
Lattice Reduction for Modules,

or How to Reduce ModuleSVP to ModuleSVP

Tamalika Mukherjee ∗

Purdue University
tmukherj@purdue.edu

Noah Stephens-Davidowitz†

Cornell University
noahsd@gmail.com

August 19, 2020

Abstract

We show how to generalize lattice reduction algorithms to module lattices. Specifically,
we reduce γ-approximate ModuleSVP over module lattices with rank k ≥ 2 to γ′-approximate
ModuleSVP over module lattices with rank 2 ≤ β ≤ k. To do so, we modify the celebrated slide-
reduction algorithm of Gama and Nguyen to work with module filtrations, a high-dimensional
generalization of the (Z-)basis of a lattice.

The particular value of γ that we achieve depends on the underlying number field K, the
order R ⊆ OK , and the embedding (as well as, of course, k, β, and γ′). However, for reasonable
choices of these parameters, the resulting value of γ is surprisingly close to the one achieved
by “plain” lattice reduction algorithms, which require an arbitrary SVP oracle in the same
dimension. In other words, we show that ModuleSVP oracles are nearly as useful as SVP
oracles for solving higher-rank instances of approximate ModuleSVP.

Our result generalizes the recent independent result of Lee, Pellet-Mary, Stehlé, and Wallet,
which works in the important special case when β = 2 and R = OK is the ring of integers of K
under the canonical embedding. Our reduction works for any β dividing k, as well as arbitrary
orders R ⊆ OK and a larger class of embeddings. Indeed, at a high level our reduction can be
thought of as a generalization of theirs in roughly the same way that block reduction generalizes
LLL reduction.

1 Introduction

A (rational) lattice L ⊂ Qd is the set of all integer linear combinations of finitely many generating
vectors y1, . . . ,ym ∈ Qd,

L := {z1y1 + · · ·+ zmym : zi ∈ Z} .

For an approximation factor γ ≥ 1, the γ-approximate Shortest Vector Problem (γ-SVP) asks us
to find a non-zero vector y ∈ L whose length is within a factor γ of the minimum possible.

∗This work was done while being supported by The Center for Science of Information, an NSF Science and
Technology Center, Cooperative Agreement # CCF 0939370.
†Part of this work was supported by NSF-BSF grant number 1718161 and NSF CAREER Award number 1350619

via Vinod Vaikuntanathan. Part of this work was done while the author was at the Centre for Quantum Technologies
at the National University of Singapore, Massachusetts Institute of Technology, and the Simons Institute in Berkeley.

1

Lattices have played a key role in computer science since Lenstra, Lenstra, and Lovász published
their celebrated LLL algorithm, which solves γ-SVP for γ = 2O(d) in polynomial time [LLL82],
essentially by reducing the problem to many instances of exact SVP in two dimensions. In spite of
this very large approximation factor, the LLL algorithm has found innumerable applications [LLL82,
Bab86, SE94, NV10, FS10].

Lattices have taken on an even larger role in recent years because of the growing importance of
lattice-based cryptography [Ajt96, HPS98, GPV08, Reg09, Pei09, SSTX09, LPR10, Pei16]—that
is, cryptography whose security relies on the hardness of γ-SVP (or a closely related problem)
for some γ (typically, γ = poly(d)). These schemes have several advantages, such as worst-case
to average-case reductions, which show that some of these schemes are actually provably secure
under the assumption that (the decision version of) γ′-SVP is hard in the worst case [Ajt96, MR07,
Reg09, LPR10, LS15, PRS17]. They are also thought to be secure against quantum attackers, and
for this reason, they are likely to be standardized by NIST (the United States’ National Institute
for Standards and Technology) for widespread use in the near future [NIS18].

However, one drawback of generic lattice-based constructions is their inefficiency. Loosely speak-
ing, this inefficiency arises from the fact that a lattice in dimension d typically requires about d2

numbers to specify—at least d generating vectors, each with d coordinates. To get around this, cryp-
tographers often use lattices with certain additional symmetries [HPS98, PR06, SSTX09, LPR10,
SS11, LS12, DD12, LS15, PRS17], since such lattices can be described succinctly.

In particular, cryptographers typically use module lattices. For a number field K of degree n
(i.e., K := Q[x]/p(x) for an irreducible polynomial p(x) of degree n) with an order R ⊆ OK (i.e.,
a discrete full-rank subring, such as Z[x]/p(x) when p ∈ Z[x] is monic, or the ring of algebraic
integers OK ⊂ K), a module lattice over R is the set of all R-linear combinations of finitely many
generating vectors y1, . . . ,ym ∈ K`,

M := {r1y1 + · · ·+ rmym : ri ∈ R} .

By embedding the number field K into Qn (or by equipping K with an inner product, which is
what we do in the sequel), we can view module lattices as (`n)-dimensional “plain” lattices. In
particular, it makes sense to talk about the length of module elements. A key parameter is the
rank k of the module lattice, which is the dimension of its K-span. We typically think of n as large
(i.e., n→∞) and k as a relatively small constant.1

We can then define (γ, k)-ModuleSVP over R as the restriction of γ-SVP to rank-k module
latticesM⊂ K` over R (under some inner product). Clearly, (γ, k)-ModuleSVP is no harder than
γ-SVP over lattices with rank kn. A key question is whether we can do (significantly) better. In
other words, are there (significantly) faster algorithms for ModuleSVP than there are for SVP?
Does the specialization to module lattices (which yields large efficiency benefits for cryptography)
impact security?

Many cryptographic schemes rely on the assumption that no such algorithms exist. E.g., three
of the four candidate key agreement schemes still under consideration by NIST would be broken in
practice if significantly faster algorithms were found for ModuleSVP [NIS18]. (The fourth scheme
does not use lattices at all.) We would therefore like to understand the hardness of ModuleSVP as
soon as possible.

1Notice that module lattices correspond exactly to lattices that are closed under a certain set of linear
transformations—the linear transformations corresponding to multiplication by elements of R.

2

Until recently, one might have conjectured that (γ, k)-ModuleSVP is essentially as hard as γ-
SVP on rank kn lattices for all γ and k. However, a new (and growing) line of work has shown much
faster algorithms for the k = 1 case [CGS14, CDPR16, CDW17, Duc17, DPW19, PHS19], in which
case the problem is called IdealSVP. Most cryptographic schemes are not known to be broken by
these algorithms (or even by an adversary with access to an oracle for exact IdealSVP). However,
similar improvement for the case k = 2 would yield faster algorithms for both the Ring-LWE
problem [SSTX09, LPR10] and the NTRU problem [HPS98], which would break most cryptographic
schemes based on structured lattices. (We are intentionally ignoring many important details here
for simplicity. See [Pei15, Duc17, DPW19, PHS19] for a more careful discussion.)

Therefore, (ignoring a number of important details) the security of many cryptographic schemes
essentially relies on the assumption that (γ, k)-ModuleSVP for k ≥ 2 is qualitatively different than
γ-IdealSVP = (γ, 1)-ModuleSVP. More generally, this recent (surprising) line of work in the k = 1
case suggests that we need a better understanding of (γ, k)-ModuleSVP for all γ and k.

To that end, we observe that much of our understanding of γ-SVP comes from basis reduction
algorithms [LLL82, SE94, GN08, MW16, ALNS20]. These algorithms allow us to reduce γ-SVP
in a high dimension d to γ′-SVP in a lower dimension m (known as the block size) for some
approximation factor γ depending on d, m, and γ′. Indeed, the LLL algorithm can be viewed as
an example of such a reduction for the case m = 2. For the approximation factors relevant to
cryptography, our fastest algorithms rely on basis reduction. In fact, these are more-or-less our
only non-trivial algorithms for superconstant approximation factors. (See [ALNS20].)

In other words, to solve γ-SVP and (γ, k)-ModuleSVP (for k > 1) for superconstant γ, the
fastest known algorithms work by reducing the problem to many instances of SVP with a smaller ap-
proximation factor over lower-dimensional “blocks.” The current state of the art, due to [ALNS20]
and building heavily on the work of Gama and Nguyen [GN08], achieves an approximation factor
of

γ = γ′ · (γ′
√
βn)

2(k−β)
β−1/n (1)

for block sizem := βn and dimension d := kn. (We have chosen this rather strange parameterization
to more easily compare with our results for ModuleSVP.) For cryptanalysis, we typically must take
β = Ω(k) and γ′ ≤ poly(d) in order to achieve a final approximation factor γ that is polynomial in
the dimension d = kn.

1.1 Our results

1.1.1 Lattice reduction for Modules.

Our primary contribution is the following reduction.

Theorem 1.1 (Informal, see the discussion below and Theorem 5.10). For 2 ≤ β < k with β
dividing k, there is an efficient reduction from (γ, k)-ModuleSVP to (γ′, β)-ModuleSVP, where

γ = (γ′)2n · (γ′
√
βn)

2(k−β)
β−1 .

The case β = 2 is of particular interest because of its relevance to cryptography. We note
that, before this work was finished, Lee, Pellet-Mary, Stehlé, and Wallet published essentially the
same reduction for this important special case [LPSW19]. (Formally, they only showed this for the
canonical embedding for the ring of integers of a number field, but it is relatively easy to see that this

3

generalizes to arbitrary orders and a more general class of embeddings that we call “semicanonical.”
They also showed a very interesting algorithm for (γ, 2)-ModuleSVP, which requires a CVP oracle
over a lattice depending only on R. We refer the reader to [LPSW19] for the details.) For this
β = 2 case, the reduction can be viewed as a generalization of the LLL algorithm. (We present the
β = 2 case separately in Section 4.)

In the general case β ≥ 2, we note the obvious resemblance between the approximation factor
achieved by Theorem 1.1 and the approximation factor shown in Eq. (1). Indeed, our reduction
can be viewed as a generalization of Gama and Nguyen’s celebrated slide reduction [GN08] to the
module case.2 Therefore, we can interpret Theorem 1.1 as saying that “a ModuleSVP oracle is
almost as good as a generic SVP oracle for basis reduction over module lattices.”

Finally, notice that this informal version of Theorem 1.1 does not mention the number field K,
the associated embedding, or the order R ⊆ OK . In fact, the reduction works for any number field
K, any order R ⊆ OK , and a reasonably large class of embeddings that we call semicanonical. These
are generalizations of the canonical embedding that might prove useful in other settings. (Formally,
we consider semicanonical inner products on K. See Sections 1.2.1 and 3.1.) Furthermore, the
approximation factor that we achieve depends on certain geometric properties of the order and the
embedding. (See Theorem 5.10 for the precise statement.) The approximation factor shown in
Theorem 1.1 is (a loose upper bound on) what we achieve for the canonical embedding of the ring
of integers of a cyclotomic number field.

In fact, one can derive a still more general result that works for any embedding by fixing a
semicanonical embedding such that the map between the desired embedding and the semicanonical
embedding has minimal distortion Tmin. One then immediately obtains a variant of Theorem 1.1
in which γ and γ′ are multiplied by Tmin.

1.1.2 Two variants.

As additional contributions, we note that our reduction can also be used to solve two variants of
ModuleSVP.

The first variant is known as ModuleHSVP (where the H is in honor of Hermite). This prob-
lem asks us to find a non-zero vector that is short relative to the determinant of the module
lattice M, rather than relative to the shortest non-zero vector. I.e., (γ, k)-ModuleHSVP asks us
to find a non-zero vector x in a rank-k module lattice M with ‖x‖ ≤ γ · det(M)1/(kn). For γ

√
kn,

there is always a non-zero vector satisfying this inequality. (The minimal value of γ for which
γ-HSVP is a total problem is called Hermite’s constant, which explains the name.) In particular,
(γ
√
kn, k)-ModuleHSVP trivially reduces to (γ, k)-ModuleSVP, but our reduction achieves a better

approximation factor than what one would obtain by combining this trivial reduction with The-
orem 1.1. (The same is true of many “plain” basis reduction algorithms [GN08, ALNS20].) This
variant of SVP is enough for most cryptanalytic applications, so that this better approximation
factor could prove to be quite useful in practice. (In particular, the analogous result for plain basis
reduction algorithms is often used in cryptanalysis.)

Theorem 1.2 (Informal, see Theorem 5.10). For 2 ≤ β < k with β dividing k, there is an efficient
reduction from (γH , k)-ModuleHSVP to (γ′, β)-ModuleSVP, where

γH := γ′
√
n · (γ′

√
βn)

k−1
β−1 .

2Indeed, if we take n = 1 and γ′ = 1, then we recover the original slide reduction algorithm from [GN08].
Specializing further to β = 2 recovers LLL.

4

Again, the approximation factor shown in Theorem 1.2 is (a loose upper bound on) what we
achieve for the canonical embedding of the ring of integers of a cyclotomic number field. See
Theorem 5.10 for the general result.

