . . , b`). It then invokes Agg.Setup(1λ, pk) to generate keys
for aggregating T proofs for P ′.

The proving algorithm then simply generates all T proofs, aggregates them using the Agg.Agg algorithm,
and outputs π := (πagg, [([ai,j ]

`
j=1, [bi,j ]

`
j=1)]

T

i=1
). Finally, the verifier checks that, for each i ∈ [T ],

[bi,j ]
`
j=1 = [ai+1,j ]

`
j=1, and then invokes Agg.Verify to check that the aggregated proofs are correct. There

are two problems with this approach: the output proof π is not succinct, and the verifier performs O(T ) work.
Attempt #2: Our protocol. Notice that the foregoing protocol has succinct proofs and succinct verification
except for the steps that handle the registers. To remedy this, we handle the two sources of inefficiency as
follows.

First, to speed up the checks asserting that the output of one step is the input of the next, we use
the following idea: for each j ∈ [`], the prover defines the j-th “instance-checker” polynomial pj(X) :=∑

i(ai,j − bi,jx)Xi (for a random x ∈ F). This polynomial has the property that ∀i ∈ [n], ai,j = bi−1,j if and
only pj(x) = a1,j − bn,jxn. The prover then commits to each of these j polynomials via KZG commitment
Cj , and proves the foregoing evaluation claim. The verifier can check the resulting evaluation proof by
appropriately rescaling the commitments [Cj ]

`
j=1. Next, to assert that the values committed inside [Cj ]

`
j=1

indeed satisfy the Groth16 verifier, we use a MIPP proof. Together, these approaches allow us to make both
proof size and verifier time logarithmic, as required.
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A Preliminaries

A.1 Bilinear groups

The cryptographic primitives that we construct in this paper rely on cryptographic assumptions about bilinear
groups. We formalize these via a bilinear group sampler, which is an efficient algorithm SampleGrp that
given a security parameter λ (represented in unary), outputs a tuple 〈group〉 = (G1,G2,GT , q, g, h, e) where
G1,G2,GT are groups with order divisible by the prime q ∈ N, g generates G1, h generates G2, and
e : G1 ×G2 → GT is a (non-degenerate) bilinear map.

Galbraith et al. distinguish between three types of bilinear group samplers in [GPS08]. Type I groups
have G1 = G2 and are known as symmetric bilinear groups. Types II and III are asymmetric bilinear groups,
where G1 6= G2. Type II groups have an efficiently computable homomorphism ψ : G2 → G1, while Type
III groups do not have an efficiently computable homomorphism in either direction. Certain assumptions
are provably false w.r.t. certain group types (e.g., SXDH only holds for Type III groups), and in general in
this work we assume we are working with working with a Type III groups. We will write SampleGrp3 to
explicitly denote a bilinear group sampler that outputs Type III groups.

A.2 Interactive arguments of knowledge

An interactive argument of knowledge for a relationR is defined by an efficient non-interactive setup algorithm
Setup and a pair of efficient interactive algorithms (Prove,Verify) that work as follows

• Setup(1λ)→ crs: the generator algorithm takes as input a security parameter λ (in unary) and outputs a
common reference string crs.

• 〈Prove(w),Verify〉(crs,x): the prover and verifier get as common input a set of public parameters
crs and an instance x. The prover also gets a witness w for x as private input. The interaction
begins with a prover message α0, to which the verifier responds with a challenge β1. The prover and
verifier exchange messages until the prover sends its final message αr. The verifer then outputs a bit
b← Verify(crs,x, α0, β1, . . . , βr, αr), where b = 1 if the verifier accepts and b = 0 if the verifier rejects.

and satisfy completeness and knowledge-soundness, as defined below. We say an interactive proving protocol
is public-coin when all verifier messages are uniformly chosen from some challenge set C.

Definition 5 (Perfectly complete argument). We say (Setup,Prove,Verify) has perfect completeness when
for all (x,w) ∈ R it holds that

Pr
[
〈Prove(w),Verify〉(crs,x) = 1

∣∣ crs← Setup(1λ)
]

= 1 .

Definition 6 (Knowledge-sound argument). We say Π = (Setup,Prove,Verify) has knowledge-error κ(λ) if
for each efficient prover P̃ there exists an efficient extractor EP̃ such that for all efficient adversaries A it
holds that

Pr

 tr is accepting
∧

(x,w) /∈ R

∣∣∣∣∣∣
crs← Setup(1λ)

(x, tr)← 〈P̃,Verify〉(crs)
w← E P̃(crs,x, tr)

 ≤ κ(λ) ,

where EP̃ has black-box access to each of the next-message functions of P̃ (i.e., it may “rewind” P̃). We say
Π has computational knowledge-soundness when κ(λ) is negligible. When P̃ and A are not required to be
efficient, but κ(λ) is still negligible, we say Π has statistical knowledge-soundness.
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Special soundness. We consider a notion of knowledge-soundness called special soundness, also known
as special knowledge-soundess. In the theory of Σ-protocols, we say a interactive proof system has special
soundness when there exists an efficient extraction algorithm that, given common reference string crs, instance
x, and two accepting transcripts (α0, β1, α1) and (α0, β

′
1, α
′
1) for (pp,x) where β1 6= β′1 (a “collision”),

outputs a witness w. Sometimes this property is called 2-special soundness. We consider a generalization of
this notion for (2r + 1)-message protocols when proving the knowledge-soundness of GIPA.

First, we define a (k1, . . . , kr)-tree of accepting transcripts. In the 2-special soundness case above, we
presented constraints for a 2-tree of accepting transcripts. A (k1, . . . , kr)-tree of accepting transcripts is
composed of K :=

∏
i∈[r] ki accepting transcripts (α0, β1,j , α1,j , . . . , βr,j , αr,j) for a parameters-instance

pair (pp,x), arranged in a tree structure. The root of the (k1, . . . , kr)-tree is labeled with the public parameters
pp, instance x, and prover first message α0. Each node of depth 1 ≤ i ≤ r is labeled with some prover
message αi,j , 1 ≤ j ≤

∏
ι∈[i] kι. Besides the leaves, which are labeled with final prover messages, each

node and has ki+1 children, the edges to which are labeled with distinct values for the verifier challenge βi+1.
(Note that set of edges below two different nodes may share a common challenge, but the edges below any
particular internal node must be distinct.) When for an interactive argument system Π there exists an efficient
extractor that always succeeds in extracting a witness for x given a (k1, . . . , kr)-tree of accepting transcripts
for x, we say that Π is (k1, . . . , kr)-special sound.

The following Forking Lemma due to Attema and Cramer [AC20] shows that (k1, . . . , kr)-special
soundness implies knowledge soundness and is used to prove Theorem 1, that GIPA is knowledge sound when
instantiated with a binding inner product argument.

Lemma 1 (Forking Lemma [AC20, Lemma 3]). Let (Prove,Verify) be a (k1, . . . , kr)-special sound (2r+1)-
move, public-coin interactive protocol for a relationR, where Verify samples challenges uniformly from a
space of size q. Let x ∈ {0, 1}poly(λ) and let P̃ be a prover such that 〈P̃,Verify〉(x) accepts with probability
ε(x) > µ, where

µ =

∑r
i=1(ki − 1)qr−i

∏i−1
j=1(q − kj + 1)

qr
≤
∑r

i=1(ki − 1)

q
.

Then there exists an efficient extractor EP̃ with black box access to each of the next-message functions of
P̃ , that outputs a witness w for x with probability at least (ε(x) − µ)K in at most K runs of each of the
next-message functions of P̃ , whereK =

∏r
i=1 ki.

We briefly discuss how this lemma implies Definition 6. Most of the proof of Lemma 1 involves
showing it’s possible to efficiently construct a (k1, . . . , kr)-tree of accepting transcripts for an instance x
with probability at least (ε(x)− µ)K using an adversary P̃ that succeeds with probability ε(x) > µ. At the
end of the proof the extractor promised by the definition of (k1, . . . , kr)-special soundness is then used as a
subroutine, thus proving the lemma.

