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Abstract

We seek constructions of general-purpose immunizers that take arbitrary cryptographic
primitives, and transform them into ones that withstand a powerful “malicious but proud”
adversary, who attempts to break security by possibly subverting the implementation of all
algorithms (including the immunizer itself!), while trying not to be detected. This question
is motivated by the recent evidence of cryptographic schemes being intentionally weakened,
or designed together with hidden backdoors, e.g., with the scope of mass surveillance.

Our main result is a subversion-secure immunizer in the plain model, that works for a
fairly large class of deterministic primitives, i.e. cryptoschemes where a secret (but tampera-
ble) random source is used to generate the keys and the public parameters, whereas all other
algorithms are deterministic. The immunizer relies on an additional independent source of
public randomness, which is used to sample a public seed.

Assuming the public source is untamperable, and that the subversion of the algorithms
is chosen independently of the seed, we can instantiate our immunizer from any one-way
function. In case the subversion is allowed to depend on the seed, and the public source is
still untamperable, we obtain an instantiation from collision-resistant hash functions. In the
more challenging scenario where the public source is also tamperable, we additionally need
to assume that the initial cryptographic primitive has sub-exponential security.

Previous work in the area only obtained subversion-secure immunization for very re-
stricted classes of primitives, often in weaker models of subversion and using random oracles.
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1 Introduction

A common trend in modern cryptography is to design cryptographic schemes that come with
a proof of security in a well-defined model; the proof is typically by reduction, meaning that
violating the security of the scheme implies the existence of an efficient algorithm for solving
some well-studied mathematical problem which is believed to be hard (e.g., factoring certain
integers, or inverting a one-way function). While having such a security proof is definitely a
desirable feature, it is at least as important to make sure that the security model fits reality, as
otherwise provably secure schemes are of little use in practice.

Unfortunately, security models often make idealized assumptions that are not always fulfilled
in the real world. In this paper, we focus on one of those gaps, which is the discrepancy between
the specification of a cryptographic scheme and its implementation. In particular, we consider
the extreme case where the implementation is fully adversarial, i.e. the adversary is allowed to
subvert or substitute some (or possibly all) algorithms in the original specification, with the
purpose of weakening security.

The above scenario recently gained momentum due to the NSA leaks by Edward Snow-
den [27, 5, 23], and because of the EC DUAL PRG1 incident [11]. These hazards challenge
modern cryptographers to design protection mechanisms withstanding subversion and tamper-
ing, as it was also highlighted by Phil Rogaway in his 2015 IACR Distinguished Lecture [28].

1.1 Background

Clearly, in order to guarantee some form of security in such an adversarial setting, we must put
some restrictions on the adversary, as otherwise it is easy to subvert a cryptographic scheme in
a way that becomes insecure (e.g., the subverted scheme could always output the secret key). A
natural restriction, which is also inspired by real-world attacks, is to demand that a subversion
should be undetectable by honest users. In other words, the adversary’s goal is to tamper
with the specification of a cryptographic scheme in such a way that the produced outputs look
indistinguishable from that of a faithful implementation, yet they allow to completely break
security given some additional piece of information.

As it turns out, the possibility of such attacks was already uncovered more than twenty years
ago by Young and Yung [35, 36], who dubbed the field kleptography (a.k.a. “cryptography
against cryptography”). At Crypto 2014, Bellare, Paterson, and Rogaway [9] revisited this
setting for the concrete case of symmetric encryption. In particular, on the one hand, they
showed that it is possible to hide a backdoor in the encryption algorithm of any sufficiently
randomized symmetric encryption scheme in such a way that the produced ciphertexts appear
indistinguishable from honestly computed ones, yet knowledge of the backdoor allows to extract
the secret key in full; on the other hand, they suggested that deterministic symmetric encryption
schemes are secure against all subversion attacks that meet some form of undetectability. Their
results were later extended in several ways [14, 8], while follow-up work studied similar questions
for the case of digital signatures [3, 12], pseudorandom generators [16, 15], non-interactive zero
knowledge [7], key encapsulation [4], hash functions [20, 31], and even hardware trojans [2].

Complete subversion. A common feature of the aforementioned works is that only some of
the algorithms underlying a given cryptographic scheme are subject to subversion, while the
others are assumed to faithfully follow the original specification. Motivated by this limitation,
Russell et al. [29] put forward a new framework where the adversary is allowed to subvert all

1The PRG was standardized by NIST in 2006, and later withdrawn in 2014 as including a potential backdoor
allowing to predict future outputs of the PRG algorithm.

3



algorithms; furthermore, in order to cast undetectability, they introduced a trusted third party,
a so-called watchdog, whose goal is to test whether the (possibly subverted) implementation is
compliant with the original specification of a cryptographic scheme. In a nutshell, a primitive is
subversion secure if there exists a universal watchdog such that either no adversary subverting
all algorithms can break security of the scheme, or, if instead a subversion attack is successful,
the watchdog can detect it with non-negligible probability.

The testing procedure executed by the watchdog is typically performed only once, before the
(possibly subverted) scheme is used “in the wild”. This is known as the offline watchdog model.
Unfortunately, there are subversion attacks that cannot be detected in an offline fashion. Think,
e.g., of a signature scheme where the signature algorithm is identical to the original specification,
except that upon input a special message (that is also hard-wired in the implementation) it
compromises security (e.g., it returns the secret key). Now, assuming that the message space
is large enough, an offline watchdog has a negligible chance of hitting this hidden trigger, so
that the subverted implementation will pass the test phase; yet, the subverted scheme is clearly
insecure (in the standard sense of unforgeability against chosen-message attacks).

To cast such attacks, [29] introduces the online watchdog model, where the watchdog is
essentially allowed to additionally monitor the public interaction between users while the scheme
is being used “in the wild” (on top of performing the same offline testing, as before).2

Cliptography. The main contribution of Russell et al. [29], apart from introducing the model
of complete subversion, is to propose a methodology to clip the power of subversion attacks
against one-way (trapdoor) permutations. Moreover, they show how to rely on such subversion-
secure one-way permutations to derive subversion-secure pseudorandom generators and digital
signatures. All their results are in the random oracle model (ROM) of Bellare and Rogaway [10].

In a follow-up paper [30], the same authors show how to obtain public-key chosen-plaintext
attack secure encryption resisting complete subversion, again in the ROM. This result (inher-
ently) requires the assumption of two independent secret, but tamperable, sources of random-
ness. They further show that their construction can be instantiated in the standard model (i.e.,
without random oracles).

Open questions. The works of [29, 30] only cover a limited set of cryptographic primitives.
Hence, the natural question:

Is it possible to protect other primitives against complete subversion, by relying on a
single source of secret, but tamperable, randomness, and without assuming random
oracles?

1.2 Our Contributions

In this paper we make significant progress towards answering the above question. Our starting
point is a notion of subversion-resistant immunizer Ψ, whose goal is to take an arbitrary primitive
Π that is secure w.r.t. some game G, and transform it into an immunized primitive Π∗ = Ψ(Π)
(for the same cryptographic task) that is secure w.r.t. G under complete subversion (in the
sense of [29]). The immunizer leverages two independent random sources, which we denote by
R and S: The source R is an m-bit source which is assumed to be secret, but tamperable; the
source S is an m′-bit source which is assumed to be public and (in some cases) untamperable.
In particular, we consider 3 different models for subversion-secure immunization in the plain
model:

2One can imagine even more powerful watchdogs monitoring public transcripts while being given the user’s
secret keys; these are known as omniscent watchdogs, but will not be considered in this paper.
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• Semi-Private Immunization: Here, the public source S is assumed to be untamperable
and uniform, while all other algorithms are subject to subversion. Moreover, the adversary
has to commit to the subversion Π̃ of the immunized cryptographic scheme Π∗ before the
seed s, generated by sampling from S and later used within Π̃, is made public.

• Public Immunization: Here, the public source S is again assumed to be untamperable
and uniform, while all other algorithms are subject to subversion. However, the subversion
Π̃ is now allowed to depend on the seed s (i.e., first s is sampled and made public, and
then the adversary subverts Π∗).

• Transparent Immunization: Here, the public source S is tamperable, so that the
adversary is allowed to specify its own public source S̃. However, tampering with the
public source happens independently of the subversion of the immunized scheme (i.e.,
first s is generated from S̃ and made public, and then the adversary subverts Π∗).

Next, we show how to construct a subversion-secure immunizer for each of the above models.
Our immunizer is tailored to protect deterministic primitives Π (secure w.r.t. some game G),
where the latter means that the original specification of Π consists of a secret random m-bit
source R that is sampled in order to generate the public/secret keys of the scheme (via an
algorithm K), and the public parameters (via an algorithm P), whereas every other algorithm
Fi underlying Π is deterministic. For the semi-private model, our immunizer can be instantiated
using any one-way function, and works starting with an arbitrary deterministic primitive. For
the public model, our immunizer can be instantiated using sufficiently strong collision-resistant
hash functions, but for certain primitives Π an additional property is required; see §1.3 for
details. For the transparent model, we obtain the same results as in the public model but we
now have to further assume that Π has sub-exponential security.

Interestingly, our results allow to protect new cryptographic primitives against complete
subversion; examples include: (weak) pseudorandom functions and permutations, message au-
thentication codes, collision/second pre-image/pre-image resistant hash functions, deterministic
symmetric encryption, and more. Previously to our work, for the aforementioned primitives, it
was only known how to obtain security in weaker models of subversion, or with random oracles.
We refer the reader to Table 1 for a comparison of our results with the state of the art.

Immunization in the random oracle model. To complement our results, in §8 we revisit
the question of subversion-secure immunization in the ROM. In particular, we generalize a
construction proposed in [29] in order to protect specific primitives, and show that it can be
used to successfully immunize all deterministic primitives in the ROM by leveraging a single
and tamperable random source.

Along the way, we clarify a subtle issue that was overlooked by [29]. In particular, we argue
that the original proof breaks if one explicitly considers subversion of the random oracle in the
offline watchdog model. Intuitively, this is because an offline watchdog is not powerful enough
to detect subversion of the random oracle. We refer the reader to §8.4.2 for a more detailed
discussion of this aspect.

1.3 Techniques

We turn to a high-level description of the techniques behind our results. Let Π = (P,K,R,F1, . . . ,
FN ) be a deterministic cryptographic scheme. As explained above, algorithms P and K are
responsible to generate, respectively, global public parameters ρ and a public/secret key pair
(pk , sk) that are taken as input by all other algorithms Fi.

3 Importantly, all algorithms are

3The string pk might be empty for secret-key primitives.
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Reference Primitive Complete Subversion Watchdog # of Sources Additional Assumptions Notes
Pub Sec

[9] CPA-SKE 7 Off 0 1 – Unique ciphertexts

[3] SIG 7 Off 0 1 – Unique signatures

[16] PRG 7 Off 1 1 ROM –

[29]
OWF/TDF 3 Off 0 1 ROM –

PRG 3 Off 0 1 ROM –

SIG 3 On 0 1 ROM –

[30]
CPA-PKE 3 Off 0 1 ROM –

CPA-PKE 3 Off 0 1 OWF –

[12] SIG 3 Off 0 1 ROM –

§4 ∀ det-const 3 Off 1 1 OWF Semi-Private

§5 ∀ det-const-unp 3 Off 1 1 CRH Public

∀ det-const-ind2 3 Off 1 1 CRH Single instance

§6 ∀ det-const-unp 3 Off 1 1 CRH Transparent

∀ det-const-ind2 3 Off 1 1 CRH† Single instance

§7.1 ∀ det-unconst 3 On 1 1 OWF Semi-Private

§7.2
∀ det-unconst-unp 3 On 1 1 CRH Public

∀ det-unconst-ind2 3 On 1 1 CRH Single instance

§7.3
∀ det-unconst-unp 3 On 1 1 CRH Transparent

∀ det-unconst-ind2 3 On 1 1 CRH† Single instance

§8 ∀ det 3 On 0 1 ROM –

Table 1: Comparing our constructions with other results for security under subversion. We use the
following abbreviations: “Pub” for public, “Sec” for secret, “Off” for offline, “On” for online, “CPA-
SKE/CPA-PKE” for public/secret-key encryption under chosen-plaintext attacks, “PRG” for pseudo-
random generator, “OWF/TDF” for one-way (trapdoor) function, “CRH” for collision-resistant hash
function, “ROM” for random oracle model, “∀ det” for all deterministic primitives, “∀ det-const” for
all deterministic primitives with security w.r.t. an input-constrained game, “∀ det-unconst” for all de-
terministic primitives with security w.r.t. an input-unconstrained game (cf. §2.2), “∀ det-const-unp”
(resp. “∀ det-unconst-unp”) for all deterministic primitives with security w.r.t. an input-constrained
(resp. input-unconstrained) unpredictability game, “∀ det-const-ind2” (resp. “∀ det-unconst-ind2”) for
all deterministic primitives with square security w.r.t. an input-constrained (resp. input-unconstrained)
indistinguishability game (cf. §2.3). The green color means the source is assumed to be untamperable.
†Requires complexity leveraging.

deterministic, except for P and K which further take as input independent random coins r ∈
{0, 1}m generated by sampling a secret, uniformly random, source R.

Our immunization strategy follows the design principle of “decomposition and trusted amal-
gamation” introduced in [30], by means of hash functions hs1 , hs2 : {0, 1}n → {0, 1}m with seeds
s1, s2 ∈ {0, 1}`, generated by sampling (possibly multiple times) from the public m′-bit source
S. More in details, we generate 2k′ := 2`/m′ samples s1

1, . . . , s
1
k′ and s2

1, . . . , s
2
k′ from the (pos-

sibly subverted) public source S, and set s1 = s1
1|| · · · ||s1

k′ and s2 = s2
1|| · · · ||s2

k′ . We adopt a
similar approach to generate the random coins for P and K, i.e., we take 2k := 2n/m samples
r1

1, . . . , r
1
k and r2

1, . . . , r
2
k from the (possibly subverted) secret source R, and set r1 := r1

1|| · · · ||r1
k

and r2 := r2
1|| · · · ||r2

k. Then, we hash the amalgamated strings r1 and r2, respectively, using
seeds s1 and s2, so that the immunized parameter generation algorithm P∗ runs P(1λ;hs1(r1)),
whereas the immunized key generation algorithm K∗ runs K(1λ;hs2(r2)); the algorithms (Fi)i∈N
are not modified. As explained below, the security analysis will crucially rely on the assumption
that the above amalgamation is trusted and cannot be subverted.

Intuitively, the above immunizer tries to sanitize the randomness used for parameters/keys
generation in such a way that it is harder for an adversary to generate such values together
with a backdoor. We stress that the trick of hashing the random coins for key generation was
introduced by [29], although there it was applied only to immunize trapdoor permutations in
the ROM, whereas we generalize their approach in such a way that it can be applied to a large
class of deterministic primitives (as defined above) in the plain model.
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Input constrained/unconstrained games. Recall that for some primitives it is inherently
impossible to obtain subversion security in the offline watchdog model. Hence, in our analysis
of the above immunizer, we identify a natural property of cryptographic games which allows
us to prove security in the offline watchdog model; for games not satisfying this property we
instead obtain security in the online watchdog model.

More in details, a game G for some primitive Π consists of an interaction between an
adversary A and a challenger C, where C is given oracle access to the algorithms underlying Π
in order to answer queries from A, and determine whether A wins the game or not. We call G
input constrained, if the inputs xi upon which each (deterministic) algorithm Fi is queried during
the game are sampled by C via some public distribution Di that is independent of the adversary.
On the other hand, a game that is not input constrained is called input unconstrained. Examples
of input-constrained games G include, e.g., the standard security games for weak pseudorandom
functions and one-way permutations. See §2.2 for more examples.

Semi-private immunization. In the semi-private model, we prove security of the above
immunizer assuming the hash functions hs1 , hs2 are strong computational randomness extractors
(which in turn can be obtained from one-way functions [13]). In this case, we can further assume
m′ = ` (i.e., the public seeds s1, s2 are sampled directly from S, without requiring trusted
amalgamation).

Let us start by describing the original subversion game. Here, first the adversary specifies a
subversion Π̃ for the immunized cryptosystem, and then the seeds s1, s2 ∈ {0, 1}` are generated
by sampling the public source S; hence, the adversary (now knowing the seeds s1, s2) interacts
with the challenger, which first obtains random coins r1 = r1

1|| · · · ||r1
k and r2 = r2

1|| · · · ||r2
k by

amalgamating 2k = 2n/m independent samples from the subverted source R̃ , and then plays4

the game G for Π, given oracle access to the subverted algorithms P̃, K̃, (F̃i)i∈[N ] using seeds
s1, s2. By contradiction, assume that there is an adversary A that wins the subversion game,
but for which no watchdog W can detect the subversion. We then proceed with a sequence of
hybrids, as outlined below:

1. In the 1st hybrid, we replace algorithms K̃, P̃, and F̃i, with their genuine immunized im-
plementation K∗(1λ; ·) = K(1λ;hs1(·)), P∗(1λ; ·) = P(1λ;hs2(·)), and (F∗i )i∈[N ] = (Fi)i∈[N ].
One can show that any distinguisher between the original game and this hybrid can be
turned into an efficient offline watchdog W detecting the subversion of A. Thus, the two
experiments are computationally close.

2. In the 2nd hybrid, we now generate the public parameters and the keys by running
P(1λ; r1) and K(1λ; r2), where r1, r2 are uniformly random. To argue indistinguishability,
assume for simplicity that the subverted source R̃ is stateless.5 First, we show that R̃
must have at least one bit of min-entropy, as otherwise it is again possible to construct a
watchdog W that detects subversion.

Second, we argue that since R̃ is stateless and efficiently sampleable, the strings r1 =
r1

1|| · · · ||r1
k and r2 = r2

1|| · · · ||r2
k have min-entropy at least k, so that indistinguishability of

the two experiments follows by security of the strong computational randomness extractor.
Note that the last step is possible because the public random source S is untamperable,
and moreover, the subverted random source R̃ is independent of S, as the adversary chooses
it before the actual seed for the extractor is sampled.

4In case the game requires to query oracles P,K multiple times, we can simply amalgamate more samples from
the subverted source R̃ in the same way.

