KORGAN: An Efficient PKI Architecture Based on
PBFT Through Dynamic Threshold Signatures

Murat Yasin Kubilay1=3, Mehmet Sabir Kiraz>*, Haci Ali Mantar!

! Department of Computer Engineering, Gebze Technical University, Kocaeli, Turkey,
2 De Montfort University, School of Computer Science and Informatics, Leicester, UK
3 Deutsche Bank, Eschborn, Germany
4 NChain, London, UK
muratkubilay @gtu.edu.tr, m.kiraz@gmail.com, hamantar @ gtu.edu.tr

Abstract. During the last decade, several misbehaving Certificate Authorities
(CA) have issued fraudulent TLS certificates allowing MITM kinds of attacks
which result in serious security incidents. In order to avoid such incidents, Yakubov
et al. recently proposed a new PKI architecture where CAs issue, revoke, and val-
idate X.509 certificates on a public blockchain. However, in their proposal TLS
clients are subject to MITM kinds of attacks and certificate transparency is not
fully provided.

In this paper, we eliminate the issues of the Yakubov et al.’s scheme and propose
a new PKI architecture based on permissioned blockchain with PBFT consen-
sus mechanism where the consensus nodes utilize a dynamic threshold signa-
ture scheme to generate signed blocks. In this way, the trust to the intermediary
entities can be completely eliminated during certificate validation. Our scheme
enjoys the dynamic property of the threshold signature because TLS clients do
not have to change the verification key even if the validator set is dynamic. We
implement our proposal on private Ethereum network to demonstrate the experi-
mental results. The results show that our proposal has negligible overhead during
TLS handshake. The certificate validation duration is less than the duration in the
conventional PKI and Yakubov et al.’s scheme.

Keywords: SSL/TLS, PKI, Certificate Transparency, PBFT, Dynamic Thresh-
old Signatures

1 Introduction

TLS is the most widely used cryptographic protocol in today’s internet for
secure communications [7]. The main purpose of TLS is to provide end-to-
end security between client/server applications to prevent Man-In-The-Middle
(MITM) kinds of attacks such as eavesdropping, tampering, or message forgery
so that a malicious third party secretly cannot intercept, change or modify the
communication traffic [6]. TLS enables establishment of a secure channel that
ensures authentication, confidentiality and integrity between the communicating

2 Murat Yasin Kubilay, Mehmet Sabir Kiraz, Haci Ali Mantar

peers. Authentication and key establishment take place in the handshake proto-
col phase of TLS. X.509 certificates are used to verify the authenticity of the
peers which are issued, revoked, and managed under a set of policies, roles, and
cryptographic methods which have been modelled under the so-called Public
Key Infrastructure (PKI). In conventional PKI, CAs are assumed to be trusted
organisations which verify the identity of the subjects (e.g., domain names) and
issue certificates to domains. However, during the last decade, some CAs issued
fake but valid certificates for even the well-known domains such as Google,
Facebook, Hotmail, GMail, Mozilla, Microsoft [8, 14] which could be used to
apply MITM kinds of attacks [13].

In order to reduce the ultimate trust to CAs, Google proposed Certificate
Transparency (CT) [15] which aims to store the certificates in public logs, so
that any certificate which has not been added to the logs would be rejected by
TLS clients during certificate validation phase, and a fake certificate could be
immediately detected since these logs are publicly visible and monitored by all
the related parties. However, CT does not propose any new mechanism for revo-
cation transparency, and relies on the conventional methods such as Certificate
Revocation List and Online Certificate Status Protocol [11, 22]. Moreover, it
uses multiple log maintainers which reduces usefulness of transparency, since a
domain owner has to check each of them for his fake certificates.

Afterwards several other public log based PKI architectures such as Ac-
countable Key Infrastructure (AKI) and Distributed Transparent Key Infrastruc-
ture (DTKI) have been proposed to solve these issues [10, 30]. AKI handles
common certificate operations including catastrophic events such as domain key
loss or compromise by distributing the accountability to new introduced entities.
Each entity monitors and reports the operations performed by the other entities.
In DTKI, each public log is only responsible for an associated set of domain,
and the existence and the revocation status of a certificate can be monitored by
either one of these logs or its mirrors.

Recent studies [5, 13, 24, 27] show that blockchain seems to be a promis-
ing technology to eliminate the trust to the public logs by decentralizing their
management.

1.1 Our Contributions

In this paper, we first revisit one of the most recent blockchain-based propos-
als for PKI (i.e., the Yakubov et al.’s scheme), and address its security and
privacy issues within their certificate validation architecture during TLS hand-
shake. More concretely, TLS clients can easily be deceived by fraudulent full
nodes or web services during certificate validation, because they cannot verify
the validity of the incoming responses. Besides, fake but valid certificates also

KORGAN: A New PKI Architecture Based on Permissioned-Blockchain 3

cannot be detected since only the hash values of the certificates are stored in
the blockchain. Finally, a malfunctioning CA may not revoke a compromised
certificate in a reasonable timeframe which would allow an attacker to exploit
this vulnerability before changing the revocation status of the certificate. In or-
der to eliminate these issues, we improve their scheme and propose a new PKI
architecture. In summary, our scheme provides the following features.

— We use Practical Byzantine Fault Tolerance Algorithm (PBFT) [4] as the
consensus mechanism where the consensus nodes hold a share of the blockchain
signing key and a block can only be generated if a threshold number of them
approve the block by signing it by their partial key share [21]. Since we
use a dynamic threshold signature scheme, once the TLS clients receive the
blockchain verification key (i.e., public key) they will not require to change
it even if the set of validators is dynamic.

— During TLS handshake, TLS clients can validate the certificates without re-
quiring to be a peer of the blockchain network. Moreover, they do not need
to make any further network connection and query other entities during this
process. In this respect, certificate and revocation transparency is now fully
provided so that the TLS certificates and their revocation status are pub-
licly monitored. Moreover, the privacy of the TLS clients is fully preserved
during certificate validation.

