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Abstract

Non-committing encryption (NCE) was introduced by Canetti et al. (STOC ’96). In-
formally, an encryption scheme is non-committing if it can generate a dummy ciphertext
that is indistinguishable from a real one. The dummy ciphertext can be opened to any
message later by producing a secret key and an encryption random coin which “explain” the
ciphertext as an encryption of the message. Canetti et al. showed that NCE is a central tool
to achieve multi-party computation protocols secure in the adaptive setting. An important
measure of the efficiently of NCE is the ciphertext rate, that is the ciphertext length divided
by the message length, and previous works studying NCE have focused on constructing NCE
schemes with better ciphertext rates.

We propose an NCE scheme satisfying the ciphertext rate O(log λ) based on the deci-
sional Diffie-Hellman (DDH) problem, where λ is the security parameter. The proposed
construction achieves the best ciphertext rate among existing constructions proposed in the
plain model, that is, the model without using common reference strings. Previously to our
work, an NCE scheme with the best ciphertext rate based on the DDH problem was the one
proposed by Choi et al. (ASIACRYPT ’09) that has ciphertext rate O(λ). Our construc-
tion of NCE is similar in spirit to that of the recent construction of the trapdoor function
proposed by Garg and Hajiabadi (CRYPTO ’18).

Keywords: Non-Committing Encryption, Decisional Diffie-Hellman Problem, Chameleon
Encryption
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1 Introduction

1.1 Background

Secure multi-party computation (MPC) allows a set of parties to compute a function of their
inputs while maintaining the privacy of each party’s input. Depending on when corrupted
parties are determined, two types of adversarial settings called static and adaptive have been
considered for MPC. In the static setting, an adversary is required to declare which parties it
corrupts before the protocol starts. On the other hand, in the adaptive setting, an adversary
can choose which parties to corrupt on the fly, and thus the corruption pattern can depend
on the messages exchanged during the protocol. Security guarantee in the adaptive setting is
more desirable than that in the static setting since the former naturally captures adversarial
behaviors in the real world while the latter is somewhat artificial.

In this work, we study non-committing encryption (NCE) which is introduced by Canetti,
Feige, Goldreich, and Naor [CFGN96] and known as a central tool to achieve MPC protocols
secure in the adaptive setting. NCE is an encryption scheme that has a special property called
non-committing property. Informally, an encryption scheme is said to be non-committing if
it can generate a dummy ciphertext that is indistinguishable from real ones, but can later be
opened to any message by producing a secret key and an encryption random coin that “explain”
the ciphertext as an encryption of the message. Cannetti et al. [CFGN96] showed how to create
adaptively secure MPC protocols by instantiating the private channels in a statically secure
MPC protocol with NCE.

Previous constructions of NCE and their ciphertext rate. The ability to open a dummy
ciphertext to any message is generally achieved at the price of efficiency. This is in contrast
to ordinary public-key encryption for which we can easily obtain schemes the size of whose
ciphertext is n+ poly(λ) by using hybrid encryption methodology, where n is the length of an
encrypted message and λ is the security parameter. The first NCE scheme proposed by Canetti
et al. [CFGN96] only needs the optimal number of rounds (that is, two rounds), but it has
ciphertexts of O(λ2)-bits for every bit of an encrypted message. In other words, the ciphertext
rate of their scheme is O(λ2), which is far from that of ordinary public-key encryption schemes.
Subsequent works have focused on building NCE schemes with better efficiency.

Beaver [Bea97] proposed a three-round NCE scheme with the ciphertext rate O (λ) based
on the decisional Diffie-Hellman (DDH) problem. Damg̊ard and Nielsen [DN00] generalized
Beaver’s scheme and achieved a three-round NCE scheme with ciphertext rate O(λ) based on a
primitive called simulatable PKE which in turn can be based on concrete problems such as the
DDH, computational Diffie-Hellman (CDH), and learning with errors (LWE) problems. Choi,
Dachman-Soled, Malkin, and Wee [CDMW09] further improved these results and constructed
a two-round NCE scheme with ciphertext rate O (λ) based on a weaker variant of simulatable
PKE called trapdoor simulatable PKE which can be constructed the factoring problem.

The first NCE scheme achieving a sub-linear ciphertext rate was proposed by Hemenway,
Ostrovsky, and Rosen [HOR15]. Their scheme needs only two rounds and achieves the cipher-
text rate O (log n) based on the ϕ-hiding problem which is related to (and generally believed to
be easier than) the RSA problem, where n is the length of messages. Subsequently, Hemenway,
Ostrovsky, Richelson, and Rosen [HORR16] proposed a two-round NCE scheme with the cipher-
text rate poly(log λ) based on the LWE problem. Canetti, Poburinnaya, and Raykova [CPR17]
showed that by using indistinguishability obfuscation, an NCE scheme with the asymptotically
optimal ciphertext rate (that is, 1 + o(1)) can be constructed. Their scheme needs only two
rounds but was proposed in the common reference string model.
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Rounds Ciphertext rate Assumption

Canetti et al. [CFGN96] 2 O
(
λ2

)
Common-domain TDP

Beaver [Bea97] 3 O (λ) DDH

Damg̊ard and Nielsen [DN00] 3 O (λ) Simulatable PKE

Choi et al. [CDMW09] 2 O (λ) Trapdoor simulatable PKE

Hemenway et al. [HORR16] 2 poly(log λ) LWE, Ring-LWE

Hemenway et al. [HOR15] 2 O (log n) Φ-hiding

Canetti et al. [CPR17](∗) 2 1 + o (1) Indistinguishability obfuscation

This work 2 O (log λ) DDH

Table 1: Comparison of existing NCE schemes. The security parameter is denoted byλ,
and the message length n. Common-domain TDP can be instantiated based on the CDH and
RSA problems. Simulatable and trapdoor simulatable PKE can be instantiated based on many
computational problems realizing ordinary PKE. (∗) This scheme uses common reference strings.

Despite the many previous efforts, as far as we know, we have only a single NCE scheme
satisfying a sub-linear ciphertext rate based on widely and classically used problems, that is,
the scheme proposed by Hemenway et al. [HORR16] based on the LWE problem. Since NCE is
an important cryptographic tool in constructing MPC protocols secure in the adaptive setting,
it is desirable to have more constructions of NCE satisfying a better ciphertext rate.

1.2 Our Contribution

We propose an NCE scheme satisfying the ciphertext rate O (log λ) based on the DDH prob-
lem. The proposed construction achieves the best ciphertext rate among existing constructions
proposed in the plain model, that is, the model without using common reference strings. The
proposed construction needs only two rounds, which is the optimal number of rounds for NCE.
Previously to our work, an NCE scheme with the best ciphertext rate based on the DDH prob-
lem was the one proposed by Choi et al. [CDMW09] that satisfies the ciphertext rate O (λ).
We summarize previous results on NCE and our result in Table 1.

We first show an NCE scheme that we call basic construction, which satisfies the ciphertext
rate poly(log λ). Then, we give our full construction satisfying the ciphertext rate O (log λ) by
extending the basic construction using error-correcting codes. Especially, in the full construc-
tion, we use a linear-rate error-correcting code which can correct errors of weight up to a certain
constant proportion of the codeword length.

Our construction of NCE utilizes a variant of chameleon encryption. Chameleon encryption
was originally introduced by Döttling and Garg [DG17b] as an intermediate tool for constructing
an identity-based encryption scheme based on the CDH problem. Roughly speaking, chameleon
encryption is public-key encryption in which we can use a hash value of a chameleon hash
function and its pre-image as a public key and a secret key, respectively. We show a variant of
chameleon encryption satisfying oblivious samplability can be used to construct an NCE scheme
with a sub-linear ciphertext rate. Informally, oblivious samplability of chameleon encryption
requires that a scheme can generate a dummy hash key obliviously to the corresponding trap-
door, and sample a dummy ciphertext that is indistinguishable from a real one, without using
any randomness except the dummy ciphertext itself.

Need for the DDH assumption. A key and a ciphertext of the CDH based chameleon
encryption proposed by Döttling and Garg [DG17b] together form multiple Diffie-Hellman tu-
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ples. Thus, it seems difficult to sample them obliviously unless we prove that the knowledge
of exponent assumption [HT98, BP04] is false. In order to solve this issue, we rely on the
DDH assumption instead of the CDH assumption. Under the DDH assumption, a hash key
and a ciphertext of our chameleon encryption are indistinguishable from independent random
group elements, and thus we can perform oblivious sampling of them by sampling random group
elements directly from the underlying group.

Public key size. As noted above, we first give the basic construction satisfying the cipher-
text rate poly(log λ), and then extend it to the full construction satisfying the ciphertext rate
O (log λ). In addition to satisfying only the ciphertext rate poly(log λ), the basic construction
also has a drawback that its public key size depends on the length of a message quadratically.

A public key of the basic construction contains ciphertexts of our obliviously samplable
chameleon encryption. The size of those ciphertexts is quadratic in the length of an input to the
associated chameleon hash function similarly to the construction by Döttling and Garg [DG17b].
Since the input length of the chameleon hash function is linear in the message length of the
basic construction, the public key size of the basic construction depends on the message length
quadratically.

Fortunately, we can remove this quadratic dependence by a simple block-wise encryption
technique. Thus, in the full construction, we utilize such a block-wise encryption technique in
addition to the error-correcting code. By doing so, we reduce not only the ciphertext rate to
O (log λ), but also the public key size to linear in the length of a message as in the previous
constructions of NCE.

