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Abstract. We revisit the matrix model for non-interference (NI) probing security of masking
gadgets introduced by Beläıd et al. at CRYPTO 2017. This leads to two main results.
1) We generalise the theorems on which this model is based, so as to be able to apply them
to masking schemes over any finite field — in particular F2 — and to be able to analyse the
strong non-interference (SNI) security notion. We also follow Faust et al. (TCHES 2018) to
additionally consider a robust probing model that takes hardware defects such as glitches
into account.
2) We exploit this improved model to implement a very efficient verification algorithm that
improves the performance of state-of-the-art software by three orders of magnitude. We
show applications to variants of NI and SNI multiplication gadgets from Barthe et al. (EU-
ROCRYPT 2017) which we verify to be secure up to order 11 after a significant parallel
computation effort, whereas the previous largest proven order was 7; SNI refreshing gadgets
(ibid.); and NI multiplication gadgets from Groß et al. (TIS@CCS 2016) secure in presence
of glitches. We also reduce the randomness cost of some existing gadgets, notably for the
implementation-friendly case of 8 shares, improving here the previous best results by 17%
(resp. 19%) for SNI multiplication (resp. refreshing).

Keywords: High-order masking, probing model, multiplication gadget, refreshing gadget,
linear code.

1 Introduction

Since their introduction in the late last century, side-channel attacks and in particular Differential
Power Analysis (DPA) [KJJ99] have developed into one of the most efficient attack techniques on
implementations of cryptographic primitives. The importance of this new threat and its practical
relevance soon lead to the design of appropriate counter-measures, one of the most influential to
date being the “ISW” private multiplication circuit of Ishai, Sahai and Wagner [ISW03]. This is a
foremost example of a masking scheme, where sensitive data are split into several shares using a
secret sharing scheme; the crux of the design is then to devise a way to perform field arithmetic
over the shares without leaking too much information to the adversary in the process.

A major characteristic of a masking scheme is the order at which it is secure: in a probing model
such as the one introduced by Ishai, Sahai and Wagner, a circuit secure at order d is such that no
adversary can learn information about its input and output even when being given d intermediate
values of its computation. The usefulness of increasing the security order is then justified by the
fact that under reasonable assumptions, the number of measurements needed for a successful attack
increases exponentially in d [DFS15].

Unfortunately, high-order schemes also come with a significant overhead, since the cost of
ISW multiplication is quadratic in d for three relevant metrics: to secure one field multiplication,
one needs 2d(d + 1) sums, (d + 1)2 products and d(d + 1)/2 fresh random masks. This lead to
several attempts to find more efficient multiplication circuits, especially with respect to the last
two metrics.

A number of new schemes for private multiplication were introduced in the past few years by
Beläıd et al. [BBP+16,BBP+17]. At EUROCRYPT 2016, they design a new high-order scheme
whose randomness cost is decreased to ≈ d2/4 + d, and which can be easily instantiated over any
finite field of characteristic two (they also give specific schemes with even lower cost up to order
4). The security of this multiplication is analysed in the composable model of non interference
(NI) from Barthe et al. [BBD+16]. This is slightly weaker than the strong non-interference (SNI)
security achieved by ISW multiplication but remains of high practical relevance: for instance, one
can replace half of the multiplications in a masked AES S-box computation by the ones of [BBP+16]
while maintaining the overall strong SNI security for the entire S-box. At CRYPTO 2017, the same
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authors propose two new schemes, one with linear bilinear multiplication cost, and the other with
linear randomness cost. However, those are complex to securely instantiate and cannot be done
so over F2. As an example, over F28 , Beläıd et al. only manage to instantiate their algorithms at
order 2 and 3 respectively; this was later slightly improved to 4 in both cases by Karpman and
Roche [KR18]. In this second paper, Beläıd et al. also analyse the security of their schemes thanks
to a powerful matrix-based model that they introduce. This model is however not complete for
schemes defined over small fields such as F2; while this was not a limitation in their case, it precludes
its full application to this common setting. Finally, Barthe et al. introduced some of the most
efficient known NI and SNI multiplication and refreshing schemes at EUROCRYPT 2017 [BDF+17],
selected instances of which were then later improved by Grégoire et al. [GPSS18] and Barthe
et al. [BBD+18]. Complementary approaches to decrease the overhead of masking implementations
consist in batching multiplications in order to amortise their cost (for instance by sharing some of
the shares across several multiplications [CGPZ16] or by using a “packing” strategy [WGS+20]) or
in carrying a global analysis of the primitive to be masked, so that one may for instance use fewer
refreshing gadgets [BGR18,BDM+20]. All of these are quite orthogonal to the design and analysis
of individual gadgets.

On the implementation side, several recent work have investigated the efficiency of high-order
masking in practice [GR17,JS17,GJRS18,GPSS18]; they show in particular the increasing feasibility
of masking block ciphers at quite high order such as 7, and the possibility of masking at very high
order such as 31. Such high-order masking may be useful to secure implementations running on
devices with low noise level. This was recently highlighted by a practical attack of Bronchain
and Standaert on a protected AES implementation where the low noise and masking order were
found to be contributing factors to its feasibility [BS19]. From a technical point-of-view, high-order
implementations share the common approach of exploiting bitslicing or vectorisation to amortise
the overhead brought by the use of many shares; since bitslicing works with operations at the bit
level, this strategy typically requires the masking to be performed over F2. These implementations
also confirm the high cost of randomness generation; for instance, depending on the random number
generator performance and the block cipher under consideration Journault and Standaert report
that 68–92% of the time is spent generating fresh masks in their 32-share implementations [JS17].
All in all, concrete implementations of high-order masking confirm the importance of schemes
defined over F2 with low randomness cost.

All of the above work are chiefly concerned with software-oriented counter-measures and are
designed with respect to a high-level computation model. While this abstraction is beneficial to
the formal analysis of the schemes and their implementation, it comes with the inherent downside
of ignoring some of the micro-architectural phenomena that may enable side-channel attacks in the
first place. It was for instance recently noted by Gao et al. that some independence assumptions
made in bitsliced implementations do not seem to hold in practice, and that in-register bit inter-
action leakage may in fact significantly decrease the actual resistance of a scheme from what could
be theoretically expected [GMPO20]. In the case of hardware circuits, it is also well-known that
their protection additionally requires to take into account the possibility of physical defects such
as glitches. From a formalisation perspective this can for instance be done by generalising probing
security to a robust variant proposed by Faust et al. [FGP+18], or by following the more physical
approach of Bloem et al. [BGI+18]. As was recently noted by Moos et al. [MMSS19], the analysis
of masking schemes in this harder model is currently quite less mature than in the software case.

Finally although some schemes such as the original ISW multiplication benefit from analytical
proofs of security at an arbitrary order, the security of many gadgets from the literature is checked
using some verification software. This is true in particular for most of the improvements over
ISW from recent work [BBP+16,BBP+17,BDF+17,GPSS18,BBD+18]. One of the main verification
software is the maskVerif tool from Barthe et al. [BBC+19], which allows to verify the security of a
scheme described with a high-level language with respect to a range of models such as (S)NI in the
(robust) probing model. A recent alternative is the SILVER software from Knichel, Sasdrich and
Moradi [KSM20], whose notable features are that it proves gadgets described at the gate level from
an actual hardware synthesis file rather than from a high-level description, and that it is complete
(i.e. does not produce false negatives, as maskVerif may). While those are clear advantages in the
case of hardware implementations, the somewhat slower verification time compared to maskVerif
makes SILVER less competitive in the software case, where one may wish to prove a scheme at a
higher order and where a high-level description is not limiting.
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1.1 Our contribution

Our work brings two main contributions. On the theoretical side, we extend the matrix model
of [BBP+17] to make it complete over any finite field and thus for instance usable to prove the
security of schemes defined over F2; we also extend it to analyse SNI security, whereas it was only
formulated in the NI case by Beläıd et al., and incorporate the robust probing model of Faust
et al. [FGP+18] to offer some support for verification in presence of glitches. The extension to F2

is particularly relevant to concrete masking schemes since up to a few exceptions such as the one
of [BBP+17], most schemes are intrinsically defined over this field. A corollary of our new theorems
is also a simple proof that a scheme proven secure over F2 remains so when used over any extension,
which is a common practice.

On the practical side, we use this extended model to derive a very efficient implementation
of a verification algorithm whose performance beats the state-of-the-art maskVerif tool of Barthe
et al. [BBC+19] by three orders of magnitude in the case of software multiplication gadgets; we
illustrate this on software and hardware multiplication and refreshing schemes from the literature.
We then take advantage of our improved verification performance and spend significant computa-
tion effort into proving the security of (variants of) the software multiplication gadgets of Barthe
et al. [BDF+17] at mid-to-high order. This is all the more relevant since those do not have known
generic proof of security at any order and are used in concrete implementations [JS17,GPSS18].
We verify NI and SNI gadgets up to order 11 at a total combined cost of close to 255 basic op-
erations, whereas the previously largest proven order was 7. We justify on the way the necessity
of performing this kind of verification for schemes that do not have generic proofs by disproving
a conjecture of Barthe et al. on the security of a natural transformation of NI schemes into SNI
ones. Finally, we propose various improvements to decrease the randomness cost of some software
gadgets. This results for instance in a decrease of 17% (resp. 19%) over the state-of-the-art for
8-share SNI multiplication (resp. refreshing) schemes, which could then for instance be used as
stand-in replacements in the vectorised implementation of Grégoire et al. [GPSS18].

1.2 Roadmap

We present the security models and extend the matrix approach from CRYPTO 2017 in Section 2.
We then introduce our verification algorithm and discuss its implementation in Sections 3 and 4.
We conclude with experimental results and the description of new gadgets in Section 5.

1.3 Notation

We use Kn×m to denote the ring of matrices of n rows and m columns over the finite field K. We
write Ja, a+ tK for the set of integers {a, a+1, . . . , a+ t}. Matrices and vectors are named with bold
upper- and lower-case variables respectively; In, 0n×m, 1n×m always denote the n-dimensional
identity matrix and all-zero and all-one n×m matrices respectively, over any finite field K.

2 Security models for masking schemes

2.1 Simulatability and non-interference

We start by recalling the definitions of the model of d-privacy introduced by Ishai, Sahai and
Wagner [ISW03], then the models of non-interference (NI), tight non-interference (TNI) and strong
non-interference (SNI), introduced by Barthe et al. at CCS 2016 [BBD+16].

Definition 1 (Gadgets). Let f : Kn → Km, u, v ∈ N; a (u, v)-gadget for the function f is a
randomised circuit C with output (y1, . . . ,ym) ∈ (Kv)m such that for every tuple (x1, . . . ,xn) ∈
(Ku)n and every set of random coins R, (y1, . . . ,ym)← [ C (x1, . . . ,xn;R) satisfies: v∑

j=1

y1,j , . . . ,

v∑
j=1

ym,j

 = f

 u∑
j=1

x1,j , . . . ,

u∑
j=1

xm,j

 .