To account for a Setup algorithm, we observe that if we instead run P̃ and Verify on joint input crs and let
x be part of the first prover message, then given an adversary P̃ that succeeds with probability ε(crs) > µ we
can build an accepting (k1, . . . , kr)-tree of transcripts for crs with probability at least (ε(crs)− µ)K . Since
every transcript in an accepting (k1, . . . , kr)-tree of transcripts for crs has the same first prover message and
thus x, we indeed have obtained an accepting (k1, . . . , kr)-tree of transcripts for (crs,x).

Next, we note that if given the transcript tr of an honest execution and the random coins used by P̃ when
interacting with the challenger running Verify as in Definition 6, then the extractor can use that transcript as
the left-most branch of the transcript tree. The left-most branch is the first branch that extractor constructs in
the lemma of Attema and Cramer—meaning that if tr doesn’t accept, then EP̃ immediately aborts, and if tr
accepts, then EP̃ proceeds to try to build the rest of the transcript tree for (crs,x), using the same coins when
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running P̃ . Since tr is the result of the execution of P̃ on independently random verifier challenges, and this
is exactly how the extractor of Attema and Cramer builds each branch, it follows the rest of the tree can be
built with probability at least (ε(crs)− µ)K .

Finally, we note that with the expectation taken over crs← Setup(1λ), that

E[(ε(crs)− µ)K ] ≥ E[(ε(crs)− µ)]K = (E[ε(crs)]− µ)K = (ε(λ)− µ)K ,

where the first inequality follows from Jensen’s inequality. Thus, given a prover P̃ for Definition 6 that
succeeds with probability ε(λ), we obtain an extractor EP̃ with knowledge error κ ≤ ε(λ)− (ε(λ)− µ)K .
It follows that every (k1, . . . , kr)-special sound interactive public-coin protocol with challenge space size
q exponential in λ and with K ∈ poly(λ) is knowledge-sound. Since the transcript tree extractors we
build in our proofs extract either witnesses for the relation or commitment binding breaks, whether an inner
product proof is statistically or computationally knowledge-sound corresponds to whether its inner product
commitment is perfectly or computationally binding.
Non-interactive argument of knowledge in the ROM. We define a non-interactive argument of knowledge
in the random oracle model. The non-interactive argument is an argument system where the prover sends a
single message π, and the verifier using the proof accepts or rejects. Both the prover and verifier have access
to a random oracle ρ. An argument of knowledge in the ROM has the property that for each convincing prover
there exists an extractor which can rewind the prover and reinitialize the random oracle with new randomness.

Definition 7 (Non interactive argument of knowledge in the RO). We say that a non-interactive argument is
an argument of knowledge with knowledge error κ(λ) if for every adversary P̃ there exists an extractor E

Pr

 V
ρ(crs,x, π) = 1

∧
(x,w) /∈ R

∣∣∣∣∣∣∣∣
ρ← U(1λ)

crs← Setup(1λ)

(x, π)← P̃ρ(crs)
w← E P̃,ρ(crs,x, π)

 ≤ κ(λ)

The E can rewind the prover and reinitialize the random oracle (but not program it). Additionally if P̃ is
algebraic [FKL18] then the extractor will have access to the representations of group elements that the P̃
outputs.

Zero-Knowledge. Bootle et al. [BCCGP16] define an argument as honest verifier zero-knowledge (HVZK)
if there exists an efficient simulator that can simulate transcripts generated between an honest prover and an
honest verifier when given only a valid instance and not the corresponding witness for a NP relationR. The
Fiat-Shamir transform turns an interactive public-coin HVZK argument into a non-interactive argument with
zero-knowledge even against malicious verifier. The simulator is modeled as having access to the verifier’s
challenges in advance.

Definition 8 (Perfect honest verifier zero-knowledge argument). An argument system (Setup,Prove,Verify)
for a relationR is honest verifier zero-knowledge (HVZK) if there exists an efficient simulator S such that for
all adversaries A = (A0,A1) it holds that

Pr

 (x,w) ∈ R
∧

A1(tr) = 1

∣∣∣∣∣∣
crs← Setup(1λ)

(x,w, ρ)← A0(crs)
tr← 〈Prove(w),Verifyρ〉(crs,x)

 = Pr

 (x,w) ∈ R
∧

A1(tr) = 1

∣∣∣∣∣∣
crs← Setup(1λ)

(x,w, ρ)← A0(crs)
tr← S(crs,x; ρ)


where ρ is the public-coin randomness used by the verifier.
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A.3 Commitments

A commitment scheme for a message spaceM consists of a pair of efficient algorithms (Setup,CM) that
work as follows:

• Setup(1λ)→ ck : a setup algorithm that, given a security parameter λ (represented in unary), outputs a
commitment key ck. The commitment key implicitly contains the security parameter and a description of
the message and key spaces.

• CM(ck;M ; r) 7→ C : a commitment algorithm that, given a commitment key ck ∈ K, (optionally) a
random string r of a prescribed length, and a messageM ∈M, outputs a commitment C.

When the commitment scheme is deterministic we write CM(ck;M). We denote CM(ck;M)
$−→ C to mean

that the commitment algorithm first samples r uniformly at random and then computes CM(ck;M ; r).
We require that a commitment scheme satisfies binding (i.e., no adversary can open the same commitment

to two different messages).

Definition 9 (Computationally binding commitment). A commitment scheme (Setup,CM) is computationally
binding if for all efficient adversaries A it holds that

Pr

[
CM(ck;M0; r0) = CM(ck;M1; r1) ∧ M0 6= M1

∣∣∣∣ ck← Setup(1λ)
(M0, r0,M1, r1)← A(ck,M)

]
≤ negl(λ) .

Pr

[
CM(ck;M0; r0) = 0 ∧ M0 6= 0

∣∣∣∣ ck← Setup(1λ)
(M0, r0,M1, r1)← A(ck,M)

]
≤ negl(λ) .

We say the commitment is statistically binding if this probability holds for all (even unbounded) adversaries A.

Some of our commitment schemes must also satisfy hiding (i.e., the commitment scheme is randomised such
that no adversary can distinguish which of two messages a commitment contains).

Definition 10 (Perfectly hiding commitment). A commitment scheme (Setup,CM) is perfectly hiding if for
all non-uniform adversaries A = (A0,A1) it holds that

Pr

b = b′

∣∣∣∣∣∣∣∣∣
ck← Setup(1λ)

(M0,M1)← A0(ck,M)

b
$←− {0, 1}, C $←− CM(ck;Mb)

b′ ← A2(C)

 =
1

2
.

A.4 Polynomial commitments

Polynomial commitments (PCs) are commitments for the message space F≤d[X], the ring of polynomials in
X with maximum degree d ∈ N and coefficients in F, that support an interactive argument of knowledge
(Setup,Open,Check) for proving the correct evaluation of a committed polynomial at a given point without
revealing any other information about the committed polynomial.

A polynomial commitment scheme over a field family F is a 4-tuple of efficient algorithms PC = (Setup,
CM,Open,Check) with the following interface

• Setup(1λ, d)→ (ck, vk) : a setup algorithm that, given a field and a maximum degree, samples a group
description 〈group〉 containing a description of a field F ∈ F , and committment and verification keys
(ck, vk). We implicitly assume ck and vk each contain 〈group〉.
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• CM(ck; f(X); r) → C : a commitment algorithm that, given commitment key ck and polynomial
f(X) ∈ F≤d[X], outputs a commitment C.

• (Setup,Open(ck;C, x, ν, f(X); r),Check(vk;C, x, ν)) is an interactive AoK with respect to the relation

Rν =

 (ck, C, x, ν; r, f(X) ∈ F[X]) :
C = CM(ck; f(X); r)
∧ deg(f(X)) ≤ d
∧ f(x) = ν


and satisfying extractability and hiding as defined below. When the polynomial commitment scheme is
deterministic we write CM(ck; f(X)). We denote PC.CM(ck; f(X))

$−→ C to mean that the commitment
algorithm first samples r randomly and then computes CM(ck; f(X); r).