— CAs are not the sole authority to revoke certificates anymore, certificate
owners can now also revoke their certificates (if they still possess the pri-
vate key). Therefore, the risk of not revoking a compromised certificate in a
reasonable timeframe by a malfunctioning CA is minimised.

We implement a prototype ! of our proposal on Ethereum, and experiment
certificate validation. Our experimental results show that TLS clients can vali-
date certificates efficiently (in constant time) depending on only their processing
power and memory. Moreover, TLS handshake overhead is insignificant in our
scheme.

1.2 Roadmap

In Section 2, we briefly describe the most recently proposed blockchain based
PKI architectures, and highlight their drawbacks. In Section 3, we revisit Yakubov
et al.’s scheme and elaborate its security and privacy issues. In Section 4, we
first describe our motivation to use dynamic threshold signatures based permis-
sioned blockchains in our PKI architecture, and then describe PBFT consensus

! Our prototype is available on https://github.com/efficient-pki-blockchain.

https://github.com/efficient-pki-blockchain

4 Murat Yasin Kubilay, Mehmet Sabir Kiraz, Haci Ali Mantar

mechanism using dynamic threshold signatures. Finally, we present our new
PKI architecture, what we called KORGAN, which eliminates the highlighted
issues and provides a more efficient construction than the existing schemes. We
discuss our implementation and experimental results in Section 5, and conclude
the paper with future works in Section 7.

2 Related Work: Blockchain Based PKI Architectures

2.1 Blockchain-based Certificate and Revocation Transparency [24]

Wang et al. in [24] proposed to put all issued TLS certificates and their revo-
cation data (i.e., CRL, OCSP) to the blockchain by their corresponding web
servers. Each web server has a publishing key pair which is used to sign trans-
actions. A new publishing key has to be approved by a set of web servers us-
ing previously approved publishing keys. In this architecture, each transaction
has a validity period and the validity period of a certificate addition transaction
is shorter than the lifetime of a certificate. Therefore, a certificate is added to
the blockchain several times throughout its lifetime. If a certificate is revoked,
then the related OCSP response or CRL is also added to the blockchain in a
new transaction. During a TLS handshake, a web server sends the Merkle audit
proof (standard Merkle tree proof) of its latest certificate addition transaction
to the TLS clients. The TLS clients verify the Merkle proof using the block
headers which they receive from the P2P network asynchronously. However,
this architecture is subject to MITM kinds of attacks in the period of certificate
revocation and certificate addition transaction expiration time since certificate
addition transaction can be still valid and used for certificate validation even
though the certificate is revoked [13].

2.2 CertChain: Public and Efficient Certificate Audit based on
blockchain for TLS Connections [5]

CertChain [5] proposes a certificate management framework to publicly and
efficiently audit TLS certificates on a blockchain. In order to eliminate central-
ization problems of proof-of-work based consensus mechanisms [18, 25], the
authors introduce a new consensus protocol based on Ouroboros [12] which
incentivizes CAs and the miners for their honest behaviour. In this mecha-
nism, they introduce a new transaction structure which makes possible to search
the history of certificates without sequential traversal of all the blocks. Even
though CertChain proposes to find the revocation status of a certificate effi-
ciently through the bloom filters, it is not clear how the implementation of the
bloom filters fit to its transaction structure. TLS clients in CertChain ask the

KORGAN: A New PKI Architecture Based on Permissioned-Blockchain 5

validity of the certificates to the miners. They have to rely on their responses
which can make them subject to MITM kinds of attacks [13]. Moreover, the
privacy of the TLS clients is not preserved during the revocation query [28].

2.3 CertLedger: A new PKI model with Certificate Transparency based
on Blockchain [13]

The authors in [13] propose a new PKI architecture where all the TLS certifi-
cates are validated and stored in the blockchain. The entire certificate revocation
process and trusted certificate management are also conducted in the blockchain.
TLS clients are light nodes of the blockchain network and store block headers to
make a successful TLS handshake. However, becoming a peer of the blockchain
network brings overhead in terms of storage and network communication for
many of the TLS clients.

2.4 A Blockchain-based PKI Management Framework [27]

Recently, in [27], Yakubov et al. proposed a new blockchain based PKI archi-
tecture for issuing, revoking, and validating X.509 certificates. In this architec-
ture, certificate lifecycle is managed through smart contracts” on the blockchain.
Namely, after issuing a new certificate, CA generates a new transaction to add
the certificate to its smart contract. Upon validation of the transaction by the
consensus nodes and generation of a new block comprising the new transaction,
the hash of the certificate is added to an issuance list in the CA smart contract.
To revoke a certificate, CA adds its hash value to a revocation list in the smart
contract in a similar fashion. More concretely, a CA smart contract stores an ar-
ray for all its issued certificates’ hash values, a map for the revoked certificates
which are referenced by the certificates’ hash values, and the CA certificate it-
self. Clients can validate the certificates through either sending requests to web
services or triggering certificate validation smart contract. The CA smart con-
tract is created in such a way that its methods can only be triggered by its owner
CA.

3 Security and Privacy Analysis of the Yakubov et al.’s Scheme

In this section, we first briefly describe the Yakubov et al.’s Scheme and then
point out its security and privacy issues.

2 A smart contract [23] is a self enforcing digital application which contains data and an im-
mutable code to manage it. It can be triggered through transactions in the blockchain.

6 Murat Yasin Kubilay, Mehmet Sabir Kiraz, Haci Ali Mantar

3.1 High-Level Description of the Yakubov et al.’s Scheme

In this scheme, each CA has a dedicated smart contract for issuing and revoking
certificates in the blockchain. More concretely, a CA smart contract contains the
following features:

— certList := {< index;, certHash;, hashAlg;, date;>: 1 <i < o.} where index; is the
auto generated index for the i-th certificate, certHash; is the hash value of
the i-th issued certificate using hashAlg;, date; is the addition date of the
certificate to the blockchain, and o is the number of certificates.

