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Abstract. The Camenisch-Lysyanskaya rerandomizable signature (CL-
RRS) scheme is an important tool in the construction of privacy pre-
serving protocols. One of the limitations of CL-RRS is that the sig-
nature size is linear in the number of messages to be signed. In 2016,
Pointcheval-Sanders introduced a variant of rerandomizable signature
(PS-RRS) scheme which removes the above limitation. However, the se-
curity of PS-RRS scheme was proved under an interactive assumption.
In 2018, Pointcheval-Sanders improved this to give a reduction under a
parameterized assumption.
In 2012, Gerbush et al. introduced the dual-form signature technique to
remove the dependency on interactive/parameterized assumption. They
applied this technique on the CL-RRS scheme (for single message) and
proved its unforgeability under static assumptions instead of the in-
teractive assumption used in the original work but in the symmetric
composite-order pairing setting.
In this work, we realize a fully rerandomizable signature scheme in the
prime order setting without random oracle based on the SXDH as-
sumption. The signature structure is derived from Ghadafi’s structure-
preserving signature. We first apply the dual-form signature technique to
obtain a composite-order variant, called RRSc. A signature in RRSc con-
sists of only two group elements and is thus independent of the message
block length. The security of the proposed scheme is based on subgroup
hiding assumptions. Then we use the dual pairing vector space frame-
work to obtain a prime-order variant called RRS and prove its security
under the SXDH assumption.

1 Introduction

In their seminal work, Camenisch and Lysyanskaya [CL04] introduced a reran-
domizable signature (henceforth denoted as CL-RRS) scheme. The rerandom-
izability property says that, given a signature σ on some message m under
the public key PK, anybody can compute another valid signature on the same
message which is indistinguishable from the original signature. The rerandom-
izability property aids in replacing costly zero knowledge proof system in many
privacy-preserving protocols. The CL-RRS scheme has an additional desirable
property that a signature can be generated on multiple message blocks in a
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single invocation of the signing algorithm. Due to these attractive properties,
CL-RRS scheme has been used as a building block in many applications such as
group signature [BCN+10], anonymous attestation [BFG+13], aggregate signa-
ture [LLY13] and E-cash [CPST15].

The main drawbacks of the CL-RRS scheme are (i)unforgeability is proved
under the interactive LRSW assumption and (ii) the signature size depends on
the length of the message block signed. In 2016, Pointcheval-Sanders [PS16] in-
troduced a new rerandomizable signature (henceforth called PS-RRS) scheme
in the Type-3 pairing setting: e : G × H → GT [GPS08]. They considered the
signature space to be G while the public key comes from H. Separating the signa-
ture space from the public key space allows them to optimize the signature size.
Using an `-wise independent function in the signature structure, the PS-RRS
construction can make the signature length constant. However, the unforgeabil-
ity of PS-RRS is proved under a new interactive assumption (called as the PS
assumption).

In 2018, their follow-up work [PS18] presented a weak unforgeability proof for
the PS-RRS scheme under a parameterized (called as q-MSDH-1) assumption.
They also modified the original PS-RRS (henceforth called mPS-RRS) scheme
a bit and proved its unforgeability under the q-MSDH-1 assumption. However,
they could achieve only weak rerandomizability for the mPS-RRS scheme, as one
of the random exponent has to be provided explicitly as part of the signature.
They also showed that mPS-RRS scheme can be modified to realize full reran-
domizability, but only in the random oracle model. [PS18] further described a
modified CL-RRS (henceforth called mCL-RRS) scheme under a new parame-
terized assumption (called as q-MSDH-2), instead of an interactive assumption.
However, mCL-RRS achieves only weakly rerandomizability and random oracle
is required to argue that it’s fully rerandomizable.

A consequence of relying on some parameterized assumption is that one may
need to increase the underlying group size to achieve the desired level of security.
For example, Cheon [Che06] showed that the q-SDH problem can be solved using
O(
√
p/q) group operations, where p is the underlying group order. To achieve

the desired discrete-log level of security for q-SDH, one may thus have to increase
the underlying group size. This certainly has a negative bearing on efficiency of
the scheme which is further carried forward into the applications.

In 2012, Gerbush et al. [GLOW12] introduced an interesting technique called
dual-form signature. They applied this technique in the composite order pair-
ing setting to argue security of several signature schemes based on static as-
sumptions. This way they were able to remove the dependency on interac-
tive or parameterized (q-type) assumptions in some existing signature schemes
[CL04, BGOY07, BB04]. In particular, they constructed a dual-form variant of
Camenisch-Lysyanskaya signature (for the case of single message) in the symmet-
ric composite-order setting. In a follow-up work, Yuen et al. [YCZY14] presented
the dual-form Boneh-Boyen signature scheme in the prime-order setting under
the SXDH assumption. In [CK18], Chatterjee and Kabaleeshwaran utilized the
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dual-form signature technique to get a variant of Boneh-Waters group signa-
ture [BW07] under static assumptions instead of parameterized assumption.

While [GLOW12] did achieve a dual-form variant of CL-RRS scheme for
single message block, the scheme is instantiated in the composite-order pairing
setting. Due to the relative inefficiency [Fre10, Gui13] of the composite-order
pairing, a construction in the prime-order setting is usually preferable. Since the
PS-RRS scheme is instantiated in the prime-order and has constant size sig-
nature, the authors [PS16] demonstrated that it is a better alternative of the
dual-form CL-RRS scheme in several privacy-preserving applications, such as
group signatures [BCN+10], anonymous credentials [CL04, ASM06]. However,
the unforgeability of PS-RRS (or, mPS-RRS) can be proved only under some
interactive/parameterized assumption. So in this work we explore the applicabil-
ity of the dual-form signature technique to realize an RRS scheme with constant
size signature as in [PS16,PS18] based on some standard (static) assumptions.

The dual-form signature [GLOW12] consists of two signing algorithms, namely
SignA and SignB that will respectively return two forms of signature both of
which verify under the same public key. To argue security, the forgery space is
partitioned into two types, namely Type-I and Type-II that respectively corre-
spond to the signatures returned by SignA and SignB .

The approach that [GLOW12] had taken to argue security of the signature
variants under static assumption, consists of two steps. The first step is to con-
struct a dual-form of the signature variants and argue its security under some
static assumptions. Next, they obtained the actual signature scheme by removing
any one of the SignA or SignB algorithm. Finally, they argued that the security
of the signature scheme is reducible from the security of the dual-form signature
variants.

1.1 Our Contribution

We realize a fully rerandomizable signature scheme based on the SXDH as-
sumption without random oracle in the prime order setting. Towards this goal,
we first construct a rerandomizable signature scheme (denoted as RRSc), whose
construction is inspired from [Gha17]’s structure-preserving signature scheme, in
the composite-order setting with N = p1p2. We argue the unforgeability of RRSc
under subgroup hiding assumptions. Then we convert the above RRSc scheme
to the prime-order setting (denoted as RRS) which is instantiated using the dual
pairing vector space (DPVS) framework [Lew12]. We argue the security of RRS

under the SXDH assumption. We also describe a variant of RRS (denoted as
PS-RRS) constructed from PS-RRS scheme [PS16]. Table 1 compares the pro-
posed rerandomizable signature schemes with the existing ones.

Our approach is similar to the previous works that used the dual form sig-
nature technique [Wat09,LJYP14,LPY15,LMPY16]. Rather than first defining
a dual-form variant of (rerandomizable) signature as in some of the previous
works [GLOW12, YCZY14, CK18], we directly apply the dual-form signature
techniques in the unforgeability proof. In other words, we use SignA in the ac-
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Table 1. Comparing rerandomizable signatures in the standard model.

