
Batching non-membership proofs and proving non-repetition

with bilinear accumulators

Abstract

In this short paper, we provide a protocol to batch multiple non-membership proofs into a
single proof of constant size with bilinear accumulators via a succinct argument of knowledge
for polynomial commitments.

We use similar techniques to provide a constant-sized proof that a polynomial commitment
as in [KZG10] is a commitment to a separable (square-free) polynomial. In the context of the
bilinear accumulator, this can be used to prove that a committed multiset is, in fact, a set.
This has applications to any setting where a Verifier needs to be convinced that no element
was added more than once. This protocol easily generalizes to a succinct protocol that shows
that no element was inserted more than k times.

We use the protocol for the derivative to link a committed polynomial to a commitment
to its degree in zero-knowledge.

We have designed all of the protocols so that the Verifier needs to store just four elliptic
curve points for any verification, despite the linear CRS. We also provide ways to speed up the
verification of membership and non-membership proofs and to shift most of the computational
burden from the Verifier to the Prover. Since all the challenges are public coin, the protocols
can be made non-interactive with a Fiat-Shamir heuristic.

1 Introduction

A commitment scheme is a fundamental cryptographic primitive which is the digital analog
of a sealed envelop. Committing to a message m is akin to putting m in the envelop. Opening
the commitment is like opening the envelop and revealing the content within. Commitments are
endowed with two basic properties. The hiding property entails that a commitment reveals no
information about the underlying message. The binding property ensures that one cannot alter
the message without altering the commitment.

A cryptographic accumulator is a succinct binding commitment to a set or a multiset. A
Prover with access to the set/multiset can prove membership or non-membership of an element
with a proof publicly verifiable against the succinct commitment held by a Verifier. Accumulators
have been used for many applications including accountable certificate management [BLL00,
NN98], timestamping [Bd94], group signatures and anonymous credentials [CL02], computations
on authenticated data [ABC+12], anonymous e-cash [STS99b, MGGR13a], privacy-preserving
data outsourcing [Sla12], updatable signatures [PS14, CJ10], and decentralized bulletin boards
[FVY14, GGM14].

In this paper, we study a class of accumulators that is based on bilinear pairings of elliptic
curves. First introduced by Nguyen in [Ngu05], these accumulators have the major advantage
over the better known accumulator of a Merkle tree in that membership proofs are of constant
size and multiple membership proofs can be batched together into a single constant-sized proof.
Furthermore, it was shown in [DT08] that they also allow for non-membership proofs for elements
outside the committed set. In this paper, we provide a protocol to prove non-membership of an
arbitrarily large set with a constant-sized proof.
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We use techniques similar to those used in our batched non-membership proof protocol to
provide a protocol to succinctly demonstrate that a polynomial commitment is to a separable
(square-free) polynomial. This can be used to prove - with a constant-sized proof - that no
element was inserted more than once into the bilinear accumulator. It easily generalizes to a
protocol to show that no element was inserted more than k times. This is not possible with a
Merkle tree or (as far as we know) with the accumulator based on a hidden order group.

Since bilinear accumulators require groups far smaller than RSA groups for the same level
of security, we expect them to be substantially faster than RSA accumulators when it comes
to accumulation, generation of membership proofs (witnesses) and verification. This is borne
out by the implementation in [Tre13] (even though it precedes the number field sieve attack).
Furthermore, the hardness assumptions that underpin bilinear accumulators are the same as
those in pairing-based Snarks and are arguably less brittle than the hardness assumptions for
hidden order groups.

Furthermore, we adapt techniques from [BBF19] and [Wes18] in the bilinear accumulator
setting to speed up verifications of membership/non-membership proofs and to shift most of the
computational and storage burdens from the Verifier to the Prover. In particular, we provide
a protocol to reduce the Verifier’s task of verifying membership proofs to a constant run time
independent of the number of data elements to be batched.

1.1 Structure/contributions of the paper

In section 1, we primarily provide some background and notations for bilinear accumulators
and the KZG polynomial commitment scheme, including the hardness assumptions that underpin
these schemes. In section 2, we describe the protocol PoE for verifiable computation and the
succinct argument of knowledge PoKE along with the security proofs.

In section 3, we use the protocols from section 2 to provide a constant-sized non-membership
proof for an arbitrarily large set with respect to the accumulated digest. Such a batched proof is
not possible via the a Merkle tree. While accumulators based on hidden order groups famously
do support batched non-membership proofs ([BBF19]), the groups are substantially larger and
the proof generation times are consequently longer.

In section 4, we use the protocols from section 2 to construct a protocol that succinctly
demonstrates that a KZG polynomial commitment is a commitment to a separable (square-free)
polynomial. In the context of the bilinear accumulator, this can be used to prove - with a
constant-sized proof - that no element was inserted more than once into the accumulator. This
easily generalizes to a protocol thaat succinctly demonstrates that no element was inserted more
than k times. As far as we know, this is not possible with a Merkle tree or an accumulator based
on hidden order groups.

We also discuss a protocol to demonstrate a polynomial relation between two discrete logarithms
in section 4. This protocol can be combined with the protocol for separable polynomial commitments
to derive a protocol that succinctly demonstrates that every element element inserted into the
accumulator was inserted with frequency between m and n for public integers m ≤ n.

In the appendix, we describe a vector commitment with constant-sized openings that hinges
on the universal accumulator with constant-sized membership and non-membership proofs.

1.2 Notations and terminology

As usual, Fq denotes the finite field with q elements for a prime power q and Fq denotes its
algebraic closure. F∗q denotes the cyclic multiplicative group of the non-zero elements of Fq. For
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polynomials f(X), g(X) ∈ Fq[X], we denote by gcd(f(X), g(X)) the unique monic polynomial
that generates the (principal) ideal of Fq[X] generated by f(X) and g(X).

A polynomial in Fq[X] is said to be separable or square-free if it is not divisible in Fq[X]
by the square of any irreducible polynomial. Since a finite field is a perfect field, f(X) being
separable in Fq[X] is equivalent to f(X) being separable in Fq[X], i.e. f(X) having no zeros
with multiplicity ≥ 2 in Fq[X]. A well-known fact is that a polynomial f(X) being separable is
equivalent to it being relatively prime with its derivative f ′(X).

We now briefly introduce pairings.

Definition 1.1. For abelian groups G1, G2, GT , a pairing

e : G1 ×G2 −→ GT

is a map equipped with the following properties.

1. Bilinearity: e(x1 + x2, y1 + y2) = e(x1, y2) · e(x1, y2) · e(x2, y1) · e(x2, y2)
∀ x1, x2 ∈ G1, y1, y2 ∈ G2.

2. Non-degeneracy: The image of e is non-trivial.

3. Efficient computability.

In pairing-based cryptography, we typically work in settings where the groups G1, G2, GT

are cyclic of order p for some 256-bit prime p so as to have a 128-bit security level. Such pairings
e : G1 ×G2 −→ GT are classified into three types:

- Type I: G1 = G2.

- Type II: G1 6= G2 but there is an efficiently computable isomorphism between G1 and G2.

- Type III: There is no efficiently computable isomorphism between G1 and G2.

1.3 Cryptographic assumptions

We state the computationally infeasible problems that the security of our constructions hinge
on.

Assumption 1.1. n-strong Diffie Hellman assumption: Let G be a cyclic group of prime
order p generated by an element g, and let s ∈ F∗p. Any probabilistic polynomial-time algorithm

that is given the set {gsi : 1 ≤ i ≤ n} can output a pair (a, g1/(s+a)) ∈ F∗p × G with at most
negligible probability.

Assumption 1.2. Knowledge of exponent assumption (KEA): Let G be a cyclic group of
prime order p generated by an element g, and let s ∈ F∗p. Suppose there exists a PPT algorithm
A1 that given pairs (h1, h

s
1), · · · , (hn, hsn) in G2, outputs a pair (c1, c2) ∈ G2 such that c2 = cs1.

Then there exists a PPT algorithm A2 that, with overwhelming probability, outputs a vector
(x1, · · · , xn) ∈ Fnp such that

c1 =
n∏
i=1

hxii , c2 =
n∏
i=1

(hsi )
xi

A special case of the KEA assumption is that given the elements {gsi : 0 ≤ i ≤ n}, if a PPT
algorithm A1 is able to output a triplet (c1, c2, f(X)) ∈ G×G× Fp[X] with deg(f(X) ≥ 1 such

that c2 = c
f(s)
1 , then there is a PPT algorithm A2 that with overwhelming probability, outputs a

polynomial e(X) such that
c1 = g

e(s)
1 , c2 = g

e(s)·f(s)
1 .
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The KEA assumption implies that breaking the strong Diffie-Hellman is equivalent to computing
the trapdoor s. A PPT adversary A that can compute an element w such that ws+α = g1 can
also generate a polynomial e(X) such that

w = g
e(s)
1 , g1 = g

e(s)·s
1

and hence, s is a zero of the polynomial e(X) · X − 1. So A can use a PPT algorithm such as
[KS98] to factorize e(X) ·X − 1 and extract s in expected polynomial time.

Assumption 1.3. Let G be a cyclic group of prime order p generated by an element g, and let
s ∈ F∗p. Any probabilistic polynomial-time algorithm that is given the set {gsi : 1 ≤ i ≤ n} can
output a pair (f(X), w) ∈ Fp[X]deg≥1 ×G such that

wf(s) = g

with at most negligible probability.

This assumption is stronger than the n-strong Diffie Hellman assumption. However, for cryptosystems
that use the KEA assumption, they are equivalent.

Lemma 1.1. The n-strong Diffie Hellman and KEA assumptions imply Assumption 1.3.

Proof. We show that a PPT adversary A that breaks Assumption 1.3 can break the n-strong
Diffie Hellman with overwhelming probability. Suppose A outputs a non-constant polynomial
f(X) of degree k ≥ 1 and an element w such that wf(s) = g. Write f(X) =

∑k
i=0 ciX

i. Then

(w
∑k

i=1 cis
i−1

)s = g · w−c0

and the KEA assumption implies that with overwhelming probability, A can output a polynomial
e(X) such that

w
∑k

i=1 cis
i−1

= ge(s) , g · w−c0 = ge(s)·s.

