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Abstract

Encrypted multi-maps (EMMs) enable clients to outsource the storage of a multi-map to a potentially
untrusted server while maintaining the ability to perform operations in a privacy-preserving manner.
EMMs are an important primitive as they are an integral building block for many practical applications
such as searchable encryption and encrypted databases. In this work, we formally examine the tradeoffs
between privacy and efficiency for EMMs.

Currently, all known dynamic EMMs with constant overhead reveal if two operations are performed
on the same key or not that we denote as the global key-equality pattern. In our main result, we
present strong evidence that the leakage of the global key-equality pattern is inherent for any dy-
namic EMM construction with O(1) efficiency. In particular, we consider the slightly smaller leakage
of decoupled key-equality pattern where leakage of key-equality between update and query operations is
decoupled and the adversary only learns whether two operations of the same type are performed on the
same key or not. We show that any EMM with at most decoupled key-equality pattern leakage incurs
Ω(lgn) overhead in the leakage cell probe model . This is tight as there exist ORAM-based constructions
of EMMs with logarithmic slowdown that leak no more than the decoupled key-equality pattern (and
actually, much less). Furthermore, we present stronger lower bounds that encrypted multi-maps leaking
at most the decoupled key-equality pattern but are able to perform one of either the update or query
operations in the plaintext still require Ω(lgn) overhead. Finally, we extend our lower bounds to show
that dynamic, response-hiding searchable encryption schemes must also incur Ω(lgn) overhead even when
one of either the document updates or searches may be performed in the plaintext.

1 Introduction

In this work, we study encrypted multi-maps [CGKO11, KM19], which is an example of structured encryp-
tion (see Chase and Kamara [CK]). Structured encryption considers the problem of a client that wishes to
outsource the storage of an encrypted data structure to an untrusted server in a privacy-preserving man-
ner. In addition, the structured encryption scheme must enable the client to perform operations over the
encrypted, outsourced data structure in an efficient manner. For privacy, the goal is simply to reveal as little
information as possible about the data structure as well as the performed operations.

Encrypted multi-maps (EMMs) are a specific structured encryption scheme for outsourcing multi-maps.
For multi-maps, a client is able to update the tuple of values associated with a key as well as query for
the value tuple associated with any key. In this paper, we focus on encrypted multi-maps due to its many
important practical applications. Two examples of applications are searchable encryption and encrypted
databases. The construction of private and efficient encrypted multi-maps is an important problem to
enable the deployment of these privacy-preserving applications in the real-world.
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Searchable encryption (also known as encrypted search) was first introduced by Song et al. [SWP00]
and has been a well studied topic in the past couple decades (see [BDCOP04, CGKO11, BBO07, KPR12,
CJJ+13, CJJ+14, CT14, SPS14, ANSS16, Bos16, MM16, BMO17, DP17, KM17, PPY18, ASS18, DPP18,
KMO18, KM19] as some examples). The representative scenario for searchable encryption considers a client
that owns a large corpus of documents and an untrusted server with large amounts of available storage.
The goal of searchable encryption is to enable the client to outsource the storage of the document corpus to
the server. For functionality, the client wishes to maintain the ability to efficiently search over the corpus
and retrieve the identifiers of all documents containing a specific keyword as well as update documents by
inserting, deleting and/or modifying keywords. In terms of privacy, the client wishes to keep any information
related to the contents of the document corpus and the queries hidden from the server. In many works,
searchable encryption schemes utilize encrypted multi-maps as their main building block to map keywords
to documents that contain the keyword. We note that various searchable encryption schemes have utilized
encrypted multi-maps in other, more sophisticated, manners as well.

Another important application is encrypted databases. In this problem, the goal is to encrypt and
outsource a database while enabling the database owner to privately perform database operations. Earlier
works on encrypted databases [PRZB11] utilized property-preserving encryption schemes such as determinis-
tic [BBO07] and order-preserving encryption [BCLO09, BCO11, BLR+15, LW16]. It has been shown that en-
crypted databases built from property-preserving encryption may have security vulnerabilities [NKW15]. In
the most recent work, a scheme for encrypting SQL databases was presented by Kamara and Moataz [KM18]
utilizing encrypted multi-maps instead of property-preserving encryption.

Due to these applications, the problem of constructing both efficient and private encrypted multi-maps
is very important. Unfortunately, the only way that is currently known to achieve very strong levels of
privacy is using very expensive cryptographic primitives such as oblivious RAM [Ost, GO96] and/or fully
homomorphic encryption [Gen]. These schemes only leak the size of inputs and outputs of operations,
which can also be mitigated by using techniques from recent volume-hiding schemes [KM19, PPYY19].
However, the large performance overheads of these expensive cryptographic primitives preclude them from
being used in practical applications. Instead, structured encryption schemes take a different approach by
slightly relaxing privacy requirements with the hope of improving efficiency. In particular, the privacy of
searchable encryption schemes is parameterized by a leakage function. The leakage function is an upper
bound on the information revealed to the adversarial server when processing queries over a stored document
corpus. Therefore, the design of encrypted multi-map schemes consists of minimizing the leakage function
while ensuring the overhead is as small as possible. Using this relaxed variant of privacy, several dynamic
encrypted multi-map schemes such as [CGKO11, KPR12] with constant overhead have been presented.
However, all these schemes have shown to have non-trivial leakage including the global key-equality pattern
that enables the adversary to learn whether two multi-map operations are performed on the same key or
not.

On the other hand, there has been a long line of work starting with the paper of Islam et al. [IKK12]
that evaluate the negative privacy consequences of various leakage profiles. Using various and continuously
improving frequency analysis and statistical learning methods [CGPR15, NKW15, PW16], it has been shown
that the contents of documents and/or the queried keywords may be compromised by using access pattern
leakage that shows whether a specific memory location is accessed by different queries or not. These ideas
are further extended to present attacks on schemes that enable clients to perform range queries in [LMP18,
GLMP]. In another line of work, Zhang et al. [ZKP16] consider the scenario where adversaries may inject
files into encrypted search schemes. By carefully arranging keywords in the injected files, it is shown that
viewing the identifiers of matching injected documents of any query enables the adversary to determine the
queried keyword with perfect accuracy. Finally, a recent work by Kornaropoulos et al. [KPT19] show new
non-parameteric estimation techniques to utilize global key-equality pattern leakage to compromise privacy
in certain settings.

Therefore, it is important to ensure that encrypted multi-map constructions are both efficient (to be
deployable in practice) as well as only leak small amounts of information (to ensure privacy is not com-
promised). In this work, we explore and present formal tradeoffs of privacy and efficiency for encrypted
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multi-maps.

1.1 Our Results

In this section, we present our lower bounds in the leakage cell probe model. We start by focusing on encrypted
multi-maps. Afterwards, we move onto dynamic searchable encryption schemes.

To start, we briefly describe how the efficiency of schemes in the leakage cell probe model is measured.
Typically, data structures measure efficiency amortized over the number of operations. This approach
cannot be used for data structures that may return outputs of varying sizes. As a concrete example, let
us consider multi-maps. Roughly speaking, a multi-map is a data structure that maintains a sequence of
pairs (key, vals), where key is taken from a key universe K and vals is a tuple of varying length of values
from a value universe V. A multi-map supports Get(key) operations, that return the tuple associated with
key, and Add(key, val) operations, that add value val ∈ V to the tuple associated with key. So two Get
operations might return tuples of values of vastly different sizes and thus cannot be expected to incur the
same costs. So, we measure the query efficiency as the amount of server computation per returned value.
The problem does not occur for Add updates operations as they operate on a single value and thus we can
consider the update efficiency as the amount of server computation per Add operation. The efficiency of a
dynamic scheme is the maximum of the update and query efficiency.

Encrypted multi-maps. We start by describing our results for encrypted multi-maps and we note our
results also apply to encrypted arrays (which can be interpreted as oblivious RAMs with larger leakage).
The efficiency of encrypted multi-maps crucially depends on the leakage one is willing to tolerate. If no
security is sought and each operation may completely leak its inputs, the multi-map problem is identical to
the classic dynamic dictionary problem (see [Pag02] for a survey). One can obtain constructions of plaintext
multi-maps with constant amortized efficiency by utilizing, for example, the optimal dynamic perfect hashing
scheme in [DKM+94]. In this case, all operations are performed in the plaintext and the inputs and outputs
of all operations are revealed.

At the other hand of the leakage spectrum, there exist folklore solutions of encrypted multi-maps with
minimal leakage that can be obtained by using efficient ORAMs [PPRY18, AKL+] while achieving logarithmic
overhead for each updated value in update operations and for each returned value in query operations. In
particular, these folklore solutions only leak the number of values (volume) associated with the queried key
and nothing else. For completeness, we present a formal definition of this minimal leakage function as well
as a description and a proof of the folklore solution in Section 5.

In this work, we are interested in understanding the transition from constant to logarithmic amortized
efficiency as a function of the leakage allowed. In particular, we attempt to identify the smallest leakage where
O(1) overhead solutions still exist. Furthermore, we want to find the largest leakage where constructions
must incur asymptotically larger than constant overhead. Specifically, we start by observing that non-trivial
leakage can be obtained with constant amortized efficiency by using a simple hash-and-encrypt approach.
We start from the construction of plaintext multi-maps based on any dynamic perfect hashing scheme such
as the one by Dietzfelbinger et al. [DKM+94]. During the initialization of the encrypted multi-map, the
client randomly selects a key K1 for a collision resistant hash function H and a random encryption key K2

for an IND-CPA symmetric encryption scheme (E ,D). For each Add(key, val) operation, the client executes
the algorithm for the insertion operation for the dynamic perfect hashing scheme with the hashed value
H(K1, key) as the key and an encryption E(K2, val) of the value being added. A query operation Get(key)
is implemented by executing the query algorithm of the dynamic perfect hashing scheme using H(K1, key)
as a key and then decrypting all the returned values with the IND-CPA key K2. As a result, the client is
successfully able to retrieve all plaintext values associated with the queried key. We note that the hash-and-
encrypt method is not novel and implicitly appeared in many previous works such as [CGKO11, KPR12].

The above implementation provides some privacy for the inserted and queried keys and values. In
particular, the hash-and-encrypt version of dynamic perfect hashing does not leak the keys and values in the
plaintext. However, the adversarial server learns the type of operation performed as well as the number of

3



encrypted values returned by a Get operation. Additionally, the server learns whether two different operations
are performed on the same key or not as the server learns the value H(K1, key) when either performing a Get
or Add operation. We denote this leakage, Lglob, as the global key-equality pattern that describes whether two
operations are given the same key as input or not. We refer readers to Appendix B for a formal description
and analysis of the hash-and-encrypt compiler when applied to dynamic perfect hashing.

The above simple hash-and-encrypt construction provides a baseline of what privacy may be efficiently
implemented with O(1) overhead. A natural next step is to try and improve the privacy of the above scheme
without incurring significantly larger overhead. A slight improvement in privacy would be to consider the
leakage function Ldec which allows the adversary to learn the equality pattern on keys but only for operations
of the same type. In more detail, the adversary still learns whether two Get operations are on the same key
or not as well as whether two Add operations are on the same key or not. However, the adversary cannot
link an Add operation and a Get operation as operating on the same key. We denote this leakage Ldec as
the decoupled key-equality pattern (see Section 3 for a formal definition) as it decouples the Add key-equality
pattern from the Get key-equality pattern. From a quick glance, this small improvement in privacy seems
insignificant. In the main result of our work, we show that any encrypted multi-map that leaks at most the
decoupled key-equality pattern must incur logarithmic overhead.

Theorem 1 (Informal). Let DS be a Ldec-leakage encrypted multi-map that leaks at most the decoupled
key-equality pattern. Then the amortized efficiency of DS must be Ω(lg(n/c)) per updated and/or returned
value for any scheme storing n key-value pairs and using c bits of client storage.

