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Abstract. In CRYPTO 2017, Dai, Hoang, and Tessaro introduced the Chi-square method (χ2

method) which can be applied to obtain an upper bound on the statistical distance between two
joint probability distributions. The authors applied this method to prove the pseudorandom function
security (PRF-security) of sum of two random permutations. In this work, we revisit their proof
and find a non-trivial gap in the proof and describe how to plug this gap as well; this has already
been done by Dai et al. in the revised version of their CRYPTO 2017 paper. A complete, correct,
and transparent proof of the full security of the sum of two random permutations construction
is much desirable, especially due to its importance and two decades old legacy. The proposed χ2

method seems to have potential for application to similar problems, where a similar gap may creep
into a proof. These considerations motivate us to communicate our observation in a formal way.

On the positive side, we provide a very simple proof of the PRF-security of the truncated random
permutation construction (a method to construct PRF from a random permutation) using the
χ2 method. We note that a proof of the PRF-security due to Stam is already known for this
construction in a purely statistical context. However, the use of the χ2 method makes the proof
much simpler.

Keywords. random permutation, pseudorandom function, χ2-distance, KL divergence, total variation
distance, Pinsker’s inequality, sum of random permutation, truncated random permutation.

1 Introduction

Different tools from probability and statistics are now heavily used in different areas in cryptography. In
this paper, we focus on a statistical tool, termed χ2 method, which was introduced by Dai, Hoang, and
Tessaro in CRYPTO 2017 ([DHT17a]). Although a method which is essentially similar to the χ2 method
is known in statistics (since 1978), we believe that the χ2 method is new in the context of cryptography.
In [DHT17a], this method has been used to show pseudorandom function security (PRF-security) of
two well known constructions, namely sum of random permutations ([Pat08b,Pat10,BI99,Luc00]) and
encrypted Davis-Meyer (EDM) ([CS16,MN17]). Further, we feel that this method may help us to obtain
tight (and simplified) proofs for certain constructions where proofs so far have evaded more classical
methods, such as the H-coefficient method ([Pat08a]).

χ2 Method. The distinguishing advantage of a family of keyed functions is bounded by the total variation
(also known as statistical distance) between the output distribution of the family and the output distribu-
tion of a random function. Total variation between two probability distributions P0 and P1 over a sample
space Ω, denoted dTV(P0,P1), is defined as the half of L1-norm ‖P0 −P1‖1 :=

∑
x∈Ω |P0(x)−P1(x)|.

In [DHT17a], the authors revisited a variation of the additivity property of the KL divergence between
two joint distributions. The authors termed it χ2 method. When P0 and P1 are joint distributions, this
method provides an upper bound on ‖P0 − P1‖1 based on the χ2-distances between the conditional
distributions of P0 and P1. Next, we recall the definition of χ2-distance. In what follows, we use the
convention that 0/0 = 0.

Definition 1. The χ2-distance between distributions P0 and P1 (over a sample space Ω) with P0 � P1

(i.e., the support of P0 is contained in the support of P1) is defined as

dχ2(P0,P1) :=
∑
x∈Ω

(P0(x)−P1(x))2

P1(x)
.
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χ2-distance has its origin in mathematical statistics dating back to Pearson (see [LV87] for some history).
It can be seen that χ2-distance is not symmetric and hence it is not a metric. However, this is useful
for bounding other metrics, e.g., total variation. In the following, we briefly describe the χ2 method (see
Section A for details and proof).

Let X = (X1, . . . ,Xq) and Y = (Y1, . . . ,Yq) be two multivariate random variables taking values from
Ωq. In order to simplify the notation, we denote by Xi−1 the joint random variable (X1, . . . ,Xi−1). Let
P0x1,...,xi−1

denote the conditional probability distribution of Xi given X1 = x1, . . ., Xi−1 = xi−1. We
similarly write P1x1,...,xi−1

for the distribution of Yi given Y1 = x1, . . ., Yi−1 = xi−1. Then the χ2

method says

dTV(X,Y) ≤

(
1

2

q∑
i=1

Ex[χ2(X1, . . . ,Xi−1)]

) 1
2

, (1)

where χ2(x1, . . . , xi−1) = dχ2(P0x1,...,xi−1
,P1x1,...,xi−1

) and for all x1, . . . , xi−1, P0x1,...,xi−1
� P1x1,...,xi−1

.
Note that we need this condition to define dχ2 .

XOR of Two Random Permutations. XOR or sum of two random permutations is a well known
construction, proposed and studied by Hall et al. in [HWKS98], for conversion of pseudorandom permu-
tations (PRPs) into pseudorandom functions (PRFs) 1. Given a permutation π : {0, 1}n 7→ {0, 1}n, the
construction creates a function f : {0, 1}n−1 → {0, 1}n, defined as f(x) = π(0||x) ⊕ π(1||x). When π is
chosen uniformly at random from Permn, the set of all permutations of {0, 1}n, how well does f resemble
(in a certain well defined sense) a random function with the same domain and range (a function chosen
uniformly from the set of all functions from the domain to the range)? A satisfactory answer to this
question remained elusive for over two decades. There have been attempts ([Luc00,BI99,Pat08b,Pat10])
to prove information-theoretic security of the construction. However, the proofs either fell short of prov-
ing full security (to be made precise in the next section) of the construction([Luc00]) or were sketchy
([BI99]) or contained non-trivial gaps and were difficult to follow ([Pat08b,Pat10]) as was also observed
by the authors of [DHT17a].2 Also, as a related problem, Cogliati, Lampe, and Patarin [CLP14] gave
weaker bounds for the case of the sum of at least three permutations. The XOR construction is important
since it has been used to obtain some constructions achieving beyond birthday (or sometimes almost full)
security (e.g., CENC [Iwa06], PMAC Plus [BR02] and ZMAC [IMPS17]).