5The case of stateful subversion can be reduced to that of stateless subversion if we assume that watchdogs
are allowed to reset the state of a tested implementation, a trick due to [29].
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3. Finally, we observe that the last hybrid is identical to the original security game G for
the primitive Π, which allows us to invoke the security of Π̃ and conclude the proof.

The proof of security for the case of input unconstrained games is very similar, the main
difference being that during the transition between the first and the second hybrid we need
the power of an online watchdog in order to detect the subversion. Intuitively, this is because
the adversary in the security game G for Π can choose the inputs for the oracle queries of the
challenger, which enables, e.g., input-triggered attacks.

Public immunization. In order for the above proof strategy to work in the public immu-
nization model, we would need a randomness extractor for the so-called seed-dependent setting,
where the distribution of the source can depend on the seed. This natural scenario was studied
by Trevisan and Vadhan [34], who came to the pessimistic conclusion that such extractors can-
not exist, unless the complexity of the extractor is dependent on the complexity of the source
sampler (i.e., the adversary). To overcome this obstacle, we replace the randomness extractor
with a min-entropy condenser, which only guarantees that the output has min-entropy; luckily,
such condensers can exist even for the challenging seed-dependent setting, and were already
constructed by Dodis et al. [18] using sufficiently strong collision-resistant hash functions.

Using randomness condensers, we can show that the 1st hybrid experiment is computa-
tionally close to an experiment in which we use P(1λ; y1) and K(1λ; y1) in order to sample the
public parameters and the keys, where y1, y2 are now only guaranteed to have m − k bits of
min-entropy. Finally, in order to conclude the proof, we exploit the framework of “overcoming
weak expectations” by Dodis and Yu [19], who established that for a large class of primitives6

there is a natural trade off between concrete security and the capacity to withstand a certain
entropy deficiency d on the distribution of the key (see §2.3 for more details). A technical
challenge here comes from the fact that this framework only applies to cryptosystems Π where
the secret key is uniformly random (and moreover there are no public parameters, or those are
generated using uniform randomness). However, we show a similar tradeoff still holds for our
specific setting, at least for single-instance games where the original random source R is sampled
only twice (one for generating the public parameters, and one for sampling the keys).7

Transparent immunization. We finally turn to the scenario in which the public source S is
tamperable. In this case, we cannot assume anymore that the seed for the condenser is uniform.
However, note that the watchdog still guarantees that the subverted public source S̃ has at least
one bit of min-entropy, and we can leverage trusted amalgamation in order to ensures that the
seeds s1 = s1

1|| · · · ||s1
k′ and s2 = s2

1|| · · · ||s2
k′ obtained by concatenating 2k′ = 2`/m′ independent

samples from S̃, have min-entropy at least k′. Hence, in order for the proof to go through, we
need a stronger type of seed-dependent condenser which works even under weak seeds.

We show how to construct such condensers from any ensemble of collision-resistant hash
functions with strong-enough security, by exploiting again the framework of Dodis and Yu [19].
The drawback is that this construction suffers from a higher entropy loss d ∈ ω(log(λ)), with
the consequence that we are only able to prove security of our immunizer in the transparent
model when starting with a cryptographic primitive Π with sub-exponential security.

6In particular, the result of [19] applies to all unpredictability primitives, and to all indistinguishability
primitives meeting so called square security; see §2.3 for details.

7Hence, our results for public/transparent immunization do not cover, e.g., multi-instance games where several
public parameters and keys might be generated.
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1.4 Comparison with Russell et al. [29, 30]

The trick of splitting a cryptographic algorithm into several sub-components (as we do for
P,K,R) was originally introduced in [29], and later refined in [30], under the name of “split-
program” methodology. Remarkably, [30] shows that for semantically-secure public-key encryp-
tion (an inherently randomized primitive) de-coupling the encryption algorithm in a randomized
component R (for generating the random coins) and a deterministic component Enc (for com-
puting the ciphertext) is not sufficient to defeat kleptographic attacks. For this reason, they
propose a “double-splitting” technique in the ROM where R is further split into two (tamper-
able) components R1,R2.8 In this perspective, our immunization strategy can be thought of
as a form of “double splitting”, where one of the two sources is assumed to be untamperable
but made public, defining a more challenging scenario in which the adversary may exploit the
knowledge of the seed s.9 We also note that in [30], each component Ri can be simulated by
sampling from a single source R multiple times if the watchdog is able to certify that the output
distribution of R produces the required amount of entropy (e.g., min-entropy ω(log(λ))).

The fact that subversion-secure immunization in the offline watchdog model only works for
input-constrained games is reminiscent of a general observation made in [29] stating that an
offline watchdog can always detect the subversion of deterministic algorithms with public input
distributions (see [29, Lemma 2.3]).

Finally, we would like to stress that our work only covers immunization against complete
subversion in the form of algorithm-substitution attacks. In particular, the adversary always
specifies an algorithm P̃ that is used for sampling the public parameters during the security
game. Hence, our immunizers do not provide any guarantee in the “adversarially chosen param-
eters model” considered in [16, 29, 15, 20] (where the adversary specifies directly the malicious
public parameters).

1.5 Further Related Work

The original attacks in the kleptographic setting extended previous work on subliminal channels
by Simmons [32, 33]. This research is also intimately connected to the problem of steganography,
whose goal in the context of secret communication is to hide the mere fact that messages are
being exchanged [25].

Dodis et al. [16], study different immunization strategies for backdoored pseudorandom
generators. While they do not consider complete subversion, as the immunizer and the PRG
algorithm are assumed to be trusted, they deal with the case where a cryptographic scheme
might be subverted “by design” (e.g., because it is standardized with maliciously generated
public parameters).

Another line of work suggests to defeat subversion attacks by means of a cryptographic
reverse firewall [26, 17, 3, 22]. Such a firewall is used to re-randomize the incoming/outgoing
messages of a potentially subverted primitive. The firewall itself is assumed to be trusted,
and moreover it relies on a secret, and untamperable, random source. Yet another approach
consists of designing self-guarding schemes [21], which allow to defeat subversion without relying
on external parties (such as watchdogs or reverse firewalls), at the price of assuming a secure
initialization phase where the primitive to protect was not under subversion.

Conference version. An abridged version of this work appeared in [1]. The original paper
only contained our result for public immunization, whereas the current version adds the results

8They additionally show that their technique can be extended in the standard model by splitting R into
` = λδ/ log(λ) + log(λ) (for some small δ) components R1, . . . ,R`.

9In the transparent model we allow the adversary to tamper even with the public source S.
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for semi-private and transparent immunization, and the instantiation in the ROM.

1.6 Organization

After setting-up some notation and recalling a few standard notions in §2, we formalize the
notions of subversion-secure immunization the semi-private/public/transparent model in §3.
The description of our immunizer, together with its security analysis, appear in §4 (semi-private
immunization), §5 (public immunization), and §7 (transparent immunization). In §8, we analyze
the security of our immunizer in the ROM. Finally, we conclude the paper and state possible
directions for future research in §9.

2 Preliminaries

2.1 Notation

We use the notation [n] := {1, . . . , n}. Capital letters (such as X ) are used to denote random
variables, caligraphic letters (such as X ) to denote sets, and sans serif letters (such as A) to
denote algorithms. All algorithms in this paper are modelled as (possibly interactive) Turing
machines.

For a string x ∈ {0, 1}∗, we let |x| be its length; if X is a set, |X | represents the number

of elements in X . When x is chosen randomly in X , we write x ← X . If A is an algorithm,

we write y ← A(x) to denote a run of A on input x and output y; if A is randomized, then y
is a random variable and A(x; r) denotes a run of A on input x and (uniform) randomness r.
An algorithm A is probabilistic polynomial-time (PPT) if A is randomized and for any input
x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in a polynomial number of steps (in the
size of the input). We denote the expected value of a random variable X as E[X], and the
probability that X takes at x ∈ X as P[X = x ].

Negligible functions. Throughout the paper, we denote by λ ∈ N the security parameter.
A function ν : N→ [0, 1] is called negligible in the security parameter λ if it vanishes faster than
the inverse of any polynomial in λ, i.e. ν(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ). We
sometimes write negl(λ) (resp., poly(λ)) to denote all negligiblie functions (resp., polynomial
functions) in the security parameter.

Unpredictability and indistinguishability. The min-entropy of a random variable X ∈ X
is H∞(X ) := − log maxx∈X P [X = x ], and intuitively it measures the best chance to predict X
(by a computationally unbounded algorithm). For conditional distributions, unpredictability is
measured by the conditional average min-entropy H̃∞(X|Y ) := − logEy

[
2−H∞(X|Y=y)

]
.

The statistical distance between two random variables X ∈ X and Y ∈ Y, is defined as
SD(X ; Y ) := 1

2

∑
v∈X∪Y |P [X = v ] − P [Y = v ]|. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be

two ensembles of random variables. We say that X and Y are statistically indistinguishable,
denoted X ≈s Y , as a shortening for SD(Xλ; Yλ) ∈ negl(λ). Similarly, we say that X and Y
are computationally indistinguishable, denoted X ≈c Y , if for all PPT distinguishers D we have
∆D(Xλ;Yλ) ∈ negl(λ), where

∆D(Xλ;Yλ) :=
∣∣∣P[D(1λ, Xλ) = 1

]
− P

[
D(1λ,Yλ) = 1

]∣∣∣ .
An ensemble X = {Xλ}λ∈N is efficiently sampleable if there exists a PPT algorithm Samp

such that, for each λ ∈ N, the output of Samp(1λ) is distributed identically to Xλ.
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2.2 Abstract Games

In this work, we deal with abstract cryptographic schemes. Usually, a cryptographic scheme
is just a sequence of (possibly randomized) efficient algorithms. However, for our purpose, it
will be convenient to specify two special algorithms which are common to any cryptographic
scheme; those are the algorithms for generating the public/secret keys and the public parameters
(if any). Moreover, our focus will be on deterministic schemes (see below).

In this vein, a deterministic cryptographic scheme is a sequence of efficient algorithms Π :=
(P,K,R,F1, . . . ,FN ), where:

• P is a deterministic algorithm that upon input the security parameter 1λ, and random
coins r ∈ R, outputs public parameters ρ ∈ P;

• K is a deterministic algorithm that upon input the security parameter 1λ, and random
coins r ∈ R,10 outputs a pair of keys (pk , sk) ∈ PK × SK;

• The random coins for (P,K) are obtained via independent calls to algorithm R, which
outputs a uniformly random string r ∈ R upon each invocation.

• For each i ∈ [N ], algorithm Fi : Xi → Yi is deterministic.

We stress that the above syntax is meant to capture both secret-key and public-key primi-
tives; in the former case the public key is simply equal to the empty string pk = ε, and PK = ∅.
Further, without loss of generality, we assume that all algorithms F1, . . . ,FN take as (implicit)
input both ρ and (pk , sk); the key generation algorithm also receives ρ as additional input.

Typically, a cryptographic scheme must meet two properties. The first is a correctness
requirement, which essentially says that Π correctly implements the desired functionality;11

although we will not define correctness in general, we will later assume Π meets some well-
defined correctness property. The second is a security requirement, which we model as an
interactive process (a.k.a. game) between an adversary and a challenger.

Definition 1 (Cryptographic game). A cryptographic game G := (C, γ) is defined by a chal-
lenger C and a constant γ ∈ [0, 1); the game is (implicitly) parametrized by a cryptographic
scheme Π = (P,K,R,F1, . . . ,FN ), an adversary A, and the security parameter λ ∈ N. In
an execution of the game the (efficient) challenger C(1λ) interacts with the (efficient) ad-
versary A(1λ), and at the end the challenger outputs a decision bit d ∈ {0, 1}. We de-

note the output of the game as d ← 〈A(1λ),CP,K,R,(Fi)i∈[N ](1λ)〉; we sometimes also write

(d, τ)← (A(1λ) � CP,K,R,(Fi)i∈[N ](1λ)) for a transcript of the interaction between the adversary
and the challenger, CΠ as a shorthand for CP,K,R,(Fi)i∈[N ] , and GΠ,A,C for the random variable
corresponding to an execution of game G with scheme Π, adversary A, and challenger C.

We say that Π is (t, ε)-secure w.r.t. game G = (C, γ) if the following holds: For all proba-
bilistic attackers A running in time t we have∣∣∣P[d = 1 : d← 〈A(1λ),CP,K,R,(Fi)i∈[N ](1λ)〉

]
− γ
∣∣∣ ≤ ε.

Moreover, whenever for all t ∈ poly(λ) there exists ε ∈ negl(λ) such that Π is (t, ε)-secure w.r.t.
game G, we simply say that Π is secure w.r.t. game G.

10We assume the amount of randomness to generate the public parameters and the keys is the same; a gener-
alization is straightforward.

11For instance, if Π is a signature scheme, correctness demands that honestly computed signatures (w.r.t. a
valid secret key) always verify correctly (w.r.t. the corresponding public key).
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Input-constrained games. An important distinction will be whether the adversary is al-
lowed or not to choose the inputs for the oracle calls made by the challenger. We call games
where the latter is not possible input-constrained games.

Definition 2 (Input-constrained games). Let Π = (P,K,R,F1, . . . ,FN ) be a cryptographic
scheme, and G = (C, γ) be a security game for Π. We call G input constrained if the following
holds: For each i ∈ [N ], there exists a public and efficiently samplable distribution Di, such that
the challenger chooses the inputs to each oracle Fi by sampling a fresh and independent value
from Di.

In contrast, games where the above property is not met are called input unconstrained.
Below, we give some examples of cryptographic games that are either input unconstrained or
input constrained.

One-Way Functions: A one-way function (OWF) is a cryptographic scheme Π = (P,R,OWF)
where N = 1, and OWF : X → Y is a function. Security of Π is characterized by a game

Gowf = (Cowf , 0) defined as follows: (i) Cowf picks ρ = P(1λ; r) (for uniform r ← R(1λ)),

samples x ← X , computes y = OWF(1λ, ρ, x), and sends (ρ, y) to the adversary; (ii) A
wins iff it returns a values x′ ∈ X such that OWF(1λ, ρ, x′) = y. Notice that Cowf needs to
invoke oracle OWF upon input x′ in order to determine the decision bit d, and thus the
game is input unconstrained.

One-Way Permutations: A one-way permutation (OWP) is a cryptographic scheme Π =
(P,R,OWP) where N = 1, and OWP : X → X is a permutation. Security of Π is
characterized by a game Gowp = (Cowp, 0) defined as follows: (i) Cowp picks ρ = P(1λ; r)

(for uniform r ← R(1λ)), samples x← X , computes y = OWP(1λ, ρ, x), and sends (ρ, y) to
the adversary; (ii) A wins iff it returns a value x′ ∈ X such that x′ = x. Notice that Cowp

does not need to make any oracle call in order to determine the decision bit d, and thus
the game is input constrained with public distribution D equal to the uniform distribution
over the domain X .

(Weak) Pseudorandom Functions: A pseudorandom function (PRF) is a cryptographic
scheme Π = (P,R,K,PRF) where N = 1, and PRF : K × X → Y is a keyed function.
Security of Π is characterized by a game Gprf = (Cprf , 1/2) defined as follows: (i) Cprf

samples a bit b← {0, 1}, picks ρ = P(1λ; r1) and κ = K(1λ, ρ; r2) (where r1, r2 ← R(1λ)),
and sends ρ to the adversary; (ii) A can ask queries of the form x ∈ X , upon which Cprf

either replies with y = PRF(κ, x) (in case b = 0) or y ← Y (in case b = 1); (iii) A returns
a bit b′ and wins iff b = b′. Notice that Cprf needs to invoke oracle PRF upon inputs
specified by the adversary, and thus the game is input unconstrained.

For weak PRFs the game is changed as follows: In step (ii) the queries made by the

adversary are empty, and instead Cprf samples x ← X and returns (x, y), where y is
computed as before. Hence, the game is constrained with public distribution equal to the
uniform distribution over X .

Hash Functions: A cryptographic hash function is a cryptographic scheme Π = (P,R,Hash)
where N = 1, and Hash : X → Y is a (typically compressing) function. Security of Π is
characterized by a game Gcr = (Ccr, 0) defined as follows: (i) Ccr picks ρ = P(1λ; r) (for

uniform r ← R(1λ)), and sends ρ to the adversary; (ii) A wins iff it returns a pair of values
(x, x′) ∈ X 2 such that Hash(1λ, ρ, x) = Hash(1λ, ρ, x′) and x 6= x′. Notice that Ccr needs
to invoke oracle Hash upon input x, x′ in order to determine the decision bit d, and thus
the game is input unconstrained.
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Message Authentication Codes: A message authentication code (MAC) is a cryptographic
scheme Π = (P,R,K,MAC) where N = 1, and MAC : K ×M → T is a keyed function.
Security of Π is characterized by a game Gmac = (Cmac, 0) defined as follows: (i) Cmac picks

ρ = P(1λ; r1) and κ = K(1λ, ρ; r2) (where r1, r2 ← R(1λ)), and sends ρ to the adversary;
(ii) A can ask queries of the form m ∈M, upon which Cmac replies with τ = MAC(κ,m);
(iii) A returns a forgery (m∗, τ∗) and wins iff τ∗ = MAC(κ,m∗) and additionally m∗ was
never part of a query at step (ii). Notice that Cmac needs to invoke oracle MAC upon
inputs specified by the adversary, and thus the game is input unconstrained.

Secret-Key Encryption: A deterministic secret-key encryption scheme is a cryptographic
scheme Π = (P,K,R,Enc,Dec) where N = 2. The (deterministic) encryption algorithm
takes as input the secret key κ ∈ K and a message m ∈ M, and outputs a ciphertext
c ∈ C. The (deterministic) decryption algorithm takes as input the secret key κ ∈ K and
a ciphertext c ∈ C, and outputs a message m ∈ M (or an error symbol). Security of a
deterministic encryption scheme is characterized, e.g., by a game Gcca-ske = (Ccca-ske, 1/2)

specified as follows: (i) Ccca-ske picks ρ = P(1λ; r1) and κ = K(1λ, ρ; r2) (where r1, r2 ←
R(1λ)), and sends ρ to the adversary; (ii) A can specify encryption queries: Upon input a
message m ∈ M, the challenger returns c = Enc(1λ, κ,m); (iii) A can specify decryption
queries: Upon input a ciphertext c ∈ C, the challenger returns m = Dec(1λ, κ, c); (iv)
A can specify a challenge query: Upon input (m∗0,m

∗
1) ∈ M2, the challenger returns

c∗ = Enc(1λ, κ,m∗b) where b ← {0, 1} is a hidden bit; (v) A can continue to specify
encryption/decryption queries, with the restriction that c∗ cannot be part of a decryption
query; (vi) A returns a bit b′ and wins iff b = b′. Notice that Ccca-ske needs to invoke
oracles Enc,Dec in order to answer encryption/decryption queries, and thus the game is
input unconstrained.