In other words, our results show that the global key-equality pattern is an inherent and seemingly neces-
sary leakage for any O(1) efficiency encrypted multi-map. By attempting to mitigate the global key-equality
pattern even in an extremely small (seemingly meaningless) manner, the resulting encrypted multi-maps
must incur logarithmically lower efficiency. As a result, one must either tolerate the leakage of the global
key-equality pattern or at least logarithmic overhead when implementing encrypted multi-maps. Further-
more, if the mitigation of global key-equality pattern leakage is necessary or logarithmic overhead is tolerable,
then the encrypted multi-map construction using oblivious RAMs may be used resulting in minimal leakage.
We also note that the bound in Theorem 1 (with formal statement in Theorem 9) is tight in view of the
upper bound provided by the ORAM-based construction (see Appendix A).

The proof of the lower bound for Ldec only relies on the fact that an adversary cannot link an Add and
a Get operation as operating on the same key. Note that this property is guaranteed even if one of the two
operations completely leaks the inputs on which it operates. For example, the leakage function Ladd, that for
any Add(key, val) operation leaks both key and val, can still be considered as decoupling the Get and Add
key-equality patterns. We can strengthen the proof of our main result to show that encrypted multi-maps
that only leak the decoupled key-equality pattern but are allowed to perform all Add operations in plaintext
must also incur logarithmic overhead. The same holds also for leakage function Lget in which Get operations
are performed in the clear while keeping the key-equality patterns decoupled. These results further reinforce
the difficulty of mitigating the global key-equality pattern leakage even when willing to sacrifice privacy in
other areas. We refer the reader to Section 5 for more details.

Theorem 2 (Informal). Let DS be a {Ladd,Lget}-leakage encrypted multi-map that leaks at most the decou-
pled key-equality pattern but may perform one of either the Add or Get operations in the plaintext. Then the
amortized efficiency of DS must be Ω(lg(n/c)) per updated and/or returned value for any scheme storing n
key-value pairs and using c bits of client storage.

Searchable encryption. We can further prove lower bounds for searchable encryption schemes. In partic-
ular, one can use a searchable encryption scheme to construct an encrypted multi-map. As a result, the lower
bounds follow directly by interpreting the encrypted multi-map leakage functions as searchable encryption
leakage functions.

First, we interpret the notion of decoupled key-equality pattern for searchable encryption scheme. The
adversary may learn whether two distinct searches are performed for the same keyword or not. For two
different document insertions, the adversary may learn the number of keywords that appear in the intersection
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of the two inserted documents (a generalization of key-equality for documents with multiple keywords).
However, this keyword-equality knowledge is limited to operations of the same type. The adversary should
not learn whether a queried keyword appears in an inserted document or not. As a result, we refer to these
searchable encryption schemes as response-hiding where the adversary cannot learn the identity of documents
matching a queried keyword.

For the static searchable encryption problem where documents are given during initialization and the
documents are immutable, there exists response-hiding schemes with O(1) overhead such as [CGKO11].
On the other hand, our lower bounds show that the dynamic version of response-hiding schemes require
logarithmic overhead. Furthermore, our lower bounds still hold for searchable encryption schemes even
when the construction may perform one of either document updates or searches in the plaintext. In more
detail, plaintext updates mean the construction can reveal the entirety of the updated document in plaintext.
Similarly, plaintext searches mean the scheme can reveal the queried keyword in plaintext. As a consequence,
our results show that dynamic, response-hiding searchable encryption schemes must either leak the matching
documents for any search or incur logarithmic efficiency. For more information, see Section 6.

Comparison with [BF19]. In an independent work, Bost and Fouque [BF19] present lower bounds for search-
able encryption in the “balls-and-bins” model (first used in [GO96] but formally introduced in [BN16]). Their
work shows an Ω(lgc(n)) lower bound for static searchable encryption schemes that mitigate key-equality
leakage completely against unbounded adversaries. We note that Bost and Fouque [BF19] additionally
present lower bounds for forward private leakage functions that is not considered in our work. We compare
their key-equality leakage lower bounds with our key-equality leakage lower bounds.

First, for super-constant client storage, our lower bound of Ω(lg(n/c)) is higher than the lower bound
proved in [BF19]. Our work rules out the use of large (but still sub-linear) client storage to speed up
schemes. In contrast, the result of [BF19] gives the trivial bound of Ω(1) even for small client storage of,
say, c = Θ(n0.1), for which our lower bound remains Ω(lg n). Secondly, our results apply for computational
adversaries while the results in [BF19] apply only for statistical adversaries. Our results are therefore more
applicable to current techniques as, to our knowledge, all recent constructions use computationally-secure
encryption and pseudorandom functions that circumvent the lower bound of [BF19]. Additionally, we prove
our lower bounds in the leakage cell probe model where schemes may arbitrarily encode data before storage.
The “balls-and-bins” model adopted by [BF19] only applies to scheme that store each key-value pair (ball)
separately in memory locations (bins). Furthermore, the only permitted operations are moving key-value
pairs between different memory locations. Therefore, our results rule out clever uses of FHE that might store
the encrypted sum of two entries in a memory location for more efficient schemes that would, otherwise,
have circumvented the lower bounds of [BF19]. Finally, our lower bounds only apply to dynamic schemes
while [BF19] applies to both static and dynamic schemes. There is an inherent hardness in proving lower
bounds in the leakage cell probe model for static data structures. Weiss and Wichs [WW18] have shown
that proving non-trivial lower bounds for static ORAMs in the cell probe model would solve at least one of
two major open problems in complexity. As encrypted multi-map and searchable encryption lower bounds
imply ORAM lower bounds, non-trivial lower bounds for static searchable encryption seem out of reach for
now.

Related Works. Searchable encryption was introduced by Song et al. [SWP00]. The notion of adaptive secu-
rity was first presented by Curtmola et al. [CGKO11]. Chase and Kamara [CK] present structured encryption
that is a generalization of searchable encryption. Subsequent works study different variants such as dynamic
schemes [KPR12, SPS14, CJJ+14], cache locality [CT14, MM16, ANSS16, DP17, DPP18, ASS18], forward
and backward security [Bos16, BMO17, EKPE18, GCPPJ18], expressive queries [CK, CJJ+13, FVK+15,
KM17], public-key operations [BDCOP04], multiple users [CGKO11, HSWW18, PPY18] and using ORAMs
or ORAM-like techniques [GMP16, BMO17, KMO18, GCPPJ18]. Several works investigate the implications
of leakage in searchable encryption by presenting leakage-abuse attacks [IKK12, CGPR15, NKW15, ZKP16,
KKNO16, PW16, GRS17, LMP18, GLMP].

Most data structure lower bounds are proven in the cell probe model [Yao81]. The chronogram tech-
nique was first introduced by Fredman and Saks [FS89] to prove Ω(lg n/ lg lg n) bounds. Pǎtraşcu and
Demaine [PD06] present the information transfer technique proving Ω(lg n) bounds. Larsen [Lar12] pre-
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sented the first techniques that proved Ω̃(lg2 n) bound for dynamic, two-dimensional range counting, which
is the highest lower bound proven for any data structure with Ω(lg n) bit outputs. For dynamic data struc-
tures with boolean outputs, the highest lower bound is presented by Larsen et al. [LWY18] of Ω̃(lg1.5 n).
Goldreich and Ostrovsky [GO96] first presented ORAM lower bounds in the “balls-and-bins” model [BN16].
The seminal work by Larsen and Nielsen [LN18] is the first to show the applicability of the cell probe
model for privacy-preserving data structures by giving an Ω(lg n) lower bound for ORAMs. Persiano and
Yeo [PY19] extend the Ω(lg n) lower bound for differentially private RAMs with weaker privacy. Hubáček et
al. [HKKS19] extend the lower bounds to the case where the adversary is unaware when operations start and
end. Larsen et al. [LMWY19] present Ω̃(lg2 n) lower bounds for oblivious near-neighbor search. Multi-server
ORAM lower bounds are presented in [LSY19].

1.2 Overview of Our Techniques

We present an overview of the techniques used to prove our lower bounds. Our lower bounds are proven in
the cell probe model which only measures running time by the number of server memory accesses. We refer
the reader to Section 2.1 for more details on the cell probe model. We will utilize the information transfer
of Pǎtraşcu and Demaine [PD06], which Larsen and Nielsen [LN18] used to prove lower bounds for ORAMs.
We review their proof which will be our starting point.

The information transfer technique starts by constructing the information transfer tree for a given se-
quence of n operations. The information transfer tree is a complete tree with one leaf node for each of the
n operations. Operations are assigned to the leaves in chronological order: the first operation is assigned
to the leftmost leaf node, the second operation is assigned to the second leftmost leaf node and so forth.
Each cell probe is assigned to at most one node in the tree in the following manner. First, we determine the
operation performing the probe and the associated leaf and then the most recent operation that overwrote
the probed cell and its associated leaf. If this is the first probe for the cell then the probe is not assigned to
any node; otherwise, the probe is assigned to the lowest common ancestor of the two leaves.

Having defined the information transfer tree, we move onto the hard distribution for the ORAM lower
bounds in [LN18]. Fix any internal node v in the tree and consider the subtree rooted at v. The hard
distribution for v consists of writing uniformly random strings to unique array indices in the leaves of the
left subtree and, subsequently, querying for these array indices in the leaves of the right subtree. To answer
the queries correctly, significant amounts of information must be transferred from the left subtree to the
right subtree. For sufficiently large subtrees, it can be shown that the majority of this information must
be transferred by query operations in the right subtree performing many probes to cells last overwritten by
operations in the left subtree. As a result, these probes will be uniquely assigned to the root of the tree, v.

To complete the proof, Larsen and Nielsen [LN18] use the obliviousness requirements of ORAM. Suppose
there exists another sequence of operations of the same length that assigns significantly less cell probes to
the internal node v compared to the hard distribution described above. Note, there exists polynomial time
algorithms to compute the number of probes assigned to v. Therefore, a computationally bounded adversary
can distinguish between the hard distribution for v and the sequence that does not assign enough probes to
v. This contradicts obliviousness. Therefore, a large number of probes must be assigned to each node in the
tree. As each probe is uniquely assigned to a node, adding the counts over all nodes gives the desired lower
bound.

There are two major obstacles for using the information transfer technique to prove lower bounds for
multi-maps. The first problem appears because the lower bounds for oblivious RAMs of [LN18], as well the
one for differentially private RAMs of [PY19], assumes that the stored array entries are chosen as uniformly
random strings. Recall that the crux of the information transfer argument shows that the large entropy of
the random strings generated independently in the left subtree of a node v must be retrieved by the query
operations in the right subtree of v. The natural extension for encrypted multi-maps would be to assume
that all values are truly random strings. While this assumption might be appropriate for multi-maps, it
is unreasonable for the application of searchable encryption as it would force either the keywords or the
document identifiers to be truly random. It is well known in practice that the entropy of keywords is not
too large. Similarly, there is no reason that document identifiers are required to be very random. For
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example, document identifiers could be titles of documents or just generated by a counter. Instead, our
lower bounds will derive entropy from the random distribution of values into keys for multi-maps (or, the
random distribution of keywords into documents for the searchable encryption application). As an example,
consider an arbitrary set of values V and keys K. We view the distribution of the values V to keys K as a
bipartite graph with K as the left partition and V as the right partition. An edge exists between a key ∈ K
and val ∈ V if and only if val is associated with key in the multi-map. The edges are drawn randomly
such that the resulting graph is l-left-regular so each key is associated with exactly l values. Consider the
scenario where all values in V are inserted according to this randomly chosen bipartite graph. Suppose that
queries are performed to all keys in K. The answers to these queries allows one to correctly retrieve the
randomly chosen edges of the graph. In other words, the queries perfectly retrieve the entropy of the update
operations. Furthermore, our lower bounds do not make assumptions that either the keys in K or values in
V are random.

The other and more serious problem arises from the fact that we are attempting to prove lower bounds
for encrypted multi-maps that leak significantly more information to the adversary compared to ORAMs.
The ORAM lower bound proof of [LN18] critically uses the fact that the information transfer tree for any
two sequences of the same length must be computationally indistinguishable. On the other hand, we will be
proving lower bounds for encrypted multi-maps that leak at least the decoupled equality pattern as well as
performing one of either the Add or Get operations in the plaintext. As a result, the overwhelming majority
of pairs of sequences of encrypted multi-map operations of the same length will have different leakage and,
thus, they will be computationally distinguishable to the adversary.