Scheme Pairing Setting Group Order #σ Rand. EUF-CMA
CL-RRS [CL04]

Symmetric prime
2`+ 1 Full LRSW (interactive)

mCL-RRS [PS18] 2`+ 3 Weak q-MSDH-1
PS-RRS [PS16]

Asymmetric prime
2 Full PS (interactive)

mPS-RRS [PS18] 2 Weak q-MSDH-2
DF-CL-RRS ‡ [GLOW12] Symmetric composite 3 Full SGH, Static
RRSc §3 Asymmetric composite 2 Full SGH
RRS §4 Asymmetric prime 1 † Full SXDH

† RRS scheme consists of a single signature component, but in the DPVS setting it requires four
atomic group elements. ‡ Dual-form of CL-RRS scheme that signs a single message block.

tual scheme construction while SignB is used only in the unforgeability proof.
Similar to previous results, security is argued using a hybrid argument.

Organization of the paper. In §2, we recall a few definitions that will be used
in this paper. In §3 and §4, we present the rerandomizable signature scheme in
the composite and prime order setting respectively. In §4.4, we present a variant
of rerandomizable signature scheme and provide a comparative analysis in §4.5.

2 Preliminaries

2.1 Notation

For a prime p, Z∗p denotes the set of all non-zero elements from Zp. We denote

a
$← A to be an element chosen uniformly at random from the non-empty set

A. For n > 1, b ∈ Znp denotes the vector (b1, . . . , bn), where bj ∈ Zp, for all
j ∈ [1, n]. For any two vectors b = (b1, . . . , bn), b∗ = (b∗1, . . . , b

∗
n) from Znp , the

‘dot’ product is denoted as b · b∗ which is same as b(b∗)>, since both are equals
to
∑n
i=1 bib

∗
i . We denote GL(n,Zp) to be the set of all non-singular matrix of

order n over Zp and A−1 to be the inverse of the matrix A ∈ GL(n,Zp). For any
matrix M from Zm×np , M> denotes the transposition of the matrix M .

2.2 Digital Signature

We recall the definition of digital signature scheme from [CLL+12], which con-
sists of three PPT algorithms.

KeyGen(1λ) Given the security parameter λ, it returns the key pair (PK,SK).
Sign(SK,m) Given the message m and SK, it returns the signature σ on m.
Ver(PK,m, σ) Given the message and signature pair along with the public key

PK, it returns 1 only if σ is a valid signature on the message m under PK.

The digital signature scheme is correct, if for all security parameter λ, all
(PK,SK) ← KeyGen(1λ), all messages m and σ ← Sign(SK,m), it holds that
Ver(PK,m, σ)=1.

The security of the digital signature scheme is captured using the existential
unforgeability under chosen message attack (EUF-CMA) model [GMR88] which
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is defined as follows. Informally, given the public key and polynomial many (in λ)
access to the signing oracle, it is hard for an adversary to return a valid forgery
(m,σ) such that m is not queried earlier to the signing oracle. Formally, it is
defined using the following experiment between a challenger C and an adversary
A.

Setup C runs the KeyGen to obtain (PK,SK). A is given with PK.
Queries A adaptively requests the signature on the message mi, for i ∈ [1, q].
C answers each query by computing σi = Sign(SK,mi).

Output Finally, A returns a message and signature pair (m∗, σ∗).

The advantage of A (denoted as AdvUFA ) is defined to be the probability that A
wins in the above game, i.e., Ver(PK,m∗, σ∗)=1 with m∗ 6= mi, for all i ∈ [1, q].
A signature scheme is said to be (t, q, ε)-secure against existential unforgeability
under chosen message attack ((t, q, ε)-EUF-CMA secure), if for any t-time ad-
versary A that makes at most q many signing oracle queries, AdvUFA ≤ ε, where
t and q are the polynomial functions of λ and ε is a negligible function in λ.

2.3 Bilinear Pairing Setting

We recall the definition of bilinear group generator from [Fre10].

Definition 1 A bilinear group generator G is a probabilistic polynomial time
(PPT) algorithm which takes the security parameter λ as input and outputs
(N,G,H,GT , e, µ), where N is either prime or composite, G, H and GT are
the groups such that |G| = |H| = k1N and |GT | = k2N for k1, k2 ∈ N, all the
elements of G,H,GT are of order at most N and e : G×H −→ GT is a bilinear
map which satisfies,

(i) Bilinearity: For all g, g′ ∈ G and h, h′ ∈ H, one has e(g · g′, h ·h′) = e(g, h) ·
e(g, h′) · e(g′, h) · e(g′, h′),

(ii) Non degeneracy: If a fixed g ∈ G satisfies e(g, h) = 1 for all h ∈ H, then
g = 1 and similarly for a fixed element h ∈ H and

(iii) Computability: The map e is efficiently computable.

The additional information µ is optional and defined as follows. Whenever G
and H are prime-order cyclic groups, µ contains their respective generators g
and h. Whenever the groups G and H are decomposed into its cyclic subgroups
G1, . . . , Gn and H1, . . . ,Hn respectively, µ contains the description of these sub-
groups and/or their generators.

The bilinear group generator G is said to be of composite-order (resp. prime-
order), if N is composite (resp. prime). In this paper we use both prime-order
and composite-order bilinear group settings. Hence for ease of readability, we
use the following notation to differentiate between these two settings. In the
prime-order setting, we denote P = G, G = G, H = H, GT = GT and we could
obtain only trivial subgroups, hence µ contains the generators g and h of the
respective groups G and H. In the composite-order setting, we denote GN = G
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and we decompose the groups G ∼= G1 ⊕ . . . ⊕ Gn and H ∼= H1 ⊕ . . . ⊕Hn for
N = p1 . . . pn with µ containing required subgroup(s) information i.e., µ contains
{gi, hi}ni=1, where gi (resp. hi) is the generator of the subgroup Gi (resp. Hi).

The Dual Pairing Vector Space (DPVS) was introduced by [OT08, OT10],
though the following definition is taken from [CLL+12]. Here we consider the
concrete case of n = 4, however, one can define the DPVS for any n > 1.

Definition 2 Given the parameters p, n = 4, the dual orthogonal basis generator
is denoted as Dual(Z4

p) and it returns two random bases B = (b1, . . . , b4) and
B∗ = (b∗1, . . . , b

∗
4) which are defined from Z4

p such that bi · b∗j = 0 mod p, for
i 6= j and bi · b∗i = ψ mod p, for all i, j ∈ [1, 4] with ψ ∈ Z∗p.

From the above definition, we denote P(⊥,4) to be the bilinear group generator
which takes the security parameter λ and an integer n = 4 as input and outputs
(p,G,H,GT , e, {Gi, Hi}4i=1, g, h). Here G = G1 ⊕ . . .⊕G4 ≈ G4 and H = H1 ⊕
. . .⊕H4 ≈ H4. Also g (resp. h) be the generator of the group G (resp. H). Let gbi

(resp. hb
∗
j ) be the generator of the subgroup Gi (resp. Hj), for i, j ∈ [1, 4] such

that e(gbi , hb
∗
j ) = 1, for i 6= j and e(gbi , hb

∗
i ) = e(g, h)ψ, for i, j ∈ [1, 4]. Any

element g̃ ∈ G can be written as g̃ = g
∑4
i=1 γibi , for some γi ∈ Zp. We say that

γi is the coefficient of the term g̃ with respect to the basis bi, for any i ∈ [1, 4].

2.4 Complexity Assumptions

Composite-Order Setting Recall that the subgroup hiding (SGH) assump-
tions in [LW10, CW14] are defined in the symmetric composite-order setting.
Whereas, [CGKW18] defined the SGH assumption in the asymmetric composite-
order setting with N = p1p2p3. In this section we recast the SGH assumption
of [CGKW18] in the asymmetric bilinear group of composite-order N = p1p2.
Let us denote ΘN = (N = p1p2, G,H,GT , e, g, h), where g (resp. h) is the gen-
erator of G (resp. H) and the pairing is defined as e : G × H → GT . Now we
define the SGH assumptions as follows.

