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Abstract. We study a class of MACs, which we call corruption detectable MAC, that is able to not only
check the integrity of the whole message, but also detect a part of the message that is corrupted. It can
be seen as an application of the classical Combinatorial Group Testing (CGT) to message authentication.
However, previous work on this application has inherent limitation in communication. We present a
novel approach to combine CGT and a class of linear MACs (XOR-MAC) that enables to break this
limit. Our proposal, XOR-GTM, has a significantly smaller communication cost than any of the previous
ones, keeping the same corruption detection capability. Our numerical examples for storage application
show a reduction of communication by a factor of around 15 to 70 compared with previous schemes.
XOR-GTM is parallelizable and is as efficient as standard MACs. We prove that XOR-GTM is provably
secure under the standard pseudorandomness assumptions.
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1 Introduction

MAC and corruption detection. Message Authentication Code (MAC) is a symmetric-key cryptographic
function for ensuring the message authenticity. In a typical MAC protocol, the sender of message M computes
a fixed, short tag T as a function of MAC : T = MAC(K,M) for the secret key K. On receiving the tuple
(M ′, T ′) from the sender, which may be corrupted by the adversary, the receiver checks if the tuple is correct
by performing tag computation T̂ = MAC(K,M ′) using the shared K and comparing T ′ and T̂ .

Standard MAC functions, such as HMAC or CMAC, are quite efficient, and their securities have been
extensively studied. However, the naïve application described above only tells us whether M ′ has been
corrupted or not, and nothing about how M ′ is corrupted, i.e. the locations of the corruptions. Suppose a
message can be divided into m parts, say entries in a database or sectors in a HDD. If we take a MAC tag for
each part, the number of tags is m, and the scheme gives us full information on the corrupted parts. However,
it does not scale as the amount of tag information grows linearly with m. We want to reduce the number of
tags without losing the detection ability too much. This need is fundamental and naturally arises in many
applications, such as storage integrity protection and low-power wireless communications. In particular, the
size of trusted storage for maintaining integrity of a large, untrusted storage has been an important issue in
the storage security research [43,44] and the commercial solutions such as Tripwire. In a broader sense, where
hash or digital signature may be used as well as MACs, similar problems occur at verification of downloaded
software, malware classification, and digital forensics etc. The underlying problem is how to minimize the
number of tags keeping the sufficient ability to detect the corrupted parts. We call a MAC scheme for this
purpose a corruption detectable MAC.
Combinatorial group testing and its applications. It is known that the corruption detectable MAC
can be seen as an application of Combinatorial Group Testing (CGT) [28], a method invented by Dorfman in
WWII [20] to effectively find blood samples infected by syphilis. It has been studied for long years, mainly from
the viewpoint of theoretical computer science and applications to biology, such as DNA library screening [41].
Recently, CGT has received significant attentions from many other areas, such as [38,51,23,31].

? A preliminary version of this paper appears in the proceedings of ESORICS 2019. This is the full version.



When CGT is applied to our problem, the sender has a message M consisting of m data items to be
authenticated. We assume at most d items of M may be corrupted when it is sent to the receiver. What
the sender can do is to take t MAC tags for certain sub-sequences of M for some t ≤ m, corresponding to
group testing in CGT. How tags are computed is completely specified by a t×m binary matrix H, called test
matrix. The trivial scheme described earlier uses the identity matrix and thus is inefficient. However, it is
known that if H has a property called d-disjunct1, we can detect d′ ≤ d corrupted items. Since d-disjunct
matrix is theoretically possible with O(d2 logm) rows, the use of d-disjunct matrix can significantly reduce
the number of tags if d is much smaller than m.

Despite the simple and natural problem, corruption detectable MACs have received surprisingly less
attention to date. To our knowledge, Crescenzo et al. [17,19] and Goodrich et al. [28] are the earliest work on
this direction. Corruption-localizing hash function was proposed at ESORICS 2009 [18] and subsequently
studied [18,16,12]. Minematsu [40] at ESORICS 2015 studied the computational aspects of corruption
detectable MACs. Fang et al. showed an application to storage integrity check [27]. Hirose and Shikata [30]
applied CGT to aggregate MACs, a related area of corruption detectable MACs.
Limitation of previous schemes. The most of previous corruption detectable MACs and its variants used
existing d-disjunct matrices for their test matrix. We call it DirectGTM for the direct use of disjunct matrix
in a Group-Test-based MAC. Construction of d-disjunct matrix has been extensively studied (see Section 3.2),
however, finding one with optimally small number of rows for given m and d is still a hard combinatorial
problem even for tiny d. Besides, if d is O(

√
m/ logm) it is impossible to build a non-trivial d-disjunct matrix.

Consequently, the communication efficiency of DirectGTM is inherently bounded by the current knowledge of
constructions of small-row disjunct matrix. The aforementioned work by Minematsu [40] (hereafter Min15)
showed that the computation cost of DirectGTM can be reduced to almost the single MAC function if we
employ a MAC function similar to XOR-MAC [6] or PMAC [10]. However, the communication cost (i.e. the
number of tags) is not improved.
Beyond DirectGTM. We break the above limitation by presenting a new class of corruption detectable
MACs. The proposed scheme has a structure very similar to Min15 for tag generation, where a subsequence
of message specified by a row of test matrix (H) is processed by a hash-then-encrypt style of MAC function.
However, the verification is conceptually different from Min15 in that we use the decryption of tags instead of
themselves for verification. This seemingly tiny change will bring a ultimate difference from Min15, since it
allows us to use any linear combination of (decrypted) tags for a verification of a new subsequence that is
not specified by H! Surprisingly, this suggests that H is not necessarily d-disjunct, but only the row span
of H over GF(2) is required to be d-disjunct. Therefore, the communication efficiency is determined not by
the number of rows but the rank of d-disjunct matrix. We define the appropriate security notions for such
schemes, which we call XOR-GTM, and show XOR-GTM is provably secure using the standard symmetric-key
primitives, such as pseudorandom function (PRF) and tweakable pseudorandom permutation (TPRP).
Efficient instantiations. Efficient instantiations of XOR-GTM are not easy, since despite the numerous
studies on small-row d-disjunct matrices, their GF(2)-rank has rarely been studied. Even worse, as far as
we studied, the state-of-the-art constructions tend to have a high rank, implying only a marginal gain from
(ideal) DirectGTM. Instead, somewhat surprisingly, what we find useful are some classes of d-disjunct matrices
that are near-square, which are almost useless for CGT in general. The matrices we found are not new : one
of them is a modified Hadamard matrix and the other is a point-line incidence matrix defined over finite
geometry. Both are classical and have been extensively studied for decades. However, when we instantiate
XOR-GTM with them (more precisely, the bases of the row vectors of these matrices are used as the test
matrix), we could achieve what is impossible with any instantiation of DirectGTM including Min15. In more
detail, by using Hadamard matrix, DirectGTM can detect d = 2 corruptions with log2(m+ 1) + 1 tags, which
is better than any DirectGTM scheme with 2-disjunct test matrix by a factor of 3 to 5. Moreover, with
point-line incidence matrices, we can detect corruptions of d = O(

√
m) parts with t = O(

√
m) tags. This

exhibits a very strong advantage over the existing schemes. In our numerical examples for storage application
(Section 7.2), XOR-GTM needs fewer tags than the trivial scheme by a factor of roughly 15 to 70, while any
instantiation of DirectGTM with d-disjunct test matrix has almost no gain.

1 The minimum condition is weaker (d-separable or d-separable), however this does not guarantee an efficient detection.
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As well as Min15, XOR-GTM is parallelizable and incremental [4]. The computation of XOR-GTM is very
efficient at it is essentially the same as taking a single MAC tag for the message. For our instantiations, the
underlying matrices are highly structured, which is useful for efficient implementation. This gives another
great advantage in comparison to the naïve use of a d-disjunct matrix since the small-row disjunct matrix is
typically very complex.
Further related work. In the context of cryptography in general, CGT has been used for various related
applications such as [52,11,15,47,1]. Although the interaction between CGT and cryptography has not received
much attentions thus far, we believe it is very promising.

2 Preliminaries

2.1 Basic Notations

Let {0, 1}∞ be the set of all binary strings, including the empty string ε. We write the bit length of
X ∈ {0, 1}∞ by |X|. Here |ε| = 0. We define {0, 1}∗ def

= {0, 1}∞ \ {ε}. For a binary string X, its hamming
weight is denoted by Hw(X). We define a set of m-tuples of non-empty strings as {0, 1}∗m def

= ({0, 1}∗)m, and
define {0, 1}∗≤m def

=
⋃m
i=1{0, 1}∗i. We write {0, 1}∞m def

= ({0, 1}∞)m to denote the set of m-tuples of possibly
empty strings. Here, (ε, v) and (v, ε) for v 6= ε are distinct elements of {0, 1}∞2. A uniform sampling over a
set X is written as X $← X . The base of logarithm is 2 unless otherwise written.