Our second variant has no analogue for plain lattices. We consider the (γ, k)-Dense Ideal
Problem ((γ, k)-DIP), in which the goal is to find a rank-one submodule lattice M′ (i.e., an ideal)
such that det(M′)1/n is within a factor γ of the minimum possible. This problem is in a sense
more natural in our context. Indeed, Theorem 1.1 is perhaps best viewed as a consequence of
Theorem 1.3. We again note the obvious similarity between Theorem 1.3 and Eq. (1). (There is an
analogous result for what we might call “RankinDIP,” in honor of Rankin’s constants, which asks
us to find an ideal whose determinant is small relative to det(M)1/(nk), just like ModuleHSVP asks
for a vector that is short relative to det(M)1/(kn). For simplicity, we do not bother to make this
formal.)

Theorem 1.3 (Informal, see Corollary 5.8). For 2 ≤ β < k with β dividing k, there is an efficient
reduction from (γ, k)-DIP to (γ′, β)-DIP, where

γ := γ′ · (γ′
√
βn)

2(k−β)
β−1 .

Again, the resulting approximation factor depends on the geometry of the order R, and the
above result corresponds to the case when R = OK is the ring of integers of a number field K
under the canonical embedding.

1.2 Our techniques

From bases to filtrations. Lattice basis reduction algorithms take as input a (Z-)basis
(b1, . . . , bd) of a lattice L ⊂ Qd and they iteratively “shorten” the basis vectors using an oracle for
SVP in m < d dimensions. More specifically, let Li be the lattice spanned by b1, . . . , bi. Basis reduc-
tion algorithms work by finding short vectors in “blocks”—lattices of the form L[i,j] := πL⊥i−1

(Lj),
where πL⊥i

represents projection onto the subspace orthogonal to Li. In the basis reduction liter-
ature, the Li and L[i,j] are typically not defined explicitly. Instead, corresponding bases for these
lattices are defined.

To generalize this idea to module lattices, our first challenge is to find the appropriate analogue
of a basis. Indeed, while lattices with rank d over Z have a Z-basis consisting of d (linearly
independent) lattice vectors, the analogous statement is typically not true for modules over more
general orders R. In other words, our module lattice M of rank k will not always have an R-
basis consisting of only k elements. (E.g., rank-one module lattices are ideals, and they have
an R-basis consisting of a single element if and only if they are principal. More generally, all
rank-k module lattices have an R-basis consisting of k vectors if and only if R is a principal ideal
domain. Typically, the rings that interest us are not principal ideal domains.) This means that
basis-reduction techniques do not really make sense over an R-basis.

So, instead of generalizing Z-bases themselves, we work directly with the sublattices Li and
blocks L[i,j]. To that end, we define a module filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk = M of M as a
sequence of k (primitive) submodules with strictly increasing ranks (over K). Filtrations have the
nice property that the projection M[i,j] := πM⊥i−1

(Mj) of Mj orthogonal to Mi is itself a module

lattice with rank j − i+ 1. (We are being deliberately vague about what we mean by “projection”
here. See Sections 1.2.1 and 3.1.) They are well-behaved in other ways as well. For example, (for

5

nice enough embeddings) the determinant of M is given by the product of the determinants of

the rank-one projections M̃i := πM⊥i−1
(Mi), which is analogous to the fact that the determinant

of a lattice is given by the product of the lengths of the Gram-Schmidt vectors b̃i of any basis.
These are the key properties that allow us to perform basis reduction using SVP oracle calls only
on module lattices.3

From vectors to ideals (or sublattices). By working with filtrations, our reduction is
most naturally viewed as a variant of basis reduction with the Gram-Schmidt vectors πL⊥i−1

(bi)

replaced by ideals πM⊥i−1
(Mi), and lengths replaced by the determinant. This naturally gives rise

to Theorem 1.3—a reduction from DIP to DIP.
Indeed, this DIP-to-DIP reduction actually “never looks at the length of a vector.” It only

considers determinants of submodules. (One can presumably do something similar for plain lattices
by reducing the problem of finding a dense sublattice of rank n of some high-dimensional lattice to
same problem over a lower-dimensional sublattice, though we do not attempt to show this formally.)

From ideals back to vectors. In order to obtain our main result, we must convert this DIP-
to-DIP reduction into a reduction from ModuleSVP to ModuleSVP. To do so, we use well-known
relationships between the length of short non-zero vectors and the determinants of dense rank-one
submodules. Specifically, we use (1) Minkowski’s theorem, which states that any dense submodule
must contain a short vector (which holds for all lattices, not just module lattices); and (2) the
fact that the R-span of a short vector must be a relatively dense ideal, which has no analogue for
lattices in general. (The latter property is a partial converse of Minkowski’s theorem for ideals.
The quantitative result depends on the geometry of the order R, which is the main reason that our
approximation factors also depend on this geometry.)

Therefore, a ModuleSVP oracle can be used to find a short vector, which must generate a dense
ideal. And, we may use a DIP oracle to find a low-rank submodule that contains a short vector.
This allows us to move freely between DIP and ModuleSVP (with a small loss in the approximation
factor), which yields our main result.

1.2.1 Projections

In order for our reduction to make sense, we need some kind of notion of “projection.” In particular,
we need to make sense of the “projection of a module latticeM⊂ K` orthogonal to some submodule
lattice M′ ⊆ M” (since this is necessary to define, e.g., M[i,j]). In what follows, we use the word
projection to mean any Q-linear map π that equals its own square π(π(x)) = π(x).

One way to define projection in K` starts by noting that our notion of length in K` comes from
viewing K` = K ⊕ · · · ⊕ K as an n`-dimensional Q-vector space, and fixing some inner product
〈·, ·〉ρ on K (which immediately yields an inner product on K`). Indeed, it does not make sense
to talk about ModuleSVP without first fixing some notion of length in K`, and the most natural
notion is given by ‖x‖2ρ := 〈x,x〉ρ :=

∑
i〈xi, xi〉ρ for some inner product 〈·, ·〉ρ on K. We can then

define our projection using the standard orthogonal projection over a Q-vector space equipped with
an inner product. Specifically, the projection map Πρ,W onto a subspace W ⊆ K` is the unique

3In [FS10, LPSW19], the authors work with pseudobases, which consist of vectors b1, . . . , bk ∈ Kk and ideals
I1, . . . , Ik ⊂ K such that M = I1b1 + · · · + Ikbk. These are quite similar to filtrations. E.g., a pseudobasis can be
converted into the filtration given by Mi := I1b1 + · · ·+ Iibi.

6

Q-linear map that leaves W unchanged and maps to zero all elements that are orthogonal to W
under the inner product 〈·, ·〉ρ.

This is of course the most natural notion of projection in K` from a geometric perspective,
and the projection Πρ has many nice properties (which are immediate once we associate K` with
Q`n). For example, Πρ is contracting (i.e., it cannot increase the length of a vector), and det(M) =
det(V ⊥ ∩M) · det(Πρ,V (M)) (where length and the determinant are defined in terms of the inner
product 〈·, ·〉ρ). However, the lattice Πρ,V (M) might not be a module lattice. This is a serious
issue because we wish to call our ModuleSVP oracle on this projection.

Another idea is to define a K-linear “inner product” 〈·, ·〉K over K`, given by 〈x,y〉K :=∑`
i=1 xiyi, where yi is the complex conjugate of yi.

4 We can then define (M′)⊥ := {x ∈ K` : ∀y ∈
M′, 〈y,x〉K = 0} and define the projection mapping ΠK : K` → K` to be the unique K-linear
map that leaves (M′)⊥ fixed and sends all elements in M′ to 0.

Since the map ΠK is K-linear (by definition), it maps the module latticeM to another module
lattice ΠK(M). So, it does not have the problem that Πρ had. However, ΠK might not interact
nicely with 〈·, ·〉ρ. E.g., ΠK might increase the length of a vector (under the norm induced by Πρ),
and we might not have det(M) = det(M′) · det(ΠK(M)). This is a big problem, since it means
that, e.g., non-zero projections of short vectors inM “might not be found by a ModuleSVP oracle
called on Πρ(M).” More generally, basis reduction algorithms rely heavily on both the contracting
nature of projection and the identity det(M) = det(M′) det(Πρ(M)).

In summary, Πρ is the “right” notion of orthogonal projection from a geometric perspective,
since it behaves nicely in terms of geometric quantities like lengths and determinants. On the
other hand, ΠK is the “right” notion of orthogonal projection from a algebraic perspective, since it
preserves the module structure of lattices. Indeed, there is a sense in which Πρ is the only projection
map that is “nice” geometrically, and ΠK algebraically.

We therefore restrict our attention to inner products 〈·, ·〉ρ for which Πρ = ΠK , so that a single
projection has both the algebraic and geometric properties that we need. In particular, we work
with inner products 〈·, ·〉ρ that “respect field multiplication” in the sense that 〈αx,y〉ρ = 〈x, αy〉ρ.
Such semicanonical inner products have a simple characterization in terms of (appropriate) linear
maps T : K → Q:

〈x,y〉ρ :=
∑
i

T (xiyi) .

(The canonical inner product is the important special case when T := TrK/Q is the trace map.)
These same restrictions are also exactly what is needed to guarantee that the dual M∗ of a

module lattice is also (the complex conjugate of) a module lattice (which we also need for our
reduction, for k > 2). See Section 3.1 for more details and other equivalent definitions.

1.3 Related work

The most closely related work to this paper is the recent independent work of Lee, Pellet-Mary,
Stehlé, and Wallet [LPSW19], which was published before this work was finished. [LPSW19] proved

4Taking the complex conjugate is necessary to guarantee that 〈x,x〉K is non-zero (and totally positive) for x 6= 0.
Formally, this is not quite an inner product because the base field is neither R nor C. But, it is a non-degenerate
conjugate symmetric sesquilinear form, which makes the analogy useful. A more serious issue is that the complex
conjugate of an element in K might not itself lie in K. To fix this, we work over KR := K ⊗Q R. KR is closed under
conjugation but adds a number of annoying complications, which we ignore in the introduction. (If our number field
is either totally real or a CM field, then this is unnecessary.)

7

Theorem 1.1 in the important special case when β = 2 and R = OK is the ring of integers of the
number field K under the canonical embedding. Their reduction is essentially identical to ours,
though they use a formally different notion of a reduced basis that seems not to generalize quite
as nicely for larger β.5 They also show a surprising algorithm for (γ, 2)-ModuleSVP (formally, a
quantum polynomial-time reduction from this problem to the Closest Vector Problem over a lattice
that depends only on K), which can be used to instantiate the (γ, 2)-ModuleSVP oracle. (An
earlier version of our work did not use KR and therefore only considered totally real fields and CM
fields, which are closed under conjugation. We got the idea of using KR to get around this issue
directly from [LPSW19].)

For β > 2, our reductions are generalizations of the slide-reduction algorithm of Gama and
Nguyen [GN08], and our work is largely inspired by theirs. Indeed, both our notion of a reduced
filtration and our algorithm for constructing one are direct generalizations of the corresponding
ideas in [GN08] from bases of Z-lattices to filtrations of module lattices.

Lenstra observed in [Len01] that basis reduction on plain lattices can be equivalently defined
in terms of filtrations (which he calls flags).

There are also other rather different notions of basis reduction for module lattices from prior
work. For example, for certain Euclidean domains, Napias showed that the LLL algorithm (and
Gauss’s algorithm for rank-two lattices) generalizes quite nicely, with no need for an oracle [Nap96].
Follow-up work showed how to extend this to more Euclidean domains [GLM09, KL17]. However,
it seems that algorithms of this type can only work in the Euclidean case [LPL18], and for the
cryptographic applications that interest us most, the order R is typically not Euclidean—or even a
principal ideal domain. (The algorithm of [LPSW19] for (γ, 2)-ModuleSVP is particularly surprising
precisely because it seems to mimic Gauss’s algorithm even though it works for non-Euclidean
rings.) In another direction, Fieker and Stehlé showed how to efficiently convert an LLL-reduced
Z-basis for a module lattice into an LLL-reduced pseudobasis, which in our language is essentially
a filtration that is reduced in a certain sense [FS10]. I.e., they show how to efficiently convert a
relatively short Z-basis into a relatively nice filtration.

Acknowledgements

The authors thank Léo Ducas, Chris Peikert, and Alice Silverberg for very helpful discussions. We
are also indebted to the anonymous Eurocrypt 2020 reviewers, who identified errors in an earlier
version of this work, and the anonymous Crypto 2020 reviewers for their helpful comments.

