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Abstract. This paper explores a new way of instantiating isogeny-based cryptography in
which parties can work in both the (p+1)-torsion of a set of supersingular curves and in the
(p−1)-torsion corresponding to the set of their quadratic twists. Although the isomorphism
between a given supersingular curve and its quadratic twist is not defined over Fp2 in general,
restricting operations to the x-lines of both sets of twists allows all arithmetic to be carried
out over Fp2 as usual. Furthermore, since supersingular twists always have the same Fp2 -
rational j-invariant, the SIDH protocol remains unchanged when Alice and Bob are free to
work in both sets of twists.
This framework lifts the restrictions on the shapes of the underlying prime fields originally
imposed by Jao and De Feo, and allows a range of new options for instantiating isogeny-based
public key cryptography. These include alternatives that exploit Mersenne and Montgomery-
friendly primes, as well as the possibility of significantly reducing the size of the primes in the
Jao-De Feo construction at no known loss of asymptotic security. For a given target security
level, the resulting public keys are smaller than the public keys of all of the key encapsulation
schemes currently under consideration in the NIST post-quantum standardisation effort.
The best known attacks against the instantiations proposed in this paper are the classical
path finding algorithm due to Delfs and Galbraith and its quantum adapation due to Bi-
asse, Jao and Sankar; these run in respective time O(p1/2) and O(p1/4), and are essentially
memory-free. The upshot is that removing the big-O’s and obtaining concrete security es-
timates is a matter of costing the circuits needed to implement the corresponding isogeny.
In contrast to other post-quantum proposals, this makes the security analysis of B-SIDH
rather straightforward.
Searches for friendly parameters are used to find several primes that range from 237 to 256
bits, which all offer a conjectured security comparable to the 434-bit prime used to target
NIST level 1 security in the SIKE proposal. One noteworthy example is a 247-bit prime for
which Alice’s secret isogeny is 7901-smooth and Bob’s secret isogeny is 7621-smooth.

Keywords: Post-quantum cryptography, supersingular isogenies, SIDH, SIKE, quadratic
twists.

1 Introduction

The best known attacks against Jao and De Feo’s SIDH protocol [23] try to recover either Alice’s
secret 2m-isogeny φA : E0 → EA, or Bob’s secret 3n-isogeny φB : E0 → EB , and both of these
problems are instances of the supersingular isogeny problem: given a finite field K and two super-
singular elliptic curves E,E′ defined over K such that #E = #E′, compute an isogeny φ : E → E′.
For the cases of interest where K = Fp2 and p is a large prime, the best known classical algorithm
for solving the supersingular isogeny problem is the Delfs-Galbraith algorithm [14], which requires
O(p1/2) isogeny operations to find a collision (of walks from E and E′) in the graph of size O(p).
However, the special isogenies computed in SIDH above give rise to appreciably easier instances
of the supersingular isogeny problem; they are of a fixed, known degree close to p1/2, and this
allows for a classical meet-in-the-middle attack that, asymptotically, requires only O(p1/4) isogeny
operations [23, §5]. Roughly speaking, the difference between the difficulty of the isogeny problems
that arise in SIDH and that of the general supersingular isogeny problem is due to the fact that
Alice and Bob only take about half as many steps as the diameters of each of their graphs. In



other words, the number of possible destination nodes for the secret walks of Alice and Bob is
close to the square root of the total number of nodes in the graph.

Jao and De Feo chose primes of the form p = 2m3n−1 and half-length walks so that Alice and
Bob can both compute their isogenies using arithmetic in Fp2 ; they represent each isomorphism
class by a supersingular elliptic curve E/Fp2 with group order #E(Fp2) = (p + 1)2 = (2m3n)2,
which facilitates a full Fp2 -rational 2m-torsion and full Fp2 -rational 3n-torsion. When all of the
subgroups of order 2m and 3n are Fp2-rational, so are the corresponding isogeny computations.

A first observation that sets the scene for this work is that in general there are two choices of
Fp2 -rational elliptic curve groups corresponding to every node in the supersingular isogeny graph:
those whose group orders are (p + 1)2, and those whose group orders are (p − 1)2. Although
curves from these two sets are not isomorphic (or even isogenous!) to one another over Fp2 , they
do become isomorphic over Fp4 , and therefore share the same j-invariant in Fp2 [38, Proposition
III.1.4]. Indeed, for any curve whose group order is (p+ 1)2, its quadratic twist over Fp2 has group
order (p− 1)2.

The main point of this paper is to exploit the fact that the SIDH protocol does not have to
restrict to working in one of the two sets of quadratic twists: it can stay in Fp2 while working in
both the (p+ 1)-torsion and the (p− 1)-torsion. Moreover, Alice and Bob can work in the torsion
corresponding to opposite sets of quadratic twists with no change to the protocol. Optimised
Montgomery arithmetic [30] in the SIDH setting only needs the x-coordinates of points [23] and
the A coefficient of the curve [11], and as such is entirely twist-agnostic; in other words, the
twisting morphism (which only alters y-coordinates and the B coefficient) leaves x-coordinates
and A coefficients unchanged, so the lifting to Fp4 described above becomes a mere theoretical
technicality that is not visible in cryptographic implementations – see Section 3.

The price to pay for working with both twists is that at least one of Alice or Bob must now
perform walks comprised of steps in multiple `-isogeny graphs, i.e. switching between multiple
values of `. This changes the underlying hardness assumption for one or both parties, but (as
is discussed in Section 4) there is no known reason to believe that switching between many `’s
makes the resulting SIDH problems any easier, so long as the number of destination nodes remain
roughly the same size as in the Jao-De Feo instantiation.

Allowing torsion from both sets of twists unlocks a number of new options and trade-offs for
isogeny-based public key cryptography; many examples are given in Section 5 to illustrate these
possibilities. At a high level, these options fall into two categories: the first is where Alice gets to
computes significantly faster 2m-isogenies (than in existing SIDH/SIKE implementations) at the
expense of a heavy slowdown on Bob’s side; the second, and perhaps the more interesting, is the
possibility of halving the sizes of the underlying fields at no known loss of asymptotic security.
Furthermore, this possibility gives rise to the number of secret walks (i.e. possible destination
nodes) for both Alice and Bob being very close to the total number of nodes in the graph.

Concrete instantiations of smaller primes are put forward in Section 5. For example, B-
SIDHp247 uses a 247-bit prime to achieve roughly the same conjectured security as the 434-bit
SIKE prime to target NIST’s security category 1 [22]. The public keys for B-SIDHp247 are 186
bytes, which are a little over half the size of the 330-byte uncompressed public keys of SIKEp434,
and are still smaller than the 196-byte keys that are obtained in SIKEp434 when compression is
enabled.

1.1 Naming

The instantiation proposed in this paper is dubbed B-SIDH1 in order to distinguish it from the
original Jao-De Feo SIDH instantiation, and to avoid muddying the waters in the case that fu-
ture cryptanalysis weakens any variants described herein. Although switching between multiple
`-isogeny graphs during a secret isogeny computation does not decrease security in any known
way, it may turn out that using torsion with many prime factors is a bad idea, or that decreasing

1Pronounced “B-side”, in reference to the analogy between the set of supersingular curves of cardinality
(p− 1)2 and the less popular, sometimes forgotten ‘flip-side’ of a record.
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p relative to the degrees of the secret isogenies is a bad idea. Of course, it may also turn out that
the one (or both) of the converse statements is true, but in any case it should be emphasised that
the instantiations proposed in this paper rely on different security assumptions than SIDH and
SIKE – see Section 4.