1.1 Main Results in the Paper

In [DHT17a], Dai et al. used the χ2 method to prove full security of the XOR construction (XOR of two
random permutations). In this paper, we have a closer inspection of the proof and we find a non-trivial
gap in it. The gap is due to incorrect equalities involving conditional expectations. In [DHT17b], the
authors have fixed this gap. We describe this fix in Lemma 1 in a slightly different way.

In this note, we communicate the above observation formally. This serves two purposes:(a) to motivate
a flawless proof of this problem, especially owing to its importance and a two-decades old legacy, (b) to
prevent these types of loopholes from creeping into the proofs involving the χ2 method, especially since
the method seems to have potential for application to similar problems.

Truncation of Random Permutation. Although the application (in [DHT17a]) of the χ2 method to
the XOR construction contains gap, this technique can be powerful for bounding PRF-security of other
constructions. In fact, in [DHT17a], the authors applied this method to bound the PRF-security of the
EDM (or encrypted Davis-Meyer) construction. In this note, we apply this technique to the truncated
random permutation construction and obtain a very simple proof of the known tight bound on the
PRF-security of the construction. This has been studied by Stam (in a statistical context) in 1978 [Sta78]
and later by many others (e.g., [GG15,GG16,GGM17,HWKS98,BI99]). Stam’s proof technique is very
close to the χ2 method. However, the other proofs are very different and produce different results. The
difference between the proof methods of the relevant results from [HWKS98], [BI99], [GG15] and [Sta78]

1 This line of work was initiated by Bellare et al. in [BKR98] who coined the term “Luby-Rackoff backwards”
for such conversion.

2 A quote from the paper [DHT17a] “Patarin’s tight proof is very involved, with some claims

remaining open or unproved.”
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is discussed in [GGM17]. Our proof approach is more modular and uses the χ2 method explicitly. We
discuss these very briefly in Remark 1 and Remark 2

The PRF property of the truncated random permutation construction has recently been used in the
key derivation for the AES-GCM, Counter based authenticated encryption constructions [GLL17].

1.2 Comparison with [BN18a]

This article is a somewhat updated version of [BN18a]. Here we prove Lemma 1 (the proof is similar
(but not same) as the one given (in the proof of Theorem 3) in [DHT17b]) and omit Section 4 of [BN18a]
where we proved Lemma 1 for two special cases. Also, we add Section 5 where we mention some recent
applications of the χ2-method.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In the next section, we provide a brief overview of relevant
security notions and the χ2 method. There we also discuss the two constructions: XOR of two random
permuations construction and trucated random permutation construction. Section 3 is devoted to the
proof of Theorem 2. In Section 4, we discuss the proof, by Dai et al., of the full security of the XOR of
two random permutation construction, where we also point out the gap in it and explain its fix (in a
slightly different way than was done in [DHT17b]). In Section 5, we briefly mention some of the more
recent applications of the χ2 method. Finally, in Appendix A, we provide a self-contained proof of the
χ2 method; essential ingredients of the proof is same as that of [DHT17a], however, we also cover the
finer details (such as the proof of the Pinsker’s inequality).

2 Preliminaries

Notation and Convention. We use the short-hand notation Xt to denote a tuple (X1, . . . , Xt). We
also write St to denote the t-fold Cartesian product of the set S with itself. It will be clear from the
context whether Xt means a t-tuple (when X is a tuple) or product set (when X is a set).

We use notations X,Y,Z etc. (possibly with suffix) to represent random variables over some sets.
Following the above notational convention, Xt would represent a t-tuple of random variables or random
vector (X1, . . . ,Xt). We use E ,S, T etc. (possibly with suffix) to denote sets. A will always represent an
adversary.

In this paper, we fix a positive integer n, and we denote 2n by N .

2.1 PRF-Security Definition

Pseudorandom function (PRF) is a very popular security notion in cryptography. While analyzing a mes-
sage authentication code (MAC), we mostly study its PRF-security as it is a stronger notion than MAC.
It has also been used to define encryption schemes, authenticated encryptions, and other cryptographic
algorithms.

Now we formally define the PRF-advantage of an algorithm or a keyed function. By X←$S we mean
that X is sampled uniformly from a finite set S. Let m and p be positive integers. Let RPm denote
the random permutation chosen uniformly from Permm, the set of all permutations on {0, 1}m, i.e.,
RPm←$Permm. Similarly, let RFm→p←$Funcm→p (the set of all functions from {0, 1}m to {0, 1}p). Let
K be a finite set (it is the key space of the construction). Given a function f : K×{0, 1}m → {0, 1}p and
for every k ∈ K, we denote fk to represent the function (also called keyed function) f(k, ·) ∈ Funcm→p.
We now define the PRF-advantage of an oracle adversary A against f as follows.