Definition 11 (Computationally extractable polynomial commitment). A polynomial commitment PC =
(Setup,CM,Open,Check) is computationally extractable if (Setup,CM) is a computationally binding com-
mitment scheme (Definition 9) and (Setup,Open,Check) is a computationally knowledge-sound AoK
(Definition 6).

Definition 12 (Perfectly hiding polynomial commitment). A polynomial commitment PC = (Setup,CM,
Open,Check) is perfectly hiding if (Setup,CM) is a perfectly hiding commitment scheme (Definition 10) and
(Setup, Open, Check) satisfies perfect honest verifier zero-knowledge (Definition 8).

A.5 Cryptographic assumptions

Our trusted inner product protocols use commitment schemes with structured keys. The security of these
commitment schemes hold under a new assumption we call the computational q-Auxiliary Structured Double
Pairing assumption, which holds in the GGM.

Assumption 1 (q-Auxiliary Structured Double Pairing assumption (q-ASDBP)). We say the q-ASDBP
assumption holds relative to SampleGrp3 if for any efficient algorithm A

Pr

[
(A0, . . . , Aq−1) 6= 1G1

∧ 1GT =
∏q−1
i=0 e(Ai, h

β2i
)

∣∣∣∣∣ 〈group〉 ← SampleGrp3(1
λ); β

$←− F
(A0, . . . , Aq−1)← A(〈group〉, gβ, [hβ2i

]q−1i=1 )

]
≤ negl(λ) .

More specifically, we refer to this as the q-ASDBPG2 assumption and also define its dual, the q-ASDBPG1

assumption, by swapping G1 and G2 in the definition above. Observe that in this assumption it is essential
that the adversary does not see gβ2 .

Lemma 2. The q-ASDBP assumption holds in the generic group model.

Proof. Suppose A is an adversary that on input 〈group〉, h1, . . . , hq, outputs A0, . . . , Aq−1 such that∏q−1
i=0 e(Ai, h

β2i
) = 1. Then its GGM extractor outputs {a2i, a2i+1} such that Ai = ga2i+a2i+1β and

q−1∑
i=0

(a2i + a2i+1X)X2i = 0.

Thus
a0 + a1X + a2X

2 + a3X
3 + · · ·+ a2q−2X

2q−2 + a2q−1X
2q−1 = 0.

As a result, ai = 0 for all 0 ≤ i ≤ 2q − 1 and Ai = g0 = 1G1 .
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We use Boneh and Boyen’s q-SDH assumption [BB08] when proving the security of our TIPP scheme.

Assumption 2 (q-Strong Diffie-Hellman assumption (q-SDH)). We say the q-Strong Diffie-Hellman assump-
tion holds relative to SampleGrp3 if for any efficient algorithm A

Pr

 A = h
1

β−a

∣∣∣∣∣∣∣
〈group〉 ← SampleGrp3(1

λ)

γ
$←− F

(a,A)← A(〈group〉, g, h, gβ, hβ, · · · , gβq , hβq)

 ≤ negl(λ) .

B Verifiable computation for inner pairing products (SIPP)

In this section we introduce a Statistically sound Inner Pairing Product (SIPP) proof system. By running SIPP,
a prover can produce a publicly verifiable proof of the correct computation of an inner pairing product with
respect to two public, length-m vectors of source group elements. SIPP requires no setup and is public-coin.

SIPP can also be used to outsource the verification a large number of pairing equations. Those pairing
equations need to be folded into a single pairing equation by taking a linear combination of the equations
(e.g., using the small exponent test).

Verification of a SIPP proof requires computing a multi-exponentiation of sizem in each source group,
which can be computed in O(m/ logm) time. This is asymptotically faster than direct computation, which
requiresm G1 exponentiations, nMiller loops, and a final target group exponentiation. Proofs are 2 logm
target group elements and the prover computes 2m pairings andm G1 exponentiations.

B.1 Construction

SIPP is a proof system for the membership in the following language:

LSIPP = {(A ∈ Gm
1 , r ∈ Fm, B ∈ Gm

2 , Z ∈ GT ) : Z = Ar ∗B} .

The proof is an instantiation of GIPA using the identity commitment

CM(A,B,A ∗B)→ A,B,A ∗B

Since the verifier already has access to the A and B values the prover does not in fact have to send these.
In each round of the protocol the prover simply sends ZL an ZR which are two target group elements. The
prover and verifier then both use the challenge x in order to rescale the vectors A and B. In the final step the
verifier needs to perform only a single pairing in order to verify the proof.
Pseudocode. We give pseudocode for our protocol in Fig. 14.

B.2 Efficiency

In the first round the prover computes ZL, ZR usingm pairings. This halves tom/2 in the second and n/2i
in the i-th. Over log(m) rounds the prover computes 2m pairings in total. The prover also requires a total of
m exponentiations (over logm rounds) in each source group to update A′ and B′ values. The proof consists
of the ZL, ZR values in each round, making the total proof size 2 logm GT elements.

In each round, the verifier performs 2 target group exponentiations to update Z ′ for a total of 2 log(m)
GT exponentiations. The computation ofA′ andB′ for the verifier can be delayed until the final round. They
then compute a size-m multi-exponentiation in each source group to obtain the final A′ and B′. Using these
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Prove(〈group〉,A,B, Z) Verify(〈group〉,A,B, Z)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If m = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Return 1 if e(A,B) = Z, else 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Else m ≥ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m′ = m/2 m′ = m/2

ZL = A[m′:] ∗B[:m′]

ZR = A[:m′] ∗B[m′:]

ZL, ZR ∈ GT

x
$←− F

x ∈ F

A′ = Ax
[m′:] ◦A[:m′] A′ = Ax

[m′:] ◦A[:m′]

B′ = Bx−1

[m′:] ◦B[:m′] B′ = Bx−1

[m′:] ◦B[:m′]

Z ′ = Zx
L · Z · Zx−1

R

Recurse on (〈group〉,A′,B′, Z ′) Recurse on (〈group〉,A′,B′, Z ′)

Figure 14: A RBR sound protocol for outsourcing pairings.

values the verifier performs a single pairing to check Z ′ = e(A′, B′). Note that ifA andB are themselves
the result of exponentiations then the verifier can combine these exponentiations with the final computation of
A′ and B′. This happens when batch verifying pairings or for accountable multi signatures [BDN18].

B.3 Security

SIPP is an instantiation of GIPA using the perfectly binding identity commitment. Theorems 1 and 2 show
that the interactive variant of SIPP is statistically sound and that the non-interactive Fiat-Shamir transform of
SIPP is sound in the random oracle and algebraic group model.

B.4 Implementation

We implemented the SIPP protocol in Rust, based on efficient elliptic curve and finite field libraries.4 Our
implementation utilizes Pippenger’s fast multi-exponentiation algorithm [Pip80] to speed up the verifier’s
computation. We also implemented standard optimizations for direct computation of pairing products [MJ16,
Section 11.4.2]. In the direct computation implementation, we first compute the product of the results of each
Miller loop, then perform the final target group exponentiation on that product to obtain the inner pairing
product.

4https://www.github.com/scipr-lab/zexe
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We evaluated our implementation on a machine with an Intel Xeon 6136 CPU at 3.0 GHz. Our
experiments relied on the efficient BLS12-377 elliptic curve [BCGMMW20]. As noted in Fig. 15, our
evaluation demonstrates that using the SIPP verifier becomes faster than direct computation the pairing
product at roughly 128 pairings. Our experiments also validate the asymptotic superiority of the verifier: the
gap between direct computation and verification widens as the number of pairings increases. For example, at
220 pairings, our verifier is roughly 8× faster than directly computing the pairing product.
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Figure 15: Measured performance of SIPP compared to the cost of directly computing the pairing product on the
BLS12-377 elliptic curve [BCGMMW20]. Experiments were performed on a machine with an Intel Xeon 6136
CPU at 3.0 GHz.

