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Abstract. Secure cloud storage is considered as one of the most important problems
that both businesses and end-users take into account before moving their private data
to the cloud. Lately, we have seen some interesting approaches that are based either
on the promising concept of Symmetric Searchable Encryption (SSE) or on the well-
studied field of Attribute-Based Encryption (ABE). Our construction, MicroSCOPE,
combines both ABE and SSE to utilize the advantages that each technique has
to offer. We use an SSE scheme to ensure that data stored on the cloud will be
protected against both internal and external attacks. Moreover, through the use of
a Ciphertext-Policy ABE (CP-ABE) scheme, our construction allows efficient data
sharing between multiple data owners and users. Finally, we enhance our construction
with an access control mechanism by utilizing the functionality provided by SGX.
Keywords: Access Control · Attribute-Based Encryption · Cloud Security · Hybrid
Encryption · Policies · Storage Protection · Symmetric Searchable Encryption

1 Introduction
We are in a period where cloud computing has been established as an essential platform
for many businesses looking to build innovative services. However, concerns about security
and privacy still remain – especially for companies and users moving their data between
multiple public cloud services. The main reason behind this, is that most implementations
assume an honest and therefore fully trusted cloud service provider (CSP) – a significant
obstacle towards enabling a secure cloud posture. Having this in mind, researchers try
to address the problem of secure data storage on untrusted clouds by looking at how
modern cryptographic techniques such as Symmetric Searchable Encryption (SSE) and
Attribute-Based Encryption (ABE) can be used to protect users’ data.

SSE is a promising encryption technique in which users encrypt their data locally using
a symmetric key prior sending them to the CSP. The most exciting thing about SSE
though, is that it enables users to search directly over the encrypted data without having
the need to decrypt them first. Thus, the CSP learns nothing about the content of the
data, except for the information leaked during the execution of the scheme (i.e. access and
search pattern). However, a drawback of such scheme is that it does not support efficient
revocation since sharing an encrypted file implies sharing the underlying symmetric key.

mailto:{antonios.michalas, alexandros.bakas, alexandr.zalitko}@tuni.fi
mailto:H.Dang@westminster.ac.uk


2

Another promising encryption technique that can address the problem of revocation
is ABE. ABE is a public key encryption scheme in which all files are encrypted under a
master public key. However, in contrast to traditional public key encryption, in ABE each
ciphertext is bound by a policy. A policy can be either a conjunction or a disjunction
of attribute variables. Another difference from traditional schemes is that each user has
a unique secret key, with attached attributes on it. This way, decryption of a file can
work if and only if the attributes of a user’s key satisfy the policy bound to the ciphertext.
Naturally, if a data owner wishes to revoke access to another user, can do so by revoking
certain attributes that correspond to that user. However, most of the schemes that address
the problem of revocation are losing efficiency. Furthermore, using public key encryption
to encrypt large volumes of data is rather inefficient and according to [GHW11] the cost
of the encryption and decryption operations in an ABE scheme grows along with the
complexity of the underlying policy.

Our Contribution: We construct MicroSCOPE – a hybrid encryption scheme that
utilizes the advantages of both SSE and ABE. In MicroSCOPE, a user encrypts her data
locally using the symmetric key of an SSE scheme which is then encrypted under a master
public key of an ABE scheme. This is then stored online in an SGX enclave [CD16] and it
is bound by a policy. Thus, if another user wishes to access the encrypted database, she
needs to be able to recover the corresponding symmetric key (i.e her key attributes need to
satisfy the policy of the ciphertext). Moreover, we propose a scope-based mechanism that
manages access rights between users. In contrast to other approaches, we do not embed
this mechanism in the ABE scheme. This allow us to keep our construction as efficient as
possible.

Organization: The rest of the paper is organized as follows: In Section 2, we present
important works that have been published and address the problem of secure cloud storage,
data sharing and revocation. In Section 3, we present the cryptographic tools needed
for our construction while in Section 4 we provide a brief overview of the components
that participate in our scheme. The assumed threat model is presented in Section 5 while
Section 6 constitutes the core of this paper as a detailed description of our construction is
presented. In Section 7, we prove the security of the protocol against the defined threat
model. In Section 8, we provide experimental results and finally, Section 9 concludes the
paper.

2 Related Work
In [FBB+17], authors use an enclave-based, tree-based search index to design a searchable
encryption scheme. Their scheme, HardIDX, addresses the problem of searching in large
volumes of encrypted data by making use of the functionalities offered by SGX enclaves.
Their solution places the integrity and confidentiality of the search tree in unprotected
memory. Thus, every search operation leaks information, such as the access pattern and the
size of the output. A promising idea is presented in [FVBG17], where the authors present
an SGX-based functional encryption scheme called IRON. IRON’s main functionalities,
such as decryption of a file and application of a function on the decrypted file, both
occur in the isolated environment offered by SGX. Moreover, all enclaves can attest to
each other and exchange data over secure communication channels. In our construction,
even though we use the same hardware principles, we build a hybrid encryption scheme
by combining SSE and ABE. Additionally, to avoid side-channel attacks, we make sure
that sensitive computations do not happen inside the enclaves. A different approach
to the problem of data maintenance on untrusted clouds is presentes in [MS18] where
authors propose a revocable hybrid encryption scheme enchanced with a key-rotation
mechanism to prevent key-scrapping attacks. The scheme makes use of an All-or-Nothing-
Transformation (AONT) [Boy99] to prevent revoked users from accessing stored data.
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More precisely, Optimal Asymmetric Encryption Padding (OAEP) is used as the AONT
due to the fact that reversing OAEP, requires the entire output to be known. As a result,
changing random bits of the output renders OAEP’s inversion infeasible. However, to
decrypt a file, the changed bits need to be stored so that the AONT can be later reversed.
Naturally, this implies that with each re-encryption, the size of the ciphertext grows. Thus,
decrypting a file that has been re-encrypted multiple times becomes an expensive operation.
Moreover, to make the scheme more efficient, authors suggest that the AONT could be
applied by the server. However, this implies the existence of a fully trusted the server –
thus, internal attacks cannot be prevented. In [LYZL18] a revocable Ciphertext-Policy
ABE (CP-ABE) scheme in which a revocation list is embedded into the ciphertexts was
presented. Naturally, as the revocation list grows, the ciphertexts would become larger,
thus rendering any decryption or file modification operation more expensive. To deal
with this, a method based on Hierarchical Identity Based Encryption (HIBE) [BBG05],
where users’ secret keys expire after a certain period of time was proposed. Hence, the
revocation list can only include those keys that were revoked before their expiration
date. Similarly, in [BGK08] the authors extended their work on Revocable Identity Based
Encryption by constructing a Key-Police ABE (KP-ABE). However, according to their
design, revocation relies on frequent key updates for all the different attributes. Naturally,
such a solution does not scale well and thus cannot have practical use. This work is an
extension of [Mic18, BM19a, Mic19].

3 Cryptographic Primitives
In this section, we present formal definitions for the two main encryption schemes of our
construction, CP-ABE and SSE, as described in [BSW07] and [BM19b] respectively.