Deterministic Signatures: A deterministic signature is a cryptographic scheme Π = (P,K,R,
Sign,Vrfy) where N = 2, and Sign : SK×M→ S, Vrfy : VK×M×S → {0, 1}. Security of
Π is characterized by a game Gsig = (Csig, 0) defined as follows: (i) Csig picks ρ = P(1λ; r1)

and (vk , sk) = K(1λ, ρ; r2) (where r1, r2 ← R(1λ)), and sends ρ, vk to the adversary; (ii)
A can ask queries of the form m ∈M, upon which Csig replies with σ = Sign(sk ,m); (iii)
A returns a forgery (m∗, σ∗) and wins iff Vrfy(vk ,m∗, σ∗) = 1 and additionally m∗ was
never part of a query at step (ii). Notice that Csig needs to invoke oracle Sign upon inputs
specified by the adversary, and thus the game is input unconstrained.

Single-instance games. As mentioned in the introduction, our results only apply to a sub-
class of games where the random source R is sampled only twice, in order to obtain the ran-
domness needed for generating the public parameters and the keys. We call such games single
instance.

Definition 3 (Single-instance games). Let Π = (P,K,R,F1, . . . ,FN ) be a cryptographic scheme,
and G = (C, γ) be a security game for Π. We call G single instance if during a game execution
the challenger invokes the oracle R twice, in order to obtain coins r1, r2 that are later fed to
oracles P,K.

2.3 Overcoming Weak Expectations

The original specification of a (deterministic) cryptographic scheme leverages a uniformly ran-
dom source R that is used for obtaining the public parameters and the keys. We will call this
setting the ideal model. Motivated by the study of cryptographic applications relying on weak

13



secrets, where essentially secret keys are only guaranteed to have some non-trivial amount of
min-entropy, Dodis and Yu [19] considered the more general setting where the source R is not
uniform but satisfies H∞(R) ≥ m−d, where R ∈ {0, 1}m is the random variable for the outcome
of algorithm R, and d ≥ 1 is called the entropy deficiency.

The original result of [19] only applies to the setting where the source R is used in order to
sample the secret key alone, and no public parameters are available (or those are generated using
uniform randomness). Nevertheless, below we show that their result already covers the slightly
more general setting of deterministic, single-instance, cryptographic primitives (as defined in
§2.2). Given a cryptographic scheme Π, and a single-instance security game G = (C, γ) for Π,
let us define AdvA,C(r1, r2) to be the advantage of A against challenger C (in an execution of
the game), when the coins r1, r2 ∈ {0, 1}m to be used as input of algorithms P,K are fixed, i.e.

AdvA,C(r1, r2) := E
[
〈A(1λ),CP,K,F1,...,FN (1λ, r1, r2)〉

]
− γ,

where the expectation is taken over the random coin tosses of A, C. Similar to [19], we will refer
to |E[AdvA,C(Um, Um)]| as the advantage of A in the ideal model, and to

max
R1,R2

|E[AdvA,C(R1, R2)]| ,

where the maximum is taken over all distributions R1, R2 ≡ R with H∞(R) ≥ m − d, as the
advantage of A in the (m− d)-real model. This naturally yields the following definition.

Definition 4 (Real/Ideal security). Let Π = (P,R,K,F1, . . . ,FN ) be a deterministic crypto-
graphic scheme with R = {0, 1}m, and consider a single-instance game G = (C, γ) for Π. Then,
we say that Π is (t, ε)-secure in the (m− d)-real model if for all probabilistic adversaries A with
running time at most t the advantage of A in the real model is at most ε.

Similarly, we say that Π is (t, ε)-secure in the ideal model if for all probabilistic adversaries
A with running time at most t the advantage of A in the ideal model is at most ε.

It is easy to show that (t, ε)-security in the real model as per Definition 4 is equivalent to
(t, ε)-security as per Definition 1 (when restricted to single-instance games). Now, let us call a
game G = (C, γ) for which γ = 0 an unpredictability game; on the other hand, if γ = 1/2 let
us call G an indistinguishability game. For indistinguishability games it will be useful to recall
the following notion of so-called square-security.

Definition 5 (Square security). Let Π = (P,R,K,F1, . . . ,FN ) be a deterministic cryptographic
scheme with R = {0, 1}m, and consider a single-instance game G = (C, γ) for Π. Then, we
say that Π is (t, ε)-square-secure in the ideal model if for all probabilistic adversaries A with
running time at most t we have that E[(AdvA,C(Um, Um))2] ≤ ε.

The theorem below says that there is a natural tradeoff between the entropy deficiency that
we want to tolerate in the real model and the security of a given cryptographic primitive in the
ideal model. The proof is very similar to that given in [19].

Theorem 1. Let Π = (P,R,K,F1, . . . ,FN ) be a deterministic cryptographic scheme, and con-
sider a single-instance game G = (C, γ) for Π. Then:

(i) In case G is an unpredictability game, whenever Π is (t, ε)-secure in the ideal model, it is
also (t, 22d · ε)-secure in the (m− d)-real model.

(ii) In case G is an indistinguishability game, whenever Π is (t, ε)-square-secure in the ideal
model, it is also (t,

√
22d · ε)-secure in the (m− d)-real model.
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Proof. (i) Let f : {0, 1}m → R+∪{0} be any deterministic real-valued function. For any random
variable R such that H∞(R) ≥ m− d, and for R1, R2 ≡ R, we can write:

E [f(R1, R2)] =
∑
r1,r2

P [R1 = r1, R2 = r2 ] · f(r1, r2) ≤ 22d
∑
r1,r2

1

22m
f(r1, r2).

The statement then follows by observing that when f is the advantage during the unpredictabil-
ity game in the (m− d)-real setting, the right-hand side of the above equation is the advantage
of the same game in the ideal setting.

(ii) Let f : {0, 1}m → R be any deterministic real-valued function. For any random variable
R such that H∞(R) ≥ m− d, and for R1, R2 ≡ R, we can write:

|E [f(R1, R2)]| =

∣∣∣∣∣∑
r1,r2

P [R1 = r1, R2 = r2 ] · f(r1, r2)

∣∣∣∣∣
≤
√

22m
∑
r1,r2

P[R1 = r1, R2 = r2 ]2 ·
√

1

22m
·
∑
r1,r2

f(r1, r2)2

≤
√

22m
∑
r1

P [R1 = r1 ]2 ·
∑
r2

P [R2 = r2 ]2 ·
√

1

22m
·
∑
r1,r2

f(r1, r2)2

≤
√

22d ·
√

1

22m
·
∑
r1,r2

f(r1, r2)2,

where the first inequality follows by the Cauchy-Schwartz inequality, the second inequality
follows by the fact that R1, R2 are independent, and the last inequality follows since R1, R2

have min-entropy (and thus collision entropy) at least m − d. The statement then follows by
observing that when f is the advantage during the indistinguishability game in the (m−d)-real
setting, the right-hand side of the above equation is the expectation of the squared advantage
of the same game in the ideal setting.

Many primitives meet square security, including CPA-secure secret-key encryption and weak
pseudorandom functions; in contrast, other primitives such as the one-time pad, pseudorandom
generators, and pseudorandom functions do not have good square security [6, 19].

3 Security Model

In this section we consider a standard-model definition for subversion security, via so-called
immunizers. An immunizer is a transformation that takes as input a cryptographic scheme (for
some task) and transforms it into another scheme (for the same task) that withstands complete
subversion; the immunizer is allowed to leverage a single source of public, and possibly untrusted,
randomness. Importantly, we seek security in the standard model (i.e., without random oracles)
and in a setting where the immunizer itself is subject to subversion.12

We first define our model formally, in §3.1, for the case of offline watchdogs. Then, in §3.2,
we discuss some definitional choices and compare our definitions with previous work in the area.
Finally, in §3.3, we explain how to extend our framework to the case of online watchdogs.

12We refer the reader to §8 for the corresponding definitions in the random oracle model.
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3.1 Subversion-Secure Immunizers

Let Π = (P,K,R,F1, . . . ,FN ) be a cryptographic scheme (as defined in §2.2), where we assumed
that R := {0, 1}m (i.e., the secret source R is a random m-bit source). An immunizer for Π is

a transformation ΨR,S
k,k′ with hard-wired parameters k, k′ ∈ N, and with oracle access to R and

to a public random m′-bit source S. We write Π∗ := ΨR,S
k,k′(Π) := (P∗,K∗,R,F∗1, . . . ,F

∗
N ) for the

specification of the immunized cryptosystem, where:

• P∗ and K∗ take as input a seed s ∈ {0, 1}`, and have n-bit random tapes;

• (F∗i )i∈N take as input a seed s ∈ {0, 1}` plus the same inputs as the corresponding algo-
rithm in Π.

• The random tapes r1, r2 ∈ {0, 1}n for algorithms P∗ and K∗, and the seed s ∈ {0, 1}`, are
obtained, respectively, by selecting and amalgamating13 2k and k′ independent samples
from the sources R and S.

We require an immunizer Ψ to satisfy two properties. The first property is the usual cor-
rectness requirement, meaning that the immunized primitive Π∗ = ΨR,S

k,k′(Π) meets the same
correctness condition as that of Π (for every possible choice of the seed). The second property
is some flavor of security to subversion attacks. More in details, we consider three natural
scenarios, as outlined below and depicted in Fig. 1.

• Semi-Private Immunization: In this setting, the public m′-bit source S is assumed to
be untamperable. The adversary A knows a description14 of the immunizer Ψ and of the
original primitive Π, and has to commit to its choice for the subverted immunized cryp-
tosystem Π̃ = (P̃, K̃, R̃, (F̃i)i∈N ) before the challenger samples (and later makes public) the
actual seed s = s1|| · · · ||sk′ ∈ {0, 1}`, which is obtained by amalgamating k′ independent
samples from S(1λ).

Next, the adversary (now also given s) plays the security game for Π. Here, the challenger
picks 2k independent samples (r1

i , r
2
i )i∈[k] from R̃, amalgamates them into strings r1 =

r1
1|| · · · ||r1

k ∈ {0, 1}n and r2 = r2
1|| · · · ||r2

k ∈ {0, 1}n, and finally interacts with A given

black-box access to P̃(s, ·), K̃(s, ·), F̃i(s, ·) (i.e., to the subversion specified by the adversary
using seed s ∈ {0, 1}`), where r1 and r2 are used as random tapes for P̃ and K̃, respectively.

• Public Immunization: Here, the adversary A is allowed to choose Π̃ depending on the
actual seed s ∈ {0, 1}`, which is generated as in the semi-private setting. Afterwards, A
plays the game with the challenger C exactly as before.

• Transparent Immunization: Here, the adversary A can additionally tamper with the
source S used to setup the immunizer. In particular, A first specifies a subverted public
source S̃; then the challenger picks the public seed s = s1|| · · · ||sk′ ∈ {0, 1}` by amalga-
mating k′ independent samples from S̃(1λ). Finally, the adversary outputs the subverted
immunized cryptosystem Π̃ (which again depends on the seed s) and plays the game with
C exactly as before.

For each type ∈ {spriv, pub, trans}, we define the advantage of adversary A in the subversion
game with primitive Π, immunizer Ψ, and challenger C as:

Adv
type
Π,Ψ,A,C(λ) :=

∣∣∣P[Gtype
Π,Ψ,A,C(λ) = 1

]
− γ
∣∣∣ , (1)

13In what follows, we restrict ourselves to a specific type of amalgamation (i.e., strings concatenation), since
looking ahead this is what all of our immumizers will require.

14We often leave the parameters k, k′, and the sources R, S, implicit, in order to simplify notation.
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Game Gspriv
Π,Ψ,A,C(λ)

(Π̃, α)← A0(1λ, 〈Π,Ψ〉)

s1, . . . , sk′ ← S(1λ);

s = s1|| · · · ||sk′ ;

r1
1, . . . , r

1
k, r

2
1, . . . , r

2
k ← R̃(1λ);

r1 = r1
1|| · · · ||r1

k; r2 = r2
1|| · · · ||r2

k;

(d, τ̃)← (A1(1λ, α, s) � CP̃(s,·),K̃(s,·),(F̃i(s,·))i∈N (1λ, r1, r2))

return d

Game Gpub
Π,Ψ,A,C(λ)

s1, . . . , sk′ ← S(1λ);

s = s1|| · · · ||sk′ ;

(Π̃, α)← A0(1λ, s, 〈Π,Ψ〉)

r1
1, . . . , r

1
k, r

2
1, . . . , r

2
k ← R̃(1λ);

r1 = r1
1|| · · · ||r1

k; r2 = r2
1|| · · · ||r2

k;

(d, τ̃)← (A1(1λ, α) � CP̃(s,·),K̃(s,·),(F̃i(s,·))i∈N (1λ, r1, r2))

return d

Game Gtrans
Π,Ψ,A,C(λ)

(S̃, α0)← A0(1λ, 〈Π,Ψ〉)

s1, . . . , sk′ ← S̃(1λ);

s = s1|| · · · ||sk′ ;

(Π̃, α1)← A1(1λ, α0, s)

r1
1, . . . , r

1
k, r

2
1, . . . , r

2
k ← R̃(1λ);

r1 = r1
1|| · · · ||r1

k; r2 = r2
1|| · · · ||r2

k;

(d, τ̃)← (A2(1λ, α1) � CP̃(s,·),K̃(s,·),(F̃i(s,·))i∈N (1λ, r1, r2))

return d

Figure 1: Games defining subversion security of an immunizer ΨR,S
k,k′ , in the standard model.

We use the notation CP̃(s,·),K̃(s,·),(F̃i(s,·))i∈N (1λ, r1, r2) to denote a run of the challenger C with
random coins r1, r2 (that will be used as input of algorithms P̃, K̃ during the game).

where the games Gspriv
Π,Ψ,A,C(λ),Gpub

Π,Ψ,A,C(λ) and Gtrans
Π,Ψ,A,C(λ) are depicted in Fig. 1, and the

probability is taken over the randomness of S̃, R̃, S,R, and over the coin tosses of A.
Clearly, since the subverted cryptosystem Π̃ specified by the adversary is completely arbi-

trary, it might be trivial to break security in the above setting.15 Hence, we need to restrict
the adversary in some way. Following previous work, we will consider the adversary to be

15For instance, consider Π to be a signature scheme and the corresponding subversion to have the signing
algorithm return the signing key.

17



Game Gdet
Π,Ψ,W(λ, aux, b)

aux := 〈Π̃〉

aux := (〈Π̃〉, s)

aux := (〈S̃, Π̃〉, s)

if b = 0

return WΠ̃(1λ, 〈Π,Ψ〉)

return WΠ̃(1λ, 〈Π,Ψ〉, s)

return WS̃,Π̃(1λ, 〈Π,Ψ〉, s)

elseif b = 1

Π∗ = Ψ(Π)

return WΠ∗(1λ, 〈Π,Ψ〉)

return WΠ∗(1λ, 〈Π,Ψ〉, s)

return WS,Π∗(1λ, 〈Π,Ψ〉, s)

fi

Gdet-on
Π,Ψ,W(λ, aux, b)

aux := (〈Π̃〉, τ̃)

aux := (〈Π̃〉, s, τ̃)

aux := (〈S̃, Π̃〉, s, τ̃)

if b = 0

return WΠ̃(1λ, 〈Π,Ψ〉, τ̃)

return WΠ̃(1λ, 〈Π,Ψ〉, s, τ̃)

return WS̃,Π̃(1λ, 〈Π,Ψ〉, s, τ̃)

elseif b = 1

Π∗ = Ψ(Π)

return WΠ∗(1λ, 〈Π,Ψ〉, τ̃)

return WΠ∗(1λ, 〈Π,Ψ〉, s, τ̃)

return WS,Π∗(1λ, 〈Π,Ψ〉, s, τ̃)

fi

Figure 2: Description of the detection game for an immunizer ΨR,S
k,k′ with offline (left) and online

(right) watchdogs, in the standard model. The auxiliary information aux is taken from the
subversion game (cf. Fig. 1). The dashed boxed code refers to the security definition for the
public model (i.e., the watchdog receives as input the seed from the subversion game), the
colored boxed code refers to the transparent model (i.e., the watchdog receives as input the
seed and has access to the source distribution).

“malicious-but-proud” in the sense that in order to be successful a subversion attack should
also be undetectable by the honest user. The latter is formalized by a detection game featur-
ing an efficient algorithm, called the watchdog, whose goal is to detect whether a subversion
took place. In particular, given a description of the immunizer and of the original scheme, the
watchdog has to distinguish the immunized cryptosystem Π∗ from the subversion Π̃ used by
the adversary in the subversion game; importantly, since in the transparent model the public
source S can be subverted by the adversary, the watchdog in the detect game gets black-box
access either to S or to its subversion S̃. (In the semi-private and public models, instead, S̃ ≡ S
as the public source is untamperable.) The detect advantage of watchdog W is defined as:16

Advdet
Π,Ψ,W(λ) :=

∣∣∣P[Gdet
Π,Ψ,W(λ, aux, 0) = 1

]
− P

[
Gdet

Π,Ψ,W(λ, aux, 1) = 1
]∣∣∣ , (2)

where the game Gdet
Π,Ψ,W(λ, aux, b) is depicted in Fig. 2, and the probability is taken over the

randomness of S̃, R̃, S,R, and over the coin tosses of W; the values in the auxiliary information
aux are taken from G

type
Π,Ψ,A,C(λ). Similarly to previous work, we assume that W has rewinding

black-box access to its oracles, a feature required in order to detect stateful subversion [29,
Remark 2.5].