Relation with trapdoor function by Garg and Hajiabadi [GH18]. There has been a
line of remarkable results shown by using variants of chameleon encryption, starting from the one
by Cho, Döttling, Garg, Gupta, Miao, and Polychroniadou [CDG+17]. This includes results on
identity-based encryption [DG17b, DG17a, DGHM18, BLSV18], secure MPC [CDG+17, GS18a],
adaptive garbling schemes [GS18b, GOS18], and so on. Garg and Hajiabadi [GH18] showed how
to realize trapdoor function (TDF) based on the CDH problem using a variant of chameleon
encryption called one-way function with encryption.1

Our construction of NCE can be seen as an extension of that of TDF by Garg and Hajiabadi.
Our formulation of chameleon encryption is based on that of one-way function with encryption.
Concretely, we define chameleon encryption so that it has recyclability introduced by Garg and
Hajiabadi as a key property in their work.

1.3 Paper Organization

Hereafter, in Section 2, we first review the definition of NCE. Then, in Section 3, we provide
high-level ideas behind our construction of NCE. In Section 4, we formally define and con-
struct obliviously samplable chameleon encryption. In Section 5, using obliviously samplable
chameleon encryption, we construct an NCE scheme that we call the basic construction satis-
fying the ciphertext rate poly(log λ). Finally, in Section 6, we improve the basic construction
and provide the full construction that achieves the ciphertext rate O (log λ).

1Their technique is further extended by Garg, Gay, and Hajiabadi [GGH19] and Döttling, Garg, Ishai, Mala-
volta, Mour, and Ostrovsky [DGI+19].
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2 Preliminaries

Let PPT denote probabilistic polynomial time. In this paper, λ always denotes the security

parameter. For a finite set X, we denote the uniform sampling of x from X by x
$← X.

y ← A(x; r) denotes that given an input x, a PPT algorithm A runs with internal randomness r,
and outputs y. A function f is said to be negligible if f(λ) = 2−ω(λ), and we write f(λ) = negl (λ)
to denote that f is negligible. Let Ham (x) denotes the Hamming weight of x ∈ {0, 1}n. E [X]
denotes expected value of X. [n] denotes {1, . . . , n}.

Lemma 1 (Chernoff bound) For a binomial random variable X. If E [X] ≤ µ, then for all

δ > 0, Pr [X ≥ (1 + δ)µ)] ≤ e−
δ2

2+δ
µ holds.

We provide the definition of the DDH assumption and its variants used in the proof of
Theorem 1. We first introduce the leftover hash lemma.

Lemma 2 (Leftover hash lemma) Let X and Y are sets. Let H := {H : X → Y } be a

universal hash family. Then, the distributions (H,H(x)) and (H, y) are
√

|Y |
4|X| -close, where

H
$← H, x $← X, and y

$← Y .

We review some computational assumptions. Below, we let G be a cyclic group of order p
with a generator g. We also define the function dh (·, ·) as dh

(
ga, gb

)
:= gab for every a, b ∈ Zp.

We start with the decisional Diffie-Hellman (DDH) assumption.

Definition 1 (Decisional Diffie-Hellman Assumption) We say that the DDH assumption
holds if for any PPT adversary A,

|Pr [A (g1, g2, dh (g1, g2)) = 1]− Pr [A (g1, g2, g3) = 1]| = negl (λ)

holds, where g1, g2, g3
$← G.

We introduce a lemma that is useful for the proof of oblivious samplability of our chameleon
encryption. We can prove this lemma by using the self reducibility of the DDH problem.

Lemma 3 Let n be a polynomial of λ. Let gi,b
$← G for every i ∈ [n] and b ∈ {0, 1}. We set

M := (gi,b)i∈[n],b∈{0,1} ∈ G2×n.
Then, if the DDH assumption holds, for any PPT adversary A, we have

|Pr [A (M,Mρ) = 1]− Pr [A (M,R) = 1]| = negl (λ) ,

where Mρ = (gρi,b)i∈[n],b∈{0,1} ∈ G2×n and R← G2×n.

We next define the hashed DDH assumption which is a variant of the DDH assumption.

Definition 2 (Hashed DDH Assumption) Let H = {HG : G→ {0, 1}ℓ} be a family of hash
functions. We say that the hashed DDH assumption holds with respect to H if for any PPT
adversary A, ∣∣Pr [A (HG, g1, g2, e) = 1]− Pr

[
A
(
HG, g1, g2, e

′) = 1
]∣∣ = negl (λ)

holds, where HG
$← H, g1, g2,

$← G, e = HG (dh (g1, g2)), and e′
$← {0, 1}ℓ.
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In this work, we use the hashed DDH assumption with respect to a hash family H whose
output length ℓ is small enough such as ℓ = poly(log λ) or O (log λ). In this case, by using a
family of universal hash functions H, we can reduce the hardness of the hashed DDH problem
to that of the DDH problem by relying on the leftover hash lemma. Formally, we have the
following lemma.

Lemma 4 Let H = {HG : G → {0, 1}ℓ} be a family of universal hash functions, where ℓ =
poly(log λ). Then, if the DDH assumption holds, the hashed DDH assumption with respect to
H also holds by the leftover hash lemma.

Non-Committing Encryption A non-committing encryption (NCE) scheme is a public-key
encryption scheme that has efficient simulator algorithms (Sim1,Sim2) satisfying the following
properties. The simulator Sim1 can generate a simulated public key pk and a simulated cipher-
text CT . Later Sim2 can explain the ciphertext CT as encryption of any plaintext. Concretely,
given a plaintext m, Sim2 can output a pair of random coins for key generation rGen and en-
cryption rEnc, as if pk was generated by the key generation algorithm with the random coin
rGen, and CT is encryption of m with the random coin rEnc.

Some previous works proposed NCE schemes that are three-round protocols. In this work,
we focus on NCE that needs only two rounds, which is also called non-committing public-key
encryption, and we use the term NCE to indicate it unless stated otherwise. Below, we introduce
the definition of NCE according to Hemenway et al. [HORR16].

Definition 3 (Non-Committing Encryption) A non-committing encryption scheme NCE

consists of the following PPT algorithms (Gen,Enc,Dec,Sim1, Sim2).

• Gen
(
1λ; rGen

)
: Given the security parameter 1λ, using a random coin rGen, it outputs a

public key pk and a secret key sk.

• Enc
(
pk,m; rEnc

)
: Given a public key pk and a plaintext m ∈ {0, 1}µ, using a random coin

rEnc, it outputs a ciphertext CT .

• Dec (sk, CT ): Given a secret key sk and a ciphertext CT , it outputs m or ⊥.

• Sim1

(
1λ
)
: Given the security parameter 1λ, it outputs a simulated public key pk, a simu-

lated ciphertext CT , and an internal state st.

• Sim2 (m, st): Given a plaintext m and a state st, it outputs random coins for key generation
rGen and encryption rEnc.

We require NCE to satisfy the following correctness and security.

Correctness NCE is called γ-correct, if for any plaintext m,

Pr[(pk, sk)← Gen
(
1λ; rGen

)
, CT ← Enc

(
pk,m; rEnc

)
,

m′ = Dec (sk, CT ) ;m = m′] ≥ γ.

When γ = 1 − negl (λ), we call it correct. Note that γ cannot be equal to 1 in the plain
model (i.e., the model without using common reference strings).
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Security For any stateful PPT adversary A, we define two experiments as follows.

ExpRealNCE,A ExpIdealNCE,A
(pk, sk)← Gen

(
1λ; rGen

)
(pk, CT, st)← Sim1

(
1λ
)

m← A (pk) m← A (pk)
CT ← Enc

(
pk,m; rEnc

) (
rGen, rEnc

)
← Sim2 (m, st)

out← A
(
CT, rGen, rEnc

)
out← A

(
CT, rGen, rEnc

)
We say that NCE is secure if

AdvNCE,A (λ) :=
∣∣∣Pr [out = 1 in ExpRealNCE,A

]
− Pr

[
out = 1 in ExpIdealNCE,A

]∣∣∣ = negl (λ)

holds for every PPT adversary A.

3 Ideas of Our Construction

In this section, we provide high-level ideas behind our construction of NCE.
As a starting point, we review the three-round NCE protocol proposed by Beaver [Bea97],

which contains a fundamental idea to build NCE from the DDH problem. Next, we show how to
extend it and construct a two-round NCE scheme whose ciphertext rate is O (λ). Then, we show
how to reduce the ciphertext rate to O (log λ), and obtain our main result. Finally, we state that
our resulting construction can be described by using a variant of chameleon encryption, and it
can be seen as an extension of trapdoor function proposed by Garg and Hajiabadi [GH18].

3.1 Starting Point: Beaver’s Protocol

Beaver’s NCE protocol essentiality executes two Diffie-Hellman key exchange protocols in par-
allel. This protocol can send a 1-bit message. The ciphertext rate is O (λ). We describe the
protocol below and in Figure 1.

Step1. LetG be a group of order p with a generator g. The sender picks a random bit z
$← {0, 1}

and an exponent ρz
$← Zp, and then sets Az = gρz . The sender also generates a random

group element A1−z
$← G obliviously, i.e., without knowing the discrete log of A1−z. The

sender sends (A0, A1) to the receiver and stores the secret sk = (z, ρz). The random coin
used in this step is (z, ρz, A1−z).

Step2. The receiver picks a random bit x
$← {0, 1} and an exponent αx

$← Zp, and then sets

Bx = gαx . The receiver also obliviously generates B1−x
$← G. Moreover, the receiver com-

putes ex = Ax
αx and obliviously samples e1−x

$← G. The receiver sends ((B0, B1), (e0, e1))
to the sender. The random coin used in this step is (x, αx, B1−x, e1−x).

Step3. The sender checks whether x = z holds or not, by checking if Bz
ρz = ez holds. With

overwhelming probability, this equation holds if and only if x = z. If x = z, the sender
sends w := z⊕m, and otherwise quits the protocol.

Step4. The receiver recovers the message by w ⊕ x.

We next describe the simulator for this protocol.

