
SoK: Communication Across Distributed
Ledgers

Alexei Zamyatin1,2, Mustafa Al-Bassam3, Dionysis Zindros4,
Eleftherios Kokoris-Kogias5,9, Pedro Moreno-Sanchez6, and Aggelos Kiayias7,8,

and William J. Knottenbelt1

1 Imperial College London
2 Interlay

3 University College London
4 University of Athens

5 IST Austria
6 Novi Research

7 IMDEA Software Institute
8 IOHK

9 University of Edinburgh

Abstract. Since the inception of Bitcoin, a plethora of distributed led-
gers differing in design and purpose has been created. While by design,
blockchains provide no means to securely communicate with external sys-
tems, numerous attempts towards trustless cross-chain communication
have been proposed over the years. Today, cross-chain communication
(CCC) plays a fundamental role in cryptocurrency exchanges, scalabil-
ity efforts via sharding, extension of existing systems through sidechains,
and bootstrapping of new blockchains. Unfortunately, existing propos-
als are designed ad-hoc for specific use-cases, making it hard to gain
confidence in their correctness and composability.

We provide the first systematic exposition of cross-chain communication
protocols. We formalize the underlying research problem and show that
CCC is impossible without a trusted third party, contrary to common
beliefs in the blockchain community. With this result in mind, we develop
a framework to design new and evaluate existing CCC protocols, focusing
on the inherent trust assumptions thereof, and derive a classification
covering the field of cross-chain communication to date. We conclude
by discussing open challenges for CCC research and the implications of
interoperability on the security and privacy of blockchains.

1 Introduction

Since the introduction of Bitcoin [152] as the first decentralized ledger currency
in 2008, the topic of blockchains (or distributed ledgers) has evolved into a well-
studied field both in industry and academia. Nevertheless, developments are still
largely driven by community effort, resulting in a plethora of blockchain-based
digital currencies being created. Taking into account the heterogeneous nature of

2 Zamyatin et al.

these systems in terms of design and purpose, it is unlikely there shall emerge a
“coin to rule them all”, yielding interoperability an important research problem.

Today, cross-chain communication is found not only in research on cryptocur-
rency transfers and exchanges [20, 19, 108, 107, 187], but is a critical component
of scalabilty solutions such as sharding [129, 34, 185, 33, 36], feature extensions
via sidechains [47, 125, 97, 136], as well as bootstrapping of new systems [116,
169, 118]. In practice, over $1bn worth of Bitcoin has been moved to other
blockchains [27], and numerous competing interoperability projects, attempt-
ing to unite independent systems, have been deployed to practice [176, 180, 133,
167, 110, 178, 21], creating a multi-million dollar industry.

However, in spite of the vast number of use cases and solution attempts,
the underlying problem of cross-chain communication has neither been clearly
defined, nor have the associated challenges been studied or related to existing
research. Early attempts to overview this field offer iterative summaries of mostly
community-lead efforts [68, 165, 113], or focus on a subset of this space, such
as atomic swaps [52, 150], and support our study. Belchior et al. [48] provide
another, more recent, iterative overview of cross-chain projects, yet without clear
taxonomy or classification.
This work. This Systematization of Knowledge (SoK) offers a comprehensive
guide for designing protocols bridging the numerous distributed ledgers available
today, aiming to facilitate clearer communication between academia, community,
and industry. The contributions of this work are thereby twofold:

– We formalize the underlying problem of Correct Cross-Chain Communica-
tion (CCC) (Section 2), relating CCC to existing research and outlining a generic
CCC protocol encompassing existing solutions. We then relate CCC to the Fair
Exchange problem and show that contrary to common beliefs in the blockchain
community, CCC is impossible without a trusted third party (Section 3).

– With the impossibility result in mind, we present a framework to design
new and evaluate existing CCC protocols, focusing on the inherent trust as-
sumptions thereof (Sections 4). We apply this framework to classify the field
of CCC protocols to date (Section 5), highlighting similarities and key differ-
ences. Finally, we outline general observations on current developments, provide
an outlook on the challenges of CCC research, and discuss the implications of
interoperability on the security and privacy of blockchains (Section 6).

2 The Cross-Chain Communication Problem

In this section, we relate cross-chain communication to existing research, intro-
duce the model for interconnected distributed ledgers, provide a formal definition
of the Correct Cross-Chain Communication (CCC) problem, and sketch the main
phases of a generic CCC protocol.

2.1 Historical Background: Distributed Databases

The need for communication among distributed processes is fundamental to any
distributed computing algorithm. In databases, to ensure the atomicity of a dis-

SoK: Communication Across Distributed Ledgers 3

tributed transaction, an agreement problem must be solved among the set of
participating processes. Referred to as the Atomic Commit problem (AC) [56],
it requires the processes to agree on a common outcome for the transaction: com-
mit or abort. If there is a strong requirement that every correct process should
eventually reach an outcome despite the failure of other processes, the problem
is called Non-Blocking Atomic Commit (NB-AC) [46]. Solving this problem en-
ables correct processes to relinquish locks without waiting for crashed processes
to recover. As such, we can relate the core ideas of communication across dis-
tributed ledgers to NB-AC. The key difference hereby lies within the security
model of the interconnected systems. While in classic distributed databases all
processes are expected to adhere to protocol rules and, in the worst case, may
crash, distributed ledgers, where consensus is maintained by a committee, must
also consider and handle Byzantine failures.

2.2 Distributed Ledger Model

We use the terms blockchain and distributed ledger as synonyms and introduce
some notation, based on [97] with minor alterations.
Ledgers and State Evolution. When speaking of CCC, we consider the in-
teraction between two distributed systems X and Y , which can have distinct
consensus participants and may employ different agreement protocols. Thereby,
it is assumed the majority1 of consensus participants in bothX and Y are honest,
namely, that they follow the designated protocol. The data structures underly-
ing X and Y are blockchains (or chains), i.e., append-only sequences of blocks,
where each block contains a reference to its predecessor(s). We denote a ledger
as L (Lx and Ly respectively) and define its state as the dynamically evolving
sequence of included transactions 〈tx1, ...,txn〉. We assume that the evolution
of the ledger state progresses in discrete rounds indexed by natural numbers
r ∈ N. At each round r, a new set of transactions (included in a newly generated
block) is written to the ledger L. We use LP [r] to denote the state of ledger L
at round r, i.e., after applying all transactions written to the ledger since round
r− 1, according to the view of some party P . A transaction can be written to L
only if it is consistent with the system’s consensus rules, given the current ledger
state LP [r]. This consistency is left for the particular system to define, and we
describe it as a free predicate valid(·) and we write valid(tx, LPx [r]) to denote
that tx is valid under the consensus rules of Lx at round r according to the view
of party P . To denote that a transaction tx has been included in / successfully
written to a ledger L as position r we write tx ∈ LP [r]. While the ordering of
transactions in a block is crucial for their validity, for simplicity, we omit the
position of transactions in blocks and assume correct ordering implicitly.
Notion of Time. The state evolution of two distinct ledgers Lx and Ly may
progress at different time intervals: In the time that Lx progresses one round, Ly
may, for example, progress forty rounds (e.g., as in the case of Bitcoin [152] and

1 In case of Proof-of-Work or Proof-of-Stake blockchains, the majority pertains to
computational power [152] or stake [123] respectively.

4 Zamyatin et al.

Ethereum [67]). To correctly capture the ordering of transactions across Lx and
Ly, we define a clock function τ which maps a given round on any ledger to the
time on a global, synchronized clock τ : r → t. We assume that the two chains
are nevertheless synchronized and that there is no clock drift between them. We
use this conversion implicitly in the rest of this paper. For conciseness, we will
use the notation LP [t] to mean the ledger state in the view of party P at the
round r = τ−1(t) which corresponds to time t, namely LP [τ−1(t)].
Persistence and Liveness. Each participant P adopts and maintains a local
ledger state LP [t] at time t, i.e., her current view of the ledger. The views of two
distinct participants P and Q on the same ledger L may differ at time t (e.g., due
to network delay): LP [t] 6= LQ[t]. However, eventually, all honest parties in the
ledger will have the same view. This is captured by the persistence and liveness
properties of distributed ledgers [93]:

Definition 1 (Persistence). Consider two honest parties P,Q of a ledger L
and a persistence (or “depth”) parameter k ∈ N. If a transaction tx appears in
the ledger of party P at time t, then it will eventually appear in the ledger of
party Q at a time t′ > t (“stable” transaction). Concretely, for all honest parties
P and Q, we have that ∀t ∈ N : ∀t′ ≥ t+ k : LP [t] 4 LQ[t′], where LP [t] 4 LQ[t′]
denotes that LP at time t is a (not necessarily proper) prefix of LQ[t′] at time t′.

As parties will eventually come to agreement about the blocks in their ledgers,
we use the notation L[t] to refer to the ledger state at time t shared by all parties;
similarly, we use the notation L[r] for the shared view of all parties at round r.
This notation is valid when t is at least k time units in the past.

Definition 2 (Liveness). Consider an honest party P of a ledger L and a
liveness delay parameter u. If P attempts to write a transaction tx to its ledger
at time t ∈ N, then tx will appear in its ledger at time t′, i.e., ∃t′ ∈ N : t′ ≥
t ∧ tx ∈ LP [t′]. The interval t′ − t is upper bound by u.

Transaction Model. A transaction tx, when included, alters the state of a
ledger L by defining operations to be executed and agreed upon by consensus
participants P1, ..., Pn. The expressiveness of operations is thereby left for the
particular system to define, and can range from simple payments to execution of
complex programs [181]. For generality, we do not differentiate between specifics
transactions models (e.g. UTXO [152] or account-based models [181]).

2.3 Cross-Chain Communication System Model

Consider two independent distributed systems X and Y with underlying ledgers
Lx and Ly, as defined in Section 2.2. We assume a closed system model as in [135]
with a process P running on X and a process Q running on Y . A process can
influence the state evolution of the underlying system by (i) writing a transaction
tx to the underlying ledger L (commit), or (ii) by stopping to interact with the
system (abort). We assume that P possesses transaction txP , which can be
written to Lx, and Q possesses txQ, which can be written to Ly. A function

SoK: Communication Across Distributed Ledgers 5

desc maps a transaction to some “description” which can be compared to an
expected description value, e.g., specifying the transaction value and recipient
(the description differs from the transaction itself in that it may not, for example,
contain any signature). P possesses a description dQ which characterizes the
transaction txQ, while Q possesses dP which characterizes txP . Informally, P
wants txQ to be written to Ly and Q wants txP to be written to Lx. Thereby,
dP = desc(txP) implies txP is valid in X (at time of CCC execution), as it
cannot be written to Lx otherwise (analogous for dQ).

For the network, we assume no bounds on message delay or deviations be-
tween local clocks, unless the individual blockchain protocols require this. We
treat failure to communicate as adversarial behavior. We note that, in the anony-
mous blockchain setting, more synchrony requirements are imposed than in the
byzantine setting. Our construction does not impose any additional synchrony
requirements than the individual ledger protocols. Hence, if P or Q become ma-
licious, we indicate this using boolean “error variables” [95] mP and mQ. We
assume P and Q know each other’s identity and no (trusted) third party is
involved in the communication between the two processes.

2.4 Formalization of Correct Cross-Chain Communication

The goal of cross-chain communication can be described as the synchronization
of processes P and Q such that Q writes txQ to Ly if and only if P has written
txP to Lx. Thereby, it must hold that desc(txP) = dQ ∧ desc(txQ) = dP . The
intuition is that txP and txQ are two transactions which must either both, or
neither, be included in Lx and Ly, respectively. For example, they can constitute
an exchange of assets which must be completed atomically.

To this end, P must convince Q that it created a transaction txP which was
included in Lx. Specifically, process Q must verify that at given time t the ledger
state Lx[t] contains txP . A cross-chain communication protocol which achieves
this goal, i.e., is correct, must hence exhibit the following properties:

Definition 3 (Effectiveness). If both P and Q behave correctly and txP and
txQ match the expected descriptions (and are valid), then txP will be included
in Lx and txQ will be included in Ly. If either of the transactions are not as
expected, then both parties abort.

(desc(txP) = dQ ∧ desc(txQ) = dP ∧mP = mQ = ⊥ =⇒ txP ∈ Lx ∧ txQ ∈ Ly)

∧ (desc(txP) 6= dQ ∨ desc(txQ) 6= dP =⇒ txP /∈ Lx ∧ txQ /∈ Ly)

Definition 4 (Atomicity). There are no outcomes in which P writes txP to
Lx at time t but Q does not write txQ before t′, or Q writes txQ to Ly at t′ but
P did not write txP to Lx before t.

¬((txP ∈ Lx ∧ txQ /∈ Ly) ∨ (txP /∈ Lx ∧ txQ ∈ Ly))

Definition 5 (Timeliness). Eventually, a process P that behaves correctly will
write a valid transaction txP , to its ledger L.

6 Zamyatin et al.

From Persistence and Liveness of L, it follows that eventually P writes txP to
Lx and Q becomes aware of and verifies txP .

Definition 6 (Correct Cross-Chain Communication (CCC)). Consider
two systems X and Y with ledgers Lx and Ly, each of which has Persistence and
Liveness. Consider two processes, P on X and Q on Y , with to-be-synchronized
transactions txP and txQ. Then a correct cross-chain communication proto-
col is a protocol which achieves txP ∈ Lx ∧ txQ ∈ Ly and has Effectiveness,
Atomicity, and Timeliness.

Summarizing, Effectiveness and Atomicity are safety properties. Effectiveness
determines the outcome if transactions are not as expected or both transaction
match descriptions and both processes are behaving correctly. Atomicity globally
restricts the outcome to exclude behaviors which place a disadvantage on either
process. Timeliness guarantees eventual termination of the protocol, i.e., is a
liveness property.