16Of course, we could also treat the detection game as an indistinguishability game G = (C, γ), and thus define
the detection advantage as a function of γ = 1/2. However, we prefer the above formulation in order to be
consistent with previous work [29, 30].
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We are now ready to define subversion security of an immunizer for the offline watchdog.

Definition 6 (Subversion-resistant immunizer). Let Π = (P,K,R,F1, . . . ,FN ) be a crypto-
graphic scheme, G = (C, γ) be a security game for Π, S be a random m′-bit source, and
k, k′ ∈ N be parameters. For a constant c∗ ≥ 1, and for type ∈ {spriv, pub, trans}, we say

that an immunizer ΨR,S
k,k′ is (tA, tW, c

∗, ε∗)-subversion-resistant for the type-model with an of-
fline watchdog if the following holds: There exists a watchdog W with running time tW such
that for all adversaries A with running time tA for which Adv

type
Π,Ψ,A,C(λ) > ε∗, we have

Advdet
Π,Ψ,W(λ) ≥ 1

c∗
·Adv

type
Π,Ψ,A,C(λ).

Moreover, for all s ∈ {0, 1}`, we require that the immunized cryptosystem with seed s meets
the same correctness requirement as that of Π.

Remark 1 (On subverting the immunizer). We stress that the subversion Π̃ should be thought
of as the subversion of the immunized cryptosystem Π∗ = Ψ(Π). In particular, since the
subversion is completely arbitrary, the latter means that the adversary can tamper with the
immunizer itself.

Remark 2 (On trusted amalgamation). The only component of the immunizer that cannot be
subverted by the attacker is the sampling of the random tapes r1, r2 and of the seed s, which
are obtained by concatenating, respectively, 2k and k′ independent samples from the (possibly
subverted) random sources R̃, S̃.

Looking ahead, trusted amalgamation is needed in the security analysis of our immunizers
for the transparent model, in order to argue that both r1, r2 and s have a sufficient amount
of min-entropy even when the public/secret random source is subverted. On the other hand,
trusted amalgamation of the seed is not needed in the semi-private and public model (as the
source S is assumed to be untamperable), where we can directly replace S with S′ = Sk

′
.

Remark 3 (On including the seed in the auxiliary information). Note that the seed s sampled
during the subversion game is part of the auxiliary information aux, and later given as additional
input to the watchdog in the detection game.

It is easy to see that the latter is necessary. Consider, for instance, a deterministic signature
scheme Π = (P,K,R,Sign,Vrfy) (cf. §2.2), and let Π∗ = (P∗,K∗,R,Sign∗,Vrfy∗) = Ψ(Π) be
the immunized version of Π. Since the subversion Π̃ is allowed to depend on the seed s, the
adversary could instruct K̃ to output a fixed verification/signature key pair (vk , sk), known to
the adversary, whenever K̃ is run upon input s. Now, if the watchdog W would not be given
as input the actual seed s, the above attack would be undetectable, as W has only a negligible
chance of hitting the seed s while sampling the source S.

3.2 Discussion

On rough terms, Definition 6 says the following. There exists a universal (efficient) watchdog
algorithm such that for any adversary that has advantage at least ε∗ in the subversion game (cf.
Eq. (1)), the probability that the watchdog detects the subversion (cf. Eq. (2)) is at least equal
to the advantage of the adversary in the subversion game divided by some positive constant
c∗ ≥ 1. We observe that there could be a substantial gap between the value of ε∗ and the
actual advantage of an adversary in the subversion game. In practice, we would like to obtain
Definition 6 for small ε∗, c∗, such that either the advantage in the subversion game is smaller
than ε∗, or the advantage in the detection game has a similar magnitude as that in the subversion
game (which might be much larger than ε∗).
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Looking ahead, the choice to state security of immunizers in the style of concrete security
will allow us to lower bound the level of unpredictability in the subverted random source R̃ with
a concrete (rather than asymptotic) value, a feature that will be exploited by our immunizer.
One might wonder why Definition 6 considers only a single parameter ε∗, instead of having two
distinct parameters (i.e., one parameter, say ε∗, for the advantage of A in breaking the scheme,
and another parameter, say δ∗, for the advantage of W in detecting a subversion). While this
might seem like a natural way of phrasing concrete security, it is problematic due to the fact that
such a definition conveys information about a single point over the range of values ε∗, δ∗ ∈ [0, 1].
A similar issue was already observed in [14], who also suggested the approach of relating the
advantage in the two games.

Lastly, we stress that the security threshold ε∗ of the immunizer Ψ and the security thresh-
old ε of the underlying primitive Π (according to the original security game G = (C, γ)) are
implicitly related in a way that depends on the actual immunizer Ψ. In fact, note that the op-
timal value of ε∗ would be equal to ε as it can be seen by considering the degenerate subversion
that does not modify Π at all. Looking ahead, our immunizers will achieve sligthly sub-optimal
ε∗ > ε (see Theorems 2–4 for the actual relation between ε and ε∗ in the semi-private, public,
and transparent models).

3.3 Offline versus Online Watchdogs

As pointed out in [29], different watchdog types provide different levels of security. Definition 6
considers a so-called offline watchdog, meaning that the watchdog is not allowed to see the
messages exchanged between the challenger and the adversary during a subversion attack. On
the other hand, an online watchdog is additionally allowed to check the transcript τ̃ containing
all messages exchanged between the adversary and the challenger during an execution of a
subversion attack, to make sure that such a transcript is compliant with the specification of
the underlying cryptographic scheme. The main motivation behind the online watchdog model
stems from the fact that, for many natural schemes Π, there are simple subversion attacks that
completely break security, and yet are undetectable by an offline watchdog.

Input-triggered attacks. Consider for instance a (deterministic) signature scheme Π =
(P,K,R, Sign,Vrfy) (cf. §2.2). An easy way to subvert Π is to change the behaviour of algorithm
Vrfy, in such a way that it always returns 1 upon input a special trigger pair (m,σ). Such input-
triggered attacks—analyzed for the first time in [14]—are easily seen to be undetectable by an
offline watchdog, as the probability of hitting the hidden pair (m,σ) is negligible (as long as the
message space is large enough). However, an online watchdog monitoring the subversion game,
can easily detect such an attack by noticing that the behaviour of the verification algorithm
upon input the pair (m,σ) is not compliant to the specification of the signature scheme.17

The online watchdog model. In order to formalize the above intuition, [29] proposes to
modify the detect game as follows. In case b = 0 (i.e., subversion takes place), the watchdog W
is additionally provided as input the transcript τ̃ containing all messages exchanged by A and
C in the subversion game. (The transcript can be appended to the auxiliary information aux

that is passed from the subversion game to the detect game.) On the other hand, if b = 1 (i.e.,
no subversion takes place), the watchdog W is instead given the transcript τ̂ that is obtained
by having C answering A’s queries with oracle access to the original (non-subverted) algorithms

17Similar attacks are possible by subverting the signing algorithm instead of the verification algorithm; e.g.,
we might require that Sign returns the secret key upon input a secret trigger message m.
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in Π (see, e.g., [29, Definition 4.1]). Russell et al. explicitly suggest that the transcripts should
contain the decision bit of the challenger [29, Footnote 2].

Unfortunately, as we argue below, the online watchdog model of [29] seems to be too strong,
as any subversion attack would be trivially detected by an online watchdog. In particular, we
claim that for any scheme Π that is (t, ε)-secure w.r.t. a cryptographic game G, the “iden-
tity immunizer” Ψid (i.e., the immunizer that returns an identical copy of Π) is already, e.g.,
(poly(λ) , O(1), 1, 2ε)-subversion-secure in the online watchdog model.18 To see this, consider the
universal watchdog W that given the transcript τ ∈ {τ̃ , τ̂} outputs the decision bit d contained
in the transcript. Let now A be an adversary with advantage at least 2ε in the subversion game.
This implies that, with probability greater than 2ε, the decision bit contained in the transcript
τ̃ (given to W when b = 0) will be 1, and thus

P
[
Gdet

Π,Ψid,W
(λ, aux, 0) = 1

]
> 2ε.

On the other hand, the decision bit contained in τ̂ (given to W when b = 1) must equal zero
with probability at least 1 − ε, else we could break the security of the original scheme Π with
advantage ε by simply using A’s queries in the original game G. (Recall that the only difference
between the original game and the subversion game is in the oracles used by the challenger C
to answer A’s queries.) Hence,

P
[
Gdet

Π,Ψid,W
(λ, aux, 1) = 1

]
≤ ε.

Combining the above, we obtain a detect advantage of at least 2ε − ε = ε, which implies
subversion-security of Π∗ = Ψid(Π) = Π by setting c∗ = 2. Note that this argument is indepen-
dent of the type of game considered (i.e., unpredictability or indistinguishability) and of the
subversion model being semi-private, public, or transparent (as the public source S plays no role
for the identity immunizer). Remarkably, the above discussion applies also to the definition con-
sidered in [29], e.g., for the case of (possibly randomized) signatures and symmetric encryption
schemes. Unfortunately, this is not consistent with known impossibility results showing that,
when the randomness is large enough, such primitives are susceptible to subversion attacks that
cannot be detected even by an online watchdog [9, 3, 8].

The right definition. A natural question is whether there is a different formulation that
still allows to rule out input-triggered attacks, while at the same time giving less power to the
online watchdog and, when opportunely extended to the case of randomized primitives, being
consistent with known impossibility results. We propose such a variant below.19

Briefly, we require that the watchdog W be always given the same transcript during an
execution of the detect game (both when b = 0 and b = 1). In other words, we remove the
transcript τ̂ and always give the watchdog the transcript τ̃ generated during the execution of the
subversion game with the adversary A.20 We refer the reader to Fig. 2 for the formal specification
of the detect game with online watchdogs; the definition of subversion security in the online
watchdog model is then identical to Definition 6, except that we replace Gdet

Π,Ψ,W(λ, aux, b) with

Gdet-on
Π,Ψ,W(λ, aux, b) in Eq.(2).

18A similar statement holds for the asymptotic setting, and even in the random oracle model. Put differently,
any scheme that is secure is also secure under subversion in the online watchdog model of [29].

19In retrospect, this is probably also the definition envisioned by [29]; in fact, in proving their positive result
in the online watchdog model, the watchdog does not need the transcript τ̂ .

20As for the case of offline watchdogs, in the public and transparent models the online watchdog needs to
additionally take as input the actual seed sampled in the subversion game (cf. Remark 3); in fact, the seed is
sampled before the interaction with the challenger starts, and thus is not part of the game transcript.
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Now, it is easy to see that there are schemes Π that are secure w.r.t. some game G, but for
which the “identity immunizer” is not subversion secure in our version of the online watchdog
model. Let Π be a deterministic signature scheme and consider a contrived modification of
the scheme where the random source outputs a long random string r = r1||r2, so that the key
generation algorithm, given r1||r2, outputs r2 on the outside, and uses r1 in order to generate
a pair of keys (pk , sk) for the underlying scheme Π. Let G be the usual UF-CMA security
game for signatures (cf. §2.2). Consider the subversion that replaces the random source with
the algorithm R̃ that hard-wires a key κ for a pseudo-random function PRF, and a key κ′ for
a CPA-secure symmetric encryption scheme with encryption algorithm Enc; hence, upon each
invocation, R̃ samples random coins r, evaluates the PRF by computing r̃1 := PRF(κ, r) and

encrypts r by computing r̃2 ← Enc(κ′, r). The output of R̃ is defined as r̃ := r̃1||r̃2, while
all other algorithms are left unchanged. It is easy to see that the adversary always wins the
UF-CMA game when Π is subverted, as it can simply use κ, κ′ in order to decrypt r̃2 (that is

included as part of p̃k), and thus obtain the value r that allows to recover the random coins r̃1

that the challenger uses in order to generate the public/secret key; on the other hand, a standard
reduction to the security of the PRF and the CPA security of the symmetric encryption scheme
shows that no watchdog, even an online one, can detect the subversion with non-negligible
probability. The intuition is that the online watchdog, even in possession of the transcript τ̃ ,
will not be able to distinguish r̃ from a random value (except with negligible probability), which
renders the detection of the subversion practically impossible.

4 Semi-Private Immunizer

In this section we give a construction of a semi-private immunizer. The construction is described
in §4.2 and is based on strong computational randomness extractors, which we define in §4.1.
Finally, in §4.3, we prove security.

4.1 Ingredients: Strong Computational Extractors

An extractor takes as input values from a min-entropy source and outputs values that are
indistinguishable from random, by making use of a short uniformly random seed. Whenever
indistinguishability holds for all computationally bounded distinguishers, we speak of computa-
tional extractors. For cryptographic purposes it is often important that the seed can be made
public, i.e. indistinguishability should hold even given the seed in the clear; such extractors are
usually called strong extractors.

Below we give a formal definition, where we model extractors as a family of (efficiently
computable) hash functions, indexed by a seed.

Definition 7 (Computational extractors). A family of hash functions H = {hs : {0, 1}n →
{0, 1}m}s∈{0,1}` is a family of (n,m, k, t, ε)-computational strong extractors if for all random
variables X ∈ {0, 1}n with min-entropy k, and for all distinguishers D running in time t, it
holds that

∆D((S, hS(X));U) ≤ ε,

where S and U are uniform, respectively, over {0, 1}` and {0, 1}`+m.

In case the above definition holds for the statistical (instead of computational) distance, or
equivalently for all unbounded distinguishers with t = ∞, we call H a family of (n,m, k, ε)-
statistical strong extractors. Guruswami et al. [24] gave a construction of strong statistical
extractor with near optimal parameters.
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Subversion-Resistant Immunizer ΨR,S
k,k′ [H]:

Let Π = (P,K,R,F1, . . . ,FN ) be a cryptographic scheme, H = {hs : {0, 1}n → {0, 1}m}s∈{0,1}`
be a family of hash functions, and R, S be random sources over m-bit and m′-bit strings (respec-

tively). For parameters k := n/m and k′ := `/m′, consider the immunizer ΨR,S
k,k′(Π) = Π∗ := (P∗,

K∗,R,F∗1, . . . ,F
∗
N ) specified as follows.

• Algorithm P∗: Upon input (1λ, s1, r1), return ρ = P(1λ;hs1(r1)).

• Algorithm R∗: Upon input 1λ, return r such that r ← R(1λ).

• Algorithm K∗: Upon input (1λ, s2, ρ, r2), return (pk , sk) = K(1λ, ρ;hs2(r2)).

• Algorithm F∗i (for i ∈ [N ]): Upon input (1λ, ρ, (pk , sk), x), return y = Fi(1
λ, ρ, (pk , sk), x).

Figure 3: Description of our subversion-resistant immunizer; the seed s = (s1, s2) ∈ {0, 1}2`
is generated by concatenating 2k′ = 2`/m′ independent samples from the public source S(1λ).
Similarly, the random tapes r1, r2 are obtained by concatenating 2k = 2n/m independent
samples from the secret source R(1λ).

Lemma 1 ([24, Theorem 1.5]). For every constant c > 0, all εext > 0, and all positive integers
n, k, there is a polynomial-time computable strong (n,m, k, εext)-statistical extractor with ` =
O(log(n) + log(1/εext)) and m ≥ (1− c)k.

4.2 Immunizer Description

We refer the reader to Fig. 3 for a formal description of our immunizer, where we assumed
that R := {0, 1}m. Essentially, the immunizer sanitizes the random coins used to generate the

public parameters ρ and the public/secret keys (pk , sk) by first sampling (r1
i , r

2
i )i∈[k] ← R(1λ)

and amalgamating r1 = r1
1|| · · · ||r1

k and r2 = r2
1|| · · · ||r2

k, and then using, respectively, hs1(r1)
and hs2(r2) as random coins for P and K, where seeds s1 = s1

1|| · · · ||s1
k′ ∈ {0, 1}` and s2 =

s2
1|| · · · ||s2

k′ ∈ {0, 1}` are generated by concatenating 2k′ independent samples from the public

source S (i.e., (s1
i , s

2
i )i∈[k′] ← S(1λ)). All other algorithms are unchanged.21

4.3 Security Analysis (Semi-Private Model)

We now analyze the security of the immunizer from Fig. 3. Intuitively, since in the semi-private
model the public source S is assumed to be untamperable, we can focus on the special case
where m′ = ` (i.e., the output size of the public source is the same as the size of the seed for
the hash family), and thus k′ = 1 (see also Remark 2).

We distinguish between input-constrained and input-unconstrained games. In the former
case, we establish the following result; an analogous statement holds for input-unconstrained
games in the online watchdog model (cf. §7.1).

Theorem 2. Let Π = (P,K,R,F1, . . . ,FN ) be a deterministic cryptographic scheme with R =
{0, 1}m, and S be uniform over {0, 1}`. Consider any input-constrained, single-instance game

G = (C, γ) for Π. Then, for any c∗ > 4, the immunizer ΨR,S
k,1 [H] of Fig. 3 is (tA, tW, c

∗, ε∗)-
subversion-resistant for the spriv-model with an offline watchdog, as long as H := {hs : {0, 1}n →

21With a slight abuse of notation, we denote with ` the seed length for the hash family, whereas the final seed
for the immunizer is s := (s1, s2) of length 2` bits.
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{0, 1}m}s∈{0,1}` is a family of strong (n,m, k, text, εext)-computational extractors and Π is (t, ε)-
secure w.r.t. game G for parameters text, tW, t ≈ tA, and

ε ≤ c∗ − 1

c∗
· ε∗ − 2εext.

Proof. By contradiction, assume that the immunizer is not subversion resistant, i.e. there exists
an adversary A = (A0,A1) with running time tA such that for all watchdogs W with running
time tW we have

Advspriv
Π,Ψ,A,C(λ) =

∣∣∣P[Gspriv
Π,Ψ,A,C(λ) = 1

]
− γ
∣∣∣ > ε∗ (3)

Advdet
Π,Ψ,W(λ) <

1

c∗
·Advspriv

Π,Ψ,A,C(λ) := δ∗. (4)

We introduce a sequence of intermediate hybrid experiments that are modified in an incre-
mental manner. The games are informally described below; we refer the reader to Fig. 4 for a
description in pseudocode.