1.2 Performance vs. SIDH

There are no performance claims made in this paper, except in the scenarios where Alice’s per-
formance will clearly be improved (over her performance in the SIDH/SIKE setting at a compa-
rable security level) thanks to a faster underlying prime, but where it should be reiterated that
Bob will almost always suffer a collossal slowdown. The main takeaway of this paper is that the
primes and the public keys in the optimal scenarios of Section 5 are significantly smaller than the
SIDH/SIKE counterparts. Moreover, these public keys will remain smaller even when compression
techniques [2,10,45,31] are applied to the SIDH and SIKE public keys. If the ECC+SIDH/SIKE
hybrid is used as in [11], these gaps will widen further.

In order to make the performance of the proposed approach competitive with that of SIDH/SIKE,
the main research obstacles that arise are (i) finding faster methods of computing `-isogenies for
the sizes of ` that arise in Section 5, and (ii) finding primes p for which both p+ 1 and p− 1 have
large enough factors that are as smooth as possible.

The first preprint of this paper left both (i) and (ii) as open avenues for future work, but in the
time that has passed since that version went online, progress has been made in both directions. In
regards to (i), a leap forward was recently made by Bernstein, De Feo, Leroux and Smith [4]: for P
a point of prime order ` in E(Fq), they give an algorithm for evaluating the quotient isogeny φ with

ker(φ) = 〈P 〉 at a point Q ∈ E(Fq) using only Õ(
√
`) operations in Fq. This is a huge improvement

over the conventional algorithms for isogeny computations that all computed Vélu’s formulas [43]
using Õ(`) operations in Fq. The authors of [4] note that their algorithm implies an asymptotic
speedup for B-SIDH as the security level increases, and give several software implementations
that illustrate the (rather large) performance improvements that can be expected for the sizes of
isogenies needed in this paper. They note, however, that their implementations are not constant-
time, and that “it is too early to guess what the final performance of constant-time B-SIDH will
be on top of our `-isogeny algorithm” [4, §A.4].

Regarding (ii), this version of the paper puts forward much better parameters than those in
the prior version(s); this is a result of improved search techniques and more compute time – see
Section 5.

1.3 Related work

A few days after a preprint of this paper went online, Matsuo sent us his non-peer-reviewed
Japanese article [28] from March 2019 that had previously proposed the idea of working in both
quadratic twists simultaneously. However, his execution of the idea is very different from that in
this paper. In particular, Matsuo did not lift the restriction of Alice and Bob computing their
respective 2m and 3n isogenies, and his search for primes p such that 2m | p + 1 and 3n | p − 1
(or vice versa) forces huge cofactors which produces primes that are, for the most part, either the
same size or are larger than their original SIDH counterparts. A crucial difference in this work is
allowing at least one of the two parties to compute secret isogenies whose composite degrees have
many prime factors, which gives way to a range of new possibilities.

Comments on an earlier version of this paper revealed that De Feo should be credited as the first
to mention the idea of exploiting quadratic twists in the realm of SIDH/SIKE. In his habilitation
thesis (dated December 2018), De Feo writes [15, p. 50]: “One particular trick in CSIDH that is
completely absent in SIDH is using the quadratic twist to perform part of the computations. I have
thought of this for a while, and I see no fundamental reason why it should not work for SIDH, if it
was not for the fact that finding suitable parameters seems computationally unfeasible. My favorite
example is p = 17, so p2−1 = 2532; if it were possible to find large primes with similar properties,
the gain would be spectacular”.
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Section 3 not only confirms De Feo’s intuition that there is no obstruction to the use of quadratic
twists, it shows that quadratic twists can be used out-of-the-box inside the twist-agnostic SIDH
framework. The purpose of Section 5 is to start paving the way towards the types of large primes
De Feo envisioned, and while it remains to be seen whether the practical gains can be spectacular,
the work he recently coauthored [4] will almost certainly play a part of any gains that are afforded
by the instantiations explored herein.

2 Twist-agnostic SIDH

The parameter that governs the security of Jao and De Feo’s supersingular isogeny Diffie-Hellman
(SIDH) protocol is the large prime p. As soon as p is chosen, a set of roughly bp/12c elements
is defined: these are the entire set of supersingular j-invariants over Fp, and they are the nodes
on the graphs that Alice and Bob walk on during the protocol. Alice and Bob share this set of
nodes, but their graphs have different edges that depend on the degrees of their secret isogenies.
Following [23], for any prime ` - p, there are ` + 1 isogenies (counting multiplicities, and up to
isomorphism) of degree ` that eminate from a given supersingular isomorphism class. Moreover,
Pizer [33,34] showed that this gives rise to a connected (` + 1)-regular multigraph that satisfies
the Ramanujan property and thus has optimal expansion properties.

2.1 Rational (p + 1)-torsion

The prime p also governs the efficiency of SIDH, where Alice and Bob both compute isogenies
whose degrees are of the form `e. In theory, Alice and Bob could choose any value of ` they like (so
long as their individual choices of ` are coprime), but it is more efficient if the `e-torsion is defined
over Fp2 . Observing that the smallest primes ` give rise to the most efficient `e-isogenies, Jao and
De Feo construct the prime p to guarantee this rationality condition by setting p = f · 2m3n − 1
(allowing for a small cofactor f), and representing nodes in the graph by elliptic curves E/Fp2
with

E(Fp2) ∼= Zp+1 × Zp+1. (1)

For any r ∈ Z with r | p + 1, the entire r-torsion E[r] ∼= Zr × Zr is then contained in E(Fp2).
With p chosen as above, it follows that the full 2m-torsion E[2m] ∼= Z2m × Z2m , and the full
3n-torsion E[3n] ∼= Z3n × Z3n , are both Fp2-rational. Since every (separable) isogeny φ : E → E′

of degree d is in one-to-one correspondence with a kernel subgroup of order d [38, Proposition
III.4.12], and each such isogeny is computed using rational functions of the input curve and the
given kernel subgroup [43], it follows that if both of these inputs are Fp2 -rational, then so is the
isogeny computation.

2.2 SIDH

With p = f · 2m3n − 1 as above, the SIDH protocol specifies the following public parameters:
a starting supersingular curve E0/Fp2 , a basis {PA, QA} for E[2m] ∼= Z2m × Z2m , and a basis
{PB , QB} for E[3n] ∼= Z3n × Z3n . To generate her public key, Alice chooses two secret integers
(αA, βA) ∈ Z2m × Z2m such that her secret point SA = [αA]PA + [βA]QA is of order 2m. She then
composes m 2-isogenies to give her secret 2m-isogeny φA : E0 → EA, where EA = E0/〈SA〉. Along
the way, she moves the basis points PB and QB through the isogeny computation, eventually
obtaining their images under φA. Her public key is then PKA = (EA , φA(PB) , φA(QB)) . On
Bob’s side, he chooses (αB , βB) ∈ Z3n × Z3n , computes his secret point SB = [αB ]PB + [βB ]QB ,
and then uses it to compute his secret 3n-isogeny φB : E0 → EB (via n consecutive 3-isogenies),
such that EB = E0/〈SB〉. His public key is PKB = (EB , φB(PA) , φB(QA)) .

