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Abstract

Asymmetric schemes are moving towards a new series of cryptosystems
based on known open problems that until the day guarantee security from
the point that are not solvable under determined properties. In this paper
you can read a novel research done mostly on the field of Multivariate
Public Key Cryptography that focus the interest on sharing a pre-master
key between Alice and Bob using quadratic multivariate polynomials as
the public key. What does this scheme somehow special is that it uses a
private construction involving polynomial factorization that allows Alice
to recover the secret sent by Bob.

1 Introduction

The main goal of this paper is to show that Alice and Bob can establish a secure
connection by sharing material that Alice can only recover. The attacker, as
always, must solve a problem or a series of these to break their communication.
In this case, he is going to work on factoring quadratic multivariate non-linear
polynomials over a field.

2 Motivation

Multivariate Public Key Cryptography has been around since the ’88 when
the scheme of Matsumoto-Imai[1] was announced. It was a fashionable and new
scheme that provided new ideas of creating asymmetric key cryptosystems using
polynomials over finite fields. The trapdoor consisted on computing Xqρ+1

to
hide the original polynomial. Patarin[2] shown that it can be broken by after
only m2n4 log n computations. New attempts[3] were made as FLASH, Oil-
Vinegar, Rainbow and others. This work has been done under the perspective
of the techniques used in these cryptosystems along with properties of finite
fields.
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3 Background

It is better to explain some concepts and ideas to put the reader in context.
Algebraically this scheme uses mainly polynomial factorization over a field of
q elements, but it understanding Finite Fields is important as well. A Finite
Field Fpn is an algebraic structure that satisfies ring and group axioms and
it’s constructed as the polynomial quotient ring Fpn = Zp[x]/f(x)) where f
is an irreducible polynomial of degree n over Fp. It’s a common structure
found in plenty cryptographic schemes both symmetric and asymmetric. Every
element of a finite field has an inverse and that’s a condition that eases algebraic
constructions, besides, the order of the multiplicative group F ∗

q is known to be
qn−1 where q = pn, thus exponentiation is affordable and invertible/reversable
when the exponent is coprime to the order.

In addition, the vector space Fn
q is identified with the finite field Fqn allowing

to represent an element as a vector or as a polynomial. This way an element
can be easily transformed using linear transformations over Fq then switching
back to Fqn and so on.

4 Scheme construction

A few remarks before describing the algebraic construction of the scheme. The
main concept is that Alice multiplies two polynomials (p · q)(x) = r(x), trans-
forms the resulting polynomial by φ−1(Tφ(r(x)) = P and sends it to Bob as her
public key. Bob chooses two irreducible polynomials of particular degree, in-
puts the combined coordinate tuple of both irred. polynomials in Alice’s public
key and outputs P (X): the integer representation of Alice’s public key under
values (y1, · · · , y2(k+1)). Now Alice inverts by φ−1(T−1φ(P )) = r(x). Thus
Alice factors r(x) into the product of both p(x), q(x) over Fq recovering the
private coordinate tuple used by Bob. But why? The key to understanding the
factorization technique is to review the following properties:

A polynomial f(x) ∈ Fqn of degree k has polynomial factors of degree
di that sum up to k when these factors are multiplied. This is, the prod-
uct two irreducible polynomials (p.q)(x) = r has these irreducible polyno-
mials in its factorization ⇐⇒ Deg(p(x)) + Deg(q(x)) ≤ n − 1. When
Deg(p(x))+Deg(q(x)) > n−1 the factorization of r(x) is different from (p.q)(x)
since we are working in Fqn thus reducing the product by f , this is a very im-
portant condition and the scheme works only when the sum of degree is less
than n. On Cryptography these properties are useful since there exists a map
that embed two polynomial elements into one where inverting the trapdoor is
possible under factoring r(x) into (p(x), q(x))).
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First of all let p(x), q(x) ∈ Fqn be two polynomials of degree k, where 2k <
n− 1 and k prime. Express them as:

p(x) =

k+1∑
i=1

yix
i−1

q(x) =

2(k+1)∑
i=k+2

yix
i−k−2

Then let φ be the map that sends a polynomial in Fqn to a n-tuple with coeffi-
cients in Fq.

