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Abstract. Bitcoin and its underlying blockchain protocol have received
recently significant attention in the context of building distributed sys-
tems as well as from the perspective of the foundations of the consensus
problem. At the same time, the rapid development of quantum technolo-
gies brings the possibility of quantum computing devices from a theoret-
ical concept to an emerging technology. Motivated by this, in this work
we revisit the formal security of the core of the Bitcoin protocol, called
the Bitcoin backbone, in the presence of an adversary that has access
to a scalable quantum computer. We prove that the protocol’s essential
properties stand in the post-quantum setting assuming a general quan-
tum adversary with suitably bounded number of queries in the Quantum
Random Oracle (QRO) model. In order to achieve this, we investigate
and bound the quantum complexity of a Chain-of-Proofs-of-Work search
problem which is at the core of the blockchain protocol. Our results im-
ply that security can be shown by bounding the quantum queries so
that each quantum query is worth O(p−1/2) classical ones and that the
wait time for safe settlement is expanded by a multiplicative factor of
O(p−1/6), where p is the probability of success of a single classical query
to the protocol’s underlying hash function.

1 Introduction

Bitcoin [35] and its underlying blockchain protocol structure have received sub-
stantial attention in recent years both due to its potential for various applications
as well as to the possibility of using it to solve fundamental distributed comput-
ing questions in alternative and novel threat models. In [21], an abstraction of
Bitcoin’s underlying protocol, termed the “Bitcoin backbone”, was presented
and analyzed assuming a fixed (albeit unknown) number of parties (“miners”),
a fraction of which may behave arbitrarily as controlled by an adversary. This
was followed by [36, 22, 6], refining the model and the security analysis.

At a high level, the protocol relies on a concept known as a proof of work
(PoW) [18], which, intuitively, enables a party to convince others that he has
invested some effort for solving a task—specifically, finding a value (“witness”)
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such that a hash function (SHA-256) applied to that value together with (the
hash of) the last block and new transactions yields an output that is less than
a target value. A party who successfully produces a PoW gets to add a new
block to the blockchain (and is rewarded). In the abstraction, the hash function
is modelled as a random oracle (RO) [9], and it assumes a uniform configura-
tion, meaning that parties are endowed with the same computational power, as
measured by the allowed number of queries to the RO per round.

A number of desired properties for the blockchain thus constructed—such as
common prefix and chain quality [21]—were introduced and shown sufficient for
the realization of applications, notably a robust public transaction ledger (a.k.a.
“Nakamoto consensus”), assuming an honest majority of computational power
(or equivalently, in the uniform configuration setting mentioned above, that the
number of honest parties exceed the number of malicious ones).

In the model of [21] as well as those in subsequent papers [36, 22, 6] follow [24,
15], parties are “classical” and modelled as polynomially bounded Interactive
Turing Machines (ITMs), and protocol properties such as the ones above can
be expressed as predicates over random variables quantifying over all possible
adversaries.

In summary, the above works put forth elegant modeling and analyses and
constitute an important step forward in our understanding of the capabilities
of this emerging technology, but quantum computing, which equips attack-
ers with unprecedented power and is changing the landscape of cryptography,
“is coming,” with the known devastating consequences: Shor’s quantum algo-
rithm [41] solves factorization and discrete logarithm efficiently, and hence breaks
the popular public-key cryptosystems based on them. Further, the mere capabil-
ity of collecting side information in a quantum register sometimes compromises
information-theoretically secure schemes, such as randomness extractors for pri-
vacy amplification [23]. In fact, the unique features of quantum information, such
as intrinsic randomness and no-cloning, render many classical security analyses
obsolete (e.g., rewinding [46, 48]), and even the right modeling of security in the
presence of quantum attacks can be elusive [47, 20, 43, 44, 26, 11, 2, 3].

As mentioned above, a core ingredient of the Bitcoin blockchain is proofs
of work (PoW) [17], and the dynamic construction of a blockchain can be seen
as sequential compositions of PoWs. Most existing analyses critically rely on
generic properties of cryptographic hash functions, modeled as a random oracle
(RO) [8] and only given oracle access. When quantum attackers are present,
however, Boneh et al. [10] argued the need for granting the attackers the ability
to query the random oracle in quantum-superposition, giving rise to the quantum
random oracle (QRO) model.

Quantum superposition attacks turn out to be devastating to symmetric-
key cryptosystems also which are usually considered less vulnerable to quantum
attacks; for example, several practical authentication schemes using block ciphers
are broken in this strong attack model [30, 38]. Roughly speaking, the PoW
problem used in blockchain protocols corresponds to solving some search problem
by making quantum-superposition queries to a (random) hash function, which
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at first sight is reminiscent of some standard problems studied in quantum query
complexity. However, existing results and techniques for proving quantum query
lower bounds do not immediately translate to the cryptographic setting. This is
because in cryptography we are interested in average-case complexity as opposed
to the typical worst-case complexity; also, standard quantum query lower bounds
usually apply to quantum algorithms with high success probability only, whereas
an attacker with small but noticeable chance of breaking a scheme is still relevant.
The abstract search problem, namely, that of chain of PoWs with bounded total
resources, is clearly not related in a straightforward way to any of the known
quantum complexity results.

Motivated by the above, the main open question we set out to answer in this
work is characterizing the security of Nakamoto consensus in the post-quantum
setting. Specifically, we ask what will happen when a quantum adversary emerges
in the context of Bitcoin (and other similar PoW-based blockchain protocols).
Does the protocol break or it remains secure? And in the latter case, what are
the restrictions that need to be imposed on the quantum adversary?

Our contributions. We set out to answer the main open question by analyzing
the Bitcoin backbone protocol [21] under the assumption that the adversary has
access to devices able to perform universal quantum computing. As mentioned
above, the two main properties that are required in [21] are common prefix (hon-
est parties always agree on truncated local chains) and chain quality (expressing
the ratio of honest/adversarial blocks and guaranteeing that at least a certain
fraction of the blocks are generated by honest parties). As a result of our anal-
ysis, we are able to ensure that the common prefix and chain quality properties
can still be satisfied against quantum attackers, provided some bounds on the
quantum computational hashing power hold. The “honest majority” condition1

we get is that the total number of quantum queries Q of the attacker has to be
less than the total number of classical queries of all the honest parties divided by
an extra O(p−1/2) factor, where p is the probability of success of a single query
and, informally, represents the difficulty level of the PoW. This extra factor is
the main difference from the classical analysis and, as we will prove, stems from
a quadratic quantum speed-up in a search problem related to chained PoWs.

The common prefix and chain quality properties hold except with negligible
probability, and this negligible probability is achieved after a number of rounds
s. Our analysis indicates that to achieve the same negligible probability against
a quantum attacker, the required number of rounds needs to be multiplied by an
extra O(p−1/6) factor compared to the classical setting. This has the implication
that, for post-quantum security, the number of “block confirmations” necessary
for a transaction to be accepted has to be increased accordingly in order to
protect against double-spending.

Having proven that the common prefix and chain quality properties hold
against quantum attackers, we can build applications (such as consensus [a.k.a.

1 Necessary (and sufficient) for the properties to be satisfied in [21]’s uniform config-
uration with respect to hashing power.
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Byzantine agreement [31]] and a public transaction ledger [i.e., Bitcoin]) as ex-
actly shown in [21]. Now, these applications require digital signatures and it is
well known that a quantum attacker can compromise some of the digital signa-
ture schemes (including ECDSA, used in Bitcoin). Therefore, in order for our
analysis of the Bitcoin backbone protocol to carry over to the above applications
we need to ensure that a post-quantum secure digital signature scheme is used
(see also [1] where different post-quantum signature schemes were compared for
their suitability for Bitcoin).

Overview of our results. Our contributions can be summarized as follows:

We model quantum attackers in the context of Nakamoto consensus and the
Bitcoin backbone protocol.

En route to our main result, we introduce new search problems—namely,
Bag-of-PoWs and Chain-of-PoWs—and bound their quantum complexity.
For the analysis of the former we derive a new concentration theorem (specif-
ically, a generalized version of Azuma’s inequality) for martingales, which
might be of independent interest. We then apply our analysis to the latter,
to obtain bounds on the expected number of PoWs that any quantum ad-
versary can solve within a given number of rounds, which we then use to
obtain an “honest majority” condition.

Finally, using our new concentration result, we complete the analysis of the
Bitcoin backbone protocol, giving a tight characterization of the overwhelm-
ing probabilities that the protocol’s properties hold with.

In Section 6, we give the exact bounds obtained for a general quantum adversary
and the comparison to the classical adversaries.

A technical overview of our results follows. In our setting (see Section 2 for
more details) we model the computational power of honest parties as a number
of q queries per party to a random oracle (RO). In the classical setting, the
adversary is assumed to benefit from the joint computational effort of the parties
under his control. Accordingly, we assume that there is a quantum adversary with
a total computational power of Q queries per round—to a Quantum Random
Oracle (QRO) [10].

To ensure that Bitcoin remains secure against a quantum adversary, one
needs to bound the probability of such adversary of being able to generate a
“long” chain of PoWs. If the adversary outperforms the honest parties in this
task, it would allow him to create a fork in the blockchain that affects blocks
in the ledger that are already “established.” We therefore start by abstractly
defining this problem as a generalized search problem, namely, the problem of
achieving a maximum “chain of PoWs,” given N queries to the QRO and with at
least some probability δ. We obtain the following bounds on the Chain-of-PoWs
search, which constitutes our main result:

Theorem 3 (Main Theorem – Informal). Any quantum adversary having N
queries to the QRO, can obtain a chain of PoWs of length at most MA(N, p) =
O(
√
p · N), with probability pA(N, p) = O

(
exp
(
−p2/3 ·N

))
or less, where p is

the probability of a successful PoW with a single query.

4



To prove the theorem, we first consider a simpler problem (for the adversary),
which we call Bag-of-PoWs, which relaxes the requirement that the PoWs need
to form a chain. Intuitively, bounding the adversary’s performance in the simpler
problem, also provides a bound for the Chain-of-PoWs problem. To achieve this
we need to (i) bound the expected number of PoWs and (ii) give tight expressions
for the tails of the distributions.

We first show that it suffices to consider a more restricted adversary that
uses his QRO queries sequentially, attempting to solve one PoW and condi-
tioned on the outcome of the search, adapting his plan on how to spend the
remaining queries suitably. This results into variables (successful PoWs) that
are correlated and whose formal modelling involves martingales. We proceed to
derive the optimal expectation E =

√
cpN (that can be obtained considering

independent variables as shown in subsubsection 4.2.1). Next, we derive a new
concentration theorem for martingales, Theorem 6 (which may be of independent
interest), and use it to bound the tails of the distribution by exp

(
−O(p1/6E)

)
from the expected value E. Combining these results gives Theorem 3.

We then turn to the security analysis of the Bitcoin backbone protocol. From
[21] we extract two conditions (Lemma 8, Lemma 10) between the adversary’s
and honest parties’ variables, that essentially suffice to satisfy the backbone’s
essential properties (common prefix and chain quality) ensuring the security of
the protocol. This, together with the bounds on the Chain-of-PoWs that we
derived earlier, completes the analysis. We get an “honest majority” condition
(relation between honest and adversarial hashing power), that roughly counts
each quantum query as 1√

cp classical queries. And, finally, we get an increased

“relaxation time” (number of block confirmations before protecting against dou-
ble spending) by a factor of ∼ p−1/6. Importantly, we note that our work, apart
from the different parameter values we obtain, directly inherits all the generality
of the analysis of [21], which includes strategies correlated with honest-parties’
actions as well as long-term attacks (such as selfish mining).

Related work. An important first step in understanding Bitcoin’s vulnerabilities
against quantum attacks was taken by [1], who investigated the quantum threats
to Bitcoin, taking into account detailed resource estimations (e.g., quantum er-
ror correction) and the prospect of the physical implementation of quantum
computers. They asserted the imminent vulnerability of the elliptic-curve-based
signature scheme used in Bitcoin, but on the other hand, they observed that
the stand-alone search problem induced by PoW is relatively resistant to near-
term quantum computations due to their slow clock speed and large overhead of
quantum error correction. However, no complete analysis or explicit bounds were
presented, leaving the full security analysis of the protocol as open question.

The Bitcoin protocol in a setting where honest parties are also quantum was
considered in [32, 40]. While these papers offer interesting insights, including
attacks not directly foreseen, they stop short of offering concrete security guar-
antees quantifying over all possible adversaries, as the work of [21] does for the
classical setting.
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On top of the challenges against superposition attacks, the quantum ran-
dom oracle model has proven arduous to deal with. Many proof techniques in
classical RO become ill-formed in QRO. Thankfully, many have been salvaged
(at least partially) in QRO over the years. We can simulate a quantum random
oracle [49, 51, 42], program it under a variety of circumstances [19, 45], estab-
lish generic security of hash functions [29, 7, 27, 33], and even paradoxically
record quantum queries by Zhandry’s recent work [52]. These developments en-
able proving quantum security of many cryptographic schemes in QRO, such
as CCA-secure public-key encryption and the general Fiat-Shamir approach to
construting digital signatures [28, 37, 4, 34, 16].