Upon receiving PKB , Alice uses her secret integers to compute a new secret point S′A =
[αA]φB(PA) + [βA]φB(QA) of order 2m on EB , and then uses it to compute the 2m-isogeny
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φ′A : EB → EB/〈S′A〉. Bob uses his secret integers and PKA to compute the point S′B = [αB ]φA(PB)+
[βA]φA(QB) of order 3n on EA, and then uses it to compute the 3n-isogeny φ′B : EA → EA/〈S′B〉.
Both parties then compute the same shared secret as the j-invariant of their respective image
curves EB/〈S′A〉 and EA/〈S′B〉, since EB/〈S′A〉 ∼= EA/〈S′B〉 [23].

2.3 Twist-agnostic isogenies

Jao and De Feo exploited the fact that all of the arithmetic in the above computations can
be performed on the Kummer line of the associated curves, i.e. in E/{±1} rather than E, and
furthermore that this arithmetic is particularly efficient if the curves are in Montgomery form [30]

E(A,B) : By2 = x3 +Ax2 + x.

Henceforth, E(A,B) or E will be used instead of E(A,B)/{±1} or E/{±1} for simplicity, and unless
explicitly stated, y-coordinates will be ignored (using ‘—’). Furthermore, the B coefficients of
Montgomery curves can also be ignored in the SIDH framework [11]; they are merely used to
specify which quadratic twist we are working on and are not needed in optimised explicit formulas.
In other words, optimised explicit formulas for Montgomery arithmetic ignore B and y and work
irrespective of quadratic twist.

Isogenies of composite degree L =
∏k
i=1 `

ei
i can be computed as the composition of e1 isogenies

of degree `1, followed by e2 isogenies of degree `2, and so on. Conventional isogeny algorithms
evaluate prime degree `-isogenies in Õ(`) field operations [43,9], whereas the recent Bernstein-De
Feo-Leroux-Smith [4] algorithm computes the same result using only Õ(

√
`) field operations; both

of these algorithms are already optimised within the twist-agnostic Montgomery framework above.
Generally speaking, it follows that for a given target security level (i.e. for a given size of L – see
Section 4), the most efficient L-isogenies will correspond to the smoothest values of L.

3 Using torsion from the quadratic twists

Let E/Fpn be an elliptic curve, let tn be the trace of the pn-power Frobenius endomorphism, and
recall that (i) E is supersingular if and only if tn is a multiple of p [38, Exercise V.5.10(a)], and
that (ii) #E(Fpn) = pn + 1 − tn with |tn| ≤ 2

√
pn [38, Theorem V.1.1]. When n = 1, there is

only one possible value of t1 that is a multiple of p such that |t1| ≤ 2
√
p, i.e. t1 = 0, and thus it

follows that E/Fp is supersingular if and only if #E(Fp) = p+ 1. In other words, there is only one
possible group order for supersingular elliptic curves over Fp.

The first observation that sets the scene for this work is that there are multiple possibilities for
t2 that correspond to E/Fp2 being supersingular: taking t2 ∈ {−2p,−p, 0, p, 2p} satisfies (i) and
(ii). Of particular interest in the present context are the two possibilities t2 = −2p and t2 = 2p.
All known instantiations of SIDH and SIKE fall into the former case by default. They define
a starting supersingular curve E0/Fp and lift to work in E0(Fp2); since E0(Fp) | E0(Fp2) and
#E0(Fp) = p+ 1, it must be that #E0(Fp2) = p2 + 1 + 2p = (p+ 1)2 and hence that t2 = −2p.

Upon starting on a curve with t2 = −2p, a choice has seemingly been made among the possi-
bilities for t2; two elliptic curves are Fp2-isogenous if and only if they have the same group order
over Fp2 [41, Theorem 1(c)], so computing Fp2 -rational isogeny walks means walking on curves
with the same number of points as E0/Fp2 . However, any curve with t2 = −2p corresponds to
the quadratic twist of a curve with t2 = 2p, meaning that they not only become isogenous over
Fp4 , they become isomorphic over Fp4 . Moreover, as we saw in §2.3, optimised isogeny arithmetic
works correctly independently of the quadratic twist, so the explicit formulas that are used on the
curves with t2 = −2p can also be used to work on the curves with t2 = 2p.

It is crucial to note that even though two quadratic twists are not isomorphic over Fp2 , they
will still have the same j-invariant in Fp2 [38, Proposition 1.4(b)]. Put another way, every node
in the supersingular isogeny graph can actually be represented by two different Fp2-isomorphism
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classes: those with t2 = −2p and the same group structure as E/Fp2 in (1), or those with t2 = 2p
and with group structure

Et(Fp2) ∼= Zp−1 × Zp−1.

Every such supersingular curve with group structure Zp−1 × Zp−1 is the quadratic twist of a
supersingular curve with group structure Zp+1×Zp+1, and vice versa. Moreover, in the same way
that any factor r of p+ 1 gave rise to a full rational r-torsion in E(Fp2), any factor s of p− 1 gives
rise to a full rational s-torsion in Et(Fp2).

For Alice and Bob to freely work with points coming from the (p+ 1)-torsion and the (p− 1)-
torsion, it appears that the entire protocol must be lifted to Fp4 . While this is technically true,
the lifting will ultimately not be visible in an optimised implementation2.

The point and isogeny formulas ignore the y-coordinates of points and the B coefficients of
Montgomery curves, and this is where all the twisting arithmetic happens. The upshot is that
while the protocol will be lifted to Fp4 , where E(Fp4) ∼= Et(Fp4) ∼= Zp2−1 × Zp2−1, Alice and
Bob are still in a position to work entirely in Fp2 as usual. They can then choose a secret kernel
point whose order divides p + 1, or whose order divides p − 1, or (more generally) whose order
divides the product p2 − 1.

To make this concrete, let B be a square in Fp2 , let γ be a non-square in Fp2 , take Fp4 = Fp2(δ)
with δ2 = γ, and write

EA,B : By2 = x3 +Ax2 + x and EtA,γB : γBy2 = x3 +Ax2 + x

as models 3 for E/Fp2 and Et/Fp2 . The map

σ : EA,γB(Fp4)→ EA,B(Fp4), (x, y) 7→ (x, δy) (2)

is a group isomorphism that leaves x-coordinates unchanged.
Write f(x) = x3 + Ax2 + x. For any u ∈ Fp2 , either (i) f(u) is a square in F∗p2 , in which case

(u,
√
f(u)/B) is a point in EA,B(Fp2), (ii) f(u) is a non-square in F∗p2 , in which case f(u)/(γB)

is a square, and (u,
√
f(u)/(γB)) is a point in EA,γB(Fp2), or (iii) f(u) = 0, in which case (u, 0)

is one of the three 2-torsion points (on both EA,B and EA,uB).
Let P1 = (u1,—) be a point corresponding to case (i), let P2 = (u2,—) be a point corresponding

to case (ii), and suppose φ1 : EA,B → EA,B/〈P1〉 and φ2 : EA,γB → EA,γB/〈P2〉. It does not make
sense to evaluate φ1 at P2 or φ2 at P1 (these points do not even lie on Fp2 -isogenous curves, let alone
the same curve), but this is fixed by lifting to Fp4 and precomposing with the twisting morphisms.
Setting φ′1 = (φ1 ◦ σ) and φ′2 = (φ2 ◦ σ−1) gives the isogenies φ′1 : EA,γB → EA,B/〈σ(P2)〉 and
φ′2 : EA,B → EA,γB/〈σ−1(P1)〉, which are well-defined over Fp4 .