We then use xi to denote
∑u

j=1 xi,j, and similarly for yi; xi,j is called the jth share of xi.
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In this definition, a randomised circuit C is a directed acyclic graph whose vertices represent
arithmetic operation gates (addition and multiplication) over K of arity two, or random gates of
arity zero whose outputs are uniform over K and pairwise independent for every execution of the
circuit, and recorded in the variable R; the edges of the graph are wires that connect the input
and output of the gates together so as to describe the full computation of a given function.

A probe on a circuit C is a map that for every execution C (x1, . . . ,xn;R) returns the value
propagated on one of the wires of C . One may further distinguish between external probes on the
output wires (or output shares) yi,j of C , and the remaining internal probes.

Example 1: Addition gadget with probes

A (2, 2)-gadget for the addition over K = F2 is a circuit with four input wires: two shares for each
of the two operands. The two output wires must be a valid sharing for the result of the addition,
and that for all possible values produced by the random gates. Each input, intermediate and
output wire can be probed.

We show in Figure 1 is a (2, 2)-gadget for the addition in F2 with an external probe p1 and
two internal probes {p2, p3}.

a0

b0

a1

b1

p1 = a0 ⊕ b0 ⊕ a1

p2 = a0

p3 = a1

c0

c1

Fig. 1: Toy addition gadget.

Example 2: Multiplication gadget

In Figure 2 we show an example of a (2, 2)-gadget for the multiplication over F2 along with a
probe p. The

⊗
block computes every aibj , 0 ≤ i, j ≤ d, that is to say the tensor product of a

and b.
p = a0b0 ⊕ a1b1

a
⊗

b c

a1b0

a0b1

a1b1

a0b0

c0

c1

Fig. 2: Insecure multiplication gadget.

In Example 3 we show that this gadget is insecure in the security model described in Defi-
nition 2.

To assess the security of a given circuit against side-channel attacks, we need to introduce a
security model:
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Definition 2 (d-privacy). Let C be a (u, v)-gadget for f : Kn → Kn. C is said to be d-private
if for any set of d probes P = {p1, . . . , pd} and for any (x1, . . . , xn), (x′1, . . . , x

′
n) ∈ Kn the two

distributions
{P(x1, . . . , xn)}R and {P(x′1, . . . , x

′
n)}R

are identical, where {P(x1, . . . , xn)}R denotes the distribution over the random coins R of the tuple
of values returned by the probes in P and where R is used for both the sharing of the (x1, . . . , xn)
and the additional random coins needed by C .

Example 3: d-privacy
The gadget shown in Example 1 is 1-private since there is no single probe whose distribution

depends on either a or b. On the other hand, it is not 2-private because the distribution of
{p2, p3} depends on the value of a: p2 ⊕ p3 = a.

The gadget shown in Example 2 is not 1-private. To see why, let’s compute the conditional
probability of p = 0 knowing a = 0 and b = 0, P[p = 0 | a = 0, b = 0]. We have that:

a = 0, b = 0 =⇒ a0 = a1, b0 = b1 =⇒ p = a0b0 ⊕ a1b1 = 0

Thus P[p = 0 | a = 0, b = 0] = 1 6= P[p = 0 | a = 1, b = 1] = 0.5. The distribution of p depends
on the input a and b, which implies that the gadget is not 1-private.

This notion of d-privacy is rather intuitive to define the security of a gadget: the distribution
of the values observed by an attacker must not depend on the concrete value on which the circuit
is evaluating.

However, it was shown in 2013 by Coron et al. [CPRR13] that the sequential composition of two
d-private gadgets does not necessarily yield a d-private circuit. In order to be able to build bigger
circuits by composing gadgets, we have to introduce new security models based on the following
definition:

Definition 3 (t-Simulatability). Let C be a (u, v)-gadget for f : Kn → Kn, and `, t ∈ N. A set
P = {p1, . . . , p`} of probes on C is said to be t-simulatable if ∃ I1, . . . , In ⊆ J1, uK; #Ii ≤ t and a
randomised function π : (Kt)n → K` such that for any fixed (x1, . . . ,xn) ∈ (Ku)n, {p1, . . . , p`} ∼
{π({x1,i, i ∈ I1}, . . . , {xn,i, i ∈ In})}.

Less formally, a set P of probes on C is t-simulatable if there exists a randomised function
that perfectly simulates the distribution of {p1, . . . , p`} while requiring at most t shares of every
input to C to do so. It is important to remark here that the simulation is done w.r.t. a fixed input
(x1, . . . ,xn), regardless of the fact that one may randomise these inputs across many executions
of C .

Intuitively, a set of probe that is t-simulatable does not give more informations than the knowl-
edge of t shares for each input precisely because the probes can be simulated with those shares.

Example 4: t-simulatability
In Figure 3 we show an example of the use of a random gate generating the value labelled r in

a multiplication gadget over K = F2. r is drawn uniformly at random in K at each execution.
Although it appears twice in the circuit it is in fact the output of a single random gate, duplicated
for convenience.

p1 = a0b0 ⊕ r
p2 = a0b1

a
⊗

b c

a1b0

a0b1

a1b1

r
c1

a0b0

r

c0

Fig. 3: Generic scheme from Ishai, Sahai and Wagner [ISW03] instantiated at order d = 1.
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The probe p1 is 0-simulatable because, for fixed a0,a1, b0, and b1, the distribution of the
value taken by p is uniform thanks to r. It thus can perfectly simulated without the knowledge
of any input share.

The probe p2 is not 0-simulatable but is 1-simulatable: one perfectly simulate its distribution
given only one share of each input, namely a0 and b1, but cannot without it.

From Definition 3 the following property characterizing the security of a gadget has been
introduced by Barthe et al. [BBD+16]:

Definition 4 (d-Non-interference). A (u, v)-gadget C for a function over Kn is d-non-interfering
(d-NI) if and only if for any set P of at most d probes on C ∃ t ≤ d s.t. P is t-simulatable.

This notion of d-Non-interference can be reformulated in a less formal way as follows: given
any set of d or less probes on a d-NI circuit an attacker is gaining at most as much information
as the knowledge of d shares on each input. The distribution of those d shares being uniform and
independent of the value they mask, the whole gadget is d-private. Thus d-NI implies d-privacy,
but the converse is not true.

Example 5: A d-private circuit that is not d-NI
A gadget can be d-private while having a set of probes that is not d-simulatable, meaning that
it is not d-NI.

For example, let us look at the circuit presented in Example 1. It can be shown that it is
1-private because there is no single probe having a distribution that depends on either a, b or
c. However, the probe p1 = a0 ⊕ b0 ⊕ a1 cannot be simulated from only a single share of a and
thus is an attack against the 1-NI property.

In some context, we need a slight variation of the d-Non-interference notion:

Definition 5 (d-Tight non-interference). A (u, v)-gadget C for a function over Kn is d-tight-
non-interfering (d-TNI) if and only if any set of t ≤ d probes on C is t-simulatable.

However, the notions of d-(tight)Non-interference are not sufficient to ensure composability and
one last security notion is needed:

Definition 6 (d-Strong non-interference). A (u, v)-gadget C for a function over Kn is d-
strong non-interfering (d-SNI) if and only if for every set P1 of d1 internal probes and every set
P2 of d2 external probes such that d1 + d2 ≤ d, then P1 ∪ P2 is d1-simulatable.

To prove that a given set of probe is not an attack against the d-TNI notion one need to
simulate it using as many input shares as the cardinality of the set of probe, whereas in the d-SNI
setting the external probes do not provide additional input shares. It is thus harder to simulate a
set of probe in the later than in the former. Thus, a d-SNI circuit is also d-TNI. Using the same
reasoning, we see that d-TNI implies d-NI.

However, Barthe et al. [BBD+16] showed that tight non-interference does not imply strong
non-interference and that non-interference and tight non-interference are in fact equivalent which
in proofs allows to select the most convenient notion between d-TNI and d-NI.

Example 6: A d-Non-interference circuit that is not d-Strong non-interference

In Figure 4 we show a multiplication (3,3)-gadget over F2 with two probes, one internal (p1)
and one external (p2):
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p1 = r0 p2 = a0b0 ⊕ r0 ⊕ a0b2 ⊕ a2b0

a
⊗

b c

a1b2

a2b1

a2b2

r0 r1

c2

a0b1

a1b0

a1b1

r1

c1

a2b0

a0b2

a0b0

r0

c0

Fig. 4: Scheme from Beläıd et al. [BBP+16, Algorithm 4].

The set {p1, p2} can be perfectly simulated using two shares of each input, namely a0, a2,
b0 and b2. For this gadget to be 2-SNI this set of probes must be simulated using only one share
of each input since there is only one internal probe, p1. However, this is not the case because
p1⊕p2(= a0b0⊕a0b2⊕a2b0) requires at least the knowledge of a0, a2, b0 and b2 to be perfectly
simulated.

Those new security models are such that the composition of a d-NI gadget with a d-SNI is itself
d-SNI. Since d-SNI implies d-private, it allows to construct more complex secure circuits from
smaller gadgets which are proven to be d-NI and d-SNI. A method to do so generically is to use
mask-refreshing gadgets. These gadgets do not have any functional impact but are designed to be
d-SNI by carefully renewing the randomness of a sharing. Such refresh gadgets induce additional
costs and it is thus crucial to limit their use to what is actually sufficient to make the whole circuit
secure [BGR18].

2.2 Matrix model for non-interference

We now recall Theorem 3.5 from Beläıd et al. [BBP+17], which defines a powerful matrix model
to analyze the (T)NI property of a gadget over a sufficiently large field K for which all probes are
bilinear. We then generalise it as Theorem 13 to work with schemes over any finite field (and F2

in particular), and to also analyse SNI security in Theorem 21.
In all of the following, we restrict our interest to gadgets for binary functions1 f : K2 → K,

and the inputs to f (resp. their sharings in a gadget C ) will be denoted a and b (resp. a =
(a0, . . . ,au−1)t, b = (b0, . . . , bu−1)t). We also write the elements of the set R of R random addi-
tional coins as a vector r = (r1, . . . , rR)t

Definition 7 (Bilinear probe). A probe p on a (d+ 1, v)-gadget C for a function f : K2 → K
is called bilinear iff. it is an affine function in ai, bj, aibj, rk; 0 ≤ i, j ≤ d, 1 ≤ k ≤ R.
Equivalently, p is bilinear iff. ∃M ∈ K(d+1)×(d+1), µ, ν ∈ K(d+1), σ ∈ KR and τ ∈ K s.t.
p = atMb+ atµ+ btν + rtσ + τ .

By considering only such bilinear probes, we are implicitly restricting our analysis to gadgets
using only additions and multiplications gates. Also, the multiplicative depth of those gadgets
must not be more than one. While this may seems very restrictive, composing such gadgets is
made possible thanks to the d-(S)NI properties defined in Section 2.1, thus allowing to build more
complex circuits.

Definition 8 (Functional dependence). An expression E(x1, . . . , xn) is said to functionally
depend on xn iff. ∃ c1, . . . , cn−1 s.t. the mapping xn 7→ E(c1, . . . , cn−1, xn) is not constant.

We now introduce the following condition which plays a central role in the security analysis of
a gadget in the matrix model.