Therefore, we must choose the hard distributions for each node v such that the decoupled equality pattern
leakage is the same for the hard distribution of all nodes in the tree. To do this, we will carefully coordinate
Get operations and Add performed on the same key. Recall that Ldec leaks whether two Add operations are
performed on the same key as well as whether two Get operations are performed on the same key. To ensure
that leakage incurred by Get operations are identical, we choose our hard distribution such that all Get
operations are performed on unique keys. As a result, we are able to swap any two Get operations without
changing the leakage as long as the number of values returned by both operations are identical. We will
arrange Add operations such that each queried key is always associated with exactly l ≥ 1 values where l is
a parameter (one can achieve encrypted arrays by setting l = 1). Using the above properties, we construct
our hard distribution for each node v. We assign each leaf node in the information transfer tree with two
disjoint equal-sized set of keys Ka

v and Kg
v and a set of values Kv. Furthermore, all assigned key and value

sets are pairwise node disjoint. Each leaf node will be associated with |Ka
v| · l Add operations where each key

in Ka
v is associated with l uniformly random chosen values from Vv. Recall that we can model these random

assignments of values to keys as picking a random l-left-regular bipartite graph with Ka
v and Vv acting as

the left and right partition respectively. Additionally, each leaf node will perform |Kg
v | Get operations for

each key in Kg
v . We will use this distribution of sequences as our baseline to construct hard distributions

for each internal node v in the information transfer tree. Each of these node-specific hard distributions will
have the same leakage with respect to the decoupled leakage function Ldec.

Recall that the goal of a hard distribution for node v is to ensure that a large number of cell probes are
assigned to v in the information transfer tree. To do this, we should pick a hard distribution that requires
queries in the right subtree of v to retrieve large amounts of entropy generated in the left subtree of v. To
start, we denote Ka,Kg and V as the union of the sets Ka

v′ ,K
g
v′ , Vv′ that are assigned to leaf nodes v′ that

appear in the left subtree of v. We keep the identical Add and Get operations that appear in the left subtree
of v. We modify the Get operations that appear in the right subtree to query keys in Ka, which are all the
keys updated in the left subtree of v. As a result, the answers to Get operations in the right subtree of v are
able to retrieve the random l-left-regular bipartite graph generated in the left subtree of v forcing a large
number of cell probes to be assigned to v. Furthermore, our hard distribution for v only swapped the key
parameters of Get operations maintaining the same leakage as the baseline hard distribution. By privacy,
it must be that a large number of cell probes are assigned to many nodes of the information transfer tree.
As a result, we are able to prove lower bounds for the leakage Ldec that is significantly larger compared to
ORAM leakage. Similar ideas can be used to prove lower bounds for the leakage functions Ladd and Lget
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which enable schemes to perform one of either the Add or Get operations in the plaintext. We refer the
reader to Section 4 for full details on the lower bound.

Related Works. Searchable encryption was introduced by Song et al. [SWP00]. The notion of adaptive secu-
rity was first presented by Curtmola et al. [CGKO11]. Chase and Kamara [CK] present structured encryption
that is a generalization of searchable encryption. Subsequent works study different variants such as dynamic
schemes [KPR12, SPS14, CJJ+14], cache locality [CT14, MM16, ANSS16, DP17, DPP18, ASS18], forward
and backward security [Bos16, BMO17, EKPE18, GCPPJ18], expressive queries [CK, CJJ+13, FVK+15,
KM17], public-key operations [BDCOP04], multiple users [CGKO11, HSWW18, PPY18] and using ORAMs
or ORAM-like techniques [GMP16, BMO17, KMO18, GCPPJ18]. Several works investigate the implications
of leakage in searchable encryption by presenting leakage-abuse attacks [IKK12, CGPR15, NKW15, ZKP16,
KKNO16, PW16, GRS17, LMP18, GLMP].

Most data structure lower bounds are proven in the cell probe model [Yao81]. The chronogram tech-
nique was first introduced by Fredman and Saks [FS89] to prove Ω(lg n/ lg lg n) bounds. Pǎtraşcu and
Demaine [PD06] present the information transfer technique proving Ω(lg n) bounds. Larsen [Lar12] pre-
sented the first techniques that proved Ω̃(lg2 n) bound for dynamic, two-dimensional range counting, which
is the highest lower bound proven for any data structure with Ω(lg n) bit outputs. For dynamic data struc-
tures with boolean outputs, the highest lower bound is presented by Larsen et al. [LWY18] of Ω̃(lg1.5 n).
Goldreich and Ostrovsky [GO96] first presented ORAM lower bounds in the “balls-and-bins” model [BN16].
The seminal work by Larsen and Nielsen [LN18] is the first to show the applicability of the cell probe
model for privacy-preserving data structures by giving an Ω(lg n) lower bound for ORAMs. Persiano and
Yeo [PY19] extend the Ω(lg n) lower bound for differentially private RAMs with weaker privacy. Hubáček et
al. [HKKS19] extend the lower bounds to the case where the adversary is unaware when operations start and
end. Larsen et al. [LMWY19] present Ω̃(lg2 n) lower bounds for oblivious near-neighbor search. Multi-server
ORAM lower bounds are presented in [LSY19].

2 Definitions and Models

In this section, we formalize the notion of a leakage function and the leakage cell probe model, which is a
generalization of the oblivious cell probe model of Larsen and Nielsen [LN18] and it can be used to derive
lower bounds on the efficiency of general data structures with respect to a leakage function. We will then
describe the dynamic encrypted multi-map problem for which we will derive lower bounds. We also consider
the dynamic searchable encryption problem whose formal definition can be found in Section 6.1.

2.1 Cell Probe Model

The cell probe model was introduced by Yao [Yao81] and has widely been used to prove lower bounds for
data structures (see [FS89, PD06, Lar12, LWY18] as examples). The goal of the cell probe model is to
abstract the interactions of CPUs and word-RAM architectures. Memory in the cell probe model is an array
of cells where each cell consists of exactly w bits. The operations of a data structure consist of cell probes
where each probe may read the contents of a cell and/or update the cell’s content. The cost or running time
of an operation is measured by the number of cell probes. A data structure in the cell probe model may
perform unlimited computation based on the contents of cells that were probed. Note, lower bounds in the
cell probe model immediately imply results to more realistic models that measure costs using both memory
accesses and computation.

In the context of privacy-preserving data structure, the cell probe model is adapted to a two-party
setting: the client and the server. The client outsources the storage of data to the server and uses the
data structure algorithms to perform operations that read and/or update the data stored on the server.
For privacy, the client wishes to hide the content of outsourced data and/or the operations performed from
the adversarial server. The adversarial server’s view consists of the content of all cells on the server and
the probes performed by operations. The adversary does not view the content of the client’s storage nor
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the probes performed to the client’s storage. In the first work relating the cell probe model to privacy-
preserving data structures, Larsen and Nielsen [LN18] introduced the oblivious cell probe model in which any
two sequences of operations of the same length are required to induce indistinguishable server’s views. This
model has been used to prove a lower bound for oblivious RAMs [LN18] and for other data structures, like
stacks and queue [JLN19]. Subsequently, Persiano and Yeo [PY19] introduced the differentially private cell
probe model, a generalization of the oblivious cell probe model in which the adversary’s view must abide to
the standard differential privacy definition for neighboring sequences.

In this work, we define the leakage cell probe model which considers data structures with more complex
leakage. For a leakage function L, we denote the L-leakage cell probe model such that the adversary’s view
when processing two sequences of operations O and O′ must be indistinguishable if L(O) and L(O′) are
equal. The leakage cell probe model is a generalization of the oblivious cell probe model as obliviousness can
be viewed as privacy with respect to a leakage function that only leaks the number of operations performed.
We note that the client-server interaction in the leakage cell probe model is identical to both the oblivious
cell probe model [LN18] and the differentially private cell probe model [PY19]. The only difference is in the
privacy notion.

We next describe the notion of a data structure problem in the cell probe model as consisting of a set
U of update operations and a set Q of queries that return values in the domain O. The response to a
query q ∈ Q is determined by a function R : U? × Q → O based on the choice of the query q ∈ Q and the
sequence of updates (u1, . . . , ul) ∈ U? that have been executed before the query q. For any DS solving a
data structure problem in the cell probe model, the server’s memory is assumed to consist of w-bit cells.
The client’s storage consists of c bits. There exists a random string R accessible by the operations of DS.
We will assume that R is finite, but may be arbitrarily large. For cryptographic purposes, R may act as a
private random function or a random oracle. An operation of DS is allowed to perform probes to cells in
server memory, access bits in the client storage and access bits in R. The data structure is only charged for
probes to server cells. Accessing bits in client storage or R are free. The sequence of cell probes chosen by an
operation of DS are a deterministic function of the client storage, random string R and the contents of cells
that were previously probed in the current operation. Note, this deterministic function need not be efficiently
computable as the cell probe model does not charge for computation. We denote the failure probability as
the maximum probability that DS outputs the incorrect answer over all query operations and preceding
sequence of operations. Note that the probability is strictly over the random choice of R. Additionally, we
note that the cell probe model assumes that DS processes operations in an online manner. DS must finish
processing an operation before receiving the next operation. As a result, each cell probe performed by DS
may be uniquely associated to an operation. The assumption of online operations is realistic as the majority
of practical scenarios consider online operations.

The assumption that R is finite does not preclude the applicability of our result to algorithms with
vanishing failure probabilities that may run infinitely. We show they can be converted into data structures
with finite running time but non-zero failure probabilities by a standard reduction. The data structure is
run for an arbitrary number of cell probes until the failure probability is sufficiently small. At this point,
the data structure must return an answer. Our lower bounds will consider data structures with any constant
failure probability strictly less than 1/2. As a result, our lower bounds also apply to data structures whose
failure probabilities decrease as the running time increases but have no termination guarantees.

2.2 Leakage Cell Probe Model

In this section, we formalize the privacy notion for data structures in the leakage cell probe model. Roughly
speaking, we give an upper bound on the maximum amount of information viewed by the adversary when
processing a sequence of operations by specifying a leakage function L. Concretely, a leakage function L takes
as input any valid sequence of operations, O, of DS. For online DS and for any sequence O = (op1, . . . , op`),
we can rewrite the leakage L(O) as:

L(O) = L(op1),L(op1, op2), . . . ,L(op1, . . . , op`) = L(O1),L(O2), . . . ,L(O`),
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where Oi denotes the prefix Oi = (op1, . . . , opi) consisting of all operations up to and including the i-th
operation. We formalize the notion that DS leaks at most L by means of an indistinguishability-based
definition in which we require that, for any two sequences O and O′ such that L(O) = L(O′), no efficient
adversary A can distinguish a sequence of cell probes executed by DS while performing O from one executed
while performing sequence O′. For two sequences O and O′, we say that L(O) = L(O′) if and only if
L(Oi) = L(O′i) for every i = 1, . . . , `.

Let us now proceed more formally. For any sequence of operations O = (op1, . . . , op`), the adversary’s
view VDS(O) of DS processing O consists of the sequence of probes performed by DS while processing
sequence O. The randomness of VDS(O) is over the choice of the random string R. For online DS, each cell
probe is uniquely assigned to an operation. So, we can rewrite VDS(O) = (VDS(O1), . . . ,VDS(O`)).

The formal definition of non-adaptively L-IND is given below.

Definition 3 (Non-adaptively L-IND). DS is ν-non-adaptively L-IND if for every pair of sequences O and
O′ such that L(O) = L(O′) and any deterministic polynomial time algorithm A, then

|Pr[A(VDS(O)) = 1]− Pr[A(VDS(O′)) = 1]| ≤ ν

The acute reader might notice several differences between the above security notion and previous defi-
nitions (for example, see [CGKO11, CK, KPR12, CJJ+14]). First, our definition uses the weaker indistin-
guishability notion as opposed to the stronger simulation paradigm. Secondly, many previous works consider
adaptive security where the adversary is allowed to view the leakage by DS on previous operations before
picking the next operation. Our definition does not allow the operations to be picked depending on the
adversary’s view. Both differences result in a weaker security notion. However, a lower bound for a scheme
satisfying this weaker security notion also implies a lower bound for the normal, stronger security notion. In
other words, by assuming a weaker security notion, we improve the strength and applicability of our lower
bound. We also note that our definition considers deterministic, polynomial time adversaries.