G1(λ)

(Π̃, α)← A0(1λ, 〈Π,Ψ〉)

s1, s2 ← S(1λ)

r1
1, . . . , r

1
k, r

2
1, . . . , r

2
k ← R̃(1λ)

r1 = r1
1|| . . . ||r1

k; r2 = r2
1|| . . . ||r2

k

d← 〈A1(1λ, α, s1, s2),CP̃(1λ,s1,·),K̃(1λ,s2,·,·),F̃1,...,F̃N (1λ, r1, r2)〉
return d

G2(λ)

(Π̃, α)← A0(1λ, 〈Π,Ψ〉)

s1, s2 ← S(1λ)

r1
1, . . . , r

1
k, r

2
1, . . . , r

2
k ← R̃(1λ)

r1 = r1
1|| . . . ||r1

k; r2 = r2
1|| . . . ||r2

k

d← 〈A1(1λ, α, s1, s2),CP∗(1λ,s1,·),K∗(1λ,s2,·,·),F1,...,FN (1λ, r1, r2)〉
return d

G3(λ)

(Π̃, α)← A0(1λ, 〈Π,Ψ〉)

s1, s2 ← S(1λ)

r1, r2 ← {0, 1}m;

d← 〈A1(1λ, α, s1, s2),CP,K,F1,...,FN (1λ, r1, r2)〉
return d

Figure 4: Game hops in the proof of Theorem 2.
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G1(λ): This is identical to the game Gspriv
Π,Ψ,A,C(λ), defining subversion security of an immu-

nizer (cf. Fig. 1). Here, the adversary A specifies the modified implementation Π̃ of the
immunized scheme Π∗ before receiving the seeds s1, s2 ∈ {0, 1}`. (Recall that s1, s2 are
generated by sampling S only once, since S is defined over {0, 1}`, i.e. m′ = `.) Hence,
the interaction between A and C goes like in the original game G, except that C is given
oracle access to P̃(1λ, s1, ·), K̃(1λ, s2, ·), and (F̃i)i∈N , where P̃ and K̃ take as random coins,

respectively, r1 = r1
1|| . . . , ||r1

k and r2 = r2
1|| . . . , ||r2

k, for rji ← R̃(1λ) and (i, j) ∈ [k]× [2].

G2(λ):

E
q
.

(4
)

Identical to the previous game, except that we replace the adversarial implementation of
the algorithm for generating the public parameters (i.e., algorithm P̃), for key generation
(i.e., algorithm K̃), and each F̃i (for i ∈ [N ]) with the corresponding immunized algorithm,
i.e., respectively, P∗(1λ, s1; r1) := P(1λ;hs1(r1)), K∗(1λ, s2, ρ; r2) := K(1λ, ρ;hs2(r2)), and
F∗i (1

λ, ρ, (pk , sk), x) := Fi(1
λ, ρ, (pk , sk), x) where r1, r2 ∈ {0, 1}n are as before.

G3(λ):R
a
n

d
.

ex
tr

.

Identical to the previous game, except that we generate the strings r1, r2 differently.
Namely, we now run the challenger upon input r1, r2 uniformly sampled from {0, 1}m.
Additionally, the public parameters and the keys are now generated using P(1λ; r1) and

K(1λ; r2), where r1, r2 ← {0, 1}m.

We proceed to show that the above games are all computationally indistinguishable, and
thus A’s advantage does not vanish across the different games.

Lemma 2. |P [G1(λ) = 1]− P [G2(λ) = 1] | ≤ δ∗.

Proof. Consider the following events, which are defined over the probability space of game G1.

Event Epub: The event becomes true whenever P̃(1λ, s1; r1) 6= P∗(1λ, s1; r1), where r1 = r1
1||

. . . ||r1
k, for r1

i ← R̃(1λ), and s1 ← S(1λ).

Event Ekgen: The event becomes true whenever K̃(1λ, s2, ρ; r2) 6= K∗(1λ, s2, ρ; r2), where ρ =

P̃(1λ, s1; r1) for r1 as in the previous event, r2 = r2
1|| . . . ||r2

k for r2
i ← R̃(1λ), and s1, s2 ←

S(1λ).

Event Efunc: The event becomes true whenever ∃i ∈ [N ], j ∈ [q], xj ∈ Xi such that F̃i(1
λ,

ρ, (pk , sk), xj) 6= F∗i (1
λ, ρ, (pk , sk), xj), where ρ = P̃(1λ, s1; r1), (pk , sk) = K̃(1λ, s2, ρ; r2),

the coins r1, r2 are as in the previous event, s1, s2 ← S(1λ), xj ← Di (recall that the game
is input constrained), and q ∈ poly(λ) is an upper bound on the total number of queries
asked by the adversary to each of the oracles F̃1, . . . , F̃N .

Define Ebad := Epub ∨ Ekgen ∨ Efunc. Clearly, if Ebad does not happen, we have that
G1(λ) and G2(λ) are identically distributed, and thus it suffices to prove that event Ebad only
happens with probability smaller than δ∗. By contradiction, assume that Ebad is provoked in
the game execution with probability at least δ∗. We construct an efficient offline watchdog W∗

that distinguishes between Gdet
Π,Ψ,W∗(λ, aux, 0) and Gdet

Π,Ψ,W∗(λ, aux, 1) with the same probability,
which contradicts Eq. (4). A description of W∗ follows.

1. Let us denote by Opub, Orand, Okgen, and Oifunc (for i ∈ [N ]) the target oracles which W∗ can
access, corresponding to the subverted/immunized public parameters generator, private
randomness generator, key generator, and each of the underlying functional algorithms.
Note that:

(Opub,Orand,Okgen, (O
i
func)i∈[N ]) ≡

{
(P̃, R̃, K̃, (F̃i)i∈[N ]) for b = 0

(P∗,R,K∗, (F∗i )i∈[N ]) for b = 1
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where b is the hidden bit in the detection game, and Π∗ := (P∗,R,K∗, (F∗i )i∈[N ]) = Ψ(Π)

and Π̃ := (P̃, R̃, K̃, (F̃i)i∈[N ]) are, respectively, the specification of the immunized cryp-
tosystem and of the subversion output by the adversary in the subversion game.

2. Sample s1, s2 ← S(1λ), and set r1 = r1
1|| . . . ||r1

k, r2 = r2
1|| . . . ||r2

k, where rji ← Orand(1λ)
for each (i, j) ∈ [k]× [2].

3. Invoke Opub(1λ, ·, ·) upon input (1λ, s1, r1), obtaining a value ρ; in case ρ does not equal
P∗(1λ, s1, r1) = P(1λ, hs1(r1)) output 1 and stop.

4. Invoke Okgen upon input (1λ, s2, ρ, r2), obtaining a pair of keys (pk , sk); in case (pk , sk)
does not equal K∗(1λ, s2, ρ, r2) = K(1λ, ρ, hs2(r2)) output 1 and stop.

5. For each i ∈ [N ] and j ∈ [q], invoke Oifunc upon input (1λ, ρ, (pk , sk), xj), where xj ← Di,
obtaining some output yj ; in case there exists i ∈ [N ] and j ∈ [q] such that the value yj
does not equal F∗i (1

λ, ρ, (pk , sk), xj) = Fi(1
λ, ρ, (pk , sk), xj) output 1 and stop.

6. Output 0.

Recall that the watchdog W∗ is always given the original specification of 〈Ψ,Π〉, and thus it
can indeed perform the comparisons described in steps 3–5; additionally the inputs xj can be
sampled by the watchdog in an offline fashion (i.e., without talking to the adversary), since the
game is input constrained. By definition of the event Ebad, the probability of the watchdog
outputting 1 when b = 0 is at least the probability of Ebad; on the other hand, when b = 1, it
is easy to see that the watchdog never outputs 1. Thus:

P
[
Gdet

Π,Ψ,W∗(λ, aux, 1) = 1
]
≥ P [Ebad ]

P
[
Gdet

Π,Ψ,W∗(λ, aux, 0) = 1
]

= 0

and hence we have obtained

Advdet
Π,Ψ,W∗(λ) =

∣∣∣P[Gdet
Π,Ψ,W∗(λ, aux, 0) = 1

]
− P

[
Gdet

Π,Ψ,W∗(λ, aux, 1) = 1
]∣∣∣ ≥ δ∗,

which concludes the proof of the lemma.

Lemma 3. |P [G2(λ) = 1]− P [G3(λ) = 1] | ≤ 2εext.

Proof. Let R̃ be the random variable associated to the subverted source R̃. We start by showing
that the min-entropy of R̃ is at least 1 bit. By contradiction, assume that H∞(R̃) < 1. Consider

the watchdog Wrand that samples r, r′ ← Orand(1λ), and outputs 1 if and only if r = r′; here,
Orand ∈ {R, R̃} is the target oracle corresponding to the subverted/immunized randomness
generator in the detection game. Hence, we can write

Advdet
Π,Ψ,Wrand

(λ) =
∣∣∣P[Gdet

Π,Ψ,Wrand
(λ, aux, 0)

]
− P

[
Gdet

Π,Ψ,Wrand
(λ, aux, 1)

]∣∣∣
= 2−H2(R̃) − 2−H2(R) (5)

> 2−2 − 2−n (6)

> 2−2k′′ − 2−n =
1

c∗
, (7)

where k′′ := −1/2 log(1/c∗ + 2−n). In the above derivation, Eq. (5) follows by definition of
collision entropy, Eq. (6) follows because R is uniform and moreover H2(R̃) ≤ 2H∞(R̃) < 2, and
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Eq. (7) is due to the fact that k′ > 1 whenever n, c∗ ≥ 5 (as in the statement of the theorem).
Note that Eq. (7) contradicts Eq. (4), since the latter implies Advdet

Π,Ψ,Wrand
(λ) < 1

c∗ .

Next, we use the fact that H∞(R̃) ≥ 1 in order to show that game G2(λ) and G3(λ) are
computationally indistinguishable. To this end, consider the intermediate experiment H(λ) that
is identical to G2(λ), except that the challenger now generates ρ by running P on uniformly

random coins r1 ← {0, 1}m. We first show that G2(λ) is computationally indistinguishable
from H(λ). By contradiction, assume that there is a distinguisher D with running time tD = tA
such that ∆D(G2(λ); H(λ)) > εext. We construct a distinguisher D′ breaking security of the
hash family H. Distinguisher D′ is given as input a pair (z1, z2) and has to determine whether

z2 = hz1(r) (for uniform z1 ← {0, 1}` and r ← R̃k, where R̃k is the concatenation of k identical

copies of R̃) or z1||z2 ← {0, 1}`+m.
Hence, D′ proceeds as follows:

1. Receive (a description of) Π̃ = (P̃, K̃, R̃, F̃1, . . . , F̃N ).

2. Sample s2 ← {0, 1}` and forward z1||s2 to D.

3. Emulate the challenger by answering D’s queries exactly as described in game G2(λ),
except that the public parameters are set by default to be equal to ρ := P(1λ; z2).

4. Output the same guess as that of D.

Observe that D′ runs in time text ≈ tA, and moreover, as we argue below, the simulation is
perfect. In fact, the only difference between the two games is in how the public parameters are
set by the challenger:

• In case (z1, z2) are uniformly random, i.e. (z1, z2)← {0, 1}`+m, the public parameters are
computed as ρ := P(1λ; r) for uniform z2 = r; this is exactly what happens in game H(λ).

• In case (z1, z2) are defined through the extractor, i.e. (z1, z2) are such that z2 = hz1(r) for

r ← R̃k, the public parameters are computed as ρ := P(1λ;hz1(r)); this is exactly what
happens in game G2(λ).

Finally, we claim that the random variable R̃k has k bits of min-entropy. The latter can be seen
as follows:

2−H∞(R̃k) = max
r1,...,rk

P
[
R̃1 = r1, . . . , R̃k = rk

]
= max

r1,...,rk

k∏
i=1

P
[
R̃i = ri

]
≤ 2−k, (8)

where the sources (R̃i)i∈[k] are identical copies of R̃, and where we used the fact that R̃ is

efficiently samplable with H∞(R̃) ≥ 1, and furthermore can wlog. be assumed to be stateless [29,
Remark 2.5].22

Hence, D′ retains the same advantage as that of D, which contradicts security of the family of
extractors H. An analogous23 argument shows that game H(λ) and G3(λ) are within distance
εext, which concludes the proof.

22Recall that the watchdog is given rewinding black-box access to its oracles.
23The only difference is that D′ forwards (s1, z1) to D, where s1 ← {0, 1}`, and moreover it defines (pk , sk) :=

K(1λ, ρ; z2), with ρ = P(1λ; r) for uniform r ← {0, 1}m.
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Finally, note that game G3(λ) is identically distributed to the security game G. Hence,
by combining the above lemmas with Eq. (3), and by plugging the expression for the detect
advantage δ∗, we obtain

ε ≥ |P [G3(λ) = 1]− γ| ≥ Advspriv
Π,Ψ,A,C(λ)− δ∗ − 2εext >

c∗ − 1

c∗
· ε∗ − 2εext,

which contradicts the condition on ε in the theorem statement. This finishes the proof.

Remark 4 (On single-instance games). The fact that our immunizer samples 2k times from
the source R does not contradict the assumption that G is a single-instance game, as the latter
condition only concerns the game G for the original primitive Π.

Instantiating the immunizer. Using Lemma 1, we proceed to a corollary that shows the
parameters our semi-private immunizer achieves.

Corollary 1. Let R and S be, respectively, uniformly random m-bit and m′-bit sources. For
any cryptographic primitive that is (poly(λ) , negl(λ))-secure w.r.t. input-constrained game G,

there exists an immunizer ΨR,S
k,1 for Π that is (poly(λ) , poly(λ) , 5, negl(λ))-subversion-resistant

for the spriv-model with an offline watchdog, with parameters k, `,m ∈ ω(log(λ)).

Proof. The statement follows by plugging any statistical extractor with k, ` ∈ ω(log(λ)) and
εext ∈ negl(λ), as given, e.g., by Lemma 1.

Remark 5 (On the parameter m). Using statistical extractors, the best we can hope for is to
apply the immunizer to a cryptographic primitive with randomness length m = (1 − c)k for
any constant c > 0 (as guaranteed by Lemma 1). Alternatively, we can assume polynomially-
secure one-way functions and obtain ` ∈ ω(log(λ)) and m ∈ poly (λ) by using the classical
“extract-then-prg” approach, or more sophisticated computational extractors [13].

5 Public Immunizer

In this section we provide a different instantiation for the immunizer from Fig. 3, and show that
it achieves security in the public model. The instantiation relies on seed-dependent condensers,
which we define in §5.1. The security analysis appears in §5.2.

5.1 Ingredients: Seed-Dependent Randomness Condensers

We recall the notion of seed-dependent randomness condenser [18]. Intuitively, this corresponds
to a family of hash functions indexed by an `-bit seed, and mapping n bits into m bits. The
security guarantee is that when the seed s is uniform, and the input x comes from an adversarial
(efficiently sampleable) source which might depend on s, and with min-entropy at least k, the
output of the hash function has at least m − d bits of min-entropy, for deficiency parameter
d ≥ 1.

Definition 8 (Seed-dependent condenser). Let G := {gs : {0, 1}n → {0, 1}m}s∈{0,1}` be a family

of efficiently computable functions. We say that G is a family of ( kn →
m−d
m , t, ε)-seed-dependent

condensers if for all probabilistic adversaries A running in time t who take a seed s ← {0, 1}`

and output (using more coins) a distribution X ← A(s) of entropy H̃∞(X|S) ≥ k, the joint
distribution (S , gS (X)) is ε-close to some (S ,Y ), where H̃∞(Y |S ) ≥ m − d and S is uniform
over {0, 1}`.
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As we recall below, Dodis et al. [18, 19] have shown that any sufficiently strong collision-
resistant family of hash functions directly yields a family of seed-dependent condensers.

Definition 9 (Collision-resistant hash function). Let G := {gs : {0, 1}n → {0, 1}m}s∈{0,1}` be a
family of efficiently computable functions. We say that G is a family of (t, ε)-collision-resistant

hash functions if for all probabilistic adversaries B running in time t that output (x1, x2)← B(s)

for s← {0, 1}`, we have that Pr[gs(x1) = gs(x2) ∧ x1 6= x2] ≤ ε.

Lemma 4 ([18]). Let G := {gs : {0, 1}n → {0, 1}m}s∈{0,1}` be a family of (2t, poly(λ) /2m)-

collision-resistant hash functions. Then, G is a family of ( kn →
m−d
m , t, 0)-seed-dependent con-

densers for d = O(log(λ)) and k ≤ n.

5.2 Security Analysis (Public Model)

The theorem below says that when we instantiate the immunizer of Fig. 3 with a family of seed-
dependent condensers, we achieve subversion security in the public model. Analogously to the
instantiation in the semi-private model, since the public source S is assumed to be untamperable,
we can focus on the special case where m′ = ` (i.e., the output size of the public source is the
same as the size of the seed for the hash family), and thus k′ = 1 (see also Remark 2).

For input-constrained games, we obtain the following result. An analogous statement holds
for input-unconstrained games, in the online watchdog model (cf. §7.2).

Theorem 3. Let Π = (P,K,R,F1, . . . ,FN ) be a deterministic cryptographic scheme with R =
{0, 1}m, and S be uniform over {0, 1}`. Consider any input-constrained, single-instance game

G = (C, γ) for Π. Then, for any c∗ > 4, the immunizer ΨR,S
k,1 [G] of Fig. 3 is (tA, tW, c

∗, ε∗)-
subversion-resistant for the pub-model with an offline watchdog, as long as G := {gs : {0, 1}n →
{0, 1}m}s∈{0,1}` is a family of ( kn →

m−d
m , tcond, εcond)-seed-dependent condensers and Π is either

(t, ε)-secure w.r.t. game G (in case of unpredictability games) or (t, ε)-square-secure w.r.t. game
G (in case of indistinguishability games), for parameters tcond, t, tW ≈ tA, and

ε ≤

{
c∗−1
c∗ ·

ε∗

22d
− 2εcond

22d
if G is an unpredictability game(

c∗−1
c∗ · ε

∗ − 2εcond

)2 · 1
22d

if G is an indistinguishability game.