8



Sender Receiver

Input: m ∈ {0, 1}
z

$← {0, 1} x
$← {0, 1}

ρz
$← Zp αx

$← Zp

Az = gρz (A0, A1) Bx = gαx

A1−z
$← G −−−−−−−−−−−−−−→ B1−x

$← G
(e0, e1), (B0, B1) ex = Ax

αx

←−−−−−−−−−−−−−− e1−x
$← G

if Bz
ρz = ez w

w := z⊕m −−−−−−−−−−−−−−→ if w ̸= ⊥
else w := ⊥ Output: m = w ⊕ x

Figure 1: The description of Beaver’s protocol [Bea97].

Simulator The simulator simulates a transcript (A0, A1), ((B0, B1), (e0, e1)), and w as follows.

It generates ρ0, ρ1, α0, α1
$← Zp and sets

((A0, A1), (B0, B1), (e0, e1)) = ((gρ0 , gρ1), (gα0 , gα1), (gρ0α0 , gρ1α1)).

The simulator also generates w
$← {0, 1}.

The simulator can later open this transcript to both messages 0 and 1. In other words,
for both messages, the simulator can generate consistent sender and receiver random
coins. For example, when opening it to m = 0, the simulator sets x = z = w, and outputs
(w, ρw, A1−w) and (w,αw, B1−w, e1−w) as the sender’s and receiver’s opened random coins,
respectively.

Security Under the DDH assumption on G, we can prove that any PPT adversary A cannot
distinguish the pair of transcript and opened random coins generated in the real protocol
from that generated by the simulator. The only difference of them is that e1−x is generated
as a random group element in the real protocol, but it is generated as A1−x

α1−x = gρ1−xα1−x

in the simulation. When the real protocol proceeds to Step. 4, we have x = z with
overwhelming probability. Then, the random coins used by the sender and receiver (and
thus given to A) does not contain exponents of A1−x and B1−x, that is, ρ1−x and α1−x.

Thus, under the DDH assumption, A cannot distinguish randomly generated e1−x
$← G

from A1−x
α1−x = gρ1−xα1−x . Thus, this protocol is a secure NCE protocol.

This protocol succeeds in transmitting a message only when z = x, and otherwise it fails.
Note that even when z ̸= x, the protocol can transmit a message because in Step. 3, the sender
knows the receiver’s secret x. However, in that case, we cannot construct a successful simulator.
In order to argue the security based on the DDH assumption, we have to ensure that either one
pair of exponents (ρ0, α0) or (ρ1, α1) is not known to the adversary, but when z ̸= x, we cannot
ensure this.

Next, we show how to extend this protocol into a (two-round) NCE scheme and obtain an
NCE scheme with the ciphertext rate O (λ).

3.2 Extension to Two-Round NCE Scheme

As a first attempt, we consider an NCE scheme NCE1lin that is a natural extension of Beaver’s
three-round NCE protocol. Intuitively, NCE1lin is Beaver’s protocol in which the role of the

9



Receiver Sender

Input: m ∈ {0, 1}µ

z
$← {0, 1}n x

$← {0, 1}n

∀i ∈ [n], ρi
$← Zp ∀i ∈ [n], αi

$← Zp

Ai ,zi = gρi Bi ,xi = gαi

Ai ,1−zi
$← G

(
A1,0, . . . , An,0

A1,1, . . . , An,1

)
Bi ,1−xi

$← G

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ei ,xi = Ai ,xi
αi

ei ,1−xi
$← G

if Bi ,zi
ρi = ei ,zi

(
B1,0, . . . , Bn,0

B1,1, . . . , Bn,1

)
,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, w w = H(x)⊕m

xi := zi ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
else xi := 1− zi
Output: m = w ⊕H(x)

Figure 2: The description of NCElin.

sender and receiver is reversed, and the sender sends a message even when z and x are different.
Specifically, the receiver generates the public key pk = (A0, A1) and secret key (z, ρz), and the
sender generates the ciphertext CT = ((B0, B1), (e0, e1), w), where (A0, A1), (B0, B1), (e0, e1),
and w := x⊕m are generated in the same way as those in Beaver’s protocol. When decrypting
the CT , the receiver first recovers the value of x by checking whether Bρz

z = ez holds or not,
and then computes w ⊕ x.

Of course, NCE1lin is not a secure NCE scheme in the sense that we cannot construct a
successful simulator when z ̸= x for a similar reason stated above. However, we can fix this
problem and construct a secure NCE scheme by running multiple instances of NCE1lin.

In NCE1lin, if z coincides with x, we can construct a simulator similarly to Beaver’s protocol,
which happens with probability 1

2 . Thus, if we run multiple instances of it, we can construct
simulators successfully for some fraction of them. Based on this observation, we construct an
NCE scheme NCElin as follows. We also describe NCElin in Figure 2.

Let the length of messages be µ and n = O (µ). We later specify the concrete relation of µ

and n. The receiver first generates z1 · · · zn = z
$← {0, 1}n. Then, for every i ∈ [n], the receiver

generates a pubic key of NCE1lin, (Ai ,0, Ai ,1) in which the single bit randomness is zi. We let the
exponent of Ai,zi be ρi, that is, Ai,zi = gρi . The receiver sends these n public keys of NCE1lin as
the public key of NCElin to the sender. The secret key is (z, ρ1, . . . , ρn).

When encrypting a message m, the sender first generates x1 · · · xn = x
$← {0, 1}n. Then,

for every i ∈ [n], the sender generates ((Bi,0, Bi,1), (ei,0, ei,1)) in the same way as NCE1lin (and
thus Beaver’s protocol) “encapsulates” xi by using the i-th public key (Ai ,0, Ai ,1). We call it
i-th encapsulation. Finally, the sender generates w = m ⊕ H(x), where H is a hash function
explained later in more detail.

The resulting ciphertext is((
B1,0, . . . , Bn,0

B1,1, . . . , Bn,1

)
,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, w

)
.

Decryption is done by recovering each xi in the same way as NCE1lin and computing w ⊕H(x).
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The simulator for this scheme runs as follows. It first generates z1 · · · zn = z
$← {0, 1}n

and x1 · · · xn = x
$← {0, 1}n. Then, for every index i ∈ [n] such that zi = xi, it simulates

the i-th public key and encapsulation in the same way as the simulator for NCE1lin (and thus
Beaver’s protocol). For every index i ∈ [n] such that zi ̸= xi, it simply generates i-th public key
and encapsulation in the same way as NCElin does in the real execution. Finally, it generates

w
$← {0, 1}µ.
Although the ciphertext generated by the simulator is not “fully non-committing” about x,

it loses the information of bits of x such that xi = zi. Thus, if we can program the output value
of the hash function H freely by programming only those bits of x, the simulator can later open
the ciphertext to any message, and we see that NCElin is a secure NCE scheme.

To realize this idea, we first set n = 8µ in order to ensure that the simulated ciphertext
loses the information of at least µ-bits of x with overwhelming probability. This is guaranteed
by the Chernoff bound. Moreover, as the hash function H, we use a matrix R ∈ {0, 1}µ×n,
such that randomly picked µ out of n column vectors of length µ are linearly independent. The
ciphertext rate of NCElin is O (λ), that is already the same as the best rate based on the DDH
problem achieved by the construction of Choi et al. [CDMW09].

3.3 Reduce The Ciphertext Rate

Finally, we show how to achieve the ciphertext rate O (log λ) by compressing the ciphertext of
NCElin. This is done by two steps. In the first step, we reduce the size of the first part of a
ciphertext of NCElin, that is, (

B1,0, . . . , Bn,0

B1,1, . . . , Bn,1

)
.

By this step, we compress it into just a single group element. Then, in the second step, we
reduce the size of the second part of a ciphertext of NCElin, that is,(

e1,0, . . . , en,0
e1,1, . . . , en,1

)
.

In this step, we compress each ei,b into a O (log λ)-bit string. By applying these two steps, we
can achieve the ciphertext rate O (log λ).

The second step is done by replacing each group element ei,b with a hash value of it. In
NCElin, they are used to recover the value of xi by checking Bρi

i,zi
= ei,zi . We can success-

fully perform this recovery process with overwhelming probability even if ei,b is hashed to a
poly(log λ)-bit string. Furthermore, with the help of an error-correcting code, we can reduce the
length of the hash value to O (log λ)-bit. In the remaining part, we explain how to perform the
first step.

Compressing a matrix of group elements into a single group element. We realize
that we do not need all of the elements {Bi ,b}i∈[n],b∈{0,1} to decrypt the ciphertext. Although
the receiver gets both Bi ,0 and Bi ,1 for every i ∈ [n], the receiver uses only Bi ,zi . Recall that
the receiver recovers the value of xi by checking whether Bρi

i,zi
= ei ,zi holds. This recovery of xi

can be done even if the sender sends only Bi ,xi , and not Bi ,1−xi .
This is because, similarly to the equation Bρi

i,zi
= ei ,zi , with overwhelming probability, the

equation Bρi
i,xi

= ei ,zi holds if and only if zi = xi. For this reason, we can compress the first part
of the ciphertext on NCElin into (B1,x1 , . . . , Bn,xn).

We further compress (B1,x1 , . . . , Bn,xn) into a single group element generated by multiplying
them, that is, y =

∏
j∈[n]Bj,xj . In order to do so, we modify the scheme so that the receiver
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can recover xi for every i ∈ [n] using y instead of Bi,xi . Concretely, for every i ∈ [n], the sender
computes ei ,xi as

ei ,xi =
∏
j∈[n]

A
αj

i,xi
,

where αj is the exponent of Bj,xj for every j ∈ [n] generated by the sender. The sender still
generates ei ,1−xi as a random group element for every i ∈ [n]. In this case, with overwhelming
probability, the receiver can recover xi by checking whether ei ,zi = yρi holds.