2.5 The Generic CCC Protocol

We now describe the main phases of a Generic CCC Protocol, which can repre-
sent the transfer of good, assets or objects, between any two blockchain-based
distributed systems X and Y . A visual representation is provided in Figure 1.
1) Setup. A CCC protocol is parameterized by the involved distributed systems
X and Y and the corresponding ledgers Lx and Ly, the involved parties P and
Q, the transactions txP and txQ as well as their descriptions dP and dQ. The
latter ensure the validity of txP and txQ and determine the application-level
specification of a CCC protocol. For example, in the case of an exchange of digital
assets, dP and dQ define the asset types, transferred value, time constraints and
any additional conditions agreed by parties P and Q. Typically, the setup occurs
out-of-band between the involved parties and we hence omit this step hereby.
2) (Pre-)Commit on X. Upon successful setup, a publicly verifiable commit-
ment to execute the CCC protocol is published on X: P writes2 transaction txP

to its local ledger LPX at time t in round r. Due to Persistence and Liveness of Lx,
all honest parties of X will report txP as stable (txP ∈ Lx) in round r+ux+kx.
3) Verify. The correctness of the commitment on X by P is verified by Q
checking (or receiving a proof from P) that (i) dP = desc(txP) and (ii) txP ∈ Lx
hold. From Persistence and Liveness of X we know the latter check will succeed
at time t′ which corresponds to round r+ux + kx on X, if P executed correctly.
4a) Commit on Y . Upon successful verification, a publicly verifiable commit-

ment is published on Y : Q writes transaction txQ to its local ledger LQY at time
t′ in round r′ on Y . Due to Persistence and Liveness of Ly, all honest parties of
Y will report txQ as stable (txQ ∈ Ly) in round r′ + uy + ky, where uy is the
liveness delay and ky is the “depth” parameter of Y .

2 In off-chain protocols [102], the commitment can be done by exchanging pre-signed
transactions or channel states, which will be written to the ledger at a later point.

SoK: Communication Across Distributed Ledgers 7

Fig. 1: CCC between X and Y . Process Q writes txQ only if P has written txP .
We set exemplary persistence delays for X and Y as kX = 4 and kY = 3, and
liveness delays as ux = uy = 0. We omit the optional the abort phase.

4b) Abort. If the verification fails and / or Q fails to execute the commitment
on Y , a CCC protocol can exhibit an abort step on X, i.e., “reverting” the
modifications txP made to the state of Lx. As blockchains are append-only data
structures, reverting requires broadcasting an additional transaction txP ′ which
resets X to the state before the commitment of txP .

It is worth noting that some CCC protocols, specifically those facilitating
exchange of assets, follow a two-phase commit design. In this case, steps 2 and
4a are executed in parallel, followed by the verification and (optional) abort
steps on both X and Y . A further observation is that a CCC protocol necessarily
requires a conditional state transition to occur on Y , given a state transition
on X. As such, we do not consider (oracle) protocols which merely relay data
across distributed ledgers [175, 62, 65, 5, 68], as CCC protocols by themselves.

3 Impossibility of CCC without a Trusted Third Party

In this section we show that, in the asynchronous setting, CCC is impossible
without a trusted third party by reducing it to the Fair Exchange problem [38,
155].
Fair Exchange. On a high level, an exchange between two (or more) parties
is considered fair if either both parties receive the item they expect, or neither
do [40]. Fair exchange can be considered a sub-problem of fair secure computa-
tion [54], and is known to be impossible without a trusted third party [155, 182,
87, 86]. We recall the definition of Fair Exchange in Appendix A.

3.1 What is a Trusted Third Party?

Numerous recent works use a single distributed ledger such as Bitcoin and
Ethereum to construct (optimistic) fair exchange protocols [54, 37, 131, 124, 84,
128]. They leverage smart contracts (i.e., programs or scripts), the result of which

8 Zamyatin et al.

is agreed upon and enforced by consensus participants, to ensure the correct-
ness of the exchange. These protocols thus use the consensus of the distributed
ledgers as an abstraction for a trusted third party. If the majority of consensus
participants are honest, correct behavior of processes/participants of the fair
exchange is enforced – typically, the correct release of aQ to P if Q received aP .

A CCC protocol aims to achieve synchronization between two such distributed
ledgers, both of which are inherently trusted to operate correctly. As we show
below, a (possibly additional) TTP can be used to (i) confirm to the consensus
participants of Y that txP was included in Lx, who in turn enforce the inclusion
of txQ in Ly; or (ii) directly enforce correct behavior of Q, such that txQ ∈ Ly.

Similar to the abstraction of TTPs used in fair exchange protocols, in CCC
it does not matter how exactly the TTP is implemented, as long as it enforces
correct behavior of the participants. Strictly speaking, from the perspective of
CCC there is little difference between a TTP consisting of a single individual and
a committee where N out of M members must agree to take action (even though
a committee is, without question, more resilient against failures) – contrary to
the common assumptions made by the blockchain community.

3.2 Relating CCC to Fair Exchange.

We proceed to show that Correct Cross-Chain Communication is impossible
in the asynchronous setting without a trusted third party (TTP), under the
deterministic system model of distributed ledgers, by reducing CCC to Fair Ex-
change [40, 38, 155]. We recall, a fair exchange protocol must fulfill three proper-
ties: Effectiveness, (Strong) Fairness and Timeliness [155, 38] (cf. Appendix A).

Lemma 1. Let M be a system model. Let C be a protocol which solves CCC in
M . Then there exists a protocol S which solves Fair Exchange in M .

Proof (sketch). Consider that the two processes P and Q are parties in a fair
exchange. Specifically, P owns an item (or asset) aP and wishes to exchange it
against an item (or asset) aQ owned by Q. Assume txP assigns ownership of aP
to Q and txQ transfers ownership of aQ to P (specified in the “descriptions”
dP of txP and dQ of txQ). Then, txP must be included in Lx and txQ must
be included in Ly to correctly execute the exchange. In other words, if txQ ∈ Ly
and txP ∈ Lx, then P receives desired aQ and Q receives desired aP , i.e., P and
Q fairly exchange aP and aQ.

We observe the definition of Timeliness in CCC is equivalent to the definition
of Timeliness in fair exchange protocols, as defined in [155]. Effectiveness in fair
exchange states that if P and Q behave correctly and do not want to abandon
the exchange (i.e., mP = mQ = ⊥), and items aP and aQ are as expected by Q
and P , then at the end of the protocol, P will own the desired aQ and Q will own
the desired aP [155]. It is easy to see Effectiveness in CCC achieves exactly this
property: if P and Q behave correctly and desc(txP) = dP and desc(txQ) = dQ,
i.e., txP transfers aP to Q and txQ transfers aQ to P , then P will write txP

to Ly at time t and Q will write txQ to Lx before time t′. From Persistence and

SoK: Communication Across Distributed Ledgers 9

Liveness of Lx and Ly we know both transactions will eventually be written to
the local ledgers of P and Q, consequently all other honest participants of X will
report txP ∈ LX and honest participants of Y will report txQ ∈ LY . From our
model we know that honest participants constitute majorities in both X and Y .
Hence, P will receive aQ and Q will receive aP .

Strong Fairness in fair exchange states that there is no outcome of the pro-
tocol, where P receives aQ but Q does not receive aP , or, vice-versa, Q receives
aP but P does not receive aQ [155]. In our setting, such an outcome is only
possible if txP ∈ Lx ∧ txQ /∈ Ly or txP /∈ Lx ∧ txQ ∈ Ly, which contradicts the
Atomicity property of CCC.

We construct a protocol for Fair Exchange using CCC in Appendix B. It is
now left to show that CCC is defined under the same model as Fair Exchange.
The distributed ledger model [93] used in CCC assumes the same asynchronous
(explicitly) and deterministic (implicitly) system model (cf. Section 2.3) as [155,
90]. Since P and Q by definition can stop participating in the CCC protocol at
any time, CCC exhibits the same crash failure model as Fair Exchange [39, 155]
(and in turn Consensus [90]). Hence, we conclude:

Theorem 1. There exists no asynchronous CCC protocol tolerant against mis-
behaving nodes without a trusted third party.

Proof. Assume there exists an asynchronous protocol C which solves CCC. Then,
due to Lemma 1 there exists a protocol which solves strong fair exchange. As
this is a contradiction, there cannot exist such a protocol C.

Our result currently holds for the closed model, as in [155, 90]. In the open model,
P and Q can be forced to make a decision by the system (or environment), i.e.,
transactions can be written on their behalf if they crash [129]. In the case of
CCC, this means that distributed system Y , or more precisely, the consensus of
Y , can write txQ to Ly on behalf of Q (if P wrote txP to Lx). We observe
that the consensus of Y becomes the TTP in this scenario: both P and Q must
agree that the consensus of Y enforce correct execution of CCC. In practice, this
can be achieved by leveraging smart contracts, similar to blockchain-based fair
exchange protocols, e.g. [84]. As such, we can construct a smart contract, the
execution of which is enforced by consensus of Y , that will write txQ to Ly if P
includes txP in Lx, i.e., Q is allowed to crash.

However, it remains the question how the consensus participants of Y become
aware that txP ∈ Lx. In practice, a smart contract, can only perform actions
based on some input. As such, before writing txQ the contract / consensus of Y
must observe and verify that txP was included in Lx. A protocol achieving CCC
must hence make one of the following assumptions. Either, there exists a TTP
that will ensure correct execution of CCC; or the protocol assumes P , or Q, or
some other honest, online party (this can again be consensus of Y) will always
deliver a proof for txP ∈ Lx to Y within a known, upper bounded delay, i.e.,
the protocol introduces some form of synchrony assumption. As argued in [155],
we observe that introducing a TTP and relying on a synchrony assumption are
equivalent :

10 Zamyatin et al.

Remark 1. When designing a CCC protocol, a choice must be made between
introducing a trusted third party, or, equivalently, assuming some synchrony on
the network.

The intuition behind this result is as follows. If we assume that process P does
not crash and hence submits the necessary proof to the smart contract on Y ,
and that this message is delivered to the smart contract within a know upper
bound, then we can be sure that CCC will occur correctly. Thereby, P intuitively
represents its own trusted third party. However, if we cannot make assumptions
on when the message will be delivered to the smart contract, as is the case
in the asynchronous model, a trusted third party is necessary to determine the
outcome of the CCC: the TTP observes txP ∈ Lx and informs the smart contract
or directly enforces the inclusion of txQ in Ly. This illustrates how a TTP
can be leveraged to enforce synchrony, i.e., timely delivery of messages, in CCC
protocols. While the two models yield equivalent results, the choice between
a TTP and network synchrony impacts the implementation details of a CCC
protocol.

3.3 Incentives and Rational CCC

Several workarounds to the fair exchange problem, including gradual release
mechanisms, optimistic models, and partially fair secure computation [40, 71,
132, 54], have been suggested in the literature. These workarounds suffer, among
others, from a common drawback: they require some form of trusted party that
does not collude with the adversary. Further, in case of a adversary-caused abort,
honest parties must spend extra efforts to restore fairness, e.g., in the optimistic
model the trusted server must be contacted each time fairness is breached.

First suggested in the context of rational exchange protocols [171], the eco-
nomic dimension of blockchains enabled a shift in this paradigm: Rather than
forcing an honest user to invest time and money to achieve fairness, the mali-
cious user is economically punished when breaching fairness and the victim is
reimbursed. This has paved the way to design economically trustless CCC pro-
tocols that follow a game theoretic model under the assumption that actors
behave rationally [187]. We remark that malicious/altruistic actors can never-
theless breach CCC properties: even if there is no economic damage to parties P
or Q, the correct execution of the communication protocol itself still fails.

4 The CCC Design Framework

With the impossibility result 3 and CCC model (Section 2.2) in mind, we now
introduce a new framework for creating and evaluating CCC protocols. A generic
CCC protocol consists of three main phases: commit (on X), verify (and commit
on Y), and an optional abort. The main challenge of designing a CCC protocol
is hence to determine the necessary trust model for each phase, from one of the
following: (i) relying outright on a TTP, (ii) relying on an explicit synchrony

SoK: Communication Across Distributed Ledgers 11

assumption, or (iii) a hybrid approach, where a TTP is only involved if syn-
chrony is breached. The framework introduced below is structured as follows:
for each CCC phase (subsection), we systematize the three possible trust mod-
els (TTP, synchrony, hybrid), outlining possible implementations and reasoning
about practical consideration. This enables systematic evaluation of existing pro-
tocols and, at the same time, acts as a step-by-step guide for creating new CCC
schemes.

4.1 (Pre-)Commit Phase

The commit phase(s) of a CCC protocol typically involves the locking and un-
locking of assets on chains X and Y , determined by the outcome of the protocol.
Model 1: Trusted Third Party (Coordinators) A coordinator is a TTP
that is tasked with ensuring correct execution of a CCC protocol. We classify
coordinator implementations attending to two criteria: custody of assets and in-
volvement in blockchain consensus. A coordinator (committee) can thereby be
static (pre-defined) or dynamic (any user can join). And, finally, a CCC proto-
col can utilize collateral to incentivize correct behavior. We first introduce the
classification criteria and then detail possible implementations of coordinators.

– Custody of Assets. Custody determines with whom the control over as-
sets of (honest) participants resides. We differentiate between custodians and
escrows. Custodians receive unconditional control over the participant’s funds
and are thus trusted to release them as instructed by the protocol rules. Escrows
receive control over the participant’s funds conditional to certain prearranged
constraints being fulfilled. Contrary to custodians, escrows can fail to take action,
e.g. freeze assets, but cannot commit theft.