Assumption 1 SGHH
p1→p1p2 Given (ΘN , µ = {g1, h1, h2}, T̂ ), it is hard to de-

cide whether T̂ ∈ H1 or T̂ ∈ H.

Assumption 2 SGHG
p1→p1p2 Given (ΘN , µ = {g1, g2, h1}, T ), it is hard to de-

cide whether T ∈ G1 or T ∈ G.

Assumption 3 SGHH
p2→p1p2 Given (ΘN , µ = {g2, g

τ1
1 g

τ2
2 , h1, h2}, T̂ ), it is hard

to decide whether T̂ ∈ H2 or T̂ ∈ H, for τ1, τ2
$← ZN .

Prime-Order Setting Now we define some variant of subspace assumptions
similar to [CLL+12]. Here we consider the bilinear group generator P(⊥,4) which
outputs (p,G,H,GT , e, {Gi, Hi}4i=1). Let g (resp. h) be the generator of the
group G (resp. H), whereG ≈ G4 andH ≈ H4. Let us denoteΘ = (p,G,H,GT , e,
g, h) in the following definitions.



Rerandomizable Signatures under Standard Assumption 7

Assumption 4 Given Θ and gb1 , gb2 , hb
∗
1 , hb

∗
2 , hb

∗
3 , hb

∗
4 , U1 = gµ1b1+µ2b3 , U2 =

gµ1b2+µ2b4 , T1 = hτ1b
∗
1+τ2b

∗
3 , T2 = hτ1b

∗
2+τ2b

∗
4 , it is hard to decide whether τ2 = 0

mod p or not.

Assumption 5 Given Θ and gb1 , gb2 , gb3 , gb4 , hb
∗
1 , hb

∗
2 , U1 = hµ1b

∗
1+µ2b

∗
3 , U2 =

hµ1b
∗
2+µ2b

∗
4 , T1 = gτ1b1+τ2b3 , T2 = gτ1b2+τ2b4 , it is hard to decide whether τ2 = 0

mod p or not.

We notice that Assumption 5 can be directly obtained from the subspace
assumption in G [CLL+12, Definition 12] by removing the coefficient µ2 and
taking N = 4 and k = 2. Hence Assumption 5 is reducible to the subspace as-
sumption in G [CLL+12, Definition 12]. Now from Lemma 2 of [CLL+12], DDHG
is reducible to the subspace assumption in G, and hence to Assumption 5. Sim-
ilarly, Assumption 4 is also obtained from the subspace assumption in H. Also,
from Lemma 2 of [CLL+12], we infer that DDHH is reducible to the subspace
assumption in H and hence to Assumption 4.

Now we recall the decisional Diffie-Hellman assumption (DDH) in G (denoted
as DDHG) as follows.

Assumption 6 Given (p,G,H,GT , e, g, h, ga, gb) and T = gab+θ, it is hard to

decide whether θ = 0 or not, for a, b
$← Zp.

In the same way, we can define the DDH assumption in H (denoted as DDHH).
When P satisfies the DDH assumption in both G and H, then we say that P
satisfies the symmetric external Diffie-Hellman (SXDH) assumption.

3 RRS in the Composite-Order Setting

In this section, we present the rerandomizable signature scheme (denoted as
RRSc) in the asymmetric composite-order setting. The structure of the signature
is inspired from Ghadafi’s [Gha17] structure-preserving signature (SPS) scheme.
We prove unforgeability of the RRSc scheme under subgroup hiding assumptions.
We recall the definition of signature scheme in § 2.2. Our main goal is to realize a
rerandomizable signature scheme in the prime-order setting, which is described
in §4. However we present the RRSc scheme in the composite-order setting as
a stepping stone to explore the applicability of dual-form signature technique
directly in the security argument, rather than explicitly constructing a dual-
form variant of the signature scheme as in [GLOW12,YCZY14,CK18].

3.1 Construction

First we describe our RRSc construction idea in brief. The construction is instan-
tiated in the bilinear group of composite-order N = p1p2, in which the source
groups are decomposed into two orthogonal subgroups i.e., G ≈ G1 ⊕ G2 and
H ≈ H1⊕H2 such that e(gi, hj) = 1, for i 6= j, where gi (resp. hj) is the generator
of the subgroup Gi (resp. Hj). In the RRSc construction, we mimic the [Gha17]
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SPS structure to obtain a signature on ` block of messages, for some ` ∈ N. In
particular, we use the exponent of the form (x+m1 +

∑`
j=2mjyj)/y1 suitably

randomized in the subgroup G1’s component to obtain a rerandomizable signa-
ture. For verification, the variables x and yj ’s are provided in the exponent of H1

component of public key. To verify a signature, the randomness used in signing
needs to be given in the subgroup G1’s exponent separately. Since the subgroup
G1 is of rank 1, we cannot retain the rerandomizable signature structure along
with signing randomness in a single component. The subgroup G2 is used to
define another signing algorithm, which is used only in the unforgeability proof.
The subgroup H2 is used in the proof to determine the forgery type returned by
the forger. In order to prove unforgeability under subgroup hiding assumptions,
we adopt the Gerbush et al.’s [GLOW12] dual-form signature technique directly,
rather than proceeding through the original dual-form signature construction.

Run the bilinear group generator GN on λ which outputs (ΘN , µ = {gi, hi}2i=1),
where ΘN = (N = p1p2, G,H,GT , e) and gi (resp. hi) is a random element from
the pi-order subgroup Gi (resp. Hi) of G (resp. H), for i ∈ [1, 2]. The pairing is
defined as e : G×H → GT .

Table 2. RRSc scheme in the composite-order setting.

KeyGen(λ)
Run GN (λ)→

(
ΘN , µ = {g1, h1}

)
,

where ΘN = (N = p1p2, G,H,GT , e).

Choose x, {yj}`j=1
$← ZN and set

PK :=
{
ΘN , h1, {Yj := h

yj
1 }`j=1,

X := hx
1

}
and SK := {x, {yj}`j=1, g1}.

Return (SK,PK).

Sign(SK,m = (m1, . . . ,m`))

Choose r
$← ZN and set A := gr1 ,

B := g
r
y1

(x+m1+
∑`
j=2 mjyj)

1 .
Return (m, σ := (A,B)).

Ver(PK,m, σ)
Accept if e(A, h1) 6= 1 and

e(B, Y1) = e(A,Xhm1
1

∏`
j=2 Y

mj
j ).

The RRSc scheme consists of three PPT algorithms, which are defined in
Table 2. Notice that, we avoid the trivial forgery by checking e(A, h1) 6= 1.
Suppose we do not check the above condition, then anyone can output σ = (1, 1)
as a (trivial) forgery on any message m ∈ Z`N . The correctness of the scheme
can be verified using the following equalities,

e(B, Y1) = e(g
r
y1

(x+m1+
∑`
j=2mjyj)

1 , hy11 )

= e(gr1, h
x+m1+

∑`
j=2mjyj

1 ) = e(A,Xhm1
1

∏̀
j=2

Y
mj
j ).

The second equality follows from the linearity of the pairing and the last equality
follows from the definition of X and Yj ’s.
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3.2 Randomizability

An additional feature of a rerandomizable signature scheme is the so-called reran-
domizable property. This feature has been utilized effectively in the construction
of several other protocols, such as group signature [BCN+10] and anonymous
credential scheme [CL04].

It is easy to see that the RRSc scheme satisfies rerandomizability property.
Consider the signature σ = (A,B) on the message m as defined in Table 2, which

can be randomized by choosing a random t
$← ZN and computing σ′ = (At, Bt).