However, unfortunately, it seems difficult to prove the security of this construction. In order
to delete the information of xi for indices i ∈ [n] such that zi = xi as in the proof of NCElin, we
have to change the distribution of ei,1−xi from a random group element to

∏
j∈[n]A

αj

i,1−xi
so that

ei,0 and ei,1 are symmetrically generated. However, we cannot make this change by relying on
the DDH assumption since all αj are given to the adversary as a part of the sender random
coin. Thus, in order to solve this problem, we further modify the scheme and construct an NCE
scheme NCE as follows.

The resulting NCE scheme NCE. In NCE, the receiver first generates z
$← {0, 1}n and

{Ai,b}i∈[n],b∈{0,1} in the same way as NCElin. Moreover, instead of the sender, the receiver
obliviously generates Bi,b = gαi,b for every i ∈ [n] and b ∈ {0, 1}, and adds them into the public
key. Moreover, for every i ∈ [n], the receiver adds

{Bρi
j,b = A

αj,b

i,zi
}j∈[n],b∈{0,1} s.t. (j,b) ̸=(i,1−zi)

to the public key. In order to avoid the leakage of the information of z from the public key, for
every i ∈ [n], we have to add

{Aαj,b

i,1−zi
}j∈[n],b∈{0,1} s.t. (j,b)̸=(i,zi)

to the public key. However, the receiver cannot do it since the receiver generates Ai,1−zi oblivi-
ously. Thus, instead, the receiver adds the same number of random group elements into the pub-
lic key. At the beginning of the security proof, we can replace them with {Aαj,b

i,1−zi
}j∈[n],b∈{0,1} s.t. (j,b)̸=(i,zi)

by relying on the DDH assumption, and eliminate the information of z from the public key. For
simplicity, below, we suppose that the public key includes {Aαj,b

i,1−zi
}j∈[n],b∈{0,1} s.t. (j,b)̸=(i,zi) in-

stead of random group elements.

When encrypting a message m by NCE, the sender first generates x
$← {0, 1}n and computes

y =
∏

j∈[n]Bj,xj . Then, for every i ∈ [n], the sender computes ei,xi as

ei,xi =
∏
j∈[n]

A
αj,xj

i,xi
= yρi

just multiplying A
α1,x1
i,xi

, . . . , A
αn,xn
i,xi

included in the pubic key. Recall that Ai,xi = gρi . Note that

A
αi,1−zi
i,zi

is not included in the public key, but we do not need it to compute ei,xi . The sender
generates ei,xi as a random group element for every i ∈ [n] as before. The resulting ciphertext
is (

y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, Rx⊕m

)
.

The receiver can recover xi by checking whether ei ,zi = yρi holds, and decrypt the ciphertext.
By defining the simulator appropriately, the security proof of NCE proceeds in a similar way

to that of NCElin. In NCE, for indices i ∈ [n] such that zi = xi, we can eliminate the information
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of xi. We can change ei,1−xi from a random group element to
∏

j∈[n]A
αj,xj

i,1−xi
by relying on the

fact that A
αi,xi
i,1−xi

is indistinguishable from a random group element by the DDH assumption.
By this change, ei,0 and ei,1 become symmetric and the ciphertext loses the information of xi.
Then, the remaining part of the proof goes through in a similar way as that of NCElin except
the following point. In NCE, the first component of the ciphertext, that is, y =

∏
j∈[n]Bj,xj has

the information of x. In order to deal with the issue, in our real construction, we replace y with

gr
∏

j∈[n]Bj,xj , where r
$← Zp. Then, y no longer leaks any information of x. Moreover, after

y is fixed, for any x′ ∈ {0, 1}n, we can efficiently find r′ such that y = gr
′ ∏

j∈[n]Bj,x′j . This is
important to ensure that the simulator of NCE runs in polynomial time.

3.4 Abstraction by Chameleon Encryption

We can describe NCE by using obliviously samplable chameleon encryption. Informally, chameleon
encryption is public-key encryption whose public key corresponds to the output of a chameleon
hash function, and whose secret key corresponds to the preimage of that hash. In the construc-
tion of NCE, gr

∏
j∈[n]Bj,xj can be seen as an output of the chameleon hash function

H(x; r) = gr
∏
j∈[n]

Bj,xj ,

where {Bi,b}i∈[n],b∈{0,1} is the hash key. Moreover, by defining chameleon encryption as key
encapsulation mechanism instead of public-key encryption2, group elements contained in the
public key and {ei,b}i∈[n],b∈{0,1} together form multiple ciphertexts of an chameleon encryption
scheme. Oblivious samplability of chameleon encryption makes it possible to deal with the above
stated issue of sampling random group elements instead of {Aαj,b

i,1−zi
}j∈[n],b∈{0,1} s.t. (j,b)̸=(i,zi) for

every i ∈ [n].

Relation with trapdoor function of Garg and Hajiabadi. We finally remark that the
construction of NCE can be seen as an extension of that of trapdoor function (TDF) proposed
by Garg and Hajiabadi [GH18].

If we do not add the random mask gr to y =
∏

j∈[n]Bj,xj , the key encapsulation part of a
ciphertext of NCE, that is, (

y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

))
is the same as an output of the TDF constructed by Garg and Hajiabadi. The major difference
between our NCE scheme and their TDF is the secret key. A secret key of their TDF contains
all discrete logs of {Ai,b}i∈[n],b∈{0,1}, that is, {ρi,b}i∈[n],b∈{0,1}. On the other hand, a secret key
of our NCE scheme contains half of them corresponding to the bit representation of z, that is,
{ρi,zi}i∈[n]. Garg and Hajiabadi already stated that their TDF can be inverted with {ρi,zi}i∈[n]
for any z ∈ {0, 1}n, and use this fact in the security proof of a chosen ciphertext security of
a public-key encryption scheme based on their TDF. By explicitly using this technique in the
construction, we achieve non-committing property.

We observe that construction techniques for TDF seem to be useful for achieving NCE. En-
cryption schemes that can recover an encryption random coin with a message in the decryption
process, such as those based on TDFs, is said to be randomness recoverable. For randomness

2In other words, we define it so that it satisfies a property called recyclability introduced by Garg and
Hajiabadi [GH18]. For more details, see Remark 1 in the next section.
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recoverable schemes, receiver non-committing property is sufficient to achieve full (that is, both
sender and receiver) non-committing property. This is because an encryption random coin can
be recovered from a ciphertext by using a key generation random coin.

4 Obliviously Samplable Chameleon Encryption

Chameleon encryption was originally introduced by Döttling and Garg [DG17b]. In this work,
we introduce a variant of chameleon encryption satisfying oblivious samplability.

4.1 Definiton

We start with the definition of the chameleon hash function.

Definition 4 (Chameleon Hash Function) A chameleon hash function consists of the fol-
lowing PPT algorithms

(
K,H,H−1

)
. Below, we let the input space and randomness space of H

be {0, 1}n and RH, respectively, where n = O(λ).

• K
(
1λ
)
: Given the security parameter 1λ, it outputs a hash key k and a trapdoor t.

• H (k, x; r): Given a hash key k and input x ∈ {0, 1}n, using randomness r ∈ RH, it outputs
a hash value y.

• H−1 (t, (x, r), x′): Given a trapdoor t, an input to the hash x, randomness for the hash r
and another input to the hash x′, it outputs randomness r′.

A chameleon hash function is required to satisfy the following trapdoor collision property.3

Trapdoor Collision For all x, x′ ∈ {0, 1}n and hash randomness r ∈ RH, H (k, x; r) = H(k, x′; r′)
holds, where (k, t)← K

(
1λ
)
, r′ ← H−1 (t, (x, r), x′). Moreover, if r is sampled uniformly at

random, then so is r′.

Next, we define the chameleon encryption.

Definition 5 (Chameleon Encryption) Chameleon encryption (CE) consists of a chameleon
hash function

(
K,H,H−1

)
and the following PPT algorithms (E1,E2,D). Below, we let the input

space and randomness space of H are {0, 1}n and RH, respectively, where n = O(λ). We also let
the randomness space of E1 and E2 be RE. Moreover, we let the output space of E2 be {0, 1}ℓ,
where ℓ be a polynomial of λ.

• E1 (k, (i , b); ρ): Given a hash key k and index i ∈ [n] and b ∈ {0, 1}, using a random coin
ρ ∈ RE, it outputs a ciphertext ct.

• E2 (k, y; ρ): Given a hash key k and a hash value y, using a random coin ρ ∈ RE, it outputs
e ∈ {0, 1}ℓ.

• D (k, (x, r), ct): Given a hash key k, a pre-image of the hash (x, r) and a ciphertext ct, it
outputs e ∈ {0, 1}ℓ or ⊥.

Chameleon encryption must satisfy the following correctness and security.

Correctness For all k output by K
(
1λ
)
, i ∈ [n], x ∈ {0, 1}n, r ∈ RH, and ρ ∈ RE, E2 (k, y; ρ) =

D (k, (x, r), ct) holds, where y← H (k, x; r) and ct← E1(k, (i , xi); ρ).

3Usually, a chameleon hash function is required to be collision resistant, but we omit it since it is implied by
the security of chameleon encryption defined later.
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Security For any stateful PPT adversary A, we define the following experiments.

Exp0CE,A Exp1CE,A
(x, r, i)← A

(
1λ
)

(x, r, i)← A
(
1λ
)

(k, t)← K
(
1λ
)

(k, t)← K
(
1λ
)

ct← E1(k, (i , 1− xi); ρ) ct← E1(k, (i , 1− xi); ρ)

e← E2(k,H(k, x; r); ρ) e
$← {0, 1}ℓ

out← A (k, ct, e) out← A (k, ct, e)

We say CE is secure if

AdvCE,A (λ) :=
∣∣Pr [out = 1 in Exp0CE,A

]
− Pr

[
out = 1 in Exp1CE,A

]∣∣ = negl (λ)

holds for every PPT adversary A.