C Aggregate signature schemes based on BLS

Boneh, Lynn, and Shacham introduced the BLS signature scheme in [BLS01]. Boneh, Gentry, Lynn, and
Shacham later extended this scheme by showing how to accomplish offline aggregation of signatures and
keys in [BGLS03]. This is different from aggregate Schnorr signatures [BR93], which require signers to
remain online throughout the signing process. In this section we describe an alternative aggregate signature
scheme based on BLS, where the verifier is required to compute just one pairing for any number of signatures.
Previous aggregate signature schemes based on BLS including [BGLS03; RY07; BDN18] have constant-sized
(Oλ(1)) aggregate signatures and require computing n+ 1 pairings to verifying an aggregate signature over
n distinct messages. Our scheme trades off space for time, requiring the verifier compute just 1 pairing and
one n-sized multi-exponentiation in each of the source groups at the cost of a logarithmic-sized signature.

The basic BLS signature scheme is given in Fig. 16. Our description is given over Type III bilinear groups
as opposed to the original scheme which was described only over the less efficient Type I bilinear groups.
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Setup(1λ)

return 〈group〉 ← SampleGrp3(1
λ)

KeyGen(〈group〉)
sk

$←− F
pk← gsk

return (pk, sk)

Sign(〈group〉, sk,M) :

h ∈ G2 ← RO2(M)
return σ ← hsk

Verify(〈group〉, pk,M, σ)

h ∈ G2 ← RO2(M)
return e(g, σ) = e(pk, h)

Figure 16: The BLS signature scheme where RO2 : {0, 1}∗ → G2 is a random oracle.

C.1 Construction

We introduce a pair of algorithms (AggSign,VerifyAgg) that extends the BLS signature scheme into a
aggregate signature scheme. These algorithms make use SIPP.Prove and SIPP.Verify, respectively, as
subroutines. The aggregator AggSign is given a group description 〈group〉, a list of public keys [pki]

n
i=1,

a set of distinct messages {Mi}ni=1, and a list of signatures [σi]
n
i=1. The aggregator begins by computing

σA =
∏
i σi. Next, they use SIPP.Prove to produce a proof π that

e(g−1, σA) ·
n∏
i=1

e(pki,RO2(Mi)) = 1 .

The aggregator returns Σ← (σA, π).
The verifier running VerifyAgg is given group description 〈group〉, public keys [pki]

n
i=1, distinct messages

{Mi}ni=1, and aggregate signature Σ. The verifier then has the full inputs it needs to run SIPP.Verify, and
outputs the result of checking the inner pairing product proof.
Pseudocode. We present pseudocode for our BLS aggregation protocol in Fig. 17.

AggSign(〈group〉, [pki]ni=1, {Mi}ni=1, [σi]
n
i=1) :

(h1, . . . , hn)← (RO2(Mi), . . . ,RO2(Mn))
σA ←

∏n
i=1 σi

π ← SIPP.Prove(〈group〉, g−1‖pk, σA‖h, 1)
Σ← (σA, π)
return Σ

VerifyAgg(〈group〉, [pki]ni=1, {Mi}ni=1,Σ) :

(σA, π)← Σ
(h1, . . . , hn)← (RO2(M1), . . . ,RO2(Mn))
return SIPP.Verify(〈group〉, g−1‖pk, σA‖h, 1, π)

Figure 17: Aggregation and verification algorithms for an aggregate signature scheme.
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C.2 Efficiency

Verifying n signatures on n different messages using VerifyAgg requires computing n hashes and then
running SIPP.Verify. Running AggSign requires n hash evaluations and a call to SIPP.Prove. Ignoring small
constant terms, the prover computes a total of 2n pairings, n exponentiations in each source group, and n
hashes. The verifier computes a single pairing, n exponentiations in each source group, 2 log(n) target group
exponentiations, and n hashes. The aggregate signatures consists of 2 log(n) elements in GT and 1 element
in G2.

D Deferred proofs

In this section we present various proofs promised in the main body of this work.

D.1 Proof of Theorem 1

WeproveTheorem1, showing thatGIPA has perfect completeness and knowledge-soundness if ((Setup,CM),~)
is a binding inner product commitment.

Proof. Completeness follows directly from the doubly-homomorphic and collapsing properties of CM.
The double homomorphism implies a distributive property between keys and messages. For ease of no-
tation for m ∈ [2i]i∈Z+ we let m′ = m/2, L = [: m′], R = [m′ :], ckL = (ck1,L, ck2,L, ck3), ckR =
(ck1,R, ck2,R, ck3), M1,L = a[:m′], M1,R = a[m′:], M2,L = b[:m′], andM2,R = b[m′:]. Also let 0 be the
vector containingm′ sequential group identity elements for the appropriate group. We prove perfect complete-
ness by showing that in each round if C = CM (ck; (a, b, 〈a, b〉)) then C ′ = CM

(
ck′; (a′, b′, 〈a′, b′〉)

)
.

First observe that

x · CL = x · CM

 ck1
ck2
ck3

∣∣∣∣∣∣
M1,R‖0
0‖M2,L

〈M1,R,M2,L〉

 = CM

 ck1
x · ck2
ck3

∣∣∣∣∣∣
xM1,R‖0
0‖M2,L

〈M1,R, xM2,L〉



C = CM

 ck1
ck2
ck3

∣∣∣∣∣∣
M1,L‖M1,R

M2,L‖M2,R

〈M1,L,M2,L〉+ 〈M1,R,M2,R〉


= CM

 ck1
x · ck2
ck3

∣∣∣∣∣∣
M1,L‖0
0‖x−1M2,R

〈M1,L,M2,L〉

+ CM

 x−1 · ck1
ck2
ck3

∣∣∣∣∣∣
0‖xM1,R

M2,L‖0
〈xM1,R, x

−1M2,R〉


= C ′L + C ′R

x−1 · CR = x−1 · CM

 ck1
ck2
ck3

∣∣∣∣∣∣
0‖M1,L

M2,R‖0
〈M1,L,M2,R〉

 = CM

 x−1 · ck1
ck2
ck3

∣∣∣∣∣∣
0‖M1,L

x−1M2,R‖0
〈M1,L, x

−1M2,R〉


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Second observe that

x · CL + C ′L = CM

 ck1
x · ck2
ck3

∣∣∣∣∣∣
xM1,R‖0
0‖M2,L

〈xM1,R,M2,L〉

+ CM

 ck1
x · ck2
ck3

∣∣∣∣∣∣
M1,L‖0
0‖x−1M2,R

〈M1,L,M2,L〉


= CM

 ck1
x · ck2
ck3

∣∣∣∣∣∣
M1,L + xM1,R‖0
0‖M2,L + x−1M2,R

〈M1,L + xM ′1,L,M2,L〉



x−1 · CR + C ′R = CM

 x−1 · ck1
ck2
ck3

∣∣∣∣∣∣
0‖M1,L

x−1M2,R‖0
〈M1,L, x

−1M2,R〉

+ CM

 x−1 · ck1
ck2
ck3

∣∣∣∣∣∣
0‖xM1,R

M2,L‖0
〈xM1,R, x

−1M2,R〉


= CM

 x−1 · ck1
ck2
ck3

∣∣∣∣∣∣
0‖M1,L + xM1,R

M2,L + x−1M2,R‖0
〈M1,L + xM1,R, x

−1M2,R〉


Because our commitment scheme is doubly homomorphic, for all ck,M we have that CM (ck; 0) =