Definition 1 (Ciphertext-Policy ABE). A revocable CP-ABE scheme is a tuple of the
following five algorithms:

1. CPABE.Setup is a probabilistic algorithm that takes as input a security parameter
λ and outputs a master public key MPK and a master secret key MSK. We denote
this by (MPK,MSK)← Setup(1λ).

2. CPABE.Gen is a probabilistic algorithm that takes as input a master secret key, a
set of attributes A ∈ Ω and the unique identifier of a user and outputs a secret key
which is bound both to the corresponding list of attributes and the user. We denote
this by (skA,ui)← Gen(MSK,A, ui).

3. CPABE.Enc is a probabilistic algorithm that takes as input a master public key, a
messagem and a policy P ∈ P . After a proper run, the algorithm outputs a ciphertext
cP which is associated to the policy P . We denote this by cP ← Enc(MPK,m, P ).

4. CPABE.Dec is a deterministic algorithm that takes as input a user’s secret key and a
ciphertext and outputs the original message m iff the set of attributes A that are
associated with the underlying secret key satisfies the policy P that is associated
with cp. We denote this by Dec(skA,ui , cP )→ m.

Definition 2 (Dynamic Index-based SSE). A dynamic index-based symmetric searchable
encryption scheme is a tuple of six polynomial algorithms DSSE = (KeyGen, InGen,AddFile,Search,
Delete) such that:

• DSSE.KeyGen is probabilistic key-generation algorithm that takes as input a security
parameter λ and outputs a secret key K. It is used by the client to generate her
secret-key.
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• DSSE.InGen is a probabilistic algorithm that takes as input a secret key K and a
collection of files f and outputs an encrypted index γ and a sequence of ciphertexts
c. It is used by the client to get ciphertexts corresponding to her files as well as an
encrypted index which are then sent to the storage server.

• DSSE.AddFile is a probabilistic algorithm that takes as input a secret key K and
a file f and outputs an add token τα(f) and a ciphertext cf . The token and the
ciphertext are then sent to the storage server, where cf will be added to the collection
of ciphertexts and the index γ will be updated accordingly.

• DSSE.Search Is a deterministic algorithm that takes as input a secret key K and a
keyword w and outputs a search token τs(w). The token is then sent to the storage
server who will output a sequence of file identifiers Iw ⊂ c.

• DSSE.Delete is a deterministic algorithm that takes as input a secret key K and a
file identifier id(f) and outputs a delete token τd(f) for f . The token will be sent to
the storage server, who will delete cf and update the index γ accordingly.

The security of an SSE scheme is based on the existence of a simulator that is given as
input information leaked during the execution of the protocol. In particular, to define the
security of SSE we make use of the leakage functions Lin,Ls,La,Ld associated to index
creation, search, add and delete operations [DMNP17].

Definition 3. (Dynamic CKA 2-security). Let DSSE = (KeyGen, InGen,AddFile,Search,Delete)
be a dynamic index based symmetric searchable encryption scheme and Lin,Ls,La,Ld
be leakage functions associated to index creation, search, add and delete operations. We
consider the following experiments between an adversary ADV and a challenger C:

RealADV(λ)

C runs Gen(1λ) to generate a key K. ADV outputs a file f and receives (γ, c) ←
Enc(K, f) from C. ADV makes a polynomial time of adaptive queries q = {w, f1, f2}
and for each q he receives back either a search token for w, τs(w), an add token
and a ciphertext for f1, (τα(f1), c1) or a delete token for f2, τd(f2). Finally, ADV
outputs a bit b.

IdealADV,S(λ)
ADV outputs a file f . S is given Lin and generates (γ, c) which is sent back to
ADV. ADV makes a polynomial time of adaptive queries q = {w, f1, f2} and for
each q, S is given either Ls(f , w),Lα(f , f1) or Ld(f , f2). S then returns a token
and, in the case of addition, a ciphertext c. Finally, ADV outputs a bit b.

We say that the SSE scheme is L-i secure if for all probabilistic polynomial adversaries
ADV, there exists a probabilistic simulator S such that:

|Pr[(Real) = 1]− Pr[(Ideal) = 1]| ≤ negl(λ)

In the cases of file addition and deletion, the simulator must also generate ciphertexts
and update the current indexes.

4 Architecture
In this section, we provide an overview of the underlying system model by describing all
the different components1 along with their functionality.

1We assume the existence of a registration authority which is responsible for the registration of users.
However, registration is out of the scope of this paper and we assume that all users have been already
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Cloud Service Provider (CSP): We consider a cloud computing environment similar to
the one described in [PGM17, ?]. CSP is responsible for storing encrypted data. Moreover,
it must be SGX-enabled since core entities will be running in the trusted execution
environment offered by SGX.

Master Authority (MS): MS is responsible for setting up all the necessary public
parameters for the proper run of the involved protocols. Furthermore, MS is responsible
for generating and distributing ABE keys to the registered users. MS is SGX-enabled and
is running in an enclave called the Master Enclave.

Key Tray (KT): KT is a key storage that stores ciphertexts of the symmetric keys
that have been generated by various data owners and are needed to recover/decrypt data.
Every registered user can directly contact KT and request access to the stored ciphertexts.
KT is also SGX-enabled and is running in an enclave called the KT Enclave.

Revocation Authority (REV): REV is responsible for controlling access rights.
REV maintains a mapping of each user with her valid scopes. Each time a scope is revoked
from a user, REV updates its database. Similar to MS and KT, REV is also SGX-enabled
and is running in an enclave called the REV Enclave.

User (ui): A user interacts with the CSP to manage certain files that has access to
according to her assigned scopes (access rights). The set of access rights of ui is denoted as
SCi = {(j, sji ), (z, ski ), . . . (k, szi )} where j, k, . . . , z represent a collection of files encrypted
under the symmetric keys Kj,Kk, . . . ,Kz and sji is a one dimensional bit array of length
four that represents the scopes (i.e. view, add, delete, revoke) assigned to ui for each data
collection. For example, if sij = [1010], then uj has access rights view and delete for data
encrypted under the symmetric key Ki.

SGX: Below we provide a brief presentation of the main SGX functionalities needed for
our construction. A more detailed description can be found in [FVBG17, CD16]

Isolation: Enclaves are located in a hardware guarded area of memory and they
compromise a total memory of 128MB (only 90MB can be used by software). Intel SGX is
based on memory isolation built into the processor itself along with strong cryptography.
The processor tracks which parts of memory belong to which enclave, and ensures that
only enclaves can access their own memory.

Attestation: One of the core contributions of SGX is the support for attestation between
enclaves of the same (local attestation) and different platforms (remote attestation). In
the case of local attestation, an enclave enci can verify another enclave encj as well as the
program/software running in the latter. This is achieved through a report rpt generated
by encj containing information about the enclave itself and the program running in it.
This report is signed with a secret key skrpt which is the same for all enclaves of the same
platform. In remote attestation, enclaves of different platforms can attest each other
through a signed quote. This is a report similar to the one used in local attestation. The
difference is that instead of using skrpt to sign it, a special private key provided by Intel is
used. Thus, verifying these quotes requires contacting Intel’s Attestation Server.

Sealing: Every SGX processor comes with a Root Seal Key with which, data is encrypted
when stored in untrusted memory. Sealed data can be recovered even after an enclave is
destroyed and rebooted on the same platform.