Organization of the paper. The rest of the paper is organized as follows. In
Section 2 we present our security model and some background information re-
garding the Bitcoin Backbone protocol. In Section 3 we describe the Chain-Of-
PoWs problem, and present our main result regarding bounding the quantum
complexity for this problem. In Section 4 we prove our central result: We firstly
describe a related problem called Bag-of-PoWs Problem, we show how solutions
for the two problems are connected and we formalize the most general quantum
strategies (SMS) for the Bag-of-PoWs Problem in Subsection 4.1. In Section
4.2 we perform the analysis for the SMS strategies. We derive the maximum
expectation length of a solution (Section 4.2.2). We model the most general
quantum strategies using martingales in Section 4.2.4 and to bound the tails
of the corresponding distribution we derive new (stronger for our case) Azuma-
type concentration inequalities in Section 4.2.6. Using them we bound the tails
for the quantum adversaries in Section 4.2.7. Finally, we combine all these and
complete the proof in Section 4.3.

In Section 5.1 we extract the essential results from [21] reducing the security
analysis of the Bitcoin backbone protocol to essentially two conditions that the
(quantum) adversary’s power should respect. In Section 5.2 we apply our results
about quantum strategies for Chain-Of-PoWs problem with these conditions, to
complete the security analysis of the Backbone against general quantum attack-
ers. We conclude in Section 6 with a comparison between quantum and classical
adversaries against the Bitcoin backbone protocol, and giving future directions.

2 Model and Definitions

We will analyze our post-quantum version of the Bitcoin backbone protocol in
the network model considered in [21], namely, a synchronous communication
network which is based on Canetti’s formulation of “real world” execution for
multi-party cryptographic protocols [13, 14]). As such, the protocol execution
proceeds in rounds with inputs provided by an environment program denoted
by Z to parties that execute the protocol. The execution is assumed to have a
polynomial time bound. Message delivery is provided by a “diffusion” mechanism
that is guaranteed to deliver all messages, without however preserving their order
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and allowing the adversary to arbitrarily inject its own messages. Importantly,
the parties are not guaranteed to have the same view of the messages delivered
in each round, except for the fact that all honest messages from the previous
round are delivered. Furthermore, we have a single adversary, which has quantum
computing power and is formally defined later and is allowed to change the source
information on every message (i.e., communication is not authenticated).

The Bitcoin backbone protocol. First, we introduce some blockchain notation, fol-
lowing [21]. A block is any triple of the form B = 〈s, x, ctr〉 where s ∈ {0, 1}κ, x ∈
{0, 1}∗, ctr ∈ N are such that satisfy predicate validblockDq (B) defined as

(H(ctr,G(s, x)) < D) ∧ (ctr ≤ q), (2.1)

where H,G are cryptographic hash functions (e.g., SHA-256) modelled as ran-
dom oracles. The parameter D ∈ N is also called the block’s difficulty level. We
then define p = D/2κ to be the probability that a single classical query solves a
PoW. The parameter q ∈ N is a bound that in the Bitcoin implementation deter-
mines the size of the register ctr; in our treatment we allow this to be arbitrary,
and use it to denote the maximum allowed number of hash queries performed
by the (classical) parties in a round.

A blockchain, or simply a chain is a sequence of blocks. The rightmost block
is the head of the chain, denoted head(C). Note that the empty string ε is also a
chain; by convention we set head(ε) = ε. A chain C with head(C) = 〈s′, x′, ctr′〉
can be extended to a longer chain by appending a valid block B = 〈s, x, ctr〉
that satisfies s = H(ctr′, G(s′, x′)). In case C = ε, by convention any valid
block of the form 〈s, x, ctr〉 may extend it. In either case we have an extended
chain Cnew = CB that satisfies head(Cnew) = B. Consider a chain C of length
m (written as len(C) = m) and any nonnegative integer k. We denote by Cdk
the chain resulting from the “pruning” of the k rightmost blocks. Note that for
k ≥ len(C), Cdk = ε. If C1 is a prefix of C2 we write C1 � C2.

The Bitcoin backbone protocol is executed by an arbitrary number of parties
over an unauthenticated network, as described above. It is assumed in [21] that
the number of parties running the protocol is fixed however, parties need not be
aware of this number when they execute the protocol. In our analysis we will
have n honest parties and a single quantum adversary. Also as mentioned above,
communication over the network is achieved by utilizing a send-to-all Diffuse
functionality that is available to all parties (and may be abused by the adversary
in the sense of delivering different messages to different parties).

Each party maintains a blockchain, as defined above, starting from the empty
chain and mining a block that contains the value s = 0 (by convention this is the
“genesis block”). If in a given round, a party is successful in generating a PoW
(i.e. satisfying conjunction 2.1), it diffuses it to the network. At each round, each
party chooses the longest chain amongst the one he received, and tries to extend
it by computing (mining) another block. In such a process, each party’s chain
may be different, but under certain well-defined conditions, it is shown in [21]
that the chains of honest parties will share a large common prefix (see below).
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In the backbone protocol, the type of values that parties try to insert in
the chain is intentionally left unspecified, as well as the type of chain valida-
tion they perform (beyond checking for its structural properties with respect to
the hash functions G(·), H(·)), and the way they interpret the chain. Instead,
these actions are abstracted by the external functions V (·) (the content val-
idation predicate), I(·) (the input contribution function), and R(·) (the chain
reading function), which are specified by the application that runs “on top” of
the backbone protocol (e.g., a transaction ledger).

Basic security properties of the blockchain. It is shown in [21] that the blockchain
data structure built by the Bitcoin backbone protocol satisfies a number of basic
properties. At a high level, the first property, called common prefix, has to do
with the existence, as well as persistence in time, of a common prefix of blocks
among the chains of honest parties.

Definition 1 (Common Prefix). The common prefix property with parameter
k ∈ N, states that for any pair of honest players P1, P2 adopting chains C1, C2
at rounds r1 ≤ r2, it holds that Ck1 � C2 (the chain resulting from pruning the k
rightmost blocks of C1 is a prefix of C2).

The next property relates to the proportion of honest blocks in any portion
of some honest partys chain.

Definition 2 (Chain Quality). The chain quality property with parameters
µ ∈ R and l ∈ N, states that for any honest party P with chain C, it holds that
for any l consecutive blocks of C, the ratio of blocks created by honest players is
at least µ.

Relevant random variables. Following [21], we use the following two random
variables: Xi: if at round i an honest party obtains a PoW, then Xi = 1, oth-
erwise Xi = 0; Yi: if at round i exactly one honest party obtains a PoW, then
Yi = 1, otherwise Yi = 0. For a set of consecutive rounds S of size s, we denote
X(s) =

∑
i∈S Xi, Y (s) =

∑
i∈S Yi. Additionally, we denote by Z(s) the number

of PoWs obtained by a (quantum in our case) adversary within s consecutive
rounds. The security of the Bitcoin backbone protocol can be reduced to certain
relations among these variables (see Section 5.1).

n: number of honest parties q: # honest classical queries per round

Q: number of adversarial quantum f : prob. at least one honest
queries per round party finds a PoW in a round

ε: concentration quality of random variables κ: security parameter

k: number blocks for common prefix µ: chain quality parameter

s: number of rounds p: prob of success of a single
X(s): no of honest PoWs within s rounds classical query

Y (s): number of honest ’unique’ PoWs Z(s): no of adversarial PoWs
within s rounds within s rounds

Table 1. Parameters used for out analysis
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A list of parameters and variables specific to the Bitcoin backbone protocol
and to our analysis can be found in Table 1. More specifically, we let f = E[Xi],
a parameter with respect to which all the other quantities are expressed (in the
Bitcoin system, f is about 2− 3%) and ε denote the quality of concentration of
random variables. We require 3(f+ε) < 1, implying that f, ε < 1

3 . Following [21],
we have the following bounds on these quantities: (1 − f)pqn < f < pqn and
E[Yi] = pqn · (1 − p)q(n−1) > pqn(1 − pqn) ≥ f(1 − f). Which then give us the
following concentration results for the random variables X(s) and Y (s):

Lemma 1 ([21]). For any s ≥ 2/f rounds, we have that with probability 1 −
e−Ω(ε2sf), the following hold:

(1− ε)fs < X(s) < (1 + ε)fs

(1− ε)E[Y (s)] < Y (s)

(1− ε)f(1− f)s < Y (s)

(2.2)

The quantum adversary model. We will assume that the quantum adversary has
a number Q of quantum queries to H per round. The adversary can access the
cryptographic hash functions in a general quantum state (superposition) and
receive the corresponding quantum output. This is modeled with Q queries per
round to a Quantum Random Oracle (QRO) [10]. As in the classical case, the
adversary cannot carry over the queries to a different round (attempting to solve
a block at a later stage with more queries). What the adversary can do though is
to transfer a quantum state that is the output of queries to the QRO of one round,
to the next round. This possibility, on the one hand, enables the adversary to
continue amplifying his probability of success (with the corresponding quantum
speed-up) for more queries than those within one round. On the other hand, the
transfer of quantum states makes the analysis more complicated since we can no
longer assume that queries in different rounds are independent.

Further, for a quantum adversary even to define a classical random variable
(such as Z(s)) is not straightforward, since strictly speaking we can do this only
once a measurement is performed. In other words, the quantum state received
from the QRO after one query does not give any classical information unless a
measurement is performed. In the general case the QRO is used to amplify the
probability, multiple queries are used before a single measurement is performed,
making hard to even know the number of classical random variables.

We define N = sQ to be the total number of queries to the QRO in s rounds;
Ki the number of queries to the QRO used for the ith measurement (i.e. the
quantum state measured in the ith round has passed Ki-times from the QRO);
PKi the corresponding probability of success of the ith measurement, and wi the
ith measurement outcome (1 if a block is created, 0 otherwise).

Randomized quantum search. Our analysis relies on a tight quantum query
bound for solving a randomized search problem.

Theorem 1 ([29]). Let F : {0, 1}κ → {0, 1} be a function such that for any
x ∈ {0, 1}κ, F (x) = 1 with probability λ. Then, for any quantum algorithm A,
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the probability to find a solution for F using q quantum queries is upper bounded
by:

PrF [F (x) = 1 |x← AF ()] ≤ 8λ(q + 1)2 (2.3)

This bound is tight due to Grover’s quantum search algorithm.

Theorem 2 ([25, 12]). Let F : X → {0, 1} be an oracle function and let
XF = {x ∈ X : F (x) = 1}. Then there is a quantum algorithm with q queries

that finds an x ∈ XF with success probability Ω(q2 |XF |
|X | ).

In our analysis, we assume that the optimal success probability to solve a
PoW using K queries to the QRO is determined by the expression:

PK = cpK2, where c is a constant. (2.4)

Concentration bounds. Our analysis also uses (and extends) some standard con-
centration results, which can be found in Appendix A.

3 Quantum Complexity of Chain-of-PoWs Search

The basic problem that a (quantum) adversary tries to solve in the Backbone is to
produce a chain of blocks that is longer than the honest chain. In order to bound
the probability of such event, we need to be able to bound the maximum length of
a chain that the adversary can produce (up to some small probability determined
by the security level of the protocol). Abstractly, this problem translates to a
search problem where the desired output is a chain of hashes (the output of one
hash is fed as input to the next hash). We will call this problem the Chain-of-
PoWs search problem, denote it by ΠG and we formalise it here:

Problem ΠG: Chain-of-PoWs
Given: N , x0 ∈ X, δ and h0, . . . , hN−1 as (quantum) random ora-
cles, where each hi : X × Y → X is independently sampled.
Goal: Using N total queries find a sequence y0, . . . , yk−1 such that
xi+1 := hi(xi, yi) and xi+1 ≤ D ∀ i ∈ {0, · · · , k − 1} such that the
length of the sequence k ≤ N is the maximum that can be achieved
with success probability at least δ. D is a fixed positive integer.

Note here that the output of this problem is the maximum length k and the
corresponding sequence (y0, · · · , yk−1). For notational simplicity we will omit
h0, . . . , hN−1 from the input of ΠG.

Definition 3 (PoW). We define a PoW to be any pair (x, y) s.t. h(x, y) ≤ D.