1 Results for unary functions can then easily be obtained by e.g. fixing one input.
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Condition 9 ([BBP+17, Condition 3.2]). A set of bilinear probes P = {p1, . . . , p`} on a
(d+1, v)-gadget C for a function f : K2 → K satisfies Condition 9 iff. ∃λ ∈ K`, M ∈ K(d+1)×(d+1),

µ, ν ∈ Kd+1, and τ ∈ K s.t.
∑`

i=1 λipi = atMb + atµ + btν + τ and all the rows of the block

matrix
(
M µ

)
or all the columns of the block matrix

(
M
νt

)
are non-zero.

In other words, this condition states that there exists a linear combination of probes of P that
does not functionally depend on any random scalar and that functionally depends on either all of
the shares for a or all of the shares for b. Thus, P cannot be perfectly simulated using only d shares
of a and d shares of b, effectively proving that the C is not d-NI. In such a case, we say that P is
an attack against the d-NI property of C .

We are now ready to state the following theorem.

Theorem 10 ([BBP+17, Theorem 3.5]). Let P be a set of bilinear probes on a (d+1, v)-gadget
C for a function f : K2 → K. If P satisfies Condition 9, then it is not d-simulatable. Furthermore,
if P is not d-simulatable and #K > d+ 1, then it satisfies Condition 9.

Example 7: Condition 9 =⇒ d-NI attack
We reuse the circuit and probes defined in Example 1. The probe p1 can be written as p1 =

a0 ⊕ b0 ⊕ a1 = atMb + atµ + btν, with M = 02×2, µ =

(
1
1

)
and ν =

(
1
0

)
. Since the

block matrix
(
M µ

)
has no zero row, {p0} satisfies Condition 9. This means that {p0} is not

1-simulatable and is thus an attack against the 1-NI property of the circuit.

The previous theorem immediately leads to the following corollary.

Corollary 11 ([BBP+17, Corollary 3.7]). Let C be a (d + 1, v)-gadget for a function f :
K2 → K for which all probes are bilinear. If C is d-NI, then there is no set of d probes on C
satisfying Condition 9. Furthermore, if #K > d+ 1 and there is no set of d probes on C satisfying
Condition 9, then C is d-NI.

This corollary is more useful than the theorem in practice because, under the restriction that
#K > d + 1, it can be directly applied as an algorithm to determine if a given gadget is d-NI or
not.

For the masking schemes of CRYPTO 2017 [BBP+17] the restriction #K > d + 1 is never an
issue, as they are defined over large fields; however, this condition means that one cannot directly
apply Corollary 11 to prove the security of a scheme over a small field such as F2.

We now sketch a proof of the second statement of Theorem 10 as a preparation to extending it
to any field.

Proof (Theorem 10 right to left, sketch). Let P = {p1, . . . , p`} be a set of bilinear probes that is
not d-simulatable. We call R the block matrix

(
σ1 · · · σ`

)
, where σi denotes as in Definition 7 the

vector of random scalars on which pi depends. Up to a permutation of its rows and columns2, the

reduced column echelon form R′ of R is of the shape

(
It 0t,`−t
N 0t

)
, where t ≤ ` is the rank of R

and N is arbitrary. If we now consider the formal matrix P =
(
p1 · · · p`

)t
and multiply it by the

change-of-basis matrix from R to R′, we obtain the matrix P ′ =
(
P ′r P

′
d

)
where P ′r represents t

linear combinations {p′1, . . . , p′t} of probes that each depend on at least one random scalar which
does not appear across any of the other linear combinations, and P ′d represents ` − t linearly
independent linear combinations P ′ = {p′t+1, . . . , p

′
`} of probes that do not depend on any random

scalar. All of the {p′1, . . . , p′t} can then be simulated by independent uniform distributions without
requiring the knowledge of any share, and as P is not d-simulatable, P ′ cannot be d-simulatable
either. W.l.o.g., this means that for every share ai, there is at least one linear combination of probes
in P ′ that depends on it. In other words, the matrix D =

(
M ′

t+1 µt+1 · · ·M ′
` µ`

)
that records

this dependence has no zero row. We now finally want to show that there is a linear combination(
λt+1 · · · λ`

)t
of elements of P ′ that satisfies Condition 9. This can be done by showing that

∃Λ =
(
Λt+1 · · · Λ`

)t
s.t. DΛ has no zero row, where the Λi’s are the (d + 2) × (d + 2) scalar

matrices of multiplication by the λi’s. By the Schwartz-Zippel-DeMillo-Lipton lemma this is always
the case as soon as #K > d+ 1 [Sch80], and this last step is the only one that depends on K.

ut
2 This permutation corresponds to renaming/reordering the random scalar σi and probes pi
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We now wish to extend Theorem 10 and its corollary to any finite field K. We do this using
the TNI notion rather than NI, and so first state an appropriate straightforward adaptation of
Condition 9:

Condition 12. A set of bilinear probes P = {p1, . . . , p`} on a (d + 1, v)-gadget C for a function
f : K2 → K satisfies Condition 12 iff. ∃λ ∈ K`, M ∈ K(d+1)×(d+1), µ, ν ∈ Kd+1, and τ ∈ K s.t.∑`

i=1 λipi = atMb+ atµ+ btν + τ and the block matrix
(
M µ

)
has at least `+ 1 non-zero rows

or the block matrix

(
M
νt

)
has at least `+ 1 non-zero columns.

In other words, Condition 12 states that the expression
∑`

i=1 λipi, which involves ` probes,
functionally depends on no random scalar and on at least `+ 1 shares of a or `+ 1 shares of b, and
hence is a l-TNI attack. We will then show the following:

Theorem 13. Let P be a set of at most d bilinear probes on a (d+ 1, v)-gadget C for a function
f : K2 → K. If P, is not d-simulatable then ∃P ′ ⊆ P s.t. P ′ satisfies Condition 12.

Corollary 14 (Corollary of Theorems 10 and 13). Let C be a (d + 1, v)-gadget C for a
function f : K2 → K for which all probes are bilinear. If C is d-NI, then there is no set of d
probes on C satisfying Condition 9. Furthermore, if there is no set of t ≤ d probes on C satisfying
Condition 12, then C is d-NI.3

As for Corollary 11, this corollary will be particularly convenient to design an algorithm proving
the (non)d-NI property of a gadget given its probe.

The proof of Theorem 13 essentially relies on the following lemmas, conveniently formulated
with linear codes:4

Lemma 15. Let C1 (resp. C2) be an [n1, k] (resp. [n2, k], n2 > n1) linear code over a finite field
K. Let G1 ∈ Kk×n1 and G2 ∈ Kk×n2 be two generator matrices for C1 and C2 that have no zero
column. Then the code C1,2 generated by G1,2 :=

(
G1 G2

)
has the following property: ∃ c ∈ C1,2

s.t. wt1(c) < wt2(c), where wt1(·) (resp. wt2(·)) denotes the Hamming weight function restricted
to the first n1 (resp. last n2) coordinates of C1,2.

One may remark that if #K is sufficiently large w.r.t. the parameters of the codes, then by the
Schwartz-Zippel-DeMillo-Lipton lemma there exists a word in C1,2 of maximal wt2 weight, and the
conclusion immediately follows; yet this argument does not hold over any field.

We first give the following two definitions that will be used in the proof of Lemma 15:

Definition 16 (Shortening of a linear code). Let C be an [n, k] linear code over K generated
by G ∈ Kk×n, the shortened code C′ w.r.t. coordinate i ∈ J1, nK is the subcode made of all codewords
of C that are zero at coordinate i, with this coordinate then being deleted.

Definition 17 (Isolated coordinate). Let M ∈ Km×n, a coordinate i ∈ J1, nK is called isolated
for the row Mj of M , j ∈ J1,mK, iff. Mj,i 6= 0 and ∀j′ 6= j ∈ J1,mK, Mj′,i = 0.

In order to prove Lemma 15 we will define a procedure that aims to reduce the dimension of
the starting code by shortening it in a specific way:

Procedure 18. We reuse the notation of the statement of Lemma 15. This procedure is applied
on a row of G1,2 by doing the following: denote I1 (resp. I2) the (possibly empty) set of isolated
coordinates on its first n1 (resp. last n2) columns; then if #I1 ≥ #I2, shorten C1,2 w.r.t. all the
coordinates in I1 ∪ I2.

Practically, shortening the code w.r.t. one or more isolated coordinates means deleting from
G1,2 the row being processed and all the columns in I1 ∪ I2. The row being processed is the one
and only one having to be removed from the generator matrix because: 1) all other rows have a
zero in the given coordinates, thus all codewords generated by them are zero in these coordinates;
2) any linear combination of rows that includes the row being processed with a non-zero coefficient
will result in a non-zero value in the isolated coordinated.

This results in a code C′1,2 generated by
(
G′1 G

′
2

)
whereG′1 ∈ K(k−1)×n′1 (resp.G′2 ∈ K(k−1)×n′2)

is a submatrix of G1 (resp. G2) and n′1 < n1, n′2 ≤ n2, n′1 < n′2, and none of the columns of G′1,2
is zero. One may also remark that since G′1 is of rank k − 1, we have k − 1 ≤ n′1.

3 As Condition 12 directly implies an attack, one could also formulate this corollary solely in terms of this
condition.

4 Recall that an [n, k] linear code over a field K is a k-dimensional linear subspace of Kn.
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Example 8: Procedure 18
We consider the following matrix that satisfies the premise of Lemma 15:

G1,2 =


1 1 0 1 1 1 0 0 1

1 1 1 1 1 1 1 1 1
1 0 0 1 1 0 1 0 0

1 1 0 0 1 0 0 1 0


We apply Procedure 18 to its second row. To do so, we have to find the isolated coordinates.

Here, I1 = {2, 6} and I2 = {9}:

G1,2 =


1 1 0 1 1 1 0 0 1

1 1 1 1 1 1 1 1 1
1 0 0 1 1 0 1 0 0

1 1 0 0 1 0 0 1 0


Since we have #I1 ≥ #I2, applying Procedure 18 on the second row leads to the shortening
of the code along the columns 2, 6 and 9. This results in the following generator matrices of the
shortened code, with the isolated coordinates of each row being highlighted:

G′1,2 =

1 1 1 1 1 0 0 1
1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0


At this point and for each row, the number of isolated coordinates for the left part is strictly

lower than for the right part. Thus, there is no row for which applying Procedure 18 results in
a shortening of the code.

We are now ready to prove Lemma 15.

Proof (Lemma 15). We prove this lemma by induction using Procedure 18.
In a first step one applies Procedure 18 to every row of G1,2 one at a time and repeats this

process again until either there is no row for which applying the procedure results in a shortening,
or the dimension of the shortened code reaches 1.

In the latter case, this means that the only non-zero codeword in G′1,2 ∈ K1×(n′1+n′2) is of full
weight n′1 + n′2 with n′1 < n′2 (since G′1,2 only has a single row and none of its columns is zero).
This induces a codeword c of C s.t. wt1(c) = n′1 and wt2(c) = n′2, so we are done.