– Involvement in Consensus. Coordinators can optionally also take part in
the blockchain consensus protocol. Consensus-level coordinators refer to TTPs
that are additionally consensus participants in the underlying chain. This is the
case, for example, if the commit step is performed on chain X and enforced
directly by the consensus participants of X, e.g. through a smart contract or
directly a multi-/threshold signature. External coordinators, on the other hand,
refer to TTPs which are not represented by the consensus participants of the
underlying blockchain. This is the case if (i) the coordinators are external to the
chain X, e.g, the consensus participants of chain Y or other parties, or (ii) less
than the majority of consensus participants of chain X are involved.

– Election. An important distinction to make is between static, i.e., un-
changed over time (usually permissioned), and dynamic coordinator sets. A
dynamic coordinator can be chosen by CCC participants for each individual exe-
cution, or can be sampled by a pre-defined mechanism, as e.g. studied in [78, 126,
127, 156] for Proof-of-Work and in [148, 123, 77, 55] for Proof-of-Stake blockchains.
We consider CCC protocols where any user can become a coordinator as unre-
stricted, while protocols that require coordinators to be approved by some third
party are referred to as restricted.

– Incentives and Collateralization. Instead of following a prohibitive ap-
proach, i.e., technically preventing or limiting coordinators from deviating from

12 Zamyatin et al.

protocol rules, a CCC protocol can follow a punishable approach. That is, ensure
misbehavior can be proven and penalized retrospectively. In the latter case, a
coordinator will typically be required to lock collateral that can be slashed and
allocated to (financially) damaged CCC participants.

Coordinator Implementations. We now detail the different coordinator types ac-
cording to the aforementioned criteria and how they are implemented in practice.

– External Custodians (Committees). Instead of relying on the availability
and honest behavior of a single external coordinator, trust assumptions can be
distributed among a set of N committee members. Decisions require the acknowl-
edgment (e.g. digital signature) of at least M ≤ N members, whereby consensus
can be achieved via Byzantine Fault Tolerant (BFT) agreement protocols such as
PBFT [72, 126]. External custodians can be both static or dynamic, and collat-
eralization can be added on involved blockchains to incentivize honest behavior.

– Consensus-level Custodians (Consensus Committee) are identical to exter-
nal custodians, except that they are also responsible for agreeing on the state of
the underlying ledger. This model is typically used in blockchain sharding [129,
34], where the blockchain X on which the commit step is executed runs a BFT
consensus protocol, i.e., there already exists a static committee of consensus par-
ticipants that much be trusted for correctness of CCC (Persistence and Liveness
of X). Collateralization of Consensus Custodians is best handled on another
blockchain, i.e., where the coordinators have no influence on consensus.

– External Escrows (Multisignature Contracts). External Escrows are a spe-
cial case of External Custodians, where the coordinator is transformed from
Custodian to Escrow by means of a multisignature contract. Multisignature con-
tracts require signatures of a subset (or majority) of committee members and
the participant P (e.g., the asset owner), i.e., P + M,M ≤ N . The committee
can thus only execute actions pre-authorized by the participant: it can at most
freeze assets, but not commit theft.
Model 2: Synchrony Assumptions (Lock Contracts) An alternative to
coordinators consists in relying on synchronous communication between par-
ticipants and leveraging locking mechanisms which harvest security from cryp-
tographic hardness assumptions. Such protocols are often referred to as non-
custodial, as they avoid transferring custody over assets to a TTP – failures, in
the worst case, result in a permanent lockup of funds without explicit (finan-
cial) benefits to a third party. We differentiate between symmetric contracts,
where identical locks are created on both chains and released atomically, and
asymmetric contracts where the main protocol logic is hosted on a single chain.

– Hash Locks (symmetric). A protocol based on hash locks relies on the
preimage resistance property of hash functions: participants P and Q transfer
assets to each other by means of transactions that must be complemented with
the preimage of a hash h := H(r) for a value r chosen by P – the initiator of
the protocol – typically uniformly at random [20, 19, 107, 140].

– Signature-based Locks (symmetric). P and Q can transfer assets to each
other by means of transactions that require to solve the discrete logarithm prob-
lem of a value Y := gy for a value y, chosen uniformly at random by P (i.e., the

SoK: Communication Across Distributed Ledgers 13

initiator of the protocol). The functionality of embedding the discrete logarithm
problem in the creation of a digital signature was put forward by the community
under the term adaptor signatures [157] and formally defined in [41]. In practice,
it has been shown that it is possible to implement adaptor signatures leverag-
ing virtually any digital signature scheme [177], including ECDSA and Schnorr
which are used for authorization in most blockchains today [60, 58, 141, 172, 85,
157, 151].

– Timelock Puzzles and Verifiable Delay Functions (symmetric). An alter-
native approach is to construct (cryptographic) challenges, the solution of which
will be made public at a predictable time in the future. Thus, P and Q can
commit to the cross-chain transfer conditioned on solving one of the aforemen-
tioned challenges. Concrete constructions include timelock puzzles and verifiable
delay functions. Timelock puzzles [160] build upon inherently sequential func-
tions where the result is only revealed after a predefined number of operations
are performed. Verifiable delay functions [58] improve upon timelock puzzles on
that the correctness of the result for the challenge is publicly verifiable. This
functionality can also be simulated by releasing parts of the preimage of a hash
lock interactively bit by bit, until it can be brute forced [53].

– Smart Contracts (asymmetric) are programs stored in a ledger which are
executed and their result agreed upon by consensus participants [67, 70]. As such,
trusting in the correct behavior of a smart contract is essentially trusting in the
secure operation of the underlying chain, making this a useful construction for
(Consensus-level) Escrows. Contrary to Consensus-level Custodians, who must
actively follow the CCC protocol and potentially run additional software, with
smart contracts, consensus participants are not directly involved in the CCC
protocol: an interaction with the CCC smart contract is, by default, treated like
any other state transition and no additional software/action is required.

Model 3: Hybrid (Watchtowers) Instead of fully relying on coordinators
being available or synchrony assumptions among participants holding, it is pos-
sible to employ so called watchtowers, i.e., service providers which act as a fall-
back if CCC participants experience crash failures. We observe strong similari-
ties with optimistic fair exchange protocols [40, 39, 71]. Specifically, watchtowers
take action to enforce the commitment, if one of the parties crashes or syn-
chrony assumptions do not hold, i.e., after a pre-defined timeout [119, 45, 142,
43]. This construction was first introduced and applied to off-chain payment
channels [102].

4.2 Verification Phase

The verification phase, during which the commitment on X is verified on Y (or
vice-versa), can similarly be executed under different trust models, as detailed
in the following. An important distinction concerns the type of verification per-
formed: while most CCC protocols verify the inclusion of a transaction executing
the commitment on X, full validation of correctness under X’s protocol rules is
typically avoided due to the incurred computational overhead. A detailed analy-

14 Zamyatin et al.

sis and taxonomy of different verification techniques is provided in Appendix C
.

Model 1: Trusted Third Party (Coordinators). The simplest approach to
cross-chain verification is to rely on a trusted third party (also referred to as
validators [180]) to handle the verification of the state changes on interlinked
chains during CCC execution.

– External Validators. A simple approach is to outsource the verification
step to a (trusted) third party, external to the verifying ledger (in our case Y),
as in [176, 18]. The TTP can then be the same as in the commit/abort steps.

– Consensus Committee / Smart Contracts. Alternatively, the verification
can be handled by the consensus participants of the verifying chain [129, 81, 137],
leveraging the assumption that misbehavior of consensus participants indicates
a failure of the chain itself.

Model 2: Synchrony Assumption. Instead of explicitly relying on a TTP,
the verification phase can be implemented using:

– Direct Observation. Similar to the commit phase of CCC, one can require
all participants of a CCC protocol to execute the verification phase individu-
ally: i.e., to run (fully validating) nodes in all involved chains. This is often the
case in exchange protocols, such as atomic swaps using symmetric locks such as
HTLCs [20, 107], but also in parent-child settings where one chain by design ver-
ifies or validates the other [47, 97, 136]. This relies on a synchrony assumption,
i.e., requires CCC participants to observe commitments and act within a certain
time, in order to complete the CCC.

– Chain Relay Smart Contracts. The verification process can be encoded in
so called chain relays [5, 68, 187] – smart contracts deployed on Y capable of
verifying the of state and hence the commitments executed on X. Chain relays
resemble cryptocurrency light (or SPV) clients, i.e., store only the bare minimum
data to verify the inclusion of transactions in the respective blockchain [152, 121,
139]. Accordingly, chain relays can only verify that a commitment was executed
on X– yet not if it was valid under X’s consensus rules. Instead, the “SPV
assumption” is applied: if X has Persistence and Liveness, then a commitment
(transaction) written to X must be valid [152, 139]. To fully validate the correct-
ness of a commitment, one must either (i) download the entire state of chain X
(infeasible for CCC), or (ii) encode the state of X in succinct proofs of knowl-
edge [57, 49, 64] (c.f. Appendix C).

Model 3: Hybrid. Verificaiton via TTPs and synchrony can be combined:

– Watchtowers. Just like in the commit phase, synchrony and TTP assump-
tions can be combined in the verification phase, such that a CCC protocol initially
relies on a synchrony assumption, but can fall back to a TTP (watchtowers, c.f
Section 4.1) to ensure correct termination if messages are not delivered within a
per-defined period.

– Verification Games. Inversely, verification games by default rely on TTPs
for verification (mostly for performance improvements) and implement dispute
resolution mechanisms as fall-back: users can provide (reactive) fraud proofs [35]

SoK: Communication Across Distributed Ledgers 15

or accuse coordinators of misbehavior requiring them to prove correct opera-
tion [173, 104, 117].

4.3 Abort Phase

The abort of a CCC protocol is optional and is encountered typically in exchange
protocols. Most other CCC protocols assume that once a commit is executed on
X, no abort will be necessary.
Model 1: Trusted Third Party (Coordinators) Similarly to the commit
phase, an abort can be handled by a trusted third party and the possible im-
plementations are the same as in Section 4.1. If a TTP was introduced in the
commit phase, the abort phase will be typically handled by the exact same TTP.
Model 2: Synchrony Assumptions (Timelocks) Alternatively, it is pos-
sible to enforce synchrony by introducing timelocks, after the expiry of which
the protocol is aborted. Specifically, to ensure that assets are not locked up in-
definitely in case of a crash failure of a participant or misbehavior of a TTP
entrusted with the commit step, all commit techniques can be complimented
with timelocks: after expiry of the timelock, assets are returned to their original
owner. We differentiate between two types of timelocks. Absolute timelocks yield
a transaction valid only after a certain point in time, defined in by a timestamp
or a block (ledger at index i, L[i]) located in the future. Relative timelocks, on the
other hand, condition tx2 on the existence of another transaction tx1: tx2 only
becomes valid and can be written to the underlying ledger if tx1 has already
been included and a certain number of blocks (confirmations [7]) have passed.
Model 3: Hybrid (Watchtowers) As an additional measure of security, TTPs
can be introduced as a fallback to timelocks in case CCC participants experience
crash failures, e.g. in form of a watchtower [119, 45, 142, 43] that recovers oth-
erwise potentially lost assets. This is specifically useful in the case of atomic
swaps using Hased Timelock Contracts (HTLCs) [20, 107, 3, 158], when either
party crashes after the hashlock’s secret has been revealed.

5 Classification of Existing CCC Protocols

We now apply the CCC Design Framework introduced in Section 4 to classify
existing CCC protocols. All CCC protocols observed in practice follow the Generic
CCC Protocol model (cf. Section 2.5). For each protocol, we hence study and
reason about the trust model (TTP, synchrony, hybrid) selected for each phase
of the CCC process, and summarize our classification in Table 1. Our analysis
thereby focuses on well-documented or deployed protocols - which in turn have
seen numerous implementations that are not referenced in this paper.

In addition to applying the CCC Design Framework, we split existing pro-
posals into two protocol families, based on their design rationale and use case,
which have direct implications on the design choices: (i) exchange protocols,
which synchronize the exchange of assets across two ledgers (Section 5.1), and
(ii) migration protocols, which allow to move an asset or object to a different
ledger (Section 5.2).

1
6

Z
a
m

y
a
tin

et
a
l.

Table 1: Classification of existing of Cross-Chain Communication protocols, in consideration of the selected TTP model (cf.
Section 4) at each protocol step (commit, verify, abort). Notation for non-binary TTP values: uses a TTP, # fully relies on
synchrony and availability of participants, H# hybrid. We also highlight if the TTP (committee) is static or changes dynamically,
and whether collateral is utilzed to incentivize correct behavior of TTPs. We use the following abbreviations: EC for External
Custodian, CC for Consensus Custodian, EE for External Escrow, SC for Smart Contract, EV for External Validator, CM
for Consensus Committee, and DO for Direct Observation.