The stringent correlation between the consecutive output values makes this
search problem difficult to analyze. A direct approach would require establishing
a particular composition theorem, which appears beyond the scope of existing
results and techniques in quantum query complexity. Instead, by a series of
reductions, we are able to bound the maximum length that can be achieved for
this problem.
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Theorem 3 (Main Theorem). We are given ΠG(N, x0, δ), and let p := D
2κ

be the probability of success of a single query to the random oracles and c the
corresponding constant in Theorem 2. The maximum length k of a solution
of ΠG(N, x0, δ), that any quantum algorithm can achieve, for any δ ≥ pA =

exp(−f0(c, p, ε) ·N) is bounded by MA =
(

(1+ε)
√
cp

1−(1+ε)
√
cp

)
· N , where f0(c, p, ε) =

(cp)
2
3 · 1

1−(1+ε)
√
cp
ε1/3(7ε−1)

32 and 1
7 < ε ≤ 1

3 is a constant.

It is worth noting that p� 1 and the expressions (approximately) simplify to
k . O(p1/2 ·N), while the probability δ & exp

(
−O

(
p2/3 ·N

))
. This probability

decays exponentially with N , which means that the bound for k that we give
(which scales linearly with N) becomes impossible to achieve as N grows. We
will see that, in the bitcoin context, this means that by running sufficient rounds
and imposing certain constraints on the relative hashing power of honest parties
and the quantum adversary, we should be confident that the adversary cannot
create a large fork in the blockchain.

Proof Sketch. To derive this bound, we need a number of steps, namely:

1. In Section 4.1 we define a simpler problem Bag-of-PoWs (denoted Π ′G(N, δ))
and prove a relation that bounds the maximum sequence length of ΠG with
the maximum cardinality of Π ′G (Lemma 2).

2. Given a fixed number of queries, and a relation between the maximum cardi-
nality of Bag-of-PoWs and the corresponding success probability, we bound
the maximum length of ΠG and maximum cardinality of Π ′G (Lemma 3).

3. We define a family of algorithms which we call Sequential Measurement
Strategy (SMS) (Definition 4) and prove it is optimal for solving Π ′G i.e.
finds a solution with maximum cardinality (Lemma 4).

4. For the SMS adversaries, we obtain a relation between the maximum cardi-
nality of Bag-of-PoWs and the corresponding maximum success probability,
which completes the proof given steps 1-3 above. To derive this relation, in
Subsection 4.2 we first consider a restricted class of SMS adversaries that is
called Non-Adaptive, where the algorithm has a predetermined (fixed) num-
ber of queries assigned to each oracle. This class is considered only as a step
towards proving the general case as they achieve the optimal expectation
value for the maximum cardinality. This is then combined with a newly de-
rived concentration theorem for non-independent variables (Theorem 6) in
order to prove the relation for the general SMS adversaries (Theorem 7).

4 Proof of Main Theorem and the Bag-of-PoWs Problem

To show our main result, we first introduce the simplified problem Π ′G that
aims to find the maximum cardinality of Bag-of-PoWs that an algorithm can
solve given a fixed number N of total quantum queries and a minimum success
probability δ. This problem is also of separate interest.
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4.1 The Bag-of-PoWs Problem

Problem Π ′G: Bag-of-PoWs
Given: N , δ and h0, . . . , hN−1 as oracles, where each hi : X×Y → X
is independently sampled.
Goal: Using N total number of queries find a set of pairs {(xi1 , yi1)1,
. . . , ((xik , yik)k)} so that hil(xil , yil) ≤ D, for all l ∈ {1, . . . , k}, such
that the cardinality k ≤ N of the set of pairs is the maximum that
can be achieved with success probability at least δ. Note that in
the set, each pair should correspond to different oracle. D is a fixed
positive integer.

This problem differs from ΠG in that the blocks are neither sequential nor
chained since the condition that xi+1 = hi(xi, yi) that exists in ΠG is removed.
For the same reason, a hardness result on Π ′G readily implies the hardness of
ΠG, which we make formal below.

Lemma 2. The maximum sequence length k of ΠG(N, x0, δ) is at most the max-
imum cardinality of the set of pairs k′ of Π ′G(N + k, δ).

Proof. We prove this by contradiction, assuming that k′ < k. We are given an
algorithm A for ΠG(N, x0, δ) returns a solution y0, . . . , yk−1. Then we are able
to construct an algorithm A′ to solve Π ′G(N + k, δ).
A′ first samples at random an element x0 (from the domain of any oracle

hi). Then it runs A the algorithm solving ΠG on input (N, x0, δ) to obtain the
sequence y0, . . . , yk−1 with probability δ spending N queries. Then starting from
y0, computes xi = hi(xi−1, yi−1) (which is guaranteed to hold from the setting of
problem ΠG) spending one extra query per element of the sequence, i.e. extra k
queries. Then the algorithm outputs the pairs (x0, y0), (x1, y1), . . . (xk−1, yk−1)
having usedN+k queries and will succeed with probability δ. This is a solution to
Π ′G(N+k, δ) with cardinality k contradicting the assumption that the maximum
cardinality solving the problem is k′ < k.

Lemma 3. Assume that for any quantum algorithm A having N+MA quantum
queries, the probability of giving a set of pairs {(xi1 , yi1)1, . . . , ((xik′ , yik′ )k′)} of
cardinality k′ < MA, satisfying hil(xil , yil) ≤ D ∀ il, is at least 1 − pA. Then
the maximum sequence length k of a solution of ΠG(N, x0, pA + ε′), where ε′ is
a positive constant, is at most MA.

Proof. From our assumption we have that:

Pr[A(N +MA) = (xi1 , yi1), · · · , (xik′ , yik′ ) such that k′ < MA)] ≥ 1− pA ∀A (4.1)

which is equivalent to:

Pr[A(N +MA) = (xi1 , yi1), · · · , (xik′ , yik′ ) such that k′ ≥MA)] ≤ pA ∀A (4.2)

Any solution for the problem Π ′G(N +MA, δ), where δ = pA + ε′ > pA, has the
maximum cardinality k′ < MA. Then by using Lemma 2, we conclude that the
maximum length k for ΠG(N, x0, pA + ε′) satisfies k ≤ k′ < MA.
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In Section 4.2.6 we get such bounds for the probability of giving a set of such
pairs with cardinality k′ < MA is at least 1− pA.

Definition 4 (Sequential Measurements Strategy). We define SMS ad-
versary to be an adversary that tries to solve Bag-of-PoWs, given a fixed total
number of quantum queries N , in a sequential way (following one order), i.e.
starting with the oracle hi1 . The number of queries Kj spent at each oracle (i)

satisfy
∑N
i=1Ki = N and (ii) depend on the remaining queries (N −

∑j−1
i=1 Ki)

and on the previous outcomes of the searches [w1, . . . , wj−1] where wi represents
whether a PoW was solved using the ith oracle.

We then prove that the Sequential Measurements Strategies are optimal for the
Bag-of-PoWs Π ′G problem:

Lemma 4. For any adversary for the Π ′G(N, x0, δ) problem, there is an SMS
adversary that achieves the same maximum cardinality with the same probability.

Proof. To prove the optimality of SMS adversaries it suffices to show that any
general adversary to this problem can be re-written as an SMS adversary with
unchanged probability.

Any adversary trying to solve Π ′G, can be modelled by a party providing an
attempted PoW for each of the oracles. If successful, returns one, if unsuccessful
returns zero, and if the adversary did not attempt to solve it (c.f. spent no
queries) is also denoted with zero. This means that every run can be modelled by
a N -bit string. For a given strategy, every such string has some probability, e.g.
Pr[PoW1 = yes,PoW2 = no, . . . ,PoWN = yes] = Pr[10, . . . , 1]. To compute
the probability of having at least k PoWs, one simply sums the probabilities of
all strings with Hamming weight k or more.

Each oracle is independent and the inputs also are not correlated, therefore
the probability to find a PoW for each oracle, is bounded (closely to optimally)
by the standard quantum search bounds, namely cpK2 for K queries. However
the variables corresponding to attempting to solve different PoWs are not inde-
pendent. What makes them correlated, is the choice of Ki. It depends on the
queries allocated to other oracles (bounded total number of queries), but also it
could depend on other, classical but non-fixed, parameters such as measurement
outcomes on states that have information about other oracles.

In general, Kil are classical variables and thus may depend on other classical
variables, and the only such variables are measurement outcomes. We can define
a (partial) order between the Kil ’s, which captures the causal order that effects
happen. We then find any total (temporal) order that is consistent with this par-
tial order T ({i1, . . . , iN}) = {t(i1), . . . , t(iN )} which is essentially a permutation
of the indices.

We can assume that we are making a single guess/measurement for each
oracle2. Therefore, if the queries of oracle t(j) are to the future of those of oracle

2 In general, it is allowed to try to solve the same PoW after a failed attempt. However,
in terms of success probability, the adversary would be equally successful if after a
failed attempt he tried to find a PoW at a fresh oracle.
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t(i), the measurement of qubits having information on oracle t(j) are also to
the future of oracle t(i) (and thus do not effect it). We then permute the order
of the oracles according to the above temporal order. Finally, we express the
probabilities using (iteratively) Bayes rule:

Pr[PoWt(1),PoWt(2), . . . ,PoWt(N)] = Pr[PoWt(1)]Pr[PoWt(2), . . . ,PoWt(N)|PoWt(1)]

where PoW takes values {0, 1}, the first term depends on Kt(1) only and is fixed,
while the remaining terms depend also on the first measurement outcome. This
expression can be realised with a Sequential-Measurement Strategy: adversary
fixes Kt(1), with probability cpK2

t(1) solves it, and then the next oracle has up to
N −Kt(1) queries, and it may follow different strategy depending on the value of
PoWt(1), which coincides with the measurement outcome of the “first search”,
and then proceeds iteratively.

4.2 General Adversaries for Bag-of-PoWs

We have proved that for Bag-of-PoWs problem the most general adversaries
are equivalent with the SMS adversaries. From here on, we call general the
SMS adversaries. These adversaries can decide how many queries to use on each
oracle, depending on how successful they were in previous attempts to generate
PoWs. This “adaptivity” makes the analysis considerably more complex. Instead,
it turns out it is much simpler to bound the expected maximum cardinality,
rather than bound directly the maximum cardinality given an error threshold
(see Section 4.2.2). However, having bound the expectation, it suffices to bound
the tails of the distribution too, in order to solve the problem Π ′G (Section 4.3).

We start with a simpler subclass of SMS adversaries, which we call “Non-
Adaptive”. Interestingly, these restricted strategies, can achieve the best (great-
est) cardinality of PoWs on average, as we prove in Theorem 4. These adversaries
do not take into account the history of successes, meaning that the number of
queries Ki used on each oracle before the corresponding measurement, are inde-
pendent of the previous measurement outcomes. We assume that the adversary
decides in advance how to split his N total queries between the oracles.

In the following sections, we will denote the Non-Adaptive family of strategies
by Anonad while the general as Aqu. We denote by ZAnonad

the random variable
corresponding to the cardinality of a Bag-of-PoWs solution for Non-Adaptive
strategy. Similarly, we denote by ZAqu the random variable corresponding to the
cardinality of a Bag-of-PoWs solution for general strategy 3.

4.2.1 Non-Adaptive Expectation is Optimal

3 When we refer to Aqu or Anonad , in general we need to also specify how many queries
they have as input, e.g. Aqu(N), but for simplicity, in our entire analysis, when we
write ZAqu we implicitly assume that Aqu has N(variable) queries available.
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As the total number of available queries is N , we consider that there are N
variables corresponding to measurements performed by the adversary, with Ki

queries per measurement
∑N
i=1Ki = N , where if the actual number of measure-

ments is t we define Ki = 0 ∀ i > t.
Let PAnonad

(i) be the probability of solving i PoWs for Non-Adaptive adver-
saries, then the expected number of PoWs can be computed as:

PAnonad
(i) =

∑
I⊆{1,2,...,N},|I|=i

∏
j∈I

PKj

 ·
 ∏
l∈{1,2,...,N}−I

(1− PKl)

 for 1 ≤ i ≤ N

E[ZAnonad
] =

N∑
i=1

PAnonad
(i) · i (4.3)

Theorem 4. The Non-Adaptive adversaries are optimal with respect to the ex-
pected length of the solution for the Bag-of-PoWs problem.