For positive integer n, let2 JnK = {1, . . . , n} and LnM = {0, . . . , n− 1}. For a finite set X , 2X denotes its
power set. For any set X , let cmp : X ×X → {0, 1} be the comparison function (i.e. cmp(X,Y ) = 0 if X = Y
and cmp(X,Y ) = 1 if X 6= Y ). For M = (M [1], . . . ,M [m]) and M ′ = (M ′[1], . . . ,M ′[m]) in {0, 1}∗m, we
define vector comparison vdiff(M,M ′) and index difference diff(M,M ′) as

vdiff(M,M ′) = (cmp(M [1],M ′[1]), . . . , cmp(M [m],M ′[m])),

diff(M,M ′) = {i ∈ JmK :M [i] 6=M ′[i]}.

For X = (X[1], . . . , X[m]) ∈ {0, 1}m, let M 	X ∈ {0, 1}∗m′
be a vector obtained by subtracting M [i]s for all

i s.t. X[i] = 0, where m′ = Hw(X). For example, if m = 4 and X = (1, 0, 1, 0), M 	X = (M [1],M [3]).
Disjunct matrix. LetM be an n×m binary matrix. We writeMi,∗ to denote the i-th row, andM∗,j to denote
the j-th column, and Mi,j to denote the entry at i-th row and j-th column. For simplicity we may abbreviate
Mi,∗ to Mi. The rows and columns of M are interchangeably seen as sets, e.g. Mi = {j ∈ JmK : Mi,j = 1},
and a ∈Mi means Mi,a = 1.

For X,Y ∈ {0, 1}n, X ∨ Y denotes the bitwise Boolean sum (logical OR) of X and Y . We say M is
d-disjunct [21] if, for any S ⊆ JmK and |S| ∈ JdK, M∗,j 6⊆

∨
h∈SM∗,h holds for any j 6∈ S. That is, a sum of

any distinct i ≤ d columns of M does not cover any other column. An m ×m identity matrix is trivially
m-disjunct. A d-disjunct matrix is also said to have disjunctness of d. The most important property of
d-disjunct matrix is the number of rows for any given d and m (See Sect. 3.2). For convention, we say “ideal”
or “optimal” d-disjunct matrix to mean one achieves the smallest number of rows for a fixed d and m.

2.2 Cryptographic Functions

A keyed function with key space K, domain X , and range Y is a function F : K × X → Y. We may write
FK(X) for F (K,X), and if X =M× J`K for some positive integer `, write F iK(M) to denote FK(M, i) for
(M, i) ∈ X . A tweakable block cipher (TBC) [36] E : K × T × X → X is a keyed permutation over X with
additional tweak input in T , i.e., E(K,T, ∗) for any (K,T ) ∈ K × T is a permutation over X . We may write
ETK(X) instead of E(K,T,X) or EK(T,X). The decryption of X with tweak T is written as E−1K (T,X) or
ET,−1K (X).

2 It is customary to use [n] but we want to avoid confusion, say with M [i].
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A uniform random function (URF) R : X → Y is a keyed function with uniform key distribution over all
functions from X to Y . Uniform random permutation (URP) P : X → X is defined analogously. A tweakable
uniform random permutation (TURP) with tweak space T and message space X is denoted by P̃ : T ×X → X ,
which is a set of independent URPs indexed by T . Decryption of P̃ is denoted by P̃

−1
. Let A be an adversary

who (possibly adaptively) queries to oracle O and outputs a bit as a final decision. The advantage of A in
distinguishing two oracles, F : K ×X → Y and F ′ : K′ ×X → Y, is defined as

Advind
FK ,F ′

K′
(A) def

=
∣∣∣Pr[K $← K : AFK ⇒ 1]− Pr[K ′

$← K′ : AF
′
K′ ⇒ 1]

∣∣∣ ,
where AFK ⇒ 1 denotes the probability that A’s final decision is 1 when the oracle is FK . We let
Advind

FK ,R(A)
def
= Advprf

FK
(A) where R : X → Y is a URF, called PRF-advantage of FK (for A). We say

FK is a PRF when Advprf
FK

(A) is sufficiently small for all practical adversaries, where the definitions of
“sufficiently small" and “practical" may depend on the context [3]. For a TBC E : K× T ×X → X , we define
Tweakable PRP (TPRP) advantage as Advtprp

EK
(A) = Advind

EK ,P̃
(A) for A using chosen-plaintext (encryption)

queries.

3 Previous Corruption Detectable MACs

3.1 DirectGTM

Given a t×m binary test matrix H, the basic form of corruption detectable MAC is described as follows. For
message M ∈ {0, 1}∗m, the sender first computes

T [i] = MACK(M 	Hi, i)

for all i ∈ JtK, using a MAC function MAC : K × {0, 1}∗≤m × JtK → {0, 1}n. The output is the tag vector
T = (T [1], . . . , T [t]) ∈ ({0, 1}n)t. The verifier receives (M ′, T ′), which may be a corrupted version of (M,T ),
and computes T̂ = (T̂ [1], . . . , T̂ [t]), where T̂ [i] = MACK(M ′ 	 Hi, i), and compares T ′ and T̂ to obtain
vdiff(T ′, T̂ ).

Then, the verifier tries to detect the corrupted items, by subtracting Hi (as a set) from JmK for all i ∈ JtK
such that cmp(T ′[i], T̂ [i]) = 0, i.e., the tags are matched. The remaining set indicates the indexes of the
corrupted items. In the context of CGT, the above procedure is called naïve decoding [21]. The following is a
well-known fact from the property of d-disjunct matrix.

Proposition 1. Suppose H is d-disjunct and diff(M,M ′) ≤ d and T ′ = T . Then, the naïve decoding correctly
detects all the corrupted items if cmp(T ′[i], T̂ [i]) = cmp(M 	Hi,M

′ 	Hi) for all i ∈ JtK.

This holds since a d-disjunct matrix implies that any negative (uncorrupted) item is included in at least one
test that does not contain any positive (corrupted) item and thus evicted. We call a corruption detectable
MAC of the above form DirectGTM. While there are some differences, the previous corruption detectable
schemes are all classified as DirectGTM.

Min15 [40] studied the computation overhead of DirectGTM from the standard MAC. He showed that
one can reduce the computation cost almost as low as the standard MAC independent of the test matrix,
by employing a deterministic MAC similar to XOR-MAC [6] or PMAC [46]. Nevertheless, Min15 is still a
DirectGTM in that it needs d-disjunct H to detect d corruptions.

Hirose and Shikata [30] showed an application of CGT to aggregate MAC, which is a MAC scheme for
aggregation of MAC tags computed by independent nodes. The original proposal by Katz and Lindell [34]
takes a sum (XOR) of all tags for aggregation, hence it is not possible to detect the corrupted tags (or nodes).
Instead, the scheme of [30] aggregates the tags following the test matrix H, and yields t tags. This can be
interpreted as a form of DirectGTM: if H is d-disjunct, we can detect up to d corrupted tags (nodes).
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3.2 Constructions of Disjunct Matrix

The construction of disjunct matrix has been extensively studied from the viewpoint of designs and codes.
Classical examples are Macula [37] and Kautz and Singleton [35]. The Du-Hwang book [21] describes a
number of known constructions. Eppstein et al. proposed Chinese Reminder Sieve (CRS) [24]. Thierry-Mieg
proposed Shifted Transversal Design (STD) [50] for biological applications. Constructions based on constant
weight code are described at [2]. As CGT receives attentions from various fields, more schemes, both adaptive
and non-adaptive, are expected.

Let tmin(d,m) be the minimum number of rows for a d-disjunct matrix of m columns. It is known that
tmin(d,m) = Θ(d2 logm) [21]. The seminal work by Porat and Rothschild [45] showed an order-optimal and
deterministic construction of d-disjunct matrix, however it needs a large (though polynomial) search for
matrix generation. Besides, the optimality including the constant is not known. Only the case d = 1 has been
solved: 1-disjunct matrix implies that no column is contained in another column. Such a matrix is called a
completely separating system, and has about logm rows [21]. If we relax the condition to 1-separable, the
concrete construction of dlogme rows is easy as it is equivalent to that the all columns are distinct. However,
even for the case d = 2, the optimal construction remains open for decades.
Lower bounds. A lower bound of

tmin(d,m) ≥ min

{(
d+ 2

2

)
,m

}
(1)

was shown by Dýachkov and Rykov [22], attributed to Bassalygo. An improved bound has been shown by
Shangguan and Ge [48]:

tmin(d,m) ≥ min

{
d2(15 +

√
33)

24
,m

}
. (2)

Moreover, there is a conjectured lower bound by Erdös et al. [26]

tmin(d,m) ≥ min
{
(d+ 1)2,m

}
, (3)

which was later shown to be correct for d ≤ 5 (see [48]).

4 Our Proposal

4.1 Breaking the Barrier of DirectGTM

In the previous DirectGTMs, the choice of test matrix was independent of the choice of MACK , and a d-disjunct
matrix or its variant was suggested to be used as H. Thus, the communication cost of DirectGTM is reduced
only by finding a small-row d-disjunct matrix. Unfortunately, this is a hard problem even for tiny d and
even impossible when d is close to

√
m/ logm, as shown in the previous section. This limits the practical

usefulness of DirectGTM.
We break this barrier by exploiting a certain linearity in the MAC computation. Suppose we have a Min15

scheme with t tests (tags). There is an intermediate vector S = (S[1], . . . , S[t]), where S[i] is a keyed hash
value of the subsequence of M specified by Hi, and an encryption of S[i] yields the i-th tag T [i]. We observe
that checking at T [i] is equivalent to checking at S[i], and even more, any linear combination of S[i]s will
yield another test, i.e., a verification of a new subsequence of M .