CM (0; M) = 1. Thus x · CL + C ′L is equal to

CM

 ck1,L‖0
0‖x · ck2,R
ck3

∣∣∣∣∣∣
M1,L + xM1,R‖M1,L + xM1,R

M2,L + x−1M2,R‖M2,L + x−1M2,R

〈M1,L + xM1,R,M2,L 〉


and x−1 · CR + C ′R is equal to

CM

 0‖x−1 · ck1,R
ck2,L‖0
ck3

∣∣∣∣∣∣
M1,L + xM1,R‖M1,L + xM1,R

M2,L + x−1M2,R‖M2,L + x−1M2,R

〈M1,L + xM1,R, x
−1M2,R 〉


Hence we have that x · CL + C + x−1 · CR is given by

CM

 ck1‖x−1 · ck′1
ck2‖x · ck′2
ck3

∣∣∣∣∣∣
M1,L + xM ′1,L‖M1,L + xM ′1,L
M2,L + x−1M2,R‖M2,L + x−1M2,R

〈M1,L + xM1,R,M2,L + x−1M2,R〉


Finally observe that because our commitment scheme is collapsing we have that

Collapse(x · CL + C + x−1 · CR) = CM

 ck1 + x−1 · ck′1
ck2 + x · ck′2
ck3

∣∣∣∣∣∣
M1,L + xM ′1,L
M2,L + x−1M2,R

〈M1,L + xM ′1,L,M2,L + x−1M2,R〉


completing the proof
Extraction. We show that GIPA is (k1, . . . , klog(m))-special sound, where ki = 4 for i ∈ [log(m)], and
then invoke Lemma 1 to conclude GIPA is knowledge-sound Definition 6.5 Given a (k1, . . . , klog(m))-tree of
valid transcripts for an instance x = (ck = (ck1, ck2, ck3), C), we show how to build an efficient extractor E
that always either outputs a witness for the relationRIPA or breaks the binding property of CM.

5See the discussion below Lemma 1 to see how it implies Definition 6.
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The extractor begins by computing the C value for each node at height log(m) − 1 according to the
transcript tree. The extractor computes a witness (a, b) ∈ M2

1 ×M2
2 for each such C using the (CL, CR)

prover message labeling the node corresponding to C, the four final prover messages labeling its child leaf
nodes, and the four distinct challenges labeling the edges to those leaves. This procedure is carried out
recursively until a witness for the root node is obtained.

Given four pairs of “partially recovered witnesses” a(i) ∈ Mm′
1 and b(i) ∈ Mm′

2 for i ∈ [4] from four
sibling nodes at depth d, the extractor computes a partial witness (a, b) ∈ Mm

1 ×Mm
2 corresponding to

their parent node at depth d − 1. Let x1, x2, x3, x4 ∈ Zq be the distinct challenge values from the edges
above each child. Let the CL, CR ∈ Image(CM) values be those corresponding to their parent node. Let
C ∈ Image(CM), ck1 ∈ Km1 , and ck2 ∈ Km2 be the values the verifier would have computed according to
the transcript tree path to the parent node and let ck(i)1 ∈ Km

′
1 and ck

(i)
2 ∈ Km

′
2 for i ∈ [4] be the values the

verifier would have computed according to the path to each of the children. We know for the base case of
d = log(m), where the initial partial witnesses (a(i), b(i)) ∈M1 ×M2 are taken from leaf nodes, it holds
for all i ∈ [4] that

xi · CL + C + x−1i · CR = CM

 ck
(i)
1

ck
(i)
2

ck3

∣∣∣∣∣∣∣
a(i)

b(i)

〈a(i), b(i)〉


= CM

 ck1,[:m′] + x−1i · ck1,[m′:]
ck2,[:m′] + xi · ck2,[m′:]
ck3

∣∣∣∣∣∣
a(i)

b(i)

〈a(i), b(i)〉


= CM

 ck1
ck2
ck3

∣∣∣∣∣∣
a(i)||x−1i · a(i)

b(i)||xi · b(i)

〈a(i), b(i)〉

 (3)

since the transcripts are all accepting, and we assume it for the inductive case. Here Eq. (3) follows from the
doubly homomorphic and concatenation properties of an inner product commitment.

The extractor uses the first three challenges to compute ν1, ν2, ν3 ∈ Zq such that∑
i∈[3]

νi · xi = 1,
∑
i∈[3]

νi = 0,
∑
i∈[3]

νi · x−1i = 0 .

Then we can write CL as

CL =
∑

i∈[3]
(
vi · (xi · CL + C + x−1i · CR)

)
=
∑

i∈[3] CM

 ck1
ck2
ck3

∣∣∣∣∣∣ vi · (a
(i)||x−1i · a(i))

vi · (b(i)||xi · b(i)) vi · 〈a(i), b(i)〉


We define (aL, bL, zL) ∈ Mm

1 ×Mm
2 ×M3 such that CL = CM (ck1, ck2, ck3; aL, bL, zL). By using

different systems of equations producing different ν1, ν2, ν3 ∈ Zq, we can use the same technique to
find aC , bC , zC and aR, bR, zR such that it similarly holds C = CM (ck1, ck2, ck3; aC , bC , zC) and
CR = CM (ck1, ck2, ck3; aR, bR, zR).

Observe that for i ∈ [4] it holds that

xi · CL + C + x−1i · CR
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= CM
(
ck1, ck2, ck3; (xi · aL + aC + x−1i · aR), (xi · bL + bC + x−1i · bR), (xi · zL + zC + x−1i · zR)

)
.

Then by Eq. (3), the concatenation property of inner product commitments it holds either that for [i] ∈ [4]

xi · aL,[:m′] + aC,[:m′] + x−1i · aR,[:m′] = a(i)

xi · aL,[m′:] + aC,[m′:] + x−1i · aR,[m′:] = x−1 · a(i)

xi · bL,[:m′] + bC,[:m′] + x−1i · bR,[:m′] = b(i)

xi · bL,[m′:] + bC,[m′:] + x−1i · bR,[m′:] = xi · b(i)

xi · zL + zC + x−1i · zR = 〈a(i), b(i)〉 ,

or that we can directly compute a break of the binding property of the commitment scheme. These equations
imply for i ∈ [4] that

x−1i · aR,[:m′] + (aC,[:m′] − aR,[m′:]) + xi · (aL,[:m′] − aC,[m′:])− x2i · aL,[m′:] = 0

x−2i · bR,[m′:] + x−1i (bC,[m′:] − bR,[:m′]) + (bL,[m′:] − bC,[:m′])− xi · bL,[:m′] = 0 .

Since both of the polynomials above have at most 3 distinct roots and the 4 challenges are distinct, we have
that

aR,[:m′] = aL,[m′:] = bR,[m′:] = bL,[:m′] = 0

aC,[:m′] = aR,[m′:] aC,[m′:] = aL,[:m′]
bC,[m′:] = bR,[:m′] bC,[:m′] = bL,[m′:] .

So aC = aR,[m′:]||aL,[:m′] and bC = bL,[m′:]||bR,[:m′]. Finally, this means that for i ∈ [4] that

〈a(i), b(i)〉 = 〈aC,[:m′] + xi · aC,[m′:], bC,[:m′] + x−1i · bC,[m′:]〉 = xi · zL + zC + x−1i · zR
⇒ xi · (〈aC,[:m′], bC,[m′:]〉 − zL) + (〈aC , bC〉 − zC) + x−1i · (〈aC,[m′:], bC,[:m′]〉 − zR) = 0 .

Again, since there are more distinct challenges than roots of the above polynomial, we conclude zC = 〈aC , bC〉,
which in turn shows that C = CM (ck1, ck2, ck3; aC , bC , zC) is in fact an inner product commitment for
which the extractor has computed a witness.

The extractor performs this recursive procedure
∑

i∈[log(m)−1] 4
log(m)−i < 4log(m) times and thus runs in

O(m · 4log(m)) time, meeting the efficiency requirements of Lemma 1.

D.2 Non interactive argument in the algebraic commitment model.

We will show that the Fiat-Shamir transform GIPA is a non-interactive argument of knowledge
We begin by defining an algebraic commitment model. This is a generalization of the algebraic group

model for doubly homomorphic commitments (Definition 3) . In particular we assume that there exists an
oracle O that generates commitment keys cki ∈ K. Additionally there exists an extractor ECM that given a
commitment C ∈ Image(CM) produces an openingM ∈M with respect to ck∗ such that ck∗ is in the output
list of O and such that C = CM(ck∗,M). We can always force an adversary to use a particular commitment
key ck′ by generating all other commitment keys ck∗ as a function of ck′. Note that if the commitment key
space K ⊂ Gn andM⊂ Fnp then this corresponds to the algebraic group model [FKL18]. Additionally for
the SIPP protocol the commitment scheme is the identity function, i.e. the prover receives the committed
values. This means that the algebraic commitment protocol is not an abstraction but in fact corresponds to the
actual protocol.