Protocol

Trust Model at each CCC Protocol Phase

Commit on chain X Verify & Commit on chain Y Abort on chain X (optinal)

TTP Dynamic? Collateral? Type TTP Type TTP Type

E
x
ch

a
n
g
e
P
ro

to
c
o
ls

(
A
t
o
m

ic
S
w
a
p
s
)

Traditional Custodial Exchanges (e.g., [1, 53]) 7 7 EC (single, restricted) EV EC (single, restricted)

A2L [172] H# 7 3 EE (multisig + signature Lock) # DO H# EE + Timelock

Arwen [106] H# 7 7 EE (multisig + Hash Lock) # DO H# EE + Timelock

Notarized HTLC Atomic Swaps [176] # - - Hash Lock EV H# EE + Timelock

HTLC Atomic Swaps [20, 107, 19, 176] # - - Hash Lock # DO # Timelock

ECDSA/DLSAG Atomic Swaps [141, 151] # - - Signature Lock # DO # Timelock

SPV Atomic Swaps [10, 125, 187, 108] # - - Standard payment # SC(chain relay) # Timelock

M
ig
ra

ti
o
n

P
ro

to
c
o
ls

C
r
y
p
t
o
c
u
r
r
e
n
c
y
-

b
a
c
k
e
d

A
s
s
e
t
s

(Bidirectional) Chain Relays [125, 97] # - - SC # SC (chain relay) - -

XCLAIM [187], Dogethereum [174] 3 3 EC (single, unrestricted) # SC (chain relay) -? -

tBTC [17] 7 3 EC (committee, restricted) # SC (chain relay) -? -

Custodial Wrapped Assets (e.g., [18, 30, 29]) 7 7 EC (single, restricted) EV EC (single, restricted)

S
id

e
-

c
h
a
in

s Federated Sidechains/Pegs [47, 81, 97] 7 7 EC (consensus of Y) CM -? -

RSK [137, 136] 7 7 EC (consensus of Y) CM -? -

S
h
a
r
d
in

g ATOMIX[129],SBAC[34], Fabric Channels[36] 7 7 CC (shard X) CM CC (shard X)

Rapidchain [185] 7 7 CC (shard X) CM -? -

XCMP [66] 7 7 EC (parent consensus) CM -? -

B
o
o
t
-

s
t
r
a
p
p
in

g Proof-of-Burn (Federated) [169, 118] # - - SC / Burn address CM - -

Proof-of-Burn (SPV) [118] # - - SC / Burn address # SC (chain relay) - -

Merged Mining/Staking [116, 97] 7 7 CC (consensus of X) CM - -

? While not explicitly considered by the protocol, the TTP used for the commitment on X can, at its discretion, abort the CCC protocol manually/out-of-band in case of failure on Y .

SoK: Communication Across Distributed Ledgers 17

5.1 Exchange Protocols

Exchange protocols synchronize an atomic exchange of digital goods: x on chain
X against y on Y (c.f. Fair Exchange in Appendix A) . In practice, such protocols
implement a two-phase commit mechanism, where parties first pre-commit to the
exchange and can explicitly abort the protocol in case of disagreement or failure
during the commit step.
(Pre-)Commit. Trivially, the commit phase can be handled by External Custo-
dians: traditional, centralized exchanges require to deposit (commit) assets with
a TTP before trading.

The longest-standing alternative to centralized solutions are atomic swaps via
symmetric locks which rely on synchrony and cryptographic hardness assump-
tions. Counterparties P and Q lock (pre-commit) assets in on-chain contracts
with identical release conditions on X and Y : spending from one lock releases
the other, ensuring Atomicity of CCC. The first and most adopted implementa-
tion of symmetric locks are hashed timelock contracts (HTLCs) [19, 20, 107, 176],
where the same secret (selected by P) is used as pre-image to identical Hash
Locks on X and Y . To improve cross-platform compatibility, Hash Locks, which
require both chains to support (the same) hash functions, can be replaced with
Signature Locks e.g., using ECDSA [141] or group/ring signature schemes [151].

On blockchains which support (near) Turing complete programming lan-
guages (e.g., Ethereum [67]) the commitment on X can exhibit more complex
locking conditions via smart contracts. In SPV atomic swaps [10, 125, 187, 108],
assets of a party P are locked in a smart contract on X which is capable of
verifying the state of chain Y (chain relay, cf. Section 4.2) - and unlocked only if
counterparty Q submits a correct proof for the expected payment (commitment)
on Y . The smart contract can be further extended to support collateralization
and penalties for misbehaving counterparties (e.g., to mitigate optionally and
improve fairness [103, 187]).

Both symmetric and SPV atomic swaps suffer from usability challenges im-
peding adoption: they require users to be online and execute commitments in a
timely manner to avoid financial damage (built-in abort mechanisms discussed
later). Hybrid protocols seek to combine symmetric locks with TTP models
to mitigate usability issues while avoiding full trust in a central provider. In
Arwen [106], parties P and Q commit to-be-exchanged assets into on-chain mul-
tisignature contracts on X and Y , establishing shared custody with an External
Escrow (EE). Trades are executed similar to HTLC swaps, yet utilize the escrow
to ensure correct and timely execution. A2L [172] follows a similar multisigna-
ture setup but utilizes adaptor signatures [41] to ensure Atomicity of trades:
the escrow only forwards P ’s assets to Q if Q solves a cryptographic challenge,
for which Q needs the help of P . Both Arwen and A2L require a complex on-
chain setup process (similar to payment channels [158]) and rely on pre-paid
fees (Arwen) or collateral (A2L) to protect the escrow from griefing attacks [75]
- yielding them inefficient for one-time exchanges.
Verify. Contrary to traditional exchanges, where the custodial (operator) is
also responsible for the verification phase, symmetric atomic swap protocols

18 Zamyatin et al.

(including Arwen and A2L) require users to directly observe all chains involved
in the CCC to verify correct execution of the (pre-)commit phase. Notarized
atomic swaps (e.g., as in InterLedger [176]) remove the online requirement for
users by entrusting an External Validator (EV) e.g., a set of notaries, with the
verification of (and timely reaction to) the commitment on X- at the risk of the
EV colluding with the a counterparty to commit theft. A more robust approach,
implemented in SPV atomic swaps, is the use of chain relays: the verification of
the commit on X and the correct finalization of the CCC protocol (commit on
Y) is executed by a smart contract on Y , enforced by the consensus of Y .

Abort. Exchange CCC protocols typically add timelocks to the release condi-
tions of the commitments of X and Y to ensure an automatic abort of the CCC
protocol after a pre-defined delay. This is to prevent indefinite lock-up of assets,
should a party crash or misbehave. However, CCC protocols implementing time-
locks impose strict online requirements on participants and expose them to race
conditions. The initiator P of e.g., a HTLC swap can defraud counterparty Q
by recovering assets on X if they remain unclaimed upon expiry of the time-
lock (e.g., if Q crashed). Some protocols, including A2L and Arwen, partially
outsource this responsibility to TTPs [106, 172].

5.2 Migration Protocols

Migration protocols temporarily or permanently move digital goods from one
blockchain to another. Typically, this is achieved by obtaining a “write lock”
on an asset x on chain X, preventing any further updates to x on chain X,
and consequently creating a representation y(x) on Y . The state of x can only
be updated by modifying its “wrapped” version y(x) on Y – comparable to the
concept of mutual exclusion in concurrency control [80]. The state changes of y(x)
will typically be reflected back to chain X by locking or destroying (“burning”)
y(x) and applying the updates to x when it is unlocked.

Migration protocols only require to execute CCC synchronization across X
and Y twice: creating and destroying y(x). The “wrapped” representation y(x)
typically exhibits the same properties as “native” assets y, allowing seamless
integration with applications on Y . For comparison, Exchange protocols require
to setup and execute CCC for each trade. The main drawback of Migration
protocols is the requirement of giving up custody over x, in the majority of
cases to a TTP (cf. Table 1).

In practice, we identify four main use cases for Migration protocols: (i)
cryptocurrency-backed assets used for transfers across heterogeneous blockchains
(e.g., “wrapped” Bitcoin on Ethereum), (ii) communication across homogeneous
chains (shards) in sharded blockchains, (iii) sidechains where a child chain is
“pegged” to a parent for feature extensions, and (iv) bootstrapping of new block-
chains using existing systems.

(Pre-)Commit. The simplest implementation of a Migration protocol (e.g.,
for cryptocurrency-backed assets) relies on a single, static TTP which receives
unrestricted custody over the to-be-migrated assets during the commit phase

SoK: Communication Across Distributed Ledgers 19

(External Custodian) – for example, implemented by wBTC [18], a custodial
platform for migrating Bitcoin to Ethereum.

Instead of relying on a single TTP, most CCC rely on a TTP commit-
tee to improve robustness against failures. Protocols connecting heterogeneous
blockchains via cryptocurrency-backed assets, notably tBTC [17], utilize a set of
External Custodians (EC). In the tBTC protocol, currently deployed between
Bitcoin and Ethereum, ECs construct a jointly controlled deposit public key on
X via (ECDSA) threshold signatures [98], to which users send (commit) to-be-
migrated assets. The ECs must thereby lock up collateral on Y which is used
to reimburse users in case the EC committee commits theft or crashes. At the
time of writing, the implemented threshold signature scheme does not support
fault attribution, i.e., it impossible to distinguish between honest and malicious
committee members when slashing collateral, requiring the EC set to be static
and restricted. RenVM [30] aims to replace threshold signatures with distributed
key generation via secure multi-party computation [100] but implements a cen-
tralized approach at the time of writing.

Sidechains [47, 81, 97] establish a parent-child relationship between X and
Y : the consensus committee of X (Consensus Custodian, CC) or Y (External
Custodian, EC) is responsible for handling the correct deposit (commit) of x on
X. In practice, implementations follow a similar approach to the heterogeneous
setting: users deposit assets x to a public key with shared control among com-
mittee members, implemented e.g., via threshold / multisignature [111] schemes.
Liquid [47, 81], which coined the “sidechain” terminology, maintains an 11-of-15
multisignature, controlled by its consensus participants, to migrate (lock/unlock)
Bitcoin to and from the Liquid blockchain. RSK [137, 136], a merge-mined [116]
Bitcoin sidechain, currently follows the same approach as Liquid but envisions
a Bitcoin protocol upgrade enabling miners to vote on migrating assets to RSK.

Similarly, sharded blockchains, which consist of a set of homogeneous shard-
chains with a homogeneous, shared security model, utilize the consensus com-
mittee(s) available within the system for securing cross-shard migrations. While
often considered as a separate topic in research, sharded blockchains exhibit
built-in CCC protocols [44]: Migrated assets x are locked with the consensus of
X (Consensus Custodian, CC) during the commit phase. A novelty compared
to heterogeneous systems is the explicit consideration of n-to-m CCC protocols,
such as ATOMIX [129], SBAC [34], and Fabric Channels [36], which require an
explicit abort step as part of the two-phase commit design.

Recently, a new family of protocols following a permissionless design, was
introduced. XCLAIM [187] and Dogethereum [174] allow anyone to become a
TTP and accept deposits (commits) of x on X, establishing a dynamic and un-
restricted set of coordinators (External Custodians, ECs). The only requirement
for registering as an EC is to lock collateral y on Y – the amount of y locked
thereby determines the amount of x deposits (and hence minted y(x)) an EC
can accept. While Dogethereum assumes a constant exchange rate between mi-
grated x (equiv. y(x)) and collateral asset y, XCLAIM utilizes a multi-stage
over-collateralization scheme to re-balance the economic value of committed x

20 Zamyatin et al.

and locked collateral y. To enable ECs to join and leave the system at any point
in time, XCLAIM implements a replacement/auction mechanism via cross-chain
SPV atomic swaps, where collateral y can be exchanged for committed x held
in custody.

In cases where X and Y support smart contracts, specifically chain relays,
bidirectional chain relays [125, 97] can be utilized, enabling non-custodial com-
mitments on X and Y : locking of x and unlocking/minting of y(x) is handled
exclusively by smart contracts under the assumption of synchrony.

Proof-of-Burn [169, 118] resembles follows a similar design, yet implements a
unidirectional protocol: instead of being locked, x is provably destroyed (“burned”),
and newly minted as y(x) on Y . As such, Proof-of-Burn is mostly used for boot-
strapping of new blockchains. Merged mining [116] was the first CCC protocol
deployed in practice (2011 in Namecoin) and is used explicitly for bootstrapping
purposes. Miners (stakers) of X can reuse PoW solutions (stake) to progress
consensus on Y by including a commitment to Y ’s state in the ledger of X.
Verify. Migration protocols - with the exception of centralized, custodial ser-
vices - rely the on consensus of chain Y to correctly verify the commitment on X.
We observe two main implementation techniques: (i) under synchrony assump-
tions by using chain relay smart contracts, which cryptographically verify the
correctness of the commitment on X, or (ii) by requesting the consensus com-
mittee of Y to explicitly sign off on the CCC execution. XCMP [66], a cross-shard
protocol, adds an additional verification step: cross-shard transfers are verified
by and included in a hierarchically “superior” parent chain – which in turn is
verified by the target shard Y before commitment.
Abort. We observe that Migration protocols generally do not implement an
explicit abort phase. Instead, they assume that if the commitment on X is
executed correctly it will eventually be verified by chain Y , which in turn will
result in a correct commitment on Y . An exception hereof are n-to-m transfers
in sharded blockchains (e.g., ATOMIX [129] and SBAC [34]) which require an
explicit abort phase. Such transfers follow a two-phase-commit protocol: assets
on all source shardsX1, ..., Xn are pre-committed and verified on all target shards
Y1, ..., Yn, which in turn execute a pre-commitment. If a single target shard
fails to reply with a pre-commitment (within some period), the CCC protocol is
aborted on all other source and target shards.

5.3 Insights and General Observations

An interesting, yet expected insight is that performance and usability out-
weigh security considerations from a user’s perspective. Decentralized and non-
custodial CCC solution have been proposed as early as 2013 (symmetric swaps [19])
and 2015 (SPV swaps [10]), yet centralized providers remain the dominant cross-
chain asset exchange facilitator. The recent rise of decentralized exchanges,
which mostly operate within a single chain [24], has boosted the adoption of
cryptocurrency-backed assets, although predominantly via custodial approaches:
at the time of writing, 99% of “wrapped” Bitcoin on Ethereum has been issued
through trusted, custodial services [26].

SoK: Communication Across Distributed Ledgers 21

Decentralized CCC protocols still suffer from practical drawbacks hindering
adoption. Symmetric atomic swaps impose strict online requirements on users.
SPV atomic swaps, and similarly migration protocols such as XCLAIM and
tBTC, make use of chain relays which are only feasible if Y supports smart
contracts and the cryptographic primitives used in X. Orthogonal, collateraliza-
tion, which allows to protect users from financial damage (cf. Section 3), incurs
high capital requirements and opportunity cost – leading most users to resort to
trusted, centralized solutions.