5 Threat Model
Our threat model is similar to the one described in [PGM17], which is based on the
Dolev-Yao adversarial model [DY83]. We further assume that privileged access rights
can be used by a remote adversary ADV to leak confidential information. ADV, e.g. a
registered.
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corrupted system administrator, can obtain remote access to any host maintained by the
CSP, but cannot access the volatile memory of guest VMs residing on the compute hosts
of the CSP. Furthermore, we assume that ADV can load programs in the enclaves and
observe their output. This assumption significantly strengthens ADV since we need to
ensure that only honest attested programs with correct inputs will run in the enclaves.
Finally, we extend the above threat model by defining a set of attacks available to ADV.

Attack 1 (Successful Scope Substitution Attack – SSA). Let ADV be an adversary that
corrupts a registered user um, whose set of valid scopes is given by sim for data encrypted
under the symmetric key Ki ADV wishes to tamper with um’s access rights by providing
her with more scopes. We say that ADV successfully launches an SSA attack iff she can
change bits from 0 to 1 in sim and produce a new array s′im 6= sim that will be accepted as
valid by the corresponding authorities.

Attack 2 (Successful Revocation of Legitimate User Attack – RLUA). Let ADV be an
adversary that corrupts a registered user um who has access only to data encrypted
under a secret key Km. Additionally, let u` be a legitimate user that has access to data
encrypted under a secret key K`, ` 6= m. ADV successfully launches an RLUA attack iff
she manages to revoke scopes to u` for data that is encrypted under K`.

Attack 3 (Successful Compromise of Revoked User Attack – CRUA). Let RKi be the set
of all users that their access to the data encrypted under Ki has been revoked completely
(i.e. siRKi

= [0000]). Moreover, let ADV be an adversary that corrupts a user um where
um ∈ RKi . ADV successfully launches a CRUA attack iff she manages to extract any
valuable information about the content of the files that are encrypted with Ki.

6 MicroSCOPE (MSCOPE)
In this section, we present MicroScope (MSCOPE) that constitutes the core of this paper’s
contribution. MSCOPE is built around nine main protocols: Setup, ABEUserKey, Store,
KeyTrayStore, KeyShare, Search, Update, Delete, and Revoke.

MSCOPE.Setup: Each entity generates a public/private key pair (pk, sk) for a CCA2
secure public cryptosystem as well as a signing and a verification key for a EUF-CMA
secure signature scheme. Furthermore, MS runs CPABE.Setup and generates a master
public/private key pair (MPK,MSK).
MSCOPE.ABEUserKey : This algorithm is executed by a registered user ui that wishes
to receive a secret CP-ABE key. Since MS is responsible for generating such keys, ui needs
to contact MS and request a key. MS will then execute skA,ui ← CPABE.Gen(MSK,A, ui),
where A is the set of attributes that is derived from ui’s registered information. Finally,
skA,ui is sent back to ui over a secure channel.

MSCOPE.ABEUserKey
Input: MSK ; ui; A
Output: skA,ui

1. ui attests MS

2. ui requests a new CP-ABE key

3. MS generates key: skA,ui ← CPABE.Gen(MSK,A, ui)

4. MS sends skA,ui to ui
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MSCOPE.Store : After a successful registration, we assume that ui has received a
valid credential (credi) that may use to login to a cloud service offered by the CSP.
Additionally, ui is now able to store data to the cloud storage. During this phase, the
communication takes place between the user and the CSP. First, ui contacts the CSP
by sending the following: m1 =

〈
r1,EpkCSP(Auth), StoreReq,H1

〉
, where r1 is a random

number generated by u1, Auth is an authenticator that allows ui to prove to the CSP that
is a legitimate/registered user and H1 is the following hash H(r1||Auth||StoreReq). Upon
reception, CSP verifies the freshness of the message, the identity of the user and starts
processing the store request. To do so, CSP creates the message m2 =

〈
r2, σCSP (H2)

〉
,

where H2 is H(r2||ui) and σCSP (H2) is a signature of CSP on H2. Then, m2 is sent back
to ui. Upon reception, ui verifies both the freshness and the integrity of the message. Now,
ui simply generates a symmetric key Ki by running DSSE.KeyGen. This key will be used to
protect the data that will be stored in the cloud. The final step of this phase is the storage
of encrypted files by ui to a storage resource offered by the CSP. User ui runs DSSE.InGen
– a probabilistic algorithm that takes as input the symmetric secret key Ki that generated
earlier and a collection of files fi and outputs a collection of ciphertexts ci as well as an
encrypted index γi. Additionally, ui generates a unique index idxKi for the key Ki. Finally,
ui sends to the CSP: m3 =

〈
r3,EpkCSP(γi, idxKi), ci, H3

〉
, where H3 = H(r3||γi||ci||idxKi).

Upon reception, CSP verifies both the integrity and the freshness of m3 and stores ci along
with the encrypted index γi, and the index idxKi .

MSCOPE.Store
Input: User’s authenticator Auth, a collention of files fi
Output: A collection of ciphertexts ci along with an encrypted index γi are stored
on the CSP

1. ui generates a random number r1

2. ui sends m1 = 〈r1,EpkCSP(Auth), StoreReq, σi(H1)〉 to the CSP

3. CSP verifies the freshness of the message and the identity of the user

4. CSP sends : m2 = 〈r2, σCSP (H2)〉 to ui

5. ui verifies the freshness and the integrity of m2

6. ui runs Ki ← DSSE.KeyGen

7. ui generates a unique index idxKi for the symmetric key Ki

8. ui runs (ci, γi)← DSSE.InGen(Ki, fi)

9. ui sends m3 = 〈r3,EpkCSP (γi, idxKi) , ci, σi(H3)〉 to the CSP

10. CSP verifies the integrity and the freshness of m3

11. CSP stores {ci, γi, idxKi}

MSCOPE.KeyTrayStore : This is a probabilistic algorithm executed by the data owner
to store her symmetric key Ki in KT. The data owner first runs cKi

P ← CPABE.Enc(MPK,Ki,P )
to obtain the encryption of Ki, which is associated with a policy P . The generated ci-
phertext cKi

P is then sent to KT who stores it locally. In particular, ui sends m4 =〈
r4,EpkKT(ui, idxKi), c

Ki
P , σi

(
H

(
r4||ui||cKi

P ||idxKi

))〉
. Apart from that, ui also needs to assign

scopes (access rights) to the registered users that wishes to share ci with. To do so, she sends

m5 =
〈

EpkREV (idxKi , {
(
u1, s

i
1
)
,
(
u2, s

i
2
)
, . . . }), σi(H(idxKi ||{

(
u1, s

i
1
)
,
(
u2, s

i
2
)
, . . . }))

〉
to REV,
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where uj is the identifier of the users to which ui assigned scopes. Finally, KT stores the
user’s identifier, ui, along with the unique index idxKi of the symmetric key, next to cKi

p .