φ : Fqn 7→ Fn
q φ(f(x)) = (c0, · · · , cn−1)

φ−1 : Fn
q 7→ Fqn φ(x) = f(x) =

n−1∑
i=0

cix
i

The map F sends two elements of Fqn to another in Fqn under multiplica-
tion:

F : F 2
qn 7→ Fqn F (p(x), q(x)) = r(x)

F−1 : Fqn 7→ F 2
qn F−1(r(x)) = (p(x), q(x))

Let T ∈ F 2k+1×2k+1
q be the transformation matrix that combines the result-

ing multivariate quadratic polynomials in the vector space Fn
q as follows:

T : Fn
q 7→ Fn

q T (x) = T · x
Then the whole scheme can be represented as composition of the aforemen-

tioned maps:

P (p1(y1, · · · , y2(k+1)), · · · , p2k+1(y1, · · · , x2(k+1))) = φ−1 ◦ T ◦ φ ◦F (p(x), q(x))

As p(x), q(x) have degree k their tuple representation has k + 1 variables
each. Their multiplication results on the polynomial r(x) of degree 2k, thus
r(x) is a 2k + 1-tuple. After transforming with T , the public key P contains
2k + 1 polynomials on 2(k + 1) variables. Summarizing, there is apparently
one more variable than polynomials.

Bob receives the public key P , chooses two irreducible polynomials p(x), q(x)
of degree k over Fq that are elements in Fqn . Then he inputs in P the two
coefficient list of p, q concatenated, these are 2(k+ 1) variables and it is written
as:

P (φ(p(x)||φ(q(x)))) = P (y1, · · · , y2(k+1))

It is clear that the variables yk+1 = 1 and y2(k+1) = 1 such that p(x), q(x)
both have degree k. Thus from 2(k + 1) two are reserved to denote degree k,
thus there are simply 2k variables and 2k + 1 polynomials.
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4.1 But what does Bob transmit?

Bob is forced to select two irreducible polynomials over Fq being not able to
freely choose whatever 2(k+1) variables he wants. Both irreducible polynomials
define the pre-master key that can be combined with a salt or nonce to be
used into a KDF for obtaining symmetric key material for confidentiality and
integrity. As seen later, the attacker will figure out how obtain information only
using irreducible polynomials over Fq.

5 Alternative constructions

Comparing it to other schemes you can find that transformations on the private
tuple are done before reaching F . In this scheme is crucial that p(x), q(x) are
multiplied without initially modifying them, as Bob will select two irred. polyno-
mials over Fq that will end up factorising into both p(x) and q(x). Transforming
the variable tuples as seen in other schemes arises a different scenario:

Define variable tuples for two polynomials p(x), q(x) as y1 = (y1, · · · , yk+1)
and y2 = (yk+2, · · · , y2(k+1)). Select S1, S2 ∈ Fn×n

q and present the following
composition of maps:

φ−1 ◦ T ◦ φ ◦F (φ−1(S1 · y1), φ−1(S2 · y2))

You end up multiplying two polynomials in F that may not be irreducible
thus not recoverable later when inverting F since transforming polynomials
before multiplication changes their structure. The rule is to transform the
output of F once both p(x), q(x) are multiplied. The approach here is to
use a linear transformation T , but exponentiation on Fqn is possible too as
F (p(x), q(x)) = r(x) thus re ≡f h and hd ≡f r when gcd(e, qn − 1) = 1 and
ed ≡(qn−1) 1.

Another remark is that redefining F as F (p(x), p(x)) = p2(x) = r(x) gives
2k+1 quadratic polynomials on k+1 variables when q 6= 2. Thus after applying
the transformation T the system P (X) results to be over-determined. It is
another approach but the number of equations approximately doubles the size
comparing to the number of variables. The original scheme provides almost the
same number of variables and equations.
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6 Example