— revocationMap := {< index;, revokeDate; >: 1 <i < a } where index; is the in-
dex of i-th certificate in the certList, revokeDate; is the revocation date of
the i-th certificate, and « is the number of certificates.

— Its CA certificate Certca.

Once a certificate is issued, the CA adds the hash value of the certificate
to certList. Similarly, to revoke a certificate, CA adds the index of the certList
and the revocation date to the revocationMap. The certificates in this proposal
basically comprise several custom X.509 extensions such as CA key identifier
and Issuer CA identifier:

— CA key identifier is populated with the CA smart contract address in the CA
certificates.

— Issuer CA identifier stores the smart contract address of the issuer of a cer-
tificate. This extension is populated for all the certificates apart from the
root CA certificates. In fact, it is used for building a trusted path and finding
the smart contract address of the issuer of a certificate during the certificate
validation.

Certificate validation can be performed in two different methods.

— In the first scheme, the certificate validation algorithm is implemented in a
smart contract. This smart contract triggers all the CA smart contracts in the
trusted path of a certificate. It validates the existence and the revocation sta-
tus of all the certificates within this path. This scheme can only be triggered
through a full node of the blockchain.

— In the second scheme, certificate validation is delegated to a web service.
The web service queries the revocation status of all certificates in the trust
chain one by one from a full node.

According to the experimental results, the performance of the second certifi-
cate validation scheme has a higher performance than the first one for the trust
chains up to 400 sub-CAs. We depict the TLS system architecture with these
certificate validation schemes in Figure 1.

KORGAN: A New PKI Architecture Based on Permissioned-Blockchain 7

Blockchain containing
smartcontracts of [1]

Lt]

‘

certificate to the Client.

=
[Certificate
Validation
Smart
Contract

CAy
Smart
Contract

ChAy
Smart
Contract

2" certificate validation smart contract.

Web Service or

Full-Nodem the Client.

1. During TLS handshake, the Server sends its TLS
2. The Client sends a certificate validation request
to a Web Service or a Full-Nodep, for some m.
2'. The Web Service validates the TLS certificate
by checking the status of each certificate in its trust

chain through their issuer's CA smart contract.

2". The Full-Node, validates the certificate through

3. The certificate validation result is returned back to

~
2. Validate
certificate 1 3. Result

—_—

E@q _TLS Certificate—| Q
“-""h_

TLS Server)
(example.cam) TLS Client

Fig. 1: The TLS System of Yakubov et al.’s Scheme

3.2 Fake but valid certificates cannot be identified

The transparency of the certificates is not fully provided in Yakubov et al.’s
scheme since only certHash;s are stored in the CA smart contracts. Since it is
infeasible to derive the subject of a certificate from certList, it would not be pos-
sible for a domain owner to identify and revoke a fraudulent certificate. Conse-
quently, during a TLS handshake, clients could accept fake but valid certificates
allowing MITM kinds of attacks [13].

3.3 Certificates may not be revoked in case of corrupted CAs

CAs may have to revoke their issued certificates for several reasons such as
key compromise or information change (e.g., DNS name). However, if a CA is
compromised or does not have a proper revocation process, the certificate may
not be revoked in a reasonable time frame or may not be revoked at all. This CA
dependent process makes the TLS clients vulnerable to MITM kinds of attacks
between the compromise and the revocation time of the certificate [13].

8 Murat Yasin Kubilay, Mehmet Sabir Kiraz, Haci Ali Mantar
3.4 Certificate validation services can be compromised

The proposed certificate validation schemes (described in Section 3.1) are sub-
ject to MITM kinds of attacks. TLS clients have to rely on either the full nodes
or the web service, and trust their certificate validation responses, since these re-
sponses do not contain any cryptographic proofs of correctness. Hence, clients
can easily be deceived if the full nodes® or web services are corrupted.

Building the trust chain of a certificate is one of the critical components of
certificate validation. This process is not fully clarified in the proposal which
may be a cause of MITM attacks as well. Namely, creation of CA smart con-
tracts on the blockchain is not subject to authorization, therefore an adversary
can deploy a smart contract for a malicious CA which stores fraudulent certifi-
cates issued by this fake CA. In this case, TLS clients could be subject to MITM
kinds of attacks since they are going to validate these fake certificates through
the proposed certificate validation schemes [13].

3.5 A privacy issue while certificate validation

As said before, TLS clients cannot validate the certificates themselves (trivially,
if they are not a full node of the blockchain). In that case, they have to query
a full node or a web service for this purpose. However, this process is not also
privacy preserving since these intermediary entities can track the web addresses
visited by the TLS clients.

4 Our Proposal: KORGAN

4.1 Our Motivation: Why Dynamic Threshold Signatures based
Permissioned Blockchains?

In order to eliminate the security and privacy issues mentioned in Section 3,
TLS clients should be able to use a publicly available blockchain which would
include all issued certificates as well as their status without relying any external
parties during a certificate validation process. However, this introduces an ex-
tra overhead for both permissionless and permissioned blockchains since they
have to first verify the validity of the blocks (or only the headers) [26]. More
concretely,

3 Full nodes do not execute a transaction which updates the state of the blockchain while running
certificate validation smart contract, but only queries blockchain data. Therefore, its malicious
behaviour does not have any impact on the blockchain.

KORGAN: A New PKI Architecture Based on Permissioned-Blockchain 9

— In case of permissionless blockchains, there is going to be a significant net-
work overhead for the TLS clients because they need to be a peer of the
blockchain network to determine the valid blocks due to the underlying con-
sensus mechanism [12, 18, 25].

— In case of permissioned blockchains, they have to query a certain number of
consensus nodes (i.e., 2N + 1 in PBFT [4] which requires 3N + 1 replicas
to tolerate N Byzantine failures). This requirement would also become a
burden with the increasing number of consensus nodes.