So
g =

(
g(1−e(s)·s)·c

−1
0

)f(s)
and hence, f(s)·(e(s)·s−1) = c0. Now, A can use the [KS98] algorithm to factorize the polynomial
f(X) · (e(X) ·X − 1)− c0 in expected polynomial runtime. Hence, A can extract the integer s -
thus breaking the n-strong Diffie Hellman assumption - with overwhelming probability.

1.4 Argument Systems

An argument system for a relation R ⊆ X × W is a triple of randomized polynomial time
algorithms (PGen,P,V), where PGen takes an (implicit) security parameter λ and outputs a
common reference string (CRS) pp. If the setup algorithm uses only public randomness we say
that the setup is transparent and that the CRS is unstructured. The prover P takes as input a
statement x ∈ X, a witness w ∈ W , and the CRS pp. The verifier V takes as input pp and x
and after interactions with P outputs 0 or 1. We denote the transcript between the prover and
the verifier by

〈
V(pp, x),P(pp, x, w)

〉
and write V

〈
(pp, x),P(pp, x, w)

〉
= 1 to indicate that the

verifier accepted the transcript. If V uses only public randomness we say that the protocol is
public coin.

We now define soundness and knowledge extraction for our protocols. The adversary is
modeled as two algorithms A0 and A1, where A0 outputs the instance x ∈ X after PGen is
run, and A1 runs the interactive protocol with the verifier using a state output by A0. In a
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slight deviation from the soundness definition used in statistically sound proof systems, we do
not universally quantify over the instance x (i.e. we do not require security to hold for all input
instances x). This is due to the fact that in the computationally-sound setting the instance
itself may encode a trapdoor of the common reference string, which can enable the adversary
to fool a verifier. Requiring that an efficient adversary outputs the instance x prevents this. In
our soundness definition the adversary A1 succeeds if he can make the verifier accept when no
witness for x exists.

Definition 1.2. We say an argument system (PGen,P,V) for a relation R is complete if for
all (x,w) ∈ R,

Pr
[〈
V(pp, x) , P(pp, w)

〉)
= 1 : pp

$←− PGen(λ)
]

= 1.

Definition 1.3. We say an argument system (PGen,P,V) is sound if P cannot forge a fake
proof except with negligible probability.

Definition 1.4. We say a sound argument system is an argument of knowledge if for any
polynomial time adversary A, there exists an extractor E with access to A’s internal state that
can, with overwhelming probability, extract a valid witness whenever A is convincing.

Definition 1.5. An argument system is non-interactive if it consists of a single round of
interaction between P and V.

The Fiat-Shamir heuristic ([FS87]) can be used to transform interactive public coin argument
systems into non-interactive systems. Instead of the Verifier generating the challenges, this
function is performed by a public hashing algorithm agreed upon in advance.

1.5 Bilinear accumulators

We describe the setup in this section. Let G1,G2,GT be cyclic groups of order p for some
prime p such that there exists a pairing e : G1 × G2 −→ GT which is bilinear, non-degenerate
and efficiently computable. Fix generators g1, g2 of the cyclic groups G1,G2 respectively. Then
e(g1, g2) is a generator of GT . For a trapdoor s ∈ F∗p, the common reference string (CRS) is given
by

[g1, g
s
1, · · · , gs

n

1 ] , [g2, g
s
2, · · · , gs

n

2 ]

The generation of the CRS requires a trusted setup, which can be partially mitigated by using a
secure multi-party computation. For a data multiset M , we define the accumulated digest

Acc(g1,D) := g

∏
m∈M

(s+m)mult(m,M)

1 ∈ G1.

Thus, this is the [KZG10] commitment to the polynomial

fM(X) :=
∏
m∈M

(X +m)mult(m,M).

For a multiset M0 ⊆M, the membership witness for M0 is defined by

wit(M0) := g
fM(s)

/
fM0

(s)

1 ∈ G1.

The Verifier then verifies the equation

wit(M0)
fM0

(s) = Acc(g1, D)

via the pairing check
e
(

wit(M0) , g
fM0

(s)

2

)
= e(Acc(g1, M) , g2).
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2 Verifiable computation for exponentiations

In this section, we provide the protocols PoE and PoKE for bilinear accumulators which achieve
three goals.

1. They speed up the verification process by replacing some exponentiation operations by
polynomial division in Fp[X] which is substantially cheaper.

2. They shift most of the computational burden from the Verifier to the Prover. This is useful
in settings where the Prover has more computational power at his disposal.

3. They reduce the Verifier’s storage burden to the set {g1, gs1, g2, gs2}. This is potentially useful
in settings where the Verifier has a low storage capacity.

Protocol 2.1. Proof of exponentiation with base g1 (PoE∗):

Parameters : A pairing e : G1 ×G2 −→ GT

Inputs: a ∈ G1; a polynomial f(X) ∈ Fp[X] of degree ≤ n
Claim: g

f(s)
1 = a

1. The Fiat-Shamir heuristic generates a challenge α ∈ F∗p (the challenge).

2. The Prover computes a polynomial h(X) ∈ Fp[X] and an element β ∈ F∗p such that

f(X) = (X + α) · h(X) + β

and sends Q := g
h(s)
1 to the Verifier.

3. The Verifier computes β := f(X) (mod (X + α)) and accepts if and only if the equation

e(Q , gs+α2 ) · e(gβ1 , g2)
?
= e(a , g2)

holds.

We refer to this as PoE∗[g1, f(X), a]. The proof consists of a single element of G1 and in
particular, is of constant size. Note that because of the bilinearity of the pairing, we have

Qs+α · gβ1 = a⇐⇒ e(Q , gs+α2 ) · e(g1 , g
β
2 ) = e(a , g2).

The asymptotic complexity of the Verifier remains unchanged since computing the Fp-element
β := f(X) (mod (X + α)) has a runtime of O(deg(f)) unless the polynomial f(X) is sparse.
But this protocol swaps exponentiation operations in the group G1 with polynomial division
operations in Fp[X] which are substantially cheaper. The most obvious application is that a
Prover can use the protocol PoE∗ to convince a Verifier that an element A ∈ G1 is the accumulated
digest Acc(g1, D) of a data set D. The Verifier just needs the four points {g1, gs1, g2, gs2} to
check the veracity of this claim.

Clearly, the protocol can be modified for the proof of an exponentiation g
f(s)
2 = b in the

group G2. In this case, the proof would consist of the G2 element g
h(s)
2 . We refer to this as

PoE∗[g2, f(X), b].

Proposition 2.2. The protocol PoE∗ is sound in the algebraic group model.

Proof. We consider the case where the exponentiation is in G1 and with base g1. The case where
the exponentiation is in G2 and with base g2 is virtually identical.
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Suppose a PPT adversary A is able to output an accepting transcript Q ∈ G1 such that

e(Q , gs+α2 ) · e(gβ1 , g2) = e(a , g2) , β := f(X) (mod (X + α))

in response to a challenge α. The pairing check implies that Qs+α ·gβ1 = a. The KEA assumption
implies that with overwhelming probability, A can output a polynomial h(X) such that

Q = g
h(s)
1 , a = g

h(s)·(s+α)+β
1 .

Setting e(X) := h(X) · (X + α) + β yields g
e(s)
1 = a. Now,

e(X) ≡ β ≡ f(X) (mod (X + α))

and since α was randomly and uniformly sampled from Fp, it follows that with overwhelming
probability, e(X) = f(X).

We now generalize this to bases a ∈ G1 other than g1. We provide two versions. The second
is more efficient (for the Prover) if the Prover knows a polynomial e(X) of a small degree such

that g
e(s)
1 = a. The first is more efficient in all other cases.

Protocol 2.3. Proof of exponent 1 for pairings (PoE− 1):

Inputs: a, b ∈ G1; a polynomial f(X) ∈ Fp[X] of degree ≤ n
Claim: af(s) = b

1. The Prover P sends the element g̃2 := g
f(s)
2 ∈ G2 to the Verifier V.

2. P sends a non-interactive proof for PoE∗[g2, f(X), g̃2] to V.

3. V verifies the proof for PoE∗[g2, f(X), g̃2] and the pairing

e(a , g2)
?
= e(b , g̃2).

V accepts if and only if the pairing check holds and the PoE∗ is valid.

Proposition 2.4. The protocol PoE− 1 is sound in the algebraic group model.

Proof. Suppose a PPT adversary A is able to output an element g̃2 ∈ G2 such that e(a , g̃2) =
e(b , g2) along with a proof for PoE∗[g2, f(X), g̃2]. The PoE∗ implies that with overwhelming

probability, g
f(s)
2 = g̃2. The pairing check then implies that the discrete logarithms between the

pairs (g2, g̃2) ∈ G2
2 and (a, b) ∈ G2

1 coincide and hence, af(s) = b.

When the pairing is type III, the exponentiations in G2 are substantially more expensive than
those in G1. Thus, in cases where the Prover knows a polynomial e(X) of a small degree such

that a = g
e(s)
1 , it can be cheaper to compute the element ah(s) = g

e(s)·h(s)
1 instead of g

h(s)
2 .

Protocol 2.5. Proof of exponent 2 for pairings (PoE− 2):

Parameters : A pairing e : G1 × G2 −→ GT of groups of prime order p; generators g1, g2
of G1, G2 respectively;

Inputs: a, b ∈ G1; a polynomial f(X) ∈ Fp[X] of degree ≤ n
Claim: af(s) = b
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1. The Fiat-Shamir heuristic generates a challenge α ∈ F∗p (the challenge).

2. The Prover computes a polynomial h(X) ∈ Fp[X] and an element β ∈ F∗p such that

f(X) = (X + α) · h(X) + β

and sends Q := ah(s) to the Verifier.

3. The Verifier computes β := f(X) (mod (X + α)) and accepts if and only if the equation

e(Q , gs+α2 ) · e(a , gβ2 )
?
= e(b , g2)

holds.

We refer to these protocol as PoE− 1[a , f(X), b] and PoE− 1[a , f(X), b] respectively. We
use the notation PoE[a , f(X), b] to mean one of these two versions.

Proposition 2.6. The protocol PoE− 2 for bilinear accumulators is sound in the algebraic group
model.