Proof. We prove Theorem 3 by using an identical proof strategy to that of Theorem 2. The main
difference is that now subversion of the source R depends on the seed sampled from the public
source S which justifies the need for seed-dependent randomness condensers. We include the
full proof for self-containment. By contradiction, assume that the immunizer is not subversion
resistant, i.e. there exists an adversary A = (A0,A1) with running time tA such that for all
watchdogs W with running time tW we have

Advpub
Π,Ψ,A,C(λ) =

∣∣∣P[Gpub
Π,Ψ,A,C(λ) = 1

]
− γ
∣∣∣ > ε∗ (9)

Advdet
Π,Ψ,W(λ) <

1

c∗
·Advpub

Π,Ψ,A,C(λ) := δ∗. (10)

We introduce a sequence of intermediate hybrid experiments that are modified in an incre-
mental manner. The games are informally described below; we refer the reader to Fig. 5 for a
description in pseudocode.

G1(λ): This is identical to the game Gpub
Π,Ψ,A,C(λ), defining subversion security of an immunizer

(cf. Fig. 1). Here, the adversary A specifies the modified implementation Π̃ of the im-
munized scheme Π∗ as a function of the seeds s1, s2 ∈ {0, 1}`. (Recall that s1, s2 are
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generated by sampling S only once, since S is defined over {0, 1}`, i.e. m′ = `.) Hence,
the interaction between A and C goes like in the original game G, except that C is given
oracle access to P̃(1λ, s1, ·), K̃(1λ, s2, ·), and (F̃i)i∈N , where P̃ and K̃ take as random coins,

respectively r1 = r1
1|| . . . , ||r1

k and r2 = r2
1|| . . . , ||r2

k, for rji ← R̃(1λ) and (i, j) ∈ [k]× [2].

G2(λ):

E
q
.

(1
0
)

Identical to the previous game, except that we replace the adversarial implementation of
the algorithm for generating the public parameters (i.e., algorithm P̃), for key generation
(i.e., algorithm K̃), and each F̃i (for i ∈ [N ]) with the corresponding immunized algorithm,
i.e., respectively, P∗(1λ, s1; r1) := P(1λ;hs1(r1)), K∗(1λ, s2, ρ; r2) := K(1λ, ρ;hs2(r2)), and
F∗i (1

λ, ρ, (pk , sk), x) := Fi(1
λ, ρ, (pk , sk), x) where r1, r2 ∈ {0, 1}n are as before.

G3(λ):R
a
n

d
.

co
n

d
.

Identical to the previous game, except that we generate the strings r1, r2 differently.
Namely, we now give to the challenger directly y1, y2 sampled from the efficiently sam-
pleable source Y guaranteed by the security of the family of condensers G. Additionally,
the public parameters and the keys are now generated using algorithms P(1λ; y1) and

K(1λ; y2) where y1, y2 ← Y(1λ).

G1(λ)

s1, s2 ← S(1λ)

(Π̃, α)← A0(1λ, s1, s2, 〈Π,Ψ〉)

r1
1, . . . , r

1
k, r

2
1, . . . , r

2
k ← R̃(1λ)

r1 = r1
1|| . . . ||r1

k; r2 = r2
1|| . . . ||r2

k

d← 〈A1(1λ, α),CP̃(1λ,s1,·),K̃(1λ,s2,·,·),F̃1,...,F̃N (1λ, r1, r2)〉
return d

G2(λ)

s1, s2 ← S(1λ)

(Π̃, α)← A0(1λ, s1, s2, 〈Π,Ψ〉)

r1
1, . . . , r

1
k, r

2
1, . . . , r

2
k ← R̃(1λ)

r1 = r1
1|| . . . ||r1

k; r2 = r2
1|| . . . ||r2

k

d← 〈A1(1λ, α),CP∗(1λ,s1,·),K∗(1λ,s2,·,·),F1,...,FN (1λ, r1, r2)〉
return d

G3(λ)

s1, s2 ← S(1λ)

(Π̃, α)← A0(1λ, s1, s2, 〈Π,Ψ〉)

y1, y2 ← Y(1λ);

d← 〈A1(1λ, α),CP,K,F1,...,FN (1λ, y1, y2)〉
return d

Figure 5: Game hops in the proof of Theorem 3.
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We proceed to show that the above games are all computationally indistinguishable, and
thus A’s advantage does not vanish across the different games.

Lemma 5. |P [G1(λ) = 1]− P [G2(λ) = 1] | ≤ δ∗.

Proof. The proof is identical to that of Lemma 2. The only difference is that the watchdog W∗

uses the seeds s1, s2 that now are part of its own input, instead of sampling the seeds from S,
in order to check the implementations of P∗,K∗, and (F∗i )i∈[N ].

Lemma 6. |P [G2(λ) = 1]− P [G3(λ) = 1] | ≤ 2εcond.

Proof. Let R̃ be the random variable associated to the subverted source R̃, let S be the random
variable corresponding to the public source S, and let S1, S2 be identical copies of S. We start
by showing that for all s1, s2 ∈ {0, 1}` the min-entropy of R̃ conditioned on s1, s2 is at least 1.

By contradiction, assume that H∞(R̃|S1 = s1, S2 = s2) < 1. Consider the watchdog Wrand

with input s1, s2 that samples r, r′ ← Orand(1λ), and outputs 1 if and only if r = r′; here,
Orand ∈ {R, R̃} is the target oracle corresponding to the subverted/immunized randomness
generator in the detection game. Hence, we can write

Advdet
Π,Ψ,Wrand

(λ) =
∣∣∣P[Gdet

Π,Ψ,Wrand
(λ, aux, 0)

]
− P

[
Gdet

Π,Ψ,Wrand
(λ, aux, 1)

]∣∣∣
= 2−H2(R̃|S1=s1,S2=s2) − 2−H2(R|S1=s1,S2=s2) (11)

> 2−2 − 2−n (12)

> 2−2k′′ − 2−n =
1

c∗
, (13)

where k′′ := −1/2 log(1/c∗ + 2−n). In the above derivation, Eq. (11) follows by definition of
conditional collision entropy, Eq. (12) follows because R is uniform and moreover H2(R̃|S1 =
s1, S2 = s2) ≤ 2H∞(R̃|S1 = s1, S2 = s2) < 2, and Eq. (13) is due to the fact that k′′ > 1
whenever n, c∗ ≥ 5 (as in the statement of the theorem). Note that Eq. (13) contradicts
Eq. (10), since the latter implies Advdet

Π,Ψ,Wrand
(λ) < 1

c∗ .

Finally, we can compute the conditional average min-entropy of R̃ conditioned on S1, S2 as:

2−H̃∞(R̃|S1,S2) = Es1,s2←S

[
2−H∞(R̃|S1=s1,S2=s2)

]
≤ Es1,s2←S

[
2−1
]

=
1

2
,

and thus, H̃∞(R̃|S1, S2) ≥ 1.
Next, we use the fact that H̃∞(R̃|S1, S2) ≥ 1 in order to show that game G2(λ) and G3(λ)

are computationally indistinguishable. To this end, consider the intermediate experiment H(λ)
that is identical to G2(λ), except that the challenger now generates ρ by running P on uniformly

random coins y1 ← Y(1λ), where Y outputs strings of length m bits according to the distribution
Y guaranteed by Definition 8. We first show that G2(λ) is computationally indistinguishable
from H(λ). By contradiction, assume that there is a distinguisher D with running time tD = tA
such that ∆D(G2(λ); H(λ)) > εcond. We construct a distinguisher D′ breaking security of the
hash family G. Distinguisher D′ proceeds as follows:

1. Receive seed s1 := s from the challenger, sample s2 ← {0, 1}`, and run D upon input
(s1, s2) obtaining (a description of) Π̃ = (P̃, K̃, R̃, F̃1, . . . , F̃N ).

2. Forward X := R̃k to the challenger, where R̃k is the concatenation of k identical copies
of R̃.
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3. Emulate the challenger by answering D’s queries exactly as described in game G2(λ),
except that the public parameters are set by default to be equal to ρ := P(1λ; y1), where
y1 := y ∈ {0, 1}m is the challenge in the security game of the condenser.

4. Output the same guess as that of D.

Observe that D′ runs in time tcond ≈ tA, and moreover, as we argue below, the simulation is
perfect. In fact, the only difference between the two games is in how the public parameters are
set by the challenger:

• In case y1 ← Y , the public parameters are computed as ρ := P(1λ; y1) as defined in game
H(λ).

• In case y1 is defined through the condenser, the public parameters are computed as ρ :=

P(1λ; gs1(r1)) for r1 ← R̃k; this is exactly what happens in game G2(λ).

Finally, we claim that the random variable R̃k has k bits of conditional average min-entropy
(conditioned on S1, S2). The latter can be seen as follows:

2−H̃∞(R̃k|S1,S2) = Es1,s2←S

[
2−H∞(R̃k|S1=s1,S2=s2)

]
= Es1,s2←S

[
max
r1,...,rk

P
[
R̃1 = r1, . . . , R̃k = rk|S1 = s1, S2 = s2

]]
= Es1,s2←S

[
max
r1,...,rk

k∏
i=1

P
[
R̃i = ri|S1 = s1, S2 = s2

]]
≤ Es1,s2←S

[
2−k
]

= 2−k, (14)

where the sources (R̃i)i∈[k] are identical copies of R̃, and where we used the fact that R̃ is

efficiently samplable with H̃∞(R̃|S1, S2) ≥ 1, and furthermore can wlog. be assumed to be
stateless [29, Remark 2.5].

Hence, D′ retains the same advantage as that of D, which contradicts security of the family of
condensers G. An analogous24 argument shows that game H(λ) and G3(λ) are within distance
εcond, which concludes the proof.

Finally, note that game G3(λ) is identically distributed to the security game G, except that
the random coins that are fed as input to, respectively, P and K come from a min-entropy source.
This corresponds to the (m − d)-real setting defined in §2.3. Hence, by combining the above
lemmas with Eq. (9), after plugging the expression for the detect advantage δ∗, and applying
Theorem 1, we obtain:

(i) If G is an unpredictability game

22d · ε ≥ |P [G3(λ) = 1]− γ|

≥ Advpub
Π,Ψ,A,C(λ)− δ∗ − 2εcond >

c∗ − 1

c∗
· ε∗ − 2εcond;

(ii) If G is an indistinguishability game
√

22d · ε ≥ |P[G3(λ) = 1]− γ|

≥ Advpub
Π,Ψ,A,C(λ)− δ∗ − 2εcond >

c∗ − 1

c∗
· ε∗ − 2εcond.

24The only difference is that D′ forwards (s1, s) to D, where s1 ← {0, 1}`, and moreover it defines (pk , sk) :=

K(1λ, ρ; y), with ρ = P(1λ; y1) for y1 ← Y(1λ).
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In both cases we reach a contradiction on the expression for ε in the theorem statement. This
finishes the proof.

Remark 6 (On square security). The reason for which Theorem 3 does not work for all de-
terministic primitives is that its proof crucially relies on the “overcoming weak expectations”
framework (cf. Theorem 1 in §2.3). In particular, for single-instance indistinguishability games,
this theorem requires square security, and it is well known that some primitives such as pseu-
dorandom generators and pseudorandom functions do not have good square security [6, 19].

One can also show that the limitation of Remark 6 is inherent, in the sense that our immu-
nizer is in general insecure for primitives that are not square friendly. Take, for instance, any
PRG Π = (R,K,PRG), where K(1λ; r) = r outputs directly a seed sampled from the secret source
R, and PRG(1λ, r) stretches the seed to a pseudorandom output. Let Π∗ = (K∗,R,PRG∗) = Ψ(Π)
be the immunized version of Π. Now, consider the attacker A(s) that plays the subversion game
by specifying the subversion Π̃ where:

• K̃ and P̃RG are unchanged (i.e., K̃ ≡ K∗, and P̃RG ≡ PRG∗);

• R̃ embeds a key κ for a pseudorandom function PRF with one-bit output, and performs
the following rejection-sampling procedure:

– Sample a random r;

– If PRF(1λ, κ, y) = 1, where PRG(hs(r)) = y, return r;

– Else, sample a fresh r and start again.

Intuitively, the above subversion allows A to win the subversion game by simply checking
whether PRF(1λ, κ, y) = 1, where y is the challenge. Moreover, this attack is undetectable
as a watchdog not knowing the key κ has a negligible advantage in distinguishing R̃ from R (by
security of the pseudorandom function). Note that the above attack requires the adversary to
choose the subversion depending on the seed.

Instantiating the immunizer. When instantiating seed-dependent randomness condensers
with state-of-the-art constructions [18, 19], we obtain the following parameters.

Corollary 2. Let R and S be, respectively, uniformly random m-bit and m′-bit sources. As-
suming the existence of (poly(λ) , poly(λ) /2m)-collision-resistant families of hash functions, for
any cryptographic primitive Π that is either (poly(λ) , negl(λ))-secure (in case of unpredictabil-
ity games) or (poly (λ) , negl(λ))-square-secure (in case of indistinguishability games) w.r.t.

an input-constrained, single-instance game G, there exists an immunizer ΨR,S
k,1 for Π that is

(poly(λ) , poly(λ) , 5, negl(λ))-subversion-resistant for the pub-model with an offline watchdog,
with parameters k, `,m ∈ ω(log(λ)).

Proof. Setting k, `,m ∈ ω(log(λ)) in Lemma 4, we can see that any (poly(λ) , poly(λ) /2m)-
collision-resistant family of hash functions yields a family of condensers that achieves tcond ∈
poly(λ), εcond = 0, and entropy deficiency d ∈ O(log(λ)). Note that this is enough to tolerate
the loss of 22d in the security of the immunizer, starting with any Π with polynomial security.
Hence, the statement follows directly by plugging the above parameters in Theorem 3.
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6 Transparent Immunizer

In this section we provide a different instantiation for the immunizer from Fig. 3, and show
that it achieves security in the transparent model. The instantiation relies on a new notion of
seed-dependent condensers with weak seeds, which we define and construct in §6.1. The security
analysis appears in §6.2.

6.1 Ingredients: Condensers with Weak Seeds

Intuitively, a randomness condenser with weak seeds is a condenser working with seeds that only
have min-entropy (instead of being uniform). We state a definition below for the seed-dependent
case, where the source is allowed to further depend on the seed.

Definition 10 (Seed-dependent condenser with weak seeds). Let G := {gs : {0, 1}n → {0, 1}m
}s∈{0,1}` be a family of efficiently computable functions. We say that G is a family of ( kn →
m−d
m , k′, t, ε)-seed-dependent condensers with weak seeds if for all probabilistic adversaries A =

(A0,A1) running in time t such that A0 outputs a distribution S for which H∞(S ) ≥ k′, and A1

takes as input a seed s ← S and outputs a distribution X for which H̃∞(X |S ) ≥ k, the joint
distribution (S , gS (X )) is ε-close to some (S ,Y ) with H̃∞(Y |S ) ≥ m− d.

Notice that the attacker has the power to influence both the distribution of the seed S and
of the random source X . However, it must first commit to the distribution of the seed, and
later can choose the distribution of the source depending on the seed. We stress that this notion
is different than the notion of seed-dependent condensers for leaky sources studied by [18].25

In fact, we establish that the above notion is already satisfied by any collision-resistant hash
function that tolerates weak seeds of min-entropy k′.

Lemma 7. Let G be a family of (2t, ε)-collision-resistant hash functions that is secure in the
k′-real model. Then G is a family of ( kn →

m−d
m , k′, t, 0)-seed-dependent condensers with weak

seeds, for 2d = 2m−k + 2mε.

Proof. Let X1,X2 ← A1(S ) for S ← A0(1λ). We can estimate the collision probability as follows:

P [gS (X1) = gS (X2)] ≤ P [X1 = X2 ] + P [gS (X1) = gS (X2) ∧X1 6= X2 ]

≤ P [X1 = X2 ] + ε (15)

≤ 2−k + ε (16)

= 2−m
(

2m−k + 2mε
)

:= 2d−m, (17)

where Eq. (17) follows by the expression of d in the theorem statement, Eq. (16) follows by
the fact that H2(X ) ≥ H̃2(X |S ) ≥ H̃∞(X |S ) ≥ k, while Eq. (15) follows by the fact that
G is collision-resistant in the k′-real model. The latter can be seen as follows. Assume that
P [gS (X1) = gS (X2) ∧X1 6= X2 ] > ε, then we can define an adversary B attacking the hash

function w.r.t. seed distribution S ← A0(1λ):

• Given a seed s← S , run A1(s) twice obtaining distributions X1,X2.

• Sample x1 ← X1 and x2 ← X2, and output (x1, x2).

25The difference is that in [18] the adversary outputting the seed-dependent distribution X can also pass some
bounded leakage Z on X to the distinguisher, which makes their definition much trickier to achieve.
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Adversary B runs in time tB ≈ 2t and succeeds with probability at least ε; since by assumption
H∞(S ) ≥ k′, this contradicts the fact that G is (2t, ε)-collision-resistant in the k′-real model.

By Lemma 7 and Theorem 1 we derive the following corollary.

Corollary 3. Let G := {gs : {0, 1}n → {0, 1}m}s∈{0,1}` be a family of (2t, 2k
′
ε)-collision-

resistant hash functions in the ideal model. Then G is a ( kn →
m−d
m , k′, t, 0)-seed-dependent

condenser with weak seeds, for d = m− k + log(1 + 2k
′
ε), , k ≤ n, and k′ ≤ `.

6.2 Security Analysis (Transparent Model)

The theorem below says that when we instantiate the immunizer of Fig. 3 with a family of
seed-dependent condensers with weak seeds, we achieve subversion security in the transparent
model. However, in this case, since the public source S can be subverted, it will be crucial to
exploit the fact that the final seed s = (s1, s2) is obtained by amalgamating k′ > 1 independent
samples from S, in a trusted way (see also Remark 2).

For input-constrained games, we obtain the following result. An analogous statement holds
for input-unconstrained games, in the online watchdog model (cf. §7.3).