Therefore, becoming a peer of the blockchain network or querying consen-
sus nodes would going to be infeasible for many of the TLS clients due to the
limited storage capacity, processing power, or low bandwith. In order to elimi-
nate this overhead, we require authentic blocks which would enable TLS clients
to verify their validity efficiently. However, permissionless blockchains are un-
fortunately not suitable for generating signed blocks because any peer could
join the blockchain network and could generate a new block which makes de-
termination of a signature (private) key and distribution of the verification key to
the TLS clients infeasible. On the other hand, permissioned blockchains would
be more suitable for generating signed blocks since only a limited number of
consensus nodes are authorized to generate the new blocks. Still the following
requirements must be satisfied for an efficient and scalable solution:

1. Management of the verification key should be a convenient for the TLS
clients. Namely, after they receive an authentic verification key they should
not change it frequently.

2. There must be only one signature on a block to be optimally scalable.

3. The verification key should not be also changed with addition or removal of
the varying number of consensus nodes (i.e., in case of adding new nodes or
removing the existing ones). Otherwise, all TLS clients must subsequently
update the verification key which would also make the system practically
infeasible.

To tackle these requirements, we propose to use dynamic threshold signa-
ture schemes among the consensus nodes for signing the new blocks [21]. As
in a typical threshold signature scheme, there is going to be only one public
key (for verifying a signature) of the overall system, and the private key shares
will be owned and managed by the corresponding consensus nodes. If at least a
threshold number of consensus nodes agree on a block, then they are going to
sign the new block with their private key shares to generate a valid signature.

We highlight that Facebook Libra uses a BFT based consensus algorithm
which also utilizes threshold signatures [2, 3, 29], however, their solution does

10 Murat Yasin Kubilay, Mehmet Sabir Kiraz, Haci Ali Mantar

not propose dynamic versions of threshold schemes which would incur signif-
icant overhead to our scheme. This is because it does not the meet the above-
mentioned third requirement, and a change in the underlying consensus nodes
would result in an update in the clients’ public (verification) keys. Thanks to
the authors of [21], we have efficient threshold schemes which indeed meet all
the requirements and ensure that the remaining consensus nodes are able to add
new consensus nodes or remove the corrupted nodes efficiently through only
updating their secret shares without changing the overall verification key.

4.2 Our Approach: PBFT Consensus Mechanisms with Dynamic
Threshold Signatures

The seminal Practical Byzantine Fault Tolerance (PBFT) algorithm aims to
reach consensus through Byzantine nodes that tolerates Byzantine failures with
low overhead [4]. In particular, PBFT basically uses state-machine replication
and replica voting for changing the state in the network. All nodes acting as
validators* have equal votes, and validation is executed through multiple rounds
to reach the consensus. PBFT utilizes digital signatures to ensure the authentic-
ity of the messages. Nodes have to verify all the signatures received from their
peers during each phase of the consensus rounds.

In our blockchain architecture, we utilize a dynamic threshold signature
scheme on the PBFT consensus mechanism, and a valid block can only be gen-
erated if at least ¢ out of ¢ consensus nodes sign the new block [21]. A key
generation setup for threshold signature scheme is going to be executed among
the predefined consensus nodes as follows:

Threshold Key Generation Setup Among Consensus Nodes We assume that
an existing PBFT blockchain with 3N + 1 consensus nodes has been already
setup [4]. Namely, the key generation ceremony will be completed using the
underlying PBFT consensus mechanism. More concretely,

1. Each i-th consensus node randomly chooses its secret key share SK; and
executes the threshold key generation steps (like in [21]), and publishes their
intermediate outputs on the blockchain (as a transaction). In particular, the
consensus nodes use the underlying blockchain as a public bulletin board to
publish and retrieve the necessary data to execute the key generation setup

properly.

4 Trivially, as in any permissioned blockchain, we require the validators to be selected from
political and geographical disparate entities.

KORGAN: A New PKI Architecture Based on Permissioned-Blockchain 11

2. Each consensus node queries the blockchain until all the consensus nodes
publish their intermediate outputs. A key generation setup would be com-
pleted only after all the pre-defined consensus nodes participate to the cer-
emony”. If the steps are validated through the consensus mechanism, (PK,
(SK1, -+ ,SK3n41)) become the verification key and the signing key share of

the i-th consensus node, respectively.

3. Once all the consensus nodes participate to the key generation ceremony, the
selected leader constructs the overall public key and adds as a new transac-

tion.

Once the key generation ceremony is completed successfully, the consensus
nodes (i.e., the signers) will only generate signed blocks.

Blockchain containing our
smart contracts

Block Header

Block Number
Block Generation Time

i T oy H

e ey
CA
Smart

1. Retrieve
Block Header
&
State Merkle Proof
(asynchronously))

2. TLS Certificate &
Block Header &

State Merkle Proofs
@ for each certificate

in the trust chain
TLS Server

(example.com) TLS Client

v

Previous Block Hash

Transaction Root
State Root
Block Signature

1. TLS Server asynchronously retrieves block
headers and state Merkle proofs for its certicate
trust chain.

2. During TLS handshake it sends the latest block
header and the proofs to the client.

3. The TLS client first validates the block header
using PK where PK denotes the public key of the
consensus nodes, then validates state Merkle
proofs using state root in the block header and
the TLS certicate chain.

3. Validate certificate

Fig.2: The TLS System of KORGAN

Block Generation through PBFT with Dynamic Threshold Signatures We
now have a dynamic threshold signature scheme on top of PBFT. Note that the
underlying consensus mechanism would run in rounds with one node acting as

5 If they do not take part in the ceremony, they will not be able to send signed messages during

the consensus phase.

12 Murat Yasin Kubilay, Mehmet Sabir Kiraz, Haci Ali Mantar

a leader and others as validators. In order to sign a new block, the consensus
nodes (i.e., the signers) are going to execute the following threshold signature
generation ceremony to generate a valid block.