In the former case, one is left with a matrix G′1,2 ∈ Kk′×(n′1+n′2), k′ > 1. One then computes the
reduced row echelon form of G′1,2 (this does not introduce any zero column since the elementary
row operations are invertible) and again iteratively applies Procedure 18 on the resulting matrix
as done in the first step. Now either the application of Procedure 18 leads to a shortened code
of dimension 1 and then we are done as above, or we are left with a matrix G′′1,2 ∈ Kk′′×(n′′1 +n′′2 )

which can be of two forms:

1. k′′ ≥ n′′1 . Up to permutation of its columns, G′′1,2 can be written as:(
In′′1 In′′1 In′′1 ∗

0(k′′−n′′1 )×n′′1 ∗ ∗ ∗

)
,

where the ∗ are arbitrary and the bottom (k′′−n′′1)× (n′′1 +n′′2) block is possibly non-existent.
The left k′′ × n′′1 block is justified from G′′1,2 being in reduced row echelon form and having
none of its column equal to zero. The right k′′ × n′′2 block is justified from the fact that every
non-zero row of the left block has exactly one isolated coordinate; since no simplification can
be done anymore to G′′1,2 by applying Procedure 18, this means that those rows have at least
two isolated coordinates on the right block. This is enough to conclude on the existence of a
codeword of C satisfying the desired property.

2. k′′ < n′′1 . Up to a permutation of its columns, the rank-k′′ matrix G′′1,2 can be written as:(
Ik′′ ∗L Ik′′ Ik′′ ∗R

)
,

and it has no zero column. One then applies Lemma 15 inductively on the code generated by
the submatrix G′′′1,2 :=

(
∗L Ik′′ ∗R

)
which is of strictly smaller length. Let c′′′ = λG′′′1,2 be a

codeword of this latter code that satisfies the desired property, then λG′′1,2 also satisfies it for
C1,2, which concludes the proof.

ut
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Example 9: Application of Lemma 15

We study the case of the same matrix G′1,2 defined in Example 8. It is already in row reduced
echelon form and cannot be shortened anymore using Procedure 18. Since the number of rows
k′′ = 3 of G′′1,2(= G′1,2) is stricly less than the number of columns n′′1 = 5 of the first code, we
follow the proof of Lemma 15 by studying the code of strictly smaller length generated by:

G′′′1,2 =

1 1 1 1
0 1 1 0
1 0 1 0


Applying Procedure 18 cannot lead to a shortening of the code since it was not the case for

G′′1, 2. To continue, G′′′1,2 is put into its row reduced echelon form:

G̃1,2 =

1 0 1 1 0 1
0 1 0 1 0 0
0 0 1 1 1 1


We can remark that the last row of the matrix is already a codeword such that

wt1(
(
0 0 1 1 1 1

)
) = 0 < wt2(

(
0 0 1 1 1 1

)
) = 4

which is what we want to find. The first row is also a codeword that satisfies the same property.
Nonetheless, we will continue to follow the proof’s algorithm by applying Procedure 18 to the
first row, which leads to a shortened code:

G̃′1,2 =

(
1 0 1 0 0
0 1 1 1 1

)
And then, on the first row again:

G̃′1,2 =
(

1 1 1 1
)

This new code is of dimension 1 and so the algorithm stops. The only codeword left satisfies
the property:

wt1(
(

1 1 1 1
)
) = 0 < wt2(

(
1 1 1 1

)
) = 4

Up to a permutation of the columns, G̃′1,2 is the generator matrix of a shortening of the code

described by the initialG1,2. Thus a codeword in G̃′1,2 can be zero-extended to obtain a codeword
in G1,2, which means that there exists a codeword c in G1,2 such that wt1(c) < wt2(c).

Shortening the code w.r.t. some coordinates during the application of Procedure 18 leads
to a subcode where codewords have zeroes for those coordinates. Thus by keeping track of
those coordinates and of the operations used during the row reduction steps, one can re-
trieve a codeword satisfying the desired property. In this example, the resulting codeword is:(
1 0 1 1 0 0 0 1 0 1 1 1 1 1 1

)
.

Now we are almost ready to prove Theorem 13, not by using Lemma 15 but using an extension
of it:

Lemma 19. The statement of Lemma 15 still holds if K is replaced by a matrix ring K′d×d and
if G1 is defined over the subfield of the scalar matrices of K′d×d.

Proof (Lemma 19). The proof simply consists in remarking that all the steps of the proof of
Lemma 15 can be carried out in the modified setting of Lemma 19. Mainly:

— Definitions 16 and 17 and Procedure 18 naturally generalise to matrices over rings, and the
application of Procedure 18 is unchanged.

— Recall that by induction the left k′ × n′1 submatrix is always of full rank k′, which is also the
rank of G′1,2. Since G1 is defined over scalar matrices, the row reduction can be computed as
if over a field.

ut

The proof of Theorem 13 then follows.

Proof (Theorem 13). We start similarly from the proof of Theorem 10, and use the same notation:
let P ′ be a set of `−t linearly independent linear combinations of probes of P that do not depend on
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any random scalar, and letD =
(
M ′

t+1 µt+1 · · ·M ′
` µ`

)
be the matrix that records the dependence

of these probes on every share ai.We will show that ∃P ′′ ⊆ P that satisfies Condition 12. To do
this, we introduce two new indicator matrices:

— Let Π ∈ K(d+2)×(d+2)(`−t)×`
be s.t. for every p′ ∈ P ′ it records in its rows its dependence

on the probes of P as scalar matrices;5 that is, Π is s.t. p′i =
∑`

j=1 πi,jpj where πi,j is the
scalar on the diagonal of the scalar matrix Πi,j . W.l.o.g., we may assume that every probe of
P appears at least once in a linear combination of P ′, otherwise it is simply discarded, so Π
has no zero column.

— Let ∆ ∈ K(d+2)×(d+2)(`−t)×(d+1)
be the matrix that for every p′ ∈ P ′ records in its rows

its dependence on the shares ais; that is if the bilinear probe p′i can be written as p′i =
atM ′b+ atµ′ + btν′ + τ ′, then ∆i,j is set to the diagonal matrix of the jth row of

(
M ′ µ′

)
.6

Note that since by assumption D has no zero row, ∆ has no zero column.

Now we invoke Lemma 19 with Π as G1 and ∆ as G2 the generator matrices for the code C1,2.
Let c ∈ C1,2 be a codeword that satisfies wt1(c) < wt2(c); this translates to a linear combination
of `′′ := wt1(c) probes of P ′′ ⊆ P that (as linear combinations of elements of P ′) does not depend
on any randomness and s.t. the associated matrix

(
M ′′ µ′′

)
has wt2(c) ≥ `′′+ 1 non-zero rows (by

applying the inverse transformation from ∆ to D), hence P ′′ satisfies Condition 12. ut

Finally, the proof of Corollary 14 is immediate from Theorems 10 and 13.

2.3 Matrix model for strong non-interference

We now wish to adapt the approach of Theorems 10 and 13 to be able to prove that a scheme
is SNI. This is in fact quite straightforward, and it mostly consists in defining a suitable variant
of Condition 12 and in applying Lemma 19 to well-chosen matrices, to show again that there is a
subset of probes that satisfies the condition whenever there is an attack.

Condition 20. A set of ` = `1 + `2 bilinear probes P = {p1, . . . , p`} on a (d + 1, v)-gadget
C for a function f : K2 → K, of which `1 are internal, satisfies Condition 20 iff. ∃λ ∈ K`,
M ∈ K(d+1)×(d+1), µ, ν ∈ Kd+1, and τ ∈ K s.t.

∑`
i=1 λipi = atMb+atµ+btν+ τ and the block

matrix
(
M µ

)
(resp. the block matrix

(
M
νt

)
) has at least `1 + 1 non-zero rows (resp. columns).

Theorem 21. Let P be a set of at most d bilinear probes on a (d+ 1, v)-gadget C for a function
f : K2 → K, of which `1 are internal. If P is not `1-simulatable then ∃P ′ ⊆ P s.t. P ′ satisfies
Condition 20.

Proof. We reuse the notation of Theorems 10 and 13. The proof is essentially the same as the one
of Theorem 13, except that we only account for internal probes in Π. Let P ′ be a set of ` − t
linearly independent linear combinations of probes of P that do not depend on any random scalar,
and let D =

(
M ′

t+1 µt+1 · · ·M ′
` µ`

)
be the matrix that records the dependence of these probes

on every share ai. From the assumption that P is not `1-simulatable, we have that w.l.o.g., D has
at least `1 + 1 non-zero rows. We will show that ∃P ′′ ⊆ P that satisfies Condition 20, using the
following indicator matrices:

— Let Π ∈ K(d+2)×(d+2)(`−t)×`1
be s.t. for every p′ ∈ P ′ it records in its rows its dependence

on the `1 internal probes (w.l.o.g. {p1, . . . , p`1}) of P as scalar matrices; that is, Π is s.t.

p′i =
∑`1

j=1 πi,jpj +
∑`

j=`1+1 αjpj , where πi,j is the scalar on the diagonal of the scalar matrix
Πi,j and the αjs are unimportant. W.l.o.g., we may assume that every internal probe of P
appears at least once in a linear combination of P ′, otherwise it is simply discarded, so Π has
no zero column.

5 This use of scalar matrices is only so that Π is defined on the same base structure as ∆ below. As an

example, taking ` = d = 2 and considering two probes in P ′ as p′1 = p1+p2; p′2 = p2, thenΠ =

(
I4 I4
04 I4

)
.

6 This use of diagonal matrices allows to keep track of (the lack of) simplifications when combining several
probes; for instance, if two probes depend on the same ai as aibj and aibj′ with j 6= j′, then the sum
of those probes still depends on ai. Continuing the previous example and taking p′1 = a0b0 + a0b1 +

a1b2 + a2, then the first row of ∆ (whose entries are 4× 4 matrices) is


1 0 0

1 0 0
0 1 0

0 0 1

.
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— Let ∆ ∈ K(d+2)×(d+2)(`−t)×d′
be the matrix that for every p′ ∈ P ′ records in its rows its

dependence on the shares ais. If a row of D is all zero, the corresponding column is not
included in ∆, and since D has at least `1 + 1 non-zero rows, ∆ has at least d′ ≥ `1 + 1
columns none of which are zero.

Now we invoke Lemma 19 with Π as G1 and ∆ as G2 the generator matrices for the code C1,2.
Let c ∈ C1,2 be a codeword that satisfies wt1(c) < wt2(c); this translates to a linear combination of
`′′ := wt1(c) internal probes to which one can add a linear combination of up to `2 external probes
s.t. it does not depend on any randomness and the associated matrix

(
M ′′ µ′′

)
has wt2(c) ≥ `′′+1

non-zero rows. The set P ′′ ⊆ P of these internal and external probes thus satisfies Condition 20.
ut

And we then have the immediate corollary:

Corollary 22. Let C be a (d + 1, v)-gadget for a function f : K2 → K for which all probes are
bilinear, then C is d-SNI iff. there is not set of t ≤ d probes on C that satisfies Condition 20.

Proof. From left to right, by contrapositive: a set of probe satisfying Condition 20 functionally
depends on at least l1 + 1 shares of a or b, without functionally depending on any ri; it cannot be
simulated using l1 or less shares of either a or b and thus C is not d-SNI.

From right to left: it follows directly from Theorem 21.