An interesting observation hereby is that sharded systems and sidechains do
not necessarily benefit from decentralized CCC protocols. In fact, due to the
homogeneous nature of the security models of X and Y in this setting, the use
of the consensus committee(s) of X or Y as TTP for CCC does not introduce
any additional (external) trust assumptions to the underlying systems.

6 CCC Challenges and Outlook

In this section, we provide an outlook on the (open) problems faced by CCC
protocols and possible avenues for future work.

6.1 Heterogeneous Models and Parameters Across Chains

Problems. Different blockchains leverage different system models and param-
eterizations, which, if not handled correctly by CCC protocols, can lead to pro-
tocol failures. For instance, the absence of a global clock across chains requires
CCC participants to either agree on a trusted third party as means of synchro-
nization, or to rely on a chain-dependent time definition (e.g., block generation
rates [93]) which are often non-deterministic and hence unsafe for strictly time-
bound protocols [93, 187]. A practical example hereof are race-condition attacks
on symmetric exchange protocols such as HTLC atomic swaps, discussed in Sec-
tion 5.

Another consideration are the security models of interconnected chains: while
X and Y may exhibit well defined security models, these are typically indepen-
dent and not easily comparable (with the exception of sharding) – especially
when combined within a CCC protocol. For instance, X may rely on PoW and
thus assume that adversarial hash rate is bound by α ≤ 33% [88, 99, 163]. On
the other hand, Y may utilize PoS for consensus and similarly assume that the
adversary’s stake in the system is bound by β ≤ 33%. While similar at first
glance, the cost of accumulating stake [96, 89] may be lower than that of accu-
mulating computational power, or vice-versa [61]. Since permissionless ledgers
are not Sybil resistant [82], i.e., provide weak identities at best, quantifying ad-
versary strength is challenging even within a single ledger [42]. This task becomes
nearly impossible in the cross-chain setting: not only can consensus participants
(i) “hop” between different chains [147, 134], destabilizing involved systems, but
also (ii) be susceptible to bribing attacks executed cross-chain, against which
there currently exist no countermeasures [144, 115].

22 Zamyatin et al.

Following from different security models, the lack of homogeneous finality
guarantees [168] across blockchains poses another challenge for CCC. Consider
the following: X accepts a transaction as valid when confirmed by k subsequent
blocks e.g., as in PoW blockchains [93]; instead, Y deems transactions valid as
soon as they are written to the ledger (k = 1, e.g. [31]). A CCC protocol triggers
a state transition on Y conditioned on a transaction included in X, however,
later an (accidental) fork occurs on X. While the state of X is reverted, this
may not be possible on Y according to consensus rules – likely resulting in an
inconsistent state on Y and financial damage to users.
Outlook. Considering the plethora of blockchain designs in practice, it is safe to
assume a heterogeneous ecosystem for at least the near future. Protocol designers
must hence carefully evaluate and consider the specifics of each interlinked chain
when implementing CCC schemes: introduction of conservative lower bounds
on transaction (commit) finality (hours / days rather than minutes), analysis
of computation and communication capabilities of consensus participants, and
accounting for peer-to-peer network delays when utilizing a trusted third party
as global clock.

6.2 Heterogeneous Cryptographic Primitives Across Chains

Problems. Interconnected chains X and Y may rely on different cryptographic
schemes, or different instances of the same scheme. CCC protocols, however,
often require compatible cryptographic primitives: a CCC protocol between a
system X using ECDSA [112] as its digital signature scheme and a system Y
using Schnorr [164] is only seamlessly possible if both schemes are instantiated
over the same elliptic curve [141]. This is, for example, the reason Ethereum uses
the same secp256k1 curve as Bitcoin [25].

Similarly, CCC protocols using Hash Locks, e.g. HTLC swaps, require that
the domain of the hash function has the same size in both X and Y – otherwise
the protocol is prone to oversize preimage attacks [114], i.e., an attack where
a transaction cannot be accepted by a chain because the representation of the
preimage requires more bits than those previously allocated to store it.
Outlook. A design challenge in CCC protocols is thus the interoperability of
chains in terms of (cryptographic) primitives as required in CCC protocols. In
cases where interlinked chains implement different elliptic curves, zero-knowledge
proofs may provide a workaround, yet at the cost of increased protocol complex-
ity, as well as computation and communication costs [154]. Our observations
suggest that this is one of the main reasons for lack of interoperability across
current blockchain networks.

6.3 Collateralization and Exchange Rates

Problems. In recent works [187, 174, 125, 17], we observe a trend towards collat-
eralizing coordinators to prevent financial damage to users and incentivize cor-
rect behavior of TTPs. Thereby, it is crucial to ensure that the provided collateral
has sufficient value to outweigh potential gains from misbehavior. However, in

SoK: Communication Across Distributed Ledgers 23

the cross-chain setting, where insured asset and collateral are typically differ-
ent, collateralized CCC protocols are forced to (i) implement measures against
exchange rate fluctuations such as over-collateralization incurring capital ineffi-
ciencies for participants, and (ii) rely on (typically centralized) price oracles.
Outlook. Current CCC protocols, if at all, only provide minimal protection
against exchange rate fluctuations, such as over-collateralization. An interest-
ing avenue for future research is hence the design of dynamic collateralization
e.g., based on the volatility of the locked/collateral assets. Decentralized price
oracles already are an active field of research [159, 32, 175, 6, 188], yet as of this
writing oracles remain single points of failure in collateralized CCC protocols.
Cryptocurrency-backed assets traded on decentralized exchanges, where trading
data is available on-chain, may thereby provide a valuable source of information
for cross-verification with centralized providers [187].

6.4 Lack of Formal Security Analysis

Problems. While numerous CCC protocols have been deployed and used in
practice, handling value transfers worth millions, most lack formal and rigor-
ous security analysis. This lack of formal security guarantees opens the door to
possible security threats. For instance, replay attacks on state verification, i.e.,
where proofs are re-submitted multiple times or on multiple chains, can result
in failures such as double spending [143] or counterfeited cryptocurrency-backed
assets [187]. Another security issue arises with data availability. Protocols em-
ploying cross-chain verification via chain relays typically rely on timely arrival
of proofs and metadata (block headers, transactions, ...). However, if an adver-
sary can withhold this data from the verifying chain [35], such protocols not
only become less efficient but potentially vulnerable to double spending and
counterfeiting.
Outlook. This state of affairs calls for a rigorous and formal security analysis of
existing CCC protocol – least those deployed in practice. In the meantime, ad-
hoc solutions to the aforementioned security threats have been discussed in the
community. For instance, protections against replay attacks involving the use of
sequence numbers, or chains keeping track of previously processed proofs [143,
166, 69]. Similarly, first attempts to mitigate the data availability problem via
erasure coding have been suggested in [35, 33, 184] – yet at the cost of protocol
complexity and communication overhead.

6.5 Lack of Formal Privacy Analysis.

Problems. Privacy is a crucial property of financial transactions and hence
applies to CCC protocols. Ideally it should not be possible for an observer to
determine which two events have been synchronized across chains (e.g., which
assets have been exchanged and by whom). Unfortunately, CCC protocols de-
ployed in practice lack formal privacy analysis and numerous privacy issues have
already been detected. For instance, recent works [140, 101] leverage the fact that
the same hash value is used on both chains involved in symmetric HTLC atomic

24 Zamyatin et al.

swaps to trivially link exchanged assets and accounts. Other de-anonymization
techniques enabled by CCC protocols include miner address clustering via blocks
merge-mined across different cryptocurrencies [116], cross-linking of miner and
user accounts cross-chain by analyzing of blockchain forks [109, 170], and using
public exchange datasets to trace cross-ledger trades [183].

Outlook. The academic community has developed formal frameworks that per-
mit rigorous analysis of the privacy properties in the context of exchange pro-
tocols [101, 105, 172, 140, 141]. First techniques towards privacy-preserving CCC
Exchange protocols via asymmetric and unlinkable locking techniques have been
studied in [140, 141, 162, 79], yet, at the time of writing, we are not aware of
privacy enhancements for the more-widely adopted Migration protocols – an
interesting avenue for future research.

6.6 Upcoming Industrial and Research CCC Trends

Interoperability Blockchains. are specialized sharded distributed ledgers which
aim to serve as communication layer between other blockchains [133, 180, 161,
167, 178, 110, 21] and exhibit implementations of existing CCC protocols. Individ-
ual shards, which are coordinated via a parent chain running a BFT agreement
protocol, connect to and import assets from existing blockchains via Migra-
tion CCC protocols, most commonly cryptocurrency-backed assets [14]. A formal
treatment of this design, also considering distributed computations, is presented
in [138]. Cosmos [133] and Polkadot [180] also implement new standards for (in-
ternal) cross-shard communication (IBC [23] and XCMP [66] respectively). As
of this writing, the aforementioned systems are under active development, mak-
ing it difficult to argue about their security, feasibility, and long-term adoption
- leaving room for future analysis.

Efficient Light Clients. Cross-chain state verification via chain relays is a fun-
damental part of robust CCC protocols. While current light/SPV clients suffice
for e.g., mobile devices, they often remain infeasible for deployment on top of
blockchains for CCC protocols, where storage and bandwidth are priced by the
byte. Recent works on sub-linear light clients have achieved first significant the-
oretical [121, 139, 122] and practical performance improvements [76, 186, 179]. In
parallel, recent developments in the field of zero-knowledge cryptography [57, 49,
64] pave the way towards (near)constant verification times and costs for chain
relays. First schemes for blockchains with built-in support for such proof systems
are put forth in [145, 59, 50].

Off-Chain Protocols. One of the most actively developed fields in blockchain
research are off-chain (“L2”) communication networks [102], which aim to im-
prove scalability (and privacy) of distributed ledgers: most transactions are ex-
ecuted off-chain and only channel opening and closure are written to the ledger.
The influx of L2 solutions is thereby creating a new field for CCC research:
(i) communication across off-chain channels [140, 141, 172, 105], and (ii) com-
munication between off-chain and on-chain networks [22, 28]. While similar to
conventional CCC protocols, the “off-chain” nature of L2 solutions requires more

SoK: Communication Across Distributed Ledgers 25

complex techniques for the verification phase of CCC: intermediate states in off-
chain protocols cannot be verified by existing chain relays, which only support
verification of on-chain commitments, and must hence resort to cryptographic
techniques such as adaptor signatures [41] or succinct proofs of knowledge [57,
49, 64].

7 Concluding Remarks

Our systematic analysis of cross-chain communication as a new problem in the
era of distributed ledgers allows us to relate (mostly) community driven efforts
to established academic research in database and distributed systems research.
We formalize the cross-chain communication problem and show it cannot be
solved without a trusted third party – contrary to the assumptions often made
in the blockchain community. Following this result, we introduce a framework
for evaluating existing and designing new cross-chain communication protocols,
based on the inherent trust assumptions thereof. We then provide a classification
and comparative evaluation, taking into account both academic research and the
vast number of online resources, allowing us to better understand the similarities
and differences between existing cross-chain communication approaches. Finally,
by discussing implications and open challenges faced by cross-chain communica-
tion protocols, as well as the implications of interoperability on the security and
privacy of blockchains, we offer a comprehensive guide for designing protocols,
bridging multiple distributed ledgers.

References

1. Binance exchange. Online. https://www.binance.com/en, Accessed: 2020-09-19.
2. Bitcoin Developer Guide: Simplified Payment Verification (SPV).

https://bitcoin.org/en/developer-guide#simplified-payment-verification-spv.
Accessed: 2018-05-16.

3. Bitcoin Wiki: Hashed Time-Lock Contracts.
https://en.bitcoin.it/wiki/Hashed Timelock Contracts. Accessed: 2018-05-
16.

4. Bitcoin wiki: Merged mining specification. https://en.bitcoin.it/wiki/Merged mining specification
. Accessed: 2018-05-03.

5. Btcrelay. https://github.com/ethereum/btcrelay. Accessed 2019-08-15.
6. Chainlink: A decentralized oracle network. Online.

https://link.smartcontract.com/whitepaper , Accessed: 2020-09-19.
7. Confirmations. https://en.bitcoin.it/wiki/Confirmation. Accessed: 2018-11-28.
8. Dogerelay. https://github.com/dogethereum/dogerelay. Accessed 2019-08-15.
9. Eth-eos-relay. https://github.com/EveripediaNetwork/eth-eos-relay . Accessed

2019-08-15.
10. Ethereum contract allowing ether to be obtained with bitcoin.

https://github.com/ethers/EthereumBitcoinSwap. Accessed: 2018-10-30.
11. Parity-Bridge. https://github.com/paritytech/parity-bridge. Accessed 2019-08-

15.

26 Zamyatin et al.

12. The parity light protocol - wiki. https://wiki.parity.io/The-Parity-Light-Protocol-
(PIP). Accessed: 2018-10-30.

13. Peace relay. https://github.com/loiluu/peacerelay. Accessed 2019-08-15.
14. Polkabtc: Trustless bitcoin on polkadot. Online.

https://github.com/interlay/BTC-Parachain , Accessed: 2020-09-19.
15. Project alchemy. https://github.com/ConsenSys/Project-Alchemy. Accessed

2019-08-15.
16. Project waterloo. https://blog.kyber.network/waterloo-a-decentralized-practical-

bridge-between-eos-and-ethereum-1c230ac65524. Accessed 2019-08-15.
17. tbtc: A decentralized redeemable btc-backed erc-20 token.

http://docs.keep.network/tbtc/index.pdf . Accessed: 2019-11-15.
18. Wrapped bitcoin. https://www.wbtc.network/assets/wrapped-tokens-

whitepaper.pdf . Accessed: 2018-05-03.
19. Alt chains and atomic transfers. bitcointalk.org, 2013.
20. Atomic swap. Bitcoin Wiki, 2013.
21. Wanchain whitepaper. https://www.wanchain.org/files/Wanchain-Whitepaper-

EN-version.pdf, 2017.
22. Submarine swaps service. Online, 2018. https://github.com/submarineswaps/swaps-

service.
23. Inter-blockchain communication protocol (ibc) specification. Online, 2019.

https://github.com/cosmos/ics/tree/master/ibc.
24. Online, 2020. https://coinmarketcap.com/rankings/exchanges/dex/.
25. Online, 2020. https://forum.ethereum.org/discussion/comment/53/Comment53.