— Pre-prepare phase: The goal of this phase is to ensure that a majority of
honest nodes has agreed on the number of the block being processed for a
leader’s request. In this flow, the leader initiates the consensus process by
sending its partially signed PRE-PREPARE message (using Signsk,) which
is a block proposal containing a certain number of transactions.

— Prepare phase: Upon receiving the PRE-PREPARE message, every node
in the consensus group checks the correctness and the validity of the block,
and multicasts its partially signed PREPARE message (using Signgsk;) to all
the other nodes.

— Commit phase: Based on the received PREPARE messages, each node
combines ¢ signatures, computes a valid signed message, and then multi-
casts a signed COMMIT message (i.e., "YES/NO") to the consensus group.
The new block is committed to the blockchain only if a valid signature is
generated.

At the end of the commit phase, all honest nodes in the consensus group
would have the same view regarding to the state of blockchain by either accept-
ing or rejecting the block proposal, thereby achieving the confirmed transaction.
Consequently, the authenticity of a block (or a block header) can easily be veri-
fied by any TLS client using the verification key PK. Since the underlying con-
sensus mechanism relies on PBFT, up to N nodes could suffer from Byzantine
failure. Therefore, at least = 2N 4 1 out of 3N 4 1 nodes should be trustworthy
to preserve the same security level of the underlying PBFT.

Adding and Removing Consensus Nodes Upon addition and removal of the
consensus nodes, private key shares of all the consensus nodes has to be updated
without changing the overall (PK,SK) as described in [21]. Furthermore, the
threshold ¢ has to be updated in such a way that it has to preserve the same
security level of the underlying PBFT.

Assume that we have 3N + 1 consensus nodes and ¢ = 2N + 1. If we want to
add (or remove) 3m nodes, then we have in total 3(N +m)+1 (or 3(N —m) + 1
in case of removal) nodes. Then, r must become 2(N +m) + 1 (or 2(N —m) + 1
in case of removal) to reach the same security level of PBFT.

KORGAN: A New PKI Architecture Based on Permissioned-Blockchain 13
4.3 The CA Smart Contract in KORGAN

As in the Yakubov et al’s scheme, in KORGAN, we assume that CAs validate
the domains (i.e., ACME protocol [1] for DV SSL Certificates 6y using the pro-
cesses described in their certificate policy and certificate practice statement doc-
uments, and issue the certificate afterwards. In the following, we will describe
the blockchain structure and the CA smart contracts in KORGAN.

We use the permissioned blockchain with the PBFT consensus mechanism
(described in Section 4.2) which allows TLS clients to easily verify the final
state of a certificate. To enable this, consensus nodes maintain a State Merkle
Tree (SMT)’ which is used to store and verify the state of all accounts, smart
contract codes and the data within the smart contracts. SMT is updated with
each block according to the block transactions and its Merkle root is put into
the generated block header. A sample block header of KORGAN’s architecture
is depicted in Figure 2. Since all the certificates and their revocation status are
stored in the CA smart contracts, the state of each certificate can also be tracked
in every block. Moreover, their state can be verified using the Merkle proof
generated from the SMT and the Merkle root. Since Merkle root is stored in the
signed block header and its authenticity can be verified by PK, TLS clients can
easily check the validity of a certificate without relying any parties during TLS
handshake.

Algorithm 1 Verify Header

>header denotes the block header of the block which will be used to validate the state of the
certificates, PK denotes the public key of the blockchain, latestAcceptableTime denotes the
latest generation date of the header acceptible by the TLS client
function VERIFYHEADER (header, PK, latestAcceptableTime)
>verify that the block header is genuine
if verityBCHeaderSgn(header.signature, PK) = false then
return false
end if
>verify that the block header is not too old
if (header.timestamp > latestAcceptableTime AND
header.timestamp < tyoy) = false then
return false
end if
>otherwise return true
return frue
end function

6 Domain Validation SSL certificates are issued after proving the right to use the domain.
7 Modified Merkle Patricia Tree [9] can be used for this purpose where search, insert and update
operations can be performed in logarithmic time.

14 Murat Yasin Kubilay, Mehmet Sabir Kiraz, Haci Ali Mantar

Instead of an array with certificate hash values and a map for the revoked
certificates, KORGAN modifies the CA smart contract in the Yakubov et al.’s
scheme by storing the following two maps:

— The first map is certURIMap := {(uri;, < certHash; ; >):1 <i<o,1 <
J < B} where uri; is the i-th certificate subject (or subject alternative name),
certHash; j is the hash of the j-th certificate of the i-th uri, and o, f € NT.
This map provides the transparency of the certificates, and the domain own-
ers can use it to monitor® the blockchain if a fraudulent certificate is issued
for their web servers.

— The second map is used to track the revocation status of the certificates
and represented as certRevocationMap := {< certHashy, rsy >: 1 <k <
v} where certHashy is the k-th certificate hash, rsy is the revocation status
(“revoked", “valid") of the k-th certificate, and y € N

Algorithm 2 Validate Certificate Chain

>certChain denotes the CA certificates in TLS certificate trust chain, proofForCertStatusList
denotes the list of Merkle proofs for the status of each certificate in the trust chain except root
CA certificate
function VALIDATECERTIFICATECHAIN(certChain, proofList, trustedCAList, header)
>verify that the root CA in the certificate chain is in the trusted CA address list
if certChain[certChain.length].caKeyldentifier ¢ addrTrustedCAList then
return false
end if
>verify that the certificates in the TLS chain (except root CA certificate) are not revoked.
note that if the certificates doesn’t exist in the smart contract merkle proofs can not be verified
for i <— 1 to certChain.length—1 do
cert < certChainli
certCA < certChainli+ 1]
if ValidateCertificate(cert, certCA, proofListi], header.stateRoot) = false then
return false
end if
end for
>otherwise return true
return frue
end function

In our CA smart contract, a certificate can only be added to the blockchain
by its issuing CA. However, the status of the certificate can be changed as “re-
voked" by both its issuing CA and owner. A certificate owner can only trigger

8 Event listeners can be used for this purpose which triggers certain events (e.g., SMS, e-mail
etc.) in case a certain condition is satisfied in the smart contract.