Proof. Suppose the optimal general strategy Aqu. According to Definition 4, Aqu

initially decides the first chunk size K1 for the first measurement, where this de-
cision (size of K1) is fixed since it does not depend on any measurement outcome.
Then, for the remaining measurements, the chunk-sizes Ki are determined as a
function ζ of the remaining queries and the history of successes/failures in ob-
taining a PoW (measurement outcomes [w1, · · · , wi−1]): Ki = ζ(N − (K1 + · · ·+
Ki−1), [w1, · · · , wi−1]). Hence, Aqu can be described as follows:

Aqu = (K1, ζ(N −K1, [w1]), · · · , ζ(N − (K1 + · · ·+Ki−1), [w1, · · · , wi−1]). · · · )
(4.4)

In particular, the size of K2 depends on the first measurement outcome w1 only.
To each of the two measurement outcomes corresponds an adversarial strategy
with w1 is fixed (here K2 is also fixed). These two strategies are denoted Aw1=1

and Aw1=0. Then, we compute the following two values:

e1 = E[ZAqu |w1 = 1]− 1 ; e0 = E[ZAqu |w1 = 0] (4.5)

This value expresses which of the two strategies Aw1=1,Aw1=0 have greater
expectation value in the remaining measurements (i.e. excluding the first mea-
surement outcome). Let w̄1 be the outcome for which the above is maximised
(i.e. w̄1 = 1 if e1 ≥ e0 while w̄1 = 0 if e1 < e0). We define A2 to be a new
strategy that has the same K1 as our initial strategy, but then the remaining
strategy is fixed as if the first measurement outcome was w̄1 irrespective of the
actual measurement outcome. Then, for this strategy A2, we have:

A2 = (K1,K2 := ζ(N −K1, [w̄1]), ζ(N − (K1 +K2), [w̄1, w2]), · · · ,
ζ(N − (K1 + · · ·+Ki−1), [w̄1, · · · , wi−1]), · · · )

(4.6)

It is clear that forA2, both chunks K1 and K2 are fixed, (while the rest are picked
adaptively but having fixed the dependency on the first measurement outcome).
By construction, the expected number of adversarial blocks is at least as big as
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the expected number of adversarial blocks of the initial strategy Aqu, since we
chose w̄1 to be the measurement outcome that maximises the expectation of the
remaining N −K1 strategies.

We then proceed iteratively in the same manner until we construct a strategy
AN , such that all N measurement chunks are fixed, AN = (K1, · · · ,KN ). But,
then AN is a Non-Adaptive strategy with expected number of adversarial blocks
at least as large as Aqu’s value, which concludes the proof.

4.2.2 Maximum Expectation

Having established that Non-Adaptive strategies achieve the maximum expec-
tation for general adversaries, we now obtain that maximum value.

Theorem 5. For any SMS quantum adversary Anonad, the maximum expected
number of PoWs, given any number of queries N ≥ 1√

cp , is:

E := max E[ZAqu
] = max E[ZAnonad

] =
√
cp ·N, for any N ≥ 1

√
cp

(4.7)

Proof. First, let us define Kmax as the number of quantum queries required to
create a block with probability one:

cpK2
max = 1 ; Kmax =

1
√
cp

(4.8)

This implies that for each measurement we also have Ki ≤ Kmax = 1√
cp (as an

optimal adversary would not waste more than Kmax queries per measurement)
and hence we can rewrite Ki as:

Ki = ξiKmax, where 0 ≤ ξi ≤ 1 ∀i ∈ {1, .., N} (4.9)

Therefore, to compute the optimal expected number of adversarial blocks, we
need to determine the variables ξi which maximize E[ZAnonad

]. Then, by using
Theorem 2, the success probability per each measurement i becomes:

PKi = cpK2
i = cp(ξiKmax)2 = cpξi

2 1

cp
= ξi

2 ∀i ∈ {1, .., N} (4.10)

Then, using Eq. (4.3), we can compute the expected number of blocks created
during s consecutive rounds Anonad as:

E[ZAnonad
] =

N∑
i=1

PAnonad
(i)·i =

N∑
i=1

i·

 ∑
I⊆{1,2,··· ,N}
|I|=i

∏
j∈I

ξ2
j ·

∏
l∈{1,··· ,N}−I

(
1− ξ2

l

)
(4.11)
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Which, as we showed in Eq. (H.3) and Eq. (H.4), can be rewritten as:

E[ZAnonad
] =

N∑
i=1

ξ2
i (4.12)

From the total number of queries condition
∑N
i=1Ki = N , we also have

∑N
i=1 ξi =

N
Kmax

=
√
cp · N . Therefore, we want to maximize

∑N
i=1 ξ

2
i subject to the con-

straint
∑N
i=1 ξi =

√
cp ·N and 0 ≤ ξi ≤ 1. However we have ξ2

i ≤ ξi ≤ 1 which
leads to:

E[ZAnonad
] =

N∑
i=1

ξ2
i ≤

N∑
i=1

ξi =
√
cp ·N (4.13)

We can also easily see that there exists an optimal Non-Adaptive strategy which
achieves this maximum value E =

√
cp ·N . We define a Non-Adaptive strategy

which uses N
Kmax

measurements and for each of these measurement use the same
number of Ki = Kmax queries, while there are no queries for the remaining
variables. For this strategy, using Eq. (4.9) we have ξi = 1 ∀i ≤ N

Kmax
and ξj =

0 ∀ j > N
Kmax

. Then, by using Eq. (4.12) we get: E[ZAnonad
] = N

Kmax
= N

√
cp.

This concludes the proof that E =
√
cp ·N is the maximum expected number of

adversarial blocks, achieved by Non-Adaptive strategies and is in fact achieved
when the adversary spends enough queries per measurement to deterministically
solve a PoW.

The analysis for Non-Adaptive adversaries when the total number of queries
is sufficiently small (less than 1√

cp ) is presented in Appendix C.

4.2.3 From Non-Adaptive to General Adversaries

So far we have examined Non-Adaptive strategies, who choose how to split the
queries independently from the outcomes of previous measurements. A general
strategy is not of this type. Instead, a general strategy adaptively decides how
to use the remaining queries depending on how successful the previous attempts
(to solve a PoW) were. Because of Theorem 4 we know that in terms of expec-
tation, the Non-Adaptive strategies are optimal. However, this does not mean
that these strategies are better always as we will illustrate with two examples.

Example 1: Imagine a scenario that the expected cardinality of solutions of a
strategy is longer than that of the Non-Adaptive strategy. The strategy that
maximises the expected cardinality of the Non-Adaptive solution is determinis-
tic, since as proven earlier, the algorithm runs quantum search until he is (w.h.p.)
certain that he will solve the PoW. This strategy has zero probability of getting
more (or less) than the expected number (is a very concentrated distribution).
It is therefore obvious that any other strategy (preferably with longer tails),
Non-Adaptive or adaptive, that is non-deterministic should be better.
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Example 2: Assume that there is an Non-Adaptive strategy aiming to generate
a solution for the Bag-of-PoWs problem of cardinality at least M , by separating
the N queries to chunks of N/M . This strategy will only succeed if all M searches
are successful, meaning that a single failed search makes the strategy unsuccessful
and the remaining queries wasted. It is evident that an adaptive strategy can
do better. An adversary can start with the same strategy measuring after N/M
queries, as long as the searches are successful. In case one search is unsuccessful,
any strategy that has one more measurement than the Non-Adaptive (which
now would have failed) would be more promising.

The point here is that both the cardinality but also the shape of the tails
of the distribution can be different for, non-optimal in terms of expectation,
adaptive strategies. Therefore, to bound the probabilities of the tails in the
most general adaptive strategy we need to be more careful. We will model the
corresponding random variables using martingales. Unfortunately, the standard
concentration results (Azuma) for our setting provide very weak bounds on the
probabilities. This leads to an unreasonble large N required to achieve the same
probability of concentration with that of classical or Non-Adaptive strategies.
In the remaining section we will demonstrate this issue, derive some novel con-
centration inequalities suitable for our purpose and get much improved bounds.

4.2.4 A Martingale Modelling of General Adversaries

In the general strategies scenario, we cannot assume the independence of the
variables corresponding to different measurements, and thus we cannot use Cher-
noff inequalities to bound the tails of the distribution as was done in the classical
case. To bound the observed number of adversarial PoWs using the maximal ex-
pectation value we need to use an alternative concentration theorem.

We will then define the number of successful PoWs (cardinality of the solution
of Bag-of-PoWs problem) as a martingale. This would then allows us to get a
concentration result by applying the Azuma-Hoeffding Inequality. The first step
is to use the Doob Martingale construction.

We start from the sequence of random variables {Wi}i - where Wi = 1 if
the i-th measurement after using Ki queries was successful and Wi = 0 oth-
erwise. We consider the total number of variables Wi to be N , denoting that
there are at most N measurements, and if in the actual strategy there are less
measurements, let’s say m measurements, then Km+1 = · · · = KN = 0 and
consequently Wm+1 = · · · = WN = 0 (as in Definition 4 of SMS adversaries).
As seen in Definition 7, we need to define a function Φ, which in our case will
be Φ(W1,W2, ...,WN ) = W1 + · · ·+WN , i.e. the number of successful measure-
ments using the chunk splits K1, ...,KN . Then, we have the following martingale
sequence:

Vi = E[Φ(W1,W2, ...,WN ) |W1,W2, ...,Wi] (4.14)

In order to apply the Azuma inequality (Lemma 11), we must first upper bound
the difference (determine ci such that):

|Di| = |Vi−Vi−1| = |E[Φ |W1,W2, ...,Wi]−E[Φ |W1,W2, ...,Wi−1] | ≤ ci (4.15)
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4.2.5 Bounds from the Standard Azuma Inequality

As each measurement cannot change the expected cardinality of Bag-of-PoWs
solution by more than 1, we get directly that |Di| ≤ 1. Using Lemma 11, we get:

Pr(VN − V0 ≥ αN) ≤ exp

(
− α2N2

2
∑N
i=1D

2
i

)
(4.16)

For any α > 0. Noting that

VN = E[Φ(W1,W2, ...,WN ) |W1, ...,WN ] = Φ(W1,W2, ...,WN ),

V0 = E[Φ(W1,W2, ...,WN )]
(4.17)

we get the following concentration result:

Lemma 5 (Concentration from Standard Azuma). For any quantum strat-
egy Aqu having N quantum queries and for any α ≥ 0, we have:

Pr
(
ZAqu

− E[ZAqu
] ≥ αN

)
≤ exp

(
−α

2N

2

)
(4.18)

We want a concentration result which bounds the difference ZAqu
− E[ZAqu

]
by εE[ZAqu

] , so we choose α = ε
N maxE[ZAqu

] = ε
√
cp, which leads to:

Pr(ZAqu
− E[ZAqu

] ≥ εE[ZAqu
]) ≤ exp

(
−ε

2cpN

2

)
(4.19)

If we keep N as a variable, and we use the upper bound for E[ZAqu ] ≤
N/Kmax = N

√
cp, we obtain:

ZAqu
≤ (1 + ε)E[ZAqu

] (4.20)

with probability at least 1− exp
(
− ε

2

2 N
√
cp · 1

Kmax

)
. Here we can immediately

see that this is very similar with the classical with the crucial difference that in
the exponent of the tail of the distribution, there is a 1

Kmax
factor. Given that

Kmax � 1 this means that this probability becomes small for large N , when the
expected cardinality of Bag-of-PoWs exceed Kmax ∼ 1/p1/2. The mathematical
reason for this weak bound, is that while the difference Di is bounded by one,
“expected” difference is very small, something that cannot be captured unless
the variance of the variables also is included. Trying to use other known versions
of Azuma’s inequality such as the one defined in [39] also give equally weak
bound (see Appendix D).

We therefore seek for a tighter bound, not only for theoretical interest, but
also because this particular bound when applied to the Bitcoin Backbone Proto-
col, results to totally impractical security parameters. Instead, we derive our own
version of Azuma’s inequality that when applied to the Bag-of-PoWs problem
(and subsequently to the Bitcoin Backbone) gives a much tighter bound.
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4.2.6 An Azuma Generalization

Following up to a point steps of the proof from [39], we derive our own version
of Azuma’s inequality, and apply it to our problem. We begin by introducing
the random variable σi (which will use the quantum problem-specific bounds),
defined as: σ2

i := E[(Vi − Vi−1)2 |W1, · · · ,Wi−1].
Consider two non-negative constants γ1 < γ2. Now, let us consider that for

N1 of the i’s we have σ2
i ≤ γ1 and for the remaining N2 = N−N1 the variance is

larger but smaller than γ2, i.e. γ1 < σ2
i ≤ γ2, and we denote Γ1 the set of indices

that have smaller variance and Γ2 the set of indices that have greater variance.
Note, that in [39] a unique number σ was used to bound all the variances, while
we split the variances to two set: one with very small variance and one with
larger variance. We can now derive the following concentration result:

Theorem 6 (Alternative concentration inequality). Let {Vi}Ni=0 be a mar-
tingale with respect to the sequence W1,W2, · · ·WN such that |Vi − Vi−1| ≤ 1.
Consider σ2

i := E[(Vi − Vi−1)2 |W1, · · · ,Wi−1] and assume for some constants
0 < γ1 < γ2, the following hold: σ2

i ≤ γ1 ∀ i ∈ Γ1 where |Γ1| = N1 and
γ1 < σ2

j ≤ γ2 ∀ j ∈ Γ2 where |Γ2| = N − N1. Then for any t > 0, α > 0, we
have:

Pr[|VN − V0| ≥ α ·N ] ≤

e−αNt ·
(

exp (−tγ1) + γ1 exp(t)

1 + γ1

)N1

·
(

exp (−tγ2) + γ2 exp(t)

1 + γ2

)N−N1 (4.21)

Note that this gives a bound for this probability for any choice of t. In prin-
ciple, given other constraints (regarding the values of γ1, γ2 and the cardinalities
of the sets Γ1, Γ2), one can find the suitable/optimal choice of t that minimises
the tail in this inequality. The proof is similar to the first steps of [39], and we
give the details in Appendix E.