Remark 1 (On the recyclability) The above definition of chameleon encryption is slightly
different from that of Döttling and Garg [DG17b] since we define it so that it satisfies a property
called recyclability introduced by Garg and Hajiabadi [GH18] when defining a primitive called
one-way function with encryption that is similar to chameleon encryption.

More specifically, in our definition, there are two encryption algorithms E1 and E2. E1

outputs only a key encapsulation part and E2 outputs only a session key part. In the original
definition by Döttling and Garg, there is a single encryption algorithm that outputs the key
encapsulation part and a message masked by the session key part at once. Importantly, an
output of E1 does not depend on a hash value y. This makes possible to relate a single output
of E1 with multiple hash values. (In other words, a single output of E1 can be recycled for
multiple hash values.) We need this property in the construction of NCE and thus adopt the
above definition.

We then introduce our main tool, that is, obliviously samplable chameleon encryption (obliv-
iously samplable CE).

Definition 6 (Obliviously Samplable Chameleon Encryption) Let CE = (K,H,H−1,E1,E2,D)

be a chameleon encryption scheme. We define two associated PPT algorithms K̂ and Ê1 as fol-
lows.

• K̂
(
1λ
)
: Given the security parameter 1λ, it outputs only a hash key k̂ without using any

randomness other than k̂ itself.

• Ê1

(
k̂, (i, b)

)
: Given a hash key k̂ and index i ∈ [n] and b ∈ {0, 1}, it outputs a ciphertext

ĉt without using any randomness except ĉt itself.

For any PPT adversary A, we also define the following experiments.

Expos-0CE,A Expos-1CE,A
(k, t)← K

(
1λ
)

k̂← K̂
(
1λ
)

out← AO(·,·) (k) out← AÔ(·,·)
(
k̂
)

The oracles O(·, ·) and Ô(·, ·) are defined as follows.

• O(i, b): Given an index i ∈ [n] and b ∈ {0, 1}, it returns ct ← E1 (k, (i , b) ; ρ) using
uniformly random ρ.
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• Ô(i, b): Given an index i ∈ [n] and b ∈ {0, 1}, it returns ĉt← Ê1

(
k̂, (i , b)

)
.

We say that CE is obliviously samplable if

AdvosCE,A (λ) :=
∣∣Pr [out = 1 in Expos-0CE,A

]
− Pr

[
out = 1 in Expos-1CE,A

]∣∣ = negl (λ)

holds for every PPT adversary A.

We define another correctness of obliviously samplable CE necessary to assure the correctness
of our NCE.

Definition 7 (Correctness under Obliviously Sampled Keys) An obliviously samplable

CE (CE, K̂, Ê1) is correct under obliviously sampled keys if for all k̂ output by K̂, i ∈ [n], x ∈
{0, 1}n, r ∈ RH, and ρ ∈ RE, E2

(
k̂, (i , b); ρ

)
= D

(
k̂, (x, r), ct

)
holds, where y ← H

(
k̂, x; r

)
and

ct← E1

(
k̂, (i , xi); ρ

)
.

4.2 Construction

We construct an obliviously samplable CE CE =
(
K,H,H−1, E1,E2,D, K̂, Ê1

)
based on the

hardness of the DDH problem.
Let G be a cyclic group of order p with a generator g. In the construction, we use a

universal hash family H = {HG : G→ {0, 1}ℓ}. Below, let HG be a hash function sampled from
H uniformly at random, and it is given to all the algorithms implicitly.

K
(
1λ
)
:

• For all i ∈ [n], b ∈ {0, 1}, sample αi ,b
$← Zp and set gi ,b := gαi,b .

• Output

k :=

(
g,

(
g1,0, . . . , gn,0
g1,1, . . . , gn,1

))
and t :=

(
α1,0, . . . , αn,0

α1,1, . . . , αn,1

)
. (1)

H (k, x; r) :

• Sample r
$←RH = Zp and output y = gr

∏
i∈[n] gi ,xi .

H−1 (t, (x, r), x′) :

• Parse t as in equation 1.

• Output r′ := r +
∑

i∈[n]

(
αi ,xi − αi ,x′i

)
.

E1 (k, (i , b); ρ) :

• Parse k as in equation 1.

• Sample ρ
$←RE = Zp and compute c := gρ.

• Compute ci ,b := (gi ,b)
ρ and ci ,1−b := ⊥.

• For all j ∈ [n] such that j ̸= i , compute cj,0 := (gj,0)
ρ and cj,1 := (gj,1)

ρ

• Output

ct :=

(
c,

(
c1,0, . . . , cn,0
c1,1, . . . , cn,1

))
. (2)
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E2 (k, y; ρ) :

• Output e← HG (yρ).

D (k, (x, r), ct) :

• Parse ct as in equation 2.

• Output e← HG

(
cr
∏

i∈[n] ci ,xi

)
.

K̂
(
1λ
)
:

• For all i ∈ [n] and b ∈ {0, 1}, sample gi ,b
$← G.

• Output k̂ :=

(
g,

(
g1,0, . . . , gn,0
g1,1, . . . , gn,1

))
.

Ê1

(
k̂, (i , b)

)
:

• Set ĉi ,1−b := ⊥, and sample ĉ
$← G and ĉi ,b

$← G.

• For all j ∈ [n] such that j ̸= i, sample ĉj,0
$← G and ĉj,1

$← G.

• Output ĉt :=

(
ĉ,

(
ĉ1,0, . . . , ĉn,0
ĉ1,1, . . . , ĉn,1

))
.

Theorem 1 CE is an obliviously samplable CE scheme assuming the hardness of the DDH
problem.

The trapdoor collision property, correctness, and correctness under obliviously sampled keys
of CE directly follow from the construction of CE. Below, we first prove the security of CE under
the hashed DDH assumption with respect to H. We then prove the oblivious samplability of
CE under the DDH assumption.

Security. Let A be an adversary against the security of CE. We construct a reduction algo-
rithm A′ which solves the hashed DDH problem using A.

Given (HG, g1, g2, e), A′ first runs (x, r, i) ← A(1λ), and generates k as follows. For all

(j, b) ∈ [n] × {0, 1} such that (j, b) ̸= (i, xi), A′ samples αj,b
$← Zp and sets gj,b := gαj,b ,

gi ,xi := g1/
(
gr

∏
j ̸=i gj,xj

)
and

k :=

(
g,

(
g1,0, . . . , gn,0
g1,1, . . . , gn,1

))
.

Next, A′ generates ct as follows. A′ first sets c := g2 and ci ,xi := ⊥. Then for all (j, b) ∈
[n]× {0, 1} such that (j, b) ̸= (i, xi), A′ sets cj,b := g2

αj,b . A′ sets the ciphertext to

ct :=

(
c,

(
c1,0, . . . , cn,0
c1,1, . . . , cn,1

))
.

Finally, A′ outputs what A (k, ct, e) does.
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k and ct generated byA′ distribute identically to those output by K
(
1λ
)
and E1 (k, (i , 1− xi); ρ),

respectively. A′ perfectly simulates Exp0CE,A to A if e = HG (dh (g1, g2)) because we have

E2 (k, y; ρ) = HG

dh

gr
∏
i∈[n]

gi ,xi , c

 = HG (dh (g1, g2)) = e.

On the other hand, if e
$← {0, 1}ℓ, A′ perfectly simulates Exp1CE,A to the adversary. Thus, it

holds that AdvCE,A (λ) = negl (λ) under the hash DDH assumption with respect to H.
This completes the security proof of CE.

Oblivious Samplability. Let A be an PPT adversary that attacks oblivious samplability of
CE and makes q queries to its oracle. We prove that the probability that A outputs 1 in Expos-0CE,A
is negligibly close to that in Expos-1CE,A. The detailed description of these experiments is as follows.

Expos-0CE,A: A is given a hash key k output by K and can access to the oracleO(i, b) = E1 (k, (i , b); ρ),
where i ∈ [n], b ∈ {0, 1}, and ρ← Zp. Concretely, O(i, b) behaves as follows.

• Sample ρ uniformly from Zp, and let c := gρ. For all j ̸= i , let cj,0 := (gj,0)
ρ and

cj,1 := (gj,1)
ρ, and let ci ,b := (gi ,b)

ρ and ci ,1−b := ⊥. Return ct :=

(
c,

(
c1,0, . . . , cn,0
c1,1, . . . , cn,1

))
.

Expos-1CE,A: A is given a hash key k̂ output by K̂ and can access to the oracle Ô(i, b) = Ê1

(
k̂, (i , b)

)
,

where i ∈ [n] and b ∈ {0, 1}. Concretely, Ô(i, b) behaves as follows.

• Let ĉi ,1−b := ⊥, and sample ĉ, ĉi ,b , and ĉj,0 and ĉj,1 for all j ̸= i uniformly from G.

Return ĉt :=

(
ĉ,

(
ĉ1,0, . . . , ĉn,0
ĉ1,1, . . . , ĉn,1

))
.

We define Exp j for every j ∈ {0, . . . , q} that are intermediate experiments between Expos-0CE,A
and Expos-1CE,A as follows. Below, for two experiments Exp X and Exp Y , we write Exp X ≈ Exp Y
to denote that the probability that A outputs 1 in Exp X is negligibly close to that in Exp Y .

Exp j: This experiment is exactly the same as Expos-0CE,A except how queries made by A are
answered. For the j′-th query (i, b) ∈ [n] × {0, 1} made by A, the experiment returns

E1(k, (i, b); ρ) if j < j′, and Ê1 (k, (i , b)) otherwise.