Proof. Suppose, by way of contradiction, that a PPT adversary A produces fake witnesses Q1,
Q2 in response to challenges α1, α2. Then Qi satisfies the equation

Qs+αi = b · a−βi , βi := f(X) (mod (X + αi)) (i = 1, 2).

The KEA assumption implies that with overwhelming probability, A can output polynomials
e1(X), e2(X) such that

Qi = g
ei(s)
1 , b · a−βi = g

ei(s)·(s+αi)
1 , βi ≡ f(X) (mod (X + αi)).

Writing
f1(X) := (β2 − β1)−1 · [e1(X) · (X + α1)− e2(X) · (X + α2)]

f2(X) := e1(X) · (X + α1) + β1 · f1(X)

for brevity yields a = g
f1(s)
1 , b = g

f2(s)
1 . Furthermore, the equation

g
f2(s)
1 = b = Qs+α1

1 · aβ1 = Qs+α1
1 · gβ1·f1(s)1

and the strong Diffie Hellman assumption imply that with overwhelming probability,

f2(X) ≡ f1(X) · β1 ≡ f1(X) · f(X) (mod (X + α1)).

Since α1 was randomly and uniformly sampled from F∗p, it follows that with overwhelming
probability, f2(X) = f1(X) · f(X).

We use the protocol PoE to modify the proof of membership for a data set. The goal is to reduce
the storage and computational burdens of the Verifier.

Protocol 2.7. Protocol for set/multiset membership.

Parameters : A pairing e : G1 ×G2 −→ GT of groups of prime order p;

Inputs: Data multisets D, D0; the accumulated digest Acc(g1, D)

Claim: D0 ⊆ D.

1. The Prover computes the polynomial fD0(X) :=
∏

d0∈D0

(X + d0).

2. The Prover computes
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wit(D0) := g
fD(s)

/
fD0

(s)

1 ∈ G1

and sends it to the Verifier V.

3. The Prover sends a proof for PoE[wit(D0), fD0(X), Acc(g1,D)].

4. The Verifier computes fD0(X) and accepts if and only if the PoE is valid.

3 Arguments of knowledge of the exponents

We next show how the protocol PoE can be adapted to provide an argument of knowledge of
the logarithm. The goal is to construct a protocol with communication complexity much lower
than simply sending the polynomial to the Verifier. This will be the key ingredient for batching
non-memberships with a constant-sized proof.

Protocol 3.1. Proof of knowledge of the exponent with base g1 (PoKE∗):

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1,G2 respectively.

Inputs: Element a ∈ G1

Claim: The Prover knows a polynomial f(X) ∈ Fp[X] such that g
f(s)
1 = a.

1. The Fiat-Shamir heuristic generates a challenge α ∈ F∗p.
2. P computes the polynomial h(X) ∈ Fp[X] and the element β ∈ Fp such that

f(X) = (X + α) · h(X) + β.

P computes Q := g
h(s)
1 and sends (Q , β) ∈ G1 × Fp to V.

3. V verifies the equations

e(Q , gs+α2 ) · e(gβ1 , g2)
?
= e(a , g2)

and accepts if and only if the equation holds.

The proof consists of an element of G1 and an element of Fp. We refer to this as PoKE∗[g1, a].
We note that multiple PoKE∗s can be batched together. For elements a1, · · · , ak ∈ G1, a Prover

can demonstrate knowledge of polynomials fi(X) such that g
fi(s)
1 = ai by sending a proof

for PoKE∗[g1,
∏k
i=1 a

γi

i ] in response to a randomly generated challenge γ ∈ Fp. This proof is
constant-sized and independent of the number of polynomials or their degrees.

Clearly, the protocol can be modified for the proof of the knowledge of an exponent g
f(s)
2 = b

in G2. In this case, the proof would consist of an element of G2 and an element of Fp. We refer
to this as PoKE∗[g2, b].

Proposition 3.2. The protocol PoKE∗ is an argument of knowledge in the algebraic group model.

Proof. We address the case where the exponentiation is in G1 and with base g1. The case where
the exponentiation is in G2 and with base g2 is identical. We first show that the protocol is sound
and then demonstrate witness extractability.

Suppose a PPT adversary A is able to output an accepting transcript (Q , β) ∈ G1×Fp such

that e(Q , gs+α2 ) · e(gβ1 , g2) = e(a , g2) in response to a challenge α. The pairing check implies

that Qs+α · gβ1 = a. The KEA assumption implies that with overwhelming probability, A can
output a polynomial h(X) such that
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Q = g
h(s)
1 , a = g

h(s)·(s+α)+β
1 .

Setting f(X) := h(X) · (X + α) + β yields g
f(s)
1 = a, which completes the proof.

We now demonstrate witness extractability to show that this is an argument of knowledge. An
extractor E with access to the accepting transcripts and to the CRS proceeds as follows. Given
accepting transcripts (Qi, βi) for challenges αi (i = 1, · · · , N), E uses the Chinese remainder
theorem to compute a polynomial eN (X) such that

eN (X) ≡ β (mod (X + αi)) , i = 1, · · · , N.

If g
eN (s)
1 = a, E halts. Otherwise, E samples the next accepting transcript (QN+1, βN+1) and

computes the polynomial eN+1(X) such that

eN+1(X) ≡ eN (X) (mod
N∏
i=1

(X + αi)) , eN+1(X) ≡ βN+1 (mod (X + αN+1)).

via the Chinese remainder theorem. When the number of accepting transcripts sampled exceeds
the degree of f(X), the polynomial obtained by E is f(X) with overwhelming probability.

We now generalize this to bases a ∈ G1 other than g1. We provide two versions. The second
is more efficient (for the Prover) if the Prover knows a polynomial e(X) of a small degree such

that g
e(s)
1 = a. The first is more efficient in all other cases. We will use PoKE∗ as a subprotocol

for PoKE− 1.

Protocol 3.3. Proof of knowledge of the exponent (PoKE− 1):

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1,G2 respectively.

Inputs: Elements a, b ∈ G1

Claim: The Prover knows a polynomial f(X) ∈ Fp[X] such that af(s) = b.

1. The Prover P sends g̃2 := g
f(s)
2 ∈ G2.

2. P sends a non-interactive proof for PoKE∗[g2, g̃2].

3. V verifies the proof for PoKE∗[g2, g̃2] and the equation

e(a , g̃2)
?
= e(b , g2).

V accepts if and only if the PoKE∗ is valid and the pairing equation holds.

Clearly, a virtually identical proof would work if (a, b) was a pair in G2 instead of G1.
Henceforth, we refer to this succinct proof as PoKE− 1[a, b] for a pair (a, b) in G2

1 or G2
2.

Proposition 3.4. The protocol PoKE− 1 is an argument of knowledge in the algebraic group
model.

Proof. We consider the case where a, b are elements of G1. The case where they are elements of
G2 is virtually identical.

Suppose a PPT adversary A is able to output an element g̃2 ∈ G2 such that e(b, g2) = e(a, g̃2)
along with a proof for PoKE∗[g2, g̃2]. The PoKE∗ implies that with overwhelming probability, A
can output a polynomial f(X) such that g

f(s)
2 = g̃2. The pairing check implies that the discrete

logarithms between g2, g̃2 and a, b coincide and hence, af(s) = b.

An extractor E can simulate the extractor for PoKE∗[g2, g̃2] to extract the polynomial f(X)
in polynomial expected time.
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When the pairing is type III, the exponentiations in G2 are substantially more expensive
than those in G1. Thus, in cases where the Prover knows a polynomial e(X) of a small degree

such that a = g
e(s)
1 , it can be cheaper to compute the element ah(s) = g

e(s)·h(s)
1 ∈ G1 instead of

g
h(s)
2 ∈ G2.

Protocol 3.5. Proof of knowledge of the exponent for bilinear accumulators (PoKE− 2):

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1,G2 respectively.

Inputs: Elements a, b ∈ G1

Claim: The Prover knows a polynomial f(X) ∈ Fp[X] such that af(s) = b.

1. The Prover P sends g̃ := g
f(s)
1 ∈ G1.

2. The Fiat-Shamir heuristic generates a challenge α ∈ F∗p.

3. P computes the polynomial h(X) ∈ Fp[X] and the element β ∈ Fp such that

f(X) = (X + α) · h(X) + β.

P computes
Q := ah(s) , ĝ := g

h(s)
1

and sends (Q, ĝ, β) ∈ G2
1 × F∗p.

4. V verifies the equations

e(Q , gs+α2 ) · e(aβ , g2)
?
= e(b , g2)

∧
e(ĝ , gs+α2 ) · e(gβ1 , g2)

?
= e(g̃ , g2)

and accepts if and only if both equations hold.

If the exponentiation is in G2, the protocol PoKE-1 will always be more efficient that protocol
PoKE-2. We now describe an attack to show that the Protocol PoKE-2 needs the Prover to send
out g̃ := g

f(s)
2 before the challenge α is generated..

Attack: Suppose a Prover Pmal knows polynomials h1(X), h2(X) such that g
h1(s)
1 = a, g

h2(s)
1 = b

and h1(X) does not divide h2(X). With overwhelming probability, the challenge α ∈ F∗p is such
that the polynomials X + α and h1(X) are relatively prime. On receiving the challenge α, Pmal

could simply compute a polynomial q(X) ∈ Fp and an element β ∈ Fp such that

h1(X) · β + (X + α) · q(X) = h2(X)

and send Q := aq(s), β to the Verifier. The Verifier then sees that Qs+αaβ = b and is tricked into
believing that the Prover knows a polynomial f(X) such that af(s) = b.

Note that when h1(X) divides h2(X), this does not constitute an attack since ah2(s)/h1(s) = b.
But in the case where h1(X) does not divide h2(X), this attack shows that it is not sufficient for
the Prover to send the pair (Q, β) ∈ G1 × Fp to the Verifier. It is precisely to address this that

we require the Prover to send the element g̃ := g
f(s)
1 before the challenge α is generated by the

Fiat-Shamir heuristic.

Proposition 3.6. The protocol PoKE− 2 is an argument of knowledge in the algebraic group
model.