4.2.7 A Stronger Bound from Alternative Concentration Inequality

Having obtained this new concentration inequality of Eq. (4.21), we return
to the analysis of SMS strategies trying to bound the tails of the distribution of
the variable ZAqu

. Using the martingale defined in the beginning of the section,
we see that D2

i ≤ 1, and also σ2
i = E[D2

i |W1, · · · ,Wi−1] ≤ 1. Therefore, we can
choose γ2 = 1 and use the notation γ := γ1 and use Eq. (4.21).

Lemma 6 (Concentration from alternative inequality). For any general
quantum adversary Aqu and for any t > 0 , α ≥ 0 and 1 ≥ γ ≥ 0, we have:

Pr[ZAqu
− E[ZAqu

] ≥ α ·N ] ≤ AN1 ·BN−N1 where, (4.22)

A :=
γ exp(t(1− α)) + exp(−t(γ + α))

1 + γ
; B :=

exp(t(1− α)) + exp(−t(1 + α))

2
(4.23)
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To get a good bound, we need to make some choices for the various parame-
ters in Eq. (4.22). The most important choice is the relation between the value γ
of “small-variance” variable and the size of the corresponding set |Γ1| = N1. It is
not hard to see that the bigger the set Γ1, the better the bound, since variables
with smaller variance contribute less in the tail of the distribution. Therefore we
would like to lower bound the value of N1.

Lemma 7. For all SMS adversaries, the number of individual random variables
that have variance greater than γ is bounded by N

Kmaxγ1/2 , i.e.

N −N1 ≤
N

Kmax
√
γ

; N1 ≥ N
(

1− 1

Kmax
√
γ

)
(4.24)

Proof. For Bernoulli variables, the variance σ2
i is bounded by the average prob-

ability pi. We want to obtain (a bound on) the maximum number of variables
that can have variance greater than γ. Therefore σ2

i ≥ γ implies pi ≥ γ. How-

ever, pi =
K2
i

K2
max

since this is a quantum strategy also means that for every

variable i that belongs to Γ2, the corresponding queries to the QRO are at least
Ki ≥ Kmax

√
γ ∀ i ∈ Γ2. Given that the total number of queries is N =

∑
iKi,

the set Γ2 can have no more than N
Kmax

√
γ elements.

Using the optimality of the Non-Adaptive strategies with respect to the ex-
pectation (Theorem 4), and their maximum expectation value (Theorem 5)
E =

√
cp ·N , leads to the following main result regarding general adversaries:

Theorem 7. Given the choice of parameters: γ = α2/3 and t = α1/3

4 , α =
ε

Kmax
where 0 < ε ≤ 1/3, for any quantum adversarial strategy, we have the

concentration result:

Pr(ZAqu
− E[ZAqu

] ≥ εE) . exp

(
− E

K
1/3
max

· g2(ε)

)
(4.25)

or equivalently:

Pr(ZAqu ≥ (1 + ε)
√
cpN) . exp

(
−(cp)

2
3N · g2(ε)

)
(4.26)

where g2(ε) = ε1/3

32 (7ε− 1) .

Proof Sketch (full proof in Appendix F). Assuming that all parameters γ, t, α�
1 are small, Eq. (4.23) becomes:

A . exp

(
γt2

2
− αt

)
; B ≤ exp

(
t

(
t

2
− α

))
(4.27)

which using γ = α2/3, t = α1/3

4 is:

A . exp

(
−7α4/3

32

)
; B ≤ exp

(
α2/3

4

(
1

8
− α2/3

))
(4.28)
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Using the lower bound on N1 from Eq. (4.24) and plugging these into Eq. (4.22):

Pr(ZAqu
− E[ZAqu

] ≥ αN) . exp

(
−7α4/3

32
N +

α1/3

32

N

Kmax

)
(4.29)

By choosing α = ε
Kmax

and noting that E ≤ N
Kmax

we get:

Pr(ZAqu − E[ZAqu ] ≥ ε N

Kmax
) . exp

(
− N

K
4/3
max

· ε
1/3

32
(7ε− 1)

)
Pr(ZAqu − E[ZAqu ] ≥ εE) . exp

(
− E

K
1/3
max

· ε
1/3

32
(7ε− 1)

)
(4.30)

We can see immediately that this is a much better bound than the ones
obtained from Lemma 5 and Lemma 14, since on these lemmas the exponential

decay was divided by a term Kmax, while here is divided by K
1/3
max. Moreover,

the choices of the parameters in Theorem 7 lead to a bound, that is not only
much better than the results using Azuma inequalities, but is also very close to
the optimal bound obtained with this approach (see Appendix G).

Of separate interest may also be the similar concentration results we ob-
tained, for certain restricted types of adversaries (Non-Adaptive and “Noisy
Quantum Storage”) which can be found in Appendix H (Theorem 10).

4.3 Bounds on Quantum Strategies for Chain-of-PoWs

Finally, we can determine upper bounds on the best quantum strategies against
the Chain-of-PoWs Problem, and essentially completing the proof of Theorem 3.
To do so, we combine the concentration result of the most general type of SMS
strategies against Bag-of-PoWs Problem (Theorem 7, Eq. 4.26) together with
the relation between best strategies against Bag-of-PoWs Problem and Chain-
of-PoWs Problem stated in Lemma 3.

Proof of Theorem 3. From Eq. 4.26 we know that: From N+x queries we obtain
an upper bound of MB(N + x) = (1 + ε)

√
cp(N + x) queries with probability

pB(N + x) = exp
(
−(N + x) · (cp) 2

3 · g3(ε)
)

.

To map it to the setting of Lemma 3 we need to find x such that:MB(N+x) =
x, which will give us our new bound MA for the Chained Problem. This is

equivalent to: x = N · (1+ε)
√
cp

1−(1+ε)
√
cp , leading to:

MA = N ·
(1 + ε)

√
cp

1− (1 + ε)
√
cp
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Now to compute pA for the Chained Problem, as seen in Lemma 3, we just need
to compute pB(N +MA), which gives us:

pA = exp

(
−N · (cp) 2

3 · g2(ε)

1− (1 + ε)
√
cp
·
)

By replacing the function g2 we get:

pA = exp

(
−N · (cp) 2

3 · 1

1− (1 + ε)
√
cp

ε1/3

32
(7ε− 1)

)
And by introducing the notation f0(c, p, ε) = (cp)

2
3 · 1

1− (1 + ε)
√
cp

ε1/3

32
(7ε− 1) :

pA = exp(−f0(c, p, ε) ·N)

(4.31)

which concludes the proof of Theorem 3.

5 Quantum Analysis of the Backbone Protocol

In this section we first introduce some further background about the Backbone
protocol, together with a series of restrictions, relating the honest and adversarial
variables (Lemma 8, Lemma 10) that jointly suffice to ensure the security of the
protocol. Then, in the following subsection, we combine these restrictions with
our main result (Theorem 3), to obtain: (i) bounds on the adversarial quantum
hashing power required to guarantee that the security of the Backbone protocol
holds in the presence of quantum adversary and (ii) the probabilities that the two
properties of the Backbone hold quantifying the wait time for safe settlement.

5.1 The Backbone Protocol Properties, Revisited

To ensure the two main properties common prefix and chain quality hold as in
the classical adversary scenario [21], we need to satisfy two conditions. In [21]
these conditions are referred to as requirements of a “typical execution”. The
first condition requires that some events regarding the hash function H occur
with exponentially small probability. Specifically, these events are defined as fol-
lows: An insertion occurs when, given a chain C with two consecutive blocks B
and B′, a block B∗ created after B′ is such that B, B∗, B′ form three consecutive
blocks of a valid chain. A copy occurs if the same block exists in two different
positions. A prediction occurs when a block extends one which was computed at
a later round.
As proven in [21] (Theorem 10), these events imply finding a collision for the
hash function H. However, for the collision finding problem, it is known that the
best quantum algorithms require O(2

κ
3 ) queries (which is optimal as proven in

[50]) compared to the O(2
κ
2 ) in the classical case. Therefore, the same analysis
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showing that these events hold with negligible probability in the quantum ad-
versaries case is sufficient.

The second condition refers to bounding the number of adversarial PoWs
within a number s of consecutive rounds. More specifically, to ensure that the
common prefix property holds with the same parameter as in the classical ad-
versary scenario, [21], for any type of adversary, it is sufficient to impose two
restrictions on Z(s): with respect to X(s) and Y (s), respectively. These restric-
tions, will then imply upper bounds on the quantum adversarial hasing power
Q, which in turn will also give us the parameter of the chain quality property.

From now on in this section and in the remaining of the paper, as for the first
condition, the probabilities of the H-related events is negligible in the security
parameter κ, we will focus only on the probabilities for which the number of
adversarial blocks Z(s) is bounded, and will denote these latter probabilities
as the ones under which the security (the two main properties) of the Bitcoin
backbone protocol hold.

Lemma 8. The common prefix property of the Bitcoin backbone protocol holds
with parameter k ≥ 2sf , for any s ≥ 2

f consecutive rounds, against any quantum
adversary A if the following condition holds:

ZA(s)

s
< (1− ε)f(1− f) (5.1)

Proof. Following exactly the lines of the proofs from [21], we must first ensure
that: any k ≥ 2fs ≥ 4 consecutive blocks of a chain have been computed in
s ≥ k

2f consecutive rounds.

Which by following the proof by contradiction of Lemma 13 ([21]), imposes the
condition: For any quantum adversary A and for any s ≥ 2

f , we have:

X(s) + ZA(s) < 2fs (5.2)

Secondly, the condition between ZA(s) and Y (s) comes from the proof of the
following result, which then implies the common prefix property:

Lemma 9 (GKL15). Consider two chains C1 and C2. If C1 is adopted by an
honest player at round r and C2 is either adopted by an honest party at round r

or diffused at round r and has len(C2) ≥ len(C1), then Cdk1 � C2 and Cdk2 � C1
for k ≥ 2fs and s ≥ 2

f .

For the proof of this lemma, what we must guarantee is that for any quantum
adversary A and for s ≥ 2

f , we have: ZA(s) < Y (s). Therefore, in order to prove
that the common prefix property holds with parameter k ≥ 2sf , it is sufficient
to impose on the quantum adversary the following two conditions for any s ≥ 2

f
consecutive rounds:

X(s) + Z(s) < 2fs ; Z(s) < Y (s) (5.3)
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Which using the bounds on the honest players variables X(s) and Y (s) from
Lemma 1, the sufficient conditions become:

Z(s)

s
< (1− ε)f ;

Z(s)

s
< (1− ε)f(1− f) (5.4)

Which given that min{(1− ε)f(1− f), (1− ε)f} = (1− ε)f(1− f) leads to:

Z(s)

s
< (1− ε)f(1− f) (5.5)

Lemma 10. The chain quality property of the Bitcoin backbone protocol holds
with parameter l ≥ 2sf and ratio of honest blocks µ, where µ is determined by
the condition:

Z(s) < (1− µ)X(s) (5.6)

Proof. Follows directly from the proof of chain quality in Theorem 16 ([21]).

Moreover, if we ensure µ > 0, then this proves that for any s ≥ 2
f :

Corollary 1 (GKL15). Any 2sf consecutive blocks in the chain of an honest
party contain at least one honest block.

Crucially, besides obtaining restrictions on Q, we must specify with what
probability the common prefix property holds, which is the reason we seeked for
the tightest concentration result possible.

5.2 Backbone Protocol Analysis against Quantum Strategies

Finally, we determine the conditions on the hashing power of the quantum ad-
versary such that the properties of the Bitcoin backbone protocol are satisfied.
We can apply Theorem 3 to bound the adversarial variable Z(s), where the avail-
able queries are N = sQ, i.e. the number or rounds, multiplied by the quantum
queries per round.