For example, if T [1] is a tag for (M [1],M [2]) and T [2] is a tag for (M [2],M [3]), our scheme allows to use
S[1]⊕S[2] as a test for (M [1],M [3]), since the verifier can computes S[1] and S[2] by decrypting the sent tags
and see if S[1]⊕ S[2] match with Ŝ[1]⊕ Ŝ[2] computed from M . Hence, without explicitly sending a tag for
(M [1],M [3]), we could perform three tests with two tags. In other words, when the authenticator takes MAC
tags based on test matrix H, the verifier can use (any sub-matrix of) the row span of H as a virtual test
matrix. This can bring significantly richer information to the verifier without increasing the communication.
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4.2 Syntax

We first describe the syntax for corruption detectable MAC. Let positive integers m, t, n be a parameter.
Typically they are fixed, but the model can be easily extended to the case of variable parameters. A corruption
detectable MAC consists of four algorithms. The key generation KG : N → K takes a security parameter
p ∈ N and returns a key K ∈ K. The key K is shared by the legitimate parties (authenticator and verifier).

The tagging function Tag : K×M→ T takes messageM ∈M and keyK ∈ K to return a tag vector T ∈ T ,
whereM = {0, 1}∗m and T = ({0, 1}n)t. Message and tag vector are written as M = (M [1], . . . ,M [m]) ∈M
and T = (T [1], . . . , T [t]) ∈ T , where M [i] is called a message item (or item for short), and T [i] is called a tag
string (or tag for short). The verification function Ver : K ×M× T → D with D = {0, 1} is for verification
: VerK(M ′, T ′) = 0 denotes the tuple (M ′, T ′) is authenticated (no corruption), while VerK(M ′, T ′) = 1
denotes the tuple is not authenticated, thus an authentication failure. Finally, the detection function
Det : K ×M× T → 2JmK takes key K and the possibly corrupted tuple (M ′, T ′) to return the derived index
set of corrupted message items P ∈ 2JmK. For example, when {1, 3} ← DetK(M,T ) it means M ′[1] and M ′[3]
are considered to be corrupted.

In addition, we define the string-wise verification function SVer : K ×M× T → Dt that takes K, M ′
and T ′ to return B ∈ Dt which gives more information on the verification failure, where VerK(M ′, T ′) = 0
indicates B = (B[1], . . . , B[t]) = (0, . . . , 0) and VerK(M ′, T ′) = 1 indicates B 6= (0, . . . , 0), thus potentially
giving about t-bit information on verification failure rather than the unitary error event. The precise meaning
of B[i] will depend on the scheme. While SVer may have practical relevance, we use it to simplify security
analysis. This syntax will be used to define our security notions at Section 5.

4.3 XOR-GTM

We present our corruption detectable MAC, XOR-GTM. The name comes from the similarity to XOR-MAC [6],
though, XOR-MAC is a plain stateful MAC.
Parameters. XOR-GTM is a deterministic MAC overM = {0, 1}∗m for a fixed, positive integer m. It has
two parameters, t×m binary test matrix H and its extension rule R. Here, R specifies the linear combinations
of rows of H, and is defined as R = (R1, . . . , Rv), where Ri ⊆ JtK, for some t ≤ v. We define HR as a v ×m
extended test matrix obtained by taking linear combinations of H rows specified by R, that is,

HR
i =

⊕
j∈Ri

Hj , for all i ∈ JvK.

For simplicity, we assume Ri = {i} for i ∈ JtK, hence HR is a v ×m matrix obtained by adding v − t rows to
H. Similarly for X = (X[1], . . . , X[t]) ∈ ({0, 1}n)t, we define XR = (XR[1], . . . , XR[v]) ∈ ({0, 1}n)v as

XR[i] =
⊕
j∈Ri

X[j], for all i ∈ JvK, (4)

which is an expansion of X by R.
To avoid trivial attacks by the adversary and apparently redundant tests, we require the following

soundness conditions for H and R.

Definition 1. A pair of H and R (or equivalently, HR) is said to be sound if all rows of HR are distinct
and there is an all-one row.

For simplicity we assume H1 is all-one whenever it is sound. The cryptographic components of XOR-GTM
are PRF F : K× JmK× {0, 1}∗ → {0, 1}n and TBC G : K′ × JtK× {0, 1}n → {0, 1}n for tweak space JtK. The
procedures of XOR-GTM are as follows.
Tag computation. For message M ∈ {0, 1}∗m, we define XOR-GTM[FK ].hash(M) = (S[1], . . . , S[t]), where

S[i] =
⊕
j∈Hi

F jK(M [j]).
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Tag computation procedure (XOR-GTM[FK , GK′ ].tag(M)) first performs the above and compute

T [i] = GiK′(S[i])

for all i ∈ JtK and outputs T = (T [1], . . . , T [t]), which is called a tag vector.
Verification and corruption detection. The verification of tuple (M ′, T ′) (XOR-GTM[FK , GK′ ].verify(M ′, T ′))
first computes T̂ = XOR-GTM[FK , GK′ ].tag(M ′), and checks if T̂ = T ′. In fact, as we assumed H1 is all-one,
checking the first components will suffice. If they do not match, the receiver tries to detect corruptions
by computing S′ = (S′[1], . . . , S′[t]) where S′[i] = Gi,−1K′ (T ′[i]), and Ŝ = XOR-GTM[FK ].hash(M ′), and
expanding Ŝ and S′ to ŜR and (S′)R, using (4). The receiver then performs the naïve decoder with HR.
That is, for all i ∈ JvK such that ŜR[i] = (S′)R[i], the receiver removes all the elements of HR

i (as a set)
from JmK, and outputs the remaining set as the indexes of the corrupted items. We define this procedure as
XOR-GTM[FK , GK′ ].detect(M ′, T ′). See Figure 1 for the pseudocodes.
Relationship to Min15. When v = t, HR = H and TR = T hold and tag computation, verification
and detection are exactly the same as Min15, except the fact that we explicitly require the invertibility
of G while Min15 does not. The equivalence of verification holds because T [i] = T̂ [i] is equivalent to
Gi,−1K′ (T [i]) = Gi,−1K′ (T̂ [i]).

Example 1. Supposem = 4, t = 3 and v = 6 with followingH andHR. Here,R = ({1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}).

H =

1 1 0 0
0 1 1 0
0 0 1 1

 , HR =


1 1 0 0
0 1 1 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 1

 .

For message M ∈ {0, 1}∗3, XOR-GTM generates T = (T [1], T [2], T [3]) where

T [1] = G1
K′(S[1]), S[1] = F 1

K(M [1])⊕ F 2
K(M [2])

T [2] = G2
K′(S[2]), S[2] = F 2

K(M [2])⊕ F 3
K(M [3]))

T [3] = G3
K′(S[3]), S[3] = F 3

K(M [3])⊕ F 4
K(M [4])).

The linear combinations of hash values (S) specified by R are:

S[4] = S[1]⊕ S[2] = F 1
K(M [1])⊕ F 3

K(M [3]) (5)

S[5] = S[2]⊕ S[3] = F 2
K(M [2])⊕ F 4

K(M [4]) (6)

S[6] = S[1]⊕ S[2]⊕ S[3] = F 1
K(M [1])⊕ F 4

K(M [4]). (7)

On receiving (M ′, T ′), the (basic) verification is done by comparing the received T ′ = (T ′[1], T ′[2], T ′[3])

with T̂ = XOR-GTM[FK , GK′ ](M ′). To detect the corruptions, we decrypt T ′ by GK′ to obtain S′ =

(S′[1], S′[2], S′[3]) and compute Ŝ = (Ŝ[1], Ŝ[2], Ŝ[3]) from M ′, and expand S′ and Ŝ as (5)(6)(7) to obtain
(S′)R and ŜR.