Proof. Suppose a PPT adversary A is able to output accepting transcripts (g̃, Qi, ĝi, βi)
(i = 1, 2) for challenges α1, α2 generated after g̃ has been sent. Via the pairing checks, the
Verifier verifies the equations
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Qs+αi
i = b · a−βi , ĝs+αi

i = g̃ · g−β1 (i = 1, 2).

The KEA assumption implies that there is a PPT algorithmA that with overwhelming probability
outputs polynomials hi(X) such that

g
hi(s)
1 = Qi , g

hi(s)·(s+α)
1 = b · a−βi

Furthermore,

a = g
(β1−β2)−1·

[
h1(s)−h2(s))

]
1 , b = g

β1·[(β1−β2)−1
[
h1(s)−h2(s)

]
+h1(s)

1

Setting
f1(X) := (β1 − β2)−1[h1(X)− h2(X)]

f2(X) := β1 · [(β1 − β2)−1 · [h1(X)− h2(X))] + h1(X)

yields a = g
f1(s)
1 , b = af2(s). And a PPT algorithm that can output h1(X), h2(X) can also

efficiently output the polynomials f1(X), f2(X).

Since the equations ĝs+αi
i = g̃1 · g−β1 (i = 1, 2) hold, the KEA assumption implies that with

overwhelming probability, A can output polynomials ei(X) (i = 1, 2) such that

g
ei(s)
1 = ĝ1 , g

ei(s)·(s+αi)+βi
1 = g̃1.

Set f(X) := e1(X) · (X + α1) + β1. Then g̃1 = g
f(s)
1 . We argue that f(X) · f1(X) = f2(X)

with overwhelming probability, which in turn will imply that af(s) = b except with negligible
probability.

Note that f(X) ≡ β1 (mod (X + α1)). In particular,

f(X) · f1(X) ≡ f2(X) (mod (X + α1))

and since α1 is randomly and uniformly sampled from F∗p after g̃ has been sent, it follows that

with overwhelming probability, f(X) · f1(X) = f2(X). Thus, b = af(s)

We now demonstrate witness extractability to show that this is an argument of knowledge.
The extractor E with access to the accepting transcripts and to the CRS proceeds as follows.
Given accepting transcripts (Qi, βi) for challenges αi (i = 1, · · · , N), E uses the Chinese remainder
theorem to compute the polynomial eN (X) such that

eN (X) ≡ β (mod (X + αi)) , 1 = 1, · · · , N.

If the equation
e(a , g

en(s)
2 ) = e(b , g2)

holds, E halts. Otherwise, E samples the next accepting transcript (QN+1, βN+1) and computes
the polynomial eN+1(X) such that

eN+1(X) ≡ eN (X) (mod

N∏
i=1

(X + αi)) , eN+1(X) ≡ βN+1 (mod (X + αN+1)).

via the Chinese remainder theorem. When the number of accepting transcripts sampled exceeds
the degree of f(X), the polynomial obtained by E is f(X) with overwhelming probability.

We now discuss a zero-knowledge variant of the protocol PoKE for bilinear accumulators. This
is a honest verifier zero-knowledge argument system. It just requires the Prover to add a blinding
factor to his PoKE proof.
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Protocol 3.7. ZK Proof of knowledge of the exponent (ZKPoKE):

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1,G2 respectively.

Inputs: Elements a, b ∈ G1

Claim: The Prover knows a polynomial f(X) ∈ Fp[X] such that af(s) = b.

1. The Prover P chooses a random k ∈ F∗p and sends u := ak ∈ G1.

2. The Fiat-Shamir heuristic generates a challenge α ∈ F∗p.

3. P sends a non-interactive proof for the PoKE[a, bα · u].

4. V computes bα ·u ∈ G1 and accepts if and only if the proof for PoKE[a, bα ·u] is valid.

As was the case with the protocol PoKE, the protocol ZKPoKE can be easily modified for the
setting where the exponentiation is in the group G2 instead of the group G1.

4 Protocol for the GCD and proofs of disjointness

Let f1(X), f2(X) be relatively prime polynomials in Fp[X] and let

Com(g1, f1(X)) := g
f1(s)
1 , Com(g1, f1(X)) := g

f2(s)
1 ∈ G1

be the [KZG10] commitments to these polynomials with base g1. We provide a protocol whereby
a Prover can succictly prove that the commitments are to two relatively prime polynomials.

The basic idea is that for polynomials f1(X), f2(X), f1,2(X), we have gcd(f1(X) , f2(X)) =
c · f1,2(X) for some constant c ∈ Fp if and only if the following hold:

1. f1,2(X) divides both f1(X) and f2(X)

2. There exist polynomials hi(X) such that deg(h1) < deg(f2) and

f1(X) · h1(X) + f2(X) · h2(X) = f1,2(X).

The first property can be demonstrated using the protocol PoKE. The second can be demonstrated
by sending G2-commitments to the polynomials h1(X), h2(X) along with PoKE proofs attesting
that the Prover knows these committed polynomials. The equation

f1(X) · h1(X) + f2(X) · h2(X) = f1,2(X)

can be verified via the pairing check

e(g
f1(s)
1 , g

h1(s)
2 ) · e(g

f2(s)
1 , g

h2(s)
2 )

?
= e(g

f1,2(s)
1 , g2).

This is an argument of knowledge for the following relation:

RGCD[g1, (a1, a2), a1,2] =


(
(a1, a2, a1,2 ∈ G1)
f1(X), f2(X), f1,2(X) ∈ Fp[X]

)
:

g
f1(s)
1 = a1 , g

f2(s)
1 = a2 , g

f1,2(s)
1 = a1,2

gcd(f1(X), f2(X)) = f1,2(X)


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Protocol 4.1. Protocol for the greatest common divisor (PoGCD)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1,G2 respectively.

Inputs: Elements a1, a2, a1,2 ∈ G1

Claim: The Prover knows polynomials f1(X), f2(X), f1,2(X) and a constant c such that

• a1 = g
f1(s)
1 , a2 = g

f2(s)
1 , a1,2 = g

f1,2(s)
1

• gcd(f1(X), f2(X)) = c · f1,2(X).

1. The Prover P sends (batchable) proofs for PoKE[a1,2, a1], PoKE[a1,2, a2].

2. P computes polynomials h1(X), h2(X) ∈ Fp[X] such that

f1(X) · h1(X) + f2(X) · h2(X) = f1,2(X) , deg h1(X) < deg f2(X).

3. P computes the elements

â1 := g
h1(s)
2 , â2 := g

h2(s)
2 ∈ G2.

and sends â1, â2 to the Verifier V along with non-interactive proofs for PoKE∗[g1, a1],
PoKE∗[g1, a2], PoKE

∗[g2, â1], PoKE
∗[g2, â2].

4. V verifies the equation

e(a1 , â1) · e(a2 , â2)
?
= e(a1,2 , g2)

and the PoKE∗s. He accepts if and only if the PoKE∗s are valid and the equation holds.

In particular, the protocol can allow a Prover to show that two committed polynomials are
relatively prime. This is the special case where f1,2(X) = 1 and a1,2 = g1.

Proposition 4.2. The protocol 4.1 is an argument of knowledge in the algebraic group model.

Proof. An extractor E can simulate the extractors for the subprotocols PoKE∗[g1, a1], PoKE
∗[g1, a2],

PoKE∗[g2, â1], PoKE
∗[g2, â2] to extract polynomials f1(X), f2(X), h1(X), h2(X) such that

a1 = g
f1(s)
1 , a2 = g

f2(s)
1 , â1 = g

h1(s)
2 , â2 = g

h2(s)
2 .

The subprotocols PoKE[a1,2, a1], PoKE[a1,2, a2] imply that with overwhelming probability,
f1,2(X) divides both f1(X) and f2(X) and hence, divides the gcd(f1(X), f2(X)). The pairing
equation

e(a1 , â1) · e(a2 , â2) = e(a1,2 , g2)

implies that
g
f1(s)·h1(s)+f2(s)·h2(s)
1 = a1,2.

The strong Diffie-Hellman assumption then implies that with overwhelming probability,

f1(X) · h1(X) + f2(X) · h2(X) = f1,2(X),

whence it follows that gcd(f1(X), f2(X)) divides f1,2(X).

4.1 Batched non-membership proofs

In particular, the protocol for the GCD yields a protocol for batched non-membership proofs
with the bilinear accumulator. We note that for data multisets D, D0, the following are equivalent:
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1. D ∩D0 = ∅.
2. The polyomials fD(X) :=

∏
d∈D

(X + d)mult(d,D) , fD0(X) :=
∏

d0∈D0

(X + d0)
mult(d0,D0) are

relatively prime.

As before, let D be the multiset of accumulated elements and let D0 be a set or a multiset of
elements disjoint from D. The accumulated digests are given by

Acc(g1, D) := g
fD(s)
1 , Acc(g1, D0) := g

fD0
(s)

1 .

A Prover who stores the sets D, D0 can send a proof for PoGCD[g1, (Acc(D), Acc(D0)), g1] which
implies that the polynomials committed in Acc(D), Acc(D0) are relatively prime and hence, the
data multisets D, D0 are disjoint. The proof is constant-sized, as is the verification time.

5 Non-repetition in committed sets

The non-membership proof in the preceding section boils down to succinctly proving that for
elements a1, a2 ∈ Fp[X], the Prover knows relatively prime polynomials f1(X), f2(X) such that

a1 = g
f1(s)
1 , a2 = g

f2(s)
1 . For the non-membership proof of D0 in D, this is achieved by setting

a1 := Acc(g1,D) , a2 := Acc(g1,D0).

The same technique can also be used to show that for an element a ∈ G1, the Prover knows a

separable polynomial f(X) such that a = g
f(s)
1 . An obvious application is that the protocol can

be used to demonstrate that a multiset commitment is actually a commitment to a set rather
than to a multiset with some elements of multiplicity ≥ 2. We note that Fp is a perfect field
and hence, a polynomial f(X) being separable in Fp[X] is equivalent to f(X) being separable in
Fp[X].

This does not seem possible (or at least not easy) with the other families of cryptographic
accumulators: Merkle trees or the accumulators based on hidden order groups. In the former
case, the proofs cannot be batched. In the later case, it boils down to proving that a committed
integer is square-free, which seems difficult.

