
Collision Attacks on Round-Reduced
Gimli-Hash/Ascon-Xof/Ascon-Hash?

Rui Zong1, Xiaoyang Dong1, and Xiaoyun Wang1,2

1 Institute for Advanced Study, Tsinghua University, Beijing, China
2 Shandong University, Jinan, China

{zongrui3}@163.com

Abstract. The NIST-approved lightweight cryptography competition
is an ongoing project to look for some algorithms as lightweight cryp-
tographic standards. Recently, NIST chooses 32 algorithms from the 57
submissions as Round 2 candidates.
Gimli and Ascon are both the Round 2 candidates. In this paper, we
analyze the security of their hash mode against collision attacks. Con-
cretely, we mount collision attacks on three hash functions: Gimli-Hash,
Ascon-Xof and Ascon-Hash. These three hash functions are all based on
sponge constructions.
We give two attack strategies for searching collisions in sponge-based
hash functions. Following one strategy, we give two non-practical collision
attacks: a 6-round collision attack on Gimli-Hash with time complexity
2113 and a 2-round collision attack on Ascon-Hash with time complexity
2125. Following the other strategy, we give a practical attack on 2-round
Ascon-Xof with a 64-bit output. The time complexity is 215.
We search for the differential characteristics using the MILP technique
and the target differential algorithm.

Keywords: Collision Attack · Gimli-Hash · Ascon-Xof · Ascon-Hash ·
Attack Strategy · Sponge-based Hash Function.

1 Introduction

As early as in 2013, NIST started the lightweight cryptography project to e-
valuate [1] the performance of NIST-approved cryptographic algorithms on con-
strained devices, and in the meanwhile to study the requirements for a lightweight
cryptographic algorithm standard. However, most of NIST-approved algorithm-
s were designed for desktop/server environments and they are not acceptable
when considering the requirements of the emerging areas, e.g., healthcare, sen-
sor networks, the Internet of Things, cyber physical systems. In 2016, NIST pro-
vided an overview of the project and decided to seek for some new algorithms
as lightweight cryptographic standards. The submission deadline is February 25,

? Thanks to Fukang Liu for pointing out the mistakes in the 5-round Gimli-Hash
differential in the original version. We update the differential to the correct one in
this version.

2 Rui Zong, Xiaoyang Dong, and Xiaoyun Wang

2019. NIST received 57 submissions and 56 of them will be the first round candi-
dates after the initial review. Recently the project proceeds into Round 2. NIST
chooses 32 submissions as Round 2 candidates, including Gimli and Ascon.

Gimli [2] aims at applications that can achieve desirable performance in a
broad range of environments, thus providing a satisfactory solution for com-
munications between different environments. This submission includes a family
Gimli-Cipher of authenticated ciphers and the recommended member Gimli-24-
Cipher is with a 256-bit key, a 128-bit nonce and a 128-bit tag. In addition, it
includes a family Gimli-Hash of hash functions. The recommended member is
Gimli-24-Hash with a 256-bit output. All these families are built on top of a
family of 384-bit permutations called Gimli. The recommended permutation is
Gimli-24, i.e., the permutation consists of 24 round functions.

Ascon [7] aims at applications which should be easy to implement, even
with added countermeasures against side-channel attacks. This submission also
includes both authenticated encryption with associated data and hashing func-
tionality. The suite consists of the authenticated ciphers Ascon-128 and Ascon-
128a, these two ciphers have been selected as primary choice for lightweight
authenticated encryption in the final portfolio of the CAESAR competition. For
the hash mode, it provides three functions: Ascon-Hash with a 256-bit output,
Ascon-Xof with an arbitrary length output and Ascon-80pq with increased re-
sistance against quantum key-search. All schemes use the 320-bit permutation
which has 12 round functions.

Our Contributions.
In this paper, we focus on the hash mode of these two proposals: Gimli-Hash,

Ascon-Xof and Ascon-Hash. These three hash functions are all based on sponge
constructions. We firstly describe two attack strategies for searching collisions of
sponge-based hash functions. Following one of these two strategies, we give non-
practical collision attacks on Gimli-Hash and Ascon-Hash. For Gimli-Hash, we
can find a 6-round collision with time complexity 2113. For Ascon-Hash, we can
find a 2-round collision with time complexity 2125. Following the other strategy,
we give a practical attack on 2-round Ascon-Xof with a 64-bit output. The time
complexity is 215. We search for the characteristics using the MILP technique
and the target differential algorithm.

Table 1. Collision attack results in this paper

Hash Function Round Number Complexity

Gimli-Hash 6 2113

Ascon-Xof 2 215(Practical)
Ascon-Hash 2 2125

Related Results.
For Gimli, the authors [2] analyze the security of its reduced-round versions

at two security requirements: 1) the number of rounds to achieve the avalanche
effect for each bit, 2) the number of rounds that can reach a state full of 1 from

Collision Attacks on Round-Reduced Gimli-Hash/Ascon-Xof/Ascon-Hash 3

a state that only has one bit is set. They states that 10 rounds are required
for each bit to change half of the state and 8 rounds are required to fill up the
state. They also give differential cryptanalysis results of the Gimli permutation.
However, no specific results about the Gimli-Hash is given.

For Ascon, there have been numerous results. [8, 14, 6, 13, 10] and the submis-
sion document [7] give results about the security of the Ascon permutation.[12,
8, 11, 9] give analysis result of Ascon. [4] analyzes the security of Ascon-Xof a-
gainst pre-image attack. [4] also gives a specific 4-round collision in Ascon-Xof.
However, this is a semi-free-start collision with a chosen IV, without any com-
plexity analysis. As far as we know, there have been no works about the security
of Ascon-Hash and Ascon-Xof with the constant IVs.