One can verify that σ′ is a valid signature on m under the PK.

3.3 Unforgeability

As mentioned before, we use the Gerbush et al’s [GLOW12] dual-form signature
technique to prove unforgeability of the RRSc scheme under subgroup hiding
assumptions. First we define the forgery classes as follows. Let V be the set of
all message and signature pairs (m∗, σ∗) such that they verify under the public
key PK, where m∗ = (m∗1, . . . ,m

∗
` ) ∈ Z`N and σ∗ = (A∗, B∗) ∈ G2. Now we

partition the forgery class V into two disjoint sets VI and VII which are defined
as follows.

Type I: VI = {(m∗, σ∗) ∈ V : (A∗)p2 = 1, (B∗)p2 = 1},
Type II: VII = {(m∗, σ∗) ∈ V : (A∗)p2 6= 1 or (B∗)p2 6= 1}.

From the above definition, for any message and signature pair (m∗, σ∗) satisfying
verification equation, the signature σ∗ = (A∗, B∗) can be written as A∗ = gr1g

δ1
2

and B∗ = g
r
y1

(x+m∗1+
∑`
j=2m

∗
j yj)

1 gδ22 , for some r, δ1, δ2 from ZN . In order to prove
unforgeability, we use the subgroup hiding assumptions defined in §2.4.

Theorem 1 If the assumptions, SGHH
p1→p1p2 , SGHG

p1→p1p2 and SGHH
p2→p1p2

hold in GN , then the RRSc scheme is EUF-CMA secure.

Proof. Let SignA be same as the Sign algorithm defined in Table 2. Next we
define the following SignB algorithm, which is used by the simulator in the
security argument. The SignB algorithm takes the secret key SK along with an
element g2 ∈ G2 and the message m ∈ Z`N and outputs a message-signature
pair.

SignB(SK ∪ {g2},m = (m1, . . . ,m`)):

Choose r
$← ZN , δ1, δ2

$← ZN and

set A := gr1g
δ1
2 , B := g

r
y1

(x+m1+
∑`
j=2mjyj)

1 gδ22 .
Return (m, σ := (A,B)).

Note that e(g2, h1) = 1 and hence the signature returned by SignB can be verified
under PK. Now we use a hybrid argument to prove this theorem in terms of the
following games.
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GameR. This is the original EUF-CMA game. Recall that, after receiving the
PK from the challenger, the forger A makes q many signing oracle queries
adaptively and then returns a forgery from V.

Game0. Same as GameR except that A returns a forgery from VI . Let E be the
event that A returns a forgery from VII in Game0. In Lemma 2, we prove
that the event E happens with negligible probability under SGHH

p1→p1p2
assumption. Thus we deduce that GameR and Game0 are computationally
indistinguishable under SGHH

p1→p1p2 assumption. In particular we have,

|AdvGameR
A −AdvGame0

A | ≤ Pr[E] ≤ Adv
SGHHp1→p1p2
B .

Gamek. Same as Game0 except that the first k signing queries are answered
using SignB , for k ∈ [1, q], whereas the last q− k queries are answered using
SignA. For k ∈ [1, q], in Lemma 3, we prove that Gamek−1 and Gamek are
computationally indistinguishable under SGHG

p1→p1p2 assumption. In partic-
ular we have,

|AdvGamek−1

A −AdvGamek
A | ≤ Adv

SGHGp1→p1p2
B .

Finally in Lemma 4, we prove that Adv
Gameq
A is negligible under SGHH

p2→p1p2
assumption. In particular we have,

Adv
Gameq
A ≤ Adv

SGHHp2→p1p2
B .

Hence by the hybrid argument and from Equations 1, 2 and 3, described below,
we have,

AdvUFA = AdvGameR
A = |AdvGameR

A −AdvGame0
A +AdvGame0

A −AdvGame1
A +

. . .+Adv
Gamek−1

A −AdvGamek
A + . . .+Adv

Gameq
A |

≤ Pr[E] + q Adv
SGHGp1→p1p2
B +Adv

SGHHp2→p1p2
B

≤ Adv
SGHHp1→p1p2
B + q Adv

SGHGp1→p1p2
B +Adv

SGHHp2→p1p2
B .

ut
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Lemma 2 If SGHH
p1→p1p2 assumption holds in GN , then Pr[E] is negligible.

Proof. Assume that the event E happens with some non-negligible probability.
Then we construct a simulator B to break the SGHH

p1→p1p2 problem as follows.

B is given ΘN , g1, h1, h2, T̂ and his goal is to decide whether T̂ is from H1 or
H. Now B chooses x, yj from ZN , for j ∈ [1, `] and defines the PK and SK
as described in Table 2. Given the PK, A makes the signing oracle queries to
B. Since B knows the secret key SK, he computes σi using SignA algorithm
and sends to A. After q many queries, A returns a forgery (m∗, σ∗), where
m∗ = (m∗1, . . . ,m

∗
` ) and σ∗ = (A∗, B∗). Then B checks (i) the forgery (m∗, σ∗)

is valid and (ii) the message m∗ is not queried earlier. If any of these checks fail
to hold, B returns a random bit to his challenger. Otherwise, B checks whether A
is returning a Type-II forgery. From the definition of forgery types, it is sufficient
for B to check whether e(A∗, h2) 6= 1 or e(B∗, h2) 6= 1 holds.

As mentioned before, since the forgery returned by A is valid, B writes A∗ =

gr1g
δ1
2 and B∗ = g

r
y1

(x+m∗1+
∑`
j=2m

∗
j yj)

1 gδ22 , for some r, δ1, δ2 from ZN unknown to
B. Now B defines the following backdoor verification test (BVT),

S := B∗(A∗)−
1
y1

(x+m∗1+
∑`
j=2m

∗
j yj) ?

= 1.

Note that the correctness of the forgery ensures that e(S, h1) = 1. Hence the

above BVT can be simplified as S = g
δ2− δ1y1 (x+m∗1+

∑`
j=2m

∗
j yj)

2
?
= 1. We argue

that for a Type-II forgery, the event S = 1 happens with negligible probability.
From the exponent of S, it is sufficient to prove that for a Type-II forgery, the
event δ2 − δ1

y1
(x + m∗1 +

∑`
j=2m

∗
jyj) = 0 modulo p2 happens with negligible

probability.
Suppose δ1 = 0 modulo p2, then the condition δ2− δ1

y1
(x+m∗1+

∑`
j=2m

∗
jyj) =

0 modulo p2 ensures that δ2 must be zero. This means the forgery cannot be
Type-II, by definition. Hence assume that δ1 6= 0 modulo p2. We re-write the
above condition as (x + m∗1 +

∑`
j=2m

∗
jyj)/y1 = δ2/δ1 modulo p2. Since x and

yjs are chosen uniformly at random from ZN , by Chinese Remainder Theorem
(CRT), x (resp. yj) modulo p2 and x (resp. yj) modulo p1 are independent. Hence
x and yj modulo p2 are information theoretically hidden to A. Thus A have to

guess the value of δ2/δ1. Hence the probability that (x+m∗1 +
∑`
j=2m

∗
jyj)/y1 =

δ2/δ1 modulo p2 is at most 1/N , which is negligible.

Now B checks whether S
?
= 1 or not. Suppose S 6= 1, then B checks whether

e(S, T̂ )
?
= 1 or not. If e(S, T̂ ) = 1, then B returns 1 indicating T̂ ∈ H1, else 0

indicating T̂ ∈ H. For the case of S = 1, B simply returns a random guess to his
challenger. For a Type II forgery, the latter can happen only with a negligible
probability. So we conclude,

Pr[E] ≤ Adv
SGHHp1→p1p2
B . (1)

ut
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Lemma 3 If SGHG
p1→p1p2 assumption holds in GN , then Gamek−1 ≈c Gamek,

for k ∈ [1, q].