For an inner-product commitment (Definition 3) the algebraic commitment model says that there exists
an extractor that extracts a ∈ Mm

1 , b ∈ Mm
2 , c ∈ M3 from a commitment C, but not necessarily that

〈a, b〉 = c.
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Definition 13 (Fiat-Shamir Transform). Let ΠIP = (SetupIP,PIP,VIP) be an r-round public coin interactive
argument of knowledge (Appendix A.2). Let πi be the ith message by the prover and C the challenge
space. The Fiat-Shamir transform of IP is the non-interactive argument ΠFS = (SetupFS,PFS,VFS) =
FS − Transform(ΠIP) where SetupFS runs crsIP ← SetupIP (1λ) and outputs crsFS = (crsIP,Hash)
contains the description of a hash function Hash : {0, 1}∗ → C and the first challenge α1 is generated
as α1 = Hash(x, π1) and subsequent challenges as αi = Hash(αi−1, πi). The Prover PFS runs PIP
while simulating VIP by generating the challenges using Hash as described above. PFS outputs the proof
π = {π1, . . . , πr}. VFS generates the challenges from π using the hash function Hash. It then runs the
decision procedure of VIP and using π and the generated challenges. It outputs the same decision bit as VIP.

We analyze the security of the Fiat-Shamir transform in the random oracle model, where Hash is replaced
by a random function which is sampled from the space of all random functions ρ← U(λ). All algorithms
and adversaries have oracle access to this function.

Lemma 3 (Zero-Finding Game). [BCMS20]
Let (Setup,CM) be a commitment scheme. Fix a maximum degree d ∈ N. Then for every family of

functions {fck}ck and fields {Fck}ck where fck :M→ F≤dck [X] and |Fck| ≥ 2λ; for every efficient t-query
oracle algorithm A, the following holds.

Pr


p 6≡ 0
∧

p(z) = 0

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
ck← Setup(1λ)
M, r ← Aρ(ck)

C ← CM(ck;M ; r)
z ∈ Fck ← ρ(C)

p← fck(M)

 ≤
√

(t+ 1) · d
2λ

+ negl(λ) .

If the commitment scheme is perfectly binding then this holds even against unbounded t-query adversaries.

D.3 Proof of Theorem 2

Proof. The prover produces an instance commitment C and a proof π = {[C(i)
L ∈ Image(CM), C

(i)
R ∈

Image(CM)]
log2(m)
i=1 , a ∈ G1, b ∈ G2}. If the verifier accepts the proof then the extractor E simply extracts

a, b, c from the commitment and returns a, b as a witness.
We will now argue that the extractor succeeds with overwhelming probability, i.e. that 〈a, b〉 = c.

Ensuring correct representations. We denote proof elements and extracted witnesses from round i of the
protocol with a (i) superscript.

Given that the adversary is algebraic we can compute vectors a(i)
L ∈ Gm

1 , b
(i)
L ∈ Gm

2 and scalar c(i)L ∈ GT

such that CL,i = CM(ck1, ck2, ck3;aL, bL,i, cL,i). Similarly we can compute representations for each CR,i
value. Additionally let {x1, . . . , xlog2(m)} be the Fiat-Shamir challenges computed from the proof. Let
ck(i) = (ck

(i)
1 , ck

(i)
2 , ck

(i)
3 ) be the resulting commitment keys for each round computed from the original

commitment key ck and the respective challenges as in the protocol. Finally given the challenges and
representations we can compute representations using the commitment key ck of the intermediary round
commitments C(i+1) = x−1i · C

(i)
L + C(i) + xiC

(i)
R , with C(1) = C.

We will prove through induction that C(i) can be written as CM(ck(i);a(i), b(i), c(i)) for a(i) ∈
Gm(i)

1 , b(i) ∈ Gm(i)

2 and c(i) ∈ GT and that 〈a(i), b(i)〉 = c(i). Note that

C(log2(m)+1) = CM(ck;a(log2(m)+1), b(log2(m)+1), c(log2(m)+1)) = CM(ck(log2(m)+1); a, b, a~ b)
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. Now assuming that C(i+1) = CM(ck(i+1);a(i+1), b(i+1), c(i+1)) and C(i+1) = x−1i · C
(i)
L + C(i) + xiC

(i)
R

we will show that we can compute a proper representation for C(i) using commitment key ck(i).
We can write C(i+1) = CM(cki;a(i+1)||x−1i a(i+1), b(i+1)||xib(i+1), c(i+1)).
Let h(i) ∈ F2i−1

p denote a vector such that cki1,j =
∑2i−1−1

k=0 h
(i)
k ck1,j+k·21−i·m. Each entry of h(i) is non

zero and a function of the challenges x1, . . . , xi−1 and h(1) = 1. Now consider the three following exclusive
scenarios:
a) The representation with respect to ck of C(i+1) computed from C

(i)
L , C

(i)
R and C(i) does not match the

representation of C(i+1) computed from a(i+1), b(i+1), c(i+1). This directly is a break of the binding property
of CM, which happens with at most negligible probability.

b) The representations match but the representations of C(i)
L , C

(i)
R , C(i) cannot be written using the

commitment key ck(i).
Without loss of generality assume that ck(i)1,k be one particular commitment key such that one of

C
(i)
L , C

(i)
R , C(i) cannot be expressed using ck(i)1,k. This means that there exist j, ` ∈ [k, k + 21−i ·m, . . . , k +

(1− 21−i) ·m] such that
xi · a(i)L,j + a

(i)
C,j + x−1i · a

(i)
R,j = h

(i)
j a

(i+1)
k

and
xi · a(i)L,` + a

(i)
C,` + x−1i · a

(i)
R,` = h

(i)
` a

(i+1)
k

Further we can write a(i)L,j = h
(i)
j · ā

(i)
L,j and a

(i)
L,` = h

(i)
` · (ā

(i)
L,j + ∆L) similarly we can express a(i)C,j , a

(i)
C,` and

a
(i)
R,j , a

(i)
R,` using ∆C and ∆R respectively. Note that one of ∆,∆C ,∆R must be non-zero as otherwise we

could factor out h(i)j and h(i)` respectively.
This means that

h
(i)
j · (xi · ā

(i)
L,j + ā

(i)
C,j + x−1i · ā

(i)
R,j) = h

(i)
j a

(i+1)
k

and
h
(i)
` · (xi · (ā

(i)
L,j + ∆L) + (ā

(i)
C,j + ∆C) + x−1i · (ā

(i)
R,j) + ∆R)) = h

(i)
j′ a

(i+1)
k

This implies that
xi ·∆L + ∆C + x−1i ∆R = 0

Let p(X) = ∆R +X∆C +X2∆L be a non-zero polynomial of degree 2. Note that ∆L,∆C ,∆R are fully
defined by the proof elements and challenges before xi is generated but p(xi) = 0. This however happens
with at most probability

√
(t+ 1) 2

2λ
+ negl(λ) by Lemma 3.

Note that the proof does not only extend to pairs of vector entries but to the entire a(i)

[:m(i)/2]
. Further we

can symmetrically proof the correct representation of a(i)

[m(i)/2:]
, b(i)

[:m(i)/2]
, b(i)

[m(i)/2:]
and c(i).