2 Preliminaries

For x ∈ C, we write x for the complex conjugate of x. For an R-subspace V ⊆ Rd and a real-valued
inner product 〈·, ·〉ρ, we define the ρ-orthogonal projection onto V as the unique R-linear map
Πρ,V : Rd → Rd that satisfies Πρ,V (x) = x for x ∈ V and Πρ,V (x) = 0 if 〈y,x〉ρ = 0 for all y ∈ V .

We write 〈·, ·〉R for the standard inner product over Rd.
5Specifically, in the notation introduced above, they work with the ratio of det(πM⊥i−1

(Mi)) to det(πM⊥i
(Mi+1)),

while we work with the ratio of det(πM⊥i−1
(Mi)) relative to the minimum possible for a rank-one submodule of

πM⊥i−1
(Mi+1). The distinction is not particularly important for β = 2, but the analogous conditions for β > 2 are

quite different. In particular, the most natural generalization of the first notion seems to only yield a solution to
ModuleHSVP.

8

2.1 Lattices

A lattice L ⊂ Rd is a topologically discrete set (i.e., a set L such that |L ∩ S| is finite for every
bounded set S ⊂ Rd) given by the Z-span of finitely many vectors y1, . . . ,ym ∈ Rd such that

L := {z1y1 + · · ·+ zmym : zi ∈ Z} .

If y1, . . . ,ym are R-linearly independent vectors, then we sometimes call this a Z-basis, and we
write m := rankR(L). Any lattice has a Z-basis, and the rank is invariant under the choice of basis,
given by rankR(L) = dimR spanR(L).

We write λ1(L) := miny∈L\{0}〈y,y〉
1/2
R for the length of a shortest non-zero vector in L.

For any lattice L ⊂ Rd and sublattice L′ ⊆ L, we say that L′ is primitive if L′ = L∩ spanR(L′).
If L′ is primitive and W ⊆ spanR(L′) is an R-subspace, then W ∩ L′ is also a primitive sublattice
with rankR(W ∩ L′) = dimR(W).

The lattice determinant is det(L) :=
√

det(G), where G ∈ Rm×m is the Gram matrix Gi,j :=
〈bi, bj〉R of B = (b1, . . . , bm) ∈ Rd×m for any Z-basis B of L (the choice of basis does not matter).
If L′ ⊂ L is primitive and W ⊂ Rd is the subspace of all vectors that are R-orthogonal to L′, then
det(L) = det(L′) det(ΠR,W (L)).

The dual lattice L∗ is the set of vectors in the span of L whose inner product with all lattice
vectors is integral,

L∗ := {w ∈ spanR(L) : ∀y ∈ L, 〈w,y〉R ∈ Z} .

The dual has as a basis BG−1 for any basis B of L with Gram matrix G, and in particular,
(L∗)∗ = L and det(L∗) = 1/ det(L). We also have the identity ΠR,W (L)∗ = W ∩ L∗ for any
subspace W ⊂ Rn, provided that ΠR,W (L) is a lattice. (Equivalently, this holds for any subspace
W that is spanned by dual lattice vectors, or also equivalently, a subspace W such that the subspace
of vectors R-orthogonal to W is spanned by lattice vectors.)

For a positive integer k, Hermite’s constant is

δk := supλ1(L)/det(L)1/k ,

where the supremum is over all lattices with rank k. Minkowski’s celebrated theorem shows us that
δk ≤

√
2k/(πe), and this is known to be tight up to a small constant factor.

2.2 Number fields

A number field K is a finite-degree algebraic field extension of the rational numbers Q, i.e., K ∼=
Q[x]/p(x) for some irreducible polynomial p(x) ∈ Q[x]. The degree n = [K : Q] of the number field
is simply the degree of the polynomial p. In particular, a degree-n number field is isomorphic as a
Q-vector space to Qn. (To see this, notice that the elements 1, x, x2, . . . , xn−1 ∈ K form a Q-basis
for K.)

Example 2.1. Q[x]/(x3 − 2) is a number field of degree 3, and Q[x]/(x2 − 2) is a number field of
degree 2.

We denote the tensor product of K and R over Q as KR := K ⊗Q R. As a vector space,
we can identify KR as the formal R-span of 1, x, . . . , xn−1, in particular, KR is isomorphic as an
R-vector space to Rn. KR is a ring, where multiplication is defined in the obvious way: (a1,0 +

9

· · ·+ a1,n−1x
n−1) · (a2,0 + · · ·+ a2,n−1x

n−1) =
∑

i,j a1,ia2,jx
i+j , where xi+j can be expanded into a

Q-linear combination of the basis elements 1, . . . , xn−1 via the multiplication rule of the field. In
particular, by associating elements in K with elements in KR in the obvious way, we can multiply
elements in KR by elements in K.

Though KR is not in general a field, we abuse terminology and say that y1, . . . ,yk ∈ K`
R are

KR-linear independent if no non-trivial KR-linear combination of the yi is zero. Similarly, we
call V = spanKR(y1, . . . ,yk) for KR-linearly independent y1, . . . ,yk a KR-subspace of K`

R, and we
write dimKR(V) := k, noting that this is well-defined. We also define {0} to be a KR-subspace with
dimKR({0}) = 0. In particular, for any y1, . . . ,yk ∈ K` (noticeK` and not K`

R), spanKR(y1, . . . ,yk)
is a KR-subspace with dimKR spanKR(y1, . . . ,yk) = dimK spanK(y1, . . . ,yk).

Example 2.2. For K = Q(x)/(x3−2), the vectors y1 := (x− 3
√

2, 1),y2 := (0, x2+ 3
√

2x+ 3
√

4) ∈ K2
R

are KR-linearly dependent vectors. To see this, consider the linear combination (x2 + 3
√

2x+ 3
√

4) ·
y1 − y2 = 0 ∈ K2

R. Therefore, spanKR(y1,y2) is not a KR subspace, nor is spanKR(y2). But,
spanKR(y1) is a KR-subspace.

We associate a real-valued inner product 〈·, ·〉ρ : KR×KR → R with KR (viewed as an R-vector
space), which satisfies the usual three properties of symmetry, linearity in the first argument, and
positive definiteness. This inner product can then be extended to K`

R by

〈x,y〉ρ := 〈x1, y1〉ρ + · · ·+ 〈x`, y`〉ρ .

We also write ‖x‖2ρ := 〈x,x〉ρ.

Example 2.3. For any irreducible polynomial p(x) ∈ Q[x], the inner product over KR for K :=
Q[x]/p(x) induced by the p-coefficient embedding is defined by

〈a0 + a1x+ · · ·+ an−1x
n−1, b0 + b1x+ · · ·+ bn−1x

n−1〉p := a0b0 + · · ·+ an−1bn−1 ,

for ai, bi ∈ R.

2.3 Orders, ideals, and module lattices

For a number field K, the set of all algebraic integers in K, denoted by OK ⊂ K, forms a ring
(under the usual addition and multiplication operations in K), called the ring of integers of K.
The ring of integers OK is a free Z-module of rank n = [K : Q], i.e., it is the set of all Z-linear
combinations of some basis B = {b1, . . . , bn} ⊂ OK . An order of K is a subring R ⊆ OK which is
also a free Z-module of rank n.

Example 2.4. For K = Q[x]/(x3 − 2), OK = Z[x]/(x3 − 2), and for K = Q[x]/(x2 − 2), OK =
Z[x]/(x2 − 2).

A (fractional) ideal I of R is the R-span of finitely many elements y1, . . . , ym ∈ K,

I := {r1y1 + · · ·+ rmym : ri ∈ R} .

More generally, a module lattice M over R is a topologically discrete set given by the R-span
of finitely many vectors y1, . . . ,ym ∈ K`

R,

M := {r1y1 + · · ·+ rmym : ri ∈ R} ,

10

which satisfies the non-degeneracy condition that spanKR(M) is a KR-subspace. (Equivalently,
there must exist KR-linearly independent w1, . . . ,wk ∈ M such that spanKR(w1, . . . ,wk) =
spanKR(M).) The rank (over KR) of a module lattice is then rankKR(M) = dimKR spanKR(M).
We abuse language a bit and sometimes refer to rank-one module lattices as ideals. We say that
such an ideal is principal if it is the R-span of a single element x ∈ K`

R, in which case we say that
x generates the ideal.

As the name suggests, module lattices are themselves lattices (when viewed as subsets of R`n).
To see this, it suffices to take a Z-basis r1, . . . , rn of R and to observe that M is the Z-span of
riyj . In particular, if we fix some inner product 〈·, ·〉ρ on KR (which extends to an inner product on

K`
R), then we can define, e.g., det(M), λ1(M), M∗, rankR(M), primitive submodules, etc., in the

natural way. Furthermore, we have rankR(M) = n · rankKR(M). To see this, it suffices to notice
that for any KR-subspace V ⊆ K`

R, we have dimR(V) = n · dimKR(V).

Example 2.5. For K = Q[x]/(x2 − 2) and R = Z[x]/(x2 − 2), consider the rank-one module
lattice M ⊂ K2

R generated by y1 := (1, x) ∈ K2
R. Its R-span is given by ry1 where r ∈ R, and

since {1, x} is a Z-basis for R, the corresponding Z-generating set for M consists of b1 := y1 and
b2 := xy1 = (x, 2). This is in fact a Z-basis for M. Then, under the inner product 〈·, ·〉σ given
by 〈(a + bx, c + dx), (e + fx, g + hx)〉σ := 2ae + 2cg + 4bf + 4dh,6 we have det(G) = 72, where
Gi,j := 〈bi, bj〉σ is the Gram matrix of this basis, so that det(M) =

√
det(G) = 6

√
2. One can

also check that λ1(M) = ‖b1‖ =
√

6.

2.4 The canonical embedding and complex conjugation

The field embeddings σ1, . . . σn of a number field K = Q[x]/p(x) of degree n are the n distinct
injective field homomorphisms from Q to C. Equivalently, if α1, . . . , αn ∈ C are the n distinct
roots of the polynomial p, then σi maps the element y = a0 + a1x + · · · + an−1x

n−1 to σi(y) =
a0 + a1αi + · · · + an−1α

n−1
i . We call the embedding σi a real embedding if αi ∈ R; otherwise, we

call σi a complex embedding. Notice that the complex embeddings come in conjugate pairs, i.e.,
for every complex embedding σi, there exists another complex embedding σj = σi. We adopt the
convention that the embeddings are ordered with the first r embeddings are always real, and the
last 2c embeddings are always complex.

The canonical embedding σ : K → Cn is simply the concatenation of these field embeddings,
σ(y) = (σ1(y), . . . , σn(y)). Equivalently, up to reordering of the coordinates, it is the the unique
injective Q-linear map from K to Cn under which multiplication is coordinate-wise.

Example 2.6. For K := Q[x]/(x3 − 2), the roots of the polynomial p(x) = x3 − 2 are given by
3
√

2, ω 3
√

2 and ω2 3
√

2, where ω := e2πi/3 is a primitive third root of unity. So, for any α ∈ K where
α := a+ bx+ cx2 for a, b, c ∈ Q, the canonical embedding is

σ(α) = (a+ b
3
√

2 + c
3
√

4, a+ bω
3
√

2 + cω2 3
√

4, a+ bω2 3
√

2 + cω
3
√

4) .

The canonical embedding extends naturally to KR and to K`
R. Since KR is isomorphic as an

R-vector space to Rn, we have

σ(KR) = {(x1, . . . , xr, y1, . . . , yc, y1, . . . , yc : xi ∈ R, yi ∈ C} ⊆ Cn , (2)

6This is the canonical inner product, which we will define more generally below.

11

where r is the number real embeddings and 2c is the number of complex embeddings (and we have
used our convention about the order of the embeddings).

We can then define the complex conjugate α ∈ KR of an element α ∈ KR as the unique element
satisfying σi(α) = σi(α) for all i. Such an element α exists by Eq. (2), which shows in particular
that σ(KR) is closed under complex conjugation. We can then extend this definition to K`

R as well.

The inner product induced by the canonical embedding is given by 〈y, z〉σ :=
∑
σi(y)σi(z) ∈ R

for any y, z ∈ KR.

Fact 2.7. For a number field K, the vectors y1, ...,ym ∈ K`
R are KR-linearly dependent if and

only if there exists a field embedding σi (where 1 ≤ i ≤ n), such that σi(y1), ..., σi(ym) ∈ C` are
R-linearly dependent.

Proof. First, assume y1, ...,ym ∈ K`
R areKR-linearly dependent. In other words, for some x1, . . . , xm ∈

KR,
x1y1 + . . . xmym = 0 ,

where xj∗ 6= 0 for some j∗. In particular, there exists i∗ ∈ [1, . . . , n] such that σi∗(xj∗) 6= 0. Then,
we have

σi∗(x1)σi∗(y1) + . . . σi∗(xm)σi∗(ym) = σi∗(x1y1) + . . .+ σi∗(xmym) = σi∗(0) = 0 .