MSCOPE.KeyTrayStore
Input: Ki, policy P .
Output: KT stores cKi

p

1. ui generates a random number r4

2. ui runs: cKi
P ← CPABE.Enc(MPK,Ki, P )

3. ui sends to KT m4 =
〈
EpkKT (r4, ui, idxKi), c

Ki
P , σi

(
H

(
r4||ui||cKi

P ||idxKi

)) 〉

4. ui sends m5 =
〈

EpkREV(idxKi , {
(
u1, s

i
1
)
,
(
u2, s

i
2
)
, . . . }),

σi(H(idxKi ||{
(
u1, s

i
1
)
,
(
u2, s

i
2
)
, . . . }))

〉
to REV

5. KT stores: {ui, cKi
P , idxKi}

6. REV stores
〈
idxKi , {

(
u1, s

i
1
)
,
(
u2, s

i
2
)
, . . . }

〉
into the list of valid scopes LV S .

MSCOPE.KeyShare : MSCOPE.KeyShare : We now assume that another registered
user uj , j 6= i wishes to access ci. The important thing to notice here is that the
data sharing will be done without the involvement of ui. To this end, uj sends m6 =
〈r6,EpkKT(uj , ui), σj(H(r6||uj ||ui))〉 to KT. KT will then reply withm7 =

〈
r7,EpkREV

(
uj , idxKi

)
,

σKT
(
H

(
r7||uj ||idxKi

))〉
. This message will then be forwarded to REV who will locate

sij and will send m8 =
〈
r8,EpkKT

(
sij

))
, σREV

(
H

(
r8||sij

))〉
to KT. At this point, KT re-

trieves cKi
P and sends m9 =

〈
r9,EpkCSP(uj , t, sij , idxKi), c

Ki
P , σKT (H(r9||uj ||t||sij ||idxKi ||c

Ki
P )

〉
to uj . Finally, uj uses her private CP-ABE key to recover Ki.

MSCOPE.KeyShare
Input: User’s id uj and data owner’s id ui
Output: uj receives cKi

p

1. uj sends m6 = 〈r6,EpkKT(uj , ui), σj(H(r6||uj ||ui))〉 to KT

2. KT replies withm7 =
〈
r7,EpkREV

(
uj , idxKi

)
, σKT

(
H

(
r7||uj ||idxKi

))〉
to the user

who forwards the message to REV.

3. REV generates and sends m8 =
〈
r8,EpkKT

(
sij

))
, σREV

(
H

(
r8||sij

))〉
to KT.

4. KT sends m9 =
〈
r9,EpkCSP(uj , t, sij , idxKi), c

Ki
P , σKT (H(r9||uj ||t||sij ||idxKi ||c

Ki
P )

〉
to the user.

MSCOPE.Search : Now that uj has gained access to Ki, she can start searching di-
rectly over the encrypted data for those files that contain a specific keyword w of her
choice. To do so, uj generates a search token τs(w), for the keyword w and sends
m10 = 〈m8, τs(w), σj (H (τs(w)))〉 to the CSP. Upon reception, CSP checks if uj is eligible
to search for files by opening m8, looking at the timestamp provided by KT and verifying
that sij [0] = 1. If the verifications are correct, CSP runs DSSE.Search(γi, ci, τs(w))→ Iw.
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MSCOPE.Search
Input: Keyword w
Output: Iw

1. uj generates τs(w) for a keyword w.

2. uj sends m10 = 〈m8, τs(w), σj (H (τs(w)))〉 to the CSP

3. CSP opens m8 to check if the timestamp is valid and if sij [0] = 1

4. Assuming that all verifications are successful, CSP identifies the encrypted
index γi and sequence of ciphertexts ci based on idxKi

5. CSP runs: DSSE.Search(γi, ci, τs(w))→ Iw.

6. CSP sends to uj : Iw

MSCOPE.Update : A registered user uj can also update the database by adding new
files, provided that sij [1] = 1. To do so, uj first generates an add token τα(f) and sends
the following to the CSP: m11 =

〈
m8, τα(f), cf , σj

(
H

(
τα(f)||cf

))〉
. Upon reception, CSP

checks if uj is eligible to add a file by opening m8, looking at the timestamp provided
by KT and verifying that sij [1] = 1. Assuming that the verifications are successful, CSP
executes DSSE.Add (γi, τα(f), cf )→ (γ′i, c′i) and stores the new ciphertext and the updated
index γ′i.

MSCOPE.Update
Input: A file f
Output: A new ciphertext cf is stored in the CSP.

1. uj runs generates τα(f).

2. uj sends m11 =
〈
m8, τα(f), cf , σj

(
H

(
τα(f)||cf

))〉
to the CSP.

3. CSP opens m8 to check if the timestamp is valid and if sij [1] = 1

4. Assuming that all verifications are successful, CSP identifies the encrypted
index γi and sequence of ciphertexts ci based on idxKi

5. CSP runs DSSE.Add (γi, τα(f), cf )→ (γ′i, c′i)

MSCOPE.Delete : In our construction, users can also delete files. Let uj be a registered
user who is eligible to delete files (i.e. sij [2] = 1). To do so, uj first generates a delete token
τd(f) and then sends m12 =

〈
m8, τd(f), σj(H(τd(f)))

〉
to the CSP. Just as before, the

CSP verifies the integrity and freshness of m8 and checks whether sij [2] = 1 or not. Given
that the verifications are successful, the CSP executes DSSE.Delete(γi, τd(f))→ γ′i, which
results to the deletion of the requested file and the update of the corresponding index.
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MSCOPE.Delete
Input: A file f
Output: CSP deletes cf .

1. uj generates τd(f).

2. uj sends m12 =
〈
m8, τd(f), σj(H(τd(f)))

〉
to the CSP.

3. CSP opens m8 to check if the timestamp is valid and if sij [2] = 1

4. Assuming that all verifications are successful, CSP identifies the encrypted
index γi and sequence of ciphertexts ci based on idxKi

5. CSP runs DSSE.Delete(γi, τd(f))→ γ′i

MSCOPE.Revoke : Finally, we enhance our construction with a revocation mecha-
nism. Any registered user uj , for whom sij [3] = 1, can access this mechanism to re-
voke scopes from other registered users. To this end, uj contacts REV by sending
m13 =

〈
r13,EpkREV

(
uj , u`, n

)
, cKi
P , σj(H

(
r11||uj ||u`||n||cKi

P )
)〉
, where u` is the id of the user

to be revoked and n ∈ [0, 3] is an index of the one dimensional bit array sij and specifies
which scope will be revoked (flipped). After REV recovers both identities, it generates
a report rpti containing m14 =

〈
r14, EpkKT

(
u`

)
, cKi
P , σREV (H

(
r12||cKi

P ||u`
))〉

which is sent
to the KT. Upon reception, KT verifies the report and checks if u` is the data owner
by comparing u` with the value stored next to cKi

P . If u` is not the data owner, KT will
proceed by generating a report rptj containing idxKi that will be sent to REV. At this point,
REV will retrieve LV S from its local database to check whether ui is eligible to revoke
scopes from users in the specified dataset. Assuming that the verification is successful,
REV removes the specified scope by setting si`[n] = 0.

MSCOPE.Revoke
Input: u`, n
Output: si`[n]→ 0.

1. uj sends m13 =
〈
r13,EpkREV

(
uj , u`, n

)
, cKi
P , σj(H

(
r11||uj ||u`||n||cKi

P )
)〉

to REV.

2. REV attests KT and sends a report rpti containing m14 =〈
r14, EpkKT

(
u`

)
, cKi
P , σREV (H

(
r12||cKi

P ||u`
))〉

.