The key observation from (2) is that σ : (x,—) 7→ (x,—) and σ−1 : (x,—) 7→ (x,—) induce
the identity map when working on the corresponding Kummer lines, so the twisting morphisms
can simply be ignored in the implementation. Thus, Alice can take her secret points from the
(p+ 1)-torsion of EA,B(Fp2) and Bob can take his secret points from the (p− 1)-torsion of EA,γB ,
and the implementation of the SIDH protocol can otherwise remain unchanged.

3.1 B-SIDH in a nutshell

Henceforth, for a given prime p, M and N will be used to denote the two coprime degrees of Alice
and Bob’s secret isogenies (e.g. in the traditional setup with p = 2m3n − 1 described above, we
have M = 2m and N = 3n). Alice’s degree M will always be defined such that M | p + 1, and
Bob’s will be N such that N | p− 1.

2This is reminiscent of Bernstein’s twist-agnostic Curve25519 construction. He also uses a quadratic
extension field in the specification of the Curve25519 function [3, Theorem 2.1], but this extension is a
technicality that is not seen in the implementation.

3The idea works analogously for more general (i.e. short Weierstrass) elliptic curves, but all of the
instantiations discussed in this paper allow for Montgomery form.
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Since M and N must be coprime, the even one will always be chosen according to whichever of
p+1 and p−1 is the multiple of 4; otherwise, the remaining factors of p+1 and p−1 are necessarily
coprime. The efficacy of the construction in this paper is closely tied to the smoothness of M and
N (see §2.3), so obtaining B-SIDH-friendly parameters boils down to searching for primes p such
that p + 1 and p − 1 both contain factors that are large enough to reach a target security level,
but smooth enough to be efficiently computable.

3.2 Handling large `-degree isogenies

The sizes of ` that are encountered in this paper are significantly larger than those in previous
works, so it is important to look for ways that such isogenies can be sped up in practice. As
mentioned in Section 1, Bernstein, De Feo, Leroux and Smith [4] recently gave a drastic improve-
ment for the computation of large prime-degree isogenies: `-isogenies now require only Õ(

√
`) field

operations, rather than Õ(`) field operations. The two possibilities below were written in an ear-
lier version of this paper that predates [4], but nevertheless are still worth mentioning, since it is
currently unclear how a constant-time variant of [4] performs in practice, i.e., exactly how large `
would need to be for such a variant to reign supreme over prior methods or over the more obvious
optimisations below. Moreover, either or both of these techniques could be used in conjunction
with the algorithm in [4] to give even faster B-SIDH isogenies in practice.

Parallelisation. Let P be a point of order ` = 2d + 1. The algorithm in [9] requires the first
d multiples {[i]P}1≤i≤d of the input point, which is what makes `-isogeny computations become
rather expensive for large `. However, this process parallelises almost perfectly: for t processors,
dt/2e steps of the Montgomery ladder are used to compute [i]P for 1 ≤ i ≤ t. The i-th processor
can then compute [i + jt]P as the differential sum of [i + (j − 1)t]P , [t]P , and [i + (j − 2)t]P
for 1 ≤ j ≤ dd/te. After the initial phase that assigns the three values to each processor, no
communication is required between the processors until the end, where the subproducts (which
were independently accumulated in the same manner as [9, §5]) can all be collected and multiplied
together. In the case of computing image points, then one final squaring and one final multiplication
are used to finish the routine [9, Theorem 1]; in the case of computing image curves, then log(`)
final multiplications and squarings are required [29]. Note that this parallelisation can be exploited
across any of the prime degree isogenies that are large enough to make it worthwhile.

Precomputation. Assume Bob is tasked with large prime degree isogenies and he is the one
generating ephemeral public keys. The runtime of his public key generation procedure can be
improved if storage permits a significant offline precomputation. For example, if his largest prime-
degree isogeny is an `-isogeny, he could precompute all of the ` + 1 possible image curve/point
triples (see §2.2), and at runtime he could simply select the triple corresponding to his secret key.

4 Security analysis

There are two main changes to the usual computational isogeny problems underlying SIDH and
SIKE [16, Problems 5.1–5.4] that are implicit in this paper. The first is that the isogeny walks
now use multiple values of `; the vertex set of a given graph stays fixed, but the edges now change
between successive steps. The second is that the walks are no longer half-length (i.e. around half
the bitlength of p); lowering the size of the primes relative to the length of the walks means that
other avenues of attack become relevant with respect to the usual meet-in-the-middle attacks4.
This section studies the implications of these changes with respect to known attacks from the
literature.

4Comments on an earlier version of this paper illustrated some confusion over whether or not torsion
point attacks [32] become relevant in this setting. Note that these attacks only become relevant when
either (i) Alice and Bob’s isogeny degrees are extremely unbalanced, e.g. when one is greater than the
square of the other, or (ii) when a secret isogeny degree is much larger than the size of the prime p. It
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4.1 Multiple edge sets.

Based on current knowledge, there is no reason to believe that a walk consisting of many different
prime degree isogenies makes the underlying problem appreciably easier than that of a walk in a
fixed `-isogeny graph, provided the number of possible destination nodes is around the same size.
When computing L-isogenies with L =

∏
`eii , the number of cyclic subgroups of order L inside any

given group E(Fp2) is
∏

(`i+1)`ei−1i , and so long as this is around the same size as (`+1)`e−1, the
difficulty of recovering an L-isogeny appears to be no easier than that of recovering an `e-isogeny.
The generalisation of the problems underlying SIDH to isogenies of multiple degrees has already
been considered in prior works (e.g. [32], [19, §2.3], and [7]), where the same conclusion was drawn
(or the same assumption was made).

4.2 Security of non-commutative vs. commutative schemes

There are currently two main umbrellas of isogeny-based public-key cryptography under public
scrutiny: those like SIDH [23] and SIKE [22] where the curves involved have non-commutative
endomorphism rings, and those like CRS [13,36] and CSIDH [6] where the associated endomor-
phism rings are commutative. It is important to note that, while there are similarities between the
instantiations herein and CSIDH (like the use of many different prime isogeny degrees in the same
secret computation), this paper falls entirely under the non-commutative umbrella. This means
B-SIDH inherits two security virtues from SIDH: the first is that it is seemingly immune to Kuper-
berg’s algorithm [25], meaning that the best known quantum algorithms are exponential (see §4.4);
the second is that it lends itself to regular algorithms and therefore more simple constant-time
implementations. On the other hand, it inherits the same drawback as SIDH of being susceptible
to active attacks [18], so requires the same transformations that were used in the SIKE proposal
– see [22].

4.3 Classical cryptanalysis.

When L =
∏
`eii ≈ p1/2, as in the original SIDH proposal, the meet-in-the-middle or claw-finding

algorithms [16, §5.3] stand alone as the best known attacks against SIDH and SIKE. However, the
most interesting instantiations proposed in this paper have L � p1/2, and as L tends towards p,
algorithms other than the meet-in-the-middle attacks become relevant. In what follows it will be
assumed that L ≈ p, since this is the extreme case where the alternative attack avenues are most
relevant. The underlying problem is to find the isogeny φ : E1 → E2 of degree L, where E1/Fp2
and E2/Fp2 are supersingular.