Theorem 4. Let Π = (P,K,R,F1, . . . ,FN ) be a deterministic cryptographic scheme with R =
{0, 1}m, and S be uniform over {0, 1}m′. Consider any input-constrained, single-instance game

G = (C, γ) for Π. Then, for any c∗ > 4, the immunizer ΨR,S
k,k′ [G] of Fig. 3 is (tA, tW, c

∗, ε∗)-
subversion-resistant for the trans-model with an offline watchdog, as long as G := {gs : {0, 1}n →
{0, 1}m}s∈{0,1}` is a family of ( kn →

m−d
m , k′, tcond, εcond)-seed-dependent condensers with weak

seeds and Π is either (t, ε)-secure w.r.t. game G (in case of unpredictability games) or (t, ε)-
square-secure w.r.t. game G (in case of indistinguishability games), for parameters tcond, t, tW ≈
tA, and

ε ≤

{
c∗−1
c∗ ·

ε∗

22d
− 2εcond

22d
if G is an unpredictability game(

c∗−1
c∗ · ε

∗ − 2εcond

)2 · 1
22d

if G is an indistinguishability game.

Proof. We prove Theorem 4 by using an identical proof strategy to that of Theorem 3. The
only difference is that now the public source S can also be tampered, which justifies the need
for seed-dependent randomness condensers with weak seeds. We include the full proof for self-
containment. By contradiction, assume that the immunizer is not subversion resistant, i.e.
there exists an adversary A = (A0,A1) with running time tA such that for all watchdogs W with
running time tW we have

Advtrans
Π,Ψ,A,C(λ) =

∣∣P[Gtrans
Π,Ψ,A,C(λ) = 1

]
− γ
∣∣ > ε∗ (18)

Advdet
Π,Ψ,W(λ) <

1

c∗
·Advtrans

Π,Ψ,A,C(λ) := δ∗. (19)

We introduce a sequence of intermediate hybrid experiments that are modified in an in-
cremental manner. The games are defined exactly as in the proof of Theorem 3, except that
the seeds s1, s2 are generated by sampling k′ times from S̃. More in details, we now have

s1 = s1
1|| · · · ||s1

k′ , s2 = s2
1|| · · · ||s2

k′ for k′ = `/m′, sji ← S̃(1λ) and (i, j) ∈ [k′] × [2]. The games
are formally described in Fig. 6. We proceed to show that the games are all computationally
indistinguishable, and thus A’s advantage does not vanish across the different games.

Lemma 8. |P [G1(λ) = 1]− P [G2(λ) = 1] | ≤ δ∗.
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G1(λ)

(S̃, α0)← A0(1λ, 〈Π,Ψ〉)

s1
1, . . . , s

1
k′ , s

2
1, . . . , s

2
k′ ← S̃(1λ);

s1 = s1
1|| · · · ||s1

k′ ; s2 = s2
1|| · · · ||s2

k′ ;

(Π̃, α1)← A1(1λ, α0, s1, s2)

r1
1, . . . , r

1
k, r

2
1, . . . , r

2
k ← R̃(1λ);

r1 = r1
1|| · · · ||r1

k; r2 = r2
1|| · · · ||r2

k;

d← 〈A2(1λ, α1),CP̃(1λ,s1,·),K̃(1λ,s2,·,·),F̃1,...,F̃N (1λ, r1, r2)〉
return d

G2(λ)

(S̃, α0)← A0(1λ, 〈Π,Ψ〉)

s1
1, . . . , s

1
k′ , s

2
1, . . . , s

2
k′ ← S̃(1λ);

s1 = s1
1|| · · · ||s1

k′ ; s2 = s2
1|| · · · ||s2

k′ ;

(Π̃, α1)← A1(1λ, α0, s1, s2)

r1
1, . . . , r

1
k, r

2
1, . . . , r

2
k ← R̃(1λ);

r1 = r1
1|| · · · ||r1

k; r2 = r2
1|| · · · ||r2

k;

d← 〈A2(1λ, α1),CP∗(1λ,s1,·),K∗(1λ,s2,·,·),F1,...,FN (1λ, r1, r2)〉
return d

G3(λ)

(S̃, α0)← A0(1λ, 〈Π,Ψ〉)

s1
1, . . . , s

1
k′ , s

2
1, . . . , s

2
k′ ← S̃(1λ);

s1 = s1
1|| · · · ||s1

k′ ; s2 = s2
1|| · · · ||s2

k′ ;

(Π̃, α1)← A1(1λ, α0, s1, s2)

y1, y2 ← Y(1λ);

d← 〈A2(1λ, α1),CP,K,F1,...,FN (1λ, y1, y2)〉
return d

Figure 6: Game hops in the proof of Theorem 4.

Proof. The proof is identical to that of Lemma 2. The only difference is that the watchdog W∗

uses the seeds s1, s2 that now are part of its own input, instead of sampling the seeds from S∗,
in order to check the implementations of P∗,K∗, and (F∗i )i∈[N ].

Lemma 9. |P [G2(λ) = 1]− P [G3(λ) = 1] | ≤ 2εcond.

Proof. Let R̃ be the random variable associated to the subverted source R̃ output by A1, let S̃
be the random variable corresponding to the subverted source S̃ output by A0, and let S̃1, S̃2 be
identical copies of S̃. An argument identical to the one given at the beginning of the proof of
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Lemma 3 and Lemma 6 shows that H∞(S̃) ≥ 1 and H̃∞(R̃|S̃1, S̃2) ≥ 1. Next, we use this fact in
order to show that game G2(λ) and G3(λ) are computationally indistinguishable. To this end,
consider the intermediate experiment H(λ) that is identical to G2(λ), except that the challenger

now generates ρ by running P on uniformly random coins y1 ← Y(1λ), where Y outputs strings
of length m bits according to the distribution Y guaranteed by Definition 10. We first show that
G2(λ) is computationally indistinguishable from H(λ). By contradiction, assume that there is
a distinguisher D with running time tD = tA such that ∆D(G2(λ); H(λ)) > εcond. We construct
a distinguisher D′ breaking security of the hash family G. Distinguisher D′ proceeds as follows:

1. Run D, obtaining a distribution S̃, and forward S := S̃k
′

to the challenger where S̃k
′

is
the concatenation of k′ identical copies of S̃.

2. Receive the seed s1 := s1
1|| · · · ||s1

k′ := s from the challenger, and define s2 = s2
1|| · · · ||s2

k′

for sji ← S̃ and (i, j) ∈ [k′]× [2].

3. Run D upon input (s1, s2) obtaining (a description of) Π̃ = (P̃, K̃, R̃, F̃1, . . . , F̃N ).

4. Forward X := R̃k to the challenger, where R̃k is the concatenation of k identical copies
of R̃.

5. Emulate the challenger by answering D’s queries exactly as described in game G2(λ),
except that the public parameters are set by default to be equal to ρ := P(1λ; y1), where
y1 := y ∈ {0, 1}m is the challenge in the security game of the condenser.

6. Output the same guess as that of D.

Observe that D′ runs in time tcond ≈ tA, and moreover the simulation is perfect. Notice, in
fact, that the only difference between the two games is in how the public parameters are set by
the challenger. In particular:

• In case y1 ← Y , the public parameters are computed as ρ := P(1λ; y1) as defined in game
H(λ).

• In case y1 is defined through the condenser, the public parameters are computed as ρ :=

P(1λ; gs1(r1)) for r1 ← R̃k; this is exactly what happens in game G2(λ).

Finally, an argument similar to those used to derive Eq. (8) (in the proof of Lemma 2)
and Eq. (14) (in the proof of Lemma 6) shows that H∞(S) = H∞(S̃k

′
) ≥ k′ and H̃∞(X|S) =

H̃∞(R̃k|S) ≥ k. Hence, D′ retains the same advantage as that of D, which contradicts security
of the family of condensers G.

As in the proof of Theorem 3, the statement now follows by observing that game G3(λ) is
identically distributed to the security game G, except that the random coins y1, y2 that are fed
as input to, respectively, P and K come from a min-entropy source.

Remark 7 (On square security). As for the public model, Theorem 4 does not cover all deter-
ministic primitives, but only those for which we can invoke Theorem 1. See also Remark 6.

When instantiating seed-dependent randomness condensers with weak seeds using suffi-
ciently strong collision-resistant hash families, we obtain the following parameters.
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Corollary 4. Let R and S be, respectively, uniformly random m-bit and m′-bit sources. As-
suming the existence of (poly (λ) , poly (λ) /2m)-collision-resistant families of hash functions,
for any α < 1, and for any cryptographic primitive Π that is either (2λ

α
, 2−λ

α
)-secure (in case

of unpredictability games) or (2λ
α
, 2−λ

α
)-square-secure (in case of indistinguishability games)

w.r.t. input-constrained, single-instance game G, there exists an immunizer ΨR,S
k,k′ for Π that is

(poly(λ) , poly(λ) , 5, negl(λ))-subversion-resistant for the trans-model with an offline watchdog,
with parameters k, k′,m,m′ ∈ ω(log(λ)).

Proof. Setting k, k′,m ∈ ω(log(λ)) in Corollary 3, we can see that any (poly(λ) , poly(λ) /2m)-
collision-resistant family of hash functions yields a family G of condensers with weak seeds
that achieves tcond ∈ poly (λ), εcond = 0, and entropy deficiency d ∈ ω(log(λ)). Note that
this is enough to tolerate the loss of 22d in the security of the immunizer, starting with any
Π with sub-exponential security. Hence, the statement follows directly by plugging the above
parameters in Theorem 4.

7 Security Statements in the Online Watchdog Model

In this section, we revisit the security statements for our immunizer in the semi-private, public,
and transparent model in the case of input unconstrained games. As we show, for such games
we can only obtain positive results in the online watchdog model. Intuitively, this is the case
because the challenger is required to query the subversion game oracles on inputs chosen by
the adversary (i.e., the game is input unconstrained), and thus it might be impossible for the
watchdog to detect subversion without being given a transcript of the interaction between the
challenger and the adversary (e.g., input-triggered attacks are always possible).

7.1 Semi-Private Immunization

The statement below is the equivalent of Theorem 2 for input-unconstrained games.

Theorem 5. Let Π = (P,K,R,F1, . . . ,FN ) be a deterministic cryptographic scheme with R =
{0, 1}m, and S be uniform over {0, 1}`. Consider any input-unconstrained, single-instance game

G = (C, γ) for Π. Then, for any c∗ > 4, the immunizer ΨR,S
k,1 [H] of Fig. 3 is (tA, tW, c

∗, ε∗)-
subversion-resistant for the spriv-model with an online watchdog, as long as H := {hs : {0, 1}n →
{0, 1}m}s∈{0,1}` is a family of strong (n,m, k, text, εext)-computational extractors and Π is (t, ε)-
secure w.r.t. game G for parameters text, tW, t ≈ tA, and

ε ≤ c∗ − 1

c∗
· ε∗ − 2εext.

Proof sketch. The proof follows closely that of Theorem 2, and thus we only emphasize the
main differences. We consider exactly the same hybrid experiments G1(λ)–G3(λ). The only
step of the proof that changes is the one where we analyze the transition from G1(λ) to G2(λ).
Hence, in what follows, we focus only on this particular step of the proof.

Lemma 10. |P [G1(λ) = 1]− P [G2(λ) = 1] | ≤ δ∗.

Proof. Consider the same events Epub, Ekgen, and Efunc, as in the proof of Lemma 2, except
that event Efunc is now defined as follows.

Event Efunc: The event becomes true whenever ∃i ∈ [N ], j ∈ [q], xj ∈ τ̃ s.t. F̃i(1
λ, ρ, (pk , sk), xj)

6= F∗i (1
λ, ρ, (pk , sk), xj), where ρ = P̃(1λ, s1; r1), (pk , sk) = K̃(1λ, s2, ρ; r2), r1 = r1

1|| . . . ||r1
k

for r1
i ← R̃(1λ), r2 = r2

1|| . . . ||r2
k for r2

i ← R̃(1λ), s1, s2 ← S(1λ), τ̃ is the transcript of
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the messages exchanged between the adversary and the challenger in the subversion game
(recall that the game is input unconstrained), and q(λ) ∈ poly(λ) is an upper bound on
the total number of queries asked by the adversary to each of the oracles F̃1, . . . , F̃N .

Define Ebad := Epub ∨ Ekgen ∨ Efunc. Clearly, if Ebad does not happen, we have that G1(λ)
and G2(λ) are identically distributed, and thus it suffices to prove that event Ebad only happens
with probability smaller than δ∗. By contradiction, assume that A provokes event Ebad with
probability at least δ∗. We construct an efficient online watchdog W∗ that distinguishes between
Gdet-on

Π,Ψ,W∗(λ, aux, 0) and Gdet-on
Π,Ψ,W∗(λ, aux, 1) with the same probability, which contradicts Eq. (4).

The watchdog W∗ is identical to the one constructed in the proof of Lemma 2, except that
step 5 is changed as follows:

5’ For each i ∈ [N ], j ∈ [q], and xj ∈ τ̃ , invoke Oifunc upon input (1λ, ρ, (pk , sk), xj), obtaining
some output yj ; in case there exists i ∈ [N ] and j ∈ [q] such that the value yj does not
equal F∗i (1

λ, ρ, (pk , sk), xj) = Fi(1
λ, ρ, (pk , sk), xj) output 1 and stop.

Recall that the watchdog W∗ is always given the original specification of 〈Ψ,Π〉, and additionally,
since the watchdog is online, it also receives the transcript τ̃ resulting from the execution of the
subversion game with the adversary A. Hence, W∗ can indeed perform the above check, even if
the game is input unconstrained.

The rest of the proof is as before.

7.2 Public Immunization

The statement below is the equivalent of Theorem 3 for input-unconstrained games.

Theorem 6. Let Π = (P,K,R,F1, . . . ,FN ) be a deterministic cryptographic scheme with R =
{0, 1}m, and S be uniform over {0, 1}`. Consider any input-unconstrained, single-instance game

G = (C, γ) for Π. Then, for any c∗ > 4, the immunizer ΨR,S
k,1 [G] of Fig. 3 is (tA, tW, c

∗, ε∗)-
subversion-resistant for the pub-model with an online watchdog, as long as G := {gs : {0, 1}n →
{0, 1}m}s∈{0,1}` is a family of ( kn →

m−d
m , tcond, εcond)-seed-dependent condensers and Π is either

(t, ε)-secure (in case of unpredictability games) or (t, ε)-square-secure (in case of indistinguisha-
bility games) w.r.t. game G, for parameters tcond, t ≈ tA, tW ≈ tA, and

ε ≤

{
c∗−1
c∗ ·

ε∗

22d
− 2εcond

22d
if G is an unpredictability game(

c∗−1
c∗ · ε

∗ − 2εcond

)2 · 1
22d

if G is an indistinguishability game.

7.3 Transparent Immunization

The statement below is the equivalent of Theorem 4 for input-unconstrained games.

Theorem 7. Let Π = (P,K,R,F1, . . . ,FN ) be a deterministic cryptographic scheme with R =
{0, 1}m, and S be uniform over {0, 1}m′. Consider any input-unconstrained, single-instance

game G = (C, γ) for Π. Then, for any c∗ > 4, the immunizer ΨR,S
k,k′ [G] of Fig. 3 is (tA, tW, c

∗, ε∗)-
subversion-resistant for the trans-model with an online watchdog, as long as G := {gs : {0, 1}n →
{0, 1}m}s∈{0,1}` is a family of ( kn →

m−d
m , k′, tcond, εcond)-seed-dependent condensers with weak

seeds and Π is either (t, ε)-secure w.r.t. game G (in case of unpredictability games) or (t, ε)-
square-secure w.r.t. game G (in case of indistinguishability games), for parameters tcond, t, tW ≈
tA, and

ε ≤

{
c∗−1
c∗ ·

ε∗

22d
− 2εcond

22d
if G is an unpredictability game(

c∗−1
c∗ · ε

∗ − 2εcond

)2 · 1
22d

if G is an indistinguishability game.
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8 Immunization in the Random Oracle Model

In this section we show how to use random oracles to build immunizers for any deterministic
cryptographic primitive. As we will show, the random oracle assumption allows to immunize
any polynomially-secure deterministic cryptoscheme (w.r.t. both unpredictability and indistin-
guishability games, and without the need for square security), even in case the random oracle
itself is subject to subversion.

We start by defining a notion of subversion-resilient immunizers that is specifically tailored
for the ROM, in §8.2. In §8.3 we describe our generic immunizer, and we analyze its security
in §8.4.

8.1 Random Oracle Model

In the ROM, a cryptographic scheme might be parametrized by a family H := {h : {0, 1}∗ →
{0, 1}∗} of hash functions. At the beginning of the security game for Π, a random hash function

h← H is sampled and all algorithms (including the adversary) are allowed to query the random
oracle. Additionally, all probabilities are taken over the choice of the random oracle.

As usual, the only way for the adversary A to learn the output of h upon some input value
x ∈ {0, 1}∗ is to query the random oracle on x.

8.2 Subversion-Secure Immunization in the ROM

Let Π = (P,K,R,F1, . . . ,FN ) be a deterministic cryptographic scheme. An immunizer for
Π in the ROM is a transformation Ψ[H], parametrized by a family of hash functions H =
{h : {0, 1}∗ → {0, 1}∗}. Given a particular hash function h ∈ H, we write Π̂h := Ψh(Π) :=
(K̂h, R̂h, F̂h1 , . . . , F̂

h
N ) for the immunized version of the scheme Π using random oracle h.

We require an immunizer Ψ to satisfy the two properties defined next. Intuitively, the
first property says that the immunized scheme Π̂h meets the same correctness condition as
Π. The second property, instead, establish the security of the immunized scheme against a
powerful, “malicious but proud”, adversary that attempts to provide its own specification of
the immunized algorithms in an undetectable manner.

Definition 11 (Subversion security in the ROM). Let Π = (P,K,R,F1, . . . ,FN ) be a cryp-
tographic scheme, and G = (C, γ) be a security game for Π. For a set of hash functions
H = {h : {0, 1}∗ → {0, 1}∗}, we say that an immunizer Ψ[H] is subversion-resistant in the
ROM if the following holds: There exists a PPT watchdog W such that for all PPT adversaries
A := (A0,A1) there is a negligible function νsub : N→ [0, 1] and a polynomial pdet(λ), for which
at least one of the following conditions hold:∣∣∣P[Gdet

Π,Ψ,W(λ, aux, 0) = 1
]
− P

[
Gdet

Π,Ψ,W(λ, aux, 1) = 1
]∣∣∣ ≥ 1/pdet(λ), (20)∣∣∣P[Gsub

A,C(λ) = 1
]
− γ
∣∣∣ ≤ νsub(λ), (21)

where the games Gsub
A,C(λ) and Gdet

Π,Ψ,W(λ, aux, b) are depicted in Fig. 7, and the probability is
taken over the randomness of Π, over the coin tosses of A and W, and over the choice of the

random oracle h ← H. The values in the auxiliary information aux := (ρ̃, Π̃h, H̃h) are taken
from Gsub

A,C(λ). Moreover, for all h ∈ H, we require that Π̂h = Ψh(Π) meets the same correctness
requirement as that of Π.