Take q = 2, n = 17, k = 7. Let’s construct the public key, as said before consider

p(x) =
∑k+1

i=1 yix
i−1 q(x) =

∑2(k+1)
i=k+2 yix

i−k−2. Multiply both polynomials as
seen in F (p(x), q(x)) = r. Then think of r(x) as a column vector ordered by
the powers of x:

y1y9+ (1)

x(y1y10 + y2y9)+ (2)

x2(y1y11 + y10y2 + y3y9)+ (3)

x3(y1y12 + y11y2 + y10y3 + y4y9)+ (4)

x4(y1y13 + y12y2 + y11y3 + y10y4 + y5y9)+ (5)

x5(y1y14 + y13y2 + y12y3 + y11y4 + y10y5 + y6y9)+ (6)

x6(y1y15 + y14y2 + y13y3 + y12y4 + y11y5 + y10y6 + y7y9)+ (7)

x7(y1y16 + y15y2 + y14y3 + y13y4 + y12y5 + y11y6 + y10y7 + y8y9) (8)

x8(y16y2 + y15y3 + y14y4 + y13y5 + y12y6 + y11y7 + y10y8)+ (9)

x9(y16y3 + y15y4 + y14y5 + y13y6 + y12y7 + y11y8)+ (10)

x10(y16y4 + y15y5 + y14y6 + y13y7 + y12y8)+ (11)

x11(y16y5 + y15y6 + y14y7 + y13y8)+ (12)

x12(y16y6 + y15y7 + y14y8)+ (13)

x13(y16y7 + y15y8)+ (14)

x14y16y8 (15)

Now let’s transform this polynomial r(x) using T . Define T and remove
powers of x from the column vector (as it would be linear algebra):

T ∈ F 15×15
q =



0 1 0 1 0 0 0 1 0 1 1 1 1 1 1
1 1 1 1 1 0 0 1 1 1 1 0 0 1 0
1 1 1 0 1 1 1 1 1 0 1 1 1 1 1
1 1 0 1 0 0 1 0 1 1 1 0 0 0 1
1 0 0 1 1 1 0 0 1 1 0 0 1 1 1
1 1 0 1 0 1 0 0 1 0 0 1 1 0 0
1 0 0 0 1 0 1 0 1 1 0 0 0 0 1
1 0 0 0 0 0 1 1 1 1 0 0 0 1 1
0 1 0 1 1 1 1 1 0 1 1 0 1 0 1
0 0 0 0 1 0 0 0 1 1 1 1 1 0 0
1 0 1 0 1 1 0 0 0 1 1 0 0 0 1
1 1 0 1 1 0 0 1 1 0 1 1 1 1 0
1 0 0 1 1 1 0 0 1 1 1 1 0 0 1
1 0 0 1 0 1 0 1 0 1 1 0 0 1 1
1 1 0 1 1 1 1 0 0 1 0 1 0 1 0


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The public key is P = T.φ(r(x)) resulting in the following polynomial over
Fqn
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Till the moment, Bob has Alice’s public key, so he chooses p(x) = x7 +x+ 1
and q(x) = x7 +x5 +x3 +x+1 both irreducible over F2. He puts the coefficient
list of both polynomials into the public key P (X):

P (1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1) = x+x3+x7+x8+x9+x11+x13+x14.
Bob sends P (X) back to Alice.

Alice does r(x) = φ−1T−1φ(P (X)) = 1+x2+x3+x4+x5+x6+x10+x12+x14.
Eventually, computing the factors of r(x) over F2 yields r(x) = (x7 + x +

1)(x7 + x5 + x3 + x+ 1) = p(x)q(x).
The whole example is basic and insecure from the point of parametrization

and selection. Polynomials p(x), q(x) have been randomly chosen to satisfy irre-
ducibility. Matrix T has been randomly chosen to satisfy r(T ) = 2k + 1, this is
full rank. Moreover the irreducible polynomial set where Bob chooses p(x), q(x)
is limited to roughly 24.16993 so the attacker recovers the private factors only
by comparing the output Bob’s P (X) with his own. But this example suffices
to demonstrate how the scheme works in both ways, enciphering and decipher-
ing following the map construction. The scheme escalates well under distinct
parametrization as seen later in Complexity.

7 Security

The attacker knows that Bob must choose two irreducible polynomials over Fq

of degree k. He starts to wonder himself how to locate these two polynomials
and what’s the complexity behind his enumeration method. As the degree k is
prime, the formula for determining how many irreducible polynomials of degree

k exits over Fq when k prime is: qk−q
k . Thus a estimation on the selection of

parameters can be made:
The recommended parametrization is q = 2, k = 127 because there are about

2log2( 1
127 (2127−2)) = 2120.01 irreducible polynomials of degree 127 and allows Bob

to encipher 2(k+1) variables.. The attacker realizes that this method doesn’t fit
as it requires a long quantity of time for finding each selected polynomial. More-
over, he looks at the structure of irreducible polynomials and realizes that he
can eliminate more variables of the system if all these polynomials fix a concrete
coefficient, this is, a concrete coefficient is always present in every irreducible
polynomial of degree k over Fq. This is the case of the leading coefficient on
xk that’s why in previous sections yk+1, y2(k+1) are eliminated. This attack is
not going to be analyzed here, but it must be taken into consideration as would
result into variable elimination/reduction.