Finally, we formally define a L-leakage cell probe model data structure.

Definition 4. A DS is a L-leakage cell probe model data structure if DS has failure probability strictly
less than 1/2 and is 1/4-non-adaptively L-IND.

Note that, the distinguishing probability only has to be at most 1/4 as opposed to negl(λ) where λ
is the security parameter. Once again, we stress that this results in a weaker security notion and a lower
bound for any DS that is 1/4-non-adaptively L-IND applies for any DS satisfying a stronger security notion.
Overall, our lower bounds for L-leakage cell probe model data structure imply lower bounds to the standard
simulation-based, adaptive security notions against PPT adversaries with negl(λ) advantage.

In practice, the assumption of failure probability close to 1/2 is unacceptably large. Once again, this
is to improve the strength of our lower bound as it immediately implies results for DS with small or zero
failure probability.

We also note that leakage cell probe model is a generalization of the oblivious cell probe model [LN18].
Consider the leakage function, L(op1, . . . , opi) = i, that only leaks the number of operations. In the L-
leakage cell probe model, all sequences of the same length must be indistinguishable which is identical to the
oblivious cell probe model [LN18].

Comparing leakage functions. In general, leakage functions are not numerical as they encapsulate all the
information learned by the adversary and for this reason it is hard to linearly order leakage functions. We
can nonetheless define the following partial order on leakage functions.

Definition 5. Leakage function L1 is at least as secure as leakage function L2 (in symbols L1 ≤ L2) if any
DS that is L1-IND is also L2-IND.

We note the we use L1 ≤ L2 as the leakage of L1 is smaller than the leakage of L2 and that a lower
bound for a DS with leakage L2, also applies to any DS′ with leakage L1 ≤ L2. The following lemma gives
a sufficient condition for L1 ≤ L2.

Lemma 6. If there exists an efficient function F such that for all sequences O of operations it holds that
L1(O) = F (L2(O)), then L1 ≤ L2.
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2.3 Encrypted Multi-Maps

In this section, we present the dynamic multi-map problem where we consider the multi-map data structure
that maintains m pairs MM = {(keyi, valsi)}i∈[m] where each keyi is from the key universe K and valsi is
a tuple of values from the value universe V. We assume that all keys are unique (that is, keyi 6= keyj for all
i 6= j). This assumption is without loss of generality as any multi-map with duplicate keys can merge the
associated tuples of values. For any keyi, we denote the number of values associated with keyi by `(keyi)
(that is, `(keyi) := |valsi|). Note, different keys can be associated with tuples of different length. We
denote the total number of values by n :=

∑
i∈[m] `(keyi) =

∑
i∈[m] |valsi|. Additionally, we introduce the

following notation for convenience. For any key, vals(MM, key) is the tuple of values associated with key.
Whenever the multi-map MM is clear from the context, we will omit MM and write vals(key) instead of
vals(MM, key).

We consider dynamic multi-maps with Create, Get and Add operations.

1. Create returns an empty MM := ∅.

2. Get(key) takes as input key ∈ K and outputs vals(key), the tuple of values associated with key.

3. Add(key, val) adds value val to the tuple associated with key.

Note that we only allow a very simple type of insertions in which only one value is added for each operation.
By proving a lower bound on a multi-map with only a simple insertion operation, our lower bound will also
apply to more general multi-maps with more complex insertions and update operations.

Definition 7. The dynamic encrypted multi-map problem is parameterized by K, the key universe, and by
V, the value universe. The problem is defined by the tuple (U,Q,R) where

• U = {Add(key, val) | key ∈ K, val ∈ V} ∪ {Create};

• Q = {Get(key) | key ∈ K};
and for any sequence O = (Create,Add(key1, val1), . . . ,Add(keym, valm)),

R(O,Get(key)) = {val | ∃ 1 ≤ i ≤ m s.t. keyi = key and vali = val}.

In other words, Get(key) returns vals(MM, key), where MM is the instance obtained by executing the se-
quence O of update operations.

Efficiency measure. For a data structure DS solving the dynamic encrypted multi-map problem, we
denote CostDS(O) as the expected number of cell probes needed by DS to perform the sequence of operations
O where the expectation is taken over the random coin tosses of DS. We note that, unlike ORAMs, CostDS

is not a good measure of the efficiency of the data structure DS. For example, some Get operations might
return an extremely long tuple while others only a few values and it would be unreasonable to expect these
vastly different operations to perform the same number of cell probes. We thus define the amortized efficiency
EffDS of a data structure DS solving the dynamic encrypted multi-map problem with respect to a sequence
of operations O = (op1, . . . , op`) as the expected value of the total number of cell probes executed by DS
divided by the total number of values returned by Get or taken as inputs by Add. More precisely, the add
op = Add(key, v) operation will receive a single value tuple as input as in our setting only one value can be
added to a key. Therefore, EffDS(op) := CostDS(op). For each get op = Get(key), we consider the length of
the returned tuple vals(key) as the length of the output and thus EffDS(op) := CostDS(op)/|vals(key)|.

In this paper, we prove lower bounds on EffDS(n) for all probabilistic DS where EffDS(n) is defined to
be the maximum over all possible sequences O of n operations of the total expected amortized efficiency of
all n operations where the expectation is taken over the random coin tosses of DS.
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3 Leakage Profiles

In this section, we formally define the leakage profile Ldec for which we prove our main result. As stated before,
the efficiency of encrypted multi-maps crucially depends on its leakage. For strong privacy, there exist several
solutions of encrypted multi-maps with minimal leakage using efficient oblivious RAMs [AKL+, PPRY18]
while achieving logarithmic efficiency. Minimal leakage Lmin refers to the adversary learning only the size of
inputs and outputs of operations and nothing else. We formally define Lmin and present a simplified version
of a folklore construction in Appendix A.

To understand the transition from constant to logarithmic efficiency as a function of the leakage allowed,
we consider the smallest leakage achieved by constant efficiency encrypted multi-maps. In particular, these
schemes leak the global key-equality pattern, Lglob, where adversaries learn whether two operations use the
same key as input or not. We formally define Lglob and present the simple hash-and-encrypt compiler that
achieves Lglob leakage in Appendix B.

The next step up in security would be to still allow the adversary to learn which operations are on the
same key but to limit this ability to operations of the same type. That is, the adversary still learns whether
two Get operations are on the same key or not and whether two Add operations are on the same key but it
cannot link an Add and a Get that receive the same key as input. This is captured by the following leakage
function.

Definition 8 (Decoupled Key-Equality Leakage Ldec). For sequence O = (op0 = Create, op1, . . . , op`) of op-
erations where key1, . . . , key` are the input keys to each non-create operation, then the decoupled key-equality
leakage Ldec(O) associated with O consists of Ldec(O) = (Ldec(O0), . . . ,Ldec(O`)) where Oi = (op0, . . . , opi)
and MMOi is the multi-map resulting from the first i operations. Then, Ldec(Oi) is defined as:

1. if opi = Create then Ldec(Oi) = (Create);

2. if opi = Add(keyi, vali) then Ldec(Oi) = (Add, epdec
i);

3. if opi = Get(keyi) then Ldec(Oi) = (Get, |vals(MMOi−1 , keyi)|, epdec
i).

The decoupled key-equality pattern epdec
i := (epdec

i,1, . . . , epdec
i,i−1) is:

epdec
i,j =


⊥, if opi and opj are not of the same type.

0, if opi and opj are of the same type and keyi 6= keyj .

1, if opi and opj are of the same type and keyi = keyj .

We note that the above leakage still leaks the number of returned values for each Get operation. Us-
ing Add key-equality leakage, the adversary can observe the number of values added for a pseudonymous
representation of a key. If the number of values added is unique for any key, then the adversary will learn
the global key-equality pattern about this specific key that leaks whether specific Add and Get operations
operate on this key with a unique number of associated values. In particular, Ldec hides key-equality patterns
between Add and Get operations when there exist multiple keys with the same number of associated values
when Get is executed. In other words, Ldec is a very minimal increase in privacy over Lglob. The main result
of this paper is that Ldec-IND security for encrypted multi-maps (and arrays) incurs Ω(lg n) overhead even
though it is minimally more secure than Lglob-IND schemes.

We can further extend our lower bounds to DS with even larger leakage functions. We define leakage
functions Ladd and Lget, which leak the decoupled key-equality pattern like Ldec. Additionally, Ladd leaks
the keys and values that are input to all Add operations while Lget leaks the keys that are input to all Get
operations. In other words, Ladd enables the multi-map to perform Add operations in the plaintext while Lget

enables the multi-map to perform Get operations in the plaintext. It turns out our lower bounds still apply
as long as the encrypted multi-map performs at most one of either Get or Add operations are performed in
the plaintext. We formally define Ladd and Lget in Section 5. The counterparts of Ladd and Lglob for dynamic
searchable encryption may also be found in Section 6.

12



4 Lower Bounds for Decoupled Key-Equality Leakage

In this section, we present our main result that any encrypted multi-map with leakage at most Ldec must
incur logarithmic overhead.

Theorem 9. Let DS be a Ldec-leakage cell probe model dynamic encrypted multi-map implemented over
w-bit cells and a client with c bits of storage. Then

EffDS(n) = Ω

(
lg
(n
c

)
· lg(n)

w

)
.

In the natural setting that c = O(nα), for some constant 0 ≤ α < 1, and cell sizes of w = Θ(lg n) bits,
the above bound simplifies to Ω(lg n).

This result will be proven using the information transfer technique [PD06]. Throughout the proof, we will
assume that DS has error probability at most 1/128 (instead of strictly smaller than 1/2) and this is without
loss of generality as we can apply a standard reduction of executing a constant number of independent copies
and returning the majority answer without affecting the asymptotic efficiency.

4.1 Hard Distribution

We start by formalizing the hard distribution and the random variables used in our proof. Fix positive
integers n and l and constant 0 < ε < 1 such that l < nε. Set p := n1−ε. The hard distribution will use the
following p+ 1 disjoint sets of values:

1. V0 consisting of l values;

2. V1, . . . , Vp each consisting of nε values;

Additionally, we define the following 2p pairwise disjoint sets of keys:

1. Sets Ka
j , for j = 1, . . . , p, each of size nε;

2. Sets Kg
j , for j = 1, . . . , p, each of size nε.

We describe the probabilistic process that generates our hard distribution of sequences of encrypted multi-
map operations in Table 1. We denote the resulting distribution by Hard(V0, V1, . . . , Vp,K

a
1, . . . ,K

a
p,K

g
1 , . . . ,K

g
p).

For convenience, we will assume that all of n, l, ε as well as the sets V0, V1, . . . , Vp,K
a
1, . . . ,K

a
p,K

g
1 , . . . ,K

g
p

are fixed going forward and denote our hard distribution by Hard.
As described in Table 1, a sequence in the support of our hard distribution consists of p + 1 phases. In

phase 0, each of the l values of V0 is added to the tuple of each key in Kg
i , for all i ∈ {1, . . . , p}. Phase

j, for j = 1, . . . , p, consists of two sub-phases: sub-phase Aj that consists of l · nε Add operations, directly
followed by sub-phase Gj that consists of nε Get operations. The Add operations of phase j add a subset of
l values chosen uniformly at random from the set Vj to each key in Ka

j . This naturally defines a bipartite
graph Bj = (Ka

j , Vj , Ej) where the set of key Ka
j appear in the left partition, the set of values Vj appear

in the right partition, and Ej represents the edge set. An edge (key, val) appears in Ej if and only if val
is added to the tuple of values associated with key; that is, val ∈ vals(key). We note that our choice of
adding l randomly chosen values to each key ∈ Ka

j is equivalent to choosing Bj uniformly at random from
the set of all left l-regular bipartite graphs. Furthermore, bipartite graph Bj uniquely identifies the Add
operations that appear in phase j. Note that a sequence of operations in the support of Hard builds an
encrypted multi-map that contains 2n different keys.

Leakage of the hard sequence. We now describe the leakage Ldec(H) associated with a sequence H in the
support of our hard distribution.