Claw-finding algorithms. Let L1 ≈ L2 ≈ p1/2 with L1L2 = L. The claw-finding algorithm cited
by Jao and De Feo [23, §5.2] uses O(L1) time to compute a table of all of the curves L1-isogenous
to E1, and stores them using O(L1) memory. It then proceeds by trying one L2-isogeny at a time,
this time emanating from E2, until a match is found in the table and the problem is solved; this
stage requires O(L2) time and essentially no memory. It follows that the claw-finding algorithm
runs in O(p1/2) time and requires O(p1/2) memory.

Adj, Cervantes-Vázquez, Chi-Domı́nguez, Menezes and Rodŕıguez-Henŕıquez [1] argued that
the van Oorschot-Wiener (vOW) parallel collision finding algorithm [42] has a lower overall cost for
finding φ, and thus should be used to assess the security of SIDH and SIKE. Their implementation
confirmed that the original vOW runtime analysis [42] is sharp in the context of finding the
isogeny φ. If w is the number of entries that can be stored in the table above, m is the number of
processors running in parallel, and t is the time taken to compute L1 and L2 isogenies, then the

is important to stress that neither (i) or (ii) is proposed in this paper, and moreover, that it is unclear
how one could possibly achieve (i) or (ii) while working in the proposed framework. The secret isogeny
degrees M and N must both be coprime and their product must divide p2 − 1, so their being balanced
(i.e. M ≈ N) immediately rules out one of them being much larger than p.
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vOW algorithm finds φ in expected runtime T = 2.5
m ·

(
p3/4

w1/2

)
· t. Adj et al. conclude that w > 280

is infeasible, so conduct their analysis by setting w = 280. With this choice of w, it helps to point
out that for p = 2160, the runtime of vOW (on one processor) is T = 2.5 · t · p1/2; thus, when
p� 2160, the vOW runtime is T � p1/2.

Random walk algorithms for any path. There are two styles of applicable random walk
algorithms that can be used to solve the general supersingular isogeny problem: both Pollard
rho [35] and Delfs-Galbraith [14] find some path between E1 and E2. The former finds an isogeny
between E1 and E2 by taking two pseudo-random walks in the graph of size O(p); the number
of steps required until these two walks collide is O(p1/2) by the birthday paradox. The latter
algorithm, which is preferred in practice (see [14, §4] or [5]), uses two self-avoiding random walks
to find paths from each curve to two subfield curves, Ẽ1/Fp and Ẽ2/Fp, and then connects these
two subfield curves. Since there are O(p1/2) subfield curves in the graph of size O(p), the first step
requires O(p1/2) steps, and since connecting the two subfield curves requires O(p1/4) steps [14],
the entire algorithm takes O(p1/2) steps to find an isogeny connecting E1 and E2. Like vOW, the
Delfs-Galbraith algorithm parallelises perfectly, but unlike vOW, it does not have large storage
requirements.

Both of these algorithms are likely to terminate with a path that is not the secret path cor-
responding to φ. However, since E1 is typically a special curve with a known endomorphism ring
End(E1), it is prudent to assume that this can be used to modify the path into the correct one
via the techniques discussed at length in [18, §4].

4.4 Quantum cryptanalysis.

The best known quantum algorithm for solving SIDH and SIKE instances is, asymptotically, Tani’s
algorithm [40]. Roughly speaking, as p→∞, Tani’s algorithm solves the claw-finding problem for
secret isogenies of degree O(p1/2) in time O(p1/6) on a quantum computer. Translating to the
setting of isogenies of degree L ≈ p, this would give an O(p1/3) quantum claw-finding algorithm;
note that recent work of Jaques and Schanck [24] shows that (even under the assumption of a
large amount of quantum resources) the concrete complexity of Tani’s algorithm is much closer to
the classical claw-finding complexity. Nevertheless, when L ≈ p, Tani’s algorithm is no longer the
superior algorithm for solving the corresponding isogeny problem. In [5], Biasse, Jao and Sankar
give a quantum algorithm for the general supersingular isogeny problem (in characteristic p) that
runs in time O(p1/4). Their algorithm is essentially the Delfs-Galbraith algorithm (from above)
ported to the quantum setting; they use Grover’s algorithm [20] to get a quadratic speedup from
O(p1/2) to O(p1/4) on the phase that finds the two supersingular subfield curves Ẽ1/Fp and Ẽ2/Fp,
and then develop a subexponential algorithm (based on the Childs-Jao-Soukharev subexponential
algorithm [8] for the ordinary case) to connect the subfield path. The memory requirements of
this algorithm are small; Biasse, Jao and Sankar define a set of N isogenies of degree 3λ, where
λ ∈ O(log(p)) is chosen large enough so that this set contains a walk that passes through a subfield
curve with probability 1/2. As long as there are enough (i.e. O(log(p))) qubits to encode such a
path, then this algorithm succeeds with probability 1/4 [5, Proposition 2].

As in the classical algorithms, since End(E1) is typically known, the path obtained by the above
process can presumably be modified into the path corresponding to φ at no additional asymptotic
cost.

4.5 Security summary.

When φ : E1 → E2 is an isogeny between two supersingular curves E1/Fp2 and E2/Fp2 of de-

gree L =
∏k
i=1 `

ei
i ≈ p, the best known classical algorithm for finding φ is the Delfs-Galbraith

algorithm [14]; it runs in O(p1/2) time and (unlike claw-finding or vOW) does not have large
storage requirements. Applying Grover’s speedup to the Delfs-Galbraith algorithm also gives the
best known quantum algorithm [5]; it requires O(log(p)) qubits, run in time O(p1/4), and does not
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have large storage requirements. In the classical case, Delfs-Galbraith parallelises perfectly, where
as Grover’s algorithm is well-known to give a

√
m speedup when parallelised across m quantum

processors [44].

5 Searching for friendly instances

This section presents a variety of example primes for which the approach in this paper becomes
interesting in practice. Recall from §2.3 and §3.1 that the most interesting primes are those where
M | p+ 1 and N | p−1 are both large enough to reach a requisite security level and are as smooth
as possible.

At a high level, the methods of searching for these primes fall into three categories:

– Fast, pre-existing primes. These are primes that are already popular in the classical ECC
literature, e.g. Mersenne and Ridinghood primes: here a large power of 2 typically divides
p + 1, which is an upshot of p being cherry-picked to support fast finite field arithmetic. In
the present context, it also means that Alice can compute 2m-isogenies as usual, meaning that
she obtains a speedup over typical SIDH/SIKE isogenies due solely to the faster underlying
arithmetic. On the other hand, the scarcity of these primes means that p − 1 is unlikely to
be smooth, so Bob’s isogenies tend to be a lot worse than the 3n-isogenies he computes in
SIDH/SIKE. Examples of these primes are given in §5.1.

– Extended Euclidean algorithm. The first method of searching for new primes involves
taking a and b coprime, e.g. a = 2u and b = 3v, using the extended Euclidean algorithm to
find integers s and t such that st < 0 and as+ bt = 1, and then sieving over integer values of k
until the (unique) integer lying between |2a(s− kb)| and |2b(s+ ka)| is prime. Alice and Bob
can then take M = a · |s− kb| and N = b · |s+ ka| and have a large part (i.e., around half in
the balanced case) of their isogeny product being a small prime power. Examples found with
this technique are in §5.2.

– Primes of the form p = 2xn − 1. The second method of searching for friendly instances
involves fixing n as a very small integer (e.g. n = 6), and searching over x ∈ Z until p = 2xn−1
is prime. Restricting x to be B-smooth guarantees that p+1 is B-smooth, and the factorisation
of p−1 = 2(xn−1) for certain values of n increases the likelihood that p−1 is also smooth. This
method is arguably the most successful in terms of giving both Alice and Bob fast isogenies,
and it is detailed in §5.3.