We see that Exp 0 and Exp q are exactly the same experiment as Expos-0CE,A and Expos-1CE,A,

respectively. Note that A is given k output by K
(
1λ
)
and can access to the oracle Ê1 (k, (i , b))

in Exp q, but on the other hand, A is given k̂ output by K̂
(
1λ
)
and can access to the oracle

Ê1

(
k̂, (i , b)

)
in Expos-1CE,A. However, this is not a problem since k output by K

(
1λ
)
and k̂ output

by K̂
(
1λ
)
distribute identically in our construction. For every j ∈ [q], Exp j − 1 ≈ Exp j directly

follows from Lemma 3. Therefore, we have Expos-0CE,A ≈ Expos-1CE,A under the DDH assumption. From
the above arguments, CE satisfies oblivious samplability under the DDH assumption.

This completes the proof of Theorem 1.

5 Basic Construction of Proposed NCE

In this section, we present our NCE scheme with ciphertext rate poly(log λ) from an obliviously
samplable CE. We call this construction basic construction. In Section 6, improving the basic
construction, we describe our full construction of NCE which achieves ciphertext rate O (log λ).
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Receiver Sender

z
$← {0, 1}n, k← K̂

(
1λ
)

Input: m ∈ {0, 1}µ

∀i ∈ [n], ρi
$←RE.

cti ,zi = E1(k, (i , zi); ρi) x
$← {0, 1}n

cti ,1−zi ← Ê1(k, (i , 1− zi)) r
$←RH.(

k,

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

))
y← H (k, x; r)

−−−−−−−−−−−−−−−−−−→ ∀i ∈ [n],
ei ,xi = D (k, (x, r), cti ,xi )

ei ,1−xi
$← {0, 1}ℓ

if ei ,zi = E2 (k, y; ρi)

(
y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, w

)
w = Rx⊕m

xi := zi ←−−−−−−−−−−−−−−−−−−
else xi := 1− zi
Output: m = w ⊕Rx

Figure 3: The description of NCE.

5.1 Construction

We use three parameters µ, n, and ℓ, all of which are polynomials of λ and concretely determined
later.

Let CE =
(
K,H,H−1,E1,E2,D, K̂, Ê1

)
be an obliviously samplable CE scheme. We let the

input length of H be n and let the output length of E2 (and thus D) be ℓ. We also let the
randomness spaces of H and E1 be RH and RE, respectively. Below, using CE, we construct an
NCE scheme NCE = (Gen,Enc,Dec, Sim1,Sim2) whose message space is {0, 1}µ.

In the construction, we use a matrix R ∈ {0, 1}µ×n, such that randomly picked µ out of n
column vectors of length µ are linearly independent. A random matrix satisfies such property
except for negligible probability [TV07].

We first describe (Gen,Enc,Dec) and show the correctness of NCE below. We also describe a
protocol when using NCE in Figure 3.

Gen
(
1λ; rGen

)
:

• Sample k← K̂
(
1λ
)
and z

$← {0, 1}n.

• For all i ∈ [n], sample ρi
$←RE.

• For all i ∈ [n] and b ∈ {0, 1}, compute

cti ,b ←

{
E1 (k, (i , b); ρi) (b = zi)

Ê1 (k, (i , b)) (b ̸= zi)
.

• Output

pk :=

(
k,

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

))
and sk := (z, (ρ1, . . . , ρn)) . (3)

The random coin rGen used in Gen is
(
k, z, {ρi}i∈[n], {cti ,1−zi}i∈[n]

)
.
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Enc
(
pk,m; rEnc

)
:

• Sample x
$← {0, 1}n and r

$←RH.

• Compute y← H (k, x; r).

• For all i ∈ [n] and b ∈ {0, 1}, compute

ei ,b ←

{
D (k, (x, r), cti ,b) (b = xi)

{0, 1}ℓ (b ̸= xi)
.

• Compute w ← Rx⊕m.

• Output

CT :=

(
y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, w

)
. (4)

The random coin rEnc used in Enc is
(
x, r, {ei ,1−xi}i∈[n]

)
.

Dec (sk, CT ):

• Parse sk and CT as the equations 3 and 4, respectively.

• For all i ∈ [n], set

xi :=

{
zi (ei ,zi = E2 (k, y; ρi))

1− zi (otherwise)
.

• Output m := Rx⊕ w.

By setting ℓ = poly(log λ), NCE is correct. Formally, we have the following theorem.

Theorem 2 Let ℓ = poly(log λ). If CE is correct under obliviously sampled keys, then NCE is
correct.

Proof Due to the correctness under obliviously sampled keys of CE, the recovery of xi fails only

when zi ̸= xi happens and ei ,1−xi
$← {0, 1}ℓ coincides with E2 (k, y; ρi). Thus, the probability of

decryption failure is bounded by

Pr [m ̸= Dec (sk, CT )]

≤Pr
[
∃i ∈ [n], ei ,1−xi

$← {0, 1}ℓ; ei ,1−xi = E2 (k, y; ρi)
]
≤ n

2ℓ
.

Note that at the last step, we used the union bound. Since n = O (λ), the probability is negligible
by setting ℓ = poly(log λ). Therefore NCE is correct.

Intuition for the simulators and security proof. The description of the simulators
(Sim1, Sim2) of NCE is somewhat complex. Thus, we give an overview of the security proof
for NCE before describing them. We think this will help readers understand the construction of
simulators.

In the proof, we start from the real experiment ExpReal
NCE,A, where A is an PPT adversary

attacking the security of NCE. We then change the experiment step by step so that, in the final
experiment, we can generate the ciphertext CT given to A without the message m chosen by
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A, which can later be opened to any message. The simulators (Sim1,Sim2) are defined so that
they simulate the final experiment.

In ExpReal
NCE,A, CT is of the form

CT :=

(
y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, Rx⊕m

)
.

Informally,

(
y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

))
encapsulates x ∈ {0, 1}n, and Rx⊕m is a one-time encryption

of m ∈ {0, 1}µ by x. If we can eliminate the information of x from the encapsulation part,
CT becomes statistically independent of m. Thus, if we can do that, the security proof is
almost complete since in that case, CT can be simulated without m and later be opened to any
message. While we cannot eliminate the entire information of x from the encapsulation part,
we can eliminate the information of µ out of n bits of x from the encapsulation part, and it is
enough to make CT statistically independent of m. Below, we briefly explain how to do it.

We first change

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

)
contained in pk so that every cti,b is generated as cti,b ←

E1 (k, (i , b); ρi,b), and set ρi := ρi,zi , where z ∈ {0, 1}n is a random string generated in Gen. We
can make this change by the oblivious samplability of CE.

Next, by using the security of CE, we try to change the experiment so that for every i ∈ [n],
ei,0 and ei,1 contained in CT are symmetrically generated in order to eliminate the information
of xi from the encapsulation part. Concretely, for every i ∈ [n], we try to change ei,1−xi from a
random string to

ei,b ← D (k, (x, r), cti ,1−xi) = E2 (k, y; ρi,1−xi) .

Unfortunately, we cannot change the distribution of every ei,1−xi because some of ρi,1−xi is
given to A as a part of rGen. Concretely, for i ∈ [n] such that zi ̸= xi, ρi = ρi,zi = ρi,1−xi is given
to A and we cannot change the distribution of ei,1−xi . On the other hand, for i ∈ [n] such that
zi = xi, we can change the distribution of ei,1−xi .

In order to make clear which index i ∈ [n] we can change the distribution of ei,1−xi , in the
proof, we replace z with z′ = x⊕ z. Then, we can say that for i ∈ [n] such that zi = 0, we can
change the distribution of ei,1−xi . Since z is chosen uniformly at random, due to the Chernoff
bound, we can ensure that the number of such indices is greater than µ with overwhelming
probability by setting n and µ appropriately. Namely, we can eliminate the information of µ
out of n bits of x from CT . At this point, CT becomes statistically independent of m, and we
almost complete the security proof. Note that y itself does not have any information of x. To
make this fact clear, in the proof, we add another step using the trapdoor collision property of
CE after using the security of CE.

To complete the proof formally, we have to ensure that CT can later be opened to any
message efficiently (i.e., in polynomial time). This is possible by using a matrix R ∈ {0, 1}µ×n,
such that randomly picked µ out of n column vectors of length µ are linearly independent. For
more details, see the formal security proof in Section 5.2.

We now show the simulators (Sim1,Sim2).

Sim1

(
1λ
)
:

• Sample (k, t)← K
(
1λ
)
.

• For all i ∈ [n] and b ∈ {0, 1}, sample ρi ,b
$←RE and compute cti ,b ← E1 (k, (i , b); ρi ,b).
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• Sample z
$← {0, 1}n, x $← {0, 1}n 4, and r

$←RH.

• Compute y← H (k, 0n; r) and sample w
$← {0, 1}µ.

• For all i ∈ [n] and b ∈ {0, 1}, compute

ei ,b ←

{
E2 (k, y; ρi ,b) (b = xi ∨ zi = 0)

{0, 1}ℓ (b ̸= xi ∧ zi = 1)
.

• Output

pk :=

(
k,

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

))
, CT :=

(
y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, w

)
,

and st := (t, z, x, r).

Sim2 (m, st):

• Sample x′ at random from {0, 1}n under the condition that Rx′ = m⊕w and xi = x′i
hold for every i ∈ [n] such that zi = 1.

• Compute r′ ← H−1 (t, (0n, r) , x′) and z′ := z⊕ x′.

• Output

rGen :=
(
k, z′,

{
ρi ,z′i

}
i∈[n],

{
cti ,1−z′i

}
i∈[n]

)
and rEnc :=

(
x′, r′,

{
ei ,1−x′i

}
i∈[n]

)
.

5.2 Security Proof

In this section, we prove the security of NCE. Formally, we prove the following theorem.

Theorem 3 Let µ = O (λ) and n = 8µ. If CE is an obliviously samplable CE, then NCE is
secure.