We observe that each Get operation returns the l values in V0 and, as the Kg
i s are pairwise disjoint by

definition, each Get operates on a different key. Thus, all Get operations in H will have identical leakage;
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Hardn,l,ε(V0, V1, . . . , Vp,K
a
1, . . . ,K

a
p,K

g
1, . . . ,K

g
p)

• Phase 0:

Execute SubPhase Initi for each i ∈ {1, . . . , p}:
For each key ∈ Kg

i :

For each val ∈ V0:

output: Add(key, val).

• Phase j for each j ∈ {1, . . . , p}:
Execute SubPhase Aj of add operations and SubPhase Gj of get operations.

1. SubPhase Aj

For each key ∈ Ka
j :

Select subset Vkey ⊂ Vj of l values uniformly at random.

For each val ∈ Vkey:

output: Add(key, val).

2. SubPhase Gj

For each key ∈ Kg
j :

output: Get(key).

Table 1: Generation of hard distribution.

specifically, the adversary learns that the size of the tuple associated with each query key is l and that the
queried keys are distinct.

For the leakage incurred by Add operations, we observe that the 2p sets {Kg
i }i∈{1,...,p} and {Ka

i }i∈{1,...,p}
are pairwise disjoint by definition. H will perform exactly l consecutive Add operations to each of the nε

keys of Kg
i , for i = 1, . . . , p during phase 0. In phase j, H will perform exactly l consecutive Add operations

to each of the nε keys in Ka
j . Therefore, the Add key-equality leakage pattern will reveal to the adversary

that Add operations to the same key always occurs in consecutive blocks of l operations.
From the above, it is not hard to see that Ldec is the same on any two pair of sequences H1 and H2 in

the support of the hard distribution. Indeed, the leakage for the Get operations depends only on the choice
of l and, similarly, the leakage for the Add operations depends only on the choice of l and nε. As both l and
nε are fixed, the leakages Ldec(H1) and Ldec(H2) for any H1 and H2 in the support of the hard sequence is
identical.

Information transfer tree. Next, we define an abstract model of data flow called the information transfer
tree, which will be integral in our lower bound proofs. For each sequence H in the support of the hard
distribution, we will denote the information transfer tree of H by T (H). T (H) is a binary tree whose nodes
contain the cell probes performed by DS when executing H. Without loss of generality, we assume that p
is a power of 2 and construct a complete binary tree with p leaves. For all j ∈ {1, . . . , p}, we assign phase j,
consisting of subphases Aj and Gj , to the j-th leftmost leaf. Phase 0 is ignored in the construction of the
information transfer tree.

Next, we proceed by uniquely assigning cell probes to nodes of the information transfer tree. Consider a
probe to cell address x that occurs as part of an operation of the phase j. If this is the first probe to cell
address x, then the probe is not assigned to any node. Otherwise, pick the most recent phase i that precedes
phase j (i ≤ j) such that an operation in phase i overwrote the contents at cell address x. The probe is then
assigned to the least common ancestor of the leaf nodes associated with phase j and phase i. Note that the
assignment of probes to nodes is probabilistic and depends on the random coin tosses R of DS. So, T (H)
is also a random variable over R. For each node v, we define Cv(H) as the the set of probes assigned to v
when executing H over the choice of R. We denote T (Hard) and Cv(Hard) as probability distributions over
the random choices of both Hard and R.

14



4.2 Bounding Probes Assigned to Internal Nodes

To prove our lower bound, we will show that for many nodes v, the expected size of Cv(Hard) must be large.
Since each probe is assigned to at most one node, the sum of the number of probes assigned over all the
nodes v will result in a lower bound on the expected number of cell probes needed to process a random
sequence generated by Hard.

Denote depth(v) as the distance of v from the root. As there are p = n1−ε leaf nodes, the leaf nodes have
depth lg(p) = (1− ε) lg(n) where all logarithms are base 2. We will prove the following lemma which states
that a large number of cells must be assigned to nodes in expectations for all nodes that are not too close to
either the root node or the leaf nodes.

Lemma 10. Let DS be a Ldec-leakage cell probe model dynamic encrypted multi-map scheme that errs with
probability at most 1/128. For any 1 ≤ l ≤ nε/2, there exists a constant γ1 > 0 such that for every node v of
depth 8 ≤ d ≤ 1−ε

2 lg(nc ), it must be that

E [|Cv(Hard)|] ≥ γ1 ·
n

2d
· l lg n
w

.

We now show that Lemma 10 would complete the proof of Theorem 9.

Proof of Theorem 9. Recall that each probe is assigned to a most one node of the tree. So, counting the cell
probes assigned to a subset of nodes gives a lower bound on the number of cell probes. A complete binary
tree has 2d nodes at depth d. By Lemma 10, all nodes v such that 8 ≤ depth(v) ≤ 1−ε

2 lg(nc ) have Ω( n
2d

l lgn
w )

assigned cell probes in expectation. Therefore, each level in this range contributes Ω(n · l lgnw ) cell probes in

expectation and by multiplying by the number of levels for which Lemma 10 holds we obtain Ω(n lg(nc ) l lgnw )
cell probes. Recall that we are considering both the Get and Add operations and the efficiency is measured
as running time per response of a query and per value added. Note, a hard sequence performs Θ(n) queries
with exactly l responses each and performs Θ(n · l) Add each of exactly one value. So, we get the expected
amortized running time is Ω(lg(nc ) · lgnw ).

4.3 Using the Privacy Guarantees

Therefore, it remains to prove Lemma 10 to finish the proof of our main result. To do this, we will prove
a weaker lemma which shows that for a large number of nodes v there exists a probability distribution
Hardv (specifically built for node v) that forces the number of probes assigned to v, Cv(Hardv), to be large
in expectation. This lemma is significantly weaker than Lemma 10 which states that there exists a single
distribution, Hard, that simultaneously assigns many probes to the sets Cv(H) for a large number of nodes
v. We note that our proof must critically use the privacy guarantees of DS as there exist constructions with
O(1) efficiency that do not provide any privacy such as the dynamic perfect hashing solutions [DKM+94]. By
leveraging the privacy guarantees of DS, we can show the two statements are equivalent. First, we formally
state our weaker lemma.

Lemma 11. Fix integers n and l and 0 ≤ ε ≤ 1 such that 1 ≤ l ≤ nε/2. Let DS be a Ldec-leakage cell
probe model dynamic encrypted multi-map scheme that errs with probability at most 1/128. Then, there
exists a constant γ2 > 0 such that, for every node v with 8 ≤ depth(v) ≤ 1−ε

2 lg n
c , there exists a probability

distribution Hardv such that Ldec(Hard) = Ldec(Hardv) and

Pr

[
|Cv(Hardv)| ≥ γ2 ·

n

2d
· l lg n
w

]
≥ 1

2
.

By combining Lemma 11 with the privacy guarantees of DS, we show that we can prove Lemma 10. By
Lemma 11, there exists a distribution Hardv that forces any DS with at most 1/128 failure probability to
assign many cell probes to Cv(Hardv) in expectation. Furthermore, Hardv and Hard have the same leakage
with respect to leakage function Ldec. Since the size of Cv(O) can be computed by a deterministic, polynomial
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time algorithm for any sequence O, it must be that the expected sizes of Cv(Hard) and Cv(Hardv) cannot
differ significantly. Otherwise, a deterministic, polynomial time adversary will be able to distinguish whether
DS is executing a sequence randomly drawn from Hard or Hardv. As a result, it can be shown that the size
of Cv(Hard) for all nodes v must be large in expectation. We proceed to formalize these ideas.

Proof of Lemma 10. Pick γ1 < γ2/4 and suppose, for the sake of contradiction, that there exists a node v of
depth 8 ≤ depth(v) ≤ 1−ε

2 lg n
c , such that E[|Cv(Hard)|] < γ2

4
n
2d
· l lgnw . By Markov’s inequality, we have that

Pr

[
|Cv(Hard)| ≥ γ2 ·

n

2d
· l lg n
w

]
< 1/4.

On the other hand, by Lemma 11 we know that

Pr

[
|Cv(Hardv)| ≥ γ2 ·

n

2d
· l lg n
w

]
≥ 1/2.

Therefore a deterministic, polynomial time adversary that computes the number of probes assigned to v and
outputs 1 if and only if the number of cell probes assigned to v is less than γ2 · n2d ·

l lgn
w . This adversary

successfully distinguishes whether DS is processing Hard or Hardv. Thus, this contradicts that DS is non-
adaptively Ldec-IND.

4.4 An Encoding Argument

Finally, we present the proof of Lemma 11 that requires finding a distribution Hardv with the properties that
Cv(Hardv) is large in expectation and that Hardv has the same leakage as Hard with respect to Ldec. We start
by describing simple modifications to Hard that are used to construct Hardv while keeping Ldec unchanged.

Ldec-invariant swaps. Let us start with a simple example and consider distribution Hard(s,s′) defined as
follows for indices 1 ≤ s ≤ s′ ≤ p. Recall that in our definition of Hard, phase 1 ≤ j ≤ p consists of
subphase Aj where Add operations are performed on the keys in Ka

j and subphase Gj where Get operations

are performed on the keys in Kg
j . In distribution Hard(s,s′) where s ≤ s′, subphase As′ still consists of Add

operations performed on the keys in Ka
s′ but the Get operations of subphase Gs′ are performed on the keys

in Ka
s instead of Kg

s′ . We show that this swap does not change the leakage with respect to Ldec.

Lemma 12. For any 1 ≤ s ≤ s′ ≤ p, Ldec(Hard) = Ldec

(
Hard(s,s′)

)
.

Proof. Since no Add operation is affected by the swap, the leakage generated by the Add operations remains

the same. For the Get operations, observe that the Get operations in Hard(s,s′) are always performed on
distinct keys, just as in Hard and thus the key-equality pattern does not change. Moreover, since s ≤ s′,
when the keys in Ka

s are queried in phase s′, l values have already been added to them. Therefore the

Get operations of Hard(s,s′) return l values just as in Hard and thus the volume pattern does not change
either.

The same argument applies to any set S = {(s1, s′1), . . . , (st, s
′
t)} of swaps provided that si ≤ s′i, for

i = 1, . . . , t, and that each index is involved in at most one swap. We call such a set S of swaps a legal set
of swaps and we denote by HardS the distribution resulting from first sampling according to Hard and then
performing the swaps in S. The following lemma follows by considering the swaps one at a time and by
invoking Lemma 12 for each swap.

Lemma 13. For any legal set S = {(s1, s′1), . . . , (st, s
′
t)}, it holds that Ldec(Hard) = Ldec(HardS).

Defining Hardv. Distribution Hardv is designed to make the set of cell probes assigned to v, Cv(Hardv) large
in expectation for any DS with a bounded failure probability while ensuring the leakages of Hard and Hardv
remain identical according to Ldec. Recall that Cv(Hardv) contains only probes that occur in the right subtree
of v to a cell last overwritten in the left subtree of v. Suppose we design Hardv so that the Add operations
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in the left subtree of v insert a large amount of random information that is independent from all other
operations and that this information must be extracted by Get operations in the right subtree of v. For DS
to answer the queries with low failure probability, a lot of the information inserted in the left subtree of v
must be transferred to the answers of the queries in the right subtree of v. We show that there are only two
ways to transfer information between the left and right subtree. First, the client can store information in
the c bits of client storage. The other option is that queries in the right subtree of v must probe cells that
were last overwritten in the left subtree of v. If the information required to transfer is much larger than the
c bits of client storage, it must be the number of probes performed by queries in the right subtree of v to
cells that were last overwritten by operations in left subtree of v must be sufficiently large. All these probes
will be assigned to Cv(Hardv).

Let us be more precise. Fix any node v of depth d and denote by 2` the number of leaves in the tree rooted
at v so that each of the left and right subtree has exactly ` := p/2d+1. Let i be the index of the leftmost leaf
of the subtree rooted at v. Then, the Add operations performed in the left subtree of v add values to keys
in Ka

i , . . . ,K
a
i+`−1 according to the bipartite graphs Bi, . . . , Bi+`−1. Recall that each of the bipartite graphs

Bj where j ∈ {i, . . . , i+ `− 1} arrange the keys Ka
j in the left subtree and the values Vj in the right subtree.