2.4 Security of binary schemes over finite fields of characteristic two

Let C be a d-NI or SNI gadget for a function defined over F2; a natural question is whether its
security is preserved if it is lifted to an extension F2n . Indeed, the probes available to the adversary
are the same in the two cases, but the latter offers more possible linear combinations

∑`
i=1 λipi,

since the λis are no longer restricted to {0, 1}. We answer this question positively, and give a
simple proof based on Theorems 13 and 21.

Theorem 23. Let C be a d-NI (resp. d-SNI) gadget for a function f : F2
2 → F2, then for any n,

the natural lifting Ĉ of C to f̂ : F2
2n → F2n is also d-NI (resp. d-SNI).

Proof. We only prove the d-NI case, the d-SNI one being similar. From Corollary 14, it is sufficient
to show that if there is no set of probes P for C that satisfies Condition 12, then the same holds
for Ĉ . We do this by showing the following contrapositive: if a set of probes P is not d-simulatable
for Ĉ , then it is not d-simulatable either for C .

From the proofs of Theorems 10 and 13, if P is not d-simulatable for Ĉ , then there is a matrix
D̂ that leads to the existence of P ′ s.t. Condition 12 is satisfied. All we need to do is showing that
a similar matrix D can also be found for C . Since C is defined over F2, the matrices R and P ,
and thence R̂ and P̂ have all their coefficients in {0, 1}. As 1 is its own inverse, the change-of-basis

matrix from R̂ to R̂′ is also binary; equivalently, this means that the row elimination of R̂ can be
done in the subfield F2. Thus one only has to take D = D̂ to satisfy Condition 12 on C . ut

This result is quite useful as it means that the security of a binary scheme only needs to be
proven once in F2, even if it is eventually used in one or several extension fields. Proceeding thusly
is in particular beneficial in terms of verification performance, since working over F2 limits the
number of linear combinations to consider and may lead to some specific optimisations (cf. e.g.
Sections 3 and 4).

Remark. This result was in fact already implicitly used (in a slight variant) by Barthe et al.
in their masking compiler [BBD+15] and in maskVerif [BBC+19], since they use gadgets defined
over an arbitrary structure (K, 0, 1,⊕,	,�). However we could not find a proof therein, which
actually seems necessary to justify the correctness of this approach and of our algorithms of the
next section.

3 An algorithm for checking non-interference

In this section, we present a new efficient algorithm to check if a scheme is (strong) non-interfering.
This algorithm is a modification of the one presented by Beläıd et al. at EUROCRYPT 2016
[BBP+16, Section 8], and its correctness crucially relies on Theorems 13 and 21; it thus only
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applies to schemes for which all probes are bilinear, but this is not a hard restriction in practice
since this condition is satisfied by most schemes of the litterature.

In all of the following we assume that the field K over which the scheme is defined is equal to
F2, which means that we simultaneously assess its security in that field and all its extensions (cf.
Section 2.4). Some discussion of implementation in the NI case for schemes natively defined over
larger fields (meaning that shares or random masks may be multiplied by constants not in {0, 1})
for which the new Theorem 13 is not needed can be found in [KR18].

We start by introducing some vocabulary and by recalling the algorithm from Beläıd et al..

Definition 24 (Elementary probes). A probe p is called elementary if it is of the form p = aibj
(elementary deterministic probe) or p = ri (elementary random probe).

Definition 25 (Shares indicator matrix). Let p be a bilinear probe. We call shares indicator
matrix and write Mp the matrix M from Definition 7.

Definition 26 (Randomness indicator matrix). Let p be a bilinear probe. We call randomness
indicator matrix and write σp the column matrix σ from Definition 7.

Example 10:
We reuse the circuit and probes defined in Example 4.

The probe p2 = a0b1 is an example of an elementary deterministic probe on the circuit.

The share indicator matrix of p1 = a0b0 is Mp1
=

(
1 0
0 0

)
and the one of p2 = a0b1 is

Mp2
=

(
0 1
0 0

)
. The randomness indicator matrix of p1 is σp1

=
(
1
)

and the one of p2 is

σp2
=
(
0
)
.

3.1 The algorithm from EUROCRYPT 2016

At EUROCRYPT 2016, Beläıd et al. presented an efficient probabilistic algorithm to find potential
attacks against the d-privacy notion7 for masking schemes for the multiplication over F2. By
running the algorithm many times and not detecting any attack, one can also establish the security
of a scheme up to some probability, but deriving a deterministic counterpart is less trivial. This
algorithm works as follows.

Consider a scheme on which all possible probes P are bilinear, and let HP :=
(
σp

)
, p ∈ P

be the block matrix constructed from all the corresponding randomness indicator matrices. The
algorithm of [BBP+16, Section 8] starts by finding a set of fewer than d probes whose sum8 does
not depend on any randomness. That is to say, it is looking for a vector x such that HP · x = 0
and wt(x) ≤ d. This can be immediately reformulated as a coding problem, as one is in fact
searching for a codeword of weight less than d in the dual code of HP . This search can then be
performed using any information set decoding algorithm, and Beläıd et al. used the original one
of Prange [Pra62].9 Once such a set has been found, it is tested against [BBP+16, Condition 2]
(which is similar to Condition 9) to determine if it is a valid attack against the d-NI notion, and
[BBP+16, Condition 1] to determine if it is an attack for d-privacy. This procedure is then repeated
until an attack is found or one has gained sufficient confidence in the security of the scheme.

Removing elementary deterministic probes. To make the above procedure more efficient, an
important observation made by Beläıd et al. is that if the sum of every probe of a given set does not
functionally depend on some ai or bj , it is always possible to make it so by adding a corresponding
elementary probe aibj . This can be used to check, say, d-NI security by simply comparing the
number of missing ai or bj to d−wt(x). This allows to reduce the number of probes that one has
to include in P (and thus the dimension of HP), making the algorithm more efficient.

7 It can also be trivially modified to check attacks against NI security.
8 That is, the only non-trivial linear combination over F2 that depends on all the elements of the set.
9 One may remark that since information set decoding relies on Gaussian elimination, the cost of one step

of this algorithm increases more than linearly in the size of P.
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3.2 A new algorithm based on enumeration

We now describe a new algorithm based on a partial enumeration of the power set ℘(P) of P.
The idea is to simply consider every sum of fewer than d probes and check if it depends on all
shares and no random masks, relying on Corollaries 14 and 22 for correctness. Since the cost
of such an enumeration quickly grows with the size of P, we then follow and extend the above
observation by Beläıd et al. and only perform the enumeration on a reduced set. We first describe a
simple extension of this “dimension reduction” strategy, before detailing the algorithms themselves.
A more elaborate dimension reduction process is then described in Section 3.3, and we discuss
implementation aspects in Section 4.

Removing elementary random probes. It is easy to adapt a deterministic enumeration so that
one can completely remove elementary random probes; it suffices to remark that if the sum of
every probe of a given set functionally depends on some ri, it is always possible to make it not so
by adding the corresponding elementary probes.

Combining the two above observations, we may remove every elementary probe from the set
P.10 This can be summarized by saying that in the enumeration, one is not restricted anymore to
finding exactly a combination of fewer than d probes that depends on all shares and no random
masks, as it is enough to find a combination of ` ≤ d probes that depends on u shares and v masks
as long as d − ` ≥ (d + 1 − u) + v, since the missing shares and extra masks can be dealt with
elementary probes in a predictable way. This is in fact exactly the check that is performed in our
implementation in the case of NI security, as is detailed and justified below.

Checking a scheme for non-interference. We now state the following:

Proposition 27. Let C be a (d+ 1, v)-gadget for a function f : F2
2 → F2 for which all probes are

bilinear, and Q0 be a set of n0 non-elementary probes on C that functionally depends on na shares
ais, nb shares bjs, and nr random scalars ris. Let Q1 be one of the smallest sets of elementary
probes needed to complete Q0 such that Q0 ∪ Q1 satisfies Condition 12 and functionally depends
on all the ais or all the bis.11 Then n1 := #Q1 = nr + (d+ 1−max(na, nb)).

Proof. An elementary probe functionally depends on either one ri or one ai and one bj , but not
both. Thus, the minimum number of elementary probes needed to cancel every ri and to add the
d+1−na (resp. d+1−nb) missing ais (resp. bjs) in Q0 is nr +(d+1−na) (resp. nr +(d+1−nb)).
Thus, #Q1 = min(nr + d+ 1− na, nr + d+ 1− nb) = nr + d+ 1−max(na, nb). ut

This proposition can then be used in a straightforward way to check if a scheme is d-NI. To
do so, one simply has to enumerate every set Q0 ∈ ℘(P) of d non-elementary probes or fewer and
check if n0 +n1 ≤ d. By Corollary 14, if no such set Q0 can be completed as in Proposition 27 and
still contain fewer than d probes, then the scheme is d-NI.

Checking a scheme for strong non-interference. We only need to adapt Proposition 27 to
distinguish between internal and external probes:

Proposition 28. Let C be a (d+ 1, v)-gadget for a function f : F2
2 → F2 for which all probes are

bilinear, and Q0 be a set of n0 non-elementary probes on C that functionally depends on na shares
ais, nb shares bjs, and nr random scalars ris. Let nI denote the number of internal probes in Q0.
Then there is a set Q1 of nr elementary random probes such that Q0 ∪ Q1 satisfies Condition 20
iff. max(na, nb) > nI + nr.

Proof. Recall that all elementary probes are internal. If Q0 does not satisfy Condition 20, then
adding an elementary deterministic probe increases by at most one the number of non-zero rows,
while increasing by one the total number of probes, so this completed set does not satisfy Q0 either.
It is thus enough to only consider random probes in Q1.

ForQ = Q0∪Q1 to satisfy Condition 20, it is necessary to cancel all the potential randomness ris
on which Q0 depends; so Q1 must be the (possibly empty) set of the nr corresponding elementary
random probes. Now Q contains nI +nr internal probes and it functionally depends on na ais and
nb bjs. Thus it satisfies Condition 20 iff. max(na, nb) > nI + nr. ut
10 Note that this means that one would not detect the existence of an attack that would use only elementary

probes. However, it is easy to see from their definitions that ` such probes functionally depend on at
most ` shares, and so can never lead to a non-trivial attack.

11 This additional constraint is not in itself necessary, but it simplifies the overall algorithm.
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This proposition can then be used in a straightforward way to check if a scheme is d-SNI. To
do so, one simply has to enumerate every set Q0 ∈ ℘(P) of d non-elementary probes or fewer and
check if max(na, nb) > nI + nr and n0 + nr ≤ d. If no such set satisfying this condition is found,
then the scheme is d-SNI by Corollary 22.