Proof. Suppose that, there exists a PPT adversary A who distinguishes between
Gamek−1 and Gamek with some non-negligible probability. Then we construct
a simulator B to break the SGHG

p1→p1p2 problem as follows. B is given ΘN and
g1, g2, h1, T and his goal is to decide whether T ∈ G1 or T ∈ G. Now B chooses
x, yj and constructs the PK and SK as described in Table 2. After receiving
PK, A makes signing queries on some message mi = (mi1, . . . ,mi`). For the
first k − 1 (resp. last q − k) request, B uses SignB (resp. SignA) algorithm to
answer for signing queries, as he knows g2 and all the secret key components.
For the k-th request, B embeds the challenge term T and constructs and sends

the signature σk = (Ak, Bk) to A, where Ak = T,Bk = T (x+mk1+
∑`
j=2mkjyj)/y1 .

Suppose T ∈ G1, then the signature σk is distributed as an output of SignA.
Thus B is simulating Gamek−1. Suppose T ∈ G, then from CRT, x (resp. yj)
modulo p2 and x (resp. yj) modulo p1 are independent. Also from the definition
of SignA and SignB , the values x, yj mod p2 are information theoretically hidden
to A. Hence the Gp2 part of σk is randomly distributed from the view of A. Thus
σk is distributed as an output of SignB and hence B is simulating Gamek.

Finally, A returns a forgery (m∗, σ∗), where m∗ = (m∗1, . . . ,m
∗
` ) and σ∗ =

(A∗, B∗). Notice that σk is generated using the challenge term of the SGH as-
sumption. Since B knows all the SK components in addition to the random
element g2 from G2, he can generate the k-th signature of any type properly.
However, B cannot on its own decide the type of the signatures generated using
the problem instance as B is not given any element of H2. In other words, B
needs to rely on the advantage of A.

As long as A distinguishes between Gamek−1 and Gamek, B leverages A to
solve the SGHG

p1→p1p2 assumption. Thus we have

|AdvGamek−1

A −AdvGamek
A | ≤ Adv

SGHGp1→p1p2
B . (2)

ut

Lemma 4 If SGHH
p2→p1p2 assumption holds in GN , then Adv

Gameq
A is negligible.

Proof. Suppose that, there exists a PPT adversaryA playing Gameq and winning
with some non-negligible probability. Then we construct a simulator B to break
the SGHH

p2→p1p2 problem as follows. B is given ΘN , g2, g
τ1
1 g

τ2
2 , h1, h2, T̂ and his

goal is to decide whether T̂ ∈ H2 or T̂ ∈ H. Next B chooses x, yj uniformly at
random from ZN and defines the PK and SK as described in Table 2, while
SK do not contain any random g1 from G1. Once PK is given to A, he makes
the signing queries on some message mi = (mi1, . . . ,mi`). Now B simulates the
SignB algorithm and computes the signature as σi = (Ai, Bi), where

Ai = (gτ11 g
τ2
2 )r

′
g
δ′1
2 , Bi = (gτ11 g

τ2
2 )

r′
y1

(x+mi1+
∑`
j=2mijyj)g

δ′2
2 ,
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for r′, δ′1, δ
′
2

$← ZN . It is easy to check that the above signature is properly
distributed by substituting the randomness r, δ1 and δ2 by τ1r

′, δ′1 + τ2r
′ and

δ′2 + τ2
r′

y1
(x+mi1 +

∑`
j=2mijyj) respectively. After q many signing queries, A

returns a forgery (m∗, σ∗), where m∗ = (m∗1, . . . ,m
∗
` ) and σ∗ = (A∗, B∗). As

before, B checks (i) the forgery (m∗, σ∗) is valid and (ii) the message m∗ is not
queried earlier. If any of these checks fail to hold, then B aborts. Otherwise,
B proceeds as follows. As mentioned before, from the valid forgery, σ∗ can be
written as,

A∗ = gs1, B∗ = g
s
y1

(x+m∗1+
∑`
j=2m

∗
j yj)

1 ,

for some s ∈ ZN . By our initial assumption,A returns a Type-I forgery with some

non-negligible probability. Now B checks e(A∗, T̂ )
?
= 1. Notice that, e(A∗, T̂ ) = 1

holds if and only if T̂ ∈ H2, as A∗ and T̂ are non-trivial elements from G and
H respectively. Thus we have,

Adv
Gameq
A ≤ Adv

SGHHp2→p1p2
B . (3)

ut

Remark 1 In the above Lemma 4, we can use the following computational as-
sumption. Given ΘN , g2, g

τ1
1 g

τ2
2 , h1, h2, for τ1, τ2 ∈ ZN , it is hard to compute

gs1, for some s ∈ ZN . Also, it is easy to see that the SGHH
p2→p1p2 assumption

(Assumption 3) implies this computational assumption.

4 RRS in the Prime-Order Setting

Recall that Yuen et al. [YCZY14] presented the dual-form Boneh-Boyen signa-
ture scheme in the prime-order setting through the dual pairing vector space
(DPVS) [OT08, OT10] framework. Following a similar approach, we use the
DPVS framework to convert the RRSc scheme in the prime-order setting, which
we call RRS scheme. We prove unforgeability of the scheme under the SXDH
assumption.

4.1 Construction

In the DPVS setting, the underlying source groups are decomposed into four
orthogonal subgroups i.e., G ≈ ⊕4

i=1Gi and H ≈ ⊕4
i=1Hi such that e(gi, hj) = 1,

for i 6= j, where gi (resp. hi) is the generator of the subgroup Gi (resp. Hi). In the
RRS construction, the subgroup G1⊕G2, which is of rank 2, is utilized to generate
the signature. In particular, we use exponent of the form 1

y1

(
x+m1+

∑`
j=2mjyj

)
in the subgroup G2 component while the corresponding randomness r is provided
in the exponent of G1 component. The rank 2 subgroup enables us to construct a
signature having only one group element instead of two components in the RRSc

construction. The associated public key structure is provided in the subgroup
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Table 3. RRS in the prime order setting.

KeyGen(λ)
Run P(⊥,4) → (Θ, {Gi, Hi}4i=1),

where Θ = (p,G,H,GT , e, g, h).

Choose x, {yj}`j=1
$← Zp, gdi

$← Gi

and hd∗i $← Hi, for i ∈ [1, 2].

Set PK :=
{
Θ, hd∗1 , X := hxd∗1 ,

Y1 := hy1d
∗
2 , {Yj := hyjd

∗
1}`j=2

}
,

SK := {x, {yj}`j=1, g
d1 , gd2}.

Return (SK,PK).

Sign(SK,m = (m1, . . . ,m`))

Choose r
$← Zp and set,

σ := g
rd1− r

y1
(x+m1+

∑`
j=2 mjyj)d2 .

Return (m, σ).

Ver(PK,m = (m1, . . . ,m`), σ)

Accept if e(σ, hd∗1 ) 6= 1 and

e(σ, Y1X(hd∗1 )m1
∏`

j=2 Y
mj
j ) = 1.

H1 ⊕ H2. In particular, we retain the variables x, {yj}j 6=1 in the subgroup H1

while the variable y1 is encoded in the subgroup H2.
The RRS scheme consists of three PPT algorithms, which are defined in Ta-

ble 3. Notice that we avoid the trivial forgery by checking e(σ, hd
∗
1 ) 6= 1. As

mentioned before, if this checking is removed, any one can produce σ = 1 as a
(trivial) forgery on any message m ∈ Z`p. The correctness of the scheme can be
verified using the following equation,

e(σ, Y1X(hd
∗
1 )m1

∏̀
j=2

Y
mj
j ) = e(grd1− r

y1
(x+m1+

∑`
j=2mjyj)d2 , h(x+m1+

∑`
j=2mjyj)d

∗
1+y1d

∗
2 )

= e(g, h)r(x+m1+
∑`
j=2mjyj)ψ−r(x+m1+

∑`
j=2mjyj)ψ = 1.