This implies that σi(y1), ..., σi(ym) ∈ C` are R-linearly dependent.
Now, assume that σi(y1), ..., σi(ym) ∈ C` are R-linearly dependent for some i. In other words,

there exist a1, . . . , am ∈ R such that,

a1σi(y1) + . . . amσi(ym) = 0 ,

with aj∗ 6= 0 for some j∗. Let σi be the conjugate embedding (with σi = σi if σi is a real embedding).

Now, by Eq. (2), we have that for every a ∈ R, there exists y ∈ KR such that σi(y) = σi(y) = a,
and σj(y) = 0 for all j such that σj 6= σi and σj 6= σi.

Then for 1 ≤ s ≤ m, we can simply take xs ∈ KR such that σi(xs) = as, and σj(xs) = 0 for all
j 6= i. This gives us,

x1y1 + . . . xmym = 0 ,

where xj∗ 6= 0, as needed.

2.5 Some geometric quantities of orders and module lattices

For an order R of a number field K of degree n with an inner product 〈·, ·〉ρ over KR, we define

αR := inf
λ1(I)

det(I)1/n
,

where the infimum is over all rank-one modules I ⊂ K`
R. (Notice that αR depends heavily on the

choice of inner product 〈·, ·〉ρ, so perhaps formally we should write αR,ρ. We write αR instead for
simplicity.) Lemma 2.9 below shows that αR is non-zero. (Specifically, the lemma computes αR
explicitly for 〈·, ·〉σ. The fact that αR is non-zero in general follows by recalling that any two inner
products are equivalent up to some linear transformation with finite distortion.)

12

For a module lattice M, we define

τ1(M) := min
I⊂M

det(I)1/n ,

where the infimum is over the rank-one submodule lattices I ⊂ M (i.e., ideals). This quantity
can be viewed as a different way to generalize λ1(L) to module lattices over arbitrary orders. I.e.,
the rank-one “submodules” of a “module” L over Z are lattices spanned by a single vector, and
the determinant of such a “submodule” is just the length of this vector. So, over Z, τ1 = λ1. For
higher-dimensional orders R, the rank-one module lattices are n-dimensional lattices, which do not
naturally correspond to a single vector. So, τ1 and λ1 are distinct quantities.

We define

µR,k := sup
M

τ1(M)

det(M)1/(kn)
,

where the supremum is over all rank-k module lattices M ⊂ Kk′
R (for any integer k′ ≥ k). (This

can be thought of as the module analogue of either Rankin’s constant or Hermite’s constant.)
For a module lattice M of rank k, we have the simple inequality τ1(M) ≤ µR,k det(M)1/(kn),

and the following relationship between τ1 and λ1, which is governed by αR.

Lemma 2.8. Given a number field K, order R ⊆ OK , a module lattice M, and an inner product
〈·, ·〉ρ over KR,

λ1(M)

δn
≤ τ1(M) ≤ λ1(M)

αR
, (3)

1 ≤ µR,k ≤
δkn
αR

. (4)

Proof. Let I ⊂ M be the principal ideal generated by a non-zero shortest vector in M, so that
λ1(I) = λ1(M). Then from the definition of αR, we know

det(I)1/n ≤ λ1(I)

αR
. (5)

Since I ⊂M, we also have that

τ1(M) ≤ det(I)1/n . (6)

Combining Eqs. (5) and (6) yields the upper bound in Eq. (3).
Let I ′ ⊂ M be an ideal satisfying det(I ′)1/n = τ1(M). Then by the definition of Hermite’s

constant, we have

λ1(I ′) ≤ δn det(I ′)1/n = δnτ1(M) .

The lower bound in Eq. (3) follows by noting that λ1(M) ≤ λ1(I ′).
Again by the definition of Hermite’s constant, we have λ1(M) ≤ δkn det (M)1/(kn). Combining

this relation with the upper bound from Eq. (3) yields the upper bound in Eq. (4). The lower
bound is witnessed by, e.g., M = Rk, which satisfies τ1(M) = det(R)1/n = det(M)1/(kn).7

7Since I := {(r, 0, 0, . . . , 0) : r ∈ R} ⊂ Rk is a submodule with rank one with det(I) = det(R), we must have
τ1(Rk) ≤ det(R)1/n. To see that there is no rank-one submodule I′ ⊂ Rk with det(I′) < det(I), let π1 : Kk → Kk be
the map defined by π1(y1, y2, . . . , yk) = (y1, 0, 0, . . . , 0). By possibly rearranging coordinates, we may assume without
loss of generality that π1(I′) is non-zero, in which case it is itself a rank-one module lattice. Since π1(I′) ⊆ I is a
full-rank sublattice of I, we must have det(π1(I′)) ≥ det(I). On the other hand, since π1 is a projection over Q with
rankQ(I′) = rankQ(π1(I′)) = n, we must have det(π1(I′)) ≤ det(I′), as needed.

13

We also have the following well-known property of the canonical embedding.

Lemma 2.9. For any order R ⊆ OK of any number field K of degree n, under the inner product
〈·, ·〉σ induced by the canonical embedding, we have

αR =

√
n

det(R)1/n
.

In particular, if R := OK is the ring of integers of a cyclotomic number field K, then det(R)1/n ≤√
n, so that αR ≥ 1.

Proof. For the lower bound, it suffices without loss of generality to assume that ` = 1. Let
v ∈ KR be a shortest non-zero element in the ideal I ⊂ KR (that achieves αR), in other words,
λ1(I)2 = ‖v‖2σ =

∑
i |σi(v)|2. The algebraic norm is N(v) :=

∏n
i=1 σi(v).

By the inequality of the arithmetic and geometric mean, we have ‖v‖ ≥
√
nN(v)1/n.

Let I ′ := {rv : r ∈ R} be the principal ideal generated by v. Then,

αR ≥
λ1(I)

det(I)1/n
≥ ‖v‖σ

det(I ′)1/n
≥
√
n · N(v)1/n

det(I ′)1/n
.

The result then follows by recalling that det(I ′) = det(R) ·N(v).
To see that this is tight, it suffices to consider the example of I = R, which has λ1(R) = ‖1‖σ =√

n.

2.6 ModuleSVP and the Dense Ideal Problem

We now provide the formal definition of ModuleSVP, and its variant the Dense Ideal Problem.

Definition 2.10 (ModuleSVP). For a number field K, order R ⊆ OK , rank k ≥ 1, approximation
factor γ = γ(R, k) ≥ 1, and inner product 〈·, ·〉ρ, (γ, k)-ModuleSVP is defined as follows. The input
is (a generating set for) a module lattice M ⊂ K`

R with rank k. The goal is to output a module
element x ∈M such that 0 < ‖x‖ρ ≤ γλ1(M).

Definition 2.11 (The Dense Ideal Problem). For a number field K, order R ⊆ OK , rank k ≥ 2,
approximation factor γ = γ(R, k) ≥ 1, and inner product 〈·, ·〉ρ, the (γ, k)-Dense Ideal Problem,
or (γ, k)-DIP, is the search problem defined as follows. The input is a (generating set for) module
lattice M⊂ K`

R with rank k, and the goal is to find a submodule M′ ⊂M with rank-one (i.e., an
ideal lattice) such that det(M′)1/n ≤ γτ1(M).

Definition 2.12 (ModuleHSVP). For a number field K, order R ⊆ OK , rank k ≥ 2, approximation
factor γ = γ(R, k) ≥ 1, and inner product 〈·, ·〉ρ, (γ, k)-ModuleHSVP is defined as follows. The
input is (a generating set for) a module latticeM⊂ K`

R with rank k. The goal is to output a module
element x ∈M such that 0 < ‖x‖ρ ≤ γ det(M)1/(kn).

Notice that a solution to the above problem is guaranteed to exist if γ ≥ δkn.

Theorem 2.13. For a number field K, order R ⊆ OK , rank β ≥ 2, approximation factor γ′ =
γ′(R, β) ≥ 1, and an inner product 〈·, ·〉ρ, there exists a reduction from (γ, β)-DIP to (γ′, β)-

ModuleSVP where γ := γ′δn
αR

.

14

Proof. The reduction takes as input a module lattice M of rank β, and uses the output from the
(γ′, β)-ModuleSVP oracle which is a non-zero vector x ∈ M such that 0 < ‖x‖ρ ≤ γ′λ1(M), to
output a submodule M′ ⊂M such that det(M′)1/n ≤ γτ1(M).

Let M′ := Rx, i.e. M′ is a principal ideal generated by x. Note that λ1(M′) ≤ ‖x‖ρ ≤
γ′λ1(M). Then using Lemma 2.8, we have

det(M′)1/n ≤ λ1(M′)
αR

≤ γ′λ1(M)

αR
≤ γ′

αR
· δn · τ1(M) ,

as needed.

2.7 On bit representations

Throughout this work, we follow the convention (common in the literature on lattices) of avoid-
ing discussion of the particular bit representation of elements in K and KR. In practice, one can
represent elements in K as polynomials with rational coefficients, and elements in KR as, e.g., Tur-
ing machines that output progressively better rational approximations to the element. The inner
product can be represented by specifying the pairwise inner products of basis elements (i.e., as a
quadratic form). Since arithmetic operations may be performed efficiently with these representa-
tions, we are largely justified in ignoring such bit-level details.

There are two issues that arise, however, and we address them briefly here.
First, there is the question of whether the bit lengths of the numbers that we work with can

become superpolynomial after polynomially many operations. All of our operations can always
be performed in such a way to keep the bit lengths bounded (under the assumption, valid in our
case, that a certain potential function is non-increasing with these operations). We refer the reader
to [GN08] for a more careful analysis in the context of slide reduction and [LPSW19] for discussion
of similar issues in the context of module lattices. With this carefully swept under the rug, we
content ourselves in the sequel with simply bounding the number of such operations performed by
our reductions.

Second, we will actually need a minor relationship between the bit length of the representation
of the embedding and the geometry of the ring R. To see why this is necessary, imagine that we
could have a ring R such that λ1(R) < 2−m

ω(1)
, where m is the bit length of the description of R.

Then, we could not even write down λ1(R) in polynomial time. Of course, this cannot happen for
reasonable representations.

Fact 2.14. If the number field K, the inner product 〈·, ·〉ρ over KR, and the order R ⊆ OK are
represented “reasonably,” then for any integer ` ≥ 1 and any module lattice M⊂ K`

R

2− poly(m,`) ≤ det(M) ≤ 2poly(m,`) ,

where m is the bit length of this description together with the description of a generating set for
M.

In particular, this holds in the special case when M ⊂ K` is rational and elements of K are
represented as above.

Proof. We prove this for the special case when M ⊂ K`. This implies the result for larger KR
provided that the representation of real numbers is suitable.

15

It suffices to observe that there exists a polynomial-time algorithm that computes the (square
of the) determinant—since this immediately implies that the (square of the) determinant must be a
rational number expressible using at most poly(m, `) bits. Indeed, we can convert our R-generating
set of M to a Z-generating set of M by taking the product of each element in the Gram matrix
with each element of a Z-basis for R. We can then efficiently compute the pairwise inner products
between all elements in this Z-generating set. Using the LLL algorithm, we can then efficiently find
a Z-basis for M. Finally, we can efficiently compute the pairwise inner products 〈bi, bj〉ρ of the
basis elements, and the determinant of the resulting Gram matrix is the square of the determinant
of the lattice.

3 Semicanonical inner products and filtrations

3.1 The KR “inner product,” two kinds of projections, and semicanonical inner
products

For w,y ∈ K`
R, we define the “inner product” (conjugate-symmetric totally positive semidefinite

form) over KR as 〈w,y〉KR :=
∑k

i=1wiyi. We say that w and y are “KR-orthogonal” if 〈w,y〉KR =
0. For a module lattice M⊂ K`

R, we write

M⊥ := {x ∈ K`
R : ∀y ∈M, 〈y,x〉KR = 0}

for the set of vectors that are KR-orthogonal to M. This is a KR-subspace of K`
R with dimension

equal to `− rankKR(M).
In analogy with ρ-orthogonal projection, for a KR-subspace V ⊆ K`

R we define the “KR-
orthogonal projection map onto V ” ΠKR,V : K`

R → K`
R as the unique KR-linear map satisfying

ΠKR,V (x) = x for x ∈ V and ΠKR,V (x) = 0 if 〈y,x〉KR = 0 for all y ∈ V .
We now introduce the related notion of a semicanonical inner product, which is a generalization

of the inner product induced by the canonical embedding, 〈x, y〉σ =
∑

i σi(x)σi(y) described in
the previous section. Semicanonical inner products share many of the nice geometric properties of
〈·, ·〉σ, as we will see below.