The most interesting examples from §5.2 and §5.3 are collected and compared in §5.4.

5.1 Fast primes: accelerating Alice, burdening Bob

Many fast primes are of the form

p = 2m · c− 1, (3)

which allow Alice to compute 2m-isogenies just like she would in SIDH. However, unlike the
primes in SIDH where c = 3n ≈ 2m, the values of c that are of interest here are when c is either
chosen to facilitate faster field arithmetic in Fp2 , is much smaller than 2m so that p is smaller
than usual, or both. Here Alice’s computations will benefit from the faster field arithmetic, but
Bob’s computations become significantly slower due to his isogenies no longer being 3n-isogenies,
but rather (

∏
`eii )-isogenies. Depending on the efficacy of the methods in §3.2, in almost all such

cases the factor slowdown incurred on Bob’s side will be much worse than the factor speedup
enjoyed by Alice, meaning that the runtime of one protocol instance will be significantly slower in
general. However, there are real-world scenarios where such a trade-off would be welcomed. One
such scenario is in TLS, where servers are oftentimes performing orders of magnitude more runs
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of the protocol than an individual client is; here slowdowns on the client side could be tolerated
(or even unnoticed) to afford a speedup to the server. An example of the opposite scenario, i.e.
when the priority becomes the client’s performance, is in the arena of lightweight cryptography
(e.g. IoT); here it is often the case that resource-constrained devices are communicating with a
relatively unconstrained sever.

Mersenne primes. Putting c = 1 into (3) yields Mersenne primes, for which only m ∈ {127, 521}
are of interest in this paper. With m = 521, write the factorisation p − 1 = 2521 − 2 = 2 · 3 · 52 ·
11 · . . . q1 · q2 · q3 · . . . , where q1 = 7623851 (23 bits), q2 = 34110701 (26 bits) and q3 = 2400573761
(32 bits). Alice can use 2e-isogenies for any e ≤ m, and can subsequently scale her security up
and down over the same field (e.g. to match the security of any of the SIKE instances). On Bob’s
side, he can compute L-isogenies for any L | p − 1, e.g. with L =

∏
`i≤qn `

ei
i , he can take n = 1

to match SIKEp434, n = 2 to match SIKEp503, and n = 3 to match SIKEp610. Taking m = 127
is too small to offer any reasonable security in the elliptic curve setting, however combining the
security analyses in [17, §4.1] and [12] reveals that B-SIDH construction in the genus-2 setting
could achieve good post-quantum security over this smaller Mersenne prime. The factorisation
p− 1 = 2127 − 2 = 2 · 33 · 72 · 19 · 43 · 73 · 127 · 337 · 5419 · 92737 · 649657 · 77158673929 shows that
the product of all odd primes up to 649657 (20 bits) could build a genus-2 isogeny that is large
enough to obtain 128 bits of classical security and 64 bits of quantum security.

The Ridinghoods. Putting c = 2m − 1 into (3) yields Ridinghood primes, which offer fast
Karatsuba-style arithmetic in Fp; the most famous of these has c = 2224 and underlies Hamburg’s
Goldilocks curve [21]. Here Alice can meet the security offered by SIKEp434 by computing 2224-
isogenies. If Bob is to compute L-isogenies with L | p−1, he would need to compute a prime isogeny
whose degree is 78 bits in length. However, allowing Bob to work on both sides (by including factors
of c) shows that he can meet the same requisite security when L’s largest prime factor is only 24
bits. Of the other Ridinghoods with m ∈ {161, 208, 224, 225, 240, 354}, the most striking example
is with m = 225; here the largest prime-degree isogeny needed for Bob to match the security of
SIKEp434 is ` = 216 + 1. Note that both of these examples are subject to the caveat in discussed
in the paragraph below.

Bob on both sides. In the Ridinghood scenarios above, Bob is better off computing isogenies of
order N = N1N2, where N - p− 1 but where N1 | p+ 1 and N2 | p− 1. In this case, general points
in EA,B [N ] no longer have their x-coordinate in Fp2 , but rather in Fp4 , and performing arithmetic
in Fp4 would hamper the efficiency of the isogeny algorithms significantly. One way to approach
this scenario is to instead have Bob use two bases 〈P1, Q1〉 = EA,B [N1] and 〈P2, Q2〉 = EA,γB [N2],
which can both be defined such that all four x-coordinates are in Fp2 . His secret keys are then of
the form (s1, s2) ∈ [0, N1)× [0, N2), which generate the secret kernels S1 = P1 + [s1]Q1 and S2 =
P2 + [s2]Q2. Bob can compute φ1 : E0 → E0/〈S1〉 and then φ2 : E0/〈S1〉 → (E0/〈S1〉)/〈φ1(S2)〉,
which corresponds to the secret isogeny φB = (φ2 ◦ φ1); his public key is then (EB , P

′
A, Q

′
A) =

(φB(E0), φB(PA), φB(QA)), which is the same size as usual. On the other side, Alice’s public keys
must include the images of all four of Bob’s basis points under her secret isogeny, so they become
between 1.6x and 1.7x larger (if a static-ephemeral version of Diffie-Hellman à la SIKE [22] is
used, then the setup would likely be arranged to make the static key the larger key). Computing
these extra image points also incurs some additional overhead, but this would still be faster than
working with two basis points that are defined over Fp4 .

5.2 Searching with the extended Euclidean algorithm

This subsection describes the first of two methods used to search for primes that offer interesting
B-SIDH instantiations. Both methods can be used to find primes that target any security level,
but for concreteness (and based on the security analysis in Section 4) the remainder of this paper
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will focus on finding primes with p > 2230 in order to make the classical complexity of Delfs-
Galbraith [14] and the quantum complexity of Biasse-Jao-Sankar [5] large enough to reach NIST’s
security category 1. Moreover, the respective degrees M and N of Alice and Bob’s secret isogenies
must both be larger than 2210 in order to ensure that the classical and quantum claw-finding
complexities roughly match those of SIKEp434 [22].

Let B > 2 be a given smoothness bound. The idea in this subsection is to search over coprime
a and b so that the extended Euclidean algorithm outputs s ∈ Z and t ∈ Z such that

a · s+ b · t = 1, (4)

with |s| < |b/2| and |t| < |a/2| [37, Theorem 4.3]. It follows that |a · s| and |b · t| differ by 1 and
hence are necessarily coprime. Thus, if the unique integer lying between 2|a · s| and 2|b · t| is a
prime p, and if the inputs a and b are both B-smooth, it follows that p2 − 1 is B-smooth if and
only if s · t is B-smooth.

For a fixed (a, b), there are actually an infinite number of pairs satisfying (4), obtained by
writing (sk, tk) = (s+kb, t−ka) for any k ∈ Z. It follows that the bounds on the general solutions
are

|sk| < |k + 1/2| · |b| and |tk| < |k − 1/2| · |a|.
For a given input pair (a, b), this gives a precise number of k values that can be tried to produce
a prime p below a certain bound w, namely

|k| ≤ bw/(a · b)c. (5)

The following examples illustrate how B-SIDH instances that offer interesting trade-offs can
be found in this way.