Our protocol hinges on the simple fact that a polynomial f(X) ∈ Fp[X] is square-free if and
only if it is relatively prime with its derivative f ′(X). To this end, we first need a protocol to

show that for polynomial commitments a, b ∈ G1, there is a polynomial f(X) such that a = g
f(s)
1 ,

b = g
f ′(s)
1 where f ′(X) is the derivative of f(X).

5.1 Protocol for the derivative of a polynomial

The protocol to prove that a committed polynomial is separable boils down to showing that
the polynomial is relatively prime with its derivative. Thus, an important subprotocol is to
succinctly show that for elements a, b in G1, the Prover knows a polynomial f(X) such that

a = g
f(s)
1 , b = g

f ′(s)
1 .

Our protocol hinges on the following observation. For any element α ∈ Fp, the polynomial
f(X)−f ′(α) · (X−α) is ≡ β (mod (X−α)2) for some β ∈ Fp. We argue that the converse holds.

Let f(X), h(X) be polynomials and suppose, for a randomly generated α ∈ Fp, we have

f(X)− h(α) · (X − α) ≡ β1 (mod (X − α)2)

for some β1 ∈ Fp. Now,
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f(X)− f ′(α) · (X − α) ≡ β2 (mod (X − α)2)

for some β2 ∈ Fp. Hence,

(f ′(X)− h(X)) · (X − α) ≡ β2 − β1 (mod (X − α)2),

which is only possible if β1 = β2 and f ′(α) = h(α). Since α was randomly generated, the
Schwartz-Zippel lemma implies that with overwhelming probability, f ′(X) = h(X).

We use a somewhat non-standard definition of the derivative of a polynomial which will be
useful to us here.

Definition 5.1. For a polynomial f(X), the derivative of f(X) is the unique polynomial h(X)
such that for any element α ∈ Fp[X], there exists an element β ∈ Fp and a polynomial q(X) ∈
Fp[X] such that

f(X) = q(X) · (X − α)2 + h(α) · (X − α) + β.

Protocol 5.1. Protocol for the derivative of a polynomial (PoDer)

Parameters: A pairing e : G1 ×G2 −→ GT ;

Inputs: Elements a, b ∈ G1

Claim: The Prover knows a polynomial f(X) ∈ Fp[X] such that g
f(s)
1 = a and g

f ′(s)
1 = b.

1. The Fiat-Shamir heuristic generates a challenge α.

2. The Prover P computes a polynomial q(X) and an element β ∈ Fp such that

f(X) = q(X) · (X − α)2 + f ′(α) · (X − α) + β

and sends Q := g
q(s)
1 ∈ G1, β ∈ Fp to the Verifier V along with a non-interactive proof for

PoKE∗[g1, Q].

3. P computes

γ := f ′(α) , b1 := g
[f ′(s)−γ]

/
(s−α)

1

and sends (b1, γ) ∈ G1 × Fp to V along with a non-interactive proof for PoKE∗[g1, b1].

4. V verifies the PoKE∗s and the equations

e(a · g−β1 , g2)
?
= e(Q , g

(s−α)2
2 ) · e(gγ1 , g

s−α
2 )

∧
e(b · g−γ1 , g2)

?
= e(b1 , g

s−α
2 ).

We will refer to this protocol as PoDer[g1, (a, b)]. Clearly, a virtually identical protocol would
work if (a, b) were a pair in G2 instead of G1.

The pairing check requires the Verifier to store gs
2

2 . This can be avoided by using a PoE∗ for

the exponentiation g
(s−α)2
2 (at the cost of one more G2-element in the proof).

Proposition 5.2. The protocol for the derivative of a polynomial is sound in the algebraic group
model.

Proof. Suppose a PPT adversary A outputs an accepting transcript in response to a challenge
α generated by the Fiat-Shamir heuristic.
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The pairing check e(b · g−γ1 , g2)
?
= e(b1 , g

s−α
2 ) and the subprotocol PoKE∗[g1, b1] imply that

with overwhelming probability, A can output a polynomial h(X) such that b · g−γ1 = g
h(s)·(s−α)
1 .

Setting
e(X) := h(X) · (X − α) + γ

yields b = g
e(s)
1 , e(α) = γ. We argue that with overwhelming probability, e(X) = f ′(X).

The pairing check

e(a , g2)
?
= e(Q , g

(s−α)2
2 ) · e(gγ1 , g

s−α
2 ) · e(gβ1 , g2)

in conjunction with the subprotocol PoKE∗[g1, Q] implies that with overwhelming probability, A
can output a polynomial q(X) such that

a = g
(s−α)2·q(s)+γ·(s−α)+β
1 .

Setting f(X) := (X − α)2 · q(X) + γ · (X − α) + β yields a = g
f(s)
1 . Now,

f(X) ≡ γ · (X − α) + β ≡ e(α) · (X − α) + β (mod (X − α)2)

and hence, e(α) ≡ f ′(α) (mod (X − α)2), which implies e(α) = f ′(α). Since α was randomly
and uniformly sampled from Fp, the Schwartz-Zippel lemma implies that with overwhelming
probability, e(X) = f ′(X).

5.2 Protocol for a separable polynomial commitment

We now turn to the main protocol of this section. Given a polynomial commitment in G1, we
provide a protocol whereby a Prover can succinctly show that it is a commitment to a separable
(square-free) polynomial. In the context of a bilinear accumulator, this amounts to showing that
no data element was inserted more than once.

Protocol 5.3. Protocol for separable polynomial commitment (PoSep)

Parameters: A pairing e : G1 ×G2 −→ GT ;

Inputs: Element a ∈ G1

Claim: The Prover knows a separable polynomial f(X) ∈ Fp[X] such that g
f(s)
1 = a

1. The Prover computes the derivative f ′(X) and sends a′ := g
f ′(s)
1 along with a non-interactive

proof for PoDer[g1, (a, a′)].

2. P sends a proof for PoGCD[g1, (a, a′), g1].

3. V accepts if and only if the PoDer and the PoGCD are both valid.

We denote this protocol by PoSep[g1, a]. Clearly, the protocol is easy to modify if the element
a lies in the group G2 instead of G1.

Theorem 5.4. The protocol for separable polynomial commitments is sound in the algebraic
group model.

Proof. It suffices to show that in case of an accepting transcript, a PPT adversary can - with

overwhelming probability- output a polynomial f(X) ∈ Fp[X] such that a = g
f(s)
1 and f(X) is

relatively prime with its derivative f ′(X).
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Suppose a PPT adversary A is able to output an accepting transcript. The subprotocol
PoDer[g1, (a, a′)] implies that with overwhelming probability, the Prover knows a polynomial

f(X) such that a′ = g
f ′(s)
1 and a = g

f(s)
1 .

Furthermore, the subprotocol PoGCD[g1, (a, a′), g1] implies that with overwhelming probability,
A can output polynomials h1(X), h2(X) such that

f(X) · h1(X) + f ′(X) · h2(X) = 1,

whence it follows that with overwhelming probability, f(X) and f ′(X) are relatively prime.

5.3 The radical of a polynomial and the underlying set of a multiset

For a polynomial f(X) ∈ Fp[X], we define its radical frad(X) as the product of all distinct
irreducible factors of f(X). Equivalently, frad(X) is the unique monic polynomial that generates
the (principal) ideal√(

f(X)
)

:=
{
h(X) ∈ Fp[X] : h(X)N ∈

(
f(X)

)
for some N ∈ Z

}
⊆ Fp[X].

If f(X) is monic, the two polynomials are linked by the equation

frad(X) =
f(X)

gcd(f(X) , f ′(X))

where f ′(X) denotes the derivative. Thus, if a Verifier has access to two polynomial commitments,
a Prover can combine the protocols PoDer, PoGCD and PoProd to succinctly show that the second
commitment represents the radical of the polynomial represented by the first. We refer to this
as the protocol PoRad.

In particular, consider the case of a multisetM and its underlying set Set(M) committed as
in the [Ngu05] accumulator. The polynomials

fM(X) :=
∏
m∈M

(X +m)mult(m,M) , fSet(M)(X) :=
∏

m∈Set(M)

(X +m).

are such that fSet(M) is the radical of fM(X).

Thus, if a Verifier has access to two [Ngu05] commitments, a Prover can combine the protocols
PoDer, PoGCD and PoProd to succinctly show that the second [Ngu05] commitment represents the
underlying set of the multiset represented by the first.

This is an argument of knowledge for the following relation:

RRad[g1, (a, arad)] =

{
(a, arad ∈ G1), f(X) ∈ Fp[X], c ∈ Fp) :

g
f(s)
1 = a , g

c·rad(f(s))
1 = arad

}

Protocol 5.5. Protocol for the radical of a polynomial (PoRad)

Parameters: A pairing e : G1 ×G2 −→ GT ;

Inputs: Elements a, arad ∈ G1

Claim: The Prover knows a polynomial f(X) ∈ Fp[X] with radical frad(X) and a constant
c ∈ Fp such that

g
f(s)
1 = a , g

c·frad(s)
1 = arad

1. The Prover P computes the derivative f ′(X) and sends the element a′ := g
f ′(s)
1 ∈ G1
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along with a proof for PoDer[g1, (a, a′)].

2. P computes the polynomial f0(X) := gcd(f(X), f ′(X)) and sends the element

a0 := g
f0(s)
1 ∈ G1

along with a proof for PoGCD[g1, (a, a′), a0].

3. P sends the element brad := g
frad(s)
2 ∈ G2.

4. The Verifier V verifies the PoGCD, the PoDer and the (batchable) equations

e(g1 , brad)
?
= e(arad , g2) , e(a0 , brad)

?
= e(a , g2).

5.4 A protocol for compositions of polynomials

The next protocol demonstrates that given three polynomial commitments, the third equals
composition of the first two. Given polynomials f1(X), f2(X), f1,2(X), the following are equivalent
with overwhelming probability:

1. f1,2(X) = f1(f2(X)).

2. For a random challenge γ ∈ Fp, f1,2(X)− f1(γ) is divisible by f2(X)− γ.

To this end, the Prover sends a commitment to f1(γ) and proves that it is, in fact, a
commitment to f1(γ). This subprotocol hinges on the fact that for a constant β ∈ Fp, the
following are equivalent:

1. β = f2(γ)

2. f2(X)− β is divisible by X − γ.