3. KT verifies rpti and compares u` with the id stored next to cKi
p to make sure

that u` is not the data owner.

4. KT attests REV and sends a report rptj containing idxKi to REV.

5. REV verifies rptj and checks if sij [3] = 1.

6. REV sets si`[n] = 0

7 Security Analysis
We prove the security of our construction in three different stages. First, we conduct a
simulation-based security analysis. Then, we elaborate on the security of SGX and why
MicroSCOPE is not susceptible to side-channel attacks. Finally, we conclude the security
analysis by proving the resistance of our scheme against the attacks presented in Section 5.
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7.1 Simulation-Based Security
We assume the existence of a simulator S. S can simulate real protocol’s algorithms in a
way that any polynomial time adversary ADV cannot distinguish between the real protocol
and S. We assume that S intercepts ADV’s communication with the real protocol and
replies with simulated outputs.

Definition 4. (Sim-Security). We consider the following experiments. In the real ex-
periment, all algorithms run as defined in our construction. In the ideal experiment, a
simulator S intercepts ADV’s queries and replies with simulated responses.

Real Experiment

1. EXPrealMSCOPE(1λ) :

2. (MPK,MSK)← MSCOPE.Setup(1λ)

3. skA,ui ← ADV
MSCOPE.ABEUserKey(MSK,A)

4. ct← CPABE.Enc(mpk,m)

5. (γ, c)← ADVDSSE.InGen(K,f)

6. MSCOPE.Search(“search”,msearch)→ Iw

7. MSCOPE.Update(“update”,madd)→ (γ′, c′)

8. MSCOPE.Delete(“delete”,mdelete)→ (γ′, c′)

9. Output b

Ideal Experiment

1. EXPidealMSCOPE(1λ) :

2. (MPK)← S(1λ)

3. skA,ui ← ADV
S(1λ)

4. ct← S(1λ, 1|m|)

5. (γ, c)← ADVS(Lin(f))

6. S(“search”,msearch)→ I∗w

7. S(“update”,madd)→ (γ′, c′)

8. S(“delete”,mdelete)→ (γ′, c′)

9. Output b′

We say that MSCOPE is sim-secure if for all PPT adversaries ADV :

EXPreal
MSCOPE(1λ) ≈ EXPideal

MSCOPE(1λ)

At a high-level, we construct a simulator S to replace the MSCOPE algorithms. S
simulates Key generation and encryption oracles. S is given the length of the challenge
message as well as the leakage functions Li. In the real experiment, the challenger C
runs Ki ← DSSE.KeyGen(1λ) and replies to ADV in accordance to definition 3. Ki is not
given to ADV, since possession of Ki implies that ADV can win the game. ADV queries
C for an index/ciphertext pair (γ, c) based on a file f . In the real experiment, (γ, c) is
generated using Ki. In the ideal one, S gets as input Lin(f) and outputs a simulated
response. S simulates the MSCOPE.Search,MSCOPE.Update and MSCOPE.Delete oracles
by getting as input the simulated tokens of the SSE security game. In our game, we exclude
MSCOPE.Revoke since rl is not retrievable during the execution of the protocol. Also, rl
is stored in plaintext and its values does not depend on sensitive data, side channel attacks
on SGX will not reveal any private information. However, for purposes of completeness,
we include the revocation oracle in our proof.

Theorem 1. Assuming that PKE is an IND-CCA2 secure public key cryptosystem and
Sign is an EUF-CMA secure signature scheme then MSCOPE is a sim-secure protocol
according to Definition 4.

Proof. We start by defining the algorithms used by the simulator. Then, we will replace
them with the real algorithms. Finally, the help of a Hybrid Argument we will prove that
the two distributions are indistinguishable.

• MSCOPE.Setup∗: Will only generate MPK that will be given to ADV.
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• MSCOPE.ABEUserKey∗: Will generate a random key to be sent to the adversary.
That is, when ADV makes a key generation query, S will simulate CPABE.KeyGen
and it will output sk∗A,ui

. This key is a random string that has the same length as
the output of the real MSCOPE.ABEUserKey. The key will be given to ADV.

• MSCOPE.KeyShare∗: In the ideal experiment, after ADV requests a secret key, S
will encrypt a sequence of bits based on Lin, under MPK. The ciphertext will be
returned to ADV.

• MSCOPE.Search∗: When ADV wishes to make a search query, S gets as input the
leakage function Ls and simulates the search token τs(w) and a simulated response.

• MSCOPE.Update∗: When ADV wishes to make an add query, S gets as input the
leakage function Lα and simulates the add token τs(w) and ciphertext, to be added
to the collection. S keeps track of file insertions, so that it can create consistent
tokens and responses to the search queries.

• MSCOPE.Delete∗: When ADV wishes to make a delete query, S gets as input the
leakage function Ld and simulates the delete token τs(w). S keeps track of file
insertions, so that it can create consistent tokens and responses to the search queries.

• MSCOPE.Revoke∗: In contrast to the real experiment, the system does not revoke
any user.

In a pre-processing phase, the challenger C generates a symmetric key Ki, that will be
needed in order to reply to search, add and delete queries. We will now use a hybrid
argument to prove that ADV cannot distinguish between the real and the ideal experiments.
Hybrid 0 MSCOPE runs normally.

Hybrid 1 Everything runs like in Hybrid 0, but we replace MSCOPE.Setup with
MSCOPE.Setup∗.

These algorithms are identical from ADV’s perspective and as a result the hybrids are
indistinguishable.
Hybrid 2 Everything runs like in Hybrid 1, but MSCOPE.ABEUserKey∗ runs instead of

MSCOPE.ABEUserKey.
Hybrid 2 is indistinguishable from Hybrid 1 because nothing changes from ADV ’s point

of view.
After Hybrid 2, we have ensured that ADV has followed all the required steps in order

to ask for Ki. We are now ready to replace MSCOPE.KeyShare with MSCOPE.KeyShare∗.
Hybrid 3 Like Hybrid 2, but MSCOPE.KeyShare∗ runs instead of MSCOPE.KeyShare.
Also, the algorithm outputs ⊥ if ADV sends m7 but never contacted REV.

Lemma 1. Hybrid 3 is indistinguishable from Hybrid 2.

Proof. By replacing the two algorithms, nothing changes from ADV’s point of view.
Moreover if ADV can generate m7, then she can forge REV’s signature. Given the security
of the signature scheme, this can only happen with negligible probability. So ADV can
only distinguish between Hybrid 3 and Hybrid 2 with negligible probability.

At this point, ADV has received what she thinks is a valid Ki. However, S sent her an
encryption of a random string of the same length as Ki. The last part of the proof concerns
the SSE phase of MSCOPE. For the rest of the proof we assume that ADV performs
search, add and delete queries. The simulator now gets access to all leakage functions L
from the SSE scheme.
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Hybrid 4 Like Hybrid 3, but when ADV makes a search query, S is given the leakage
function Ls and generates I∗w which is then sent to the user. Moreover, S outputs ⊥ if
ADV never contacted KT.

Lemma 2. Hybrid 4 is indistinguishable from Hybrid 3.