Example 1. Rather than using the 434-bit prime p = 22163137 − 1 as in SIKEp434, suppose the
size of the desired prime is instead bounded above by w = 2384. On input of a = 2186 and
b = 3115 (note that 2182 < b < 2183), the extended Euclidean algorithm produces (s0, t0) with
2179 < |t0| < |s0| < 2180. (5) reveals that |k| ≤ 54324. Of the 2 · 54324 + 1 possible values of k,
1149 of them gave rise to a prime (as the unique integer) lying between 2|a · sk| and 2|b · tk|, and
k = −4189 gave rise to the 382-bit prime

p :=0x277AF122D68C175343851A90621232112FB72C2AAB291357

900000000000000000000000000000000000000000000001.

with

M = 3115 · 7 · 13 · 312 · 157 · 241 and

N = 2188 · 11 · 17 · 29 · 73 · 193,

which are such that 2213 < M < 2214 < N < 2215. With these sizes, the security of the resulting
instantiation is comparable to SIKEp434, but with a prime that fits into six 64-bit words, rather
than seven. Alice and Bob pay the price of having to do a handful of slightly larger isogenies, but
on the other hand all of their arithmetic now takes place over a smaller field.

Example 2. Restricting a and b to be powers of primes restricts the number of inputs to the process.
The following example was found by instead letting a and b vary over 25-smooth numbers. The
coprime numbers a = 24 · 3 · 716 · 179 · 318 and b = 1118 · 19 · 2313 yield the 253-bit prime

p =0x1935BECE108DC6C0AAD0712181BB1A414E6A8AAA6B510FC29826190FE7EDA80F

with

M = 24 · 3 · 716 · 179 · 318 · 311 · 571 · 1321 · 5119 · 6011 · 14207 · 28477 · 76667 and

N = 1118 · 19 · 2313 · 47 · 79 · 83 · 89 · 151 · 3347 · 17449 · 33461 · 51193,

which are such that M > 2224 and N > 2213.
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Example 3. Increasing the smoothness bound on a and b to 27 found the 255-bit prime

p =0x76042798BBFB78AEBD02490BD2635DEC131ABFFFFFFFFFFFFFFFFFFFFFFFFFFF

with

M = 2110 · 5 · 72 · 67 · 223 · 4229 · 9787 · 13399 · 21521 · 32257 · 47353 and

N = 334 · 11 · 17 · 192 · 29 · 37 · 532 · 97 · 107 · 109 · 131 · 137 · 197 · 199

· 227 · 251 · 5519 · 9091 · 33997 · 38201,

which are such that M > 2215 and N > 2212.

Example 4. Unbalancing the inputs a and b to the extended Euclidean algorithm can produce the
sorts of unbalanced B-SIDH instantiations that are geared towards the scenarios mentioned at the
beginning of §5.1. On input of a = 2216 and b = 32 · 5 · 7 · 112 · 17 · 29, the process finds the 255-bit
Montgomery-friendly prime

p :=0x6E052A4E15FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Here Alice can take M = 2217 and Bob can take

N = 32 · 5 · 7 · 112 · 17 · 29 · 67 · 431 · 467 · 607 · 1579 · 24169 · 68947

· 345229 · 12676847 · 38334727 · 41110859 · 51040879,

which is greater than 2216. In this case Alice can expect a large speedup over her analogous isogeny
computations in SIDH/SIKE: she can still compute her 2216 isogenies exactly as before, but now
she is performing arithmetic over a 255-bit prime (instead of the 434-bit prime). Moreover, her
public keys are already smaller than the comparable compressed public keys in SIKEp434, i.e.,
she need not incur the additional compression overhead, which is significant in SIKE [22]. If the
above prime was used in the SIKE scenario with the long-term static secret being an N -isogeny,
the estimated speedup on the encapsulator side lies somewhere between a factor 2.5 and a factor
3.5.

5.3 Primes of the form p = 2xn − 1

This subsection focusses on the second method to find primes that are particularly suited to the
B-SIDH construction. In terms of a balanced smoothness for both Alice and Bob, it has found the
most promising examples to date.

An earlier version of this paper aimed to find primes p such that p− 1 and p+ 1 are minimally
smooth by way of Störmer’s theorem [39] (see also [26]). For a given smoothness boundB, Störmer’s
theorem says that are a finite number of integers, x, such that x − 1 and x + 1 are B-smooth;
moreover, it gives a way to find this set in its entirety. If there are t primes up to B, then finding
this set of integers amounts to solving all Pell equations of the form x2 − Dy2 = 1, where D is
both squarefree and B-smooth; there are clearly 2t such D, and therefore 2t Pell equations to
be solved [26]. Unfortunately, the sizes of B for which this task is feasible did not produce any
values of x that offer meaningful security (at least, not in the case where the primes are chosen
to underly elliptic curves). For example, with B = 47, the largest x such that x − 1 and x + 1
are B-smooth is (the 42-bit integer) x = 2218993446251. With B = 113, the largest such x is x =
38632316754147847668001 (76 bits), and the largest prime such x is x = 151908300112120373249
(68 bits); this required solving 2t = 230 Pell equations, and was the largest B exhaustively searched
in this work.

Although it was infeasible to extend this method to the sizes of B required to produce p > 2200,
it did prove useful in showing factorisation patterns that often arose for values in the larger ranges.
In particular, the largest prime values were often of the form p = 2zn − 1, with z and n both
integers, and where n > 1. Indeed, searching for primes of this form has proven to be the most
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useful method to date, and the reason is best illustrated via an example. With n = 2, we can
search over B-smooth x such that p = 2x2 − 1 is prime, at which point we are guaranteed that
p+ 1 is B-smooth and we are hoping that p− 1 = 2x2 − 2 = 2(x− 1)(x+ 1) is also B-smooth. In
other words, we are hoping that two values in O(

√
p) are B-smooth. In contrast, a naive search

(i.e. a search with n = 1) would be hoping to find one value in O(p) that is B-smooth. Under the
heuristic assumption that x − 1 and x + 1 are uniformly distributed in O(

√
p), and taking into

account well-established smoothness probabilities (cf. [27]), it becomes clear that the search with
n = 2 is far superior.

This same reasoning extends to larger values of n, and it is readily seen that (for a fixed
smoothness bound B and desired size of p) the success probability of the search becomes tied to
the ratio d/n, where d is the degree of the largest irreducible factor(s) of xn − 1 ∈ Z[x]. Larger
values of n can be chosen to minimise this ratio, however a larger n means fewer values of x to
search over (for a desired size of p = 2xn − 1). Though some examples were found with n > 6
(see §5.3), the sweet spot when aiming for primes between 192 and 256 bits proved to be n = 4
and n = 6.

Searching with n = 4. Write p(x) = 2x4 − 1, and let the smoothness bound be B as usual.
A search for primes of this form such that 2230 < p < 2256 must look for x ∈ [257.5, 263.75). With
the computing resources at hand, an exhaustive search of this domain was out of the question.
However, one can do better than searching over smooth values of x by observing that

p(x)− 1 = 2(x− 1)(x+ 1)(x2 + 1).

When inputting B-smooth values of x ≈ 264, the hope is to find x − 1, x + 1 and x2 + 1 as all
being B-smooth. Again, under the heuristic assumption that the smoothness probabilities of these
values are independent of one another, this naive search is then hoping for two 64-bit numbers
(x− 1 and x+ 1) and one 128-bit number (x2 + 1) to be B-smooth.