This is an argument of knowledge for the following relation:

RComp[g1, (a1, a2), a1,2] =

{ (
(a1, a2, a1,2 ∈ G1), f1(X), f2(X) ∈ Fp[X]

)
:

g
f1(s)
1 = a1 , g

f2(s)
1 = a2 , g

f1(f2(s))
1 = a1,2

}
The protocol PoSep can be combined with this protocol to generate a succinct proof that each

element that was inserted into the accumulator was inserted precisely n times, which generalizes
the protocol PoSep.

Protocol 5.6. Proof of composition (PoComp)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

Inputs: Elements a1, a2, a1,2 ∈ G1

Claim: The Prover knows polynomials f1(X), f2(X) ∈ Fp[X] such that

g
f1(s)
1 = a1 , g

f2(s)
1 = a2 , g

f1(f2(s))
1 = a1,2

1. The Fiat-Shamir heuristic generates a challenge γ.

2. P sends the Fp-elements α1 := f1(γ), α2 := f2(γ), α1,2 := f1,2(γ).

3. P sends the G1-elements
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Q1 := g
[f1(s)−α1]

/
[s−γ]

1 , Q2 := g
[f2(s)−α2]

/
[s−γ]

1 , Q1,2 := g
[f1,2(s)−α1,2]

/
[s−γ]

1

4. P sends the element Q̂ := g
[f1,2(s)−α1]

/
[f2(s)−γ]

1 .

5. V accepts if and only if the (batchable) equations

e(Q1 , g
s−γ
2 )

?
= e(a1 · g−α1

1 , g2) , e(Q2 , g
s−γ
2 )

?
= e(a1 · g−α2

1 , g2),

e(Q1,2 , g
s−γ
2 )

?
= e(a1,2 · g

−α1,2

1 , g2) , e(Q̂ , a2 · g−γ2 )
?
= e(a1,2 · g−α1

1 , g2)

hold.

Proposition 5.7. The protocol ZKPoComp is secure in the algebraic group model.

Proof. (Sketch) Suppose a PPT algorithm A outputs an accepting transcript.

The pairing checks

e(Q1 , g
s−γ
2 )

?
= e(a1 · g−α1

1 , g2) , e(Q2 , g
s−γ
2 )

?
= e(a1 · g−α2

1 , g2),

imply that with overwhelming probability, A can output polynomials f̂1(X), f̂2(X) such that

g
f̂1(s)
1 = a1 , g

f̂2(s)
1 = a2 ,

f̂1(X) ≡ α1 (mod (X − γ)) , f̂2(X) ≡ α2 (mod (X − γ)).

Similarly, the pairing check e(Q1,2 , gs−γ2 )
?
= e(a1,2 · g

−α1,2

1 ) implies that with overwhelming

probability, A can output a polynomial f̂1,2(X) such that

g
f̂1,2(s)
1 = a1,2 , f̂1,2(X) ≡ α1,2 (mod (X − γ)).

Furthermore, the pairing check e(Q̂ , a2 ·g−γ2 )
?
= e(a1,2 ·g−α1

1 , g2) implies that with overwhelming
probability,

f̂1,2(X) ≡ α1 ≡ f̂1(γ) ≡ f̂1(f̂2(X)) (mod (f̂2(X)− γ))

and since γ was randomly and uniformly generated, it follows that with overwhelming probability,
f̂1,2(X) = f̂1(f̂2(X)).

5.4.1 Frequencies of elements

The protocol PoSep can be combined with the protocol PoComp to demonstrate that an element
of G1 is a polynomial commitment to the n-th power of a separable polynomial. In the context
of a bilinear accumulator, this demonstrates that any element inserted was inserted precisely n
times. Furthermore, these protocols an also be used to prove that any element inserted into the
accumulator was inserted no fewer than m times and no more than n times. We describe the
protocol below.

The basic idea is that if a polynomial f(X) is sandwiched between polynomials f0(X)m and
f0(X)n in that it is divisible by f0(X)m and divides f0(X)n for a separable polynomial f0(X),
then each irreducible factor of f(X) divides it with some multiplicity between m and n (inclusive).
The special case where m = n entails succinctly proving that the multiplicity of each irreducible
factor in Fp[X] is n.
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Protocol 5.8. Protocol for multiplicities of irreducible factors (PoFreq)

Parameters: A pairing e : G1 ×G2 −→ GT ;

Inputs: Element a ∈ G1; integers m, n with m ≤ n.

Claim: The Prover knows a separable polynomial f0(X) ∈ Fp[X] and a polynomial f(X) ∈
Fp[X] such that:

- g
f(s)
1 = a

- f0(X)m divides f(X)

- f0(X)n is divisible by f(X)

1. The Prover P computes the radical f0(X) of f(X) and sends

a0 := g
f0(s)
1 , am := g

f0(s)m

1 , an := g
f0(s)n

1

to the Verifier V along with proofs for PoRad[g1, (am, a0)], PoRad[g1, (an, a0)].

2. P sends a proof for PoSep[g1, a0].

3. P sends the elements gm := gs
m

1 , gn := gs
n

1 along with proofs for PoE∗[g1, X
m, am],

PoE∗[g1, X
n, an].

4. P sends proofs for PoKE[am, a], PoKE[a, an].

5. V accepts if and only if all of the proofs are valid.

6 Applications of the protocol for the derivative

In this section, we describe a protocol (and related protocols) that allows a Prover to show
that a committed polynomial has degree that coincides with a committed integer. In particular,
this can be used to show that two committed polynomials are of the same degree without revealing
this common degree. In contrast to the previous sections, we discuss the HVZK arguments of
knowledge rather than just the succinct AoK versions. This is because while it is straightforward
to transform the protocols from previous sections into HVZK’s, it is a bit more subtle when it
comes to linking the committed polynomial to its degree.

We briefly describe the approach. We first deal with the special case where the committed
polynomial f(X) is a monomial, i.e. f(X) = cn ·Xn for some cn ∈ F∗p, n ∈ Z≥1. Note that

deg(f(X)) = n = X · f ′(X) · f(X)−1.

Thus, given commitments a = g
f(s)
1 , adeg = g

deg(f)
1 , the Prover can verifiably send a commitment

a′ = g
f ′(s)
1 to the derivative f ′(X) and then show that the the polynomials f(X), f ′(X) are such

that f ′(1) · f(1)−1 is the field element committed in adeg.

The more general case of an arbitrary polynomial uses the special case of a monomial in
conjuction with a protocol that shows that the degree of the polynomial f1(X) := f(X)− cn ·Xn

is less than n. Note that a polynomial f1(X) is of degree less than n is and only if the rational
function cnX

n · f1(X−1) is a polynomial divisible by X.

The Prover first shows that gcn·s
n

1 is a commitment to a monomial of degree n where n is the

field element committed in adeg = gn1 . He then sends the element a1 := g
cnsn·f1(s−1)
1 and proves

that this is a commitment to Xn · f1(X−1). This can be done by showing that for a randomly
generated challenge β, the polynomial h(X) committed in a1 is such that:
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1. h(X)−Xn · f1(β−1) is divisible by X − β−1.
2. h(X) is divisible by X.

6.1 A zero-knowledge variant of the protocol for the derivative

We will need the following zero-knowledge variant of the protocol for the derivative.

Protocol 6.1. Zero-knowledge proof of the derivative of a polynomial (ZKPoDer)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

Inputs: Elements a, b ∈ G1

Claim: The Prover knows a polynomial f(X) ∈ Fp[X] such that g
f(s)
1 = a and g

f ′(s)
1 = b.

1. The Fiat-Shamir heuristic generates a challenge α.

2. The Prover P computes the polynomial q(X) and the constant β ∈ Fp such that

f(X) = q(X) · (X − α)2 + f ′(α) · (X − α) + β.

3. P sends the elements
a0 := gβ1 , Cf ′(α) := g

f ′(α)
1

along with (batchable) proofs for ZKPoConst[g1, a0] and ZKPoConst[g1, Cf ′(α)].

4. P sends the element a2 := g
q(s)·(s−α)2
1 along with a proof for ZKPoKE[g

(s−α)2
1 , a2].

5. P sends a proof for ZKPoKE[gs−α1 , b · C−1f ′(α)].
6. V verifies the ZKPoConsts, the ZKPoKEs and the equation

e(Cf ′(α) , g
s−α
2 )

?
= e(a · a−12 · a

−1
0 , g2).

We will need the following elementary fact. We defer the proof to the appendix.

Lemma 6.2. For a polynomial f(X) and an element α ∈ Fp, the following are equivalent:

1. f(X) = c0 · (X − α) · f ′(X) for some c0 ∈ F∗p, α ∈ Fp
2. f(X) = c · (X − α)n for some c ∈ F∗p, α ∈ Fp, n ∈ Z≥0.

Proof. (1) ⇒ (2): This is vacuous when deg(f(X)) = 1. We now proceed by induction on
the degree of f(X). Let n ≥ 2 be the degree of f(X) and suppose the statement is true for
polynomials of degree ≤ n− 1.

Differentiating both sides yields

f ′(X) = c0 · [(X − α) · f ′′(X) + f ′(X)]

and hence,
f ′(X) = c0 · (1− c0)−1 · (X − α) · f ′′(X).

Since deg(f ′(X)) < n, it follows that f ′(X) = c1 · (X − α)n−1 for some c1 ∈ F∗p. This yields

f(X) = c0 · c1 · (X − α)n−1,

which completes the proof.

(2) ⇒ (1): This direction is trivial.
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The derivative f ′(X) has degree one less than that of f(X). If f(X) is divisible by f ′(X),
the quotient f(X) · f ′(X)−1 is a linear polynomial and hence, is of the form c0 · (X −α) for some
c ∈ F∗p, α ∈ Fp. So f(X) = c0 · (X − α) · f ′(X) and hence, f(X) = c · (X − α)deg(f) for some
c ∈ F∗p.

For such a polynomial f(X) = c · (X − α)deg(f), we have

f(0) = 0 ⇐⇒ α = 0 ⇐⇒ f(X) = c ·Xdeg(f).

Similarly,
f(0) = 0 ∧ f(1) = 1 ⇐⇒ α = 0 ∧ c = 1 ⇐⇒ f(X) = Xdeg(f).