Definition 2 (PRF-advantage). Let A be a distinguisher (oracle algorithm) and f : K × {0, 1}m →
{0, 1}p. Then, the PRF-advantage of A against f is defined as

Advprf
f (A) = |P[AfK → 1 : K←$K]−P[ARFm→p → 1]|.
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As we restrict to only deterministic keyed functions (i.e., functions which give same output on same
input) we can assume, without loss of generality, that the adversary does not repeat its queries. In other
words, if Q1, . . . ,Qq are all queries then these are distinct. We can also assume that A is deterministic as it
can always run with the best random coins which maximize the advantage. Suppose A makes q distinct
queries adaptively, denoted Q1, . . . ,Qq, and obtains responses U1, . . . ,Uq. So, when A in interacting
with RFm→p, the outputs are uniformly and independently distributed over {0, 1}p which we denote as
U1, . . . ,Uq ←$ {0, 1}p.

Similarly, let X1, . . . ,Xq denote the outputs of fK where K←$K. We denote the probability distribu-
tions associated with U1, . . . ,Uq and X1, . . . ,Xq by P1 and P0 respectively. Thus,

Advprf
f (A) = |P1(E)−P0(E)| (2)

where E is the set of all q-tuple of responses xq := (x1, . . . , xq) ∈ ({0, 1}n)q for which A returns 1. From
the definition the total variation (also known as the statistical distance) between P0 and P1 is

dTV(P0,P1)
def
=

1

2

∑
xq∈({0,1}n)q

|P0(xq)−P1(xq)| = max
E⊆Ω

(P0(E)−P1(E)). (3)

Hence,
Advprf

f (A) ≤ dTV(P1,P0).3

Thus, the main cryptographic objective (that of determining the PRF-advantage Advprf
f (A)) turns out

to be a purely probability or statistical problem. Next, we discuss the χ2 method which provides an
upper bound of total variation between two joint distributions.

2.2 χ2 Method

Let X := (X1, . . . ,Xq) and Z := (Z1, . . . ,Zq) are two random vectors of size q distributed over Ωq. Let us
denote the probability distributions of X and Z as P0 and P1 respectively. We denote the conditional
probability distributions as follows.

P0|xi−1(xi) = P(Xi = xi|X1 = x1, . . . ,Xi−1 = xi−1)

P1|xi−1(xi) = P(Zi = xi|Z1 = x1, . . . ,Zi−1 = xi−1)

When i = 1, P0|xi−1(x1) represents P(X1 = x1). Similarly, for P1|xi−1(x1). Let xi−1 ∈ Ωi−1, i ≥ 1. Let
us denote the χ2-distance between P0|xi−1 and P1|xi−1 as χ2(xi−1), i.e.,

χ2(xi−1) := dχ2(P0|xi−1 ,P1|xi−1).

Thus, χ2 is a real valued function. The next theorem is the crux of the χ2 method; it bounds the
total variation between two joint distributions in terms of the χ2-distance between the corresponding
conditional distributions.

Theorem 1 ([DHT17a]). Suppose P0 and P1 denote probability distributions of X := (X1, . . . ,Xq) and
Z := (Z1, . . . ,Zq) and for all x1, . . . , xi−1, we have P0|xi−1 � P1|xi−1 . Then

dTV(P0,P1) ≤

(
1

2

q∑
i=1

Ex[χ2(Xi−1)]

) 1
2

.

For the sake of completeness, we provide a complete proof of this theorem in Appendix A. In our
setup, note that Z1, . . . ,Zq ←$ {0, 1}p for some p and hence P1|xi−1(xi) = 1

2p for all xi. So,

Ex[χ2(Xi−1)] = 2p
∑
xi

ExXi−1

[(
P(Xi = xi|X1, . . . ,Xi−1)− 1

2p

)2
]
.

In the following subsection, we describe two constructions for which this method was applied.

3 In fact, in this setting, i.e, for information theoretic security, there always exists an adversary A′ such that
Advprf

f (A′) = dTV(P1,P0); A′ returns 1 for any xq ∈ E ′, where E ′ is such that dTV(P1,P0) = P0(E ′)−P1(E ′).
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2.3 Two Random Permutation Based Constructions

In this paper, we mainly deal with two constructions based on a random permutation RPn. Similar to
a random function, if all queries to a random permutation RPn are distinct and depends only on the
previous responses (which is the case for an adversary), the outputs V1, . . . ,Vq behave like a random
sample without replacement (WOR) from {0, 1}n. We write V1, . . . ,Vq ←wor {0, 1}n to denote this. More
formally, for all distinct x1, . . . , xq ∈ {0, 1}n, P(V1 = x1, . . .Vq = xq) = 1

(N)q
, where (N)q = N(N −

1) · · · (N − q + 1). Now, we briefly describe the constructions.

(1) XOR Construction. Define XORπ : {0, 1}n−1 → {0, 1}n to be the construction that takes a permuta-
tion π ∈ Permn as a key, and on input x ∈ {0, 1}n−1 it returns π(x‖0)⊕π(x‖1). Thus, XOR construction
based on a random permutation RPn returns X1, . . . ,Xq where X1 := V1 ⊕ V2, . . ., Xq := V2q−1 ⊕ V2q

and V1, . . . ,V2q ←wor {0, 1}n.