Theorem 8. The common prefix property is satisfied with parameter k ≥ 2sf ,
for any s ≥ 2

f consecutive rounds against any quantum adversary, with proba-

bility 1− exp(−f0(c, p, ε) ·Q · s), as long as:

Q <
(1− ε)f(1− f)

(
1− (1 + ε)

√
cp
)

(1 + ε)
√
cp

≈ (1− ε)f(1− f)

(1 + ε)
√
cp

(5.7)

where the approximation holds for p� 1.

Proof. Using Lemma 8 and the concentration result from Theorem 3, the con-
dition of the adversary’s hashing power Q becomes:

(1 + ε)
√
cp

1− (1 + ε)
√
cp
·Q < (1− ε)f(1− f) (5.8)

The proof follows from the above and Theorem 3, where f0(c, p, ε) = (cp)
2
3 ·

1
1−(1+ε)

√
cp
ε1/3

32 (7ε− 1) ≈ (cp)
2
3 · ε

1/3

32 (7ε− 1) for p� 1.
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Theorem 9. The chain quality property is satisfied with parameter l ≥ 2sf ,
and µ = f for any s ≥ 2

f consecutive rounds against any quantum adversary,

with probability 1− exp(−f0(c, p, ε) ·Q · s).

Proof. Follows from Lemma 10 and concentration result in Theorem 3.

Corollary 2. Under the above restrictions on Q, the probability under which
the common prefix and chain quality are satisfied becomes:

Pqu = 1− exp
(
−g3(ε) · f(1− f) · (cp) 1

6 · s
)

(5.9)

where g3(ε) = g2(ε) · 1−ε
1+ε .

Proof. Follows directly from Theorem 8 and Theorem 9.

Additionally, we have performed similar analysis of the Backbone Protocol
against restricted types of adversaries (Non-Adaptive and Noisy Quantum Stor-
age) which can be found in Appendix I.

6 Summary and Future Directions

We can now provide a comparison between the analysis of the Bitcoin backbone
protocol against classical adversaries of [21] and our analysis against a general
quantum adversary. In Table 2 and in the following we compare four aspects:

– “Honest Majority” which expresses the relation between the honest hashing
power and the (classical or quantum) adversary’s hashing power.

– The expected number of adversarial blocks within a sufficiently large number
of consecutive rounds.

– The probability of a “typical execution,” referring to the probability that
the required bounds on the number of adversarial queries hold.

– The number of rounds required to reach the same level of security.

Acl Aqu

Honest
Majority

t
n−t < 1− 3(f + ε) Q < 1−ε

1+ε
· f(1−f)√

cp

Maximum Expectation
Adversarial PoWs

pqt · s √
cp ·Q · s

Probability of
Concentration

Pcl = 1− e−Ω(ε2fs)
Pqu = 1− e−g3(ε)f(1−f)(cp)

1
6 s

Number of
Rounds

scl squ = g4(ε) · 1
1−f · p

−1/6scl

Table 2. Comparison between adversaries

where g1(ε) = 1−ε
1+ε ·

ε(3ε+2)
2(2+ε) and g3(ε) = 1−ε

1+ε ·
ε

1
3 (7ε−1)

32 and g4(ε) = ε2·c−1/6

g3(ε) . Note

that for the bound on Q for Aqu we have used an approximation that p � 1,
while the exact bound can be found in Theorem 8.
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The expressions in Table 2 use the parameter f that denotes the probability
that at least one honest party computes a PoW at round i. To directly relate the
hashing power of the honest players qn with the hashing power of the adversary
Q, we use f = 1− (1− p)qn.

For Aqu, applying the Bernoulli inequality, and approximating 1−pqn
1+pqn with

1, we obtain the condition Q ≤ qnO(
√
p), indicating that for general quantum

adversaries, the quantum adversarial hashing power must be of order the honest
hasing power multiplied by the square root of the probability of success of a single
query. Again we can see that there is a quantum speed-up that leads to requiring
stronger constraints on the adversarial hashing power. One, naively, could imag-
ine that the speed-up and the separation between classical and quantum power
(being quadratic) would keep growing with the number of queries (and thus
rounds). This is not what happens, since the quadratic speed-up reaches a maxi-
mum, when one uses sufficient queries such that the probability of solving a PoW
becomes unity. This happens when one uses Kmax = (cp)−1/2 queries. Hence,
the overall quantum speed-up means that the honest classical hashing power
should be Kmax times greater than the adversarial quantum hashing power.

Finally, from relating the probabilities Pcl, and Pqu, under which the prop-
erties of the backbone Protocol hold (common prefix and chain quality) we can
relate the number of rounds required to achieve same accuracy. We denote scl

the number of necessarry rounds in the analysis against classical adversaries to
achieve a given accuracy (determined by the security parameter) and similarly,
squ are the corresponding rounds for general quantum adversaries. In the limit
p � 1, we get squ = scl · O(p−1/6). This indicates that for the most general
quantum adversary to achieve the same negligible probability for a non-typical
execution, we need more rounds but this extra overhead is relatively small as it
scales with the sixth root of p−1.

Future Directions: Regarding directions for future work, there are a few gener-
alizations of our analysis that one can consider. Our analysis of the backbone
protocol considers a model with a fixed number of parties and difficulty. The
first generalization to consider is the Bitcoin backbone protocol with variable
difficulty [22]. The second is to consider multiple quantum adversaries. Having
multiple classical adversaries that are controlled by a single party, is relatively
straight forward, as we can assume that the single party has access to the sum
of the individual queries. This assumption is not easy to make in the quantum
case. Having more parallel quantum computation power is not the same as hav-
ing sequential, and to obtain the quantum search speed-up, the queries need to
be applied sequentially (since the output quantum state of the one query from
the QRO needs to be fed back to the next query). Therefore a more accurate
modelling would be required to truly capture the scenario of multiple quantum
attackers. The third generalization would be to consider the possibility of hy-
brid classical-quantum adversaries. i.e. adversaries having a number of classical
queries and on top of this a number of quantum queries too (the quantum queries
can always be used as classical queries but not the converse). Finally, a fourth
and potentially the more substantial generalization to the analysis of the Bitcoin
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backbone protocol in the quantum era, is to allow (at least some of the) honest
parties to have quantum hashing power.
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Appendices
A Preliminaries Probability Theory

Definition 5 (Chernoff Bounds). Consider {Xi}i a sequence of independent
random variables and let X =

∑n
i=1Xi, such that Xi = 1 with probability pi and

Xi = 0 with probability 1− pi. Let µ = E(X). Then, we have:

Upper Tail: Pr[X ≤ (1 + ε)µ] ≥ 1− e−
ε2

2+εµ for all ε > 0 (A.1)

Lower Tail: Pr[X ≥ (1− ε)µ] ≥ 1− e− ε
2

2 µ for all 0 < ε < 1 (A.2)

Definition 6 (Martingale). A Martingale is a sequence of random variables
V1, V2, ... such that for any n, we have:

E[Vn+1|V1, ..., Vn] = Vn (A.3)

Definition 7 (Doob Martingale). Consider any sequence of variables U =
(U1, ..., Un) ∈ An and a function Φ : An → R.
Then the following sequence Vi is a martingale:

Vi = E[Φ(U1, U2, ..., Un)|U1, U2, ..., Ui] (A.4)

Lemma 11 (Azuma’s inequality [5]). If V is a martingale, then the following
holds:

– If |Vk − Vk−1| < ck for any k,
– Then for any N and any α > 0, we have:

Pr[VN − V0 ≥ αN ] ≤ exp

(
−α2N2

2
∑N
i=1 c

2
i

)
(A.5)

Lemma 12 (Refined Azuma’s inequality [39]). Let {Vi}Ni=0 be a martingale
with respect to the sequence W1,W2, · · · . Assume for some constants d, σ > 0,
the following hold:

|Vi − Vi−1| ≤ d
V ar(Vi |W1, · · · ,Wi−1) = E[(Vi − Vi−1)2 |W1, · · · ,Wi−1] ≤ σ2

(A.6)

Then for every α ≥ 0, we have:

Pr[VN − V0 ≥ αN ] ≤ exp

(
−N ·D

(
δ + γ

1 + γ
|| γ

1 + γ

))
(A.7)

where:

γ =
σ2

d2
, δ =

α

d

D(p || q) = p ln
p

q
+ (1− p) ln

1− p
1− q

∀ p, q ∈ [0, 1]

(A.8)
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B Refined Chernoff Bound : Proof of Lemma 15

Proof. We separate in 2 possible cases:
If E[X] ≥ M

2 , then in this case, we can apply Multiplicative Chernoff
bound (Definition 5) and we get for any ε > 0:

Pr[X > (1 + ε)E[X]] ≤ exp

(
− ε2

2 + ε
· E[X]

)
≤ exp

(
− ε2

2 + ε
· M

2

)
(B.1)

If instead E[X] < M
2 , then we follow the next steps. As Xi are independent

random variables, using the generic Chernoff bound, we obtain that for any t > 0
and any a > 0, we have:

Pr[X ≥ a] ≤ e−ta · E

[
n∏
i=1

etXi

]
= e−ta ·

n∏
i=1

E[e−tXi ] (B.2)

where for the last equality we used the independence of the variables Xi.
Now, given that we want to compare X with the maximum expectation M , we
are choosing a = (1 + ε)M , which gives us:

Pr[X > (1 + ε)M ] ≤ e−t(1+ε)M ·
n∏
i=1

E[etXi ] (B.3)

Now, using the notation Pr[Xi = 1] = pi and thus Pr[Xi = 0] = 1− pi, we have
that etXi is equal to et with probability pi and equal to 1 with probability 1−pi,
which leads to: E[etXi ] = pi · et + (1− pi) · 1. Therefore, the above equation can
be rewritten as:

Pr[X > (1 + ε)M ] ≤ e−t(1+ε)M ·
n∏
i=1

[
pi(e

t − 1) + 1
]

(B.4)

Using the inequality: 1 + x ≤ ex for x = pi(e
t − 1), implies:

Pr[X > (1 + ε)M ] ≤ e−t(1+ε)M ·
n∏
i=1

epi(e
t−1) = e−t(1+ε)M · e(et−1)

∑n
i=1 pi (B.5)

But
∑n
i=1 pi = E[X], which leads us to:

Pr[X > (1 + ε)M ] ≤ e−t(1+ε)M · e(et−1)·E[X] (B.6)

Using the condition E[X] < M
2 , we obtain:

Pr[X > (1 + ε)M ] < e−t(1+ε)M · e(et−1)·M2 (B.7)

Now, we can choose t = ln(1 + ε) > 0:

Pr[X > (1 + ε)M ] <
eε·

M
2

(1 + ε)(1+ε)M
=

[
e
ε
2

(1 + ε)1+ε

]M
(B.8)
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Then, using the inequality: 2ε
2+ε ≤ ln(1 + ε), it can be shown that:

e
ε
2

(1 + ε)1+ε
≤ exp

(
−ε(3ε+ 2)

2(2 + ε)

)
(B.9)

which leads to the final result:

Pr[X > (1 + ε)M ] < exp

(
−ε(3ε+ 2)

2(2 + ε)
·M
)

(B.10)

To complete the proof we need to find the minimum probability between the
2 probabilities we determined for the cases E[X] ≥ M

2 and E[X] < M
2 :

exp

(
−ε(3ε+ 2)

2(2 + ε)
·M
)
< exp

(
− ε2

2 + ε
· M

2

)
(B.11)

Therefore, we have obtained the final result:

Pr[X > (1 + ε)M ] < exp

(
−ε(3ε+ 2)

2(2 + ε)
·M
)

(B.12)

C Optimal Non-Adaptive for Queries Number N ≤ 1√
cp

Lemma 13. For any Non-Adaptive quantum adversary Anonad, the maximum
expected number of PoWs obtained by Anonad, for any number of queries N ≤

1√
cp is:

e := max E[ZAnonad
] = cp ·N2, for any N ≤ 1

√
cp

(C.1)

Proof. Firstly we can rewrite the expected number of PoWs as:

E[ZAnonad
] =

t∑
i=1

PAnonad
(i) · i =

=

t∑
i=1

i ·

 ∑
Ii⊆It,|Ii|=i

∏
j∈Ii

cp ·K2
j

 · [ ∏
l∈It−Ii

(
1− cp ·K2

l

)] (C.2)

If for all i, we have 0 ≤ PKi ≤ 1, in other words when K2
i ≤ N2 ≤ 1

cp , or

equivalently N < 1√
cp , we can compute E[ZAnonad

] as:

E[ZAnonad
] = cp · (K2

1 +K2
2 + · · ·+K2

t ),when N ≤ 1
√
cp

(C.3)

Then, by maximizing E[ZAnonad
] over all t and all K1, ...,Kt subject to the con-

straint K1 + · · ·+Kt = N , we obtain that the maximum value is obtained for:
t = 1 and K1 = N . Which leads to:

maxE[ZAnonad
] = cp ·N2 = e,when N ≤ 1

√
cp

(C.4)
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D Concentration from Stronger Azuma of [39]

In order to improve the bound of Eq. (4.19, we try to use the stronger version
of Azuma’s inequality, defined in Lemma 12, that explicitly has the variance in
the expressions. Firstly, one can easily see that we can choose4 d = σ = 1. We
can therefore use γ = 1 and δ = α in Lemma 12. We will choose α = ε/Kmax =
ε
√
cp� 1 and thus we get:

Lemma 14 (Concentration from Stronger Azuma). For any general quan-
tum adversary Aqu and for any α ≥ 0, we have:

Pr
(
ZAqu − E[ZAqu ] ≥ αN

)
≤ (D.1)

exp

(
−N ·

(
1 + α

2
ln (1 + α) +

1− α
2

ln (1− α)

))
Then, as the maximum expected number of adversarial blocks is: maxE[ZAqu

] =
E = N

√
cp, we get:

Pr[ZAqu
≥ (1 + ε)E[ZAqu

]] ≤

exp

(
−N ·

(
1 + ε

√
cp

2
ln (1 + ε

√
cp) +

1− ε√cp
2

ln (1− ε√cp)
))

(D.2)

which is also a weak bound. Specifically, it is no better than the standard Azuma,
as one can see noting that

√
cp = 1

Kmax
� 1 and by expanding the logarithms

of the r.h.s. the bound becomes: exp
(
−Nε2/K2

max

)
= exp

(
−ε2N√cp · 1

Kmax

)
giving the exact same result as that obtained from standard Azuma at Eq.
(4.19).