Definition 3.1 (Semicanonical inner product). Given a real-valued inner product 〈·, ·〉ρ over KR,
we say that ρ is semicanonical if 〈yz, w〉ρ = 〈y, zw〉ρ for w, y, z ∈ KR.

It is easy to see that the inner product 〈·, ·〉σ is semicanonical since for any w, y, z ∈ KR,
〈yz, w〉σ =

∑
i σi(yz)σi(w) =

∑
i σi(yz)σi(w) =

∑
i σi(y)σi(zw) =

∑
i σi(y)σi(zw) = 〈y, zw〉σ.

Example 3.2. Let K := Q[x]/(x2 − 2x− 1), ring R =: Z[x]/(x2 − 2x− 1) (which are isomorphic
to Q[x]/(x2 − 2) and Z[x]/(x2 − 2)), and 〈a + bx, c + dx〉ρ := ac + bd (i.e., the inner product
induced by the coefficient embedding under this representation). Then, 〈·, ·〉ρ is semicanonical (but
not canonical). To see this, it suffices to notice that

〈a+ bx, x〉ρ = b = 〈(a+ 2b)x+ b, 1〉ρ = 〈x(a+ bx), 1〉ρ ,

where we have used the fact that x = x in this field (since all embeddings are real).

Lemma 3.3. Given a number field K and inner product 〈·, ·〉ρ over KR, the following statements
are equivalent.

16

1. For w, y ∈ KR, there exists an R-linear transformation T : KR → R such that8

〈w, y〉ρ = T (wy) .

2. ρ is semicanonical.

3. For w,y ∈ K`
R, 〈w,y〉KR = 0 if and only if 〈αw,y〉ρ = 0 for all α ∈ KR.

4. For any y ∈ K`
R and KR-subspace V ⊆ K`

R, we have

ΠKR,V (y) = Πρ,V (y) .

Proof. (1 ⇔ 2).
Assume that Condition 2 holds. Define the transformation T : KR → R as,

T (z) := 〈z, 1〉ρ .

Since 〈·, ·〉ρ is R-linear, we have that T is R-linear. For any w, y ∈ KR, 〈w, y〉ρ = 〈wy, 1〉ρ = T (wy).
Now, assume that Condition 1 holds, i.e., there exists an R-linear transformation T : KR → R

such that 〈w, y〉ρ = T (wy). For w, y, z ∈ KR, we have

〈yz, w〉ρ = T (yzw) = 〈y, zw〉ρ .

Therefore ρ is semicanonical.
(2 ⇔ 3).
We will first assume Condition 2 and show that Condition 3 holds. Note that Condition 3 is a

biconditional statement. We prove the forward direction first.
We need to show that for vectors w,y ∈ K`

R and α ∈ KR satisfying 〈w,y〉KR =
∑k

i=1wiyi = 0,
we have 〈αw,y〉ρ = 0. This follows directly from Condition 2,

〈αw,y〉ρ =

k∑
i=1

〈αwi, yi〉ρ =

k∑
i=1

〈α,wiyi〉ρ = 〈α,
k∑
i=1

wiyi〉ρ = 〈α, 0〉ρ = 0 .

Now we prove the backward direction for Condition 3, i.e., for vectors w,y ∈ K`
R such that

for all α ∈ KR, 〈αw,y〉ρ = 0, we need to show that 〈w,y〉KR = 0. Based on our assumption and
following the calculations above, we get

0 = 〈αw,y〉ρ = 〈α,
k∑
i=1

wiyi〉ρ .

Since the above expression holds for all α ∈ KR, suppose that α =
∑k

i=1wiyi, in which case, the

above expression becomes 〈α, α〉ρ = 0 which implies α = 0, or in other words
∑k

i=1wiyi = 0.
Finally, we assume that Condition 3 holds and prove Condition 2. For α,w′, y′ ∈ KR, let

w := (αw′, w′, 0, . . . , 0),y := (y′,−αy′, 0, . . . , 0). Observe that

〈w,y〉KR = (αw′)y′ + (w′)(−αy′) = 0 .

8For the special case of the canonical embedding 〈·, ·〉σ, T is the trace.

17

By Condition 3, this implies that 〈αw,y〉ρ = 〈αw′, y′〉ρ + 〈w′,−αy′〉ρ = 0. In other words,
〈αw′, y′〉ρ = 〈w′, αy′〉ρ. Therefore, ρ must be semicanonical.

(3 ⇔ 4).
This follows immediately from the definitions of ΠKR,V and Πρ,V . In particular, both maps are

R-linear (though ΠKR,V is also KR-linear), which means that it suffices to show that they behave
identically on some R-basis of K`

R if and only if Condition 3 holds. Indeed, by definition, both of
them act as the identity map on V , and their kernels are respectively the subspace of KR-orthogonal
vectors to V and ρ-orthogonal vectors to V . Therefore, the two maps are the same if and only if
the subspace of KR-orthogonal vectors equals the subspace of ρ-orthogonal vectors.

Corollary 3.4. For a number field K and an associated semicanonical inner product 〈·, ·〉ρ over
KR, order R ⊆ OK , module lattice M⊂ K`

R over R, and KR-subspace W ⊆ K`
R,

1. The dual of the conjugate M∗ is also a module lattice, which satisfies det(M∗) = 1/det(M).

2. For any primitive submodule M′ ⊂M, the projection ΠKR,(M′)⊥(M) is a module lattice with
rank rank(M)− rank(M′) satisfying

det(M) = det(M′) det(ΠKR,(M′)⊥(M)) .

3. For any y ∈ K`
R, ‖Πρ,W (y)‖ρ ≤ ‖y‖ρ.

4. If M has rank k, and M′ := Πρ,W (M) is also a module lattice with rank k, then det(M′) ≤
det(M).

Proof. To show Item 1, we need to show that for any y ∈ M∗ and r ∈ R, ry ∈ M∗. For any
w ∈M, by the semicanonical property, 〈w, ry〉ρ = 〈rw,y〉ρ. Since rw ∈M, and y ∈M∗ is a dual
vector, 〈rw,y〉ρ ∈ Z, which implies 〈w, ry〉ρ ∈ Z, i.e., ry ∈ M∗. The fact about the determinant
holds because of the corresponding fact for lattices that det(L∗) = 1/ det(L), together with the fact
that the complex conjugate is an isometry under a semicanonical inner product and therefore does
not change the determinant.

To show Item 2, we first observe that since ΠKR,(M′)⊥ is a KR-linear map, the projection
ΠKR,(M′)⊥(M) must be the R-span of ΠKR,(M′)⊥(y1), . . . ,ΠKR,(M′)⊥(ym) for any R-generating set
of M. It is also non-degenerate, since its span is exactly ΠKR,(M′)⊥(spanKR(M)). And, it follows
from the analogous fact about lattices, that ΠKR,(M′)⊥(M) is topologically discrete, so that it is

in fact a module lattice. Finally, recall from Section 2.1 that for a lattice L ⊂ Rd with primitive
sublattice L′ ⊂ L, we have the fact that det(L) = det(L′) det(ΠR,V (L)), where V is the R-subspace
of vectors that are R-orthogonal to L′. Since module lattices M under the inner product 〈·, ·〉ρ
are in fact lattices, it follows that det(M) = det(M′) det(Πρ,W (M)). Finally, by Lemma 3.3,
Πρ,W = ΠKR,W , so that the identity holds for ΠKR,W as well.

Similarly, Items 3 and 4 follow from the corresponding facts about projections over R.

3.2 Filtrations

For a module lattice M ⊂ K`
R over an order R ⊆ OK with rank k over KR, a filtration of M is a

nested sequence M1 ⊂M2 ⊂ · · · ⊂ Mk =M of module lattices over R such that

1. Primitivity: Mi =M∩ spanKR(Mi);

18

2. Increasing ranks: rankKR(Mi) = i; and

3. Rank-one projections: M̃i := ΠKR,M⊥i−1
(Mi) is a rank-one module lattice over R.

(In fact, primitivity together with the fact thatMi ⊂Mi+1 is a strict containment already implies
the other two conditions. E.g., this implies that rankKR(Mi) < rankKR(Mi+1), and since the ranks
are positive integers with rankKR(Mk) = k, we must have rankKR(Mi) = i. Nevertheless, we find
it helpful to state the other two conditions explicitly.) We also write M[i,j] := ΠKR,M⊥i−1

(Mj),

which we call a block of the filtration. By Corollary 3.4,M[i,j] is a module lattice of rank j− i+ 1.
We also adopt the convention that M0 = {0} is the zero module.

Filtrations for module lattices over R are analogues of bases for lattices over Z. Specifically, the
basis b1, . . . , bd ∈ Rd of a lattice naturally corresponds to the filtration given by Li := {z1b1 + · · ·+
zibi : zj ∈ Z}. The M̃i defined above are the analogues of the Gram-Schmidt orthogonalization

b̃1, . . . , b̃d of a lattice over R. We therefore call M̃i an R-Gram-Schmidt orthogonalization.
It is perhaps not immediately obvious that filtrations are nice to work with, or even that they

always exist. So, we first note that they exist, can be found efficiently, and satisfy a natural
determinant identity when ρ is semicanonical.

Fact 3.5. For a number field K, order R ⊆ OK , an inner product 〈·, ·〉ρ over KR, and a module
lattice M⊂ K`

R with rank k, there exists a filtration M1 ⊂M2 ⊂ · · · ⊂ Mk =M.
Furthermore, R-generating sets for the Mi can be computed efficiently (given an R-generating

set for M), and if ρ is semicanonical, det(M) = det(M̃1) · · · det(M̃k).

Proof. Let y1, . . . ,ym ∈ K`
R be an R-generating set for M, and suppose without loss of generality

that y1, . . . ,yk are linearly independent over KR. We take Mi := M∩ spanKR(y1, . . . ,yi). An
R-generating set forMi can be computed by finding a Z-basis forMi (as a lattice) and then noting
that a Z-basis is also an R-generating set.

The fact about the determinants follows from repeated applications of Item 2 in Corollary
3.4.

Finally, given a semi-canonical inner product 〈·, ·〉ρ, each filtrationM1 ⊂M2 ⊂ · · · ⊂ Mk =M
ofM induces a dual filtration given by ΠKR,M⊥k−1

(M)∗ ⊂ ΠKR,M⊥k−2
(M)∗ ⊂ · · · ⊂ ΠKR,M⊥1

(M)∗ ⊂
M∗, where ΠKR,M⊥i

(M)∗ is (the complex conjugate of) a module lattice with rank k − i. Equiva-

lently, the dual filtration is given by M∗ ∩M⊥k−1 ⊂ (M∗ ∩M⊥k−2) ⊂ · · · ⊂ (M∗ ∩M⊥1) ⊂M∗. In
particular, the R-Gram-Schmidt orthogonalization of the dual filtration is the reversed conjugate
dual of the original R-Gram-Schmidt orthogonalization, in analogy to the reversed dual basis B−s

that is commonly used in basis reduction—whose Gram-Schmidt vectors are the “reciprocals” of
the Gram-Schmidt vectors. (See, e.g., [GN08, MW16].)

4 An LLL-style algorithm for the special case of β = 2

Here, we present our reductions in the special case when β = 2. The results here are strictly
generalized by and subsumed by those in Section 5, and the proofs have many common features.
(Our proofs are also essentially the same as those in [LPSW19].) However, the case β = 2 is
considerably simpler, and we therefore include a separate section for this case. (To make comparison

19

easier, we have given this section and Section 5 identical structures. E.g., plugging β = 2 into
Lemma 5.4 yields Lemma 4.4, and the same is true for, e.g., Theorems 5.10 and 4.10.)

Recall that we denote blocks of the filtrationM1 ⊂ . . . ⊂Mk =M asM[i,j] = ΠKR,M⊥i−1
(Mj),

and rank-one projections as M̃i = ΠKR,M⊥i−1
(Mi).

Definition 4.1 (DIP reduction). For a number field K, an order R ⊆ OK , an inner product 〈·, ·〉ρ,
and approximation factor γ ≥ 1, a filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk = M of a module M ⊂ K`

R
over R is γ-DIP-reduced if det(M1)

1/n ≤ γ · τ1(M).

Definition 4.2 (γ-reduced filtration). For a number field K, an order R ⊆ OK , an inner product
〈·, ·〉ρ, and approximation factor γ ≥ 1, a filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk of a module M ⊂ K`

R
over R is γ-reduced if M[i,i+1] is γ-DIP-reduced for all i ∈ [1, k − 1].

We now show a number of properties of γ-reduced filtrations that make them useful for solving
ModuleSVP and its variants.