In fact, HR comes from Macula [37] with parameter (n, k, d) = (4, 3, 2), hence is 2-disjunct. Thus, this
example detects up to 2 corruptions among 4 items using 3 tags, which is impossible with DirectGTM as
there is no 3× 4 2-disjunct matrix from (3). We note that this example is just to understand the idea : HR is
not sound as it lacks all-one row (hence not secure), and adding all-one row will make it useless.
Efficient computation. Since Hi may intersect with other Hj , a straightforward tag computation will
bring lots of redundant F calls. However, the computation of T can be done by m calls of FK and t calls of
GK′ as well as Min15. See Figure 1. A nice thing is that this feature is independent of the contents of H.
Usually m � t (as this is why we use CGT!), hence, XOR-GTM is roughly as efficient as standard MACs
applied to the whole message. An experimental AES-based implementation in Min15 also supports this claim.
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Algorithm
XOR-GTM[FK , GK′ ].tag(M)

1. S ← XOR-GTM[FK ].hash(M)
2. for i = 1 to t do
3. T [i]← Gi

K′(S[i])
4. T ← (T [1], . . . , T [t])
5. return T

Algorithm
XOR-GTM[FK ].hash(M)

1. for i = 1 to t do
2. S[i]← 0n

3. for j = 1 to m do
4. Z ← F j

K(M [j])
5. for i = 1 to t do
6. if Hi,j = 1
7. then S[i]← S[i]⊕ Z
8. S ← (S[1], . . . , S[t])
9. return S

Algorithm
XOR-GTM[FK , GK′ ].verify(M ′, T ′)

1. T̂ ← XOR-GTM[FK , GK′ ].tag(M ′)
2. if T̂ = T ′ return >
3. else return ⊥

Algorithm
XOR-GTM[FK , GK′ ].verify-S(M ′, T ′)

1. for i = 1 to t do
2. S′ ← Gi,−1

K′ (T ′[i])

3. Ŝ ← XOR-GTM[FK ].hash(M ′)
4. for i = 1 to v do
5. ŜR[i]←

⊕
j∈Ri

Ŝ[j]

6. (S′)R[i]←
⊕

j∈Ri
S′[j]

7. for i = 1 to v do
8. if ŜR[i] = (S′)R[i] then B[i]← >
9. else B[i]← ⊥
10. B ← (B[1], B[2], . . . , B[v])
11. return B

Algorithm
XOR-GTM[FK , GK′ ].detect(M ′, T ′)
//Ri = {i} for i ∈ JtK

1. P ← JmK
2. for i = 1 to t do
3. S′ ← Gi,−1

K′ (T ′[i])

4. Ŝ ← XOR-GTM[FK ].hash(M ′)
5. for i = 1 to v do
6. ŜR[i]←

⊕
j∈Ri

Ŝ[j]

7. (S′)R[i]←
⊕

j∈Ri
S′[j]

8. for i = 1 to v do
9. if ŜR[i] = (S′)R[i]

10. then P ← P \HR
i

11. return P

Fig. 1: XOR-GTM using t×m test matrix H and extension rule R with v elements.

5 Security Analysis

We show XOR-GTM is a secure MAC under the standard unforgeability notion [7,9], and more importantly,
it is hard to forge the detection procedure, if FK and GK′ are PRF and tweakable PRP.

5.1 Security Notions

The first is Tag Vector Unforgeability (TVUF), which is essentially the same as the standard unforgeability
of deterministic MACs. The second is Tag String Unforgeability (TSUF), a stronger notion of unforgeability.
The third one is Decoder Unforgeability (DUF), which represents the hardness of fooling the naïve decoder to
detect corruptions. To define them, we introduce several oracles. Following the syntax defined at Section 4.2,
we consider a corruption detectable MAC, denoted by MACK , as a tuple (KG,Tag,Ver,SVer,Det). We assume
the key K ∈ K has been generated by KG(p) in advance, for a security parameter p.

Definition 2. (Oracles) A tagging oracle OT accepts M and returns T = TagK(M). The tag vector veri-
fication oracle OV , or simply the verification oracle, accepts (M ′, T ′) ∈ M× T and returns VerK(M ′, T ′).
The tag string verification oracle OSV accepts (M ′, T ′) and returns SVerK(M ′, T ′). The detection oracle OD
accepts (M ′, T ′) ∈ {0, 1}∗m × T t and returns DetK(M ′, T ′).

A query to OT is called a tagging query and written as T -query. Queries to other oracles are called
analogously.

Definition 3. (TVUF) Let A1 be an adversary who (possibly adaptively) queries to OT and OV . We say A1

forges if it receives 0 from OV by querying (M ′, T ′) without making a tagging query M ′. The advantage of
A1 is defined as

Advtvuf
MACK

(A1)
def
= Pr[AOT ,OV

1 forges ].

Definition 4. (TSUF) Let A2 be an adversary who queries to OT and OSV . We say A2 forges if it receives
B = (B[1], . . . , B[t]) from OSV indicating a non-trivial tag string forgery. That is, for an SV-query (M ′, T ′)
and the corresponding response B from OSV , there exists i ∈ JtK such that B[i] = 0 and (M ′ 	Hi, T

′[i]) 6=
(M 	Hi, T [i]) holds for any (M,T ) obtained from a previous T-query and its response. The advantage of A2

is defined as

Advtsuf
MACK

(A2)
def
= Pr[AOT ,OSV

2 forges ],
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Fig. 2: XOR-GTM for m = 4 and t = 3 (we omit the first all-one row). The invocations of F in a dotted box
can be avoided by caching.

Definition 5. (DUF) Let A3 be an adversary who queries to OT and OD. We assume A3 is d-corrupting,
i.e. any D-query (M ′, T ′) satisfies (1) T ′ = T holds for a previous T-query (M,T ) (where M is called target
message) and (2) 1 ≤ |diff(M ′,M)| ≤ d. We say A3 forges if OD fails, that is, it returns P 6= diff(M ′,M).
We define

Advduf(d)
MACK

(A3)
def
= Pr[AOT ,OD

3 forges ].

The security against tag vector forgery is measured by TVUF advantage, and we say MACK is secure
against tag vector forgery if Advtvuf

MACK
(A1) is sufficiently small for all practical adversaries. The security

against tag string forgery and decoder forgery are defined similarly.
These notions are the same as Min15 except TSUF which is slightly different.

Notes on DUF. When two distinct Mi and Mj yield the same T , Definition 5 tells that the adversary wins
if one of Mi or Mj be the target. This may not reflect the practical situation and it is also possible to modify
the definition so that the target is always unique (say by querying a tuple (M,M ′) and the oracle computes
T ′ = T from M). In fact, a non-trivial tag collision breaks our scheme as it tells some non-trivial information
on the outputs of FK , and we count it as one of bad events in our provable security analysis (see Section 5.2).
Thus both definitions have no significant difference in practice. See Section 5.4 for other discussions.

5.2 Provable Security Bounds

XOR-GTM[FK , GK′ ] is defined by the algorithms of Figure 1 (where KG is trivially defined and omitted):
TagK = XOR-GTM[FK , GK′ ].tag, and VerK = XOR-GTM[FK , GK′ ].verify, and SVerK = XOR-GTM[FK , GK′ ].verify-S,
and DetK = XOR-GTM[FK , GK′ ].detect, where K = (K,K ′).

We show the security bounds for XOR-GTM[FK , GK′ ] assuming t×m H and R (consisting of v elements)
are sound and HR is d-disjunct.
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Theorem 1. (TVUF security of XOR-GTM) For any A1 using qt T-queries and qv V-queries with time
complexity τ , we have

Advtvuf
XOR-GTM[FK ,GK′ ](A1) ≤ Advprf

FK
(AF ) +Advtprp

GK′ (AG) +
tq2 + qv

2n
,

where q = qt + qv, and for some AF using mq queries and τ ′ = O(τ) time, and AG using tq queries and
τ ′′ = O(τ) time.

Proof. The proof is mostly the same as [40]. We prove the security of XOR-GTM[RF , P̃G] and combine it with
a standard information-theoretic to computational conversion (e.g. see [3]).

Let RG be the URF having the same domain as G. We consider indistinguishability of XOR-GTM[RF ,RG]
from the ideal primitive RXOR-GTM, which is a set of t independent URFs, R(i) : {0, 1}∗ → M for i ∈ JtK.
For query M , RXOR-GTM(M) = (R(1)(M(1)),R(2)(M(2)), . . . ,R(t)(M(t))), where M(i)s are determined by the
same H as XOR-GTM. Let A be an adversary using q queries for distinguishing XOR-GTM[RF ,RG] from
RXOR-GTM. The advantage is defined as

Advprf’
XOR-GTM[RF ,RG](A)

def
= Advind

XOR-GTM[RF ,RG],RXOR-GTM
(A). (8)

Let Si[j] be the j-th hash value in the i-th query Mi:

Si[j] =
⊕
k∈HR

j

RF,j(Mi[j]).

We also assume {Si[j]}i∈JqtK,j∈JtK is also generated at RXOR-GTM following the same rule as above, involving
dummy RF s. The generated Si[j]s are always discarded.