3.3 Further dimension reduction

To further reduce the size of the space to explore during the verification, it may be possible to
filter additional non-elementary probes from the set P, in the case where they can be replaced
by “better” ones. To do so while preserving the correctness of our verification algorithm, we first
define the following:

Definition 29 (Reduced sets). Let P := ∪vk=0Pk and P ′ := ∪vk=0P ′k be two sets of probes on
a (d+ 1, v)-gadget C for a function f : F2

2 → F2 for which all probes are bilinear, where Pk (resp.
P ′k) denotes the probes on the wires of C that are connected to the output share ck. Then P ′ is
said to be a reduced set for P iff.:

— #P ′ ≤ #P
— For all output wires k, for every linear combination of probes of Pk there is a linear combination

of equal or lower weight of probes of P ′k with: 1) exactly the same randomness dependence
(reusing the notation of Definition 7 this means that both combinations have the same σ term);
2) the shares dependence of the combination from P ′k covers the one of the combination from
Pk (i.e. the support of the M , µ, ν terms of the former include the ones of the same terms of
the latter).

We then have:

Lemma 30. If two linear combinations of probes
∑
λipi and

∑
λ′ip
′
i functionally depend on dis-

joint sets of elementary probes and shares aibj, ai and bj, then their sum functionally depends on
the union of those sets.

Proof. Immediate, since using the notation of Definition 7, the supports of M , µ, ν are disjoint
from the ones of M ′, µ′, ν′. ut

Finally, we conclude with the following:

Proposition 31. Let P ′ be a reduced set for a set of probes P on a (d + 1, v)-gadget C for a
function f : F2

2 → F2 for which all probes are bilinear and for which all output shares functionally
depend on pairwise disjoint sets of elementary probes and shares aibj, ai and bj. Then if Q ⊆ P
satisfies Condition 12, ∃Q′ ⊆ P ′, #Q′ ≤ #Q that also satisfies Condition 12.

Proof. Let us write Q as ∪vk=0Qk (resp. Q′ as ∪vk=0Q′k) where Qk (resp. Q′k) denotes the probes
on the wires of C that are connected to the output share ck. Let

∑
pi∈Q λipi denote one linear

combination of elements of Q whose existence is guaranteed by its satisfying Condition 12, which

we rewrite as:
∑

k

∑
p
(k)
i ∈Qk

λ
(k)
i p

(k)
i . For each λ(k), let λ′(k) be the coefficients for one of the linear

combination of elements of Q′k whose existence is guaranteed by P ′ being a reduced set for P.

Each
∑

p
(k)
i ∈Qk

λ
(k)
i p

(k)
i (respectively

∑
p
(k)
i ∈Q′k

λ
′(k)
i p

(k)
i ) satisfies the premise of Lemma 30

which can be applied successively between
∑k−1

j=0

∑
p
(j)
i ∈Qj

λ
(j)
i p

(j)
i and

∑
p
(k)
i ∈Qk

λ
(k)
i p

(k)
i (respec-

tively
∑k−1

j=0

∑
p
(j)
i ∈Q′j

λ
′(j)
i p

(j)
i and

∑
p
(k)
i ∈Q′k

λ
′(k)
i p

(k)
i ).

It follows that both
∑

k

∑
p
(k)
i ∈Qk

λ
(k)
i p

(k)
i and

∑
k

∑
p
(k)
i ∈Q′k

λ
′(k)
i p

(k)
i do not functionally de-

pend on any elementary random probe ri, and the elementary deterministic probes and shares on
which the latter functionally depends is a superset of the ones on which depends the former; thus
Q′ satisfies Condition 12. ut

Example 11:
Consider a set P of three probes a0b1, a0b0 + r0 + a0b1 and a0b0 + r0 + a0b1 + a1b0 on the
same output share. Then, the set P ′ = {a0b1,a0b0 + r0 + a0b1 + a1b0} is a reduced set for P
because for any linear combination of k probes in P, a linear combination of k′ ≤ k probes in
P ′ can be computed such that it has exactly the same randomness dependence and has at least
the same shares dependence.
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On the other hand, a set containing two probes a0b0 + r0 + a0b1 + a1b0 and a0b0 + r0 +
a0b1 + a1b0 + r1 cannot be simplified since the two probes do not include exactly the same
random masks.

We will see in Section 5 how Proposition 31 can be used in practice to significantly improve
verification performance. The nature of the probes that can be removed of course depends on the
scheme under consideration, and we will later detail how to do this for some concrete gadgets.

3.4 Adaptation to the robust probing model

A limitation of the traditional probing model is that it does not capture interactions between in-
termediate values of a computation made possible by either physical or micro-architectural effects.
For instance Gao et al. showed that some bitslicing implementation strategies of software masking
schemes could exhibit unwanted bit-interactions, thereby violating typical independence assump-
tions from the probing model and resulting in unwanted leakage [GMPO20]. Similarly, Grégoire
et al. had noticed that their 4-share vectorised implementation of a masked AES was subject to
such an order reduction, without identifying the exact cause [GPSS18].

In the case of hardware implementations, additional violations to the probing model are typi-
cally witnessed and some of them are well-identified enough to be formally captured. For one such
phenomenon known as glitches, a probe at an arithmetic gate (i.e. an addition or a multiplication)
can leak more to the adversary than its sole output — something that is not taken into account
in the basic model. In an effort to remedy this situation, Faust et al. recently proposed to extend
probing security into a robust probing model [FGP+18], able to take several types of hardware
defects into account.

Concretely, the robust probing model defines a leakage set L(p) of possibly more than one value
for every probe p at an arbitrary gate. A probe at an arithmetic gate leaks the union of what is
leaked by its two inputs. One consequence is that if two arithmetic gates are connected together,
leakage at the first one also propagates to the second. To stop this propagation, one must then use
a memory gate (a register): the leakage set of a memory gate is equal to the singleton of its output
value.

Example 12:
We show in Figure 5 a circuit implementing a multiplication over F2 using Ishai Sahai and
Wagner scheme [ISW03] at order d = 1.

p

a
⊗

b c

a1b0

a0b1

a1b1

r0

c1

a0b0

r0

c0

Fig. 5: Multiplication gadget in presence of hardware glitches.

The propagation of the electric signal at a given moment in time is shown by the purple line.
When the output of some intermediate gates may change before the end of the current execution
because of propagation delays in the circuit, the line is dotted.

In the previous circuit, a delay occurring at the output of the random gate producing r0

leads to the propagation of a temporary state up to the probe p. This temporary state does not
take the value of r0 into account since it hasn’t propagated yet. The probe p can thus read the
value a1b1 ⊕ a0b1 ⊕ a1b0, which is an attack against 1-Non-interference.
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p

a
⊗

b c

a1b0

a0b1

a1b1

r0

M M
c1

a0b0

r0

c0

Fig. 6: Multiplication gadget in presence of glitches with memory gates (M) added

Adding two memory gates at the output of the two XOR gates prevents the temporary signal
from propagating all the way to the probe p, which only reads a1b0 in this example.

The robust probing model is more complex than, and not directly compatible with the usual
probing security model and how we exploit it in our algorithm, where a probe leaks a single
expression and verification implies enumerating and summing all subsets of size up to some order
d.

The verification of a gadget is done in two steps: first iterate over all subsets P of d probes or
fewer; then check that the subset P does not lead to an attack.

In the case of the non-robust probing model, the second step can be done directly, as explained
in Section 3.2, by considering the sum of the expression associated with each probe in P. This
cannot be done when checking the security of a gadget in the robust probing model because each
probe p can be associated with a leakage set L(p) containing more than one expression. Since the
value leaked for a given probe can be any binary linear combination of the expressions in its leakage
set, there are in general

∏
p∈P

(
2#L(p) − 1

)
expressions for which we want to know if they satisfy

the appropriate attack condition. We explain next in Section 4 how this can be done efficiently.

Related work. The maskVerif tool [BBC+19] also implements the robust probing model to check
security in presence of glitches. More dedicated approaches are the ones of Bloem et al. [BGI+18]
and of the SILVER tool [KSM20].

4 Implementation

We now describe an efficient C implementation of the algorithms of the previous section for K = F2.
Our software is publicly available at https://github.com/NicsTr/binary_masking.

4.1 Data structures

To evaluate if a set of probes P may lead to an attack, it is convenient to define the following:

Definition 32 (Attack matrix). The attack matrix AP of a set of probes P is defined as the
sum of the share indicator matrices of the probes in P:

AP =
∑
p∈P

Mp.

Definition 33 (Noise matrix). The noise matrix BP of a set of probes P is defined as the sum
of the randomness indicator matrices of the probes in P:

BP =
∑
p∈P

σp.

One can then simply compute the quantities na, nb and nr needed in Propositions 27 and 28
as the number of non-zero rows or columns of these two matrices, which we do using an efficient
vectorised Hamming weight routine. To analyse a given scheme, one then just has to provide a
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full description of Mp and σp for every non-elementary probe. Additionally, since Proposition 28
requires to compute the number of internal probes nI in a set, those have to be labelled as such.

We inline all data structures and store them in either standard or vector registers. AP is stored
twice, once row-wise and once column-wise, in order to avoid the otherwise costly transposition
needed to compute both its row and its column “Hamming weight”. For schemes at order d ≤ 15,
each row or column fits within a 16-bit words leading to a quite efficient vectorised Hamming weight
computation, as shown in Listing 1.1. We also provide a slower implementation for schemes at higher
order; in this case actually proving the security with our algorithm is likely to be intractable due
to the combinatorial explosion of the number of sets to consider, yet a partial run may still be able
to detect attacks, in the fashion of the original algorithm from EUROCRYPT 2016.

int popcount256_16(__m256i v)

{

return __builtin_popcountl(_mm256_cmpgt_epi16_mask(v, _mm256_setzero_si256()));

}

Listing 1.1: Hamming weight computation of a vector of dimension 16 over 16-bit words using
AVX512VL and AVX512BW; a variant with only a few more instructions can be used with only
AVX2.

4.2 Amortised enumeration & parallelisation

Recall that to prove the security of a scheme at order d, the algorithm of Section 3 requires to
enumerate all the

∑d
i=1

(
n
i

)
subsets of a (possibly filtered) set of probes P of size n. For a subset

P ′ ⊆ P of size `, a näıve approach in computing AP′ would use ` − 1 additions, and this for
every such P ′. However, a well-known optimisation for this kind of enumeration is instead to go
through all the subsets of a fixed weight in a way that ensures that two consecutive sets P ′ and
P ′′ only differ by two elements. One can then compute, say, AP′′ efficiently by updating AP′

with one addition and one subtraction. We do this in our implementation by using a so-called
“revolving-door algorithm” described by Knuth [Knu11, Algorithm R] for the Nijenhuis-Wilf-Liu-
Tang “combination Gray code”[NW78,LT73]:

Algorithm 1: Revolving-door combinations algorithm [Knu11, Algorithm R] going over
the

(
n
k

)
combinations ck . . . c2c1.

R1. Set cj ← j − 1 for 1 ≤ j ≤ k and ck+1 ← n.
R2. The combination ck . . . c2c1 is ready to be used.
R3. (Step depending on the parity of k)
If k is odd: If c1 < c2, increase c1 by 1 and return to R2, otherwise set j ← 2 and go to R4.
If k is even: If c1 > 0, decrease c1 by 1 and return to R2, otherwise set j ← 2 and go to R5.
R4. (At this point cj = cj−1 + 1.)
If cj ≥ j, set cj ← cj−1, cj−1 ← j − 2, and return to R2.
Otherwise increase j by 1.
R5. (At this point cj−1 = j − 2.)
If cj + 1 < cj+1, set cj−1 ← cj , cj ← cj + 1, and return to R2.
Otherwise increase j by 1, and go to R4 if j ≤ k.
The algorithm has reached its end if j > k.