KORGAN: A New PKI Architecture Based on Permissioned-Blockchain 15

the revocation method of the smart contract if he can prove his ownership to the
certificate. Therefore, this method requires a signature generated by the private
key of the certificate.

Note that block confirmation time must be short enough to discourage adver-
saries to perform a MITM kind of attack during block time. In this respect, due
to the underlying PBFT mechanism and dynamic threshold signature scheme,
our consensus scheme provides high throughput and low transaction latency
similar to LibraBFT [16] which meets our requirements.

4.4 Certificate Validation of KORGAN in SSL/TLS

TLS clients are not required to be full or light nodes of the blockchain, thus do
not have to retrieve any blocks (or headers) from the blockchain network. For
certificate validation, they only need to store PK to verify the authenticity of the
block headers and the trusted root CAs’ smart contract addresses to construct
the trust chain. On the other hand, TLS servers have to periodically retrieve the
block headers and the Merkle proofs associated with their TLS certificate chain
from a full node of the blockchain. The retrieval process is independent of the
TLS handshake and can be conducted asynchronously.

KORGAN does not change the TLS handshake protocol but introduces new
TLS extensions to be used during the ServerCertificate step of the protocol (see
Figure 2). In these extensions, a TLS server sends the latest block header, cer-
tificate chain, and a list of Merkle proofs for the revocation status of each cer-
tificate in the chain to the TLS client. A TLS client performs the following steps
to validate the TLS certificate.

1. Verifies the signature of the block header by PK, and reads the authentic
block generation time and the SMT root from the block header.

2. Checks whether the block generation time is fresh enough according to its
security settings. However the acceptable freshness period should not be
shorter than the block time and it should not reject the latest block header.

3. Checks whether the TLS certificate is issued from a trusted root CA by
searching the smart contract address (CA key identifier) of the root CA in its
trusted list.

4. Validates each certificate in the trust chain by validating the Merkle proofs
using the certificate’s hash value, its issuing CA’s smart contract address
(Issuer CA identifier) and the SMT root.

5. Checks the revocation status of each certificate in the trust chain (except root
CA certificate) and verifies that none of them are revoked.

The first and second step of our certificate validation algorithm is described
in more detail in Algorithm 1, third step in Algorithm 2, and finally fourth and

16 Murat Yasin Kubilay, Mehmet Sabir Kiraz, Haci Ali Mantar

Algorithm 3 Validate Certificate

>cert denotes the certificate to be validated, cerrCA denotes the certificate of cert’s issuer,
merkleProof is the merkle proof generated from SMT for cert, smtRoot denotes the root hash
value of SMT
function VALIDATECERTIFICATE(cert, certCA, merkleProo f, smtRoot)
caScAddr < cert.issuerCAldentifier
certHash < Hash(cert)
>check whether certCA is the the issuer of cert
if caSCAddr # certCA.caKeyldentifier then
return false
end if
>verify that certificate is valid using the state proof generated for the certificate
if verifyStateMerkleProof (merkleProof, smtRoot,
certHash, caScAddr) # “valid" then
return false
end if
>otherwise return true
return true
end function

Table 1: TLS Handshake Experimental Results

Number of TLS Certificates|Header Data Size| Account Proof Data Size |Storage Proof Data Size | TLS Handshake Overhead Total
in the CA Smart Contract (bytes) (bytes) (bytes) (bytes)
1 535 758 590 1883
100 535 758 1089 2382
1.000 535 758 1557 2850
10.000 535 758 2027 3320

KORGAN: A New PKI Architecture Based on Permissioned-Blockchain 17

fifth steps in Algorithm 2 and 3. We would like to highlight that our algorithm
does not require any further network connections, thus the privacy of the TLS
clients is also fully preserved. The execution time of the algorithm is not effected
from the network latency and only depends on the processing capability of the
TLS clients.

5 Implementation and Experimental Results

We have implemented KORGAN by updating the CA smart contract of Yakubov
et al.’s scheme® [27] and experimented certificate validation with our scheme.
For the experiments, we deployed two smart contracts on private Ethereum net-
work so that we had two CAs in the trust chain. For generation and verification
of the state Merkle proofs, we used Eth-proof node-js API [31]. We executed
our experiments on a Macbook Pro with Intel Core i7 (3.1 Ghz) CPU, 16 GB of
memory and macOS Majove OS.

We demonstrate the experimental results for TLS handshake overhead in Ta-
ble 1 and elaborate them as follows. First, Header denotes the size of the block
header in Ethereum, therefore its size is constant and independent of certificates
in the smart contract. Second, AccountProof is the proof generated to validate
the overall state of the smart contract (i.e., the account) comprising its balance,
code, and the stored data. Note that its size grows logarithmically with the num-
ber of smart contracts in the blockchain due to its Patricia Tree structure [9]. In
our first experiment, there was only one CA smart contract, therefore, the size of
the AccountProof size is the same independently of number of TLS certificates.
Third, StorageProof is also generated from Storage Merkle-Patricia Tree which
is different for all smart contracts in Ethereum. The root value of this tree is also
used while computing the state of the account. The size of the StorageProof is
logr n X c1 + ¢, where n is the number certificates in an account, ¢ is a con-
stant calculated by adding hash length forming the Merkle proof with the path
length between the nodes, and c; is the size of input where its hash is calculated
to generate a leaf node in the Merkle tree. Hence, the overall TLS Handshake
overhead in our scheme is calculated as

|Header| + (|Account Proof|+ |StorageProof|) x n

where 7 is the number of CAs in the TLS certificate chain.