Eq. (8) is bounded by slightly extending the security proof of PMAC1 (a TBC-based parallel MAC) [46].
In more detail, let Etvuf be the event that Si[k] = Sj [k] for some 1 ≤ i < j ≤ q, k ∈ JtK, Mi(k) 6= Mj(k)
(otherwise Si[k] = Sj [k] trivially holds). Given Etvuf, the outputs of XOR-GTM[RF ,RG] is completely random
except the trivial collision caused by the identical inputs, i.e. Mi(k) =Mj(k), thus the output distribution is
identical to that of RXOR-GTM. This implies that

Advind
XOR-GTM[RF ,RG],RXOR-GTM

(A) ≤ Pr
ARXOR-GTM

[Etvuf]. (9)

Without loss of generality we can consider A to be deterministic (no internal random coin), and because the
output of RXOR-GTM does not tell anything about Si[j], any adaptive choice of queries does not help, and we
can limit our focus to non-adaptive queries to invoke Etvuf. The right hand side of Eq. (9) is thus bounded as
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max
M1,...,Mq

Pr[∃(i, j) ∈ JqK2, k ∈ JtK, i 6= j,Mi(k) 6=Mj(k) : Si[k] = Sj [k]]

≤ max
M1,...,Mq

∑
(i,j)∈JqK2,k∈JtK,i6=j:

Mi(k)6=Mj(k)

Pr[Si[k] = Sj [k]]

≤ max
M1,...,Mq

∑
(i,j)∈JqK2,k∈JtK,i6=j:

Mi(k)6=Mj(k)

Pr

[ ⊕
h∈Hk

RF,h(Mi[h]) =
⊕
h∈Hk

RF,h(Mj [h])

]

≤ max
M1,...,Mq

∑
(i,j)∈JqK2,k∈JtK,i6=j:

Mi(k)6=Mj(k)

Pr

 ⊕
h∈Hk:

Mi[h] 6=Mj [h]

RF,h(Mi[h])⊕ RF,h(Mj [h]) = 0n


≤ max
M1,...,Mq

∑
(i,j)∈JqK2,k∈JtK,i6=j:

Mi(k)6=Mj(k)

1

2n

≤ t ·
(
q

2

)
· 1

2n
(10)

as Mi(k) 6=Mj(k) implies at least one h ∈ HR
k such that Mi[h] 6=Mj [h]. Note that we do not have to count

collision of type Si[k] = Sj [h] for k 6= h thanks to the input difference in final RG, i.e. (k, Si[k]) 6= (h, Sj [k]).
From Eq. (10) we have

Advprf’
XOR-GTM[RF ,RG](A) ≤

tq2

2n+1
.

We also have Advind
P̃G,RG

(A) ≤ tq2/2n+1, thus a hybrid argument shows

Advprf’
XOR-GTM[RF ,P̃G]

(A) ≤ 2
tq2

2n+1
≤ tq2

2n
.

Then we have a standard conversion from the definition of indistinguishability:

Advtvuf
XOR-GTM[RF ,P̃G]

(A) ≤ Advind
XOR-GTM[RF ,P̃G],RXOR-GTM

(A) +Advtvuf
RXOR-GTM

(A)

≤ tq2

2n
+
qv
2n
,

where Advtvuf
RXOR-GTM

(A) ≤ qv/2n is simply obtained by the fact that each component R(i) is independent and
M(1) =M (from the fact that H1 is all-one), implying that the first tag T [1] is independent and random for
all q queries.

Additional note on the necessity of all-one row. One may think of removing the condition of all-one row in H
and instead just requiring HR to contain all-one row. However, this will not work as v− t bottom rows of HR

do not contribute to verification. Moreover, even if we include these rows for check, in the same manner to
detection query in DUF, the simple attack described at [40] still works. What is important for TVUF notion
is to include the sum of all Fi(M [i]) encrypted by G taking unique tweak.
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Theorem 2. (TSUF security of XOR-GTM) For any A2 using q T-queries and qv SV-queries with time
complexity τ , we have

Advtsuf
XOR-GTM[FK ,GK′ ](A2) ≤ Advprf

FK
(AF ) +Advtprp

GK′ (AG) +
tq2 + tqv

2n
,

where q = qt + qv, and for some AF using mq queries and τ ′ = O(τ) time, and AG using tq queries and
τ ′′ = O(τ) time.

Proof. The proof is mostly the same as Theorem 1 by changing Advtvuf to Advtsuf. We just evaluate
Advtsuf

RXOR-GTM
(A) ≤ tqv/2n as the success condition for the adversary is to find M ′(j) for some j ∈ JtK such

that M ′(j) 6=Mi(j) for all i ∈ JqtK. This implies that the bound is increased by t.

Theorem 3. (DUF security of XOR-GTM) Let HR be sound and d-disjunct. For any d-corrupting A3 using
qt T-queries and qd D-queries with time complexity τ , we have

Advduf(d)
XOR-GTM[FK ,GK′ ,H,R](A3) ≤ Advprf

FK
(AF ) +Advprf

GK′ (AG) +
vq2 + vqd

2n
,

where q = qt + qd, holds for some AF using m(q + qd) queries and τ ′ = O(τ) time, and AG using v(qt + qd)
queries and τ ′′ = O(τ) time.

The security proof of DUF bound is described in the next section.

5.3 DUF Proof

We first consider a variant of DUF oracle, DUF′ oracle denoted by OD′ , which takes the same input as
OD but returns the raw decoder input. That is, when OD′ takes (M ′, T ′), M ′ = (M ′[1], . . . ,M ′[m]) and
T ′ = (T ′[1], . . . , T ′[t]), it returns B̂ = (B̂[1], . . . , B̂[v]) with B̂[i] = cmp(S′[i], Ŝ[i]) and

S′[i] = P̃
−1
G,i(T

′[i]), for i ∈ JtK

S′[j] =
⊕
k∈R[j]

S′[k], for j ∈ {t+ 1, . . . , v} (11)

Ŝ[i] =
⊕
j∈HR

i

RF,j(M ′[j]).

A query to OD′ will be called a D′-query. Let P be the output of naïve decoder taking B̂. An adversary of
DUF′ game is said to win (forge) if P 6= diff(M,M ′).

Since the naïve decoder is a public function of B̂, the adversary A′ in DUF′ game can always simulate the
adversary A in the original DUF game, using the same numbers of T - and D/D′-queries as A. Hence we have

Advduf(d)
XOR-GTM(A) ≤ Advduf’(d)

XOR-GTM(A′), (12)

where the latter term denotes the advantage under DUF′ game, which we want to bound.
Suppose a D′-query (M ′, T ′) is made after a T -query-response pair (M,T = T ′) is obtained and

|diff(M,M ′)| ∈ JdK (i.e. the target message is M).
Let B = (B[1], . . . , B[v]) with B[i] = cmp(M(i),M ′(i)), where M(i) =M 	HR

i and M ′(i) =M ′ 	HR
i

for convention. In other words, B tells the existence of differences between the subsequence of message items
in M and M ′ specified by the v rows of HR. We observe that, if B̂ = B the adversary never wins as B
represents the message difference without noise and the naïve decoder taking B will always be correct from
the property of d-disjunctness of HR. Also B is computable by the adversary. This implies that the responses
of D′-queries are essentially useless as the response that do not lead to win (forge) are always known in
advance. With the same reasoning as [5], this shows that return values of D′-queries are useless for choosing
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subsequent queries, hence the optimal adversary is considered to ignore the responses of D′-queries. Since
responses are ignored, they are safely assumed to be made after the all T -queries.

From the above observation, the adversary needs to see B̂ 6= B to win. Since B[i] = 0 and B̂[i] = 1 cannot
occur (the case M(i) =M ′(i) but S[i] 6= S′[i] which is clearly impossible), we must have at least one i ∈ JvK
such that B[i] = 1 and B̂[i] = 0.

Let DirectGTM[RF , P̃G] use v×m test matrix H′ = HR for H and R specified by XOR-GTM[RF , P̃G]. P̃G
is assumed to have tweak space JvK, by attaching (v − t) independent URPs.

Let us consider TSUF security of DirectGTM[RF , P̃G], where we bound the adversary to query OSV that is
allowed for DUF game. Thus any SV-query (M ′, T ′) has some previous T -query (M,T = T ′). Since v×m H′

is the test matrix for DirectGTM[RF , P̃G], the expansion rule is simply R′ = (R′[1], . . . , R′[v]) with R′[i] = {i}.
The oracle OSV compares T ′[i] with T̂ [i] = P̃G(i, Ŝ[i]) to compute B̂ for all i ∈ JvK. Since each tweak of P̃G
implements a (keyed) permutation, comparing T ′[i] and T̂ [i] is equivalent to comparing S′[i] = P̃

−1
G (i, T ′[i])

and Ŝ[i] for any i ∈ JvK.
Furthermore, this is also equivalent to decrypt only the first t tags out of v tags, obtain S′[1], . . . , S′[t],

and apply Eq. (11) to derive S′[t+ 1], . . . , S′[v]. Note that this equivalence holds because T ′ in the detection
query is always a correct tag vector for M for which appeared at a T -query, as we restricted earlier. This
means that the oracle OSV ignores the last v − t tags while the output B̂ is the same as the original TSUF
game (but again this holds since the restriction above).

Now, we observe that the aforementioned game for DirectGTM[RF , P̃G] (with a restricted adversary) is
exactly the same as DUF game of XOR-GTM[RF , P̃G] except that T -query returns v− t additional tags. Since
the computation rule of the first t tags are the same for DirectGTM[RF , P̃G] and XOR-GTM[RF , P̃G], this
information only to increase the advantage. Therefore, we have

Advduf’(d)
XOR-GTM[RF ,P̃G]

(A) ≤ Advtsuf
DirectGTM[RF ,P̃G]

(A′) (13)

for some A′ using qt T -queries and qd SV -queries. Combining Eq. (12) and Theorem 2 with Eq. (13), we
complete the proof.

5.4 Discussions on Decoder Unforgeability

As well as previous work [28,40], we assume that only the message is corrupted for defining DUF, which is
more restrictive than the standard attack model for MACs, and is close to the security model of keyless hash
functions. Note that when an i-th tag string is corrupted but the corresponding data (in our terminology,
M 	Hi) is intact, the verifier cannot decide whether the data is corrupted, or only the tag is corrupted,
i.e., a false positive in the test outcome. Generally, the tags must be intact in order to prevent such false
positives. Conversely, if the adversary has no limitation on tag corruption, there is no mean to exclude false
positives for any corruption detectable MAC schemes including Min15. The avoidance of tag-only corruption
is practical for some use cases. In a storage integrity protection system, MACs are applied to a large storage
and the tags are usually stored in a small, trusted place (e.g. a secure hardware or an isolated server).