26. Bitcoin on ethereum. Online, 2020. https://defipulse.com/btc.
27. Bitcoin supply on ethereum tops $1b. Coindesk, September 2020.

https://www.coindesk.com/bitcoin-supply-on-ethereum-tops-1b .
28. Loop. Online, 2020. https://lightning.engineering/loop/.
29. Ptokens: How it works. Online, 2020. https://ptokens.io/how-it-works ,Accessed:

2020-09-19.
30. Renvm. Online, 2020. https://renproject.io/renvm , Accessed: 2020-09-19.
31. I. Abraham, G. Gueta, and D. Malkhi. Hot-stuff the linear, optimal-resilience, one-

message bft devil. arXiv:1803.05069, 2018.
32. J. Adler, R. Berryhill, A. Veneris, Z. Poulos, N. Veira, and A. Kastania. Astraea: A

decentralized blockchain oracle. arXiv preprint arXiv:1808.00528, 2018.
33. M. Al-Bassam. Lazyledger: A distributed data availability ledger with client-side smart

contracts, 2019.
34. M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis. Chainspace: A

sharded smart contracts platform. In 2018 Network and Distributed System Security
Symposium (NDSS), 2018.

35. M. Al-Bassam, A. Sonnino, and V. Buterin. Fraud proofs: Maximising light client
security and scaling blockchains with dishonest majorities. CoRR, abs/1809.09044,
2018.

36. E. Androulaki, C. Cachin, A. De Caro, and E. Kokoris-Kogias. Channels: Horizontal
scaling and confidentiality on permissioned blockchains. In European Symposium on
Research in Computer Security, pages 111–131. Springer, 2018.

37. M. Andrychowicz. Multiparty computation protocols based on cryptocurrencies, 2015.
Accessed: 2017-02-15.

38. N. Asokan. Fairness in electronic commerce. 1998.
39. N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic fair

exchange. In Proceedings. 1998 IEEE Symposium on Security and Privacy (Cat. No.
98CB36186), pages 86–99. IEEE, 1998.

SoK: Communication Across Distributed Ledgers 27

40. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures. In
International Conference on the Theory and Applications of Cryptographic Techniques,
pages 591–606. Springer, 1998.

41. L. Aumayr, O. Ersoy, A. Erwig, S. Faust, K. Hostakova, M. Maffei, P. Moreno-Sanchez,
and S. Riahi. Generalized bitcoin-compatible channels. IACR Cryptol. ePrint Arch.,
2020:476, 2020.

42. G. Avarikioti, L. Käppeli, Y. Wang, and R. Wattenhofer. Bitcoin security under tem-
porary dishonest majority. In 23rd Financial Cryptography and Data Security (FC),
2019.

43. G. Avarikioti, E. K. Kogias, and R. Wattenhofer. Brick: Asynchronous state channels.
arXiv preprint arXiv:1905.11360, 2019.

44. G. Avarikioti, E. Kokoris-Kogias, and R. Wattenhofer. Divide and scale: Formalization
of distributed ledger sharding protocols. arXiv preprint arXiv:1910.10434, 2019.

45. G. Avarikioti, F. Laufenberg, J. Sliwinski, Y. Wang, and R. Wattenhofer. Towards
secure and efficient payment channels. arXiv preprint arXiv:1811.12740, 2018.

46. O. Babaoglu and S. Toueg. Understanding non-blocking atomic commitment. Dis-
tributed systems, pages 147–168, 1993.

47. A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller, A. Poelstra,
J. Timón, and P. Wuille. Enabling blockchain innovations with pegged sidechains,
2014.

48. R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia. A survey on blockchain
interoperability: Past, present, and future trends. arXiv preprint arXiv:2005.14282,
2020.

49. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and post-
quantum secure computational integrity. IACR Cryptology ePrint Archive, 2018:46,
2018.

50. E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive oracle proofs. In Theory of
Cryptography Conference, pages 31–60. Springer, 2016.

51. J. Benaloh and M. De Mare. One-way accumulators: A decentralized alternative to
digital signatures. In Workshop on the Theory and Application of of Cryptographic
Techniques, pages 274–285. Springer, 1993.

52. P. Bennink, L. v. Gijtenbeek, O. v. Deventer, and M. Everts. An analysis of atomic
swaps on and between ethereum blockchains using smart contracts. Tech. report, 2018.
https://work.delaat.net/rp/2017-2018/p42/report.pdf.

53. I. Bentov, Y. Ji, F. Zhang, Y. Li, X. Zhao, L. Breidenbach, P. Daian, and A. Juels.
Tesseract: Real-time cryptocurrency exchange using trusted hardware. Cryptology
ePrint Archive, Report 2017/1153, 2017. Accessed:2017-12-04.

54. I. Bentov and R. Kumaresan. How to use bitcoin to design fair protocols. In Advances
in Cryptology–CRYPTO 2014, pages 421–439. Springer, 2014.

55. I. Bentov, R. Pass, and E. Shi. Snow white: Provably secure proofs of stake, 2016.
Accessed: 2016-11-08.

56. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery
in database systems, volume 370. Addison-wesley New York, 1987.

57. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance
to succinct non-interactive arguments of knowledge, and back again. In Proceedings
of the 3rd Innovations in Theoretical Computer Science Conference, pages 326–349.
ACM, 2012.

58. D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay functions. In CRYPTO,
2018.

28 Zamyatin et al.

59. D. Boneh, B. Bünz, and B. Fisch. Batching techniques for accumulators with applica-
tions to iops and stateless blockchains. Cryptology ePrint Archive, Report 2018/1188,
2018. https://eprint.iacr.org/2018/1188.

60. D. Boneh and M. Naor. Timed commitments. In Annual International Cryptology
Conference, pages 236–254. Springer, 2000.

61. J. Bonneau. Why buy when you can rent? bribery attacks on bitcoin consensus. In
BITCOIN ’16: Proceedings of the 3rd Workshop on Bitcoin and Blockchain Research,
February 2016.

62. J. Bonneau, J. Clark, and S. Goldfeder. On bitcoin as a public randomness source,
2015. Accessed: 2015-10-25.

63. J. Bonneau, J. Clark, and S. Goldfeder. On bitcoin as a public randomness source.
IACR Cryptology ePrint Archive, 2015:1015, 2015.

64. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Efficient range proofs for confidential transactions, 2017. Accessed:2017-11-10.

65. B. Bünz, S. Goldfeder, and J. Bonneau. Proofs-of-delay and randomness beacons in
ethereum. 2017.

66. J. Burdges, A. Cevallos, P. Czaban, R. Habermeier, S. Hosseini, F. Lama, H. K. Alper,
X. Luo, F. Shirazi, A. Stewart, et al. Overview of polkadot and its design considerations.
arXiv preprint arXiv:2005.13456, 2020.

67. V. Buterin. Ethereum: A next-generation smart contract and decentralized application
platform, 2014. Accessed: 2016-08-22.

68. V. Buterin. Chain interoperability. Tech. report, 2016. Accessed: 2017-03-25.

69. V. Buterin. Cross-shard contract yanking. https://ethresear.ch/t/cross-shard-contract-
yanking/1450, 2018.

70. C. Cachin. Architecture of the hyperledger blockchain fabric, 2016. Accessed: 2016-
08-10.

71. C. Cachin and J. Camenisch. Optimistic fair secure computation. In Annual Interna-
tional Cryptology Conference, pages 93–111. Springer, 2000.

72. M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99,
pages 173–186, 1999.

73. D. Catalano and D. Fiore. Vector commitments and their applications. In International
Workshop on Public Key Cryptography, pages 55–72. Springer, 2013.

74. A. Chepurnoy, T. Duong, L. Fan, and H.-S. Zhou. Twinscoin: A cryptocurrency via
proof-of-work and proof-of-stake, 2017. Accessed: 2017-03-22.

75. T. Chesney, I. Coyne, B. Logan, and N. Madden. Griefing in virtual worlds: causes,
casualties and coping strategies. Information Systems Journal, 19(6):525–548, 2009.

76. S. Daveas, K. Karantias, A. Kiayias, and D. Zindros. A gas-efficient superlight bitcoin
client in solidity. In Proceedings of the 2nd ACM Conference on Advances in Financial
Technologies, pages 132–144, 2020.

77. B. David, P. Gaži, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake blockchain. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 66–98. Springer, 2018.

78. C. Decker and R. Wattenhofer. Bitcoin transaction malleability and mtgox. In Com-
puter Security-ESORICS 2014, pages 313–326. Springer, 2014.

79. A. Deshpande and M. Herlihy. Privacy-preserving cross-chain atomic swaps. In In-
ternational Conference on Financial Cryptography and Data Security, pages 540–549.
Springer, 2020.

80. E. W. Dijkstra. Solution of a problem in concurrent programming control. In Pioneers
and Their Contributions to Software Engineering, pages 289–294. Springer, 2001.

SoK: Communication Across Distributed Ledgers 29

81. J. Dilley, A. Poelstra, J. Wilkins, M. Piekarska, B. Gorlick, and M. Friedenbach. Strong
federations: An interoperable blockchain solution to centralized third party risks. arXiv
preprint arXiv:1612.05491, 2016.

82. J. R. Douceur. The sybil attack. In International Workshop on Peer-to-Peer Systems,
pages 251–260. Springer, 2002.

83. T. Duong, L. Fan, and H.-S. Zhou. 2-hop blockchain: Combining proof-of-work and
proof-of-stake securely. Cryptology ePrint Archive, Report 2016/716, 2016. Accessed:
2017-02-06.

84. S. Dziembowski, L. Eckey, and S. Faust. Fairswap: How to fairly exchange digital
goods. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 967–984. ACM, 2018.

85. C. Egger, P. Moreno-Sanchez, and M. Maffei. Atomic multi-channel updates with
constant collateral in bitcoin-compatible payment-channel networks. In CCS, 2019.

86. S. Even. A protocol for signing contracts. Technical report, Computer Science Depart-
ment, Technion. Presented at CRYPTO’81, 1982.

87. S. Even and Y. Yacobi. Relations among public key signature systems. Technical
report, Computer Science Department, Technion, 1980.

88. I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In
Financial Cryptography and Data Security, pages 436–454. Springer, 2014.

89. G. Fanti, L. Kogan, S. Oh, K. Ruan, P. Viswanath, and G. Wang. Compounding of
wealth in proof-of-stake cryptocurrencies. arXiv preprint arXiv:1809.07468, 2018.

90. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus
with one faulty process. volume 32, pages 374–382. ACM, 1985.

91. B. Ford, L. Gasser, E. K. Kogias, and P. Jovanovic. Cryptographically verifiable data
structure having multi-hop forward and backwards links and associated systems and
methods, Dec. 13 2018. US Patent App. 15/618,653.

92. A. Gabizon, K. Gurkan, P. Jovanovic, G. Konstantopoulos, A. Oines, M. Olszewski,
M. Straka, and E. Tromer. Plumo: Towards scalable interoperable blockchains using
ultra light validation systems. 2020.

93. J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol with chains
of variable difficulty, 2016. Accessed: 2017-02-06.

94. A. Garoffolo, D. Kaidalov, and R. Oliynykov. Zendoo: a zk-snark verifiable cross-
chain transfer protocol enabling decoupled and decentralized sidechains. arXiv preprint
arXiv:2002.01847, 2020.

95. F. C. Gärtner. Specifications for fault tolerance: A comedy of failures. 1998.
96. P. Gaži, A. Kiayias, and A. Russell. Stake-bleeding attacks on proof-of-stake

blockchains. Cryptology ePrint Archive, Report 2018/248, 2018. Accessed:2018-03-
12.

97. P. Gazi, A. Kiayias, and D. Zindros. Proof-of-stake sidechains. IEEE Security and
Privacy. IEEE, 2019.

98. R. Gennaro, S. Goldfeder, and A. Narayanan. Threshold-optimal dsa/ecdsa signatures
and an application to bitcoin wallet security. In International Conference on Applied
Cryptography and Network Security, pages 156–174. Springer, 2016.

99. A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdo rf, and S. Capkun. On
the security and performance of proof of work blockchains. In Proceedings of the 2016
ACM SIGSAC, pages 3–16. ACM, 2016.

100. O. Goldreich. Secure multi-party computation. Manuscript. Preliminary version, 78,
1998.

101. M. Green and I. Miers. Bolt: Anonymous payment channels for decentralized currencies.
Cryptology ePrint Archive, Report 2016/701, 2016. Accessed: 2017-08-07.

30 Zamyatin et al.

102. L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais. Sok:
Off the chain transactions. Cryptology ePrint Archive, Report 2019/360, 2019.
https://eprint.iacr.org/2019/360.

103. R. Han, H. Lin, and J. Yu. On the optionality and fairness of atomic swaps. Cryptology
ePrint Archive, Report 2019/896, 2019. https://eprint.iacr.org/2019/896.

104. D. Harz and M. Boman. The scalability of trustless trust. arXiv:1801.09535, 2018.
Accessed:2018-01-31.

105. E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg. Tumblebit: An
untrusted bitcoin-compatible anonymous payment hub, 2016. Accessed: 2017-09-29.