Using a union bound we can bound the probability that we fail to extract a valid representation in a given
round bu 5

√
(t+ 1) 2

2λ
+ negl(λ). This shows that with only negligible probability can C(i)

L , C(i), C
(i)
R not

be expressed using ck(i)

c) We can write C(i)
L = CM(ck(i);a

(i)
L , b

(i)
L , c

(i)
L ) and C(i), C

(i)
R also using commitment key ck(i). Given

that there are is collision of the commitment function we can deduce that form′ = m(i+1)
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x−1i a
(i)
L,[:m′] + a

(i)
[:m′] + x−1i a

(i)
R,[:m′] = a(i+1)

and
xia

(i)
L,[m′:] + a

(i)
[m′:] + x−1i a

(i)
R,[m′:] = x−1i a(i+1)

We can write up similar equations for b(i+1) Similarly as in the proof of Theorem 1 we can deduce that

a
(i)
R,[:m′] = a

(i)
L,[m′:] = b

(i)
R,[m′:] = b

(i)
L,[:m′] = 0

a
(i)
[:m′] = a

(i)
R,[m′:] a

(i)
[m′:] = a

(i)
L,[:m′]

b
(i)
[m′:] = b

(i)
R,[:m′] b

(i)
[:m′] = b

(i)
L,[m′:] .

This means that a(i+1) = a
(i)
[:m′] + xi · a(i)

[m′:] and b(i+1) = a
(i)
[:m′] + x−1i · a

(i)
[m′:] Otherwise we get two

non-zero, degree 3 polynomial that are fully defined by the openings of the commitmentsC(i)
L , C(i), C

(i)
R which

evaluated at xi is equal to 0. By Lemma 3 this happens with at most probability 2 ·
√

(t+ 1) 3
2λ

+ negl(λ).

Ensuring inner product correctness. If 〈a(i+1), b(i+1)〉 = c(i+1) and xic
(i)
L + c(i) +x−1i c

(i)
R = c(i+1) then

it follows that 〈a(i), b(i)〉 = c(i). This is because a(i) = a
(i)
[:m′] + xi · a(i)

[m′:] and a(i) = b
(i)
[:m′] + x−1i · b

(i)
[m′:].

Plugging this in we get that

〈a(i+1), b(i+1)〉 = 〈a(i)
[:m′] + xi · a(i)

[m′:], b
(i)
[:m′] + x−1i · b

(i)
[m′:]〉

= xi · 〈a(i)
[m′:], b

(i)
[:m′]〉+ 〈a(i), b(i)〉+ x−1〈a(i)

[:m′], b
(i)
[m′:]〉

= xic
(i)
L + c(i) + x−1i c

(i)
R

If 〈a(i), b(i)〉 6= c(i) then we again have that a degree 2 polynomial defined by committed values is 0 at a
random oracle generated point. By the zero-finding game (Lemma 3) this happens with negligible probability(√

(t+ 1) 2
2λ

+ negl(λ)
)
.

Knowledge error. Otherwise we have shown that if at round i + 1 the committed vectors form an inner
product then so will the committed vectors at round i with overwhelming probability. This shows that the
extracted witness a, b is valid. The probability that extraction fails, i.e. the knowledge error, can be bounded
by O(log2(m)

√
t
2λ

+ negl(λ)) for a t-query adversary.

D.4 Deferred proofs from Section 5

In Theorem Theorem 3 we prove that TIPP satisfies computational knowledge soundness. In the proof we use
the facts that: (1) the structure of our honestly generated final commitment keys is correct; (2) an algebraic
adversary that convinces a verifier of ill-formed final commitment keys can break q-SDH. We prove these
two facts in this section in Proposition 1 and Lemma 4.

The following p:fin demonstrates the correctness of the format of our final commitment keys.

Proposition 1. In the GIPA protocol, if the commitment key v = (g, g(rα)
2
, . . . , g(rα)

2m−2
), then the final

commitment key has the structure
v = g

∏`
j=0(1+xj(rα)

2j+1
)

where xj is the (`− j)th verifier challenge and ` = log2(m).

49



Proof. First, recall that in each round of GIPA, the prover and the verifier compute the new commitment key
to equal

v′ = v[:m′] ◦ vx[m′:] .

We now provide an inductive argument for our proposition. First observe that if there is only one round, i.e.,
if ` = 0, then we see that

v = v0v
x0
1 = g(rα)

2x0+1 = g
∏0
j=0(1+xj(rα)

2j+1
) .

Next, suppose the statement is true for `− 1. We show that the statement is true for `. On the first round we
rescale the commitment key to

v′ = v[:2`] ◦ v
x`
[2`:]

=

(
v0v

x`α
2`+1

0 , . . . , v2`−1v
x`α

2`+1

2`−1

)
We then run the IPP protocol with respect to `− 1 and the generators

v′ = v
1+x`(rα)

2`+1

[:2`]
.

From our inductive assumption we have that running GIPA on v[:2`] yields

v = g
∏`−1
j=0(1+xj(rα)

2j+1
) .

with respect to the challenges (x`−1, . . . , x0). Hence the final commitment key has the form

v′ = v1+x`(rα)
2`+1

= g(1+x`(rα)
2`+1

)
∏`−1
j=0(1+xj(rα)

2j+1
) = g

∏`
j=0(xj+(rα)2

j+1
)

as required.

We show the soundness of our final commitment key argument i.e. we show that an adversarial prover
cannot convince an honest verifier.

Lemma 4. The protocol defined by Fig. 2 for the language Lck is sound in the algebraic group model under
the q-SDH assumption.

Proof. LetA = (A0,A1) be a pair of algorithms that share state. On input (〈group〉, f(X), g = [gα
i
]2m−2i=0 ),

the algorithm A0 returns w and, on input z, the algorithm A1 returns P such that the verifier accepts.
Let B be an algorithm against q-SDH. Then B, on input of 〈group〉, g = [gα

i
]2m−2i=0 ,h = [hα

i
]2m−2i=0 ),

behaves as follows.

1. Run A0 on the input (〈group〉, f(X), g = [gα
i
]2m−2i=0 ) to obtain w.

2. Extract s(X) such that w = gs(α).

3. Run A1 on input z $←− F to obtain verifying P .

4. Compute P ′ = g
s(α)−s(z)
α−z .

5. Return
(
z, (P ′P−1)

1
s(z)−f(z)

)
.
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We now argue that if (A0,A1) succeeds then either w has been computed correctly with overwhelming
probability or B succeeds. First observe that due to the verifiers equation

e(wg−f(z)P z, h) = e(P, hα).

Also observe that by design
e(wg−s(z), h) = e(P ′, hα−z).

Thus
e(gf(z)−s(z), h) = e(P ′P−1, hα−z)

and either f(z) = s(z) or
(P ′P−1)

1
s(z)−f(z) = g

1
α−z

and B succeeds.
If f(z) = s(z) then with overwhelming probability f(X) = s(X). Hence w = gs(α) = gf(α) and w has

been computed correctly.

Theorem 6 (Computational knowledge-soundness ofMIPPk). The protocol defined in Section 5.5 for the NP
relationRMIPPk has computational knowledge soundness (Definition 6) against algebraic adversaries under
m-ASDBP and 2m-SDH.

Proof. The commitment scheme

CM((v,1, ĥ′), (A, b, U)) = ((A||U) ∗ (v||ĥ), b).

is doubly homomorphic: the key space Gm
2 × Fm ×G2 is homomorphic under G2 multiplication, F addition,

and G2 multiplication. The message space Gm
1 × Fm × G1 is homomorphic under G1 multiplication, F

addition, and G1 multiplication. The commitment space GT × Fm is homomorphic under GT multiplication
and F addition. All groups have prime order p for p > 2λ. The commitment scheme is also binding by the
m-ASDBP assumption. This means that the commitment scheme is an inner product commitment. Thus
either the adversary convinces the verifier of incorrect w, v, or by Theorem 1 an adversary that breaks
computational knowledge soundness can extract a validm-ASDBP instance.

An algebraic adversary that convinces a verifier of incorrect v can extract a valid 2m-SDH instance by
Lemma 4.

Theorem 7 (Computational knowledge-soundness ofMIPPu). The protocol defined in Section 5.4 for the NP
relationRMIPPu has computational knowledge-soundness (Definition 6) against algebraic adversaries under
m-ASDBP and 2m-SDH assumptions.