The first equality follows from the definition ofX and Yj ’s. In the second equality,
we use the fact that, di · d∗i = ψ and di · d∗j = 0, for i, j ∈ [1, 4] and i 6= j.

4.2 Randomizability

It is easy to see that RRS scheme satisfies rerandomizability property. Consider
the signature σ on the message m ∈ Z`p, which can be randomized by choosing

a random t
$← Zp and computing σ′ = σt. One can verify that σ′ is a valid

signature on m under the PK.

4.3 Unforgeability

Recall that, in §3.3 we established the unforgeability proof for RRSc scheme
using the orthogonality property and the CRT in the composite-order setting.
However, in the prime-order setting, we will be using the parameter-hiding prop-
erty [Lew12] instead of CRT. This necessitates instantiating the prime-order vari-
ant using DPVS framework, as it captures both orthogonality and parameter-
hiding property.

Now we define the forgery classes. Let V be the set of all message and signa-
ture pairs such that they verify under the public key PK.
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Type I: VI = {(m∗, σ∗) ∈ V : e(σ∗, hd
∗
3 ) = 1, e(σ∗, hd

∗
4 ) = 1},

Type II: VII = {(m∗, σ∗) ∈ V : e(σ∗, hd
∗
3 ) 6= 1 or e(σ∗, hd

∗
4 ) 6= 1}.

Consider the message and signature pair (m∗, σ∗) satisfying the verification
equation, where m∗ = (m∗1, . . . ,m

∗
` ). Suppose the forgery is Type-I, then the

signature σ∗ can be written as

σ∗ = grd1− r
y1

(x+m∗1+
∑`
j=2m

∗
j yj)d2 , (4)

for some r ∈ Z∗p. This is because, by definition, a Type-I forgery does not have
any non-zero component of d3 and d4. Suppose the forgery is Type-II, then the
signature σ∗ can be written as

σ∗ = grd1− r
y1

(x+m∗1+
∑`
j=2m

∗
j yj)d2+δ3d3+δ4d4 , (5)

for some r, δ3, δ4 ∈ Zp where r 6= 0. This is because, a Type-II forgery con-
tains some non-zero component of either d3 or d4. We will use the subspace
assumptions (Assumption 4, 5) and DDHH assumption defined in §2.4 to prove
unforgeability.

Theorem 5 The RRS scheme is EUF-CMA secure under the SXDH assumption.

Proof. From §2.4, we know that DDHH (resp. DDHG) is reducible to Assump-
tion 4 (resp. Assumption 5). Let SignA be same as the Sign algorithm defined
in Table 3. Next we define the following SignB algorithm, which is used by the
simulator in the security argument.

SignB(SK ∪ {gd3 , gd4},m = (m1, . . . ,m`)):

Choose r, δ3, δ4
$← Zp and set

σ := grd1− r
y1

(x+m∗1+
∑`
j=2m

∗
j yj)d2+δ3d3+δ4d4 ,

Return (m, σ).

Note that the elements gd3 , gd4 are orthogonal to the subgroup H1 ⊕ H2, in
which PK is defined. Hence the signature returned by SignB can be verified
under PK. Now we use a hybrid argument to prove this theorem. First, we
define the following games.

GameR. This is the original EUF-CMA game. Recall that, after receiving the
PK from the challenger, the forger A makes q many signing oracle queries
adaptively and then returns a forgery from V.

Game0. Same as GameR except that A returns a forgery from VI . Let E be the
event that A returns a forgery from VII in Game0. In Lemma 6, we prove that
the event E happens with negligible probability under Assumption 4. Thus
we deduce that GameR and Game0 are computationally indistinguishable
under Assumption 4. In particular we have,

|AdvGameR
A −AdvGame0

A | ≤ Pr[E] ≤ AdvAss 4
B .
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Gamek. Same as Game0 except that the first k signing queries are answered
using SignB , for k ∈ [1, q], whereas the last q − k queries are answered
using SignA. For k ∈ [1, q], in Lemma 7, we prove that Gamek−1 and Gamek
are computationally indistinguishable under Assumption 5. In particular we
have,

|AdvGamek−1

A −AdvGamek
A | ≤ AdvAss 5

B .

Finally in Lemma 8, we prove that Adv
Gameq
A is negligible under DDHH assump-

tion. In particular we have,

Adv
Gameq
A ≤ AdvDDHH

B .

Hence by the hybrid argument and from Equations 10, 11 and 12, described
below, we have,

AdvUFA = AdvGameR
A = |AdvGameR

A −AdvGame0
A +AdvGame0

A −AdvGame1
A +

. . .+Adv
Gamek−1

A −AdvGamek
A + . . .+Adv

Gameq
A |

≤ AdvAss 4
B + q AdvAss 5

B +AdvDDHH
B

≤ (q + 2)AdvSXDHB .

ut

Lemma 6 If Assumption 4 holds in P(⊥,4), then Pr[E] is negligible.

Proof. Assume that the event E happens with some non-negligible probability.
Then we construct a simulator B to break the Assumption 4 as follows. B is given
Θ, {gbi}2i=1, {hb

∗
j }4j=1, U1 = gµ1b1+µ2b3 , U2 = gµ1b2+µ2b4 , T1 = hτ1b

∗
1+τ2b

∗
3 , T2 =

hτ1b
∗
2+τ2b

∗
4 and his goal is to decide whether τ2 = 0 mod p or not. First B chooses

a matrix A uniformly at random from GL(2,Zp) and defines the orthogonal basis
as,

di = bi, d∗i = b∗i , (d3,d4)> = A−>(b3, b4)>, (d∗3,d
∗
4)> = A(b∗3, b

∗
4)>,

for i ∈ [1, 2]. Now B chooses x, yj uniformly at random from Zp, for j ∈ [1, `] and
defines the PK and SK as described in Table 3. Recall that PK includesΘ which
contains the description of G and H such that G = ⊕4

i=1Gi, H = ⊕4
i=1Hi. Notice

that the information about the matrix A is given indirectly to the adversary A
only through the description of the source groups G and H. However, from the
parameter-hiding property [Lew12, Lemma 3], we can ensure that the matrix A
is information theoretically hidden to the adversary A.

Once PK is given to A, he makes q many signing oracle queries to B. Since
he knows all the SK components, B can answer for the signing queries using
SignA algorithm. Finally A returns a forgery (m∗, σ∗). Then B checks (i) the
forgery (m∗, σ∗) is valid and (ii) the message m∗ is not queried earlier. If any of
these checks fail to hold, B returns a random bit to his challenger. Otherwise, B
checks whether A returns a Type-II forgery. From the definition of forgery types,
it is sufficient for B to check whether e(σ∗, hd

∗
3 ) 6= 1 or e(σ∗, hd

∗
4 ) 6= 1 holds.
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As A outputs a valid forgery (m∗, σ∗), from Equation 5, B can write the

signature σ∗ := grd1− r
y1

(x+m∗1+
∑`
j=2m

∗
j yj)d2+δ3d3+δ4d4 , for some r from Z∗p and

δ3, δ4 from Zp unknown to B. Now B defines the following backdoor verification
test (BVT),

e(σ∗, ∆)
?
= 1, (6)

where ∆ := (hb
∗
1hb

∗
3 )(x+m∗1+

∑`
j=2m

∗
j yj)(hb

∗
2hb

∗
4 )y1 . Note that,

e(σ∗, ∆) = e(grd1− r
y1

(x+m∗1+
∑`
j=2m

∗
j yj)d2 , (hd

∗
1 )(x+m∗1+

∑`
j=2m

∗
j yj)(hd

∗
2 )y1)

e(gδ3d3+δ4d4 , (hb
∗
3 )(x+m∗1+

∑`
j=2m

∗
j yj)(hb

∗
4 )y1)

= e(gδ3d3+δ4d4 , (hb
∗
3 )(x+m∗1+

∑`
j=2m

∗
j yj)(hb

∗
4 )y1). (7)

The first equality follows from the orthogonality of the basis and the last equality
follows from the correctness of the forgery.