Protocol 6.3. Zero-knowledge proof of linear power (ZKPoLinPow)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

Inputs: Elements a ∈ G1

Claim: a = g
c·(s−α)n
1 for some c, α ∈ Fp and n ∈ Z known to the Prover.

1. The Prover P computes a′ = g
c·n·(s−α)n−1

1 and sends it to the Verifier V along with a proof
of ZKPoDer[g1, (a, a′)].

2. P generates a non-interactive proof of ZKPoKE[a′, a] and sends it to V.

3. V accepts if and only if the ZKPoKE and the ZKPoDer are valid.

To show that a committed polynomial f(X) is c ·Xn for some integer n ≥ 0 and a constant
c, a Prover needs to demonstrate the following properties:

1. f(X) is divisible by the derivative f ′(X).

2. f(0) = 0.

For such a monomial f(X) = c ·Xn, the degree n is given by n = f ′(1) ·f(1)−1. In particular,
if f(X) = Xn, the degree n is given by n = f ′(1).

This is a HVZK for the following relation:

RDegMono[g1, (a, adeg)] = {(a, adeg ∈ G1), n ∈ Z≥0, c ∈ Fp) : gc·s
n

1 = a , gn1 = adeg}

We will later use this as a building block for a more general protocol (ZKPoDeg) that allows
a Prover to demonstrate that the degree of an arbitrary committed polynomial coincides with a
committed integer ≤ length(CRS).

Protocol 6.4. Zero-knowledge proof of degree of monomial (ZKPoDegMono)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

Inputs: Elements a, adeg ∈ G1

Claim: a = gc·s
n

1 , adeg = gn1 for some n ∈ Z≥0, c ∈ Fp known to the Prover.

1. The Prover P sends the elements

a′ := gc·n·s
n−1

1 , a′1 := (a′)s = gc·n·s
n

1

along with a proof for ZKPoDer[g1, (a, a′)].
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2. P sends a zero-knowledge proof of equality of constant discrete logarithms (Chaum-Pedersen)
between [g1, adeg] and [a, a′1].

3. V accepts if and only if the ZKPoDer and the Chaum-Pedersen proofs are valid and the
equation

e(a′1 , g2)
?
= e(a′ , gs2)

holds.

Proposition 6.5. The protocol ZKPoDegMono is secure in the algebraic group model.

Proof. (Sketch) Suppose a PPT algorithm A outputs an accepting transcript.

The pairing check e(a′1 , g2)
?
= e(a′ , gs2) implies that a′1 = (a′)s. The subprotocol

ZKPoDer[g1, (a, a′)] implies that with overwhelming probability, A can output a polynomial
f0(X) such that

g
f0(s)
1 = a = as1 , g

f ′0(s)
1 = a′.

The strong Diffie Hellman assumption implies that with overwhelming probability, f(X) is
divisible by X.

The Chaum-Pedersen proof implies that A can output a constant n0 such that

gn0
1 = adeg , g

n0·f0(s)
1 = an0 = a′1 = (a′)s = g

s·f ′0(s)
1 .

Thus, with overwhelming probability, the polynomial f0(X) is such that f ′0(X) divides f(X)
and f(0) = 0. The preceding lemma implies that with overwhelming probability, f0(X) is a
monomial, say f0(X) = d0 ·Xm0 for some d0 ∈ Fp, m ∈ Z≥0. Then f ′0(X) = d0 ·m0 ·Xm0−1. So

n0 = f0(s)
−1 · f(s) = m0,

whence it follows that g
deg(f0)
1 = adeg.

6.2 Linking a committed polynomial to its degree

The next protocol allows a Prover to succinctly demonstrate that a committed polynomial
f(X) is of degree less than a committed integer n. It hinges on the simple observation that the
following are equivalent for any integer n and committed polynomial f(X):

1. deg(f) < n

2. The rational function Xn · f(X−1) is a polynomial divisible by X.

Given commitments a = g
f(s)
1 , b = gn1 , the Prover sends a commitment g̃1 := gs

n

1 to Xn and
uses the subprotocol ZKPoDegMono to show that this is a commitment to Xn, where n is the
integer committed in b.

The Prover then sends a commitment a∨ := g
h(s)
1 to the polynomial h(X) := Xn·f(X−1) along

with a proof for ZKPoKE[gs1, a
∨]. This demonstrates that a∨ is a commitment to a polynomial

divisible by X.

For a randomly generated challenge γ, the Prover verifiably sends the element g
f(γ)
1 . along

with a proof that this is a commitment to the evaluation of f(X) at γ. He also sends the

element aγ := g
sn·f(γ)
1 and uses the Chaum-Pedersen protocol to show that the discrete logarithm

between the pair (gs
n

1 , aγ) is a constant that coincides with the discrete logarithm between the

pair (g1, g
f(γ)
1 ).
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The Prover then shows that the polynomial h(X) committed in a∨ is such that

h(X) ≡ Xn · f(γ) (mod (X − γ−1)).

He does so by producing a (s − γ−1)-th root of a∨ · a−1γ . Since γ is randomly and uniformly
generated, this implies that with overwhelming probability, h(X) = Xn · f(X−1).

This is a HVZK for the following relation:

RDegUp[g1, (a1, a2)] =

{
(a1, a2 ∈ G1), f(X) ∈ Fp[X], n ∈ Z) :

g
f(s)
1 = a1 , g

n
1 = a2 , deg(f) < n

}

Protocol 6.6. Zero-knowledge proof of degree upper bound (ZKPoDegUp)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

Inputs: Elements a, b ∈ G1

Claim: The Prover knows an integer n and a polynomial f(X) such that

a = g
f(s)
1 , b = gn1 , deg(f) < n.

1. The Prover P chooses a random c ∈ Fp and sends g̃1 := gc·s
n

1 along with a proof of
ZKPoDegMono[g1, (g̃1, b)].

2. P sends the elements
a∨ := g

c·sn·f(s−1)
1

along with a proof for ZKPoKE[gs1, a
∨]

3. The Fiat-Shamir heuristic generates a challenge γ.

4. P sends the elements
Cf,γ := g

f(γ)
1 , aγ := g

c·sn·f(γ)
1

along with a zero-knowledge proof of equality of constant discrete logarithms (Chaum-Pedersen)
between (g1, Cf,γ) and (g̃1, aγ).

5. P sends proofs for ZKPoKE[gs−γ1 , a · C−1f,γ ] and ZKPoKE[gs−γ
−1

1 , a∨ · a−1γ ]

6. V verifies the ZKPoKEs, the Chaum-Pedersen proof and the ZKPoDegMono.

Proposition 6.7. The protocol ZKPoDegUp is secure in the algebraic group model.

Proof. (Sketch) Suppose a PPT algorithm A outputs an accepting transcript.

The subprotocol ZKPoDegMono[g1, (g̃1, b)] implies that with overwhelming probability, A can
output c0 ∈ Fp, n0 ∈ Z such that

g̃1 = gc0·s
n0

1 , b = gn0
1 .

The subprotocols
ZKPoKE[gs−γ1 , a · C−1f,γ ] , ZKPoKE[gs−γ

−1

1 , a∨ · a−1γ ]

imply that with overwhelming probability, A can output polynomials f0(X), f∨0 (X), h(X) such
that

g
f0(s)
1 = a , g

f∨0 (s)
1 = a∨ , g

f0(γ)
1 = Cf,γ , g

h(s)
1 = aγ , h(X) ≡ f∨0 (X) (mod (X − γ−1))
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The Chaum-Pedersen proof implies that

g
c0·sn0 ·f0(γ)
1 = g̃

f0(γ)
1 = aγ = g

h(s)
1 .

Thus,
c0 ·Xn0 · f0(X−1) ≡ f∨0 (X) (mod (X − γ−1))

and since γ was randomly and uniformly generated, this implies that with overwhelming probability,
f∨0 (X) = c0 ·Xn0 · f0(X−1).

Lastly, the subprotocol ZKPoKE[gs1, a
∨] implies that with overwhelming probability, f∨0 (X) is

divisible by X, whence it follows that deg(f0) < n0.

We note that the proofs of bounded degrees are inherently batchable. If polynomials f1(X), · · · , fj(X)
are all of degree less than n, then with overwhelming probability, the sum

fγ(X) :=

j∑
i=1

fi(X) · γi

is a polynomial of degree < n. Given committed polynomials f1(X), · · · , fj(X), a Prover can
demonstrate this degree upper bound by showing that for a randomly generated challenge γ, the
aggregated polynomial fγ(X) is such that the rational function Xn · fγ(X−1) is a polynomial
divisible by X.

We now move to the main protcol in this section. This protocol links a polynomial commitment
to a commitment to its degree. It allows a Prover to prove in zero knowledge that given
commitments to a polynomial f(X) and an integer n, the committed polynomial is of degree
n. More formally, given elements a, adeg ∈ G1, the Prover knows a polynomial f(X) such that

a = g
f(s)
1 , adeg = g

deg(f)
1 .

In particular, this can be used to show that two committed polynomials are of the same degree
without revealing this common degree. More importantly, it enables the subsequent protocols in
this paper.

The Prover starts out by isolating the leading term

Coef(f(X) , deg(f)) ·Xdeg(f)

of f(X), providing a commitment to this monomial and using the protocol ZKPoDegMono to show
that this is a commitment to a monomial of a degree that coincides with an integer committed
in adeg. The Prover then sends a commitment to the polynomial

f(X)− Coef(f(X) , deg(f)) ·Xdeg(f)

obtained by removing the leading term and uses the protocol for the degree upper bound
(ZKPoDegUp) to show that this is a commitment to a polynomial of a degree strictly less than the
integer committed in adeg.

This is a HVZK for the following relation:

RDeg[g1, (a, adeg)] =
{(

(a1, a2 ∈ G1), f(X) ∈ Fp[X]
)

: g
f(s)
1 = a , g

deg(f)
1 = adeg

}
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Protocol 6.8. Zero-knowledge proof of degree (ZKPoDeg)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

Inputs: Elements a, adeg ∈ G1

Claim: The Prover knows an integer n and a polynomial f(X) of degree n such that

a = g
f(s)
1 , adeg = gn1 .