A better approach is to instead search through values of x ≈ 264 such that x2 + 1 necessarily
factors into two numbers of at most 264. This can be achieved by choosing a subset of the primes
less than B, say {q1, . . . , qt}, and solving the equation x2i + 1 ≡ 0 mod qi for each 1 ≤ i ≤ t. These
t values of xi can then be combined using the CRT to give x such that x2 + 1 ≡ 0 mod (

∏
qi). In

this case each of the qi must be such that qi ≡ 1 mod 4, so that x2i + 1 ≡ 0 mod qi has a solution.
The trick is to keep choosing random subsets of these primes such that the CRT will output values
of x ∈ [257.5, 263.75); this way, the search is now hoping to stumble on three 64-bit values that are
B-smooth, which is far more likely than the naive search above.

Note that each time a subset is chosen, there are 2t combinations of solutions (corresponding
to the t choices of sign) that can be checked. Furthermore, the qi need not be distinct; solutions
to x2i + 1 ≡ mod qzi are computed via Hensel lifting [37, §12.5.2]. The following example, which is
perhaps the most striking example in this paper, was found in precisely this manner.

Example 5. With the smoothness bound B = 213, the primes

(q1, . . . , q5) = (4481, 4801, 6673, 7537, 7621)

gave one of the solutions for x2 + 1 ≡ 0 mod (q1 · · · · · q5) as x = 2811207061409479600 (lifted to
Z). Moreover,

x = 24 · 52 · 7 · 23 · 79 · 107 · 307 · 2129 · 7901

is also B-smooth, and yields a (247-bit) prime p = 2x4 − 1. Alice and Bob can take

M = 217 · 58 · 74 · 234 · 794 · 1074 · 3074 · 21294 · 79012 and

N = 3 · 11 · 17 · 241 · 349 · 421 · 613 · 983 · 1327 · 1667 · 2969 · 3769

· 4481 · 4649 · 4801 · 4877 · 5527 · 6673 · 7103 · 7537 · 7621,

which are such that 2220 < M < 2221 and 2210 < N < 2211.
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Searching with n = 6. In the case of p = 2x6 − 1, it was possible to exhaustively search
through the full set of x ranging up to 2255/6 < 243 (though analogous methods to those described
above could be applied if n = 6 was used to target higher security levels). Interestingly, this did
not produce any factorisations of p − 1 that were as smooth as Example 5, so none of the below
examples below are as good for Bob as that one. However, some very smooth values of x (which
favour Alice) did find examples where B ≈ 216 was enough to give Bob the requisite security.
Three such examples are given below.

Example 6. The 237-bit prime p = 2 · (23 · 34 · 17 · 19 · 31 · 37 · 532)6 − 1 has

p− 1 = 2 · 7 · 13 · 43 · 73 · 103 · 269 · 439 · 881 · 883 · 1321 · 5479 · 9181

· 12541 · 15803 · 20161 · 24043 · 34843 · 48437 · 62753 · 72577 · 709153.

Example 7. The 247-bit prime p = 2 · (26 · 32 · 75 · 11 · 17 · 31 · 37)6 − 1 has

p− 1 = 2 · 13 · 192 · 29 · 43 · 79 · 83 · 107 · 643 · 661 · 733 · 1447 · 2347 · 7753

· 28879 · 29527 · 38281 · 64609 · 76651 · 86311 · 228841 · 745309897.

Example 8. The 250-bit prime p = 2 · (53 · 101 · 211 · 461 · 2287)6 − 1 has

p− 1 = 24 · 32 · 7 · 13 · 37 · 79 · 107 · 109 · 199 · 349 · 433 · 487 · 1607 · 1993 · 3067

· 5701 · 6199 · 6373 · 7883 · 8821 · 11497 · 19507 · 57037 · 78301 · 486839.

Larger n. Although setting n > 6 shrinks the search space for primes p = 2xn − 1 of a certain
size, interesting examples were still found in some cases. These typically have p much larger than
the degree of feasible isogenies on Bob’s side, so fall back into the umbrella of the types of primes
explored in §5.1 (here there is typically a comfortable enough margin between p and the isogeny
degrees that claw-finding goes back to being the best classical attack). For brevity, write ` as the
largest prime factor of a given N | p − 1 in each case. The 331-bit prime p = 2 · (32 · 13)48 − 1
has N > 2213 with ` < 223. The 367-bit prime p = 2 · (32 · 127)36 − 1 has N > 2216 with
` < 222. The 354-bit prime p = 2 · (2 · 5 · 73)30 − 1 has N > 2201 with ` < 223. The 362-bit prime
p = 2 · (2 · 112 · 17)30 − 1 has N > 2208 and the 363-bit p = 2 · (23 · 232)30 − 1 with N > 2212, both
with ` < 224. The 258-bit prime p = 2 · (23 · 32 · 23)24 − 1 has N > 2229 with ` < 221. The 325-bit
prime p = 2 · (2 · 3 · 5 · 13 · 29)24 − 1 has N > 2270 with ` < 226 and N > 2220 with ` < 221. The
250-bit prime p = 2 · (29 · 31 · 1901)12− 1 has N > 2211 with ` < 218 and the largest factor of p− 1
is 20 bits.

5.4 Summary

For the examples from this section, Table 1 lists the bitlengths of the maximum prime isogeny
degrees required by Alice and Bob, runtime complexities of the relevant classical and quantum
attacks (written as base-2 logarithms), and the public key sizes of both standalone B-SIDH and a
B-SIDH+ECDH hybrid. Following Section 4, the runtime of the Delfs-Galbraith (DG) algorithm
is taken as p1/2, the runtime of van Oorschot-Weiner (vOW) is taken as 2.5 ·L3/4/240 (with L the
degree of the respective isogeny), and the runtime of Biasse-Jao-Sankar (BJS) is taken as p1/4;
concrete runtimes in all three cases could be obtained by multiplying these complexities with the
time taken for the corresponding isogeny computations. While the DG and BJS algorithms depend
on the size of p, the complexity of the vOW algorithm depends on the number of possible isogenies
computed by a given party (see §4.1). In the larger examples, Bob’s use of all of the odd factors
of p− 1 can be overkill, so in these instances two options for Bob’s isogenies and the subsequent
vOW runtime estimates are given. For Example 1, the best quantum attack is not BJS (see the
analysis in [22] instead), and public keys could be compressed.

Following [11], B-SIDH public keys are three elements of Fp2 , and partnering with an ECDH
hybrid adds one additional element of Fp (the x-coordinate of the public key corresponding to a
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Table 1. Summary of various B-SIDH-friendly primes p. Further explanation in text.

ex.
p `max

Alice `max
Bob classical quantum PK (bytes)

(bits) (bits) (bits) DG vOW BJS B-SIDH hybrid

1 382 8 8 - 123 - 287* 335*

2 253 17 16 127 123 64 190 222

3 255 16 16 128 122 64 192 224

4 255 2 26 128 125 64 192 224

5 247 13 13 124 120 62 186 217

6 237 6 17 119 125 60 178 208

7 247 6 18 124 125 62 186 217

8 250 12 16 125 122 63 188 219

non-supersingular Montgomery curve with a strong ECDLP). It is worth pointing out that the
asymptotic runtime of Delfs-Galbraith against B-SIDH matches the asymptotic runtime of Pollard
rho [35] against the ECDLP, making the simplicity of the hybrid approach in [11, §8] particularly
attractive.

Acknowledgement. Special thanks to Kevin Kane for setting up a cluster of machines that were
used to search for parameters.
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