Now, he puts the eye on the linear transformation T ∈ F 2k+1×2k+1
q . He

knows that every vector can be decomposed into a product of a matrix of coef-
ficients times a column vector this is Ax = b. For that he attempts to find out
a common expression in every coefficient of b. The common expression turns
out to be the basis and the coefficients that multiply these expressions form the
matrix of coefficients. This is always possible when the vector coefficients of b
are linear multivariate polynomials. But in this scheme, P contains 2(k + 1)
multivariate quadratic polynomials, thus separating the matrix coefficient from
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basis depends on finding out a common simplification-reduction for every poly-
nomial in P which it seems to be non-trivial. Other applicable transformations
(like exponentiation, conjugation transform) are not discussed here since right
now because computing exponentiations on symbolic-agelbraic polynomials is
time consuming and results in higher degree polynomials.

Following with the security topic, now is the turn for the attacker to switch
to the next area where he can recover sensitive information. He starts to think
that he may be able to solve the system of multivariate quadratic polynomials
P−1(Y ) = X. For that he knows that every coefficient of the polynomial of de-
gree 2k is a quadratic multivariate polynomial, thus he tries to solve the system
of polynomial equations by examining the complexity of the multiple existing
methods to solve quadratic multivariate polynomials over Fq. Elaborates a list
of candidates resulting in Linearization techniques and Gröbner Bases.

Gröbner Bases have been used extensively for solving systems of polynomial
equations but they are not recommended beyond n = m = 15[4]. CAS software
like Mathematica has a built-in implementation of this method that returns a list
of polynomials that allows the user to return the roots of the initial polynomials,
but it didn’t work with the previous example of m = 15, n = 16.

(Re)Linearization[4] is a non-trivial technique that tries to express P (X)
as a new system of equations in linear variables. For that it express every
term yiyj as yij yielding linear equations and obtaining solutions for these new
variables. This scheme uses m = 255, n = 256 thus it seems that these attacks
cannot be applied at a first glance. But as the scheme construction is public,
the attacker could linearize equations in r(x) to measure how did T transformed
the polynomial, and maybe, obtain information of T as r(x) would be linear.

8 Complexity

Normally schemes that are not based on discrete logarithm or integer factor-
ization have bigger sizes on their public keys. The public key of this scheme
consists of 2k + 1 equations on 2(k + 2) variables or 2k variables if eliminating
yk+1, y2(k+1).

When multiplying p(x).q(x) = r(x) we see in section 6 that there exits a
symmetry on the number of variables per equation, once the half of the table
is passed, the number of variables start to decrease. This behaviour defines a
deterministic way of computing the algebraic description of r(x) programatically
on k + 1 iterations. The public key goes after obtaining r(x) by Tφ(r(x)) and
needs an estimation on iterations-time and space.

As T is a (2k + 1) × (2k + 1) matrix, multplying by φ(r(x)) consists on
2k+ 1 multiplications and sums per row resulting in (2k+ 1)2 sums and multi-
plications. Since r(x) is a symbolic expression the implementation program will
append to the left the integer value of Ti,j on the symbolic value r(x)j , this is,∑2k+1

i=1

∑2k+1
j=1 Ti,jr(x)j . It’s hard to calculate the size of P (X) as the resulting

quadratic symbolic equations depends on the chosen T : every column vector or
polynomial equation of P (X) contains distinct symbolic coefficients of r(x).
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For Bob, testing an irreducible polynomials over Fq by Rabin’s test of irre-
ducibility gives a total of O(n2 log n log q) field operations.

Furthermore, Alice must recover the irreducible poylnomials chosen by Bob.
First she inverts T and recovers r(x). After, she analyzes the complexity of
factoring over Fq, which initially was O(d3 log q) which later had been improved
to O(d log q)[5], what turns out to be practical for this scheme.
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