E Proof of Theorem 6

The proof, up to some point, follows [39], and the reader is referred to that
reference for more details in the first steps. Since in our case the difference Di of
the martingale is bounded by unit, in our theorem we have restricted attention
to that case (in [39] notation we set d = 1). It is not hard to generalise for
different values of the difference.

We note that
σ2
i = E[(Vi − Vi−1)2 |W1, · · · ,Wi−1]. (E.1)

Then, we can first prove that:

V ar(Di |W1, · · · ,Wi−1) = σ2
i (E.2)

4 Note that choosing σ = 1 seems to be very big. In any reasonable adversarial strat-
egy (using multiple queries for measurements) the majority of the N variables will
actually have zero variance zero, since their corresponding probability will also be
zero.

34



To prove that we first show that:

E[Di |W1, · · ·Wi−1] = 0 (E.3)

Then, we have that for any t ≥ 0:

E

[
exp

(
t ·

N∑
i=1

Di

)]
= E

[
exp

(
t ·

N−1∑
i=1

Di

)
· E[exp(t ·DN ) |W1, · · · ,WN−1]

]
(E.4)

Using Bennett Inequality: if X is a random variable, and let x̄ = E[X] such
that: E[(X − x̄)2] ≤ σ2 and X ≤ b. then for any t ≥ 0, we have:

E[etX ] ≤ etx̄[(b− x̄)2e−
tσ2

b−x̄ + σ2et(b−x̄)]

(b− x̄)2 + σ2
(E.5)

where for our case we have X = Di |W1, · · · ,Wi−1, and thus, x̄ = 0 and b = 1,
we therefore obtain:

E[et·Di |W1, · · · ,Wi−1] ≤
exp
(
−t · σ2

i

)
+ σ2

i · exp(t)

1 + σ2
i

(E.6)

By combining Eq. (E.4) and Eq. (E.6) for i = N , we then get:

E

[
exp

(
t ·

N∑
i=1

Di

)]
≤

exp
(
−t · σ2

N

)
+ σ2

N · exp(t)

1 + σ2
N

· E

[
exp

(
t ·

N−1∑
i=1

Di

)]
(E.7)

And then by recursively applying this inequality, we obtain:

E

[
exp

(
t ·

N∑
i=1

Di

)]
≤

exp
(
−t · σ2

N

)
+ σ2

N · exp(t)

1 + σ2
N

· · · · ·
exp

(
−t · σ2

1

)
+ σ2

1 · exp(t)

1 + σ2
1

(E.8)

Now, to relate to the quantity we are interested in: VN −V0 = W1 + · · ·+WN −
E[W1 + · · ·+WN ] = ZAqu

(s)− E[ZAqu
(s)], we apply Chernoff inequality, which

gives us for any α > 0:

Pr[VN − V0 ≥ αN ] ≤ exp(−αNt) · E

[
exp

(
t ·

N∑
i=1

Di

)]
(E.9)

Using Eq. (E.8), we get the following concentration result for any α > 0:

Pr[VN − V0] ≥ α ·N ] ≤ exp(−αNt) ·
N∏
i=1

(
exp
(
−t · σ2

i

)
+ σ2

i exp(t)

1 + σ2
i

)
(E.10)
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Now, we can use the upper bounds on σi specified in Theorem 6:

σ2
i ≤ γ1 ∀ i ∈ Γ1 where |Γ1| = N1

γ1 < σ2
j ≤ γ2 ∀ j ∈ Γ2 where |Γ2| = N −N1

(E.11)

Using the fact that the function g(x) = x exp(t)+exp(−tx)
1+x is an increasing function

for x > 0, the concentration result in Eq. (E.10) becomes:

Pr[VN − V0] ≥ α ·N ] ≤

exp (−αNt) ·
(

exp (−tγ1) + γ1 exp(t)

1 + γ1

)N1

·
(

exp (−tγ2) + γ2 exp(t)

1 + γ2

)N−N1

(E.12)

for all values of t ≥ 0 and α ≥ 0.

F Proof of Theorem 7

First we obtain simpler form for A,B. Using the inequality: ex + e−x ≤ 2ex
2/2,

leads to:

B ≤ exp

(
−αt+

t2

2

)
= exp

(
t

(
t

2
− α

))
(F.1)

Similarly we can simplify the A term. In our analysis, we will have 0 ≤ t� 1 (and
the same for γ) and we can therefore use Taylor expansion of the exponentials
to get:

A ≤ exp(−αt)
1 + γ

(
γ(1 + t+ t2/2 + γ

t3

3!
) + (1− tq + (γt)2/2− γ3 t

3

3!
+O(t4))

)
≤ exp(−αt)

1 + γ

(
(γ + 1) +

γt2

2
(1 + γ) +

γt3

3!
(1− γ2) +O(t4)

)
.

(
1 +

γt2

2

)
exp(−αt) (F.2)

where in the last step we omitted terms involving γt3 and higher. Then using,
the inequality 1 + x ≤ ex for any real x, we obtain:

A ≤ exp

(
γt2

2
− αt

)
(F.3)

Plugging these into Eq. (4.22), we deduce the following bound on the concen-
tration result:

Pr[ZA − E[ZA] ≥ α ·N ] ≤ exp

(
N1(

γt2

2
− αt) + (N −N1)t(

t

2
− α)

)
(F.4)
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Equivalent to:

Pr[ZA − E[ZA] ≥ α ·N ] ≤ exp

(
(N − (1− γ)N1)

2
t2 − αNt

)
(F.5)

By further replacing N1 from Eq. (4.24), we get:

Pr[ZA − E[ZA] ≥ α ·N ] ≤ exp

((
γ

2
+

1− γ
2Kmax

√
γ

)
Nt2 − αNt

)
(F.6)

From Theorem 7 we use:

γ = α2/3 and t =
α1/3

4
(F.7)

and Eq. (F.2) becomes:

A ≤ exp

(
−α

4/3

4

)(
1 +

α4/3

32

)
. exp

(
−7α4/3

32

)
(F.8)

We can see that this converges to zero (if raised to a sufficiently high power).
Similarly, Eq. (F.1) becomes:

B ≤ exp

(
α2/3

4

(
1

8
− α2/3

))
(F.9)

This term, actually, diverges when raised to high enough power. It is essential to
show that the product of these two terms converges to zero for our parameters
choices.

We also note that with γ = α2/3 Eq. (4.24) becomes

N1 = N

(
1− 1

Kmaxα1/3

)
(F.10)

Now, we revisit Eq. (4.22) and using Eqs. (F.8,F.9,F.10) we obtain

Pr(ZA − E[ZA] ≥ αN) ≤

exp

(
−7α4/3

32
N

(
1− 1

Kmaxα1/3

)
+
α2/3

4

(
1

8
− α2/3

)
N

Kmaxα1/3

)
. exp

(
−7α4/3

32
N +

α1/3

32

N

Kmax

) (F.11)

where we kept the leading orders from each of the two terms. Setting α = ε
Kmax

where 0 < ε ≤ 1/3 is the concentration parameter we get:
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Pr

(
ZA − E[ZA] ≥ ε N

Kmax

)
. exp

(
− N

K
4/3
max

ε1/3

32
(7ε− 1)

)
(F.12)

which clearly converges to zero if ε > 1/7. The proof is concluded by noting that
E := maxE[ZA] = N/Kmax.

G Optimality of Generalised Azuma Concentration

In Section 4.2.6 we made certain choices for γ, t, α and we got a concentration
result that is (much) better than the earlier attempts using existing concentra-
tion results (Azuma and stronger version). In this appendix we give a heuristic
argument why those choices not only are asymptotically optimal, but also get
a concentration result that is very close to the one we expect to be the best
(including the constants in the exponential decay of the expression).

We will fix α = ε
Kmax

as in the main text (but for now we keep it as α).
We want to find the value of t that minimises Eq. (4.22) given the minimum
N1 allowed by Eq. (4.24). Once we do this for any γ we find also the choice of
γ that minimises this further (note that the chosen N1 also is a function of γ).
We make a heuristic analysis, where using the assumptions that γ, α, t� 1, we
expand the expressions for A,B keeping only the leading terms with respect all
the (small) variables. We then get:

A ∼ 1− αt+
(γ + α2)t2

2
+O(higher).

and

B ∼ 1 +
t2

2
(1 + α)− αt+O(higher)

Also we use N −N1 = N
Kmax

√
q and since 1

Kmax
√
γ � 1 we can approximate

N1 ∼ N so that Eq. (4.22) becomes:

AN1BN−N1 .

(
1− αNt+

γt2

2
N

)(
1 +

t2

2

N

Kmax
√
γ
− αt N

Kmax
√
γ

)
(G.1)

. 1 +N

(
−αt

(
1 +

1

Kmaxγ1/2

)
+
γt2

2

(
1 +

1

Kγ3/2

)
+O(higher)

)
The optimal choice of t for this expression can be found to be approximately:

t =
α

γ
·

1 + 1
Kmaxγ1/2

1 + 1
Kmaxγ3/2

= α · 1 +Kmaxγ
1/2

1 +Kmaxγ3/2

To obtain this, we dropped higher terms and then fixed all variables except t,
took the derivative of the truncated expression w.r.t. t and got the above value.
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We therefore know that for this value of t we have the tightest bound irrespective
of the value of γ. The bound becomes:

AN1BN−N1 . 1−N · α
2

2
·
(
Kmaxγ

1/2 + 1

Kmaxγ3/2 + 1

)
Assuming Kmax � 1, we can find the minimum of the above expression (taking
derivative w.r.t. γ this time) that occurs for γ ≈ 1

(2Kmax)2/3 .

This means:

γ =
( α

2ε

)2/3

=

(
1

2Kmax

)2/3

By plugging this value of γ to the above expression for t gives us:

t = (2Kmax)2/3
(α

3

)
=

(2ε)2/3

3
α1/3 =

(
(2)2/3ε

3

)
1

K
1/3
max

In other words, the optimal bound could be obtained with the following choices:

γ =
( α

2ε

)2/3

; t =
(2ε)2/3

3
α1/3 (G.2)

It is worth to note, that these choices are extremely close with the ones used in
our analysis in the main paper. As far as the dependency on α is concerned, for
both γ, t we have the same functional dependency. The constants that actually
are required to achieve the best bound, depend on ε in general. The values we
chose are close to optimal for some choices of ε.

The final optimal bound with the approximations made (that holds for all
the allowed ε’s), after plugging the expressions for γ, t we obtained and some
more calculations turns out to be:

AN1BN−N1 . exp

(
− N

K
4/3
max

· ε
2

3
·
(

1

2

)1/3
)
≈ exp

(
− N

K
4/3
max

· ε
2

4

)
For example, for the choice ε = 2/7 the above expression gives a coefficient of
1/49 which is marginally better than the 0.02 that we get with the same ε from
Eq. (4.25).

This section demonstrates that our choices (that might have appeared ran-
dom in the main text) not only give a good bound that is asymptotically the
best, but they also give a bound that even the constants of the exponential decay
are close to the optimal ones.