106. E. Heilman, S. Lipmann, and S. Goldberg. The arwen trading protocols. Whitepaper.
https://www.arwen.io/whitepaper.pdf.

107. M. Herlihy. Atomic cross-chain swaps. arXiv:1801.09515, 2018. Accessed:2018-01-31.
108. M. Herlihy, B. Liskov, and L. Shrira. Cross-chain deals and adversarial commerce.

arXiv preprint arXiv:1905.09743, 2019.
109. A. Hinteregger and B. Haslhofer. An empirical analysis of monero cross-chain trace-

ability. arXiv preprint arXiv:1812.02808, 2018.
110. D. Hosp, T. Hoenisch, P. Kittiwongsunthorn, et al. Comit-cryptographically-secure

off-chain multi-asset instant transaction network. arXiv preprint arXiv:1810.02174,
2018.

111. K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital multisig-
natures. NEC Research & Development, (71):1–8, 1983.

112. D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital signature algorithm
(ecdsa). International journal of information security, 1(1):36–63, 2001.

113. S. Johnson, P. Robinson, and J. Brainard. Sidechains and interoperability. arXiv
preprint arXiv:1903.04077, 2019.

114. J. Jones and abitmore. Optional htlc preimage length and hash160 addition. BSIP 64,
blog post. https://github.com/bitshares/bsips/issues/163.

115. A. Judmayer, N. Stifter, A. Zamyatin, I. Tsabary, I. Eyal, P. Gaži, S. Meiklejohn, and
E. Weippl. Pay-to-win: Incentive attacks on proof-of-work cryptocurrencies. Cryptology
ePrint Archive, Report 2019/775, 2019. https://eprint.iacr.org/2019/775.

116. A. Judmayer, A. Zamyatin, N. Stifter, A. G. Voyiatzis, and E. Weippl. Merged mining:
Curse or cure? In CBT’17: Proceedings of the International Workshop on Cryptocur-
rencies and Blockchain Technology, Sep 2017.

117. H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten. Arbitrum:
Scalable, private smart contracts. In Proceedings of the 27th USENIX Conference on
Security Symposium, pages 1353–1370. USENIX Association, 2018.

118. K. Karantias, A. Kiayias, and D. Zindros. Proof-of-burn. In International Conference
on Financial Cryptography and Data Security, pages 523–540. Springer, 2020.

119. M. Khabbazian, T. Nadahalli, and R. Wattenhofer. Outpost: A responsive lightweight
watchtower. 2019.

120. A. Kiayias, N. Lamprou, and A.-P. Stouka. Proofs of proofs of work with sublinear
complexity. In International Conference on Financial Cryptography and Data Security,
pages 61–78. Springer, Springer, 2016.

121. A. Kiayias, A. Miller, and D. Zindros. Non-interactive proofs of proof-of-work. Cryp-
tology ePrint Archive, Report 2017/963, 2017. Accessed:2017-10-03.

122. A. Kiayias, A. Polydouri, and D. Zindros. The Velvet Path to Superlight Blockchain
Clients, 2020.

123. A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure
proof-of-stake blockchain protocol. In Annual International Cryptology Conference,
pages 357–388. Springer, 2017.

SoK: Communication Across Distributed Ledgers 31

124. A. Kiayias, H.-S. Zhou, and V. Zikas. Fair and robust multi-party computation using
a global transaction ledger. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 705–734. Springer, 2016.

125. A. Kiayias and D. Zindros. Proof-of-work sidechains. In International Conference on
Financial Cryptography and Data Security. Springer, 2018.

126. E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford. Enhancing
bitcoin security and performance with strong consistency via collective signing. In 25th
USENIX Security Symposium (USENIX Security 16), Austin, TX, Aug. 2016. USENIX
Association.

127. E. Kokoris-Kogias. Robust and scalable consensus for sharded distributed ledgers.
Technical report, Cryptology ePrint Archive, Report 2019/676, 2019.

128. E. Kokoris-Kogias, E. C. Alp, S. D. Siby, N. Gailly, L. Gasser, P. Jovanovic, E. Syta,
and B. Ford. Calypso: Auditable sharing of private data over blockchains. Technical
report, Cryptology ePrint Archive, Report 2018/209, 2018.

129. E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford. Om-
niledger: A secure, scale-out, decentralized ledger via sharding. In 2018 IEEE Sympo-
sium on Security and Privacy (SP), pages 583–598. IEEE, 2018.

130. L. Kokoris-Kogias, L. Gasser, I. Khoffi, P. Jovanovic, N. Gailly, and B. Ford. Managing
identities using blockchains and CoSi. In 9th Workshop on Hot Topics in Privacy
Enhancing Technologies (HotPETs 2016), 2016.

131. R. Kumaresan and I. Bentov. Amortizing secure computation with penalties. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 418–429. ACM, 2016.

132. A. Küpçü and A. Lysyanskaya. Usable optimistic fair exchange. Computer Networks,
56(1):50–63, 2012.

133. J. Kwon and E. Buchman. Cosmos: A network of distributed ledgers.
https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md, 2015.

134. Y. Kwon, H. Kim, J. Shin, and Y. Kim. Bitcoin vs. bitcoin cash: Coexistence or
downfall of bitcoin cash? arXiv:1902.11064, 2019.

135. L. Lamport. A simple approach to specifying concurrent systems. Communications of
the ACM, 32(1):32–45, 1989.

136. S. Lerner. Drivechains, sidechains and hybrid 2-way peg designs. Technical report,
Tech. Rep. [Online], 2018.

137. S. D. Lerner. Rootstock: Bitcoin powered smart contracts.
https://docs.rsk.co/RSK White Paper-Overview.pdf, 2015.

138. Z. Liu, Y. Xiang, J. Shi, P. Gao, H. Wang, X. Xiao, and Y.-C. Hu. Hyperservice:
Interoperability and programmability across heterogeneous blockchains. arXiv preprint
arXiv:1908.09343, 2019.

139. L. Luu, B. Buenz, and M. Zamani. Flyclient super light client for cryptocurrencies.
Accessed 2018-04-17.

140. G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi. Concurrency and
privacy with payment-channel networks. In CCS, pages 455–471, 2017.

141. G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and M. Maffei. Anony-
mous multi-hop locks for blockchain scalability and interoperability. In NDSS, 2019.

142. P. McCorry, S. Bakshi, I. Bentov, A. Miller, and S. Meiklejohn. Pisa: Arbitration
outsourcing for state channels. IACR Cryptology ePrint Archive, 2018:582, 2018.

143. P. McCorry, E. Heilman, and A. Miller. Atomically trading with roger: Gambling on
the success of a hardfork. In CBT’17: Proceedings of the International Workshop on
Cryptocurrencies and Blockchain Technology, Sep 2017.

32 Zamyatin et al.

144. P. McCorry, A. Hicks, and S. Meiklejohn. Smart contracts for bribing miners. In
5th Workshop on Bitcoin and Blockchain Research, Financial Cryptography and Data
Security 18 (FC). Springer, 2018.

145. I. Meckler and E. Shapiro. Coda: Decentralized cryptocurrency at scale.
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf, 2018.

146. R. C. Merkle. A digital signature based on a conventional encryption function. In
Conference on the Theory and Application of Cryptographic Techniques, pages 369–
378. Springer, 1987.

147. D. Meshkov, A. Chepurnoy, and M. Jansen. Revisiting difficulty control for blockchain
systems. Cryptology ePrint Archive, Report 2017/731, 2017. Accessed: 2017-08-03.

148. S. Micali. Algorand: The efficient and democratic ledger, 2016. Accessed: 2017-02-09.

149. A. Miller. The high-value-hash highway, bitcoin forum post, 2012.

150. M. Miraz and D. C. Donald. Atomic cross-chain swaps: Development, trajectory and
potential of non-monetary digital token swap facilities. Annals of Emerging Technolo-
gies in Computing (AETiC) Vol, 3, 2019.

151. P. Moreno-Sanchez, Randomrun, D. V. Le, S. Noether, B. Goodell, and A. Kate. Dlsag:
Non-interactive refund transactions for interoperable payment channels in monero.
Cryptology ePrint Archive, Report 2019/595, 2019. https://eprint.iacr.org/2019/595.

152. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Dec 2008. Accessed:
2015-07-01.

153. K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser, I. Khoffi, J. Cappos,
and B. Ford. CHAINIAC: Proactive software-update transparency via collectively
signed skipchains and verified builds.

154. S. Noether. Discrete logarithm equality across groups. Online, 2020.
https://www.getmonero.org/resources/research-lab/pubs/MRL-0010.pdf.

155. H. Pagnia and F. C. Gärtner. On the impossibility of fair exchange without a trusted
third party. Technical report, Technical Report TUD-BS-1999-02, Darmstadt Univer-
sity of Technology . . . , 1999.

156. R. Pass and E. Shi. Hybrid consensus: Scalable permissionless consensus, Sep 2016.
Accessed: 2016-10-17.

157. A. Poelstra. Scriptless scripts. Presentation slides.
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-
expo/slides.pdf.

158. J. Poon and T. Dryja. The bitcoin lightning network, 2016. Accessed: 2016-07-07.

159. H. Ritzdorf, K. Wüst, A. Gervais, G. Felley, et al. Tls-n: Non-repudiation over tls
enabling ubiquitous content signing. In Network and Distributed System Security Sym-
posium (NDSS), 2018.

160. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. 1996.

161. T. Rocket. Snowflake to avalanche: A novel metastable consensus protocol family for
cryptocurrencies. Available [online].[Accessed: 4-12-2018], 2018.

162. J. Rubin, M. Naik, and N. Subramanian. Merkelized abstract syntax trees.
http://www.mit.edu/ jlrubin/public/pdfs/858report.pdf, 2014.

163. A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish mining strategies in
bitcoin, 2015. Accessed: 2016-08-22.

164. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of cryptology,
4(3):161–174, 1991.

165. V. A. Siris, D. Dimopoulos, N. Fotiou, S. Voulgaris, and G. C. Polyzos. Interledger
smart contracts for decentralized authorization to constrained things, 2019.

SoK: Communication Across Distributed Ledgers 33

166. A. Sonnino, S. Bano, M. Al-Bassam, and G. Danezis. Replay attacks and de-
fenses against cross-shard consensus in sharded distributed ledgers. arXiv preprint
arXiv:1901.11218, 2019.

167. M. Spoke and Nuco Engineering Team. Aion: The third-generation blockchain network.
https://aion.network/media/2018/03/aion.network technical-introduction en.pdf. Ac-
cessed 2018-04-17.

168. A. Stewart and E. Kokoris-Kogia. Grandpa: a byzantine finality gadget. arXiv preprint
arXiv:2007.01560, 2020.

169. I. Stewart. Proof of burn, 2012. Accessed: 2017-05-10.
170. N. Stifter, P. Schindler, A. Judmayer, A. Zamyatin, A. Kern, and E. Weippl. Echoes

of the past: Recovering blockchain metrics from merged mining. In Proceedings of the
23nd International Conference on Financial Cryptography and Data Security (FC).
Springer, 2019.

171. P. Syverson. Weakly secret bit commitment: Applications to lotteries and fair ex-
change. In Proceedings. 11th IEEE Computer Security Foundations Workshop (Cat.
No. 98TB100238), pages 2–13. IEEE, 1998.

172. E. Tairi, P. Moreno-Sanchez, and M. Maffei. A2l: Anonymous atomic locks for scalabil-
ity and interoperability in payment channel hubs. Cryptology ePrint Archive, Report
2019/589, 2019. https://eprint.iacr.org/2019/589.

173. J. Teutsch and C. Reitwießner. A scalable verification solution for blockchains, March
2017. Accessed:2017-10-06.

174. J. Teutsch, M. Straka, and D. Boneh. Retrofitting a two-way peg between blockchains.
Technical report, 2018.

175. J. Teutsch and TrueBit Establishment. On decentralized oracles for data availability.
2017.

176. S. Thomas and E. Schwartz. A protocol for interledger payments. URL
https://interledger. org/interledger. pdf, 2015.

177. S. A. K. Thyagarajan and G. Malavolta. Lockable signatures for blockchains: Script-
less scripts for all signatures. Cryptology ePrint Archive, Report 2020/1613, 2020.
https://eprint.iacr.org/2020/1613.

178. G. Verdian, P. Tasca, C. Paterson, and G. Mondelli. Quant overledger whitepaper.
https://www.quant.network/, 2018.

179. M. Westerkamp and J. Eberhardt. zkrelay: Facilitating sidechains using zksnark-based
chain-relays. Contract, 1(2):3, 2020.

180. G. Wood. Polkadot: Vision for a heterogeneous multi-chain framework. White Paper,
2015.

181. G. Wood. Ethereum: A secure decentralised generalised transaction ledger eip-150
revision (759dccd - 2017-08-07), 2017. Accessed: 2018-01-03.

182. A. C.-C. Yao. How to generate and exchange secrets. In 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), pages 162–167. IEEE, 1986.

183. H. Yousaf, G. Kappos, and S. Meiklejohn. Tracing transactions across cryptocurrency
ledgers. In 28th {USENIX} Security Symposium ({USENIX} Security 19), pages 837–
850, 2019.

184. M. Yu, S. Sahraei, S. Li, S. Avestimehr, S. Kannan, and P. Viswanath. Coded merkle
tree: Solving data availability attacks in blockchains. arXiv preprint arXiv:1910.01247,
2019.

185. M. Zamani, M. Movahedi, and M. Raykova. Rapidchain: A fast blockchain protocol
via full sharding. Cryptology ePrint Archive, Report 2018/460, 2018.

186. A. Zamyatin, Z. Avarikioti, D. Perez, and W. J. Knottenbelt. Txchain: Efficient cryp-
tocurrency light clients via contingent transaction aggregation. Sep 2020.