Meanwhile, it is also possible to extend our notions to capture the limited amount of tag corruption. This
will require to extend the notion of disjunctness as studied in the context of CGT [41,14,50,42]. See also
Section 3.5 of Min15.

6 Instantiations of XOR-GTM

6.1 Finding Useful Matrices

XOR-GTM suggests that, a d-disjunct matrix of low rank is desirable instead of small number of rows.
However, the rank was rarely studied in the most of existing disjunct matrix constructions. Moreover, the
state-of-the-art constructions tend to have a high rank. For example, we investigated the rank of matrices
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from CRS [24] and STD [50] used by Min15. As far as we tried, the rank was around 0.95t to 0.90t for
the matrix of t rows, hence only up to 10% reduction in communication. This phenomenon is more or less
expected, as these matrices are designed to have a small number rows and not to have a small rank. Both are
quite different goals.

In the following, we show several low-rank d-disjunct matrix constructions which can be used as HR in
XOR-GTM. The corresponding H is obtained as a basis matrix (i.e. a matrix obtained by the basis of row
vectors of HR), and R is determined accordingly. Interestingly, all matrices are near-square, thus not the
choice for the common applications of CGT. However, they achieve a smaller communication cost than any of
DirectGTM.

6.2 Macula’s Construction

Macula [37] proposed the following simple construction for d-disjunct matrix. Let (n, k, d) be a list of positive
integers with n > k > d. Let

((
n
j

))
be the family of subsets of JnK having cardinality j. Let φd : J

(
n
d

)
K→

((
n
d

))
and φk : J

(
n
k

)
K→

((
n
k

))
be the one-to-one mappings. Let Mmacula(n, k, d) be the

(
n
d

)
×
(
n
k

)
matrix defined as

Mmacula(n, k, d)i,j =

{
1 if φd(i) ⊂ φk(j)
0 otherwise.

It is shown that Mmacula(n, k, d) is d-disjunct [37]. Its column weight is
(
k
d

)
, and the row weight is

(
n−d
k−d
)
.

When
(
n
d

)
>
(
n
k

)
, this construction has more rows than columns. However, the GF(2)-rank of Mmacula(n, k, d)

can be (much) smaller than the number of columns.

Example 2. Let (n, k, d) = (5, 3, 2). Then Mmacula(n, k, d) is

1 1 1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0 0 0
1 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 1 1 0
0 0 0 1 0 0 1 0 0 1
0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 1 0 0 1 1


.

This 10× 10 matrix has rank 6. Hence, it enables a non-trivial XOR-GTM of (m, t, d) = (10, 7, 2) including
additional all-one row for soundness. while there is no meaningful DirectGTM with 2-disjuct matrix, as lower
bound of 2-disjunct exceeds 10 from (22).

We have more examples, such as 35× 35 Mmacula(7, 4, 3) of rank 20 and 28× 56 Mmacula(8, 6, 5) of rank 21,
though we do not know the general rank formula.

6.3 Hadamard Matrix

We propose an instantiation of XOR-GTM, which we call Hadamard MAC.

Definition 6. Let s be a positive integer, and let m = 2s − 1. Let Mhadamard(x) be the Sylvester-type
Hadamard matrix of order x. Let Hadamard MAC be an instance of XOR-GTM with HR set to the m×m
matrix obtained by replacing the all −1 entries of Mhadamard(2

s) with 0, and removing the (all-one) first row
and column.

Note that HR is equivalent to a sub-code of the punctured Reed-Muller code.
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Example 3. Let s = 3. Then Mhadamard(8) and the HR are described as

MHadamard(8) =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


, HR =



0 1 0 1 0 1 0
1 0 0 1 1 0 0
0 0 1 1 0 0 1
1 1 1 0 0 0 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 1 1 0


Lemma 1. The rank of HR is at most s+ 1.

Proof. Let C be a matrix obtained by a bit-complement of HR, i.e., Ci,j = HR
i,j ⊕ 1 for all i, j. We observe

that C is a codebook of the simplex code excluding the all-zero codeword, which has a basis matrix of s
rows [39]. Hence the rank of C is s. Let (HR)′ be HR with an all-one row added. Row operations over (HR)′

can yield C with an all-one row added. Hence the rank of (HR)′ is at most the rank of C plus one. ut

Theorem 4. HR is 2-disjunct for any s ≥ 1.

Proof. Since HR is a bit-complement of C, what we need to prove are

A) For any i-th column and any other k-th column of C, there exists a row index h such that (Ch,i,Ch,k) =
(1, 0), or equivalently, no column of HR is contained by another column, i.e., HR

∗,i 6⊆ HR
∗,j for any i 6= j.

B) For any distinct i-th and j-th columns and any other k-th column of C, there exists a row index h such
that (Ch,i,Ch,j ,Ch,k) = (1, 1, 0).

As C is a codebook of simplex code excluding the all-zero codeword, C is symmetric. Moreover,

Ci ⊕Cj =
⊕

i(h) 6=j(h):h∈JsK

Ch = Ci⊕j , (14)

holds for any distinct i and j, where i(h) and j(h) denote the h-th bit of i and j in the standard binary
encoding. In addition, the simplex code has a constant weight of 2s−1 [39], and since it is a linear code, a
sum of distinct pair of rows (or columns) also has a constant weight of 2s−1. Therefore, combined with (14)
we have

Hw(Ci) = 2s−1 for any 1 ≤ i ≤ 2s − 1, (15)

Hw(Ci ⊕Cj) = Hw(Ci⊕j) = 2s−1 for any 1 ≤ i < j ≤ 2s − 1. (16)

For any {j1, j2, . . . , jh} ⊆ JmK for h ∈ JmK, and b = (b1, . . . , bh) ∈ {0, 1}h, let

Sj1,j2,...,jh(b) = {i ∈ JmK : (Ci,j1 ,Ci,j2 , . . . ,Ci,jh) = b},

which denotes the set of row indexes that yield b as the row vector bound to j1 to jh-th columns. From (14)
and (16) we observe

|Si(1)| = 2s−1,

|Si,j(1, 1)| = |Si,j(0, 1)| = |Si,j(1, 0)| = 2s−2 (17)

for any distinct i, j ∈ JmK.
Now we are ready to prove the theorem. First, A) holds from (15), since this implies any column of HR

has a constant weight of m− 2s−1, hence no column of HR can be contained by another column. To prove
B), we fix a pair of distinct column indexes, i, j ∈ JmK. Then we need to show that

|Si,j,k(1, 1, 0)| 6= 0 (18)
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Table 1: The number of tags for DirectGTM using the known smallest 2-disjunct matrices [8], and that of
Hadamard MAC. The latter sets parameter s = dlogme.

m 100 400 900 1600 3600 14400
DirectGTM 21 31 38 44 51 63

Hadamard MAC 8 10 11 12 13 15

holds for any k 6∈ {i, j}. When k = i⊕ j, (18) holds since |Si,j,k(1, 1, 0)| = |Si,j(1, 1)| = 2s−2 holds from (14)
and (17). When k 6= i⊕ j, let δ = i⊕ j and k′ = δ ⊕ k. Since Ck ⊕Ck′ = Cδ, we observe

Si,j(1, 1) = Si,j,δ(1, 1, 0) = Si,j,δ,k,k′(1, 1, 0, 0, 0) ∪ Si,j,δ,k,k′(1, 1, 0, 1, 1) (19)
Si,j(0, 1) = Si,j,δ(0, 1, 1) = Si,j,δ,k,k′(0, 1, 1, 0, 1) ∪ Si,j,δ,k,k′(0, 1, 1, 1, 0)
Si,j(1, 0) = Si,j,δ(1, 0, 1) = Si,j,δ,k,k′(1, 0, 1, 0, 1) ∪ Si,j,δ,k,k′(1, 0, 1, 1, 0)
Si,j(0, 0) = Si,j,δ(0, 0, 0) = Si,j,δ,k,k′(0, 0, 0, 0, 0) ∪ Si,j,δ,k,k′(0, 0, 0, 1, 1)

and the eight Si,j,δ,k,k′(b)s appear in the above partition the whole row index set (i.e. all are distinct and the
union is JmK). Let

x1 = |Si,j,δ,k,k′(1, 1, 0, 0, 0)|, x2 = |Si,j,δ,k,k′(1, 1, 0, 1, 1)|,
x3 = |Si,j,δ,k,k′(0, 1, 1, 0, 1)|, x4 = |Si,j,δ,k,k′(0, 1, 1, 1, 0)|,
x5 = |Si,j,δ,k,k′(1, 0, 1, 0, 1)|, x6 = |Si,j,δ,k,k′(1, 0, 1, 1, 0)|,
x7 = |Si,j,δ,k,k′(0, 0, 0, 0, 0)|, x8 = |Si,j,δ,k,k′(0, 0, 0, 1, 1)|.