Next we consider the coefficient of ∆ with respect to the basis (b∗3, b
∗
4), which

is ((x+m∗1 +
∑`
j=2m

∗
jyj), y1)>. However, from the change of basis techniques,

we obtain the coefficient of ∆ with respect to the basis (d∗3,d
∗
4) as A−1((x +

m∗1 +
∑`
j=2m

∗
jyj), y1)>. Then we simplify the BVT Equation 6 as,

(δ3, δ4) ·A−1((x+m∗1 +
∑̀
j=2

m∗jyj), y1)>
?
= 0 mod p. (8)

Now we argue that for a Type-II forgery, Equation 8 holds with only a negli-
gible probability. Recall that, Lewko [Lew12, Lemma 3] ensures that the matrix
A is information theoretically hidden to A. Also, A is given SignA oracle access
and PK contains the variables x, yj in the exponent of H1⊕H2. Hence the value

A−1((x+m∗1 +
∑`
j=2m

∗
jyj), y1)> is randomly distributed to A. However, A has

to produce a Type-II forgery which is having a non-zero coefficient of the basis
(d3,d4). The only possibility for A is to guess the values of δ3 and δ4 from Zp
such that Equation 8 holds. Thus A can create a Type-II forgery that satisfies
BVT Equation 6 only with probability atmost 1/p2, which is negligible.

Now B checks whether the BVT Equation 6 holds or not. Suppose BVT does
not hold, then B checks whether

e(σ∗, T
(x+m∗1+

∑`
j=2m

∗
j yj)

1 T y12 )
?
= 1 (9)

holds or not. As similar to Equation 7, we can simplify Equation 9 as,

e(σ∗, T
(x+m∗1+

∑`
j=2m

∗
j yj)

1 T y12 ) = e(grd1− r
y1

(x+m∗1+
∑`
j=2m

∗
j yj)d2 ,

hτ1(x+m∗1+
∑`
j=2m

∗
j yj)d

∗
1+τ1y1d

∗
2 )

e(gδ3d3+δ4d4 , hτ2(x+m∗1+
∑`
j=2m

∗
j yj)b

∗
3+τ2y1b

∗
4 )

= e(gδ3d3+δ4d4 , h(x+m∗1+
∑`
j=2m

∗
j yj)b

∗
3+y1b

∗
4 )τ2 .
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The first equality follows from the orthogonality of the basis and the last equality
follows from the correctness of the forgery. We already argued that Equation 8
holds only with a negligible probability and the same holds for the Equation 9,
when τ2 6= 0. Hence, B returns 1 if Equation 9 holds, indicating τ2 = 0, else B
returns 0 to its challenger. If BVT Equation 6 holds, B simply returns a random
guess to his challenger. We have already established that for a Type-II forgery,
the latter can happen only with a negligible probability. So we conclude,

Pr[E] ≤ AdvAss 4
B . (10)

ut

Lemma 7 If Assumption 5 holds in P(⊥,4), then Gamek−1 ≈c Gamek, for k ∈
[1, q].

Proof. Suppose that, there exists a PPT adversary A who distinguishes between
Gamek−1 and Gamek with some non-negligible probability. Then we construct a
simulator B to break the Assumption 5 as follows. B is givenΘ, {gbi}4i=1, {hb

∗
j }2j=1,

U1 = hµ1b
∗
1+µ2b

∗
3 , U2 = hµ1b

∗
2+µ2b

∗
4 , T1 = gτ1b1+τ2b3 , T2 = gτ1b2+τ2b4 and his goal

is to decide whether τ2 = 0 mod p or not. Now B chooses a matrix A uniformly
at random from GL(2,Zp) and defines the orthogonal basis as,

di = bi, d∗i = b∗i , (d3,d4)>= A(b3, b4)>, (d∗3,d
∗
4)>= A−>(b∗3, b

∗
4)>,

for i ∈ [1, 2]. Next B chooses x, yj uniformly at random from Zp, for j ∈ [1, `]
and defines the PK and SK as described in Table 3. Once B sends the PK,
A makes q many signing queries on some message mi = (mi1, . . . ,mi`). B uses
SignA algorithm to answer for the last q − k signing queries, as he knows all
the SK components. Also B uses SignB algorithm to answer for the first k − 1
signing queries, as he knows the elements gd3 and gd4 in addition to all the SK
components. For the k-th signing request, B embeds the challenge terms T1 and

T2 to compute σk = T1T
−1
y1

(x+mk1+
∑`
j=2mkjyj)

2 . Then B sends σk to A. Here B
implicitly sets τ1 as r modulo p. If T1 = gτ1b1 and T2 = gτ1b2 , then the k-th
signature σk is distributed as an output of SignA. Thus B is simulating Gamek−1.
Suppose T1 = gτ1b1+τ2b3 and T2 = gτ1b2+τ2b4 , with τ2 6= 0. Then the coefficient of
σk with respect to the basis (d3,d4) is τ2A

−1(1, −1
y1

(x+mk1 +
∑`
j=2mkjyj))

>.
Since the matrix A is chosen uniformly at random, we obtain the coefficient
of the σk with respect to the basis d3 and d4 are random. By taking r = τ1
and (δ3, δ4) = τ2A

−1(1, −1
y1

(x + mk1 +
∑`
j=2mkjyj)), it is easy to see that the

signature σk is properly distributed as an output of SignB . Thus B is simulating
Gamek.

Finally A returns a forgery (m∗, σ∗). As before, B checks (i) the forgery is
valid and (ii) the message m∗ is not queried earlier. Notice that B is not given
with the elements hb

∗
3 and hd

∗
4 to check the forgery types. Hence, as similar to

Lemma 3, B cannot compare the signature σk constructed above with the sig-
nature obtained by using SK components, to break the underlying assumption.
In other words, B has to rely on the advantage of A.
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As long as A distinguishes between Gamek−1 and Gamek with some non-
negligible probability, B leverages A to break the Assumption 5. Thus we have

|AdvGamek−1

A −AdvGamek
A | ≤ AdvAss 5

B . (11)

ut

Lemma 8 If DDHH assumption holds in P, then AdvGameq is negligible.

Proof. Suppose that, there exists a PPT adversaryA playing Gameq and winning
with some non-negligible probability. Then we construct a simulator B to break
the DDHH assumption as follows. B is given (p,G,H,GT , e, g, h, ha, hb, hab+θ)
and his goal is to decide whether θ = 0 or not. Now B chooses (F,F∗) uniformly
at random from Dual(Z4

p), where F = {f i}4i=1 and F∗ = {f∗i }4i=1. Next B defines
the orthogonal basis (D,D∗) as,

d1 = f1 − af3, d2 = f2, d3 = f3, d4 = f4,

d∗1 = f∗1, d∗2 = f∗2, d∗3 = f∗3 + af∗1, d∗4 = f∗4.