Lemma 4.3. For a number field K, an order R ⊆ OK , approximation factor γ ≥ 1, a semicanonical
inner product 〈·, ·〉ρ, and a γ-reduced filtration M1 ⊂M2 ⊂ · · · ⊂ Mk, we have

det(M1)
1/n ≤ (γµR,2)

2(i−1) det(M̃i)
1/n ,

for all 1 ≤ i ≤ k.

Proof. Since M1 ⊂M2 ⊂ · · · ⊂ Mk is γ-reduced,

det(M̃i)
1/n ≤ γ · τ1(M[i,i+1])

≤ γ · µR,2 · det(M[i,i+1])
1/(2n)

= γ · µR,2 ·
(

det(M̃i) det(M̃i+1)
)1/(2n)

,

where the last equality follows from Fact 3.5 (since ρ is semicanonical). Rearranging, we see that

det(M̃i)
1/n ≤ (γµR,2)

2 det(M̃i+1)
1/n. By a simple induction argument, we see that det(M1)

1/n ≤
(γµR,2)

2(i−1) det(M̃i)
1/n.

Lemma 4.4. For a number field K, an order R ⊆ OK , an approximation factor γ ≥ 1, and a
semicanonical inner product 〈·, ·〉ρ over KR, if a filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk is γ-reduced,
then

det(M1)
1/n ≤ γ · (γµR,2)2(k−2) · τ1(M) , and (7)

det(M1)
1/n ≤ (γµR,2)

k−1 · det(M)1/(kn) . (8)

Proof. First, suppose that τ1(M2) = τ1(M). Then, the result is immediate, from the fact that the
filtration is γ-reduced, i.e., det(M1)

1/n ≤ τ1(M2) = τ1(M).
Otherwise, let i ∈ [2, k − 1] be such that τ1(Mi+1) = τ1(M) but τ1(Mi−1) 6= τ1(M). Since

Mk = M, there must exist such an i. In particular, there exists some rank-one module lattice
M′ ⊂ Mi+1 with M′ 6⊂ Mi−1 such that det(M′)1/n = τ1(M). Since Mi−1 is primitive, M′ 6⊂
spanKRMi−1. Therefore, ΠKR,M⊥i−1

(M′) ⊂ M[i,i+1] is a non-zero rank-one module lattice. It

follows that
τ1(M[i,i+1]) ≤ det(ΠKR,M⊥i−1

(M′))1/n ≤ det(M′)1/n = τ1(M) ,

20

where the second inequality is Item 4 of Corollary 3.4. Then, since the filtration is γ-reduced,

det(M̃i)
1/n ≤ γτ1(M[i,i+1]) ≤ γτ1(M) .

By combining the expression above with Lemma 4.3, we have

det(M1)
1/n ≤ γ · (γµR,2)2(i−1) · τ1(M) , (9)

and recalling that i ≤ k − 1, we obtain Eq. (7).

Again, recall from Lemma 4.3 that det(M1)
1/n ≤ (γµR,2)

2(i−1) det(M̃i)
1/n. Taking the product

of these inequalities for 1 ≤ i ≤ k, we see that

det(M1)
k/n ≤ (γµR,2)

k(k−1) det(M)1/n .

Raising both sides to the power 1/k yields Eq. (8).

Corollary 4.5. For a number field K, an order R ⊆ OK , an approximation factor γ ≥ 1, and a
semicanonical inner product 〈·, ·〉ρ, if a filtration M1 ⊂M2 ⊂ · · · ⊂ Mk is γ-reduced, then

λ1(M1) ≤
γδn
αR
· (γµR,2)2(k−2) · λ1(M) , and (10)

λ1(M1) ≤ δn(γµR,2)
(k−1) · det(M)1/(kn) . (11)

Proof. By combining Eq. (7) from Lemma 4.4 with Lemma 2.8, we have

det(M1)
1/n ≤ γ · (γµR,2)2(k−2) · τ1(M) ≤ γ · (γµR,2)2(k−2) ·

λ1(M)

αR
.

Using the definition of Hermite’s constant δn with the above relation, we obtain Eq. (10):

λ1(M1) ≤ δn det(M1)
1/n ≤ δn · γ(γµR,2)

2(k−2) · λ1(M)

αR
.

Eq. (11) follows by directly applying the definition of Hermite’s constant to Eq. (8) from Lemma
4.4.

4.1 Finding γ-reduced filtrations

We are now ready to show how to find a γ-reduced filtration with access to a (γ, 2)-ModuleSVP
oracle. The reduction is a natural analogue of the LLL algorithm, and essentially identical to the
reduction in [LPSW19].

Definition 4.6 ((γ, k)-RFP). For a number field K, order R ⊆ OK , rank k ≥ 1, approximation
factor γ = γ(R, k) ≥ 1, and inner product 〈·, ·〉ρ, the (γ, k)-Reduced Filtration Problem, or (γ, k)-
RFP, is the search problem defined as follows. The input is (a generating set for) a module lattice
M⊂ K`

R with rank k, and the goal is to find a γ-reduced filtration M1 ⊂M2 ⊂ · · · ⊂ Mk.

Theorem 4.7. For any number field K, order R ⊆ OK , rank k ≥ 2, approximation factor γ =
γ(R, k) ≥ 1, semicanonical inner product 〈·, ·〉ρ, and constant ε > 0, there is an efficient reduction
from ((1 + ε)γ, k)-RFP to (γ, 2)-DIP.

21

Proof. The idea is to use our (γ, 2)-DIP oracle to compute a (1+ε)γ-reduced filtration just like the
LLL algorithm computes a reduced basis. In particular, on input (a generating set for) a module
latticeM⊂ K`

R with rank k, the reduction first computes a filtrationM1 ⊂ · · · ⊂ Mk =M ofM
(as in Fact 3.5). It then repeatedly updates this filtration in place as follows.

For each M[i,i+1], the reduction calls the (γ, 2)-DIP oracle with M[i,i+1] as input and receives

as output some rank-one ideal M̃′i ⊂M[i,i+1]. We may assume without loss of generality that M̃′i
is a primitive submodule ofM[i,i+1], i.e., that M̃′i =M[i,i+1] ∩ spanKR(M̃′i). If (1 + ε)n det(M̃′i) <
det(M̃i) then the reduction sets Mi so that M̃i = M̃′i and leaves Mj unchanged for j 6= i. (For-
mally, to do this, the reduction can, e.g., pick any KR-linearly independent vectors y1, . . . ,yi ∈
Mi+1 with spanKR(y1, . . . ,yi−1) = spanKR(Mi−1) and ΠKR,M⊥i−1

(spanKR(y1, . . . ,yi)) = spanKR(M̃′i).
Then, we can set Mi to spanKR(y1, . . . ,yi) ∩M.)

The reduction terminates and outputs the current filtration when none of these checks results
in an update to the filtration, i.e., when for all i, (1 + ε)n det(M̃′i) ≥ det(M̃i).

We first observe that the output filtration is indeed (1 + ε)γ-reduced. To see this, notice that
the reduction only terminates if the filtration satisfies

det(M̃i)
1/n ≤ (1 + ε) det(M̃′i)1/n ≤ (1 + ε)γ · τ1(M[i,i+1]) ,

as needed.
It remains to show that the reduction terminates in polynomial time. Our proof is more-or-less

identical to the celebrated proof in [LLL82] (and the proof in [LPSW19]). Consider the potential
function

Φ(M1, . . . ,Mk) :=
k∏
i=1

det(Mi) .

By Fact 2.14, log(Φ(M1, . . . ,Mk)) is bounded by a polynomial in the input size, as is− log(Φ(M1, . . . ,Mk))
throughout the reduction. Therefore, it suffices to show that the potential decreases by at least,
say, a constant factor every time that the reduction updates the filtration.

Consider a step in the reduction in which it updatesMi. Denote M̂0 asMi before the update
and M̂1 as Mi after the update. Then, since ρ is semicanonical, by Item 2 of Corollary 3.4, we
have

det(M̂1) = det(Mi−1) det(M̃′i) < det(Mi−1)
det(M̃i)

(1 + ε)n
=

det(M̂0)

(1 + ε)n
.

The other terms det(Mj) for i 6= j in the definition of Φ remain unchanged. Thus, the potential
function decreases by a factor of at least (1 + ε)n after each update, as needed.

Finally, we derive the main results of this section as corollaries of Theorem 4.10.

Corollary 4.8. For any number field K, order R ⊆ OK , rank k ≥ 2, approximation factor γ′ =
γ′(R, k) ≥ 1, semicanonical inner product 〈·, ·〉ρ, and constant ε > 0, there exists an efficient
reduction from (γ, k)-DIP to (γ′, 2)-DIP where

γ := (1 + ε)γ′ · ((1 + ε)γ′ · µR,2)2(k−2) .

Proof. The reduction takes as input a (generating set of a) module latticeM of rank k and runs the
((1 + ε)γ′, k)-RFP procedure from Theorem 4.7, using the (γ′, 2)-DIP oracle, receiving as output

22

some ((1 + ε)γ′)-reduced filtration M1 ⊂ · · · ⊂ Mk = M of M. Finally, the reduction outputs
M1.

Clearly, the reduction runs in polynomial time. By Eq. (7) from Lemma 4.4, we must have

det(M1)
1/n ≤ (1 + ε)γ′ · ((1 + ε)γ′ · µR,2)2(k−2)τ1(M) = γτ1(M) ,

as needed.

Corollary 4.9. For any number field K, order R ⊆ OK , rank k ≥ 2, approximation factor γ′ =
γ′(R, k) ≥ 1, semicanonical inner product 〈·, ·〉ρ, and constant ε > 0, there exists an efficient

reduction from (γR, k)-RFP to (γ′, 2)-ModuleSVP where γR := (1 + ε)γ
′δn
αR

.

Proof. The reduction takes as input a (generating set of a) module lattice M of rank k. It then
runs the procedure from Theorem 4.7 with γ := γ′δn/αR. Each time that this procedure requires a
call to its (γ, 2)-DIP procedure, it uses the procedure from Theorem 2.13 and its (γ′, 2)-ModuleSVP
oracle to solve the (γ, 2)-DIP instance.

Clearly, the reduction runs in polynomial time and outputs a γR-reduced filtration ofM, where
γR = (1 + ε)γ = (1 + ε)γ

′δn
αR

.

Theorem 4.10 (Main Theorem). For any number field K, order R ⊆ OK , rank k ≥ 2, approxi-
mation factor γ = γ(R, k) ≥ 1, semicanonical inner product 〈·, ·〉ρ, and constant ε > 0, there is an
efficient reduction from (γ, k)-ModuleSVP to (γ′, 2)-ModuleSVP where

γ := (1 + ε) ·
(γ′δn
αR

)2
·
(

(1 + ε)γ′ ·
δnµR,2
αR

)2(k−2)
.

There is also an efficient reduction from (γH , k)-ModuleHSVP to (γ′, 2)-ModuleSVP, where

γH := γ′δn ·
(

(1 + ε)γ′ ·
δnµR,2
αR

)k−1
.

Proof. In fact, the reduction is the same for both ModuleSVP and ModuleHSVP. On input (a
generating set for) a module lattice M ⊂ K`

R with rank k, the reduction proceeds as follows. It
obtains a γR-reduced filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk using its (γ′, 2)-ModuleSVP oracle, where

γR := (1 + ε)γ
′δn
αR

(by Corollary 4.9). It then calls its (γ′, 2)-ModuleSVP on M2 which outputs a
vector x such that 0 < ‖x‖ρ ≤ γ′λ1(M2). It then simply outputs this vector.

Since M1 ⊂M2, we have

0 < ‖x‖ρ ≤ γ′λ1(M2) ≤ γ′λ1(M1) .

By Eq. (10) of Corollary 4.5,

λ1(M1) ≤
γRδn
αR

· (γRµR,2)2(k−2) · λ1(M) =
(1 + ε)γ′δ2n

α2
R

·
(

(1 + ε)
γ′δn
αR

µR,2

)2(k−2)
· λ1(M) .

Combining the above two expressions, we get

0 < ‖x‖ρ ≤
(1 + ε)γ′2δ2n

α2
R

·
(

(1 + ε)
γ′δn
αR

µR,2

)2(k−2)
· λ1(M) .

23

Therefore,

γ = (1 + ε) ·
(γ′δn
αR

)2
·
(

(1 + ε)γ′ ·
δnµR,2
αR

)2(k−2)
,

as needed.
Similarly, by Eq. (11) of Corollary 4.5,

‖x‖ρ ≤ γ′δn · (γRµR,2)(k−1) · det(M)1/(kn)

= γ′δn · ((1 + ε)γ′δnµR,2/αR)k−1 · det(M)1/(kn) ,

which gives the reduction from ModuleHSVP.