34 Zamyatin et al.

187. A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and W. Knottenbelt. Xclaim:
Trustless, interoperable, cryptocurrency-backed assets. IEEE Security and Privacy.
IEEE, 2019.

188. F. Zhang, S. K. D. Maram, H. Malvai, S. Goldfeder, and A. Juels. Deco: Liberating
web data using decentralized oracles for tls. arXiv preprint arXiv:1909.00938, 2019.

SoK: Communication Across Distributed Ledgers 35

A Strong Fair Exchange Definition

This section provides the definition of the strong Fair Exchange problem, as
presented in [38–40, 155].

Fair Exchange considers two processes (or parties) P and Q that wish to
exchange two items (or asset): aP owned by P against aQ owned by Q. There
exists a function desc that maps any exchangeable item (or asset) to a string
describing it in ”sufficient” detail (e.g. the value and recipient of a payment).
The inputs of P to a Fair Exchange protocol are an item aP and a description
dQ of the desired item. Analogous, the inputs for Q are aQ and dQ. To indicate
that P is dishonest, an (boolean) error variable mP is introduced (analogous,
mQ for Q) [95]. A successful Fair Exchange is shown in Table 2 below.

Table 2: A successful Fair Exchange, as defined in [38–40, 155].

P Q
Input : aP , dQ, Q Input : aQ, dP , P

fair exchange
←−−→

Output : aq(desc(aQ) = dQ) Output : aP (desc(aP) = dP)
or

aborted aborted

A successful Fair Exchange protocol must thereby fulfill the following properties:

Definition 7 (Effectiveness). If both P and Q behave correctly, i.e., mP =
mQ = false, and the items aP and aQ match the expected descriptions, i.e.,
desc(aQ) = dQ ∧ desc(aP) = dP , then P will receive aQ and Q will receive aP .
If the items are not as expected, i.e., desc(aQ) 6= dQ ∨ desc(aP) 6= dP , then both
parties will abort the exchange.

Definition 8 (Timeliness). Eventually P will transfer aP to Q or abort, and
Q will transfer aQ to P or abort.

Definition 9 (Strong Fairness). There are no outcomes in which Q receives
aP but P does not receive aQ (Q aborts), or P receives aQ but Q does not receive
aP (P aborts).

Effectiveness determines the outcome of the exchange if P and Q are willing
to perform the exchange and the item’s match the expected descriptions, or
the items do not match the expected descriptions. (Strong) Fairness restricts
the outcomes of the exchange such that neither party is left at a disadvantage.
Timeliness ensures eventual termination of the exchange protocol. Note: we do
not provide a definition for “Non-repudiability” as this property is not a critical
requirement for Fair Exchange protocols, but only becomes relevant in disputes
after an exchange [39, 155].

36 Zamyatin et al.

B Fair Exchange using CCC

We provide the intuition of how to construct a Fair Exchange protocol using a
generic CCC protocol in Algorithm 1. Specifically, P and Q exchange assets aP
and aQ, if transaction txP is written to Lx and transaction txQ is written to
Ly (cf. Section 3.2).

Algorithm 1: Fair Exchange using a generic CCC protocol

Result: txP ∈ Lx ∧ txQ ∈ Ly (i.e.,P has aP , Q has aQ) or
txP /∈ Lx ∧ txQ /∈ Ly (i.e., no exchange)

setup(Lx,Ly,txP , txQ, dP , dQ);
if mP = false then

commit(txP , Lx); // P transfers aP to Q
end
if (verify(txP , Lx, dP) = true) ∧mQ = false then

commit(txQ, Ly); // Q transfers aQ to P
else

abort(txQ, Ly); // Q does not transfer aQ to P
end
if verify(txQ, Ly, dQ) = false then

abort(txP , Lx); // P recovers aP

end

Algorithm 2: Commit(tx, L)

if valid(tx, L) then
Write tx to L;

end

Algorithm 3: Verify(tx, L, d)

if tx ∈ L ∧ desc(tx) = d then
return true;

end
return false;

SoK: Communication Across Distributed Ledgers 37

Algorithm 4: Abort(tx, L)

if tx ∈ L then
Revert tx; // e.g. using a new transaction

else
//do nothing

end

C Classification of Cross-Chain State Verification

As described in Section 2.5, a critical component of cross-chain communication is
the verification of the state “evolution” of a chainX from within another chain Y ,
i.e., that X is in a certain state after the commit step. In this section we discuss
the different elements of the chain that can be verified during the process, to
complement the process of verifying state evolution. We show that there is a
classification for what is verified (Section C.1), overview existing techniques for
each class, and discuss the relation between the verification classes (Section C.2).

C.1 Verification Classes

If a party P on X is misbehaving, it may withhold information from a party
Q on Y (i.e., not submit a proof), but it should not be able to trick Q into
accepting an incorrect state of Lx (e.g., convince Q that tx1 ∈ Lx although tx1

was never written).

Verification of State. The simplest form of cross-chain verification is to check
whether a specific state exists, i.e., is reachable but has not necessarily been
agreed upon by the consensus participants. A representative example is the veri-
fication of Proof-of-Work in merged mining[4, 116]: the child chain Y only parses
a given X block and verifies that the hash of the Y candidate block was included,
and checks that the PoW hash exceeds the difficulty target of Y . Note that Y
does not care whether the block is actually part of Lx. Another example is the
use of blockchains as a public source of randomness [63, 65, 83, 74].

Verification of State Agreement. In addition to the existence of a state, a
proof can provide sufficient data to verify that consensus has been achieved on
that state. Typically, the functionality of this verification is identical to that of
blockchain light clients [152, 2, 12]: instead of verifying the entire blockchain of
X, all block headers and only transactions relevant to the CCC protocol are ver-
ified (and stored) on Y . The assumption thereby is that an invalid block will not
be included in the verified blockchain under correct operation [152, 139]. Block
headers can be understood as the meta-data for the block, including a commit-
ment to all the transactions in the block, which are typically referenced using a
vector commitment [73] (or some other form of cryptographic accumulator [51]),
e.g. Merkle trees[146]. We discuss how proofs of state agreement differ depending
on the underlying consensus mechanism below (non-exhaustive):

38 Zamyatin et al.

– Proof-of-Work. To verify agreement in PoW blockchains, a primitive called
(Non-interactive) Proofs of Proof-of-Work [120, 121], also referred to as SPV
(simplified payment verification) [152] is used. Thereby, the verifier of a proof
must at least check for each block that (i) the PoW meets the specified dif-
ficulty target, (ii) the specified target is in accordance with the difficulty ad-
justment and (iii) the block contains a reference to the previous block in the
chain [2, 187]. The first known implementation of cross-chain state agreement
verification (for PoW blockchains) is BTCRelay [5]: a smart contract which
allows to verify the state of Bitcoin on Ethereum3.

– Proof-of-Stake. If the verified chain uses Proof-of-Stake in its consensus, the
proofs represent a dynamic collection of signatures, capturing the underlying
stake present in the chain. These are referred to as Proofs of Proof-of-Stake
(PoPoS) and a scheme in this direction was put forth in [97].

– BFT. In case the blockchain is maintained by a BFT committee, the cross-
chain proofs are simplified and take the form of a sequence of signatures by
2f + 1 members of the committee, where f is the number of faulty nodes that
can be tolerated [72]. If the committee membership is dynamically changing,
the verification process needs to capture the rotating configuration of the
committee [153].

Sub-linear State Agreement Proofs. Verifying all block headers results in proof
complexity linear in the size of the blockchain. However, there exist techniques
for achieving sub-linear (logarithmic in the size of the chain) complexity, which
rely on probabilistic verification. For PoW blockchains, we are aware of two ap-
proaches: Superblock (Ni)PoPoWs [149, 47, 120, 121] and FlyClient [139]. Both
techniques rely on probabilistic sampling but differ in the selection heuristic.
Superblock (Ni)PoPoWs sample blocks which exceed the required PoW diffi-
culty4, i.e., randomness is sourced from the unpredictability of the mining pro-
cess, whereas FlyClient suggests to sample blocks using an optimized heuristic
after the chain has been generated (using randomness from the PoW hashes [63]).
For blockchains maintained by a static BFT committee, the verified signatures
can be combined into aggregate signatures [126, 127] for optimization purposes.
These signature techniques are well known and have been invented prior to
blockchains, and we hence do not elaborate further on these schemes. In the dy-
namic setting, skipchains [91, 153, 130], i.e., double-linked skiplists which enable
sub-linear crawling of identity chains, can reduce costs from linear to logarithmic
(to the number of configurations). Recently, a number for light client protocols
that leverage the compression properties of zero-knowledge proof systems have
been proposed [94, 92, 179].
Verification of State Evolution. Once verified by some chain Y that chain X
has reached agreement on a ledger state Lx[r], it is then possible for (users on)
Y to verify that certain transactions have been included in Lx. As mentioned,
block headers typically reference included transactions via vector commitments.

3 Similar contracts have been proposed for other chains[15, 13, 8, 16, 11, 9].
4 It is a property of the PoW mining process that a certain percentage of blocks

exceeds or fall short of the required difficulty.

SoK: Communication Across Distributed Ledgers 39

As such, to verify that tx ∈ Lx[r] the vector commitment on Lx[r] needs to be
opened at the index of that transaction, e.g. by providing a Merkle tree path to
the leaf containing tx (e.g. as in Bitcoin). Thereby, multiple transactions can
be aggregated in a single proof [186].
Verification of State Validity. Even though a block is believed to have con-
sensus, it may not be a valid block if it contains invalid transactions or state
transitions (e.g. a PoW block meeting the difficulty requirements, but contain-
ing conflicting transactions). Fully validating nodes will reject these blocks as
they check all included transactions. However, in the case of cross-chain com-
munication, where chains typically only verify state agreement but not validity,
detection is not directly possible. We classify two categories of techniques to en-
able such chains, and non-full nodes (i.e., light clients), to reject invalid blocks:

– In proactive state validation, nodes ensure that blocks are valid before ac-
cepting them. Apart from requiring participants to run fully validating nodes,
this can be achieved by leveraging “validity proofs” through succinct proofs
of knowledge, using systems such as SNARKs [57], STARKs [49] or Bullet-
proofs [64]. First schemes for blockchains offering such proofs for each state
transition are put forth in [145, 59, 50]. Informally speaking, this is a “guilty
until proven innocent model”: nodes assume blocks that have consensus are
invalid until proven otherwise.

– In reactive state validation, nodes follow an “innocent until proven guilty”
model. It is assumed that blocks that have consensus only contain valid state
transition, unless a state transition “fraud proof” [35] is created. Fraud proofs
typically are proofs of state evolution, i.e., opening of the transaction vector
commitment in the invalid block at the index of the invalid transaction, e.g.
via Merkle tree paths. Depending on the observed failure, more data may
be necessary to determine inconsistencies (e.g. Merkle paths for conflicting
transactions in a double spend).

Verification of Data Availability. Consensus participants may produce a
block header, but not release the included transactions, preventing other par-
ticipants from validating the correctness of the state transition. To this end,
verification of state validity can be complimented by verification of data avail-
ability. A scheme for such proofs was put forth in [35, 184], which allows to verify
with high probability that all the data in a block is available, by sampling chunks
in an erasure-coded version of a block.

C.2 Relation between Verification Classes

Verification of State Agreement requires to first verify a specific state exists or
has been proposed (Verification of State). To verify a transaction was included
at L[r] (State Evolution), it is first necessary to verify that the ledger state at L
[r] is indeed agreed upon (State Agreement). Finally, to verify that a state (tran-
sition) is indeed valid (State Validity), one must first verify that all associated
transactions were indeed included in the ledger (State Evolution). Verification of

40 Zamyatin et al.

Data Availability serves as complimentary security measure, and can be added
to any of the classes to protect against data withholding attacks. We illustrate
this relationship in Figure 2.

Fig. 2: Venn diagram of cross-chain state verification classes. The red, dotted
line highlights the minimum requirement for correctly operating light clients,
i.e., verifying SPV / NIPoPoWs in the case of PoW blockchains.

D Notation

Below is a table of notation used globally throughout the paper.
Notation Meaning

X System X
Y System Y
Lx Ledger X
Ly Ledger Y
tx∈L Transaction in L
tx Transaction
P and Q Processes (parties)
aP Asset owned by P
aQ Asset owned by Q
L[r] State of ledger L at round r
LP [r] State of ledger L at round r in the view of P
LQ[r] State of ledger L at round r in the view of Q
desc(tx) Description of tx (e.g., the transaction value and recipient)
r Ledger round
u Ledger liveness delay parameter
k Ledger persistnce delay / “depth” parameter

SoK: Communication Across Distributed Ledgers 41

E Acknowledgements

We would like express our gratitude to Georgia Avarikioti, Daniel Perez and
Dominik Harz for helpful comments and feedback on earlier versions of this
manuscript. We also thank Nicholas Stifter, Aljosha Judmayer, Philipp Schindler,
Edgar Weippl, and Alistair Stewart for insightful discussions during the early
stages of this research. We also wish to thank the anonymous reviewers for their
valuable comments that helped improve the presentation of our results.

This research was funded by Bridge 1 858561 SESC; Bridge 1 864738 PR4DLT
(all FFG); the Christian Doppler Laboratory for Security and Quality Improve-
ment in the Production System Lifecycle (CDL-SQI); the competence center
SBA-K1 funded by COMET; Chaincode Labs through the project SLN: Scal-
ability for the Lightning Network; and by the Austrian Science Fund (FWF)
through the Meitner program (project M-2608).

Mustafa Al-Bassam is funded by a scholarship from the Alan Turing Institute.
Alexei Zamyatin conducted the early stages of this work during his time at SBA
Research, and was supported by a Binance Research Fellowship.