Proof. The commitment scheme

CM((v,w, ĥ′2), (A, b, U)) = ((A||wb||U) ∗ (v||ĥ′1||ĥ′2))

is doubly homomorphic: the key space Gm
2 × Gm

1 × G2 is homomorphic under the respective group
multiplication. The message space Gm

1 × Fm ×G1 is homomorphic under G1 multiplication, F addition,
and G1 multiplication. The commitment space GT is homomorphic under GT multiplication. All groups
have prime order p for p > 2λ. The commitment scheme is also binding by them-ASDBP assumption. This
means that the commitment scheme is an inner product commitment. Thus either the adversary convinces the
verifier of incorrect w, v, or by Theorem 1 an adversary that breaks computational knowledge soundness can
extract a validm-ASDBP instance.

An algebraic adversary that convinces a verifier of incorrect w, v can extract a valid 2m-SDH instance by
Lemma 4.
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D.5 Deferred proofs from Section 6

D.5.1 Proof of Theorem 4

Proof. LetA be an adversary that succeeds at convincing a verifier with non-negligible probability for random
evaluation challenges (x, y). By Theorem 6 there exists an extractor that outputs A such that T = A ∗ v and
A = Ax. By Lemma 4on there exists an extractor that outputs a′ such that ν = a′ · y and A = ga′ .

The extractor runs A on max(m, `) parallel instances of (x, y). They compute a Vandermonde
matrix to find M̂ ∈ Fm,` which relates the exponents of Ai to the exponents of g. With overwhelming
probability this matrix is invertible, so they learn ai,0, . . . , ai,`−1 such that Ai =

∏`−1
j=0 g

ai,j
j . They

return f(X,Y ) =
∑

i,j ai,jX
iY j . Observe that ν =

∑m−1
i=0 (

∑`
j=0 ai,jy

j)xi is the correct evaluation of
f(X,Y ).

Lemma 5. The polynomial commitment scheme in Appendix E is special honest verifier zero-knowledge.

Proof. First observe that both the prover samples T from a uniformly random distribution and thus the
commitment scheme is hiding.

Consider a simulator that knows the verifier responses in advance:

• To simulate a commitment, return T $←− GT .

• To simulate an evaluation of T to ν with respect to the challenge c $←− F

1. Choose ρ′ $←− F and r(X,Y ) a random polynomial that evaluates at (x, y) to ν.

2. Set R′ = PC.CM(ck; r(X,Y )) and R = T−c ·R′ · e(gρ
′

0 , h
m). Send (R, r(x, y)) to the verifier.

3. When the verifier sends c, respond with ρ′.

4. Run the provers evaluation algorithm on T ′ = T c ·R · e(g−ρ
′

0 , vm) = R′.

The provers evaluations (R, r(x, y)) is masked by r1,2, r1,3 and thus is indistinguishable from the verifiers
random evaluation. By Lemma 4.6 of Hoffmann et al. [HKR19], Mm and M` are masking sets for MIPP
and DL-IP respectively. Thus the provers recursive arguments ZL, ZR, PL, PR are distributed uniformly
at random and are indistinguishable from the simulators uniformly random recursive arguments. The
provers evaluation A = CM(ck, f(x, Y )) is masked by r1,1 and thus is indistinguishable from the simulators
random evaluationA. Hence (PC.Setup, PC.CM, EvalSetup, EvalProve, EvalVerify) satisfies honest verifier
zero-knowledge.

E Hiding Polynomial Commitments

The inner product arguments we have described thus far are, by default, not hiding. An attacker can
easily distinguish one polynomial from another, for example by computing the commitment themselves
(our commitment algorithm is deterministic). When instantiating zero-knowledge arguments that use
polynomial commitments, this is potentially problematic. For example, Marlin [CHMMVW20] only achieves
zero-knowledge when it is instantiated using a hiding polynomial commitment scheme.

Fortunately there exists a simple generic approach to transforming homomorphic polynomial commitment
schemes from non-hiding to hiding [BFS20]. First the initial commitment T to the polynomial f(X,Y )
needs to be randomised so as to make it hiding. Upon evaluation, the prover sends: the evaluation f(x, y); a
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commitment R to a fully random polynomial r(X,Y ) (with the same degree as f(X,Y )); and the evaluation
r(x, y) to the verifier. The verifier returns a challenge c. The prover then proves that T cR evaluates to
c · f(x, y) + r(x, y). Hoffmann et al. [HKR19] optimise this method for the prover by observing that it
suffices for r(X,Y ) to have only a logarithmic number of non-zero coefficients.

HidingPC.Setup(1λ, `,m)

return PC.Setup(1λ, `,m+ 1)

ZKEvalSetup(ck; α, β)

return EvalSetup(ck; α, β)

HidingPC.CM(ck, v, f(X,Y ))

τ
$←− F

T ← PC.CM(ck, f(X,Y ))
T ← T · e(gτ0 , vm)
return T

ZKEvalProve(crs, (T, (x, y), ν), (f(X,Y ),A, τ))

sample r(X,Y )
$←− F[X,Y ]

sample ρ $←− F
R← HidingPC.CM(ck, r(X,Y ); ρ)

send (R, r(x, y)) to the verifier
receive challenge c ∈ F
send ρ′ = τc+ ρ to the verifier

T ′ ← T c ·R · e(g−ρ
′

0 , vm)
ν ′ ← c · f(x, y) + r(x, y)
f ′(X,Y ) = c · f(X,Y ) + r(X,Y )
A′ ← Ac ◦R
run EvalProve(crs, (T ′, (x, y), ν ′), (f ′(X,Y ),A′))

ZKEvalVerify(crs, (T, (x, y), ν))

receive (R, r) from the prover
send challenge c ∈ F
receive ρ′ from the prover

T ′ ← T c ·R · e(gρ
′

0 , vm)
ν ′ ← c · ν + r
run EvalProve(crs, (T ′, (x, y), ν ′))

Figure 18: Our hiding extension to our polynomial commitment schemes. Here ck and crs are taken to be the
commitment keys and common reference strings from either the transparent or the structured setup polynomial
commitment schemes. Additionally the prover inputs A and R are commitments to f0(Y ), . . . , fm−1(Y ) and
r0(Y ), . . . , rm−1(Y ) respectively.

We specify the hiding variation on our polynomial commitment schemes in Figure E and prove security
in Lemma 5.

Hiding Commitment: Our commitment key contains an additional value vm ∈ G2. Our prover commits to
f(X,Y ) by sampling τ $←− F and setting

T = PC.CM(ck, f(X,Y )) · e(gτ0 , vm) = e(gτ0 , vm)
m−1∏
i=0

e

`−1∏
j=0

g
ai,j
j , vi

 .

Observe that this commitment is perfectly hiding because there is one group element and one randomiser.

Zero-Knowledge Evaluation Argument: Upon receiving an evaluation instance (x, y) for the commitment
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T , the prover samples

r(X,Y ) =

m−1,`−1∑
i,j=0

ri,jX
iY j

for ri,j sampled randomly from F and computes

R = PC.CM(ck, r(X,Y )).

The prover sends (R, r(x, y)) to the verifier. The verifier returns c $←− F. The prover sends ρ′ = cτ + ρ to
the verifier. The prover now demonstrates to the verifier thatT c ·R·e(g−ρ

′

0 , vm) evaluates to c·f(x, y)+r(x, y).

Optimization. We specify an optimization by Hoffmann et al. [HKR19] for reducing the number of non-zero
coefficients in r(X,Y ). This optimization is important because otherwise computing the commitment R
would requirem` G1 operations, increasing our prover time not only practically but also asymptotically. Let
Mm = {0}∪{2k, 2k + 1}m−1k=0 andM` = {0}∪{2k, 2k + 1}`−1k=0 and observe that these sets have logarithmic
size. Rather than sampling r(X,Y ) from the full polynomial space, instead sample

ri,j =


r

$←− F for (i, j) ∈ {(0, 1), (0, 2), (0, 3)}
r

$←− F for i ∈Mm and j = 6

r
$←− F for i = 6 and j ∈M`

0 otherwise

and set r(X,Y ) =
∑

i,j ri,jX
iY j . We have chosen ri,6 because 6 is the first value not inM` (and similarly

for r6,j).
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