5 Slide-reduced filtrations for module lattices

We will need a dual notion of DIP-reduced filtrations (in analogy with the notions of SVP-reduced
and DSVP-reduced bases in [GN08]), which we will combine together with DIP-reduced filtrations
to define our notion of slide reduction. While in [GN08], reduction is defined by comparing lengths
of certain vectors to λ1 of a particular lattice, we compare the determinants of certain ideals to τ1
of the analogous module lattice. In other words, our definitions are a high-dimensional analogue
of those in [GN08], replacing lengths of vectors with determinants of high-dimensional (ideal)
sublattices.

Recall that we denote blocks of the filtration M1 ⊂ M2 ⊂ . . . ⊂ Mk = M as M[i,j] =

ΠKR,M⊥i−1
(Mj), and rank-one projections as M̃i = ΠKR,M⊥i−1

(Mi) where M⊥i−1 denotes the KR-

subspace that is KR-orthogonal to Mi−1.

Definition 5.1 (DualDIP reduction). For a number field K, an order R ⊆ OK , a semicanonical
inner product 〈·, ·〉ρ, and approximation factor γ ≥ 1, a filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk =M of

a module M over R is γ-DualDIP-reduced if γ · det(M̃k)
1/n ≥ 1/τ1(M

∗
).9

This is in fact the dual notion of DIP reduction, which we can see by recalling the notion of
the dual filtration, as defined in Section 3.2. We then see that a filtration is DualDIP-reduced if
and only if its dual filtration is DIP-reduced, and in particular, a DIP oracle is sufficient to obtain
a DualDIP-reduced filtration.

We can now “glue” DIP-reduced and DualDIP-reduced filtrations together to obtain a notion
of slide-reduced filtration, which is of course a generalization of the notion of a slide-reduced basis
from [GN08]. Indeed, once we have the right primitive notions of reduced filtrations, the right
generalization of slide-reduced filtrations is clear.

Definition 5.2 ((γ, β)-slide-reduced filtration). For a number field K, an order R ⊆ OK , a sem-
icanonical inner product 〈·, ·〉ρ, approximation factor γ ≥ 1, an integer block size β ≥ 2, and an
integer p ≥ 2, a filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk of a rank-k module lattice M where k = βp is
(γ, β)-slide reduced if it satisfies the following two conditions:

• Primal Conditions. For all i ∈ [0; p− 1], the block M[iβ+1,iβ+β] is γ-DIP-reduced.

• Dual Conditions. For all i ∈ [0; p− 2], the block M[iβ+2,iβ+β+1] is γ-DualDIP-reduced.

9Recall that, since ρ is semicanonical, M∗ is a module lattice.

24

The following lemma shows how the primal and dual conditions combine to guarantee nice
behavior of the R-Gram-Schmidt orthogonalization M̃i.

Lemma 5.3. For a number field K, an order R ⊆ OK , a semicanonical inner product 〈·, ·〉ρ, and
approximation factor γ ≥ 1, if a filtration M1 ⊂M2 ⊂ · · · ⊂ Mk is (γ, β)-slide-reduced, then

det(M1)
1/n ≤ (γµR,k)

2iβ/(β−1) · det(M̃iβ+1)
1/n ,

for i ∈ [0, p− 1].

Proof. From the primal condition of Definition 5.2,

det(M̃iβ+1)
β/n ≤

(
γ · τ1(M[iβ+1,iβ+β])

)β
≤
(
γµR,k · det(M[iβ+1,iβ+β])

1/(βn)
)β

= (γµR,k)
β · det(M̃iβ+1)

1/n det(M[iβ+2,iβ+β])
1/n ,

where the last equality is Item 2 of Corollary 3.4. Therefore, we have

det(M̃iβ+1)
(β−1)/n ≤ (γµR,k)

β · det(M[iβ+2,iβ+β])
1/n . (12)

From the dual condition of Definition 5.2,

γβ · det(M̃iβ+β+1)
β/n ≥ 1

τ1(M
∗
[iβ+2,iβ+β+1])

β

≥ 1

µβR,k det(M∗[iβ+2,iβ+β+1])
1/n

= µ−βR,k · det(M[iβ+2,iβ+β+1])
1/n

= µ−βR,k · det(M[iβ+2,iβ+β])
1/n · det(M̃iβ+β+1)

1/n ,

where the second-to-last equality is Item 1 of Corollary 3.4 and the last equality is Item 2. Therefore,
we have

det(M[iβ+2,iβ+β])
1/n ≤ (γµR,k)

β · det(M̃iβ+β+1)
(β−1)/n . (13)

By combining Eqs. (12) and (13), for i ∈ [0, p− 2],

det(M̃iβ+1)
1/n ≤ (γµR,k)

2β/(β−1) · det(M̃iβ+β+1)
1/n .

Then, by a simple induction argument, we see that

det(M1)
1/n ≤ (γµR,k)

2iβ/(β−1) · det(M̃iβ+1)
1/n ,

for i ∈ [0, p− 1].

This next lemma and its corollary show why slide-reduced filtrations are useful for solving
ModuleSVP, ModuleHSVP, and DIP. In particular, the submodule lattice M1 of a slide-reduced
filtration is guaranteed to have small determinant (as we show in Lemma 5.4) and to contain
a short non-zero vector (as we show in Corollary 5.5). Lemma 5.4 is a direct high-dimensional

25

generalization of [GN08, Theorem 1]. Indeed, setting R = Z (and therefore n = 1, τ1 = λ1, and
µR,k = δβ) directly recovers [GN08, Theorem 1].

On the other hand, Corollary 5.5 has no obvious analogue over Z. In particular, over Z Eq. (19)
of Corollary 5.5 is identical to Eq. (15) of Lemma 5.4, while the proof of Eq. (18) of Corollary 5.5
relies on the particular geometry of module lattices (e.g., αR).

Lemma 5.4. For a number field K, an order R ⊆ OK , a semicanonical inner product 〈·, ·〉ρ, and
approximation factor γ ≥ 1, if a filtration M1 ⊂M2 ⊂ · · · ⊂ Mk is (γ, β)-slide-reduced, then

det(M1)
1/n ≤ γ · (γµR,k)

2(k−β)
β−1 · τ1(M) , and (14)

det(M1)
1/n ≤ (γµR,k)

k−1
β−1 · det(M)1/(kn) . (15)

Proof. First, suppose that τ1(Mβ) = τ1(M). Then, Eq. (14) is immediate from the fact that the
filtration is (γ, β)-slide-reduced, i.e., det(M1)

1/n ≤ τ1(Mβ) = τ1(M).
Otherwise, let i ∈ [1, p− 1] be minimal such that τ1(Miβ+β) = τ1(M). Since Mk =M, there

must exist such an i. In particular, there exists some rank-one module lattice M′ ⊂ Miβ+β with
M′ 6⊂ Miβ such that det(M′)1/n = τ1(M). Since the Mi are primitive, M′ 6⊂ spanKR(Miβ).
Therefore, ΠKR,M⊥iβ

(M′) ⊂M[iβ+1,iβ+β] is a non-zero rank-one module lattice so that

τ1(M[iβ+1,iβ+β]) ≤ det(ΠKR,M⊥iβ
(M′))1/n ≤ det(M′)1/n = τ1(M) ,

where the second inequality is Item 4 of Corollary 3.4. Therefore, by the primal property,

det(M̃iβ+1)
1/n ≤ γ · τ1(M[iβ+1,iβ+β]) ≤ γ · τ1(M) .

Eq. (14) then follows by Lemma 5.3:

det(M1)
1/n ≤ γ(γµR,k)

2iβ/(β−1) · τ1(M) ≤ γ(γµR,k)
2(p−1)β/(β−1) · τ1(M) .

In order to derive Eq. (15), we recall again from Lemma 5.3 that det(M1)
1/n ≤ (γµR,k)

2iβ/(β−1) ·
det(M̃iβ+1)

1/n. By taking the product of this inequality for 0 ≤ i ≤ p− 1, we have

det(M1)
p/n ≤ (γµR,k)

p(p−1)β
β−1 ·

p−1∏
i=0

det(M̃iβ+1)
1/n . (16)

From the primal condition, we have

det(M̃iβ+1)
1/n ≤ γ · τ1(M[iβ+1,iβ+β]) ≤ γµR,k · det(M[iβ+1,iβ+β])

1/(βn) . (17)

By combining Eqs. (16) and (17), we see that

det(M1)
p/n ≤ (γµR,k)

p(p−1)β
β−1 · (γµR,k)p ·

p−1∏
i=0

det(M[iβ+1,iβ+β])
1/(βn)

= (γµR,k)
p(k−1)
β−1 · det(M)1/(βn),

as neeeded, where the last equality follows from Item 2 of Corollary 3.4.

26

Corollary 5.5. For a number field K, an order R ⊆ OK , a semicanonical inner product 〈·, ·〉ρ,
and approximation factor γ ≥ 1, if a filtration M1 ⊂M2 ⊂ · · · ⊂ Mk is (γ, β)-slide-reduced, then

λ1(M1) ≤
γδn
αR
· (γµR,k)

2(k−β)
β−1 · λ1(M) , and (18)

λ1(M1) ≤ δn(γµR,k)
k−1
β−1 · det(M)1/(kn) . (19)

Proof. Combining Lemma 2.8 and Eq. (14) from Lemma 5.4, we obtain

det(M1)
1/n ≤ γ(γµR,k)

2(k−β)
β−1 · τ1(M) ≤ γ(γµR,k)

2(k−β)
β−1 · λ1(M)

αR
.

By the definition of Hermite’s constant δn, we obtain Eq. (18).
Eq. (19) follows directly from applying the definition of Hermite’s constant to Eq. (15) from

Lemma 5.4.

5.1 Finding slide-reduced filtrations

We now show how to use a DIP oracle to build a slide-reduced filtration and then derive our main
results.

Definition 5.6 ((γ, k, β)-RFP). For a number field K, an order R ⊆ OK , rank k ≥ 2, block size
β ≥ 2 dividing k, approximation factor γ = γ(R, k) ≥ 1, and a semicanonical inner product 〈·, ·〉ρ,
the (γ, k, β)-Reduced Filtration Problem, or (γ, k, β)-RFP, is the search problem defined as follows.
The input is (a generating set for) a module lattice M⊂ K`

R with rank k, and the goal is to find a
(γ, β)-slide-reduced filtration M1 ⊂M2 ⊂ · · · ⊂ Mk.

Theorem 5.7. For any number field K, order R ⊆ OK , rank k ≥ 2, block size β ≥ 2 dividing k,
approximation factor γ = γ(R, k) ≥ 1, a semicanonical inner product 〈·, ·〉ρ, and constant ε > 0,
there is an efficient reduction from ((1 + ε)γ, k, β)-RFP to (γ, β)-DIP.

Proof. On input (a generating set for) a module lattice M ⊂ K`
R with rank k, the reduction first

computes a filtration M1 ⊂ · · · ⊂ Mk = M of M. It then repeatedly updates this filtration in
place as follows.

1. Primal reduction. For each M[iβ+1,iβ+β] where i ∈ [0, p− 1], the reduction calls its (γ, β)-

DIP oracle with M[iβ+1,iβ+β] as input, receiving as output M̃′iβ+1 ⊂ M[iβ+1,iβ+β]. We may

assume without loss of generality that M̃′iβ+1 is primitive, i.e., M̃′iβ+1 = M[iβ+1,iβ+β] ∩
spanKR(M̃′iβ+1). If (1+ε)n det(M̃′iβ+1) < det(M̃iβ+1), then the reduction updates the filtra-

tion so that M̃iβ+1 = M̃′iβ+1, leaving the full blockM[iβ+1,iβ+β] unchanged. (Formally, to do
this, the reduction can, e.g., pick any KR-linearly independent vectors y1, . . . ,yiβ+β ∈Miβ+β

with spanKR(y1, . . . ,yiβ) = span(Miβ) and ΠKR,M⊥iβ
(spanKR(y1, . . . ,yiβ+1)) = spanKR(M̃′iβ+1).

Then, for j = 1, . . . , β, set Miβ+j :=M∩ spanKR(y1, . . . ,yiβ+j).)

2. Dual reduction. For each M[iβ+2,iβ+β+1] where i ∈ [0, p − 2], the reduction calls the

(γ, β)-DIP oracle withM∗[iβ+2,iβ+β+1] as input, receiving as output a rank-one module lattice

N ⊂ M∗[iβ+2,iβ+β+1]. Let M̃′iβ+β+1 := N ∗. If det(M̃′iβ+β+1) > (1 + ε)n det(M̃iβ+β+1), then

the reduction updates the filtration so that M̃iβ+β+1 = M̃′iβ+β+1, leaving the full dual block
M[iβ+2,iβ+β+1] unchanged.