Proof. Assuming the Li− security of the SSE scheme, the token sent by ADV to the
CSP, as part of msearch, is generated by S with Ls as input. As a result when the CSP
receives m9, will generate a sequence of file identifiers I∗w that will be send back to ADV.
ADV cannot distinguish between the real and the ideal experiment since she receives a
sequence of files corresponding to a search token that was also simulated by S given Ls as
input. Moreover, if ADV manages to generate m9 without having contacted KT earlier,
then she can also forge KT’s signature. However, this can only happen with negligible
probability, and as a result ADV can only distinguish between hybrids 4 and 3 with
negligible probability.

Hybrid 5 Like Hybrid 4, but when ADV makes an update query, S is given the leakage
function La and tricks ADV into thinking that she updated the database. Moreover, S
outputs ⊥ if ADV never contacted KT.

Lemma 3. Hybrid 5 is indistinguishable form Hybrid 4.

Proof. The proof is similar to the previous one but simpler since ADV does not expect an
output from this algorithm. By assuming the Li− security of the SSE scheme, we know
that ADV will not be able to distinguish between the real add token and the simulated
one. Moreover, similar to the previous Hybrid, if ADV can generate m10 without having
contacted KT, then she can also forge KT’s signature – which can only happen with
negligible probability. Hence, ADV can only distinguish between hybrids 5 and 4 with
negligible probability.

Hybrid 6 Like Hybrid 5, but when ADV makes a delete query, S is given the leakage
function Ld and tricks ADV into thinking that she deleted a certain file from the database
S outputs ⊥ if ADV never contacted KT.

Lemma 4. Hybrid 6 is indistinguishable from Hybrid 5

Proof. By assuming the Li− security of the DSSE scheme, we know that ADV will not be
able to distinguish between the real delete token and the simulated one. Moreover, similar
to the previous Hybrid, if ADV can generate m11 without having contacted KT, then she
can also forge KT’s signature – which can only happen with negligible probability. Thus,
ADV can only distinguish between Hybrids 5 and 6 with negligible probability.

Hybrid 7 Like Hybrid 6 but instead of MSCOPE.Revoke, S executes MSCOPE.Revoke∗.
Moreover, S outputs ⊥ if ADV sends m13 to REV.

Lemma 5. Hybrid 7 is indistinguishable from Hybrid 6.

Proof. Since the revocation list is not retrievable during the execution of the protocol,
ADV can never tell if she really revoked any scope from a specific user. ADV could try
to bypass KT’s authentication by generating and sending rpt directly to REV. However,
since ADV does not posses skrpt, she can only do that with negligible probability. Hence,
ADV can only distinguish between Hybrids 6 and 7 with negligible probability.

With this Hybrid our proof is complete. We managed to replace the expected outputs
with simulated responses in a way that ADV cannot distinguish between the real and the
ideal experiment.
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7.2 SGX Security

Recent works [CD16, XCP15, LSG+17, AIKM16] have shown that SGX is vulnerable to
software attacks. However, according to [FVBG17], these attacks can be prevented if the
programs running in the enclaves are data-obvious. Thus, leakage can be avoided if the
programs do not have memory access patterns or control flow branches that depend on the
values of sensitive data. In our construction, no sensitive data (such us decryption keys)
are used by the enclaves. KT acts as a storage space for the symmetric keys and does not
perform any computation on them. Hence, all the cKi

p are data-obvious. Moreover, rl is
stored in plaintext and every entry in the list is padded to achieve same length. Finally,
we can prevent timing attacks on rl by ensuring that every time REV accesses the list to
either send back a token, or add a new id, it goes through the whole list.

7.3 Protocol Security
Proposition 1 (SSA Soundness). Let ADV be a malicious adversary that corrupts a user
um with valid scopes sjm for data encrypted under a symmetric key Kj. Then ADV can
not successfully perform an SSA attack.

Proof. Assume that ADV produces a new set of valid scopes SC′m and successfully replaces
um’s valid scopes SCm. To do so, ADV needs to successfully flip at least one bit sjm[n]
to its opposite value sjm[n], resulting to the new scope array s′j

m. We examine ADV ’s
behavior by analyzing two distinct cases:

α. 0 ≤ n ≤ 2
If 0 ≤ n ≤ 2, then sjm[n] will correspond to one of the following: {view, add, delete}.
In that case, the attack would commence with ADV sending m =< m8,maction >,
where m8 =

〈
EpkCSP(u`, t, idxKi , s

i
`), cKi

p , σKT
(
H

(
u`||t||idxKi ||cKi

p ||si`
))〉

and maction is
the component of the message which is associated with view, add or delete operations.
However, ADV cannot know idxKi and thus, can never construct this message. As a
result n /∈ [0, 2]

β. n = 3
If n = 3, then sjm[n] is the last bit of the array that corresponds to the scope revoke.
ADV would commence the attack by sendingm11 =

〈
r11,EpkREV

(
um, u`, n`, c

Kj
P

)
, σm

(
H

(
r11

||um||u`||n`||c
Kj
P

))〉
(n` is the index of the one dimensional array sj` specifying which

scope to be revoked for u`) to REV. REV will check the integrity and the freshness
of the message and will also recover the identities of um and u`. At this point, REV
will retrieve the list of scopes LV S and will check whether sjm[3] = 1 or not. Since
the adversary can not tamper with LV S , REV will see that sjm[3] = 0 and the attack
will fail.

As a result, the attack will fail ∀n ∈ [0, 3] and this concludes our proof.

Proposition 2 (RLUA Soundness). Let ADV be a malicious adversary that corrupts a
user um with access rights SCm. Furthermore, let u` be a legitimate user, with access
rights SC` 6= SCm. Moreover, we assume that ∃ j : (j, sj`) ∈ SCl, and (j, sjm) /∈ SCm. Then
ADV cannot successfully perform an RLUA attack.

Proof. User um launches an attack to u` by sendingm11 =
〈
r11,EpkREV (um, u`, n, c

Kj
p ), σm

(
H(

r11||um||u`||n||c
Kj
p )

)〉
to REV. Upon reception, REV checks the integrity and the freshness

of the message. Since this message can be constructed by anyone, REV proceeds by
contacting KT to receive idxKj . Upon reception of the index, REV retrieves the list LV S
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to check whether
〈
idxKj , {um, sjm[3] = 1}

〉
∈ LV S or not. However, since (j, sjm) /∈ SCm,

sjm[3] 6= 1 the verification fails and ADV cannot successfully launch the attack.

Proposition 3 (CRUA Soundness). Let ADV be a malicious adversary that corrupts a
user um whose access to data encrypted under Ki has been revoked (i.e. um ∈ RKi). Then
ADV cannot successfully perform a CRUA attack.

Proof. ADV can successfully perform such an attack if and only if the following conditions
hold:

α. ADV can access the symmetric key Ki.
Condition α is always true. Since um ∈ RKi , um used to have access to the data
encrypted with Ki.

β. ADV can bypass the authentication of the different components of the
system model.
For condition β to hold, the CSP needs to be convinced that um /∈ RKi . To do so,
ADV must generate a valid m8 message which can be done with the following two
ways:

- Replay of an old message: A first approach for ADV would be to try to
replay old messages. To this end, she sends the m8 message she received from
KT during the MSCOPE.KeyShare algorithm to the CSP. Since m8 used to be
valid, ∃ n : sim[n] 6= 0. Moreover, the message contains a valid signature from
KT. However, the timestamp contained in this message is not fresh and the
verification will fail. An alternative for um would be to get a fresh valid m8
message. To do so, she can forward m7 to KT. However, m7 is not fresh since
the included timestamp would have expired. As a result, KT will not proceecd
with the generation of a new m8 message.