B computes {gdi}4i=2 and {hd∗i }4i=1, whereas he cannot compute gd1 , as he does
not know ga. B chooses µ′1, µ′2 uniformly at random from Zp and computes,

U := gµ
′
1f1+µ′2f3 = gµ

′
1d1+(µ′2+aµ′1)d3 = gµ1d1+µ2d3 ,

where B implicitly sets µ1 = µ′1 and µ2 = µ′2 + aµ′1 modulo p. Next B chooses
x, yj uniformly at random from Zp, for j ∈ [1, `] and defines the PK and SK as
described in Table 3, while SK does not contain any random element of G1. After
receiving PK, A makes signing queries for some message mi = (mi1, . . . ,mi`).
Since B knows U = gµ1d1+µ2d3 and {gdi}4i=2, he can answer for the SignB queries
by computing,

σi := Ur
′
(gd2)−µ1

r′
y1

(x+mi1+
∑`
j=2mijyj)(gd3)δ

′
3(gd4)δ4 ,

for r′, δ′3, δ4 uniformly chosen from Zp and r′ 6= 0. Now, it is easy to check that
the above signature is properly distributed by implicitly setting the randomness
r and δ3 by µ′1r

′ and δ′3 +(µ′2 +aµ′1)r′ respectively. After q many signing queries,
A returns a forgery (m∗, σ∗), where m∗ = (m∗1, . . . ,m

∗
` ).

As before, B checks (i) the forgery is valid and (ii) m∗ is not queried earlier.
If any of these checks fail to hold, B aborts. Otherwise, first B checks whether
A returns Type-I forgery by checking e(σ∗, hd

∗
3 ) = 1 and e(σ∗, hd

∗
4 ) = 1.

As mentioned in Equation 4, for the valid forgery, B writes the signature as,

σ∗ = gsd1− s
y1

(x+m∗1+
∑`
j=2m

∗
j yj)d2 , for some s ∈ Z∗p. Since B knows {f i,f∗i }4i=1,

he computes gs and gsa as follows. Expand the σ∗ in-terms of the orthogonal
basis (F,F∗), we have

σ∗ =gsd1− s
y1

(x+m∗1+
∑`
j=2m

∗
j yj)d2 = gs(f1−af3)− s

y1
(x+m∗1+

∑`
j=2m

∗
j yj)f2

⇒gs = (σ∗)(f∗1)> and gsa = (σ∗)−(f∗3)> .
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In the above equation, we use the dual orthonormal basis {f i,f∗i } such that
f i · f∗i = 1, for i ∈ [1, 4] and f i · f∗j = 0, for i 6= j. The condition e(σ∗, hd

∗
1 ) 6= 1

ensures that s 6= 0 modulo p.

Now B checks whether e(gs, hab+θ)
?
= e(gsa, hb). Notice that the equality

holds only when θ = 0. Hence we obtain,

Adv
Gameq
A ≤ AdvDDHH

B . (12)

ut

Remark 2 In the above Lemma 8, we can use the following computational as-
sumption. Given p,G,H,GT , e, g, h, ha it is hard to compute (gs, gsa), for some
s ∈ Z∗p. It is easy to see that the DDHH assumption implies this computational
assumption.

4.4 Another Variant

Here we present a variant of the above signature scheme, denoted as PS-RRS

scheme. This construction is derived from [PS16] rerandomizable signature scheme.
In particular, we use the (`+ 1)-wise pairwise independent function of the form

(x +
∑`
i=1miyi) in our construction. Along with the above structure, the ran-

dom term r is given in the exponent of the subgroup G1’s generator gd1 . The
public key components will be defined appropriately to validate the signature.
We describe the PS-RRS scheme in Table 4.

Table 4. RRS scheme in the prime-order setting.

KeyGen(λ)
Run P(⊥,4) → (Θ, {Gi, Hi}4i=1),

where Θ = (p,G,H,GT , e, g, h).

Choose x, {yj}`j=1
$← Zp, gdi

$← Gi

and hd∗i $← Hi, for i ∈ [1, 2].

Set PK :=
{
Θ, hd∗1 , hd∗2 , X := hxd∗1 ,

{Yj := hyjd
∗
1}`j=1

}
and

SK := {x, {yj}`j=1, g
d1 , gd2}.

Return (SK,PK).

Sign(SK,m = (m1, . . . ,m`))

Choose r
$← Zp and set,

σ := grd1−r(x+
∑`
j=1 mjyj)d2 .

Return (m, σ).

Ver(PK,m = (m1, . . . ,m`), σ)

Accept if e(σ, hd∗1 ) 6= 1 and

e(σ,X
∏`

j=1 Y
mj
j hd∗2 ) = 1.

One can easily check the correctness of the scheme and that the signature
components are rerandomizable. We only give a high level idea for the unforge-
ability proof of PS-RRS scheme, as it essentially mimics that of Theorem 5. Recall
that in the proof of Lemma 6, 7 and 8, the variables x, yj ’s are chosen by the
simulator. Hence it does not matter whether we are arguing the unforgeability of
the signature whose exponent structure is of the form r(x+m1 +

∑`
i=2miyi)/y1

(for RRS scheme) or r(x +
∑`
i=1miyi) (for PS-RRS scheme). Thus one can use

the same set of assumptions to argue the unforgeability proof of PS-RRS scheme.
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4.5 Comparison

We compare our rerandomizable signature schemes instantiated in the prime-
order setting with the existing schemes in Table 5.

Table 5. Comparing rerandomizable signatures for multiple block messages.

|PK| |σ| Cost of Sign. Cost of Verification Rand. Hardness Ass.
CL-RRS [CL04] (`+ 2)|G| (2`+ 1)|G| (2`+ 1)EG 4`P + `EG + `MG Full LRSW
mCL-RRS [PS18] (`+ 3)|G| (2`+ 3)|G| (2`+ 3)EG 4(`+ 1)P + (`+ 1)EG Weak q-MSDH-1

+1|Zp| +(`+ 1)MG
PS-RRS [PS16] (`+ 2)|H| 2|G| 2EG 2P + `EH + `MH Full PS
mPS-RRS [PS18] (`+ 3)|H| 2|G|+ 1|Zp| 2EG 2P + (`+ 1)EH Weak q-MSDH-2

+(`+ 1)MH
PS-RRS §4.4 (4`+ 13)|H|+ 1|G|

4|G| 8EG + 4MG
8P + 6MGT + 4`EH

+4(`+ 1)MH
Full SXDH

RRS §4.1 (4`+ 9)|H|+ 1|G|
For any group X ∈ {G,H,GT }, EX ,MX respectively denote the cost of the exponentiation,

multiplication in X and |X| is the bit size of X whereas P denotes pairing computation cost.

Notice that both CL-RRS [CL04] and modified CL-RRS (denoted as mCL-
RRS) [PS18, Section 6.2] are defined in the symmetric prime-order setting. How-
ever, the signature size in both CL-RRS and mCL-RRS schemes depends on the
message block length `. The remaining schemes such as PS-RRS [PS16] and
modified PS-RRS (denoted as mPS-RRS) [PS18, Section 4.2] are defined in the
asymmetric prime-order setting, whose signature size is independent of the mes-
sage block length `. However, the unforgeability of CL-RRS and PS-RRS (resp.
mCL-RRS and mPS-RRS) schemes is proved under interactive (resp. parameter-
ized) assumption. Notice that both mCL-RRS and mPS-RRS schemes achieve
only weakly rerandomizable property.

In contrast, both RRS and PS-RRS schemes are instantiated in the asymmet-
ric prime-order setting. Both schemes ensure full rerandomizable property and
unforgeability under the SXDH assumption. Also the signature size of RRS and
PS-RRS schemes is constant and thus independent of the message block length.
PS-RRS scheme is having one more public key component (i.e., four atomic group
elements) as compared to the RRS scheme. Hence RRS scheme is slightly better
than PS-RRS scheme.

5 Concluding Remark

We proposed the first construction of rerandomizable signature scheme in the
standard model based on the SXDH assumption in the prime order bilinear
pairing setting. This is achieved by applying the dual form signature technique
in the DPVS setting on an RRS inspired by Ghadafi’s SPS. Our proposal retains
the desirable properties of RRS, namely full randomizability and constant size
signature on a block of messages.
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