27

If no update is made in Step 2, then the algorithm terminates and outputs the filtration.
Our proof is more-or-less identical to the proof in [GN08]. We first observe that the output is

in fact a ((1+ε)γ, β)-reduced slide filtration of rank k. In order to see this, observe that the primal
conditions are satisfied,

det(M̃iβ+1)
1/n ≤ (1 + ε) det(M̃′iβ+1)

1/n ≤ (1 + ε)γτ1(M[iβ+1,iβ+β]) ,

after the end of Step 1. If no updates happen in Step 2, then clearly the primal conditions remain
satisfied. And, if no update happens in Step 2, this means that

det(M̃iβ+β+1)
1/n ≥ 1

(1 + ε)
det(M̃′iβ+β+1)

1/n

≥ 1

(1 + ε)γτ1(M
∗
[iβ+2,iβ+β+1])

,

where the last inequality uses Item 1 of Corollary 3.4. In other words, the dual conditions are
satisfied.

It remains to show that the reduction terminates efficiently. We will analyze the following
potential function,

Φ(M1, . . . ,Mk) =

p−1∏
i=1

det(Miβ) .

By Fact 2.14, log Φ(M1, . . . ,Mk) and − log Φ(M1, . . . ,Mk) are both bounded by a polynomial
in the input size throughout the reduction. Furthermore, the potential does not change at all in
Step 1. Therefore, it suffices to show that the potential decreases by at least, say, a constant factor
every time that the reduction updates the filtration in Step 2.

Indeed, we observe that Φ strictly decreases after each dual step in which the filtration is
updated. In order to see this, suppose that such an update occurs on the dual blockM[iβ+2,iβ+β+1],
and notice that all terms in the definition of Φ remain unchanged except det(Miβ+β), where

det(Miβ+β) = det(Miβ+1) det(M[iβ+2,iβ+β]) .

(Here, we have used Item 2 of Corollary 3.4.)

Let M̂0 beM[iβ+2,iβ+β] before the update and let M̂1 beM[iβ+2,iβ+β] after the update. Since
det(M[iβ+2,iβ+β+1]) remains unchanged after the dual reduction step, we have

det(M̂1) det(M̃′iβ+β+1) = det(M̂0) det(M̃iβ+β+1)

≤ det(M̂0) ·
det(M̃′iβ+β+1)

(1 + ε)n
.

Therefore,

det(M̂1) ≤
det(M̂0)

(1 + ε)n
.

It follows that det(Miβ+β) decreases by at least a factor of (1 + ε)n.
Notice that no other terms in the potential change after such an update in Step 2. Therefore,

the potential Φ decreases by a factor of at least (1 + ε)n after the occurrence of each dual update,
as needed.

28

Corollary 5.8. For any number field K, order R ⊆ OK , rank k ≥ 2, block size β ≥ 2 dividing k,
approximation factor γ′ = γ′(R, k) ≥ 1, a semicanonical inner product 〈·, ·〉ρ, and constant ε > 0,
there is an efficient reduction from (γ, k)-DIP to (γ′, β)-DIP, where

γ := (1 + ε)γ′ · ((1 + ε)γ′µR,k)
2(k−β)
β−1 .

Proof. The reduction takes as input a (generating set of a) module lattice M with rank k and
solves the corresponding ((1 + ε)γ′, k, β)-RFP instance using its (γ′, β)-DIP oracle as in Theorem
5.7. I.e., it finds a ((1 + ε)γ′, β)-slide-reduced filtration M1 ⊂ · · · ⊂ Mk = M. It then outputs
M1. Then, by Eq. (14) from Lemma 5.4,

det(M1)
1/n := (1 + ε)γ′ · ((1 + ε)γ′µR,k)

2(k−β)
β−1 · τ1(M) ,

as needed.

Corollary 5.9. For any number field K, order R ⊆ OK , rank k ≥ 2, block size β ≥ 2 dividing k,
approximation factor γ′ = γ′(R, k) ≥ 1, a semicanonical inner product 〈·, ·〉ρ, and constant ε > 0,
there is an efficient reduction from (γR, β, k)-RFP to (γ′, β)-ModuleSVP, where

γR := (1 + ε)γ′δn/αR .

Proof. The reduction takes as input a (generating set of a) module latticeM of rank k. It then runs
the procedure from Theorem 5.7 with γ := γ′δn/αR. Each time that this procedure requires a call
to its (γ, β)-DIP procedure, it uses the procedure from Theorem 2.13 and its (γ′, β)-ModuleSVP
oracle.

Clearly, the reduction runs in polynomial time and outputs a γR-reduced filtration ofM, where
γR = (1 + ε)γ = (1 + ε)γ

′δn
αR

.

Theorem 5.10 (Main Theorem). For any number field K, order R ⊆ OK , rank k ≥ 2, block size
β ≥ 2 dividing k, approximation factor γ′ = γ′(R, k) ≥ 1, a semicanonical inner product 〈·, ·〉ρ, and
constant ε > 0, there is an efficient reduction from (γ, k)-ModuleSVP to (γ′, β)-ModuleSVP, where

γ := (1 + ε) ·
(
γ′ · δn

αR

)2
·
(

(1 + ε) · γ′ ·
µR,kδn
αR

) 2(k−β)
β−1

.

There is also an efficient reduction from (γH , k)-ModuleHSVP to (γ′, β)-ModuleSVP, where

γH := γ′δn ·
(

(1 + ε)γ′ ·
µR,kδn
αR

) k−1
(β−1)

.

Proof. In fact, the reduction is the same for both ModuleSVP and ModuleHSVP. On input (a
generating set for) a module lattice M ⊂ K`

R with rank k, the reduction proceeds as follows. It
first obtains a γR-reduced filtration M1 ⊂ M2 ⊂ · · · ⊂ Mk using its (γ′, β)-ModuleSVP oracle,
where γR := (1 + ε)γ′δn/αR (by Corollary 5.9). It then calls its (γ′, β)-ModuleSVP oracle on Mβ,
which returns a vector x ∈ Mβ ⊆ M such that 0 < ‖x‖ρ ≤ γ′λ1(Mβ). Finally, our reduction
outputs x.

Since M1 ⊂Mβ, we have

0 < ‖x‖ρ ≤ γ′λ1(Mβ) ≤ γ′λ1(M1) .

29

By Eq. (18) of Corollary 5.5,

λ1(M1) ≤
γRδn
αR

· (γRµR,k)
2(k−β)
β−1 · λ1(M)

= (1 + ε) · γ
′δ2n
α2
R

· ((1 + ε)γ′δnµR,k/αR)
2(k−β)
β−1 · λ1(M) .

Combining the above two expressions, we get

0 < ‖x‖ρ ≤ γλ1(M) ,

as needed.
Similarly, by Eq. (19) of Corollary 5.5,

‖x‖ρ ≤ γ′δn(γRµR,k)
k−1

(β−1) · det(M)1/(kn)

= γ′δn((1 + ε)γ′µR,kδn/αR)
k−1

(β−1) · det(M)1/(kn) ,

as needed.

References

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In STOC, 1996.

[ALNS20] Divesh Aggarwal, Jianwei Li, Phong Q. Nguyen, and Noah Stephens-Davidowitz. Slide
reduction, revisited—Filling the gaps in SVP approximation. In CRYPTO, 2020. https:
//arxiv.org/abs/1908.03724.

[Bab86] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combi-
natorica, 6(1), 1986.

[CDPR16] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short generators
of principal ideals in cyclotomic rings. In Eurocrypt, 2016.

[CDW17] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short Stickelberger class rela-
tions and application to Ideal-SVP. In Eurocrypt, 2017. https://eprint.iacr.org/

2016/885.

[CGS14] Peter Campbell, Michael Groves, and Dan Shepherd. Soliloquy: a cautionary tale. ETSI
2nd Quantum-Safe Crypto Workshop, 2014.

[DD12] Léo Ducas and Alain Durmus. Ring-LWE in polynomial rings. In PKC, 2012.

[DPW19] Léo Ducas, Maxime Plançon, and Benjamin Wesolowski. On the shortness of vectors
to be found by the Ideal-SVP quantum algorithm. In CRYPTO, 2019.

[Duc17] Léo Ducas. Advances on quantum cryptanalysis of ideal lattices. Nieuw Archief voor
Wiskunde, 18(5), 2017.

[FS10] Claus Fieker and Damien Stehlé. Short bases of lattices over number fields. In ANTS,
2010.

30

https://arxiv.org/abs/1908.03724
https://arxiv.org/abs/1908.03724
https://eprint.iacr.org/2016/885
https://eprint.iacr.org/2016/885

[GLM09] Y. H. Gan, C. Ling, and W. H. Mow. Complex lattice reduction algorithm for low-
complexity full-diversity MIMO detection. IEEE Transactions on Signal Processing,
57(7), 2009.

[GN08] Nicolas Gama and Phong Q. Nguyen. Finding short lattice vectors within Mordell’s
inequality. In STOC, 2008.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, 2008. https://eprint.iacr.org/

2007/432.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: a ring-based public key
cryptosystem. In ANTS, 1998.

[KL17] Taechan Kim and Changmin Lee. Lattice reductions over Euclidean rings with appli-
cations to cryptanalysis. In Cryptography and Coding, 2017.

[Len01] Hendrik W Lenstra. Flags and lattice basis reduction. In European Congress of Math-
ematics, pages 37–51. Springer, 2001.

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and László Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261(4), 1982.

[LPL18] S. Lyu, C. Porter, and C. Ling. Performance limits of lattice reduction over imaginary
quadratic fields with applications to compute-and-forward. In ITW, 2018.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and Learning
with Errors over rings. In Eurocrypt, 2010.

[LPSW19] Changmin Lee, Alice Pellet-Mary, Damien Stehlé, and Alexandre Wallet. An LLL
algorithm for module lattices. In ASIACRYPT, 2019. https://eprint.iacr.org/

2019/1035.

[LS12] Adeline Langlois and Damien Stehlé. Hardness of decision (R)LWE for any modulus,
2012.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module
lattices. Designs, Codes and Cryptography, 75(3), 2015.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
Gaussian measures. SIAM Journal of Computing, 37(1), 2007.

[MW16] Daniele Micciancio and Michael Walter. Practical, predictable lattice basis reduction.
In Eurocrypt, 2016. http://eprint.iacr.org/2015/1123.

[Nap96] Huguette Napias. A generalization of the LLL-algorithm over Euclidean rings or orders.
Journal de Théorie des Nombres de Bordeaux, 8(2), 1996.

[NIS18] Computer Security Division NIST. Post-quantum cryptography. https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography, 2018.

31

https://eprint.iacr.org/2007/432
https://eprint.iacr.org/2007/432
https://eprint.iacr.org/2019/1035
https://eprint.iacr.org/2019/1035
http://eprint.iacr.org/2015/1123
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

[NV10] Phong Q. Nguyen and Brigitte Vallée, editors. The LLL algorithm: Survey and appli-
cations. Springer-Verlag, 2010.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case Shortest Vector Problem.
In STOC, 2009.

[Pei15] Chris Peikert. What does GCHQ’s “cautionary tale” mean for lattice cryptography?
https://web.eecs.umich.edu/~cpeikert/soliloquy.html, 2015.

[Pei16] Chris Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical
Computer Science, 10(4), 2016.

[PHS19] Alice Pellet-Mary, Guillaume Hanrot, and Damien Stehlé. Approx-SVP in ideal lattices
with pre-processing. In Eurocrypt, 2019.

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In TCC, 2006.

[PRS17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of Ring-
LWE for any ring and modulus. In STOC, 2017. https://eprint.iacr.org/2017/258.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), 2009.

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems. Mathmatical Programming, 66, 1994.

[SS11] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems over
ideal lattices. In EUROCRYPT, 2011.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public key
encryption based on ideal lattices. In ASIACRYPT, 2009.

32

https://web.eecs.umich.edu/~cpeikert/soliloquy.html
https://eprint.iacr.org/2017/258

	Introduction
	Our results
	Lattice reduction for Modules.
	Two variants.

	Our techniques
	Projections

	Related work

	Preliminaries
	Lattices
	Number fields
	Orders, ideals, and module lattices
	The canonical embedding and complex conjugation
	Some geometric quantities of orders and module lattices
	ModuleSVP and the Dense Ideal Problem
	On bit representations

	Semicanonical inner products and filtrations
	The K ``inner product,'' two kinds of projections, and semicanonical inner products
	Filtrations

	An LLL-style algorithm for the special case of beta = 2
	Finding reduced filtrations

	Slide-reduced filtrations for module lattices
	Finding slide-reduced filtrations