We note that certificate validation network overhead is not given in Yakubov
et al.’s scheme. On the other hand in the conventional PKI, the size of a CRL
changes with respect to the number of certificates issued by the CA. Even though

9 https://github.com/snt-sedan/pki-blockchain

18 Murat Yasin Kubilay, Mehmet Sabir Kiraz, Haci Ali Mantar

Table 2: Certificate Validation Durations Based on # of TLS Certificates

Number of TLS Certificates|Certificate Validation
in the CA Smart Contract Duration (ms)
1 55,56
100 56,37
1.000 59,24
10.000 60,45

there are CRLs ranging up to 28 MB!?, the CRL size for the median certificate is
calculated as 51 KB in [17]. In case of OCSP usage for revocation checking, the
average size for an OCSP response is about ~4KB. Moreover, the total network
overhead increases with respect to the length of the trust chain.

Our experimental results in Table 2 & 3 demonstrate that the number of
certificates in a CA smart contract and the length of the trust chain does not sig-
nificantly effect the certificate validation duration. On the other hand, in conven-
tional PKI, if the revocation check of a certificate is performed through OCSP,
then the latency only due to the network traffic is around 200 ms [20]. The total
duration increases with respect to the number of certificates in the trust chain.
Since the size of CRLs are much bigger than OCSP responses, their average
downloading latency is also greater then OCSP [19].

Table 3: Trust Chain Length (number of CA smart contracts™®)

Trustchain Length Certificate Validation
(number of CA smart contracts™) Duration (ms)
1 59,24
2 59,85
3 60,13
5 60,67

* There are 1000 certificates in each smart contract.

10 Apple hosts 28MB of CRL at http://crl.apple.com/wudrca. crl

http://crl.apple.com/wwdrca.crl

KORGAN: A New PKI Architecture Based on Permissioned-Blockchain 19

6 Discussion

In our proposal, we require a dynamic threshold signature scheme to keep the
verification key unchanged in the TLS clients, and preserve the same security
level of PBFT independently from adding and removing a consensus node. It is
clear that the change in the number of consensus nodes does not affect the faulty
assumption of PBFT which does not exceed 33%. Since the nodes in PBFT
are stateless, once a node is removed (which cannot be a part of the consensus
mechanism anymore) it will not be able to have an impact on the consensus.

However, in our proposal, it is probable that removed nodes can become ac-
tive and colluding adversaries (considering dynamic adversaries instead of static
adversaries). Since each node possesses a partial private key share SKj;, ¢ com-
promised nodes (with possibly colluding removed ones) still will be able to use
their SK;s to generate a fake block by creating a valid signature without running
a consensus protocol. Therefore, the acceptable level of the threshold ¢ could be
changed dynamically. To make the system «-tolerant where o < ¢, we accept
to remove & nodes without changing the (PK,SK) key pair. However, if more
then o nodes are removed, (PK,SK) should be updated and the new PK should
be distributed to the TLS clients. We would like to highlight that the removed
nodes not necessarily become colluding adversaries but for the sake of security
we assume that PK should be changed once o nodes have been removed. The
number ¢ can be adjusted according to security considerations, however we do
not expect this removal frequently as the nodes are chosen from reputable or-
ganizations like universities, large world-wide companies (like Google), IETF,
IEEE, and NIST.

7 Conclusion and Future Work

There have been recent serious security incidents due to misbehaving CAs which
have issued fraudulent certificates. To make CAs more transparent, various pub-
lic log based and blockchain based PKI models are proposed. In this paper, we
point out security and privacy issues of one of the most recent proposals (belong-
ing to Yakubov et al.) and eliminate them by proposing a new PKI architecture,
what we called KORGAN. KORGAN is based on permissioned blockchain and
utilizing PBFT where the blocks are signed through dynamic threshold signa-
ture scheme among consensus nodes. Due to the signed blocks, TLS clients can
now easily verify the final states of certificates without requiring to be a peer of
the blockchain network. Our experimental results on Ethereum demonstrate that
KORGAN does not bring any significant computational and network overhead
during certificate validation. Even more, the duration of our certificate valida-
tion is less than the previous schemes.

20 Murat Yasin Kubilay, Mehmet Sabir Kiraz, Haci Ali Mantar

Further research work mainly includes modifying KORGAN in such a way
that generating CA smart contracts could be restricted to only trustworthy CAs.
For this purpose, an international board can be established to audit the CAs
and sign the smart contract generation transaction using a threshold signature
scheme as well.

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

(10]

[11]

[12]

Bibliography

Barnes R, Hoffman-Andrews J, McCarney D (2019) Automatic Certificate
Management Environment (ACME). RFC 8555 (Standard)

Boneh D, Lynn B, Shacham H (2001) Short Signatures from the Weil Pair-
ing. In: Advances in Cryptology — ASIACRYPT 2001, Springer, Berlin,
Gold Coast, Australia, pp 514-532

Cachin C, Kursawe K, Shoup V (2005) Random Oracles in Constantino-
ple: Practical Asynchronous Byzantine Agreement Using Cryptography.
Journal of Cryptology 18(3):219-246

Castro M, Liskov B (2002) Practical Byzantine Fault Tolerance and Proac-
tive Recovery. ACM Transactions on Computer Systems 20(4):398-461
Chen J, Yao S, Yuan Q, He K, Ji S, Du R (2018) CertChain: Public and
efficient certificate audit based on blockchain for TLS connections. In:
IEEE INFOCOM 2018-IEEE Conference on Computer Communications,
IEEE, Honolulu, HI, USA, pp 2060-2068

Conti M, Dragoni N, Lesyk V (2016) A Survey of Man In The Middle
Attacks. IEEE Communications Surveys Tutorials 18(3):2027-2051
Dierks, T and Rescorla, E (2018) The Transport Layer Security (TLS) Pro-
tocol Version 1.3. RFC 8446 (Proposed Standard)

DigiNotar public report (2012) Black tulip report of the investigation into
the DigiNotar certificate authority breach. Fox-IT