Proof Let A is a PPT adversary attacking the security of NCE. We define a sequence of
experiments Exp 0,...,Exp 6. Below, for two experiments Exp X and Exp Y , we write Exp X ≈
Exp Y (resp. Exp X ≡ Exp Y ) to denote that the probability that A outputs 1 in Exp X is
negligibly close to (resp. the same as) that in Exp Y .

Exp 0: This experiment is exactly the same as ExpRealNCE,A. The detailed description is as follows.

1. The experiment first samples k ← K̂
(
1λ
)
and z

$← {0, 1}n. Then, for all i ∈ [n], it

samples ρi
$←RE. Next, for all i ∈ [n] and b ∈ {0, 1}, it computes

cti ,b ←

{
E1 (k, (i , b); ρi) (b = zi)

Ê1 (k, (i , b)) (b ̸= zi)
.

It sets

pk :=

(
k,

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

))
and rGen :=

(
k, z, {ρi}i∈[n], {cti ,1−zi}i∈[n]

)
.

Finally, it runs m← A (pk). Note that rGen is used in the next step.

4Sim1 and Sim2 do not use xi for i such that zi = 0, but for simplicity, we generate whole x.
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2. The experiment samples x
$← {0, 1}n and r

$← RH. It then computes y ← H (k, x; r).
For all i ∈ [n] and b ∈ {0, 1}, it also computes

ei ,b ←

{
D (k, (x, r), cti ,b) (b = xi)

{0, 1}ℓ (b ̸= xi)
.

It sets

CT :=

(
y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, Rx⊕m

)
and rEnc =

(
x, r, {ei ,1−xi}i∈[n]

)
.

Finally, it outputs out← A
(
CT, rGen, rEnc

)
.

Exp 1: This experiment is the same as Exp 0 except the followings. First, pk is generated
together with a trapdoor of the chameleon hash function t as (k, t)← K

(
1λ
)
instead of k←

K̂
(
1λ
)
. Moreover, all ciphertexts of chameleon encryption cti ,b are computed by E1, instead

of Ê1. Specifically, for every i ∈ [n] and b ∈ {0, 1}, the experiment samples ρi ,b
$←RE and

compute cti ,b ← E1 (k, (i , b); ρi ,b). Also, it sets rGen = (k, z, {ρi ,zi}i∈[n], {cti,1−zi}i∈[n]).

Lemma 5 Assuming the oblivious samplability of CE, Exp 0 ≈ Exp 1 holds.

Proof Using A, we construct a reduction algorithm A′O∗(·,·) that attacks the oblivious sampla-
bility of CE and makes n oracle queries.

1. On receiving a hash key k∗, A′ generates ρi
$←RE for every i ∈ [n] and sets the public key

as pk =

(
k∗,

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

))
, where

cti ,b ←

{
E1 (k

∗, (i , b); ρi) (b = zi)

O∗(i , b) (b ̸= zi)
.

A′O∗(·,·) also sets rGen =
(
k, z, {ρi}i∈[n], {cti ,1−zi}i∈[n]

)
. Then, A′O∗(·,·) runs A(pk) and

obtains m.

2. A′O∗(·,·) simulates the step 2. of Exp 0 and Exp 1, and outputs what A does. Note that
the step 2. of Exp 0 is exactly the same as that of Exp 1.

When playing Expos-0CE,A and Expos-1CE,A, A′ perfectly simulates Exp 0 and Exp 1 for A, respectively.
By the oblivious samplability of CE,

|Pr [out = 1 in Exp 0]− Pr [out = 1 in Exp 1]| = AdvosCE,A′ (λ) = negl (λ)

holds. This proves Exp 0 ≈ Exp 1.

Exp 2: This experiment is the same as Exp 1, except that we replace z contained in rGen by
z′ := z⊕ x.

Because z distributes uniformly at random, so does z′. Therefore, the distribution of the
inputs to A does not change between Exp 1 and Exp 2, and thus Exp 1 ≡ Exp 2 holds.
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Exp 3: The essential difference from Exp 2 in this experiment is that when zi = 0, ei ,1−xi is
computed by E2 (k, y; ρi ,1−xi ) instead of uniformly sampled from {0, 1}ℓ.
Additionally, each ei ,xi is replaced to E2 (k, y; ρi ,xi ) from D (k, (x, r), cti ,xi ), though this does
not change the distribution due to the correctness of CE. After all, for every i ∈ [n] and
b ∈ {0, 1}, the experiment computes

ei ,b ←

{
E2 (k, y; ρi ,b) (b = xi ∨ zi = 0)

{0, 1}ℓ (b ̸= xi ∧ zi = 1)
.

Lemma 6 If CE is correct and secure, Exp 2 ≈ Exp 3 holds.

Proof This proof is done by hybrid arguments. We define Exp 2j for every j ∈ {0, . . . , n} that
are intermediate experiments between Exp 2 and Exp 3 as follows.

Exp 2j: This experiment is exactly the same as Exp 2 except how ei ,b is generated for every
i ∈ [n]. For j < i ≤ n, ei ,b is generated as in Exp 2. For 1 ≤ i ≤ j, ei ,b is generated as
in Exp 3.

Exp 20 is equal to Exp 2, and Exp 2n is equal to Exp 3. In the following, we show Exp 2j−1 ≈
Exp 2j for all j ∈ [n].

In the case of zj = 1, except negligible probability, ej,xj distributes identically in Exp 2j−1

and Exp 2j because E2

(
k, y; ρj,xj

)
= D

(
k, (x, r), ctj,xj

)
holds with overwhelming probability due

to the correctness of CE. Moreover, ej,1−xj is generated in the same way in both experiments.
Thus Exp 2j−1 ≈ Exp 2j holds.

In the case of zj = 0, we show Exp 2j−1 ≈ Exp 2j by constructing a reduction algorithm A′

that uses A and attacks the security of CE. The description of A′ is as follows.

1. A′ samples x
$← {0, 1}n and r

$← RH, outputs (x, r, j), and receives (k∗, ct∗, e∗). Then,

A′ generates pk as follows. A′ first samples z
$← {0, 1}n and sets z′ = x ⊕ z. For every

(i, b) ∈ [n] × {0, 1} such that (i, b) ̸= (j, 1 − xj), A′ samples ρi,b
$← RE and computes

cti ,b ← E1 (k, (i , b); ρi ,b). A′ sets ctj,1−xj := ct∗,

pk :=

(
k∗,

(
ct1,0, . . . , ctn,0
ct1,1, . . . , ctn,1

))
and rGen =

(
k∗, z′, {ρi,z′i}i∈[n],

{
cti ,1−z′i

}
i∈[n]

)
.

Finally, A′ runs m← A (pk). Note that ρj,z′i = ρj,xj⊕zj = ρj,xj since we consider the case
of zj = 0, and thus A′ generates ρi,z′i by itself for every i ∈ [n].

2. A′ computes y ← H(k∗, x; r). For j < i ≤ n, A′ computes ei ,b as in Exp 2, and for
1 ≤ i < j, it does as in Exp 3. For i = j, A′ computes ej,xj ← E2

(
k, y; ρj,xj

)
and sets

ej,1−xj := e∗. Finally, A′ sets

CT :=

(
y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, Rx⊕m

)
and rEnc =

(
x, r, {ei ,1−xi}i∈[n]

)
,

and outputs out← A
(
CT, rGen, rEnc

)
.

When playing Exp1CE,A′, A′ simulates Exp 2j−1 for A. Also, when playing Exp0CE,A′, A′

simulates Exp 2j for A. By the security of CE,

|Pr [out = 1 in Exp 2j−1]− Pr [out = 1 in Exp 2j ]| = AdvCE,A′ (λ) = negl (λ)
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holds. From the above, we have

|Pr [out = 1 in Exp 2]− Pr [out = 1 in Exp 3]|

≤
∑
j∈[n]

|Pr[out = 1 in Exp 2j−1]− Pr[out = 1 in Exp 2j ]| = negl (λ) .

We can conclude Exp 2 ≈ Exp 3.

Exp 4: This experiment is the same as Exp 3 except how y and r are computed. In this experi-
ment, y is computed as y ← H (k, 0n; r). Moreover, the randomness r contained in rEnc is
replaced with r′ ← H−1 (t, (0n, r) , x).

Due to the trapdoor collision property of CE, the view of A does not change between Exp 3
and Exp 4. Thus, Exp 3 ≡ Exp 4 holds.

Exp 5: This experiment is the same as Exp 4, except that Rx is replaced with w
$← {0, 1}µ.

Moreover, the experiment computes r′ as r′ ← H−1 (t, (0n, r) , x′), and replaces x in rEnc

with x′, where x′ is a uniformly random string sampled from {0, 1}n under the following
two conditions:

• Rx′ = w holds.

• x′i = xi holds for every i ∈ [n] such that zi = 1.

Before showing Exp 4 ≈ Exp 5, we review a basic lemma on inversion sampling.

Lemma 7 For a function f : X → Y, we define two distributions D1 and D2 as D1 ={
(x, y) | x $← X , y = f(x)

}
and D2 =

{
(x′, y) | x $← X , y = f(x), x′

$← f−1(y)
}
, where f−1(y)

denotes the set of pre-images of y. Then, D1 and D2 are identical.

Furthermore, we define a distribution D3 as D3 =
{
(x′, y) | y $← Y, x′ $← f−1(y)

}
. If f has

a property that f(x) distributes uniformly at random over Y if the input x distributes uniformly
at random over X , D1 and D3 are identical.

Lemma 8 Exp 4 ≈ Exp 5 holds.

Proof According to the Chernoff bound on z,

Pr
[
Ham (z) ≥ (1 + δ)

n

2

]
≤ e−

δ2

2+δ
n
2

holds for any δ > 0. By taking δ = 1− 2µ
n , we have

Pr [Ham (z) ≥ n− µ] ≤ 2−λ = negl (λ) .