H Concentration Results for Restricted Strategies:
Noisy Quantum Storage and Non-Adaptive

In this section we study 2 restricted types of strategies against the Bag-of-PoWs
Problem: Noisy Quantum Storage Adversaries and Non-Adaptive Adversaries.
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Then the main concentration results for these two families of strategies can be
described as follows;

Theorem 10. For the problem Bag-of-PoWs Problem we have the following
concentrations:

1. For any Noisy Quantum Storage adversary having N quantum queries and
being forced to measure once every Q quantum queries, we have that the
maximum length is at least MB = (1 + ε)cpNQ with probability at most

pB = exp(− ε(3ε+2)
2(2+ε) cpNQ).

2. For Non-Adaptive adversaries having N quantum queries, we have that the
maximum length is at least MN = (1 + ε)

√
cpN with probability at most

pN = exp(− ε(3ε+2)
2(2+ε)

√
cpN).

In the following subsections we describe and motivate these families of strate-
gies and prove their concentrations described in Theorem 10.

H.1 Noisy Quantum Storage Adversaries

In the Noisy Quantum Storage model the adversary’s quantum memory is de-
grading in time and after a fixed amount of time needs to be reset. This con-
strained model implies that the adversary cannot continue the Grover iterations
as long as it wants, and instead it is forced to make a measurement after a fixed
number of queries Q. For simplicity, we will assume that the total number of
queries N is a multiple of Q. We will denote this adversary as Anoisy.

H.1.1 Maximum Expectation of Noisy Quantum Storage Strategies

Theorem 11. For any Noisy Quantum Storage adversary Anoisy, the maximum
expected number of PoWs, given any number of rounds s, is:

B := maxE[ZAnoisy
] = cp ·N ·Q (H.1)

Proof. We start with a simplifying scenario, where we assume that Anoisy per-
forms a single measurement after each Q queries. Using Theorem 2, the expected
number of adversarial blocks created after every Q queries (probability that the
single PoW is solved) can be bounded by E[ZAnoisy(Q)] ≤ cpQ2. In this model we
then have N/Q measurements and we can compute E[ZAnoisy

] as:

E[ZAnoisy
] =

N/Q∑
i=1

E[ZAnoisy(Q)] =
N

Q
· E[ZAnoisy

] ≤ cpNQ (H.2)

However, while the adversary because of the noisy memory, is obliged to make a
measurement at the end of Q queries, he could decide still to split the Q queries
he has into multiple measurements, either attempting to solve multiple different
PoWs (to, in principle, extend his solution, by more than one pair (xij , yij or
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he may wish to try solving the same PoW (if he fails in earlier attempts). We
generalize, and consider that Anoisy can perform in each block of Q queries a
variable number of measurements t, and for each measurement uses Ki queries
before performing the corresponding measurement (

∑t
i=1Ki = Q). We can make

the convention that the number of measurements is t = Q, where since there are
Q queries in total, t = Q is the maximum possible within a block of Q queries
, and we can always consider that the last chunk sizes are 0 (e.g. if adversary
performs m1 < Q measurements, we will have Km2 = 0 ∀ m2 > m1).

We can assume that the adversary, in the first measurement, is trying to
solve one particular PoW If successful, the second measurement tries to solve a
new PoW If he was unsuccessful, the adversary in his second measurement, tries
to solve again the same problem.

Then, if we denote by PAnoisy
(i) the probability of obtaining i PoWs (out of

Q possible PoWs), the expected number of adversarial blocks obtained by Anoisy

within any block of Q queries , can be described as:

E[ZAnoisy(Q)] =

Q∑
i=1

i · PAnoisy(i) =

Q∑
i=1

i ·

 ∑
I⊆{1,2,...,Q}
|I|=i

∏
j∈I

cp ·K2
j

 ·
 ∏
l∈{1,··· ,Q}−I

(
1− cp ·K2

l

)


(H.3)
However, we notice that ZAnoisy(Q) is defined as the number of successes in a
sequence of Q independent measurements with outcome success or failure, each
of the measurements having success probability PK1

, PK2
, · · · , PKQ , then ZAnoisy

is a Poisson Binomial distribution. Therefore, as ZAnoisy(Q) is a Poisson Binomial
distribution, its mean is equal to the sum of the Q Bernoulli distributions:

E[ZAnoisy(Q)] =

Q∑
i=1

PKi = cp ·
Q∑
i=1

K2
i (H.4)

Then, we need to find the maximum of E[ZAnoisy(Q)] over all possibleK1, ...,KQ ∈
{0, 1, · · · , Q} subject to the constraint

∑Q
i=1Ki = Q. As each Ki ≤ Q, we

can rewrite the chunk sizes as: Ki = χiQ, where χi ∈ [0, 1]. The constraint∑Q
i=1Ki = Q becomes

∑Q
i=1 χi = 1. The expectation value can be rewritten as:

E[ZAnoisy(Q)] = cpQ2 ·
Q∑
i=1

χ2
i (H.5)

Since χi ∈ [0, 1], we have χ2
i ≤ χi, which leads to:

E[ZAnoisy(Q)] = cpQ2 ·
Q∑
i=1

χ2
i ≤ cpQ2 ·

Q∑
i=1

χi = cpQ2 (H.6)

Therefore, we have determined that the maximum value on the expected number
of blocks obtained by Anoisy is

maxE[ZAnoisy(Q)] = cpQ2 = B. (H.7)
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We can also observe that this maximum value is obtained when the adversary
uses a single measurement with all Q queries: K1 = Q, Ki = 0 ∀ i 6= 1 since
E[ZAnoisy ] = cp(Q2 + 0 + · · ·+ 0) = cpQ2 = B. This indicates, that it is optimal
(w.r.t. the average number of adversarial blocks) for Anoisy to perform a single
measurement (within Q queries).

H.1.2 Concentration Result of Noisy Quantum Storage Adversaries

To complete the analysis, it is not sufficient to know what is the maximum
number of PoWs the adversary achieves on average, but we also need to know
how concentrated around this average value are the actual maximum solution
lengths for thos type of adversaries. In this first simplified analysis, since the
best expectation is achieved with a single measurement, we assume that the
adversary sticks with this and makes a single measurement in each block of Q
queries.

With these assumptions, for Anoisy adversary, it is not hard to obtain a con-
centration result, since Zi’s - corresponding to number of PoWs obtained during

blocks of Q queries, are independent random variables. Since ZAnoisy
=
∑N/Q
i=1 Zi,

we could apply either Chernoff or Hoeffding inequalities, however the former can-
not be directly applied since we can only bound the maximum expectation of
ZAnoisy , while the former gives a very weak bound (see the problem with Azuma
inequality in Section 4.2.5).

Instead, we derive our own bound on the probability of ZAnoisy
that involves

the value B (and not E[ZAnoisy
]). This newly derived Chernoff-type of inequality,

proved in Appendix B, is stated as below:

Lemma 15. Let X1, · · · Xn be n independent random variables, taking values 0
or 1. Let X = X1 + · · · + Xn. Then, for any M > 0, such that E[X] ≤ M and
for any ε > 0, we have:

Pr[X > (1 + ε)M ] < exp

(
−ε(3ε+ 2)

2(2 + ε)
·M
)

(H.8)

In our setting, we use n = s, Xi = wi (where wi = 1 if i-th measurement
succeeded, and 0 otherwise), X = ZAnoisy(s), M = B. Hence, we obtain:

Pr[ZAnoisy
> (1 + ε)B] < exp

(
−ε(3ε+ 2)

2(2 + ε)
·B
)
∀ ε > 0 (H.9)

Combining this concentration result together with Theorem 11, gives us the
following bound on the number of adversarial PoWs:

Theorem 12. For any Noisy Quantum Storage adversary Anoisy, with proba-

bility 1− exp(− ε(3ε+2)
2(2+ε) cpNQ) and for any ε > 0, it holds that:

ZAnoisy
< (1 + ε)cpNQ (H.10)
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H.2 Concentration Result of Non-Adaptive Adversaries

Non-Adaptive strategies represent a very important mathematical tool used for
our analysis of the most general adversaries against the Bag-of-PoWs problem.
As we have proven in Theorem 4 , these are the optimal strategies with respect
to the maximum expected length of the solution of the Bag-of-PoWs problem.
More specifically, from Theorem 5, we have that: E := max E[ZAnonad

] =
√
cp·N .

We now turn on the issue of how concentrated around the average value is the
number of actual measured adversarial blocks. For the Non-Adaptive adversary,
we have an independent search problem after each measurement, which has
outcome wi 0 or 1, irrespective of how many solutions have been found earlier.
We can therefore use Chernoff bounds to approximate the number of adversarial
blocks using the expectation value:

Pr[ZAnonad
< (1 + ε)E[ZAnonad

] ≥ 1− e−
ε2

2+ε ·E[ZAnonad
] (H.11)

Unfortunately, as we only know the maximum value E that the expectation can
achieve, we cannot use directly the Chernoff inequality (again using Hoeffding
inequality would give a much weaker bound). Instead, we need to derive our own
bound on the probability of ZAnonad

to exceed the value E, probability which
can be expressed as a function of E (and not E[ZAnonad

]). In order to use this
new derived Chernoff type of inequality, stated in Lemma 15 (and proved in
Appendix B), we make the following choice of variables: n = N , Xi = wi (where
wi = 1 if i-th measurement succeeded, and 0 otherwise), X = ZAnonad

, M = E.
This gives us the following concentration result:

Pr[ZAnonad
> (1 + ε)E] < exp

(
−ε(3ε+ 2)

2(2 + ε)
· E
)
∀ ε > 0 (H.12)

Combining this concentration result together with Theorem 5, gives us the fol-
lowing bound on the number of adversarial PoWs:

Theorem 13. For any Non-Adaptive adversary Anonad, with probability

1− exp(− ε(3ε+2)
2(2+ε)

√
cpN) and for any N ≥ 1√

cp and any ε > 0, it holds that:

ZAnonad
< (1 + ε)

√
cp ·N (H.13)

I Backbone Protocol Analysis against Restricted
Quantum Strategies

In this section we study the two restricted SMS adversaries, Noisy Quantum
Storage and Non-Adaptive against the Backbone protocol.

43



I.1 Backbone Protocol Analysis for Noisy Quantum Storage

As explained in Subsection 5.1, we now need to determine the conditions on the
hashing power of the adversary such that the properties of the Bitcoin backbone
protocol are satisfied.

Theorem 14. The common prefix property is satisfied with parameter k ≥ 2sf ,
for any s ≥ 2

f consecutive rounds against any Noisy Quantum Storage adversary,

with probability 1− exp(−g0(ε)cpQ2s), as long as:

Q <

√
1− ε
1 + ε

· f(1− f)

cp
(I.1)

Proof. Using Lemma 8 and the concentration result from Theorem 12, the con-
dition of the adversary’s hashing power Q becomes:

(1 + ε)cpQ2 < (1− ε)f(1− f) (I.2)

The proof follows from Eq. (I.2) and Theorem 12, where g0(ε) := ε(3ε+2)
2(2+ε) .

Theorem 15. The chain quality property is satisfied with parameter l ≥ 2sf ,
and µ = f for any s ≥ 2

f consecutive rounds against any Noisy Quantum Storage

adversary, with probability 1− exp(−g0(ε)cpQ2s).

Corollary 3. Under the above restrictions on Q, the probability under which
the common prefix and chain quality are satisfied becomes:

Pnoisy = 1− exp(−g1(ε) · f(1− f) · s) (I.3)

where g1(ε) = g0(ε) · 1−ε
1+ε .

I.2 Backbone Protocol Analysis for Non-Adaptive Strategies

Now we need to determine the conditions on the hashing power of the adversary
such that the properties of the Bitcoin backbone protocol are satisfied.

Theorem 16. The common prefix property is satisfied with parameter k ≥ 2sf ,
for any s ≥ 2

f consecutive rounds against any Non-Adaptive adversary, with

probability 1− exp(−g0(ε)
√
cpQs), as long as:

Q <
1− ε
1 + ε

· f(1− f)
√
cp

(I.4)

Proof. Using Lemma 8 and the concentration result from Theorem 13, the con-
dition of the adversary’s hashing power Q becomes:

(1 + ε)
√
cpQ < (1− ε)f(1− f) (I.5)

The proof follows from the above and Theorem 13, where g0(ε) = ε(3ε+2)
2(2+ε)

44



Theorem 17. The chain quality property is satisfied with parameter l ≥ 2sf ,
and µ = f for any s ≥ 2

f consecutive rounds against any Non-Adaptive adver-

sary, with probability 1− exp(−g0(ε)
√
cpQs).

Corollary 4. Under the above restrictions on Q, the probability under which
the common prefix and chain quality are satisfied becomes:

Pnonad = Pnoisy = 1− exp(−g1(ε) · f(1− f) · s) (I.6)
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