(2) trRP Construction. Let m ≤ n and truncm denotes the truncation function which returns the first
m bits of x ∈ {0, 1}n. Truncated random permutation is a composition of random permutation followed
by a truncation function. More formally, we define for every x ∈ {0, 1}n,

trRPm(x) = truncm(RPn(x)).

Note that it is a function family, keyed by random permutation, mapping the set of all n-bit sequences
to the set of all m-bit sequences. Let X1, . . . ,Xq denote the q outputs of trRPm. Then Xi = truncm(Vi)
for all i.

PRF-security of this construction has been studied by Stam in 1978, though in a much broader
context (see [Sta78] for details), and later by others (e.g.,
[HWKS98,BI99,GG15,GG16,GGM17]). In particular, Stam proved the following statement.

Theorem 2 ([Sta78]). Let V1, . . . ,Vq ←wor {0, 1}n, U1, . . . ,Uq ←$ {0, 1}m and Xi = truncm(Vi) for all
i. Then

dTV(X,U) ≤ 1

2

(
(M − 1)q(q − 1)

(N − 1)(N − q + 1)

) 1
2

where X = (X1, . . . ,Xq) and U = (U1, . . . ,Uq).

The following corollary (though not proved by Stam) is immediate from the relationship between
PRF-advantage and total variation.

Corollary 1. Let M = 2m, N = 2n and m ≤ n. For any adversary A making q queries we have

Advprf
trRPm

(A) ≤ 1

2

(
(M − 1)q(q − 1)

(N − 1)(N − q + 1)

) 1
2

.

Remark 1. The upper bounds on the PRF-advantage of the trRP Construction given in [HWKS98,GG15]
are different (and weaker) than the one obtained by Stam. Although the bounds are similar for some
choices of parameters. In [GGM17], all these results are mentioned, and the proofs are briefly surveyed.
In [GGM17], a general tight lower bound on the PRF-advantage has been proved (improving on the
lower bound declared in [HWKS98]).

3 Proof of Theorem 2 Using the χ2 Method

Now we provide an alternative proof of Theorem 2 using the χ2 method. We briefly recall the setup. Here
V1, . . . ,Vq ←wor {0, 1}n and Xi = truncm(Vi). Let x ∈ {0, 1}m, i ≥ 1 be an integer, and K = N/M . Also,
let H denote the number of j < i, for which truncm(Vj) = x. The probability distribution of H is well
known as the hypergeometric distribution HG(N,K, i−1). For every max(0, s+K−N) ≤ a ≤ min(K, s)
we have

P(H = a) =

(
K
a

)
×
(
N−K
s−a

)(
N
s

) .

The following fact states the expectation and variance formula of a hypergeometric distribution. Its proof
can be found in standard probability theory text books and hence we skip it.
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Fact 1 Let H follow hypergeometric distribution HG(N,K, s) and let p denote K
N . Then,

Ex[H] = sp. (4)

Var[H] := Ex[H−Ex[H]]2 = sp(1− p)× N − s
N − 1

. (5)

As an aside, we mention that the factor N−s
N−1 is also known as the finite sampling correction factor. Up

to this factor, the expression of variance is same as that of the binomial distribution.
Now, we apply the χ2 method to bound the total variation dTV(X,U), where U1, . . . ,Uq ←$ {0, 1}m.

Let P0 and P1 denote the probability distributions of X and U respectively. Note that

P0|xi−1(x) = P(Xi = x | X1 = x1, . . . ,Xi−1 = xi−1)

= P(Vi 6∈ S), where Si,x(xi−1) = {v ∈ {0, 1}n : ∃j < i truncm(v) = xj}

=
N
M − |Si,x(xi−1)|

N − i+ 1
.

Let Ni,x(xi−1) := |Si,x(xi−1)| and Hi,x = Ni,x(Xi−1). Then it is easy to see from the definition of the
heypergeometric distribution that Hi,x follows HG(N,N/M, (i − 1)). Now, we compute the χ2 function
evaluated at xi−1.

χ2(xi−1) =
∑
x∈[M ]

M

(
N
M −Ni,x(xi−1)

N − i+ 1
− 1

M

)2

=
∑
x∈[M ]

M

(N − i+ 1)2
×
(
Ni,x(xi−1)− i− 1

M

)2

.

Hence,

Ex[χ2(Xi−1)] = Ex

 ∑
x∈[M ]

M

(N − i+ 1)2
×
(
Hi,x −

i− 1

M

)2


=
∑
x∈[M ]

M

(N − i+ 1)2
×Var[Hi,x]. (6)

This follows from the linearity of the expectation and the fact that Ex[Hi,x] = (i−1)/M . By substituting
the value of Var[Nx] as described in the Fact 1, we obtain

Ex[χ2(Xi−1)] =
M2

(N − i+ 1)2
× i− 1

M
×
(

1− 1

M

)
× N − i+ 1

N − 1

=
(M − 1)(i− 1)

(N − 1)(N − i+ 1)
.