An edge occurs between a key key ∈ Ka
j and value val ∈ Vj if and only if val is added to the tuple of values

associated with key. In other words, the operation Add(key, val) was executed in the left subtree of v. The
Get operations performed in the right subtree of v are for keys in Kg

i+`, . . . ,K
g
i+2`−1. Each of these keys has

been associated with the l values of V0 by the Add operations of phase 0. We construct Hardv by modifying
the Get operations in the right subtree of v to query the keys that were used as inputs by the Add operations
of the left subtree of v. Specifically, the leaves in the right subtree of v will contain Get operations to the
keys in Ka

i , . . . ,K
a
i+`−1. This corresponds to the set of swaps swapv = {(i, i+ `), . . . , (i+ `− 1, i+ 2`− 1)}

which is easily seen to be legal. By invoking Lemma 13, we get the following lemma.

Lemma 14. Leakage distributions Ldec(Hardv) and Ldec(Hard) are identical.

We remind the reader that in phase j, each keyword of Ka
j is assigned a random subset of exactly l values

from the set of values Vj . These chosen values are uniquely defined by a left l-regular bipartite graph Bj
that is chosen uniformly at random. The entropy of the left subtree of v in Hardv originates from the chosen
bipartite graphs Bj that are chosen uniformly and independently at random for all j ∈ {i, . . . , i + ` − 1}.
For each key that appears in the left partition of Bj , there are

(|Vj |
l

)
=
(
nε

l

)
possible choices for the l edges

(corresponding to the l values that will be associated with the key). Therefore, the choice of the l edges

adjacent to each key in the left partition of Bj has entropy lg
(
nε

l

)
. By picking l ∈ {1, . . . , nε/2}, the choice

of the edges adjacent to each key in the left partition of Bj generates Ω(l lg n) bits of entropy by applying
Stirling’s approximation. We note our lower bound do not assume any entropy for the actual values as done
in previous lower bound results [LN18, PY19].

As the right subtree of v will query for all keys that were input to Add operations in the left subtree and
DS has low failure probability, most of this entropy must be retrieved by DS from the left subtree of v.
Note, there are a total of Θ( n

2d
) queries performed in the right subtree of v. As a result, Ω( n

2d
· l lg n) bits

of entropy must be transferred from the left subtree. Each cell probe can transfer at most w bits of entropy
and, intuitively, this implies that Ω( n

2d
· l lgnw ) cell probes must be assigned to v. We now formalize these

arguments.

Lemma 15. Fix integers n and l and 0 ≤ ε ≤ 1 such that 1 ≤ l ≤ nε/2. Let DS be a Ldec-leakage cell probe
model dynamic encrypted multi-map that errs with probability at most 1/128. For every node v of depth
8 ≤ d ≤ 1−ε

2 lg n
c ,

Pr

[
|Cv(Hardv)| ≥

1

100
· n

2d
· l lg n
w

]
≥ 1

2
.

Proof. Fix any vertex v with depth 8 ≤ d ≤ 1−ε
2 lg n

c . We consider the one-way communication problem
between Alice and Bob in which a sequence O of operations is sampled according to Hardv. The entirety
of O is given to Alice whereas Bob receives all of O except the operations performed in the left subtree
of O. That is, the operations of phases i, . . . , i+ `− 1 in O are only given to Alice and not to Bob for
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some i where ` = n
2d+1 . Both Alice and Bob receive common randomness R used by DS. Furthermore,

they have agreed on an arbitrary, but fixed ordering for each of the value and key sets. The goal of the
one-way communication is for Alice to allow Bob to reconstruct the missing operations which are uniquely
defined by the bipartite graphs Bi, . . . , Bi+`−1. We observe that the entropy of the missing bipartite graphs is
`·lg

(
nε

l

)
= Θ((n/2d)·lg

(
nε

l

)
) even when conditioned on Bob’s input as all the graphs are chosen independently

of R and all other operations that appear in O. By Shannon’s source coding theorem, the expected length
of Alice’s message must be at least as large as the entropy of the graphs.

Towards a contradiction, we will assume that there exists DS with error probability at most 1/128

such that Pr[|Cv(Hardv)| ≥ 1
100 ·

1
w ·

n
2d+1 · lg

(
nε

l

)
] < 1

2 . We will use DS to construct an impossible encoding
contradicting Shannon’s source coding theorem. Note this assumption contradicts the statement of Lemma 15
for any 1 ≤ l ≤ nε/2 as by Stirling’s approximation it implies that lg

(
nε

l

)
= Ω(l lg(n)).

Alice’s Encoding. Alice receives the sequence O sampled according to Hardv andR as input and produces
the following encoding:

1. Alice executes DS using R as the randomness and performs all operations in sequence O up to, but
not including, phase i+ `. Note that phase i+ ` is the first phase in O that belongs to the right subtree
of v. At this point, Alice takes a snapshot of the contents of all memory cells on the server as well as
the contents of client storage.

2. Alice executes the remaining operations in v’s right subtree. That is, all operations of phases i +
`, . . . , i + 2` − 1 in O. Alice collects the set F of all query operations in v’s right subtree where DS
fails to return the correct answer. Additionally, Alice collects the set Cv(O) of the cell probes that are
assigned to v along with the addresses of the probed cells.

3. If either |F | ≥ 1
32 ·

n
2d+1 or |Cv(O)| ≥ 1

100 ·
n

2d+1 ·lg
(
nε

l

)
/w, then Alice’s encoding will start with a 0 followed

by the response to each of the queries in the right subtree of v. Specifically, for j ∈ {i, . . . , i+ `− 1},
Alice iterates through all key ∈ Ka

j in the order agreed upon with Bob and encodes the subset of l

values from Vj associated with each key using lg
(
nε

l

)
bits. This completes Alice’s encoding for this

case.

4. Suppose instead that |F | < 1
32 ·

n
2d+1 and |Cv(O)| < 1

100 ·
n

2d+1 · lg
(
nε

l

)
/w. In this case, Alice’s encoding

will start with a 1-bit and continues by encoding the following information:

(a) The c bits of client storage recorded in snapshot.

(b) The number |F | of failed query using Θ(lg n) bits as |F | ≤ n.

(c) The index and the answer of the |F | keys in Ka
i ∪ . . . ∪Ka

i+`−1 for which DS fails to return the

correct answer. The indices are encoded using lg
(
n/2d+1

|F |
)

bits and the answer to each of the failing

queries are encoded using lg
(
nε

l

)
.

(d) The number |Cv(O)| of the probes assigned to v using Θ(lg n) bits.

(e) The address and content of each cell probe in Cv(O) where w bits are used to encode the address
and another w bits to encode the contents.

Bob’s Decoding. Bob receives Alice’s encoding, the sequence of operations O except for the operations
of that occur phases i, . . . , i+ `− 1 and the random string R. Bob decodes in the following manner:

1. If Alice’s encoding starts with a 0-bit then the answers to all Get queries of Phases i+ `, . . . , i+ 2`− 1
are explicitly encoded in Alice’s message and thus Bob proceeds as follows. For j ∈ {i, . . . , i + ` − 1}
and for each key ∈ Ka

j in the agreed upon order, Bob reads the lg
(
nε

l

)
bits that encode which l values

of Vj have been assigned to key. This directly provides the l edges of the vertex in Bj corresponding
to key. Repeating this process for all keywords allows Bob to completely retrieve Bj completing the
decoding when Alice’s message starts with a 0-bit.
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2. From now on, we suppose Alice’s encoding starts with a 1-bit.

(a) Bob simulates DS using R for phases 0, . . . , i−1. That is, all operations up to, but not including,
the first operation of v’s left subtree. The result of this execution is identical to Alice’s execution
as they both use the same random string R. Bob will record the contents of all cells in snapshot′.

(b) Bob skips phases i, . . . , i+ `− 1 that are the left subtree operations of v.

(c) Bob retrieves the following information from Alice’s encoding:

i. The contents of client storage in snapshot where snapshot is the state of DS just before any
operations in the right subtree of v.

ii. The set F of keywords for which DS will fail to return the correct answer. For each of these
failed keywords, Bob will also retrieve the correct answer from Alice’s encoding using the
same algorithm as the one where Alice’s encoding started with a 0-bit described above.

iii. The address and content of each of the cells in Cv(O).

(d) Bob simulates DS on the operations in the right subtree of v. That is, all phases j ∈ {i+`, . . . , i+
2`− 1} using R. Specifically, for each cell probe performed by DS, Bob checks if the probed cell
was last overwritten by any of the preceding operations in the right subtree of v. If so, Bob will
use the most recent contents of the cell. Otherwise, checks if the cell belongs to Cv(O) in which
case Bob will use the contents of the cell that were encoded by Alice. Finally if the cell was last
overwritten before any operations in the left subtree of v, Bob will use the cell content as reported
by snapshot′. After Bob completes the simulation, Bob successfully decodes the answer for all
queries where DS returns the correct answer. As a result, Bob successfully decodes all bipartite
graphs Bi, . . . , Bi+`−1.

We now argue that Bob’s simulation of DS for operations in the right subtree of v (phases j ∈ {i +
`, . . . , i + 2` − 1}) is identical to Alice’s execution. Consider the first time any cell is probed during Bob’s
execution of operations in v’s right subtree. Either the cell is read from Alice’s encoding of Cv(O) or the
cell is read from snapshot′. Bob’s execution will be different from Alice if and only if Bob uses the incorrect
contents of a cell when first probed. This only happens if Bob uses the contents of a cell from snapshot′ yet
that cell was overwritten by an operation in the left subtree of v (phases j ∈ {i, . . . , i+ `− 1}). If this were
the case, this cell probe is assigned to v and, thus, the cell contents would have been encoded by Alice in
Cv(O). As a result, we know both executions by Alice and Bob are identical and Bob successfully decodes
all answers in v’s right subtree.

Analysis. We now analyze the expected length of the encoding and show that the expected size of Alice’s
encoding is smaller than the entropy of the bipartite graphs decoded by Bob contradicting Shannon’s source
coding theorem.

We distinguish two cases. In the case that Alice’s encoding starts with a 0-bit, the length is exactly
1 + n

2d+1 · lg
(
nε

l

)
bits. Let us upper bound probability that Alice produces an encoding that starts with 0.

There are two cases in which this happens. In the first case, it is because F is large and thus DS made too
many errors. Since DS has error probability at most 1/128, we know that E[|F (Hardv)|] ≤ (1/128)n/2d+1

by linearity of expectation. By Markov’s inequality, it follows that Pr[|F (Hardv)| ≥ (1/32)n/2d+1] ≤ 1/4.
In the second case, Cv(O) is too large and, by our assumption towards a contradiction, this happens with
probability at most 1/2. Therefore, Alice’s encoding starts with a 0-bit with probability at most 3/4. Let
us now analyze the expected length of an encoding that starts with a 1-bit.

(a) Client storage is encoded using c bits. Recall that we chose 8 ≤ d ≤ (1/2)(1− ε) lg(n/c). As a result,
we know that

c ≤ n

22d
≤ 1

2d−1
· nl

2d+1
≤ 1

128
· n

2d+1
· lg
(
nε

l

)
.

(b) |F | ≤ n and thus Θ(lg n) bits are needed;

19



(c) The indices and the answers for the failed queries are encoded using

Θ(lg n) + lg

( n
2d+1

|F |

)
+ |F | lg

(
nε

l

)
bits. The above encoding size increases as a function of |F |. The largest encoding occurs when
|F | = (1/32)n/2d+1. By substituting and adding the Θ(lg n) bits from above items, we obtain

Θ(lg n) +
1

32
· n

2d+1

(
lg(32e) + lg

(
nε

l

))
≤ 1

16
· n

2d+1
· lg
(
nε

l

)
.

(d) |Cv(O)| = O( n
2d+1 lg

(
nε

l

)
/w) and thus Θ(lg n) bits are needed;

(e) By our contradiction assumption, the expected length of the encoding of Cv(O) requires at most

(1/100) · n
2d+1 · lg

(
nε

l

)
bits. If we sum the Θ(lg n) bits from (d) we obtain a total of

1

100
· n

2d+1
· lg
(
nε

l

)
.

Altogether, the expected length of the encoding starting with a 1-bit is at most(
1

128
+

1

16
+

1

50

)
· n

2d+1
· lg
(
nε

l

)
<

1

8
· n

2d+1
· lg
(
nε

l

)
.