Then we have

x2 + x8 = 2s−2 from |Sk,k′(1, 1)| = 2s−2, (20)

x4 + x6 = 2s−2 from |Sk,k′(1, 0)| = 2s−2,

x2 + x6 = 2s−2 from |Si,k′(1, 1)| = 2s−2. (21)

Suppose x1 = 0. Then x2 = 2s−2 from (19)(17), implying x6 = x8 = 0 from (20)(21), thus x4 = 2s−2, x3 = 0,
x5 = 2s−2, and x7 = 2s−1 − 3 · 2s−2 are derived from (17). This implies that Ck = Cj , hence a contradiction.
Therefore, we have x1 6= 0 and (18) holds true. Thus, B) is proved. ut

Comparison with DirectGTM. Erdös et al. [25] (also see [21, Theorem 7.5.9]) showed a shaper bound of
tmin(2,m) than (1) and (2):

log1.25m < tmin(2,m) < log1.134m. (22)

Thus, tmin(2,m) is roughly in the range of 3.10 logm to 5.51 logm. Hadamard MAC needs log (m+ 1) + 1
tags. Hence the number of tags is fewer than that of DirectGTM with the smallest 2-disjunct matrix by a
factor around 3.1 to 5.5. Since [25] did not show a concrete construction, we show a comparison of Hadamard
MAC and DirectGTM using the known smallest 2-disjunct matrices [8] [13] in Table 1. The gain is in a similar
range as the above estimation, 3 to 4.

6.4 Matrices from Projective Plane

The example of Section 6.3 is scalable in terms of m, however, still d is fixed to 2. In the following, we show
two matrix classes that are scalable both for m and d. They are based on finite geometry. See e.g. [32] for the
technical terms that will appear in the following descriptions.

Let s be a positive integer. Let P(s) be a square matrix of m = 22s + 2s + 1 rows, and is defined as a
point-line incidence matrix for the two-dimensional finite projective plane over GF(2s). To be more concrete,
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each row (column) of P(s) represents 22s + 2s + 1 points (lines) over the projective plane. All points and
lines on the projective plane are indexed, and P

(s)
i,j is 1 if i-th point is on the j-th line, and 0 otherwise. It is

known that the GF(2) rank of P(s) is t = 3s + 1 [49]. Its disjunctness is proved as follows.

Proposition 2. P(s) is 2s-disjunct.

Proof. P(s) has the following properties [32]:

A) Each column (resp. row) has uniform weight 2s + 1;
B) Any two columns (resp. rows) have exactly one 1-entry in common.

We observe that by B), any two columns of P(s) have exactly one intersection. It follows that any column has
at most 2s intersections with the union of any other 2s columns, and thus it cannot be contained in that
union since any column has weight 2s + 1 by A). This proves the proposition. ut

An example of P(s) is shown in Example 4. We call this instantiation XOR-GTM-PPI for the use of Projective-
Plane-Incidence matrix. It uses t independent rows of P(s) as H and defines R accordingly so that HR = P(s).
Therefore, XOR-GTM-PPI can detect d = 2s = O(

√
m) corruptions using t = 3s+1 = O(

√
m) tags. This implies

a significant improvement over DirectGTM, since t grows as t = dlog 3+1 ≈ d1.58 and tmin(d,m) = O(d2 logm).
Table 2 shows the profiles of the disjunct matrices obtained by the projective plane.

Example 4. P(1) is a 7× 7 matrix of rank 4 and disjunctness 2 which is described as follows (note: it depends
on the polynomial defining the field).

P(1) =



0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0


. (23)

The matrix is a circulant with the first row (0110100). The first 4 rows in (23) are linearly independent, and
they span the row space of P(1).

6.5 Matrices from Affine plane

The projective plane-based matrix is quite efficient and scalable. However, since it is determined by a single
parameter s, the space of possible (m, d, t) is sparse and thus may not fit in the real-world use cases.

In a different context, Kamiya [33] proposed a family of matrices derived from the finite geometry. He
studied LDPC code (a class of linear error-correcting codes), however, we can use his proposal to realize a
family of disjunct matrices with a large parameter flexibility. As well as the case of projective plane, let s be
the parameter and let A(s) be the point-line incidence matrix of affine plane. Since the affine plane has 22s
points and 22s + 2s lines, A(s) is of size 22s × (22s + 2s). Each row and column has weight 2s + 1 and 2s,
respectively. We can show it is (2s − 1)-disjunct and has rank 3s as well. Note that A(s) itself has a similar
profile as P(s). Kamiya’s matrix is a certain sub-matrix of A(s) described as follows. Let L = {L1, L2, . . . , L`}
be a set of ` lines passing through the origin in the affine plane over GF(2s). The proposed matrix is denoted
by A

(s)
` , which is the incidence matrix of points contained in the union of the lines in L and lines having

an intersection with a line in L at a non-origin point. The matrix A
(s)
` is then a sub-matrix of A(s) of size

(`(2s − 1) + 1)× (22s − 1 + `), where 3 ≤ ` ≤ 2s + 1. It is easy to see that each column of A(s)
` has weight at

least `− 1 and any two columns have at most one 1-entry in common. Thus we have the following.

Proposition 3. A
(s)
` is (`− 2)-disjunct.
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Table 2: Disjunct matrices from projective plane. The matrices are square. The last column shows tmin(d,m),
the best known lower bound for the number of rows of d-disjunct matrix with m columns, i.e. (3) for d ≤ 5
and (2) for d > 5.

s # rows Rank Disjunctness Bound
1 7 4 2 7
2 21 10 4 21
3 73 28 8 56
4 273 82 16 222
5 1057 244 32 886
6 4161 730 64 3541
7 16513 2188 128 14162
8 65793 6562 256 56647
9 262657 19684 512 226586
10 1049601 59050 1024 906344
11 4196353 177148 2048 3625376
12 16781313 531442 4096 14501501
13 67117057 1594324 8192 58006002

Table 3: Disjunct matrix from affine plane. The last column shows tmin(d,m) in the same manner as Table 2.
s # rows # columns Rank Disjunctness Bound
1 4 6 3 1 4
2 16 20 9 3 16
3 64 72 27 7 43
4 256 272 81 15 195
5 1024 1056 243 31 831
6 4096 4160 729 63 3431
7 16384 16512 2187 127 13942
8 65536 65792 6561 255 56205
9 262144 262656 19683 511 225702
10 1048576 1049600 59049 1023 904575
11 4194304 4196352 177147 2047 3621836
12 16777216 16781312 531441 4095 14494421
13 67108864 67117056 1594323 8191 57991841

Furthermore, it can be shown [33] that the GF(2)-rank of A(s)
` is given as

blog `c∑
i=0

(
s

i

)
2i +

s∑
i=blog `c+1

(
s

i

)
` = 3s −

s∑
i=blog `c+1

(
s

i

)
(2i − `).

See Table. 4 for some examples of A(s)
` s. As can be seen, this construction enables many parameter values

not covered by the projective plane.

On rank optimality. The rank formulas of incident matrices built on finite geometry have been intensively
studied for long years, in particular regarding the well-known Hamada’s formula [29]. However, given m and
d, whether these projective-plane/affine matrices achieve the minimality of the rank t is not known in general.
To the best of our knowledge, these matrices achieve the lowest rank for given m and d.
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Table 4: Rank of disjunct matrices from Kamiya’s construction. Disjunctness is `− 2.
s 4 5 6

#rows 15`+ 1 31`+ 1 63`+ 1
#columns `+ 255 `+ 1023 `+ 4095

Range of ` Rank
3 ≤ ` ≤ 4 11`+ 9 26`+ 11 57`+ 13
4 ≤ ` ≤ 8 5`+ 33 16`+ 51 42`+ 73
8 ≤ ` ≤ 16 `+ 65 6`+ 131 22`+ 233
16 ≤ ` ≤ 32 81 (` ≤ 17) `+ 211 7`+ 473
32 ≤ ` ≤ 64 — 243 (` ≤ 33) `+ 665
64 ≤ ` ≤ 128 — — 729 (` ≤ 65)

7 Practical Aspects of XOR-GTM

7.1 Utilization of Matrix Structure

A straightforward implementation of XOR-GTM needs to store the whole test matrix. Since all of the matrices
presented in Section 6 are highly structured, we can utilize these structures to significantly reduce the memory
consumption of XOR-GTM. In particular, HR of XOR-GTM-PPI is a circulant matrix thus we can greatly
reduce the memory for implementation.

For example, HR of XOR-GTM-PPI is an m × m circulant matrix and has constant row weight and
column weight of w = 2s + 1, and H consists of certain t = 3s + 1 rows of HR. This allows a memory-
efficient implementation for tag generation and verification and detection. Figure 3 shows the pseudocode of
XOR-GTM-PPI of parameter s. In Figure 3, we record the column-index information that determines H from
HR as sequence (a1, . . . , am), and encode HR

∗,1 as (b1, . . . , bw) with w = 2s. Then, the tags are computed
with O(w) memory. Assuming each PRF and TPRP computation needs a constant time, the time complexity
is O(m) which is inevitable as a MAC. For corruption detection, we additionally encode HR

1 as (c1, . . . , cw)
for simplifying the eviction step, P ← P \HR

i . Then the detection can be implemented by maintaining an
m-bit sequence. This still needs O(m) memory, however the actual constant can be much smaller than the
entire data items. For example, when XOR-GTM-PPI with s = 15 is applied to the sectors of 4.4 TB HDD
(See Section 7.2), the tags need 230 MB memory, and the eviction step needs 135 MB memory. We expect
the memory efficiency of the detection step to be greatly improved by a dedicated decoder.