Now by using Theorem 1 we have

dTV(P0,P1) ≤

(
1

2

q∑
i=1

Ex[χ2(Xi−1)]

) 1
2

=

(
1

2

q∑
i=1

(M − 1)(i− 1)

(N − 1)(N − i+ 1)

) 1
2

≤

(
1

2

q∑
i=1

(M − 1)(i− 1)

(N − 1)(N − q + 1)

) 1
2

=
1

2

(
(M − 1)q(q − 1)

(N − 1)(N − q + 1)

) 1
2

. ut



A Note on the Chi-square Method : A Tool for Proving Cryptographic Security 7

Remark 2. In order to draw comparison between our proof (using the χ2 method) of Theorem 2 and the
proof due to Stam, we remark that the main ideas of both the proofs are same; namely both use the chain
rule of the KL divergence, concavity of the logarithm function, and also the hypergeometric distribution.
However, unlike in our case (in (6)) Stam did not make explicit use of variance of the hypergeometric
distribution. Instead, he used Jensen’s inequality. Moreover, our proof is simpler and modular compared
to Stam’s proof with a more direct approach.

4 Overview of the Proof by Dai et al. and its Flaw

In this section, we provide a brief overview of the proof by Dai et al. to precisely point out the gap in
their proof. In order to better emphasize, we provide a brief sketch of the proof due to Dai et al. We
mostly follow the notation by the authors along with our notational convention. For example, we mostly
use N instead of 2n. Moreover, for simplicity we write the set {0, 1}n \ {0n} as [N ]∗.

Theorem 3 ([DHT17a]). Fix an integer n ≥ 8 and let N = 2n. For any adversary A that makes
q ≤ N

32 queries we have

Advprf
XOR(A) ≤

1.5q + 3
√
q

N
.

Proof due to Dai et al in [DHT17a]. Let A be an adversary making exactly q distinct queries
adaptively. As we have observed before, the output distributions of random function and XOR function
do not depend on A. In fact, U′1, . . . ,U

′
q ←$ {0, 1}n and X1 := V1 ⊕ V2, . . . ,Xq := V2q−1 ⊕ V2q are the

outputs of random function and XOR construction respectively, where V1, . . . ,V2q ←wor {0, 1}n. Let P1

and P2 denote the output distributions of X := (X1, . . . ,Xq) and U′ := (U′1, . . . ,U
′
q) respectively. Thus,

Advprf
XOR(A) ≤ dTV(P1,P2).

Now, we note that Xi’s cannot take 0n and hence it is natural to consider the q-tuple of random variables
U1, . . . ,Uq ←$ [N ]∗ := {0, 1}n \ {0n}. Let us denote by P0 the probability distribution of U1, . . . ,Uq. By
simple algebra, we have dTV(P0,P2) ≤ q/2n. Also, using triangle inequality4, we have

Advprf
XOR(A) ≤ dTV(P0,P1) + q/2n.

At this point, the χ2 method (i.e., Theorem 1) gives an upper bound on dTV(P0,P1). The rest of the

proof is devoted to show dTV(P0,P1) ≤ 0.5q+3
√
q

2n .
For every non-zero x1, . . . , xi, we clearly have P0|xi−1(xi) = 1/(N − 1). For simplicity, let us denote

by Yi,x the conditional probability P1|xi−1(x) which is also a function over xi−1. When xi−1 is chosen
following the distribution of Xi−1, we denote Yi,x as Yi,x. From the definition of χ2 function corresponding
to (V1, . . . ,Vq) and (U1, . . . ,Uq), we have

χ2(xi−1) =
∑
x 6=0n

(N − 1)(Yi,x −
1

N − 1
)2. (7)

Now, we give a brief description of the rest but critical part of the proof where the authors provided
an upper bound on Ex[χ2(Xi−1)]. We keep the authors’ flow (suppressing some calculation which will
be denoted as ∗ ∗ ∗) and wordings. However, we change some of their notations in order to make them
consistent with our notation. Authors complete the proof as described below.

We now expand Yi,x into a more expressive and convenient formula to work with. ∗∗∗ Let

S = {V1,V2, . . . ,V2i−2}. Let Di,x be the number of pairs (u, u⊕x) such that both u and u⊕x
belongs to S. Note that S and Di,x are both random variables, and in fact functions of the

random variables V1,V2, . . . ,V2i−2. ∗ ∗ ∗ Hence,

Yi,x =
N − 4(i− 1) + Di,x

(N − 2i+ 1)(N − 2i)
. (8)

4 Triangle inequality of total variation metric can be easily shown from the triangle inequality in real numbers.
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∗ ∗ ∗(
Yi,x −

1

N − 1

)2

≤ 3(Di,x − 4(i− 1)2/N)2 + 18

N4
.

From Eq. 7,

Ex[χ2(Xi−1)] ≤
∑
x 6=0n

N ·Ex

[(
Yi,x −

1

N − 1

)2
]

(9)

≤
∑
x 6=0n

18

N3
+

3

N3
·Ex

[(
Di,x −

4(i− 1)2

N

)2
]

(10)

In the last formula, it is helpful to think of each Di,x as a function of V1,V2, . . . ,V2i−2,

and the expectation is taken over the choices of V1,V2, . . . ,V2i−2 sampled uniformly without

replacement from {0, 1}n. We will show that5 for any x ∈ {0, 1}n \ {0n},

Ex

[(
Di,x −

4(i− 1)2

N

)2
]
≤ 4(i− 1)2

N
(11)

and thus

Ex[χ2(Xi−1)] ≤ 18

N2
+

12(i− 1)2

N3
.