By putting the two cases together, we can conclude that the expected length of the encoding is at most
1 + (3/4 + 1/8) · n

2d+1 · lg
(
nε

l

)
< n

2d+1 · lg
(
nε

l

)
which contradicts Shannon’s source coding theorem thus

completing the proof.

We note the proof of Lemma 11 follows directly from Lemma 14 and Lemma 15. Thus, the proof of
Theorem 9 is complete. We refer readers to Section 5 and Section 6 for extensions to larger leakage functions
and searchable encryption.

Discussion 1. Previous works in the ORAM literature consider passive servers that act exclusively as storage
that may only retrieve or update server memory. In this model, a cell probe corresponds to one cell of
bandwidth. As a result, the above lower bounds can be interpreted as bandwidth lower bounds for passive
servers. For servers with general computation (like we assumed in our work), cell probe lower bounds apply
to server computation.

Discussion 2. As noted above, our lower bounds can be applied to the encrypted array primitive that is
much closer to the ORAM primitive. One can interpret our leakage cell probe model with respect to the
Ω(lg n) ORAM lower bounds that appear in [LN18, PY19]. In particular, our lower bounds show that the
Ω(lg n) overhead necessarily incurred by ORAMs is caused by mitigating the global key-equality pattern
leakage. After mitigating global key-equality pattern leakage, other leakage mitigation by ORAMs do not
cost additional asymptotic overhead.

Discussion 3. We note that the efficiency of some previous schemes are evaluated for specific scenarios.
For example, the schemes in [KMO18] are evaluated assuming queries are drawn according to the Zipf’s
distribution. We note that our lower bounds do not apply to any scenario where our hard distribution is
not a valid input. Our lower bounds can be interpreted as if one wishes to leak at most Ldec, then one must
either incur Ω(lg n) overhead or only accept specific input distributions. We leave it as an interesting and
important open question to study the efficiency schemes assuming specific distributions.
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5 Stronger Lower Bounds

In this section, we describe two extensions of the lower bound of Section 4 to two more leakage functions,
Lget and Ladd, that leak the same information as Ldec and, additionally, Lget reveals the keys that are used
as inputs for all Get operations while Ladd reveals the keys and values that are used as inputs for all Add
operations. In other words, Lget enables DS to essentially perform Get operations in the plaintext. Similarly,
Ladd enables DS to perform Add operations in the plaintext. As both functions Lget and Ladd might have
larger leakage than Ldec (that is, Ldec ≤ Lget and Ldec ≤ Ladd), the lower bounds are not implied by the
lower bound on Ldec. We formally define Ladd and Lget below.

Definition 16 (Leakage function Ladd). For a sequence O = (op0 = Create, op1, . . . , op`) of operations
where key1, . . . , key` are the input keys to each non-create operation, then the leakage Ladd(O) associated
with O consists of Ladd(O) = (Ladd(O0), . . . ,Ladd(O`)) where Oi = (op0, . . . , opi) and MMOi is the multi-map
resulting from the first i operations. Then, Ladd(Oi) is defined as follows:

1. if opi = Create then Ladd(Oi) = (Create);

2. if opi = Add(keyi, vali) then Ladd(Oi) = (Add, keyi, vali);

3. if opi = Get(keyi) then Ladd(Oi) = (Get, |vals(MMOi−1 , keyi)|, epGet
i).

The get key-equality pattern epGet
i := (epGet

i,1, . . . , epGet
i,i−1) is defined as follows:

epGet
i,j =


⊥, if opj is an Add operation;

0, if opj is a Get operation and keyi 6= keyj ;

1, if opj is a Get operation and keyi = keyj ;

Definition 17 (Leakage function Lget). For a sequence O = (op0 = Create, op1, . . . , op`) of operations
where key1, . . . , key` are the input keys to each non-create operation, then the leakage Lget(O) associated

with O consists of Lget(O) = (Lget(O1), . . . ,Lget(Ol)) where Oi = (op0, . . . , opi) and MMOi is the multi-map
resulting from the first i operations. Then, Lget(Oi) is defined as follows:

1. if opi = Create, then Lget(Oi) = (Create);

2. if opi = Add(keyi, vali) then Lget(Oi) = (Add, epAdd);

3. if opi = Get(keyi) then Lget(Oi) = (Get, keyi, |vals(MMOi−1 , keyi)|).

The add key-equality pattern epAdd
i := (epAdd

i,1, . . . , epAdd
i,i−1) is defined as follows:

epAdd
i,j =


⊥, if opj is a Get operation.

0, if opj is an Add operation and keyi 6= keyj .

1, if opj is an Add operation and keyi = keyj .

We provide some intuition why our lower bounds from Section 4 also apply to these larger leakage
functions. Recall that the Ldec leakage function decouples the Get key-equality pattern and the Add key-
equality pattern which allows an adversary to label each key according to the order in which it is used as
input for a Get operation and the Add. In other words, the Ldec leakage functions assigns each key two
pseudonyms: one used to associate Get operations and another for Add operations. If we replace one of
the two pseudonyms with the real key, the leakage of Ldec should not be greatly changed. Therefore, if the
actual keys of one of the Get or Add operations (but not both) are leaked, the key-equality patterns of the
two operations remain decoupled. In this section, we will make this intuition formal by extending our lower
bounds to Lget and Ladd.
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5.1 Lower Bounds for Ladd

Theorem 18. Let DS be a Ladd-leakage cell probe model dynamic encrypted multi-map implemented over
w-bit cells and a client with c bits of storage. Then

EffDS(n) = Ω

(
lg
(n
c

)
· lg(n)

w

)
.

Proof. The proof follows almost immediately from the proof of Theorem 9 with one extra observation. Note,
that the swaps of Get operations performed in the proof of Theorem 9 to obtain Hardv from Hard do not
affect the leakage incurred by Add operations. As the leakage incurred by Get operations by Ldec and Ladd

are identical, we get that Ladd(Hardv) and Ladd(Hard) are identical; that is, a variant of Lemma 14 for Ladd.
As this is the only part of the proof of Theorem 9 that uses the leakage of DS, the proof follows similarly.

5.2 Lower Bounds for Lget

Theorem 19. Let DS be a Lget-leakage cell probe model dynamic encrypted multi-map implemented over
w-bit cells and a client with c bits of storage. Then

EffDS(n) = Ω

(
lg
(n
c

)
· lg(n)

w

)
.

Proof. We present the modifications of the proof of Theorem 9 needed to prove the result for Lget.
Unlike the proof of Theorem 18 for leakage function Ladd, we need to redefine the notion Lget-invariant

swaps used to obtain the hard distribution for each node v, Hardv. It is not hard to see that the swaps of Get
operations in the proof of Theorem 9 used to obtain Hard and Hardv would result in the leakage distributions
Lget(Hard) and Lget(Hardv) being different as Lget leaks the inputs of Get operations in the plaintext.

For s ≤ s′, we re-define distribution Hard(s,s′) by modifying Phase s and SubPhase Inits′ as follows:

• In Phase 0, SubPhase Inits′ will associated each key in Ka
s (instead of keys in Kg

s′) with l uniformly
random values from V0.

• In Phase s, Add operations in SubPhase Aj will add l values from Vs chosen uniformly at random to
each key in Kg

s′ (instead of keys in Ka
s). The Get operations in SubPhase Gs query all keys in Kg

s just
like in Hard.

Let us now convince ourselves that the swaps defined above are Lget-invariant. Indeed, observe that the Get
operations are not affected by the swaps and that the values queried in phase s′ are inserted in phase s ≤ s′.
Therefore the Lget leakage derived from Get operations stays the same. For the Add operations instead

observe that, both in Hard and Hard(s,s′), the same number k of consecutive Add operations are performed
to distinct keys and thus the key-equality pattern does not change (even though the actual keys do differ).

The Lget-invariance continues to hold when performing any sequence of swaps S := {(s1, s′1), . . . , (s`, s
′
`)}

such that si ≤ s′i, for i = 1, . . . , ` and each index appears at most once in S.
We proceed to define distribution Hardv as the distribution resulting from performing swaps as defined

by swapv := {(i, i+ `), . . . , (i+ `− 1, i+ 2`− 1)} where {i, . . . , i+ `− 1} ({i+ `, . . . , i+ 2`− 1}) refer to the
subphases appearing the left (right) subtree of v.

The identical encoding argument of Theorem 9 may be used as the Get operations in the right subtree
must retrieve values inserted randomly by Add operations in the left subtree in the identical manner. As a
result, the proof is complete with the above modification of Hardv.

6 Lower Bounds for Dynamic Searchable Encryption

In this section, we show that our lower bound for encrypted multi-maps can directly be interpreted as
lower bounds for searchable encryption. In particular, our lower bounds apply to response-hiding searchable
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encryption schemes which do not reveal information about the matching documents to a queried keyword
(except the number of matching documents). To do this, we show there exists a simple reduction that allows
one to implement an encrypted multi-map using a searchable encryption scheme. Recall that encrypted
multi-maps have two functions: Get(key) that retrieves all values associated with key and Add(key, val)
that adds value val to the tuple of values associated with key. On the other hand, dynamic searchable
encryption implements two functions: Query(kw) that retrieves all documents with keyword kw as well as
Insert(d,Kws) that inserts all keywords in Kws into document d. We start by formally defining dynamic
searchable encryption.

6.1 Definition of Dynamic Searchable Encryption

In this section, we present the problem of dynamic searchable encryption. This data structure problem
abstracts the scenario in which a client wishes to outsource the storage of a corpus of documents in an
encrypted manner. In addition, the client wishes to be able to search for keywords and retrieve the list of the
identifiers of the documents containing the searched keyword. In the dynamic variant, the client is also able
to update the corpus of documents stored by the server. This could include adding new documents, removing
old documents and modifying documents. For privacy, the client’s goal is to minimize the information that
the server learns about stored documents and queried keywords.

We now formally describe the dynamic searchable encryption problem. A document is defined as a pair
(d,Kws(d)) where d is the identifier of the document and Kws(d) is the set of all unique keywords that appear
in the document. The set of identifiers of all documents that are in the system is defined by Docs and we define
the set of all document identifiers that contain keyword w as Docs(w) := {d ∈ Docs | w ∈ Kws(d)} ⊆ Docs.
We extend Kws(D) to subsets D ⊆ Docs of documents in the natural way. That is, Kws(D) := ∪d∈DKws(d).
The goal of the dynamic searchable encryption problem is to construct a data structure that enables a
client to perform queries for keywords w and obtain the set Docs(w). In this paper, we will consider the
searchable encryption schemes that provide only minimal functionality for updating the stored corpus of
documents. Specifically, we only consider schemes that support only the insertion of new keywords into
a document mirroring our definitions of encrypted multi-maps. Since we are interested in proving lower
bounds, assuming minimal functionality makes our results stronger as they will also hold for any schemes
that provide a wider range of operations.

Definition 20. The dynamic searchable encryption problem is parameterized by a finite alphabet Σ and an
integer t > 0. Let A = Σ≤t be the set of all strings of length at most t with letters from Σ. Let S = 2A be
the power set over A. The problem is defined by the tuple (U,Q,R) where

• U = {Insert(d,Kws(d)) | d ∈ A,Kws(d) ∈ S} ∪ {Create};

• Q = {Query(kw) | kw ∈ A};
and for any sequence O = (Create, Insert(d1,Kws(d1)), . . . , Insert(dm,Kws(dm))),

R(O,Query(kw)) = {di | kw ∈ Kws(di), i ∈ [m]} = Docs(kw).

Efficiency measure. We define our measures of efficiency for the dynamic searchable encryption problem
similar to encrypted multi-maps. We measure insert efficiency as the number of cell probes performed per
unique keyword appear in the inserted document. In other words, the insert efficiency is the number of cell
probes performed to insert document di divided by the |Kws(di)|. We will measure query efficiency as the
number of cell probes performed per identifier in the query’s answer. Formally, the query efficiency is the
number of cell probes performed to answer a query for keyword kw divided by |Docs(kw)|.