- Impersonate a legitimate user: Another approach for um would be to
impersonate a registered user u`, such that si` 6= [0000]. We assume that um
obtains message m8 =

〈
EpkCSP(u`, t, idxKi , s

i
`), cKi

p , σKT
(
H

(
u`||t||idxKi ||cKi

p ||si`
))〉

and tries to tamper with it. However, without knowing the index of the
encryption key idxKi , she cannot alter the first part of the message and replaces
u` with um. Moreover, since u`’s id is also contained in the second part of the
message, swapping the two identities is equivalent to forging KT’s signature,
which can only happen with negligible probability. Therefore, the attack will
again fail.

Hence, only one of the two conditions holds. Therefore, the attack fails.

8 Experimental Results
Our experiments mainly aimed at analyzing the processing time of MicroSCOPE. For the
implementation of the CP-ABE scheme, we used the library provided by Bethencourt
et al. [BSW07] while for the SSE scheme we used the Dynamic SSE scheme described
in [BM19b] – a dynamic forward private SSE scheme which is a variant of the one presented
in [EKPE18]. Furthermore, for the implementation of the parts that run in secure enclaves
we used the SGX-OpenSSL library [SGX17].

Further to the above mentioned, since we wanted to evaluate the performance of
MicroSCOPE under realistic conditions, we decided to use different machines – depending
on the process to be measured. To this end, the setup of the SSE scheme was measured in
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Table 1: Size of Datasets and Unique Keywords

No of TXT Files Dataset Size Unique Keywords

425 184MB 1,370,023

815 357MB 1,999,520

1,694 670MB 2,688,552

1,883 1GB 7,453,612

2,808 1.7GB 12,124,904

a Microsoft Surface Book laptop with a 2.1GHz Intel Core i7 processor and 16GB RAM
running Windows 10 64-bit. The reason for measuring this phase on a laptop is that in a
practical scenario, this process would take place on a user’s machine. Hence, conducting
the experiments on a powerful machine would result in a set of non-realistic measurements.
The parts running in an enclave were measured in a powerful desktop PC with an Intel
Core i7-8700 at 3.20GHz (6 cores), 32GB of RAM and 512GB SSD running Ubuntu 18.04
Desktop operating system, compiled with 64-bit and Intel SGX Hardware Debug mode
build configurations. The reason for running these parts on such a computer is based on
the assumption that these processes will be running on the CSP (i.e. a powerful machine
with even more resources than the ones used in our testbed).

8.1 Symmetric Searchable Encryption
This part of the experiments was implemented in Python 2.7 using the PyCrypto [PyC13]
library. To test the overall performance of the underlying SSE scheme, we used files of
different size and structure. More precisely, we selected random data from the Gutenberg
dataset [Gut71]. Our experiments on the SSE scheme were focused on two main aspects:
(1) Indexing and (2) Searching for a specific keyword. Additionally, our dictionaries were
implemented as tables in a MySQL database.

Dataset: For the needs of our experiments, we created five different datasets with random
text files (i.e. e-books in .txt format) from the Gutenberg dataset. The datasets that we
selected ranged from text files with a total size of 184MB to a set of text files with a total
size of 1.7GB. At this point, it is worth mentioning that using text files (i.e. pure text
in comparison to other formats such as PDF, word, excel, etc.) resulted in a very large
number of extracted keywords – thus creating a dictionary containing more than 12 million
distinct keywords (without counting the stop words). Furthermore, in our implementation
we also incorporated a stop words (such as the, a, an, in) removal process. This is a
common technique used by search engines where they are programmed to ignore commonly
used words both when indexing entries for searching and when retrieving them as the
result of a search query. This makes both the searching and indexing more efficient while
also reducing the total size of the dictionary. Table 1 shows the five different datasets that
we used for our experiments as well as the total number of unique keywords that were
extracted from each of the incorporated datasets.

Indexing & Encryption: The indexing phase is considered as the setup phase of the SSE
scheme. During this phase the following three steps take place: (1) reading plaintext files
and generating the dictionary, (2) encrypting the files, and (3) building the encrypted
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Table 2: Keywords and Filenames pairs

Unique Keywords (w, id) Pairs

1,370,023 5,387,216

1,999,520 10,036,252

2,688,552 19,258,625

7,453,612 28,781,567

12,124,904 39,747,904

indexers. In our experiments, we measured the total setup time for each one of the datasets
shown in table 1. Each process was run ten times and the average time for the completion
of the entire process was measured. Figure 1 illustrates the time needed for indexing and
encrypting text files ranging from 184MB to 1.7GB that resulted to a set of more than 12
million unique keywords. As can be seen from figure 1, to index and encrypt text files that
contained 1,370,023 distinct keywords the average processing time was 22.48min while
for a set of files that resulted in 12,124,904 distinct keywords the average processing time
was 203.28min. Based on the fact that this phase is the most demanding one in an SSE
scheme the time needed to index and encrypt such a large number of files is considered as
acceptable not only based on the size of the datasets but also based on the results of other
schemes that do not offer forward privacy [DMNP17] as well as on the fact that we ran
our experiments on a commodity laptop and not on a powerful server. Hence, it is evident
that the selected SSE scheme can be easily adopted by our protocol.

0.1 0.5 1 1.3
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Indexing and Encrypting

Figure 1: Indexing and Encrypting Files

Apart from the generation of the indexer that contains the unique keywords, the
incorporated SSE scheme also creates an indexer that maintains a mapping between a
keyword (w) and the filename (id) that w can be found at. The total number of the
generated pairs in relation to the size of the underlying datasets is shown in table 2.
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Search: In our implementation, the search time is the sum of the time that takes to
generate a search token and the time needed to find the corresponding matches at the
database. On average the time needed to generate the search token is 9µs while the actual
matching of the files that contain the keyword that is being searched is just a simple
SELECT and UPDATE query to the database. More precisely, searching for a specific keyword
over a set of 12,124,904 distinct keywords and 39,747,904 addresses required 3.2sec on
average. Even though this time is considered as high for just one search it is important
to mention that this process will be running on a CSP with a large pool of resources
and computational power. Hence, this time is expected to drop significantly on such a
computer where more cores will be also utilized.

8.2 Implementation/Evaluation of MicroSCOPE
In this part of our experiments, we linked the enclaves to an SGX OpenSSL cryptographic
library [SGX17], which was used to implement the RSA cryptosystem (i.e. RSA encryp-
tion/decryption/ and RSA signature creation/verification) with 4096-bit key sizes, and
a set of cryptographic hash functions. All implementations were developed in C using
Intel(R) SGX SDK 2.6 for Linux [SGX19].

In an SGX environment there are two main components: (1) the trusted component
(enclave), and (2) the untrusted component (application). The untrusted application
makes a call to an enclave by using SGX’s ECall function which allows the application to
enter the enclave. To temporarily exit the enclave and call a function in untrusted space,
SGX’s function OCall is used. For the needs of our experiments, we used both the ECall
and OCall functions of SGX.