Summing up, from χ2-method

dTV(P0,P1) ≤

(
1

2

q∑
i=1

Ex[χ2(Xi−1)]

) 1
2

≤
3
√
q + .5q

N
. ut

4.1 Flaw in the Above Proof and its Repair

Let us revisit Eq. 8. Let us fix distinct v1, . . . , v2i−2 and define the set S = {v1, . . . , v2i−2}. Let Di,x denote
the number of pairs (u, u ⊕ x) such that both u and u ⊕ x belong to S. Let x1 = v1 ⊕ v2, . . . , xi−1 =
v2i−3 ⊕ v2i−2. Now, it is easy to see that

P(Xi = x|V1 = v1, . . . ,V2i−2 = v2i−2) =
N − 4(i− 1) +Di,x

(N − 2i+ 1)(N − 2i)
(12)

which appeared in the right hand side of Eq. 8. Whereas the left hand side of the equation is P(Xi =
x|X1 = x1, . . . ,Xi−1 = xi−1). Note that in general,

P(Xi = x|V1 = v1, . . . ,V2i−2 = v2i−2) = P(Xi = x|X1 = x1, . . . ,Xi−1 = xi−1) (13)

does not hold for every v1, . . . , v2i−2. Hence Eq. 8 is incorrect.

After observing this flaw in the proof, let us see how we can fix it. If we can prove Eq. 10 in some
other way, we can still continue with the rest of the proof. This can be proved if we can prove a variant
of the Eq. 8 as follows:

∑
x

Ex[(Yi,x − c)2] =
∑
x

Ex

[(
N − 4(i− 1) + Di,x

(N − 2i+ 1)(N − 2i)
− c
)2
]
,

5 Which has been shown later in the proof given by Dai et al. In this paper we don’t provide details on this
claim and so we skip this proof here.
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where c = 1/(N − 1). In other words,∑
x

Ex[(P(Xi = x|Xi−1)− c)2] =
∑
x

Ex[(P(Xi = x|V2i−2)− c)2].

The above equation is equivalent to

Ex
V2i−2

[
∑

x∈[N ]∗

P(Xi = x|V2i−2)2] = Ex
Xi−1

[
∑

x∈[N ]∗

P(Xi = x|Xi−1)2] (14)

It has been shown in Theorem 5 of [BN18a] that (14) is actually not true and strict inequality holds in
place of equality. However, the proof survives because of the following result. In [DHT17b], the authors
show this as part of the proof of Theorem 3 in a slightly different way using Jensen’s inequality.

Lemma 1 (Adapted from [DHT17b]).

Ex
V2i−2

[
∑

x∈[N ]∗

P(Xi = x|V2i−2)2] ≥ Ex
Xi−1

[
∑

x∈[N ]∗

P(Xi = x|Xi−1)2]

Proof . Let V2i−2 and X i−1 be the supports of V2i−2 and Xi−1 repectively. Therefore, V2i−2 =
{(v1, . . . , v2i−2)|v1, . . . , v2i−2 ∈ [N ] are distinct} and X i−1 = {(v1⊕v2, . . . , v2i−3⊕v2i−2)|v2i−2 ∈ V2i−2}.
Essentially we need to show the following.∑

v2i−2∈V2i−2

∑
x∈[N ]∗

P(Xi = x ∧ V2i−2 = v2i−2)2

P(V2i−2 = v2i−2)
≥

∑
xi−1∈X i−1

∑
x∈[N ]∗

P(Xi = x ∧ Xi−1 = xi−1)2

P(Xi−1 = xi−1)
(15)

Therefore, it is sufficient to show that the inequality in (15) is maintained for any fixed value of x ∈ [N ]∗.
For xi−1 ∈ X i−1 let Dxi−1 := {v2i−2 ∈ V2i−2|x1 = v1 ⊕ v2, . . . , xi−1 = v2i−3 ⊕ v2i−2}. Then Dxi−1 is
non-empty for each xi−1 ∈ X i−1 and {Dxi−1 |xi−1 ∈ ([N ]∗)i−1} is a partition of V2i−2. Now, for fixed
x ∈ [N ]∗, we have∑

v2i−2∈V2i−2

P(Xi = x ∧ V2i−2 = v2i−2)2

P(V2i−2 = v2i−2)
=

∑
xi−1∈X i−1

∑
v2i−2∈Dxi−1

P(Xi = x ∧ V2i−2 = v2i−2)2

P(V2i−2 = v2i−2)

Further,∑
xi−1∈X i−1

∑
v2i−2∈Dxi−1

P(Xi = x ∧ V2i−2 = v2i−2)2

P(V2i−2 = v2i−2)
=
∑

xi−1∈X i−1

P(Xi = x ∧ Xi−1 = xi−1)2

P(Xi−1 = xi−1)

∑
v2i−2∈Dxi−1

NUM2
v2i−2

DENv2i−2

,

where NUMv2i−2 = P(Xi=x∧V2i−2=v2i−2)
P(Xi=x∧Xi−1=xi−1) and DENv2i−2 = P(V2i−2=v2i−2)

P(Xi−1=xi−1) . Here, we mention that for

NUMv2i−2 and DENv2i−2 , numerator is zero only if the denominator is zero. Finally, it suffices to show

that
∑
v2i−2∈Dxi−1

NUM2
v2i−2

DENv2i−2
≥ 1. But this follows from the Cauchy-Schwarz inequality by noting that∑

v2i−2∈Dxi−1
NUMv2i−2 =

∑
v2i−2∈Dxi−1

DENv2i−2 = 1. ut

5 Subsequent Work

Subsequent to the publication of [BN18a] there have been few other applications of the χ2 method.
Below, we briefly outline the results obtained using this method. Recall that RPn←$Permn is a random
permutation of {0, 1}n.