In practice, Algorithm 1 is used to compute both attack matrix A and noise matrix B for every
set of k probes among the n probes P available on the circuit. Going from a matrix AP′ to the
next matrix AP′′ can always be done using only one addition and one subtraction:

— If the update is done in step R3, one need to subtract Mpc1
and add, depending on the parity

of k, either Mpc1+1
or Mpc1−1

;

— If the update is done in step R4, one need to subtract Mpcj
and add Mpj−2

;

— If the update is done in step R5, one need to subtract Mpcj−1
and add Mpcj+1

.
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The same applies to go from BP′ to BP′′ by adding and subtracting the right matrices σp.

In the robust probing model setting one may also need to enumerate more than one expression
for a given set of probes; this can still be done efficiently using Gray codes. First one uses the
same approach as described above to enumerate the sets of probes thanks to a combination Gray
code. Then for each of these sets P, checking if it leads to an attack or not requires one to go over
the

∏
p∈P(2#L(p) − 1) linear combinations of the relevant leakage sets as explained in Section 3.4.

This enumeration itself is done using two layers of Gray codes: an outer layer is composed of a
mixed-radix Gray code of length #P, with the radix associated with probe p being equal to 2#L(p);
this outer Gray code indicates at each step which probes needs to be “incremented” to obtain the
next linear combination. Then this increment is itself implemented efficiently by using an inner
(“standard”) binary Gray code in dimension #L(p).

The entire enumeration process can also be easily parallelised, and the main challenge is to
couple this with the above amortised approaches. This can in fact be done quite efficiently, as the
combination Gray code that we use to enumerate the probe subsets possesses an efficient unranking
map from the integers to arbitrary configurations [Wal, p.25-26]:

Algorithm 2: Unranking algorithm from [Wal, p.25-26].

Input : The rank r strictly lower than
(
n
k

)
Output: The configuration ck . . . c1 of rank r
for i← k to 1 do

ci ← min{x |
(
x
i

)
≥ r}

r ←
(
ci
i

)
− r

end

One can then easily divide a full enumeration of a total of n combinations into j jobs by starting
each of them independently at one of the configurations given by the unranking of i×n/j, i ∈ J0, jJ.

4.3 From high-level representation to C description

We use a custom parser to convert a readable description of a masking scheme into a C description
of its probes’ indicator matrices.

Each line of the high-level description corresponds to an output share. The available symbols
are:

— sij which represents a product aibj ;
— ri which represents a random mask ri;
— a space ‘ ’, a binary operator which represents an addition (i.e. XOR) gate;
— parentheses, which allow explicit scheduling of the operations;
— |, a postfixed unary operator which represents the use of a register to store the expression that

is before the symbol. This is only needed for an analysis in presence of glitches.

Additionally, the user needs to specify the order d of the scheme as well as the list of random masks
used.

The scheduling of the operations needed to compute the output shares is important, as it
determines the probes available to the adversary. In that respect, the parser uses by default an
implicit left-to-right scheduling and addition gates have precedence over registers. As an example
the scheme whose output shares are defined as:

c0 = ((((a0b0 ⊕ r0)⊕ a0b1)⊕ a1b0)⊕ r1)

c1 = ((((a1b1 ⊕ r1)⊕ a1b2)⊕ a2b1)⊕ r2)

c2 = ((((a2b2 ⊕ r2)⊕ a2b0)⊕ a0b2)⊕ r0)

is described by the file:
ORDER = 2

MASKS = [r0, r1, r2]

s00 r0 s01 s10 r1

s11 r1 s12 s21 r2
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s22 r2 s20 s02 r0

Another example is the following DOM-indep multiplication by Groß et al. [GMK16], which is
NI at order two even in the presence of glitches:

ORDER = 2

MASKS = [r0, r1, r2]

s00 (s01 r0|) (s02 r1|)

(s10 r0|) s11 (s12 r2|)

(s20 r1|) (s21 r2|) s22

5 Applications

In this section we apply our fast implementation of the verification algorithm of Section 3 to
various state-of-the-art masking gadgets and also propose new improved instances in medium
order, including better SNI multiplication and refreshing gadgets for the practically-relevant case
of 8 shares.

We analyse:

— In Section 5.1: NI and SNI multiplication gadgets originally from [BDF+17,GPSS18].
— In Section 5.2: SNI refreshing gadgets originally from [BDF+17,BBD+18].
— In Section 5.3: Glitch-resistant NI multiplication from [GMK16].

5.1 NI and SNI multiplication gadgets

We first study a family of multiplication gadgets that were introduced by Barthe et al. at EU-
ROCRYPT 2017 [BDF+17] and used in the efficient masked AES implementation of Grégoire
et al. [GPSS18] (who also propose improvements in the 4-share setting) and in the very high order
implementations of Journault and Standaert [JS17].

Our motivations in doing so are the following: since there is no known security proof at arbitrary
order for these schemes, it is natural to try to prove them computationally at the highest possible
order. Barthe et al. originally did this up to order 7,12 and we manage to reach order 11 both for
NI and SNI security, which represents a significant improvement.13 A second motivation is that the
verification of multiplication gadgets quickly becomes intractable with increasing order, and such a
task allows us to clearly demonstrate our performance gain over maskVerif. Finally, this improved
verification efficiency is exploited in trying to find ad hoc gadget variants with lower cost.

On the negative side our verification shows that a conjecture from Barthe et al. on the security
of a natural strategy to convert NI multiplication into SNI fails at order 10. More positively, we were
able to find ad hoc conversions tuned to every NI multiplication we considered, which sometimes
also bring a significant improvement in randomness cost over Barthe et al.’s strategy. For instance
we are able to gain 17% for an 8-share, 7-SNI gadget similar to the one used in [GPSS18]. Finally
using a slight variant of Barthe et al.’s gadget generation algorithm, we occasionally obtain some
improvements also in the NI case, notably at order 5.

We give details of our improvements in Table 1 and the descriptions of all the gadgets at https:
//github.com/NicsTr/binary_masking. Note however that Beläıd et al. also propose optimized
gadgets in [BBP+16] up to order 4, that ISW is also better than [BDF+17] at order 3 and that
Grégoire et al. already proposed improvements at this same order in [GPSS18]. The main range of
interest of Table 1 is thus at order 5 and beyond.

The NI multiplication gadget family of [BDF+17, Algorithm 3]. We give in Algorithm 3
a description of a slightly modified variant of [BDF+17, Algorithm 3], which occasionally gives
better gadgets than the original. We also provide a small script to automatically generate a scheme
at a given order at https://github.com/NicsTr/binary_masking.

This description relies on the following convenient definition:

Definition 34 (Pair of shares).
Let (aibj), i, j ∈ J0, dK be the input shares of a (d+ 1, v) gadget. We define α̂i,j as:

α̂i,j =

{
aibj if i = j

aibj + ajbi otherwise

12 We ourselves used the latest version of maskVerif to do so up to order 8.
13 This however still cannot theoretically justify the use of this masked multiplication at order 31 as is

done in [JS17].
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Table 1: Explicit randomness cost of multiplication gadgets.

Order d Defined and verified in [BDF+17] Defined or verified in §5

Random masks XOR gates Random masks XOR gates

2 SNI 3 12 = =

3
NI 4 20 = =

SNI 8 28 5 24

4
NI 5 30 = =

SNI 10 40 9 38

5
NI 12 54 10 50

SNI 18 66 12 54

6
NI 14 70 = =

SNI 21 84 18 78

7
NI — — 16 88

SNI 24 104 20 96

8
NI — — 18 108

SNI — — 27 126

9
NI — — 26 142

SNI — — 30 150

10
NI — — 33 176

SNI — — 39 188

11
NI — — 36 204

SNI — — 42 216

Algorithm 3: A conjectured d-NI (d + 1, d + 1)-gadget for multiplication over fields of
characteristic two.
Input : S = {α̂i,j , 0 ≤ i ≤ j ≤ d}
Input : R = {ri}, i ∈ N
Output: (ci)0≤i≤d, such that

∑d
i=0 ci =

∑d
i=0 ai

∑d
i=0 bi

for i← 0 to d do
ci ← α̂i,i

S ← S \ {α̂i,i}
end
R′ ← {}
j ← 1
while S 6= ∅ do

for i← 0 to d do
if j ≡ 1 mod 2 then

ci ← ci + r (j−1)
2

.(d+1)+i

R′ ← R′ ∪
{
r (j−1)

2
.(d+1)+i

}
else

ci ← ci + r (j−2)
2

.(d+1)+(i+1 mod (d+1))

R′ ← R′ \
{
r (j−2)

2
.(d+1)+(i+1 mod (d+1))

}
end
if S 6= ∅ then

ci ← ci + α̂i,((i+j) mod (d+1))

S ← S \ {α̂i,((i+j) mod (d+1))}
else

break
end

end
j ← j + 1

end
k ← #R′
for i← 0 to d do

ci ← ci + r (j−1)
2

(d+1)+(i+1 mod k)

end
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Extension to SNI security. One can derive an SNI multiplication gadget from Algorithm 3 by
doing the following: 1) proving NI security at some order d; 2) proving SNI security at the same
order for a refreshing gadget ; 3) composing the two gadgets.

This strategy can for instance be implemented with the refreshing gadgets also introduced
in [BDF+17] that we discuss in the next Section 5.2, but Barthe et al. already remarked that it
was in fact apparently not necessary to use full refreshing gadgets and that one could do better
by using a degraded variant thereof: in a nutshell, one starts from a secure NI multiplication and
simply masks every output share with a fresh random mask and then again with the mask of the
following share in a circular fashion.

Barthe et al. then conjecture in [BDF+17] that this transformation is always enough to convert
an NI scheme into an SNI one. However we could check that this is not true for 11- and 12-share
gadgets: the respective instantiations of Algorithm 3 are NI, but the transformation fails to provide
SNI multiplications. Yet it is in fact still possible to derive an 11-share, 10-SNI multiplication gadget
at no additional cost by simply rotating the last repeated masks by two positions instead of one,
for a total cost of 44 random masks.

We explored several other transformation strategies, trying to exploit the special shape of the
NI multiplication gadgets as much as possible. This almost always improved on the use of a new
mask for every share (the current exception being the order-8 gadget), usually requiring only
about half. For instance our best 11-share gadget in fact only requires 39 masks instead of the
above 44 as shown in Figure 7, and we found a 7-SNI multiplication with only 20 masks shown
in Figure 8, which is 4 less than [BDF+17]. While this latter improvement is somewhat moderate
at about 17%, this 8-share case is quite relevant due to its use in the efficient vectorised masked
AES implementation of Grégoire et al. [GPSS18]; using our new variant should then result in a
noticeable decrease in randomness usage.