The above definition is a slight variant of a similar definition considered in [29]; the differ-
ence is that our version is specifically tailored for the ROM, and that we consider security of
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Game Gsub
A,C(λ)

(ρ̃, Π̃h, H̃h, α)← Ah0 (1λ)

(d, τ̃)← (Ah1 (1λ, α) � CH̃h,Π̃h(1λ, ρ̃))

return d

Game Gdet
Π,Ψ,W(λ, aux, b) Gdet-on

Π,Ψ,W(λ, aux, b)

aux := (ρ̃, Π̃h, H̃h)

aux := (Qh, τ̃ , ρ̃, Π̃h, H̃h)

if b = 0

return WΠ̃h,H̃h(1λ, ρ̃, 〈Π,Ψ〉)

WΠ̃h,H̃h(1λ, ρ̃, 〈Π,Ψ〉, τ̃ ,Qh)

elseif b = 1

Π̂h = Ψh(Π)

return WΠ̂h,h(1λ, ρ̃, 〈Π,Ψ〉)

WΠ̂h,h(1λ, ρ̃, 〈Π,Ψ〉, τ̃ ,Qh)

fi

Figure 7: Games defining subversion security of an immunizer Ψ[H] in the ROM, for both the
offline and the online watchdog model.

immunizers and not of primitives directly. Note that, since the adversary is allowed to spec-
ify its own implementation of all algorithms, the subversion game is parametrized only by the
challenger C underlying the original game G for Π (and by the adversary A).

Eq. (21) requires that no PPT adversary can break security of Π̂h = Ψh(Π) with more
than a negligible probability, even if it is able to replace all algorithms in Π̂h (including the
random oracle) with its own malicious specification. We also note that, in contrast to the
subversion model of §3, we allow for the adversary to “cook up” the public parameters for Π̂h;
this is motivated by the fact that, in some cases, specific values of the public parameters may be
decided a priori and included, e.g., in cryptographic standards. (This was the case, for instance,
for the celebrated DUAL EC PRG incident [11].)

On the other hand, Eq. (20) says that the watchdog can, by black-box testing, distinguish
the immunized primitive from the implementation specified by the adversary with some non-
negligible probability. Note that the watchdog is always given the (malicious) public parameters
specified by the adversary in the subversion game; moreover, it always posseses (a description
of) the original specification of the cryptographic scheme Π and of the compiler Ψ.

Offline versus online watchdogs. The discussion of §3.3 also applies in the ROM, and we
refer the reader to Fig. 7 for a formal description of the games describing subversion-secure
immunization in the ROM with an online watchdog. We write Qh for the list of random oracle
queries asked by the adversary during the subversion game; note that this list is passed to the
watchdog in the detection game.

8.3 Immunizer Description

We refer the reader to Fig. 8 for a formal description of our immunizer in the ROM. On a
high level, the output of the public parameters generator P is sanitized via a hash function
h1 ∈ H1; similarly, the output of the randomness generator R is sanitized via another hash
function h2 ∈ H2. Note that in the ROM both hash functions can be generated by a single

41



random oracle h← H, by letting h1(·) := h(0||·) and h2(·) := h(1||·).

8.4 Security Analysis

Next, we analyze the security of the immunizer from Fig. 8 in the ROM, both for the online and
offline watchdog models. Our analysis encompasses all deterministic cryptographic schemes.

8.4.1 Online Watchdog Model

The theorem below states the security of the immunizer from Fig. 8 in the ROM (cf. Fig. 7).

Theorem 8. Let Π = (P,K,R,F1, . . . ,FN ) be a deterministic cryptographic scheme, and con-
sider any game G = (C, γ) such that Π is secure w.r.t. game G. Then, the immunizer Ψ[H1,H2]
of Fig. 8 is subversion-resistant in the ROM, for the online watchdog model.

Proof. By contradiction, assume that the immunizer Ψ[H1,H2] is not subversion resistant in
the ROM, i.e. there exists a PPT adversary A = (A0,A1) such that for all PPT watchdogs W
there exist a negligible function νdet : N→ [0, 1] and a polynomial psub(λ) for which∣∣∣P[Gdet

Π,Ψ,W(λ, aux, 0) = 1
]
− P

[
Gdet

Π,Ψ,W(λ, aux, 1) = 1
]∣∣∣ ≤ νdet(λ) (22)

and
∣∣∣P[Gsub

A,C(λ) = 1
]
− γ
∣∣∣ ≥ 1/psub(λ). (23)

The proof goes by introducing the following hybrid games. We refer the reader to Fig. 9 for
a description of the games in pseudocode.

G1(λ): This is identical to the game Gsub
A,C(λ), defining subversion security of an immunizer (cf.

Fig. 7). Here, the adversary A specifies the modified public parameters ρ̃, as well as its own

implementation of all other immunized algorithms as in Π̃h1,h2 = (K̃h1,h2 , R̃h1,h2 , F̃h1,h21 , . . . ,

F̃h1,h2N ), and of the random oracles (via algorithms H̃h1,h21 and H̃h1,h22 ). Except for these
differences, the interaction between A and C is identical to that in the original game G.

G2(λ): Identical to the previous game, except that we replace the adversarial implementation

of the random oracle (i.e., the algorithms H̃h1,h21 and H̃h1,h22 ), with the random functions

h1, h2; we also replace the algorithms K̃h1,h2 , F̃h1,h21 , . . . , F̃h1,h2N with their immunized coun-

terparts K̂h1,h2 , F̂h1,h21 , . . . , F̂h1,h2N .

Subversion-Resistant Immunizer Ψh1,h2(·):

Let Π = (P,K,R,F1, . . . ,FN ) be a cryptographic scheme, and define Π̂h1,h2 := Ψh1,h2(Π) :=
(K̂h1,h2 , R̂, F̂h21 , . . . , F̂h2N ) as follows:

• Algorithm R̂: Upon input 1λ, return r such that r ← R(1λ).

• Algorithm K̂h1,h2 : Upon input (1λ, ρ̃, r), return (pk , sk) = K(1λ, h2(ρ̃);h1(r)).

• Algorithm F̂h2i (for i ∈ [N ]): Upon input (1λ, ρ̃, (pk , sk), x), return y = Fi(1
λ, h2(ρ̃),

(pk , sk), x).

Figure 8: Description of our subversion resistant immunizer in the ROM, parametrized by hash
functions h1 ∈ H1 and h2 ∈ H2.

42



G1(λ)

h1, h2 ← H1 ×H2

(ρ̃, Π̃h1,h2 , H̃h1
1 , H̃h2

2 , α)← Ah1,h2

0 (1λ)

d← 〈Ah1,h2

1 (1λ, α),CΠ̃h1,h2 ,H̃
h1,h2
1 ,H̃

h1,h2
2 (1λ, ρ̃)〉

return d

G2(λ)

h1, h2 ← H1 ×H2

(ρ̃, Π̃h1,h2 , H̃h1
1 , H̃h2

2 , α)← Ah1,h2

0 (1λ)

d← 〈Ah1,h2

1 (1λ, α),CK̂h1,h2 ,R̃h1,h2 ,F̂
h2
1 ,...,F̂

h2
N ,h1,h2(1λ, ρ̃)〉

return d

Figure 9: Game hops in the proof of Theorem 8.

We proceed to show that the above games are all computationally indistinguishable, and
thus A’s advantage does not vanishes across the different games.

Lemma 11. |P[G1(λ) = 1]− P[G2(λ) = 1] | ≤ δ∗.

Proof. The proof is similar to that of Lemma 10, hence we only sketch the main differences.
Consider the same events Epub, Ekgen, and Efunc as defined in the proof of Lemma 10. Addi-
tionally define the following events:

Event E1
ro: ∃j ∈ [q1] s.t. H̃h1,h21 (u1

j ) = ṽ1
j 6= v1

j = h1(u1
j )

Event E2
ro: ∃j ∈ [q2] s.t. H̃h1,h22 (u2

j ) = ṽ2
j 6= v2

j = h2(u2
j ),

where q1, q2 ∈ poly(λ) are, respectively, upper bounds on the number of queries asked by A to its
own malicious specification of the first and second random oracle, and (u1

j , ṽ
1
j ), (u

2
j , ṽ

2
j ) ∈ Qh1,h2 .

Define Ebad := Epub ∨ Ekgen ∨ Efunc ∨ E1
ro ∨ E2

ro. Clearly, if Ebad does not happen, we have
that G1(λ) and G2(λ) are identically distributed, and thus it suffices to prove that event Ebad

only happens with negligible probability. By contradiction, assume that A provokes event Ebad

with non-negligible probability. We construct an efficient online watchdog W∗ that distinguishes
between Gdet-on

Π,Ψ,W∗(λ, aux, 0) and Gdet-on
Π,Ψ,W∗(λ, aux, 1) with the same probability, which contradicts

Eq. (22).
The watchdog W∗ is identical to the one constructed in the proof of Lemma 10, except that

the watchdog now additionally looks at the list of random oracle queries Qh1,h2 asked by the
adversary A in game Gsub

A,C(λ), it finds an index j ∈ [q1] such that O1
ro(u1

j ) 6= ṽ1
j or O2

ro(u2
j ) 6= ṽ2

j ,

and outputs 1 in case such an index is found; here, O1
ro(·) and O2

ro(·) are the target oracles

corresponding to the first and second random oracle, i.e. either O1
ro ≡ H̃h1,h21 and O2

ro ≡ H̃h1,h22

(if b = 0), or O1
ro ≡ h1 and O2

ro ≡ h2 (if b = 1). Recall that in the ROM the watchdog is
provided with the list Qh1,h2 of random oracle queries asked by the adversary in the subversion
game, and thus it can indeed run the above comparison. The rest of the proof is unchanged.

Lemma 12. There exists a polynomial p2(λ) such that

1

p2(λ)
|P [G2(λ) = 1]− γ| ≤ |P [GΠ,A,C(λ) = 1]− γ| .
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Proof. We build an attacker A∗ that breaks security of the original game G = (C, γ) for Π, by
making black-box usage of an adversary A playing game G2(λ). An important observation here
is that the original security game GΠ,A,C(λ) and the game for subversion security Gsub

A,C(λ) have
the same structure, meaning that A’s queries are syntactically valid in both games (except for
random oracle queries, that are not allowed in the original game).26 A description of A∗ follows.

Adversary A∗:

1. At the beginning, receive the target public parameters ρ∗ sampled by the challenger C in
an execution of game G. Hence, initialize A(1λ).

2. Sample a random bit β ← {0, 1} and a random index j∗ ← [q2].

3. Upon input a query u1
j to the first random oracle, first check whether u1

j was already

asked; if that is the case, return the corresponding value v1
j , and else return a fresh value

v1
j ← {0, 1}∗.

4. Upon input a query u2
j to the second random oracle, first check if the corresponding output

v2
j is already defined, and in case it is, return such a value. Else:

• If β = 0 always return a fresh value v2
j ← {0, 1}∗, except for the case j = j∗ in

which case the random oracle is programmed as in h2(u2
j∗) := ρ∗, and the value ρ∗ is

returned.

• If β = 1, always return a fresh value v2
j ← {0, 1}∗.

5. Whenever A outputs (ρ̃, K̃h1,h2 , R̃h1,h2 , F̃h1,h21 , . . . , F̃h1,h2N ), adversary A∗ acts as follows:

• If β = 1, define h2(ρ̃) := ρ∗;

• If β = 0, define h2(ρ̃) := ρ′ for a random ρ′ ← {0, 1}∗.

6. Any other query from A is forwarded to C, and the corresponding answer is sent back, until
the game terminates. While doing this, random oracle queries are answered as explained
above.

7. At the end of the simulation, check the following conditions:

• If r ∈ Qh1 , where r ← R̃h1,h2(1λ), output ⊥1.

• If β = 0 and ρ̃ 6= v2
j∗ , output ⊥2,0.

• If β = 1 and ρ̃ 6∈ Qh2 , output ⊥2,1.

Let Ebad := E1∨E2,0∨E2,1 be the event that the reduction aborts, where E1, E2,0 and E2,1

denote, respectively, the events that the reduction outputs ⊥1, ⊥2,0, and ⊥2,1; note that this
happens whenever A∗ fails either to match the target public parameters ρ∗ with ρ̃, or because
A predicts the output of the subverted randomness source. Below, we bound the probability of
each of these events happening.

Event E1: We claim that P [E1 ] ∈ negl(λ). Otherwise, there is a simple online watchdog Wrgen

that distinguishes between Gdet-on
Π,Ψ,Wrgen

(λ, aux, 0) and Gdet-on
Π,Ψ,Wrgen

(λ, aux, 1) by comparing
the outcome of its target oracle for the random source Orgen with the input values in Qh1 ;
such a watchdog is successful with overwhelming probability (since the probability of a
collision with the values in Qh1 is negligible in case Orgen ≡ R), which contradicts Eq. (22).

26For simplicity we assume that the original scheme is secure in the standard model (i.e., without random
oracles); yet, it is easy to adapt the proof to cover also schemes Π that are secure in the ROM to start with.
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Event E2,0: Define µ := P[ρ̃ ∈ Qh2 ]. We claim that P [E2,0 ] = 1
2(1−µ/q2), where q2 ∈ poly(λ)

is an upper bound on the number of queries to the second random oracle. In fact,

P [E2,0 ] = P
[
β = 0 ∧ ρ̃ 6= u2

j∗
]

= P [β = 0] · P
[
ρ̃ 6= u2

j∗
]

=
1

2

(
P
[
ρ̃ 6= u2

j∗ | ρ̃ ∈ Qh2
]
· P [ρ̃ ∈ Qh1 ] + P

[
ρ̃ 6= u2

j∗ | ρ̃ /∈ Qh2
]
· P [ρ̃ /∈ Qh2 ]

)
=

1

2

((
1− 1

q2

)
· µ+ (1− µ)

)
=

1

2
·
(

1− µ

q2

)
.

Event E2,1: By definition, we have:

Pr[E2,1] = P[β = 1 ∧ ρ̃ ∈ Qh2 ] = P [β = 1] · P[ρ̃ ∈ Qh2 ] = µ/2.

By the union bound, there exists a negligible function ν2 : N→ [0, 1] such that:

P[Ebad ] ≤ P [E1 ] + P [E2,0 ] + P[E2,1 ] =
1

2

(
1− µ

q2
+ µ

)
+ P[E2,1 ]

=
1

2

(
1 + µ

(
1− 1

q2

))
+ P[E2,1 ] ≤ 1− 1

2q2
+ ν2(λ).

Finally, note that P [GΠ,A∗,C(λ) = 1] = P [GΠ,A∗,C(λ) = 1 | ¬Ebad ] · P [¬Ebad ], and by the
above calculation P [¬Ebad ] ≥ 1/p2(λ) for some polynomial p2(λ). It remains to analyze

P [GΠ,A∗,C(λ) = 1 | ¬Ebad ]. Let r∗ ← R(1λ) and (pk∗, sk∗) := K(1λ, ρ∗; r∗) be the random-
ness and the keys generated by the challenger C. Conditioned on event Ebad not happening, we

have that h2(ρ̃) = ρ∗, and moreover the distribution of h2(r), where r ← R̃h1,h2(1λ), is identical
to that of r∗ (since r is never queried to the random oracle). Moreover, the view of adversary
A is perfectly simulated, as

∀r ← R̃h1,h2(1λ) : K̂h1,h2(1λ, ρ̃; r) = K(1λ, h2(ρ̃);h1(r)) = K(1λ, ρ∗; r∗) = (pk∗, sk∗)

∀i ∈ [N ], x ∈ τ̃ : F̂h2i (1λ, ρ̃, (pk∗, sk∗), x) = Fi(1
λ, h2(ρ̃), (pk∗, sk∗), x) = Fi(1

λ, ρ∗, (pk∗, sk∗), x),

and thus P [GΠ,A,C(λ) = 1 | ¬Ebad ] = P[G2(λ) = 1] as desired.

Considering the previous lemmas, and applying the triangle inequality, we obtain that

|P [G0(λ) = 1]− γ| ≥ |P [G2(λ) = 1]− γ| − ν1(λ).

Together with Eq. (23), this yields

|P [GΠ,A,C(λ) = 1]− γ| ≥ 1

p2(λ)
· 1

psub(λ)
− ν(λ),

for some negligible function ν : N → [0, 1]. As the above quantity is non negligible, this
contradicts the security of the original scheme Π w.r.t. game G, and thus finishes the proof of
the theorem.
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8.4.2 Offline Watchdog Model

We do not know how to make the above proof work for input constrained games in the offline
watchdog model. The reason is that, in order to program the random oracles as described in
the last step of the proof, we must reach a hybrid where the subverted implementation of the
random oracles H̃h1,h21 and H̃h1,h22 is replaced with the real random oracles h1 and h2. However,
it seems hard to make this transition without requiring that the watchdog is given the list of
random oracle queries Qh1,h2 asked by the adversary in the subversion game. Unfortunately,
this list should not be available in the offline watchdog model.

We note that the above observation does not seem to effect the proof given in [29, Theorem
3.5], as their argument does not explicitly take into account subversion of the random oracles.

9 Conclusions

We have shown how to immunize a large class of deterministic cryptographic primitives against
complete subversion, meaning that the adversary is allowed to tamper with all the underlying
algorithms, and with the immunizer itself. In the random oracle model, there is a simple
immunizer that relies on a single secret, but tamperable, source of randomness [29, 30]. In the
standard model, instead, we need to assume an additional independent public, and in some case
untamperable, random source.

Open problems include, e.g., finding better immunizers, both in terms of computational as-
sumptions and/or the number of assumed trusted random sources. Also, exploring alternative
approaches in order to achieve subversion security in the plain model for larger classes of crypto-
graphic schemes (e.g., indistinguishability applications without square security, or randomized
ones), while still relying on O(1) independent random sources, is an interesting direction for
future research.
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