1. In [Men19], the author studies a generalized truncation function. More precisely, the function is given
by

GTruncp(x) = post(x,RPn(x)),

where post : {0, 1}n×{0, 1}n 7→ {0, 1}m is a post-processing function. Here, it may be noted that the
post-processing function post takes the input (to the construction) as one of its inputs. When post
is balanced (that is, when each point in its image has the same number of preimages), the author
prove the folloiwng bound.
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Theorem 4 ([Men19]). Let q, n,m ∈ N be such that m ≤ n. For any distinguisher A making at
most q queries,

Advprf
GTrunc(A) ≤ 1

2

(
(2m − 1)q(q − 1)

(2n − 1)(2n − q + 1)

) 1
2

.

Similar type of bound was also shown for the case when post is not balanced.
2. In [CLL], the authors prove indifferentiability of the truncation function. More precisely, their trun-

cation function is defined as follows.

TRP[RPn] = Trm(RPn(c||.)),

where c ∈ {0, 1}` is a fixed prefix, and Trm : {0, 1}n 7→ {0, 1}n−m returns the rightmost n −m bits
of its input.

The authors prove that the construction is regularly indifferentiable up to min{2n+m
3 , 2m, 2`} queries,

and publicly indifferentiable 6 up to min{max{2n+m
3 , 2

n
2 }, 2`} queries. The previous best-known

bound (obtained in [DRRS09]) for regular indifferentiability of the construction was min{2m
2 , 2`}

queries.
3. In [CLMP17], the authors have introduced a length doubling construction 7 using tweakable block

ciphers (LDT). They have shown a birthday-bound (i.e., n
2 -bit) security of the construction. They

have also given an attack in 2n−
s
2 queries, where s is a parameter of the construction.

In [CMN18], the authors have used the χ2 method to show that the construction, in fact, achieves
beyond-birthday-bound security under certain conditions; the achieved security level goes up to 2n

3 -
bit. Further, they have shown that 3-round LDT (the original LDT construction of [CLMP17] is
composed of 2 rounds) achieves n-bit security under certain conditions.

Acknowledgement We thank the reviewers of the journal Cryptography and Communications for their
comments and suggestions which have improved the quality of our manuscript.
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Appendix A Proof of the χ2 method

In this section we provide proof of Theorem 1, which is the heart of the χ2 method. The proof is based
on Lemma 2, Lemma 3, and Theorem 5. Along the way we also briefly mention some (relevant) facts of
KL divergence and χ2 distance.

Kullback-Leibler Divergence. Kullback-Leibler divergence (KL divergence) or relative entropy be-
tween P0 to P1 is defined as

dKL(P0,P1) =
∑
X∈Ω

P0(X) log
P0(X)

P1(X)
.

Note that the KL divergence is defined only if P0 � P1 (with the convention that 0 log 0
0 = 0). It

was first defined by Kullback and Leibler in 1951 ([KL51]) as a generalization of the entropy notion of
Shannon (see [CT06]).

It can be shown that the KL divergence between any two distributions is always non-negative (known
as Gibbs’ inequality, see [CT06]). However, it is not symmetric (i.e., dKL(P0,P1) 6= dKL(P0,P1) in
general) and does not satisfy the triangle inequality. Thus, KL divergence is not a metric.

Though not a metric, KL divergence has some useful properties. For example, the KL divergence
between any two product distributions is additive over the corresponding marginals (see [CT06], [Rei12]).
The KL divergence between two joint distribution can be obtained as the sum of the KL divergences of
corresponding conditional distributions. This is known as the chain rule of KL divergence. It is one of
the crucial parts of the χ2 method. We elaborate it in more detail below.

Chain rule of KL divergence. Let Pq
0 and Pq

1 be two probability distributions over Ωq. We denote
Pi

0 and Pi
1 to represent the marginal probability distributions for first i coordinates of Pq

0 and Pq
1

respectively, 1 ≤ i ≤ q. In other words, if X := (X1, . . . ,Xq) and Y := (Y1, . . . ,Yq) are two joint random
variables following the probability distributions Pq

0 and Pq
1 then Pi

0 and Pi
1 represent the probability

distributions of Xi and Yi respectively. We recall that P0|xi−1(xi) denotes the conditional distribution
P(Xi = xi|Xi−1 = xi−1) and similarly P1|xi−1(xi). Moreover, KL(xi−1) = dKL(P0|xi−1 ,P1|xi−1). Now we
state chain rule of KL divergence.