1. The Prover P isolates the leading term cn ·Xn of f(X) and sends the elements

a1 := gcn·s
n

1 , a2 := g
f(s)−cn·sn
1 ∈ G1.

2. P sends proofs for ZKPoDegMono[g1, (a1, adeg)] and ZKPoDegUp[g1, (a2, adeg)].

3. V verifies the ZKPoDegUp, the ZKPoDegMono and the equation a
?
= a1 · a2.

6.3 Coefficients at hidden positions

The next protocol allow a Prover to prove succinctly and in zero-knowledge that given elements
a, a1, a2 ∈ G1, he knows a polynomial f(X), an integer n ≤ deg(f) and a field element α such
that Xn has coefficient α in f(X) and a, a1, a2 are commitments to f(X), n and α respectively.
This is made possible by the protocols linking a committed polynomial to its degree.

The Prover decomposes the polynomial f(X) as a sum

f(X) = f−(X) + α ·Xn + f+(X) ·Xn+1

of three parts such that deg(f−) < n. In other words,

f−(X) := f(X) (mod Xn) , f+(X) := X−(n+1) · [f(X)− f−(X)− α ·Xn].

The homomorphic property implies that the commitment to f(X) is a product of commitments
to f−(X), α ·Xn and f+(X) ·Xn+1.

The first part (i.e. the low degree part) can be isolated using the protocol (ZKPoDegUp). The
third part (i.e. the high degree part) can be isolated by showing that it is a multiple of Xn+1,
where n is the integer committed in aPos. This leaves us with a commitment to the monomial
α ·Xn.

The Prover can use the protocol ZKPoDegMono that show that this is a commitment amid to
a monomial such that this monomial evaluates to α at X = 1, where α is the field element
committed in aCoef

This is a HVZK for the following relation:

RCoef[g1, (a, aPos, aCoef)] =


(
(a, aPos, aCoef ∈ G1) ,
f(X) , n ∈ Z≥0 , α ∈ Fp

)
:

g
f(s)
1 = a , gn1 = aPos , g

α
1 = aCoef

Coef(f(X) , n) = α


Protocol 6.9. Zero-knowledge proof of polynomial coefficient (ZKPoCoef)

Parameters: A pairing e : G1 ×G2 −→ GT ; generators g1, g2 for G1, G2 respectively.

Inputs: Elements a, aPos, aCoef ∈ G1
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Claim: The Prover knows an integer n, a polynomial f(X) of degree ≥ n and a field element
α such that:

• a = g
f(s)
1 , aPos = gn1 , aCoef = gα1

• The coefficient of f(X) at Xn is α.

1. P sends the elements

amid := gα·s
n

1 , amid,1 := asmid = gα·s
n+1

1

along with a proof for ZKPoDegMono[amid, (g̃1, aPos)].

2. P sends a proof for ZKPoKE[gs−11 , amid · a−1Coef].

3. The Prover P computes the polynomials

f−(X) := f(X) (mod Xn) , f+(X) := f(X)− f−(X)− α ·Xn.

4. P sends the element a− := g
f−(s)
1 along with a proof for ZKPoDegUp[g1, (a−, aPos)].

5. P sends the element a+ := g
f+(s)
1 along with a proof for ZKPoKE[amid,1, a+].

6. V verifies the ZKPoDegUp, the ZKPoDegMono, ZKPoKE, and the equations

a
?
= a− · amid · a+ , e(amid,1 , g2)

?
= e(amid , g

s
2)

Proposition 6.10. The protocol ZKPoCoef is secure in the algebraic group model.

Proof. (Sketch) Suppose a PPT algorithm A outputs an accepting transcript.

The subprotocol ZKPoDegMono[g1, (amid, aPos)] implies that with overwhelming probability,
A can output α̂ ∈ Fp, n̂ ∈ Z such that

amid = gα̂·s
n̂

1 , aPos = gn̂1 .

The subprotocol ZKPoKE[gs−11 , amid · a−1Pos] implies that with overwhelming probability, A can
output a polynomial h(X) such that

g
h(s)
1 = amid , g

h(1)
1 = aCoef.

Thus, with overwhelming probability, h(X) = α0 ·X n̂ and aCoef = gα̂1 .

The subprotocol ZKPoDegUp[g1, (a−, aPos)] implies that with overwhelming probability, A can

output a polynomial f̂−(X) of degree < n̂ such that g
f̂−(s)
1 = a−. Furthermore, the pairing check

e(amid,1 , g2)
?
= e(amid , g

s
2)

implies that amid,1 = asmid and hence, with overwhelming probability, amid,1 = gα̂·s
n̂+1

1 . The
subprotocol ZKPoKE[amid,1, a+] implies that with overwhelming probability, A can output a

polynomial f̂+(X) such that f̂+(X) is divisible by X n̂+1 and g
f̂+(s)
1 = a+.

Lastly, the equation a
?
= a− · amid · a+ implies that setting

f̂(X) := f̂−(X) + α̂ ·X n̂ + f̂+(X)

yields g
f̂(s)

1 = a and Coef(f̂(X) , n̂) = α̂.
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A Some preliminary protocols:

The following protocol allows a Prover to prove in zero-knowledge that given elements a, b in
G1, he knows a constant α such that b = aα. This is basically Schnorr’s protocol, which does not
need pairings or the public parameters.

The key idea is that for polynomials f(X), h(X) and a randomly generated challenge γ ∈ Fp,
if the sum f(X) · γ + h(X) is a constant, then with overwhelming probability, the polynomials
f(X), h(X) are constants as well.

Protocol A.1. Zero-knowledge proof of constant discrete logarithm (ZKPoConst)

(aka Schnorr’s protocol)

Parameters: A pairing e : G1 ×G2 −→ GT ;

Inputs: Elements a, b ∈ G1

Claim: The Prover knows a constant α ∈ Fp such that b = aα

1. The Prover P chooses a random blinding scalar β ∈ Fp and sends Cβ := aβ.

2. The Fiat-Shamir heuristic generates a challenge γ.

3. The Prover sends m := β + α · γ.

4. V accepts if and only if m ∈ Fp and am = Cβ · bγ .

In case the Prover needs to show that the exponent α is non-zero, he could combine this
protocol with a proof that he knows the discrete logarithm α−1 between b and a. We next
discuss the Chaum-Pedersen protocol in the bilinear pairing setting. As with Schnorr’s protocol,
it applies to the bilinear setting without any modifications.

Protocol A.2. Zero-knowledge proof of equality of constant discrete logarithms

(aka the Chaum-Pedersen protocol)

Parameters: A pairing e : G1 ×G2 −→ GT ;

Inputs: Elements a1, b1, a2, b2 ∈ G1

Claim: The Prover knows a constant α ∈ Fp such that b1 = aα1 , b2 = aα2 .

1. The Prover P chooses a random blinding scalar β ∈ Fp and sends

Cβ,1 := aβ1 , Cβ,2 := aβ2

2. The Fiat-Shamir heuristic generates a challenge γ.

3. The Prover sends m := β + α · γ.

4. V accepts if and only if m ∈ Fp and the equations

am1 = Cβ,1 · bγ1 , am2 = Cβ,2 · bγ2

30



hold.

B List of Protocols:

The following is a list of the protocols in this paper and the relations that the protocols are
arguments of knowledge for, in the algebraic group model.

1. PoKE∗ (Proof of knowledge of the exponent∗ with base g1 or g2)

RPoKE∗ [g2, a] = {(a ∈ G1), f(X) ∈ Fp[X]) : g
f(s)
1 = a}

2. PoKE (Proof of knowledge of the exponent)

RPoKE[a, b] = {((a, b) ∈ G2
1), f(X) ∈ Fp[X]) : af(s) = b}

3. PoDer (Proof of derivative)

RDer[g1, (a, b)] = {(a, b ∈ G1), f(X) ∈ Fp[X]) : g
f(s)
1 = a , g

f ′(s)
1 = b}

4. PoGCD (Proof of GCD)

RGCD[g1, (a1, a2), a1,2] =


(
(a1, a2, a1,2 ∈ G1)
f1(X), f2(X), f1,2(X) ∈ Fp[X]

)
:

g
f1(s)
1 = a1 , g

f2(s)
1 = a2, g

f1,2(s)
1 = a1,2

gcd(f1(X), f2(X)) = f1,2(X)


5. PoSep (Proof of separable polynomial commitment)

RSep[g1, a] = {(a, b ∈ G1), f(X) ∈ Fp[X]) : g
f(s)
1 = a , gcd(f(X), f ′(X)) = 1}

6. PoRad (Protocol for the radical)

RRad[g1, (a, arad)] =

{
(a, arad ∈ G1), f(X) ∈ Fp[X], c ∈ Fp) :

g
f(s)
1 = a , g

c·rad(f(s))
1 = arad

}
7. PoComp (Proof of composition)

RComp[g1, (a1, a2), a1,2] =

{ (
(a1, a2, a1,2 ∈ G1), f1(X), f2(X) ∈ Fp[X]

)
:

g
f1(s)
1 = a1 , g

f2(s)
1 = a2 , g

f1(f2(s))
1 = a1,2

}
8. ZKPoDegMono (Proof of degree of monomial)

RDegMono[g1, (a, adeg)] = {(a, adeg ∈ G1), n ∈ Z≥0, c ∈ Fp) : gc·s
n

1 = a , gn1 = adeg}

9. ZKPoDegUp (Proof of degree upper bound)

RDegUp[g1, (a1, a2)] = {(a1, a2 ∈ G1), f(X) ∈ Fp[X], n ∈ Z) : g
f(s)
1 = a1 , g

n
1 = a2 , deg(f) < n}

10. ZKPoDeg (Proof of degree)

RDeg[g1, (a, adeg)] = {(a, adeg ∈ G1), f(X) ∈ Fp[X]) : g
f(s)
1 = a , g

deg(f)
1 = adeg}

11. ZKPoCoef (Proof of coefficient)

RCoef[g1, (a, aPos, aCoef)] =


(
(a, aPos, aCoef ∈ G1),
f(X) , n ∈ Z≥0 , α ∈ Fp

)
:

g
f(s)
1 = a , gn1 = aPos , g

α
1 = aCoef

Coef(f(X) , n) = α


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