We provide a summary of the cost of the multiplication gadgets that we have verified and their
improvement over the previously best known ones in Table 1, and we give their full description at
https://github.com/NicsTr/binary_masking.

s00 r00 s01 s10 r01 s02 s20 r11 s03 s30 r12 s04 s40 r22 s05 s50 r23 r40
s11 r01 s12 s21 r02 s13 s31 r12 s14 s41 r13 s15 s51 r23 s16 s61 r24 r41
s22 r02 s23 s32 r03 s24 s42 r13 s25 s52 r14 s26 s62 r24 s27 s72 r25 r42
s33 r03 s34 s43 r04 s35 s53 r14 s36 s63 r15 s37 s73 r25 s38 s83 r26 r43
s44 r04 s45 s54 r05 s46 s64 r15 s47 s74 r16 s48 s84 r26 s49 s94 r27 r44
s55 r05 s56 s65 r06 s57 s75 r16 s58 s85 r17 s59 s95 r27 s5a sa5 r28 r45
s66 r06 s67 s76 r07 s68 s86 r17 s69 s96 r18 s6a sa6 r28 s60 s06 r29 r40
s77 r07 s78 s87 r08 s79 s97 r18 s7a sa7 r19 s70 s07 r29 s71 s17 r30 r41
s88 r08 s89 s98 r09 s8a sa8 r19 s80 s08 r20 s81 s18 r30 s82 s28 r31 r42
s99 r09 s9a sa9 r10 s90 s09 r20 s91 s19 r21 s92 s29 r31 s93 s39 r32 r43
saa r45 sa0 s0a r00 sa1 s1a r21 sa2 s2a r11 sa3 s3a r32 sa4 s4a r22 r44 r10

Fig. 7: 10-SNI gadget for multiplication, using 39 random masks.

s00 r00 s01 s10 r01 s02 s20 r08 s03 s30 r09 s04 r20
s11 r01 s12 s21 r02 s13 s31 r09 s14 s41 r10 s15 r21
s22 r02 s23 s32 r03 s24 s42 r10 s25 s52 r11 s26 r22
s33 r03 s34 s43 r04 s35 s53 r11 s36 s63 r12 s37 r23
s44 r04 s45 s54 r05 s46 s64 r12 s47 s74 r13 s40 r20
s55 r05 s56 s65 r06 s57 s75 r13 s50 s05 r14 s51 r21
s66 r06 s67 s76 r07 s60 s06 r14 s61 s16 r15 s62 r22
s77 r07 s70 s07 r00 s71 s17 r15 s72 s27 r08 s73 r23

Fig. 8: 7-SNI gadget for multiplication, using 20 random masks.

Verification performance. We now analyse the performance of our verification software on these
multiplication schemes, and compare it with the one of the latest version of maskVerif [BBC+19].14

Probes filtering. Following the results of Section 3.3, we use a filtering process to reduce the
initial set of probes that one has to enumerate to prove security. For the gadgets of Algorithm 3 and
their SNI counterparts, this means removing probes of the form: α̂∗,∗+

∑
(r∗+α̂∗,∗)+r∗+a∗b∗,

15

and the fact that the filtered set really is a reduced set in the sense of Definition 29 is verified by

14 Available at https://gitlab.com/benjgregoire/maskverif.
15 This corresponds exactly to the probes made of an even number of a∗b∗ terms.
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an exhaustive check on the subsets corresponding to every output share; this filtering process was
only partially automated since an initial human intervention was necessary to identify the probes
that could be removed. Intuitively, the idea is that one can always replace in an attack a probe of
the above form with one that includes one extra ajbi term, i.e. one of the form α̂∗,∗ +

∑
(r∗ +

α̂∗,∗) + r∗ + α̂∗,∗, since the latter only adds an additional functional dependence on the input
shares “for free”.

The concrete impact of filtering on the verification performance of our schemes can be seen in
Table 2, where we give the size of the attack sets to enumerate before and after this filtering.

Performance. For order d ≤ 10 (except the 10-SNI case) we have run our software on a single
core of the retourdest server, which features a single Intel Xeon Gold 6126 at 2.60 GHz. The
corresponding timings are given in Table 2. At peak performance, we are able to enumerate ≈ 227.5

candidate attack sets per second for NI verification, while SNI performance is slightly worse.
Using filtered sets significantly improves verification time, especially at high order. For instance,

the running times of 2 and 6 hours for NI and SNI multiplication at order 9 are an order of
magnitude faster than the 3 and 6 days initially spent before we implemented filtering. This
optimisation was also essential in allowing to check the security of 10-NI multiplication in less than
one calendar day on a single machine (using parallelisation); it would otherwise have taken a rather
costly 1 core-year.

We also tested a multi-threaded implementation of our software on schemes at order 8 ∼ 10,
using all 12 physical cores of the same Xeon Gold 6126; the results are shown in the right column
of Table 2. While we do not have many data points, the speed-up offered by the parallelisation
seems to be close to linear, albeit slightly less for NI verification: the 9-SNI multi-threaded wall
time is ≈ 11.7 times less than the single-threaded one, and multi-threading for 9- and 10-NI saves
a factor ≈ 9.7.

The largest schemes that we verified are NI (resp. SNI) multiplication at order d = 11. We
relied heavily on parallelisation to enumerate the ≈ 252.72 (resp. ≈ 254.48) possible attack sets,16

using up to 40 nodes of the Dahu cluster.17 Each node has two 16-core Intel Xeon Gold 6130 at
2.10 GHz, and when using hyperthreading allows to enumerate ≈ 231.38 sets per second18. This
cluster was also used to verify the best version of our 10-SNI gadget.

Comparison with maskVerif. We used the maskVerif tool from Barthe et al. [BBC+19] to
check the security of the gadgets at order 6 to 8. Due to system constraints, we could not run the
verification on retourdest, and instead defaulted to the older hpac, which features an Intel Xeon
E5-4620 at 2.20 GHz. We compare this to our software on this machine using 4 threads —the same
amount of parallelisation that maskVerif is able to exploit.

The running times are summarised in Table 3. Even though we cannot benefit from vectorisation
due to the absence of AVX2 instructions on hpac, it is notable that our own software is faster
by three orders of magnitude, for instance taking slightly more than two minutes to check 8-NI
multiplication versus two days for maskVerif. Note that this comparison is done after filtering in
our case, which saves us up to a factor ≈ 30 (cf. for instance the 8-NI case) as can be computed
from Table 2.

5.2 SNI refreshing gadgets

We used our software to verify the SNI security of some (variations of) refreshing gadgets introduced
in [BDF+17], and subsequently improved in [GPSS18,BBD+18]. Such schemes are useful when
designing large circuits based on gadgets satisfying composable security notions since they help in
providing strong security for the overall design. However, refreshing also comes with a significant
cost in terms of randomness while not performing any sort of useful computation, leading several
prior work to try finding new low-cost gadgets.

The best current results come from [BBD+18] who prove the SNI security at any order of
a “block” refreshing gadget introduced in [BDF+17], when iterated enough times. Yet together
with [GPSS18], they also remark that it is possible to make significant improvements in practice
at the cost of losing generic proofs, and they give cheaper alternatives verified secure up to order
16.

16 This is after filtering of the initial ≈ 259 (resp. ≈ 259.76) sets.
17 https://ciment.univ-grenoble-alpes.fr/wiki-pub/index.php/Hardware:Dahu
18 This is somewhat slow compared to performance on the similar ‘6126. The reason is currently unclear,

but might involve the different build environment and overall setup.
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Table 2: Running time of our verification software on retourdest.

Order d log2(number of sets) Wall time (1 thread) Wall time (12 threads)
Before/After filtering Best (after filtering) Best (after filtering)

1
NI 2.6/2.6 < 0.01 sec. —

SNI 2.6/2.6 < 0.01 sec. —

2
NI 6.3/5.5 < 0.01 sec. —

SNI 6.3/5.5 < 0.01 sec. —

3
NI 10.4/8.9 < 0.01 sec. —

SNI 11.2/9.96 < 0.01 sec. —

4
NI 15.0/12.6 < 0.01 sec. —

SNI 16.4/14.6 < 0.01 sec. —

5
NI 21.2/18.6 < 0.01 sec. —

SNI 21.7/19.3 < 0.01 sec. —

6
NI 27.1/23.9 0.09 sec. —

SNI 28.0/25.3 0.28 sec. —

7
NI 32.7/28.7 2.43 sec. —

SNI 33.6/30.6 11.70 sec. —

8
NI 38.5/33.7 1 min. 17 sec. 7.43 sec.

SNI 40.3/36.3 9 min. 28 sec. 47.0 sec

9
NI 45.6/40.5 2 h. 18 min. 14 min. 20 sec.

SNI 46.3/41.6 6 h. 30 min. 33 min. 20 sec.

10
NI 52.6/47.1 9 days 3h. 22 h. 30 min.

SNI 53.5/48.4 — —

Table 3: Comparison with maskVerif [BBC+19] on hpac.

Order d Wall time Wall time
maskVerif (4 threads) Our software (4 threads, filtered)

6
NI 2 min. 44 sec. 0.57 sec.

SNI 8 min. 11 sec. 1.48 sec.

7
NI 1 h. 39 min. 4.13 sec.

SNI 5 h. 54 min. 15.60 sec.

8
NI 2 days 10h. 2 min. 15 sec.

SNI 13 days 6h. 14 min. 35 sec.

Our contribution here is an 8-share, 7-SNI refreshing gadget shown in Figure 9 that only needs
13 masks, which improves slightly on the best gadget from [BBD+18], which requires 16. Since
such gadgets are used in the implementation of [GPSS18], it could again lead to actual practical
gains.

We also compared the verification time of our tool with the one of maskVerif on the largest
“RefreshZero” instances of [BBD+18], and actually have worse performance. For instance, even
using 24 threads on the 12-core retourdest, verifying RefreshZero14

[1,3] took us about 3 hours 40

minutes, while [BBD+18] reports an “Order of Magnitude” of 1 hour 30 minutes. We suspect this
to be caused by the fact that there is no obvious probe filtering to be done on this sort of gadget,
whereas maskVerif is likely able to successfully exploit their structure to reduce the number of
attack sets to consider.

s00 r00 r01 r10 r20
s11 r01 r02 r11 r20
s22 r02 r03 r12 r20
s33 r03 r04 r13 r20
s44 r04 r05 r10
s55 r05 r06 r11
s66 r06 r07 r12
s77 r07 r00 r13

Fig. 9: 7-SNI refreshing gadget, using 13 random masks.
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5.3 Glitch-resistant NI multiplication

We conclude with a brief application to the DOM-indep family of multiplication gadgets introduced
by Groß et al. [GMK16]. While those schemes are not more efficient than the state-of-the-art in
terms of randomness cost, their main advantage is their resistance to glitches. A description of
an instantiation at order 2 can be found in Section 4.3, and at any order less than 5 at https:

//github.com/NicsTr/binary_masking.
These gadgets can be instantiated at an arbitrary order d but do not come with a generic

security proof guaranteeing the security of the result. We then have used our implementation to
verify that instantiations up to order 5 are NI in the robust probing model. The running times on
retourdest are summarised in Table 4.

Table 4: Running time of our verification software on retourdest for the DOM-indep schemes.

Order d Wall time (1 thread)

1 < 0.01 sec.

2 < 0.01 sec.

3 < 0.01 sec.

4 0.12 sec.

5 2 min. 22 sec.
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