Enclave Creation & Key Generation: First, we measured the time needed to launch the
four enclaves (MS, CSP, KT, and REV). Each enclave contains a different set of functions
that corresponds to different parts of the protocol. We launched each enclave 10,000 times
and measured the average completion time. The time to launch the MS enclave, containing
functions for the generation of fresh RSA key pairs, was 25.29ms while the time to launch the
REV enclave, containing MSCOPE.KeyShare and MSCOPE.Revoke functions, was 27.19ms.
Time required to launch the KT enclave, containing MSCOPE.KeyShare, MSCOPE.Revoke
and MSCOPE.KeyTrayStore functions, was 28.3ms while for the CSP enclave that con-
tained MSCOPE.Store, MSCOPE.Search, MSCOPE.Update, and MSCOPE.Delete functions,
28.12ms was required. Since the process of launching enclave can run in parallel, the average
time required by MicroSCOPE to launch all four enclaves is 28.3ms. Table 3 summarizes
the results by presenting the time needed to launch each enclave of MicroSCOPE as well as
the specific functions from the protocol that each enclave contains. Additionally, we also
measured the time needed to launch an empty enclave. Launching an empty enclave took
on average 9.2ms. Even though launching the enclaves of MicroSCOPE needed 28.3ms the
difference of 19ms is considered as negligible considering that the setup of MicroSCOPE
runs only once.

Each enclave generates an RSA key pair of 4096-bit length. As can be seen in table 3
the average time to generate an RSA key pair of 4096-bit size was 840ms. Again, this is a
process that can run in parallel. As a result, the total time required for a complete setup
of the enclaves is estimated at 921.71ms (i.e. less than a second) – time that is considered
as negligible.

Enclave Attestation: Attestation is the process by which an entity demonstrates that
its software runs on the SGX-enabled platform. The Intel SGX platform supports two
forms of attestation: Local (Intra-Platform) attestation, and Remote (Inter-Platform)
attestation [Int15]. Local attestation involves two or more enclaves running on the same
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Table 3: Setup time for main MSCOPE components
Enclave
Cre-
ation

MSCOPE Functions Time

RSA
Setup

Average time for generating a
4,096 bit long RSA key pair 840ms

EMPTY
Enclave

Average time for launching an
empty enclave 9.2ms

MS En-
calve

Containing MSCOPE’s key gen-
eration functions 25.29ms

REV
Enclave MSCOPE.KeyShare 27.18ms

KT En-
clave

MSCOPE.KeyShare
MSCOPE.KeyTrayStore
MSCOPE.Revoke

28.3ms

CSP
Enclave

MSCOPE.Store
MSCOPE.Search
MSCOPE.Update
MSCOPE.Delete

28.12ms

Local
Attesta-
tion

KT & REV 1.1ms

platform, whereas the Remote attestation involves an enclave on platform that can be
verified by a remote third party. While in theory this verification can be done by any
third party, it currently demands to contact the Intel Attestation Server – a process that
requires a license from Intel. As a result, in our experiments we only measured the time
needed to perform Local Attestation between enclaves. To perform Local attestation, one
enclave requires another enclave to prove its identity and integrity by sending a hardware
generated report. The report includes a cryptographic proof that the attested enclave
exists on the local platform and its configuration can be trusted. The report includes: (1)
Measurements of the code and data in the enclave; (2) A hash of the public key in the
ISV certificate presented at the time of enclave initialization; (3) User data; (4) Other
security related state information; and (5) A signature block over the above data, which
can be verified by the same block that produced the report [Int15]. In our experiments,
we measured the time taken for REV enclave to attest with KT enclave. We ran this local
attestation 10,000 times and calculated the average time needed to successfully complete
the process. The average time needed for a successful local attestation between KT and
REV was 1.1ms.

Measuring the Execution Time: In the next phase of our experiments, we measured the
total execution time of MicroSCOPE. To do so, we explicitly measured the running time of
protocol’s core functions by calculating the time time needed to generate, send and verify
the messages that are involved in the protocol. This allowed us to evaluate the actual
performance and efficiency of MicroSCOPE. We ran each function of MicroSCOPE 100,000
times and then calculated average execution time. Each MSCOPE function consists of
an ECall, an OCall or both. In our experiments, our primary focus was to measure
the execution time of all the involved ECalls and OCalls. Figure 2 summarizes the
results of this experiment by showing the average processing time needed for each one
of the core MicroSCOPE’s functions. As can be seen in Figure 2, MSCOPE.KeyShare
and MSCOPE.Revoke are the two most demanding processes. MSCOPE.KeyShare needed
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Figure 2: Message Creation and Verification

on average 31.5ms while 22.6ms was the execution time of MSCOPE.Revoke. However,
the running time of MSCOPE.Revoke also depends on the length of the revocation list.
Currently, we only measured the time to construct, send and verify the required messages.
Moreover, the execution time for MSCOPE.Store was measured at 19ms. The corresponding
times needed for MSCOPE.Search, MSCOPE.Update and MSCOPE.Delete appeared to be
the same – 11ms on average. Finally, MSCOPE.KeyTrayStore appeared to be the lightest
function with an average execution time of 8.1ms.

8.3 Ciphertext-Policy Attribute-Based Encryption
In the last part of our experiments, we measured the encryption and decryption time for
the underlying CP-ABE scheme. MSCOPE only uses CP-ABE to encrypt a symmetric
key and not large volumes of data. To this end, we measured the time needed to encrypt
and decrypt a symmetric key under policies of different sizes. We used access policies
of the type ’Attribute_1 AND Attribute_2 AND ...AND Attribute_n’ as in [GHW11]
and [AC17]. Such policies are the most demanding since all attributes are required for
the decryption. For the encryption of a file with a policy consisting of the conjunction of
1000 attributes the time needed was 11sec, while the corresponding decryption time was
measured at 4.5sec. However, encryption and decryption times of the CP-ABE scheme
depends on the size of the policies. As a result, for a realistic scenario in which the
policy consists of 200 attributes, the encryption and decryption times were measured
at 2.1sec and 0.6sec respectively. Thus, the use of CP-ABE scheme does not put any real
computational burden to the performance of MSCOPE.

At this point it is important to mention that in order to present a better and more
accurate overview of the MicroSCOPE performance, the results presented in subsections 8.1,
8.2 and 8.3 need to be combined. However, this is a rather demanding procedure that will
require us to build a proper client-server setup that will allow us to run experiments in a
realistic environment similar to the one offered by existing cloud-based services. At this
point, we leave this for future work.
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9 Conclusion
In this paper, we proposed MicroSCOPE, a hybrid encryption scheme that combines both
SSE and ABE in a way that the main advantages of each encryption technique are used.
The proposed scheme enables clients to search over encrypted data by using an SSE scheme,
while the symmetric key required for the decryption is protected via a Ciphertext-Policy
Attribute-Based Encryption scheme. Our construction allows data owners to share their
data based on certain access rights that can assign to users. Furthermore, we have shown
how to rely on SGX to provide an efficient revocation mechanism that is agnostic to the
underlying encryption schemes. Finally, we believe that this work can provide the basis for
secure data sharing between organizations that use independent cloud platforms. Hence,
one of our future goals is to test our construction in a multi-cloud environment.
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