Below, we show that (x, Rx) in Exp 4 has the same distribution as (x′, w) in Exp 5 in the case
of Ham (z) < n− µ, and complete the proof of this lemma.

We first introduce some notations. For an integer ordered set I ⊂ [n], we define RI as the
restriction of R to I, that is RI = (r1| · · · |r|I|), where R = (r1| · · · |rn). We define xI in a
similar way.

Fix any z which satisfies Ham (z) < n− µ and set I = {ik ∈ [n] | zik = 0}. Because |I| ≥ µ,
RI is full rank due to the choice of R. Hence, RI · u is uniformly random over {0, 1}µ if u is
uniformly random over {0, 1}|I|.
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Then, from Lemma 7 when setting X := {0, 1}|I|,Y := {0, 1}µ, and f(u) = RI · u, the

distribution of (xI , RI · xI) and (u,w) are the same, where x
$← {0, 1}n, u

$← f−1(w) ={
u′ ∈ {0, 1}|I| | RI · u′ = w

}
, and w

$← {0, 1}µ. Moreover, we have Rx = RI ·xI⊕R[n]\I ·x[n]\I .
Since x′ sampled in Exp 5 is a bit string generated by replacing ik-th bit of x with k-th bit of
u for every k ∈ [|I|], we see that (x, Rx) has the same distribution as (x′, w ⊕ R[n]\I · x[n]\I).
(x′, w ⊕ R[n]\I · x[n]\I) also has the same distribution as (x′, w) because w is sampled uniformly
at random, and thus (x, Rx) has the same distribution as (x′, w). This completes the proof of
Lemma 8.

Note that we can sample the above u in polynomial time, by computing a particular solution
v ∈ {0, 1}|I| of RI · v = w, and add a vector sampled uniformly at random from the kernel of
RI .

Exp 6: This experiment is the same as Exp 6 except that w is replaced with w ⊕ m. By this
change, CT is of the form

CT :=

(
y,

(
e1,0, . . . , en,0
e1,1, . . . , en,1

)
, w

)
.

Moreover, x′ contained in rEnc is sampled so that Rx′ = m⊕ w holds.

Since w is uniformly at random, so is w ⊕m. Thus, Exp 5 ≡ Exp 6 holds.

We see that Exp 6 is the same as ExpIdealNCE,A. Put all the above arguments together, we have

AdvNCE,A (λ) ≤ |Pr [out = 1 in Exp 0]− Pr [out = 1 in Exp 6]| = negl (λ) .

Hence NCE is secure. This completes the proof of Theorem 3.

5.3 Ciphertext Rate

Finally, we evaluate the ciphertext rate of NCE. From Theorem 2, in order to make NCE correct,
it is sufficient to set ℓ = poly(log λ). Moreover, from Theorem 3, in order to make NCE secure,
it is sufficient to set µ = O (λ) and n = 8µ. In this setting, the ciphertext length of NCE is
|CT | = λ+ 2nℓ+ µ. Note that we assume a group element of G is described as a λ-bit string.
Then, the ciphertext rate of NCE is evaluated as

|CT |
µ

=
λ+ 2nℓ+ µ

µ
= O (ℓ) = poly(log λ).

6 Full Construction of Proposed NCE

In the basic construction, we construct an NCE scheme with correctness γ = 1 − negl (λ), by
setting ℓ = poly(log λ) which is the output length of E2 (and thus D) of the underlying CE. Of
course, if we set ℓ to O (log λ)5, we can make the ciphertext rate of the resulting NCE scheme
O (log λ). However, this modification also affects the correctness of the resulting NCE scheme.
γ is no longer = 1− negl (λ), and is at most 1− 1/poly(λ).

Fortunately, we can amplify the correctness of the scheme to 1− negl (λ) from enough large
constant without changing the ciphertext rate. For that purpose, we use a constant-rate error-
correcting code which can correct errors up to some constant fraction. Concretely, we modify

5This is possible by setting the output length of HG used in the construction in Section 4.2 as O (log λ).
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the scheme as follows. In the encryption, we first encode the plaintext by the error-correcting
code and parse it into N blocks of length µ. Then, we encrypt each block by the γ-correct
NCE scheme for a constant γ using different public keys. The decryption is done naturally, i.e.,
decrypt each ciphertext, concatenate them, and decode it. The ciphertext rate is still O (log λ)
because the rate of error-correcting code is constant.

This block-wise encryption technique not only amplifies the correctness but also reduces the
public key size. In the basic construction, the size of a public key depends on the length of a
message quadratically. However, by applying the block-wise encryption technique, it becomes
linear in the length of a message.

The description of the full construction is as follows. Let ECC = (Encode,Decode) be a
constant-rate error-correcting code which can correct errors up to ϵ-fraction of the codeword
where ϵ > 0 is some constant.

Specifically, given a message m ∈ {0, 1}µM , Encode outputs a codeword
−−→
CW ∈ {0, 1}µN . If

Ham
(−−→
CW −

−−−→
CW ′

)
≤ ϵµN , Decode

(−−−→
CW ′

)
= m. The rate of ECC is some constant N/M .

Let NCE = (Gen,Enc,Dec,Sim1,Sim2) be an NCE scheme whose message space is {0, 1}µ, ci-
phertext rate isO (log λ), and correctness is γ = 1− ϵ

2 . We construct
−−→
NCE = (

−−→
Gen,

−−→
Enc,

−−→
Dec,

−−→
Sim1,

−−→
Sim2)

as follows. The message space of
−−→
NCE is {0, 1}µM .

−−→
Gen

(
1λ;
−−→
rGen

)
:

• Parse the given random coin to
−−→
rGen =

(
rGen1 , . . . , rGenN

)
.

• For all i ∈ [N ], generate key pairs (pki, ski)← Gen
(
1λ; rGeni

)
.

• Output
−→
pk := (pk1, . . . , pkN ) and

−→
sk := (sk1, . . . , skN ).

−−→
Enc

(−→
pk,m;

−−→
rEnc

)
:

• Parse
−−→
rEnc =

(
rEnc1 , . . . , rEncN

)
.

• Compute
−−→
CW ← Encode (m) and parse

−−→
CW = (CW1, . . . , CWN ).

• For all i ∈ [N ], compute CTi ← Enc
(
pki, CWi; r

Enc
i

)
.

• Output
−→
CT := (CT1, . . . , CTN ).

−−→
Dec

(−→
sk,
−→
CT

)
:

• For all i ∈ [N ], Compute CW ′
i ← Dec (ski, CTi).

• Concatenate them as
−−−→
CW ′ := (CW ′

1, . . . , CW ′
N ).

• Output m← Decode
(−−−→
CW ′

)
.

−−→
Sim1

(
1λ
)
:

• For all i ∈ [N ], compute (pki, CTi, sti)← Sim1

(
1λ
)
,

• Output
−→
pk := (pk1, . . . , pkN ),

−→
CT := (CT1, . . . , CTN ), and

−→
st := (st1, . . . , stN ).

−−→
Sim2

(
m,
−→
st
)
:

• Compute
−−→
CW ← Encode (m) and parse (CW1, . . . , CWN )←

−−→
CW .

• For all i ∈ [N ], compute
(
rGeni , rEnci

)
← Sim2 (CWi, sti).

• Output
−−→
rGen :=

(
rGen1 , . . . , rGenN

)
and
−−→
rEnc :=

(
rEnc1 , . . . , rEncN

)
.
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Correctness.
−−→
NCE satisfies correctness if the number of parsed codeword N ≥ poly(log λ).

Formally, we have the following theorem.

Theorem 4 Let ECC be an constant-rate error-correcting code which can correct errors up to
ϵ-fraction of a codeword. Let NCE be an γ-correct NCE scheme, where γ = 1− ϵ

2 . If the number

of parsed codeword N ≥ poly(log λ), the above
−−→
NCE is correct.

Proof Let m ∈ {0, 1}µM be a message. Our goal is to show that the probability

Pr

[
m ̸=

−−→
Dec

(
−→
sk,
−−→
Enc

(
−→
pk,m;

−−→
rEnc

))]
=Pr

[
Decode

(−−→
CW

)
̸= Decode

(−−−→
CW ′

)]
(5)

is negligible, where the probability is over the choice of
−→
pk,
−→
sk, and

−−→
rEnc, and

−−→
CW and

−−−→
CW ′

are codewords generated in the same way as those generated in
−−→
Enc and

−−→
Dec, respectively. The

probability 5 is bounded by

Pr
[
Ham

(−−→
CW −

−−−→
CW ′

)
> ϵµN

]
=Pr

∑
i∈[N ]

Ham
(
CWi − Dec

(
ski,Enc

(
pki, CWi; r

Enc
i

)))
> ϵµN


≤Pr

[∣∣∣{ i ∈ [N ] | CWi ̸= Dec
(
ski,Enc

(
pki, CWi; r

Enc
i

)) }∣∣∣ > ϵN
]
. (6)

Since NCE is γ-correct, we have

E
[∣∣∣{ i ∈ [N ] | CWi ̸= Dec

(
ski,Enc

(
pki, CWi; r

Enc
i

)) }∣∣∣] < (1− γ)N =
ϵ

2
N.

Thus, we can apply the Chernoff bound. By setting δ = 1, the probability 6 is bounded by
e−

1
3
(1−γ)N = negl (λ). This completes the proof for the correctness of

−−→
NCE.

Security. For the security of
−−→
NCE, we have the following theorem. Since we can prove it via a

straightforward hybrid argument, we omit it.

Theorem 5 If NCE is an secure NCE scheme, then
−−→
NCE is also secure.

Ciphertext rate. Since rate of the error-correcting code N/M is constant, the ciphertext

rate of
−−→
NCE is N |CT |

µM = O (ℓ) = O (log λ).
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