Ethereum (2019) Patricia Tree. https://github.com/ethereum/wiki/
wiki/Patricia-Tree

Hyun-Jin Kim T, Huang L, Perrig A, Jackson C, Gligor V (2013) Ac-
countable key infrastructure (AKI): A proposal for a public-key valida-
tion infrastructure. In: Proceedings of the 22nd international conference
on World Wide Web, Association for Computing Machinery, New York,
USA, Rio de Janeiro, Brazil, pp 679-690

ITU-T X509 (2012) Information Technology—Open Systems
Interconnection-The Directory: Public-Key and Attribute Certificate
Frameworks. International Telecommunications Union, Geneva, Switzer-
land

Kiayias A, Russell A, David B, Oliynykov R (2017) Ouroboros: A Prov-
ably Secure Proof-of-Stake Blockchain Protocol. In: Advances in Cryptol-
ogy — CRYPTO 2017, Springer International Publishing, Santa Barbara,
CA, USA, pp 357-388

https://www.researchgate.net/publication/269333601_Black_Tulip_Report_of_the_investigation_into_the_DigiNotar_Certificate_Authority_breach
https://www.researchgate.net/publication/269333601_Black_Tulip_Report_of_the_investigation_into_the_DigiNotar_Certificate_Authority_breach
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://github.com/ethereum/wiki/wiki/Patricia-Tree

22

[13]

[14]

[15]
[16]

[17]

[18]
[19]
[20]
[21]
(22]

(23]

[24]

[25]

[26]

[27]

Murat Yasin Kubilay, Mehmet Sabir Kiraz, Haci Ali Mantar

Kubilay MY, Kiraz MS, Mantar HA (2019) CertLedger: A New PKI
Model with Certificate Transparency Based on Blockchain. Computer &
Security 85:333-352

Langley @A (2015) Maintaining digital certificate se-
curity. https://security.googleblog.com/2015/03/
maintaining-digital-certificate-security.html

Laurie, B, Langley, A and Kasper, E (2013) Certificate Transparency. RFC
6962 (Experimental)

Libra (2019) LibraBFT Consensus Performance. https://developers.
libra.org/docs/crates/consensus

Liu Y, Tome W, Zhang L, Choffnes D, Levin D, Maggs B, Mislove A,
Schulman A, Wilson C (2015) An end-to-end measurement of certificate
revocation in the web’s PKI. In: Proceedings of the 2015 Internet Mea-
surement Conference, Association for Computing Machinery, New York,
USA, Tokyo Japan, pp 183-196

Nakamoto S (2008) Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf

Netcraft (????) NetCraft. CRL Sites in September 2019. https://
uptime.netcraft.com/up/reports/performance/CRL

Netcraft (2019) NetCraft. OCSP Server Performance in September 2019.
https://uptime.netcraft.com/up/reports/performance/0CSP
Noack A, Spitz S (2009) Dynamic Threshold Cryptosystem without Group
Manager. Network Protocols & Algorithms 1(1):108-121

Santesson S (2019) X.509 Internet Public Key Infrastructure Online Cer-
tificate Status Protocol - OCSP. RFC 6960 (Standard)

Szabo N (1997) Formalizing and Securing Relationships on Public Net-
works. https://firstmonday.org/ojs/index.php/fm/article/
view/548

Wang Z, Lin J, Cai Q, Wang Q, Jing J, Zha D (2019) Blockchain-
Based Certificate Transparency and Revocation Transparency. In: Finan-
cial Cryptography and Data Security, Springer, Nieuwpoort, Curagao, pp
144-162

Wood G (2014) Ethereum: A Secure Decentralised Generalised Transac-
tion Ledger. http://gavwood. com/paper . pdf

Wiist K, Gervais A (2018) Do you need a blockchain? In: 2018 Crypto Val-
ley Conference on Blockchain Technology (CVCBT), IEEE, Zug, Switzer-
land, pp 45-54

Yakubov A, Shbair WM, Wallbom A, Sanda D, State R (2018) A
blockchain-based PKI management framework. In: NOMS 2018 - 2018
IEEE/IFIP Network Operations and Management Symposium, IEEE,
Taipei, Taiwan, pp 1-6

https://security.googleblog.com/2015/03/maintaining-digital-certificate-security.html
https://security.googleblog.com/2015/03/maintaining-digital-certificate-security.html
https://developers.libra.org/docs/crates/consensus
https://developers.libra.org/docs/crates/consensus
https://bitcoin.org/bitcoin.pdf
https://uptime.netcraft.com/up/reports/performance/CRL
https://uptime.netcraft.com/up/reports/performance/CRL
https://uptime.netcraft.com/up/reports/performance/OCSP
https://firstmonday.org/ojs/index.php/fm/article/view/548
https://firstmonday.org/ojs/index.php/fm/article/view/548
http://gavwood.com/paper.pdf

KORGAN: A New PKI Architecture Based on Permissioned-Blockchain 23

[28] Yao S, Chen J, He K, Du R, Zhu T, Chen X (2019) PBCert: Privacy-
Preserving Blockchain-Based Certificate Status Validation Toward Mass
Storage Management. IEEE Access 7:6117-6128

[29] Yin M, Malkhi D, Reiter MK, Gueta G, Abraham I (2019) HotStuff: BFT
Consensus with Linearity and Responsiveness. In: Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing, Association for
Computing Machinery, New York, USA, Toronto, Canada, pp 347-356

[30] YulJ, Cheval V, Ryan M (2016) DTKI: A New Formalized PKI with Veri-
fiable Trusted Parties. The Computer Journal 59(11):1695-1713

[31] Zac M (2019) Eth Proof 2.0.0. https://github.com/zmitton/
eth-proof

https://github.com/zmitton/eth-proof
https://github.com/zmitton/eth-proof

	KORGAN: An Efficient PKI Architecture Based on PBFT Through Dynamic Threshold Signatures