6.2 Lower Bounds

To show that our lower bounds from Section 5 extend to searchable encryption, we need to be able to
answer both MM.Get and MM.Add encrypted multi-map operations given only SSE.Query and SSE.Insert
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encrypted search operations. To do this, we can simulate MM.Add(key, val) by inserting key as a key-
word into the document identified by val, SSE.Insert(val, {key}). For simulating MM.Get(key), we execute
and return the answer of SSE.Query(key). As a result, MM.Get(key) returns all values val such that
Add(key, val) = SSE.Insert(val, {key}) was executed. As one can simulate an encrypted multi-map using
searchable encryption schemes, the encrypted multi-map lower bounds also apply to searchable encryption.
In particular, we can directly interpret the lower bounds from Section 5 into searchable encryption.

We start by interpreting the leakage of Ladd with respect to encrypted multi-maps as leakage LSSE
add for

a searchable encryption scheme. In particular, LSSE
add enables a searchable encryption scheme to perform all

Insert operations that insert new documents completely in the plaintext. That is, the document identifier
as well as the inserted keywords may be revealed to the adversary in the plaintext. For Query operations,
the searchable encryption scheme may only reveal the number of documents containing the queried keyword
as well as the identity of previous Query operations that used the same keyword as input (that is, keyword-
equality leakage). We now formally define LSSE

add :

Definition 21 (Leakage function LSSE
add ). For a sequence O = (op0 = Create, op1, . . . , op`) of operations,

then the leakage LSSE
add (O) associated with O consists of LSSE

add (O) = (LSSE
add (O0), . . . ,LSSE

add (O`)) where Oi =

(op0, . . . , opi) and SSEOi is the multi-map resulting from the first i operations. Then, LSSE
add (Oi) is defined as

follows:

1. if opi = Create then LSSE
add (Oi) = (Create);

2. if opi = Insert(di,Kwsi) then LSSE
add (Oi) = (Insert, di,Kwsi);

3. if opi = Query(kwi) then LSSE
add (Oi) = (Query, |SSEOi−1 .Query(kwi)|, epQuery

i).

The query keyword-equality pattern epQuery
i := (epQuery

i,1, . . . , epQuery
i,i−1) is defined as follows:

epQueryi, j =


⊥, if opj is an Insert operation.

0, if opj is a Query operation and kwi 6= kwj .

1, if opj is a Query operation and kwi = kwj .

Theorem 22. Let SSE be a LSSE
add -leakage cell probe model searchable encryption scheme implemented over

w-bit cells and a client with c bits of storage. Then,

EffSSE(n) = Ω

(
lg
(n
c

)
· lg(n)

w

)
.

Similarly, we may also interpret Lget with respect to the leakage of searchable encryption schemes, LSSE
get .

As a dual of LSSE
add , schemes with leakage LSSE

get are able to perform Query operations that query for keywords
completely in the plaintext. That is, the queried keyword may be revealed in the plaintext. As for the
results of Query operations, the adversary may only learn the number of documents that match the queried
keyword. In terms of leakage incurred by Insert operations, the adversary learns the number of inserted
keywords. Additionally, for each pair of Insert operations, the adversary learns the number of identical
keywords inserted in both operations (that is, a generalization of keyword-equality leakage). The formal
definition of LSSE

get is below:

Definition 23 (Leakage function LSSE
get ). For a sequence O = (op0 = Create, op1, . . . , op`) of operations,

then the leakage LSSE
get (O) associated with O consists of LSSE

get (O) = (LSSE
get (O0), . . . ,LSSE

get (O`)) where Oi =

(op0, . . . , opi) and SSEOi is the multi-map resulting from the first i operations. Then, LSSE
get (Oi) is defined as

follows:

1. if opi = Create then LSSE
get (Oi) = (Create);

2. if opi = Insert(di,Kwsi) then LSSE
get (Oi) = (Insert, |Kws(di)|, epInsert

i);
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3. if opi = Query(kwi) then LSSE
get (Oi) = (Query, kwi, |SSEOi−1 .Query(kwi)|).

The insert keyword-equality pattern epInsert
i := (epInsert

i,1, . . . , epInsert
i,i−1) is defined as follows:

epInsert
i,j =

{
⊥, if opj is a Query operation.

|Kwsi ∩ Kwsj |, if opj is an Insert operation.

Theorem 24. Let SSE be a LSSE
get -leakage cell probe model searchable encryption scheme implemented over

w-bit cells and a client with c bits of storage. Then,

EffSSE(n) = Ω

(
lg
(n
c

)
· lg(n)

w

)
.

7 Conclusions

To summarize, our work presents the first lower bounds for encrypted multi-maps as well as searchable
encryption schemes in the natural setting of computational adversaries without any limitations of the data
encoding used by the constructions. In particular, we show that mitigating the global key-equality pattern
leakage (even in a very small manner) fundamentally incurs an Ω(lg n) overhead. We show our lower bounds
hold even when the encrypted multi-map is able to perform one of the Add or Get operations in plaintext.
These results may be applied to the setting of searchable encryption where we show that dynamic schemes
that are response-hiding also must use Ω(lg n) overhead even when one of the document updates or searches
may be performed in the plaintext.

In terms of techniques, our paper introduces several new ideas that may be widely applicable. First,
we introduce the notion of the leakage cell probe model that allows proving lower bounds for structured
encryption with arbitrary leakage profiles. Next, our lower bounds apply to the setting where the data
structure contents do not necessarily have to be random such as the keywords that appear in documents.
Finally, we present new methods to construct hard distributions even when considering much larger leakage
profiles than previous results. We believe these techniques may be helpful in analyzing the efficiency and
privacy tradeoffs for many other primitives.
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A Folklore ORAM-based Minimal Leakage Construction

We define following minimal leakage function Lmin as follows:

Definition 25 (Minimal Leakage Lmin). For a sequence O = (op0 = Create, op1, . . . , op`) of operations
where key1, . . . , key` are the input keys to each non-create operation, then the leakage Lmin(O) associated with
O consists of Lmin(O) = (Lmin(O0), . . . ,Lmin(O`)), where Oi = (op0, . . . , opi) and MMOi is the multi-map
resulting from the first i operations. Then, Lmin(Oi) is defined as follows:

1. If opi = Create, then Lmin(Oi) = (Create);

2. If opi = Add(keyi, vali) then Lmin(Oi) = (Add);

3. If opi = Get(keyi) then Lmin(Oi) = (Get, |vals(MMOi−1 , keyi)|).

We present the folklore construction of encrypted multi-maps with leakage Lmin using oblivious RAMs
(ORAMs) [GO96]. To do this, we first note that recent logarithmic ORAM constructions [PPRY18, AKL+]
are also constructions of oblivious key-value storage without any modifications or increase in overhead. Obliv-
ious key-value storage were considered previously under the name of oblivious storage in [BMP, GMOT12].

A.1 Construction

We now present OptMM using any oblivious key-value storage implementation OKVS as a blackbox. We
assume that we have an upper bound, n, on the sum of the lengths of the tuples associated with the keys.
OptMM uses two independent instances of OKVS denoted by OKVSkey and OKVScnt. OKVScnt maintains
the count of the number of values associated with each key. OKVSkey will store all values associated with
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each key. Both OKVS are initialized with the capacity to store at most n unique keys and each initialization
returns a handle for the instance and a key.

OptMM.Add receives as input a key key and a value val. First, the number of tuples already associated
with key, denoted by cntkey, is retrieved from OKVScnt. If key does not exist in cntkey, then set cntkey
equal to 1; otherwise increment it by one and store the pair key-value (key, cntkey) in OKVScnt. Finally,
the key-value pair (key||cntkey, val) is inserted into OKVSkey. Note, this key-value pair does not exist in
OKVSkey as all previous occurrences of key, if any, are inserted with smaller counts.

OptMM.Get will be given a key key as input. First, the number of documents containing, cntkey, is
retrieved from OKVScnt. Next, the keys {key||1, key||2, . . . , key||cntkey} are queried from OKVSdoc. The
associated identifiers are returned. Note, they correspond exactly to the values associated with key.

We now present the OptMM formally. We also describe the initialization function OptMM.Create that
takes as input the bound n on the maximum number of document-keyword pairs and initializes both OKVS
instances.

OptMM.Create(n) :

1. Initialize (Kcnt,OKVScnt)← OKVS.Create(1n).

2. Initialize (Kdoc,OKVSdoc)← OKVS.Create(1n).

OptMM.Add(Kcnt,Kdoc, key, val) :

1. Retrieve cntkey ← OKVScnt.get(Kcnt, key).

2. If cntkey 6=⊥, set cntkey = cntkey + 1. Otherwise, set cntkey = 1.

3. Execute OKVScnt.update(Kcnt, key, cntkey).

4. Execute OKVSdoc.update(Kdoc, key||cntkey, val).

OptMM.Query(Kcnt,Kdoc, key) :

1. Set R← ∅.

2. Retrieve cntkey ← OKVScnt.get(Kcnt, key). If cntkey =⊥, return R.

3. For each i ∈ {1, . . . , cntkey}:

(a) Set R← R ∪ {OKVSkey.get(Kdoc, key||i)}.

4. Return R.

Let us now investigate the leakage of OptMM. Each OKVS leaks the number of operations performed
and the maximum capacity of unique keys. The latter is exactly n and thus it is not additional leakage.
Therefore, we only focus on the number of executions of each OKVS. We note that OKVSkey is invoked
twice during OptMM.Add and once during OptMM.Get. This leaks the type of operations which also appears
in Lmin. Similarly, the executions of OKVSkey reveals the number of values returned during OptMM.Get.

Theorem 26. OptMM is a dynamic searchable encryption scheme with leakage Lmin and O(lg n) amortized
efficiency consisting of O(1) OKVS invocations.

As a result, OptMM achieves optimal efficiency for a leakage function Lmin that is strictly smaller than
the leakage profiles Ldec, Ladd and Lget.

B Hash-and-Encrypt Compiler with Global Key-Equality Leakage

In this section, we present a simple hash-and-encrypt compiler that can compile plaintext arrays and multi-
maps into encrypted versions with at most global key-equality pattern leakage. We start by formally defining
the global key-equality pattern leakage, Lglob.
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Definition 27 (Global Leakage Lglob). For a sequence O = (op0 = Create, op1, . . . , op`) of operations where
key1, . . . , key` are the input keys to each non-create operation, then the global leakage function Lglob(O)

associated with O consists of Lglob(O) = (Lglob(O0), . . . ,Lglob(O`)) where Oi = (op0, . . . , opi) and MMOi is
the multi-map resulting from the first i operations. Then, Lglob(Oi) is defined as follows:

1. If opi = Create then Lglob(Oi) = (Create);

2. If opi = Add(keyi, vali) then Lglob(Oi) = (Add, epglob
i);

3. If opi = Get(keyi) then Lglob(Oi) = (Get, |vals(MMOi−1 , keyi)|, epglob
i).

The global key-equality pattern epglob
i := (epglob

i,1, . . . , epglob
i,i−1) is defined as follows:

epglob
i,j =

{
1, if keyi = keyj .

0, if keyi 6= keyj .

The main idea of the hash-and-encrypt compiler is to replace the plaintext keys and values for an encrypted
multi-map with hashed keys and encrypted values. Then, the plaintext version just operates over the hashes
and encryptions. One could define this compiler in general. Instead, we use a concrete example for simplicity.
Consider any O(1) overhead encrypted multi-map such as dynamic perfect hashing in [DKM+94] that has
operations DPH.Get and DPH.Add operations. We generate a key K1 for a collision-resistant hash function
and a key K2 for an IND-CPA encryption scheme. All Get(key) operations of the encrypted multi-map
scheme are implemented by simply executing DPH.Get(H(K1, key)). Similarly, Add(key, val) operations
are implemented by executing DPH.Add(H(K1, key), E(K2, val)). We get the following:

Theorem 28. If one-way functions and collision resistant hash functions exist then there exists a non-
adaptively Lglob-IND DS that solves the dynamic encrypted multi-map problem and has constant amortized
efficiency.

Proof. The efficiency follows immediately. For privacy, we note that the adversarial server sees H(K1, key).
As a result, the adversary learns the global key-equality pattern. Additionally, the server learns the operation
type as well as the number of encrypted values associated with each key.

We note that the hash-and-encrypt is not novel as it has appeared implicitly in many previous works [CGKO11,
KPR12, KM19, PPY19].
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