7.2 Comparison

We compare the commutation cost of XOR-GTM-PPI and DirectGTM. Figure 4 shows the ratio t/m for
XOR-GTM-PPI and DirectGTM, where the latter is assumed to use a d-disjunct matrix achieving the lower
bound of (2). Note that t/m represents the relative communication ratio from the trivial scheme using m
tags, whose ratio is 1 (lower is better). Note that the plots of DirectGTM may be unachievable. We also show
the conjectured lower bound (3) which was constantly 1 in the figure. The ratio of XOR-GTM-PPI quickly
approaches to zero. For example, for s = 1 it is about 0.57 and for s = 10 it is about 0.056. In contrast, the
communication ratio of DirectGTM is 1 up to d = 5 (as (3) holds for d ≤ 5) and is more than 0.8 even if s is
large.
Numerical examples for storage integrity applications. Suppose we apply XOR-GTM-PPI to detect
corruptions in the storages, such as HDDs or USB memories. Here, a data item represents the contents of
a sector which is 4,096 bytes. When s = 15, the size of storage (HDD) amounts to about 4.4 TB , and
XOR-GTM-PPI needs about 230 MB for storing the tags and is capable of up to 135 MB corruptions. The
trivial scheme, which computes a tag for each sector, and DirectGTM using a disjunct matrix achieving (2)
need about 17.2 GB and 14.8 GB for the tags respectively. In terms of the amounts of tags, the improvement
factor from the trivial scheme is 74.82 for XOR-GTM-PPI, while only 1.15 for the DirectGTM. Table 5 shows
more examples.
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Algorithm XOR-GTM[FK , GK′ ].tag(M):

1. S ← XOR-GTM[FK ].hash(M)
2. for i = 1 to t do
3. T [i]← Gi

K′(S[i])
4. T ← (T [1], . . . , T [t])
5. return T

Algorithm XOR-GTM[FK , GK′ ].hash(M):
// Hi = HR

i for all i ∈ JtK
// bi ∈ LmM, i ∈ JwK: HR

∗,1 = {bi + 1 : i ∈ JwK}
// w = 2s + 1

1. for i = 1 to t do
2. S[i]← 0n

3. for j = 1 to m do
4. Z ← F j

K(M [j])
5. I ← {((bk + (j − 1)) mod m) + 1 : k ∈ JwK}
6. for all i ∈ I do S[i]← S[i]⊕ Z
7. S ← S([1], . . . , S[t])
8. return S

Algorithm XOR-GTM[FK , GK′ ].detect(M ′, T ′):
//ci ∈ LmM, i ∈ JwK: H1 = {ci + 1 : i ∈ JwK}

1. P ← JmK
2. for i = 1 to t do
3. S′ ← Gi,−1

K′ (T ′[i])

4. Ŝ ← XOR-GTM[FK ].hash(M ′)
5. for i = 1 to v do
6. ŜR[i]←

⊕
j∈Ri

Ŝ[j]

7. (S′)R[i]←
⊕

j∈Ri
S′[j]

8. for i = 1 to v do
9. if ŜR[i] = (S′)R[i]

10. S ← {((cj + i− 1) mod m) + 1 : j ∈ JwK}
11. P ← P \ S
12. return P

Fig. 3: XOR-GTM-PPI: XOR-GTM using projective-plane incidence matrix for HR.

Experimental Implementation. In a similar manner to Min15, we implemented XOR-GTM-PPI for tagging,
verification and detection on a conventional server, using PMAC-AES for F and XEX-AES for G [46], for
s ∈ J5K. We have utilized the fact that the matrix HR is circulant (see Example 4) for reducing memory.
Since all the procedures are essentially O(mdx/128e) AES computations when |M [i]| = x and simple linear
operations, the computation cost is expected to be close to that of single PMAC-AES on entire M . We
observed this when x is about 1 Mbyte. See Figure 6 for our preliminary result. Improving performance and
extension to larger s are future work.

8 Experimental Implementation

An experimental implementation result for XOR-GTM-PPI is shown in Table 6. We use a server running
Ubuntu 16.04 on Intel Xeon E5-2699 (Broadwell) v4 at 2.2 GHz. We use a variant of PMAC for PRF F and
XEX [46] for TBC G, using AES-128 with AESNI instructions (single-core implementation), written in C
with gcc 5.4.0. In our environment, PMAC runs at 5.2 cycles per byte for long inputs3. Table 6 shows the
speed (in Cycles/Byte) for tag generation and a combined operation of verification and detection, with each
message item size from 1KB to 1MB, for parameter s ∈ J5K. For corruption detection, we insert random errors
to the message including the number of corruptions (i.e. sample v $← J2sK and randomly choose v message
items and randomly insert a bit error for them). As expected, all corrupted items were always correctly found.
As Table 6 shows, the speed quickly approaches to the speed of F itself as message size gets larger, which
verifies our claims. Optimized implementation for a larger s is a future plan.

9 Conclusions

We have described a new approach to corruption detectable MAC. As well as previous work, our XOR-GTM
is based on the theory of combinatorial group testing (CGT). However, our scheme significantly reduces the

3 The performance of single PMAC is worse than the typical implementation fully utilizing AES-NI (which is about
0.7 cycles per byte), which may be caused by some implementation details that we have not identified this moment.

20



Table 5: Numerical examples for XOR-GTM-PPI. The last column (improvement factor) shows the inverse
ratio of Tag size to that of Trivial MAC.

Target: 4.4 TB HDD Total tag size Corrupted data Imp. Factor
Trivial scheme 17.18 GB No limit 1

DirectGTM 14.85 GB 135 MB 1.15
XOR-GTM-PPI (s = 15) 229.58 MB 135 MB 74.82

Target: 1.1 TB HDD Total tag size Corrupted data Imp. Factor
Trivial scheme 4.29 GB No limit 1

DirectGTM 3.71 GB 68 MB 1.15
XOR-GTM-PPI (s = 14) 76.52 MB 68 MB 56.06

Target: 4.3 GB Memory Total tag size Corrupted data Imp. Factor
Trivial scheme 16.79 MB No limit 1

DirectGTM 14.50 MB 5 MB 1.15
XOR-GTM-PPI (s = 10) 0.94 MB 5 MB 17.86

Table 6: Preliminary implementation results of XOR-GTM-PPI in cycles per input byte. Verification (verf)
includes corruption detection. Environment: Ubuntu 16.04 on Intel Xeon E5-2699 (Broadwell) v4 at 2.2 GHz.
Code written in C with gcc 5.4.0, using AESNI. Single PMAC runs at 5.2 cycles per byte for long inputs.

Size of each s = 1 s = 2 s = 3 s = 4 s = 5
message item tag verf tag verf tag verf tag verf tag verf

1 KB 14.6 20.8 16.6 20.7 14.8 22.5 20.67 23.5 15.4 15.5
2 KB 14.5 18.2 14.5 18.2 10.8 17.6 15.0 15.1 16.8 16.9
4 KB 13.5 16.9 10.1 16.9 12.9 14.0 6.3 10.5 12.6 12.7
1 MB 5.2 8.5 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2

number of MAC tags from the previous CGT-based schemes whose test matrices are (a variant of) d-disjunct.
Besides, the computational cost is quite small, roughly the same as taking a single MAC for the whole data
items.

The key idea is to utilize the linearity of the message hash values in Min15 [40] with a low-rank test matrix
whose row span is d-disjunct. We also show several examples of matrices suitable for our scheme, where the
matrices are near-square but the rank is small. All examples attain smaller communication cost than any
of existing proposals of the same detection capability, no matter how the test matrix is. In particular, the
effectiveness of matrices based on the finite geometry is remarkable: taking a storage integrity checking system
for example, we show that we can reduce the storage for tags by a factor of 17 to 74 from the trivial scheme.
In a similar manner to [40], we prove the security of XOR-GTM under the appropriate security notions we
defined, and derived concrete security bounds based on the pseudorandomness of the components.

The idea presented here can be extended to various related problems. For example, as described at
Section 5.4, the decoder unforgeability can be extended to allow false positive tests (by only corrupting a tag
string while the corresponding message subsequence is intact), if the (extended) test matrix has a certain
robustness. It will be interesting to consider a formal model capturing false positive tests and build an efficient
and secure scheme for it. Another direction is to consider corruption-detectable cryptographic hash function
or digital signatures as analogues of corruption-detectable MAC.

Finally, our idea is also directly applicable to aggregate MACs. Hirose and Shikata [30] proposed to
take linear combinations of tags following d-disjunct matrix. By using a low-rank matrix whose row span is
d-disjunct, we can reduce the number of tags. A formal analysis of security and concrete proposals will also
be an interesting topic.
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Fig. 4: Comparison of communication ratios. The red solid line : XOR-GTM-PPI. The blue dashed line : the
lower bound of DirectGTM from (2). The black dotted line : the conjectured lower bound of DirectGTM
from (3) (true for d ≤ 5).
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