Lemma 2 (Chain rule of KL divergence (see [CT06], Theorem 2.5.3)). Following the above
notations,

dKL(Pq
0,P

q
1) = dKL(P1

0,P
1
1) +

q∑
i=2

Ex[KL(Xi−1)].

Proof .

dKL(Pq
0,P

q
1) =

∑
xq∈Ωq

Pq
0(xq) log

(
Pq

0(xq)

Pq
1(xq)

)

=
∑
xq∈Ωq

Pq
0(xq) log

(∏q
i=1 P0|xi−1(xi)∏q
i=1 P1|xi−1(xi)

)

=
∑
xq∈Ωq

Pq
0(xq)

q∑
i=1

log

(
P0|xi−1(xi)

P1|xi−1(xi)

)

=

q∑
i=1

∑
xq∈Ωq

Pq
0(xq) log

(
P0|xi−1(xi)

P1|xi−1(xi)

)

=

q∑
i=1

∑
xi∈Ωi

Pi
0(xi) log

(
P0|xi−1(xi)

P1|xi−1(xi)

)

=

q∑
i=1

∑
xi∈Ωi

Pi−1
0 (xi−1)P0|xi−1(xi) log

(
P0|xi−1(xi)

P1|xi−1(xi)

)
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=

q∑
i=1

∑
xi−1∈Ωi−1

Pi−1
0 (xi−1)

∑
Xi

P0|xi−1(xi) log

(
P0|xi−1(xi)

P1|xi−1(xi)

)

=

q∑
i=1

∑
xi−1∈Ωi−1

Pi−1
0 (xi−1)KL(xi−1)

=

q∑
i=1

Ex[KL(Xi−1)] ut

The next inequality due to Pinsker (see [CT06]) gives an upper bound on the total variation distance
between two distributions in terms of their KL divergence.

Theorem 5 (Pinsker’s Inequality). For every probability functions P0,P1,

dTV(P0,P1) ≤
√

1

2
dKL(P0,P1).

Proof .We follow the steps of [Sli16]. Let Ω′ = {x ∈ Ω|P0(x) ≥ P1(x)}. Also, let pi =
∑
x∈Ω′ Pi(x) for

i ∈ {0, 1}. So, dTV(P0,P1) = p0 − p1. Also, by logsum inequality8, we have dKL(P0,P1) ≥ p0 log p0
p1

+

(1− p0) log (1−p0)
(1−p1) . Therefore,

dKL(P0,P1) ≥ p0 log
p0

p1
+ (1− p0) log

(1− p0)

(1− p1)

=

∫ p0

p1

(
p0

x
− (1− p0)

(1− x)

)
dx

=

∫ p0

p1

p0 − x
x(1− x)

dx

≥ 2(p0 − p1)2 = 2dTV(P0,P1)2, (since x(1− x) ≤ 1

4
).ut

χ2 distance. χ2 distance has its origin in mathematical statistics dating back to Pearson (see [LV87]
for some history). The χ2 distance between P0 and P1, with P0 � P1, is defined as

dχ2(P0,P1) :=
∑
x∈Ω

(P0(x)−P1(x))2

P1(x)
.

It can be seen that χ2 distance is not symmetric. Therefore, it is not a metric. However, like KL-
divergence, χ2 distance between product distributions can be bounded in terms of the χ2 distances
between their marginals (see [Rei12]). The following lemma shows that KL-divergence between two
distributions can be upper bounded by their χ2-distance. The first inequality can also be found in earlier
works (see [GS02] for this and many other relations among various distances used in Statistics).

Lemma 3. dKL(P0,P1) ≤ log(1 + dχ2(P0,P1)) ≤ dχ2(P0,P1).

Proof . By the definition of χ2-distance we have

log(1 + dχ2(P0,P1)) = log

(∑
x∈Ω

P0(x)
P0(x)

P1(x)

)

= log

(
Ex

[
P0(x)

P1(x)

])
8 Let a1, . . . , an and b1, . . . , bn be nonnegative numbers. We denote the sum

∑
i ai and

∑
i bi by a and b respec-

tively. The log sum inequality states that
∑n

i=1 ai log ai
bi
≥ a log a

b
.
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≥ Ex

[
log

(
P0(x)

P1(x)

)]
by Jensen’s inequality

=
∑
x∈Ω

P0(x) log

(
P0(x)

P1(x)

)
= dKL(P0,P1)

The last inequality follows by observing that dχ2(P0,P1)) ≥ 0 and log(1 + t) ≤ t for t ≥ 0. ut

A.1 Proof of Theorem 1

We are now ready to show the upper bound on dTV(Pq
0,P

q
1) in terms of expected value of χ2-distance

between the conditional distributions P0|xi−1 and P1|xi−1 . We state and prove the χ2 method, i.e.
Theorem 1.
Proof of Theorem 1. The proof follows directly from Pinsker’s inequality (Theorem 5), chain rule of
KL divergence (Lemma 2), and Lemma 3. More precisely, we have

dTV(Pq
0,P

q
1) ≤

(
dKL(Pq

0,P
q
1)

2

) 1
2

by Theorem 5

=

(
1

2

q∑
i=1

Ex[KL(Xi−1)]

) 1
2

by Lemma 2

≤

(
1

2

q∑
i=1

Ex[χ2(Xi−1)]

) 1
2

by Lemma 3 ut
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