2 Preliminaries

In this section, we first introduce some related definitions and notations used in
our work. Then we give the specification of three hash functions: Gimli-Hash,
Ascon-Xof and Ascon-Hash, and some useful observations of them.

2.1 Notations

Table 2. Notations

pi the i-th inner primitive of a hash function
r the length of the rate part
c the length of the capacity part
S the state of a hash function
Sr the rate part of a sponge-based hash function state, r bits
Sc the capacity part of a sponge-based hash function state, c bits
Si the state in the i-th primitive
Si
j the input state of the j-th round in the i-th primitive

Si
jr the rate part of Si

j

Si
jc the capacity part of Si

j

M the message before padding

M the message after padding
Mi one block of the padded message, |Mi| = r, i ≥ 1

2.2 The Sponge-based Hash Function

Cryptographic sponge hash function is proposed in [3]. It takes a variable-length
message as input and produces an infinite hash tag with a finite state S. The
state S is composed of two parts: the rate part Sr of r bits and the capacity
part Sc of c bits. To evaluate the sponge function, one proceeds in three phases
with an inner primitive p: 1) Initialization: get the state value before proceeding

4 Rui Zong, Xiaoyang Dong, and Xiaoyun Wang

the message blocks; 2) Absorbing: proceed each message block; 3) Squeezing:
produce the hash tag. The mode of operation is illustrated in Figure 1 and
specified in Algorithm 1.

Initialization Absorbing

Initial

State

S

p
1

p
s

M1

r

c

r

Ms

c

r

p
s+1

p
s+t

c

H1

r

c

Ht

r

Squeezing

Fig. 1. The sponge-based hash function.

Algorithm 1 Hashing

Input: Message M ∈ {0, 1}∗, output size l, inner primitive p
Output: hash tag H ∈ {0, 1}l

1: Initialization
For Gimli-Hash, S ← (0r||0c);
For Ascon-Hash and Ascon-Xof, S ← p(IV ||0c);

2: Absorbing
M ← Padding(M)
M1 · · ·Ms ←M
for i = 1, · · ·, s do:

S ← p((Sr ⊕Mi)||Sc)
3: Squeezing

for i = 1, · · ·, t = dl/re do:
Hi ← Sr

S ← p(S)
return bH1|| · · · ||Htcl

2.3 Gimli

Primitive. The primitive used in Gimli-Hash is called Gimli. It’s a permutation
that applies 24 rounds to a 384-bit state which can be represented as a 3 × 4
matrix of 32-bit words, i.e.,

state =

 s0,0, s0,1, s0,2, s0,3s1,0, s1,1, s1,2, s1,3

s2,0, s2,1, s2,2, s2,3



Collision Attacks on Round-Reduced Gimli-Hash/Ascon-Xof/Ascon-Hash 5

Each round is composed of three operations:

– Non-linear layer fS
The non-linear layer is essentially four 96-bit SP-boxes applied to each col-
umn.The operation is as follows:

x← s0,j <<< 24

y ← s1,j <<< 9

z ← s2,j

s2,j ← x⊕ (z � 1)⊕ ((y ∧ z)� 2)

s1,j ← y ⊕ x⊕ ((x ∨ z)� 1)

s0,j ← z ⊕ y ⊕ ((x ∧ y)� 3)

– Linear mixing layer fL
The linear layer consists of two operations, Small-Swap and Big-Swap. Small-
Swap occurs every 4 rounds starting from the 1st round. Big-Swap occurs
every 4 rounds starting from the 3rd round.

Small-Swap

s0,0, s0,1, s0,2, s0,3 ← s0,1, s0,0, s0,3, s0,2, (r mod 4 = 0)

Big-Swap

s0,0, s0,1, s0,2, s0,3 ← s0,2, s0,3, s0,0, s0,1, (r mod 4 = 2)

– Constant addition fC
In every fourth round, we XOR the round constant 0x9e377900 ⊕ r to the
first state word s0,0.

We denote the state within the i-th round function as follows:

Si
fS−→ S′i

fL−→ S′′i
fC−−→ Si+1

Gimli-Hash. The Gimli-Hash has a 384-bit state with r = 128 and c= 256. Its
hash output is 256 bits.

The Gimli-Hash firstly initializes the 384-bit to all-zero. It then reads sequen-
tially through a variable-length input as a series of 16-byte input blocks after
padding.

The input ends with one final empty or partial block, having b bytes, 0 ≤
b ≤ 15. The padding rule is as follows:

– XOR the block into the first b bytes of the state.
– XOR 1 into the next byte of the state, position b.
– XOR 1 into the last byte of the state, position 47.

The complete description of Gimli-Hash is given in Algorithm 2. And the
Gimli-Hash’s security claim against all attacks is 2128.

6 Rui Zong, Xiaoyang Dong, and Xiaoyun Wang

Algorithm 2 Gimli-Hash

Input: M ∈ {0, 1}∗
Output: Gimli-Hash(M) = tag ∈ {0, 1}256

s←0
m1, · · ·ms ←= M= pad(M)
for i from 1 to s, do:

if i = s,then:
s2,3 ← s2,3 ⊕ 0x01000000

end if
s←abosrb(s,mi)

end for
h←squeeze(s)
s = Gimli(s)
h← h||squeeze(s)
return h

2.4 Ascon

Primitive. For Ascon-Xof and Ascon-Hash, the primitive applies 12 round func-
tions to a 320-bit state. The state is split into five 64-bit words, i.e., S =
x0||x1||x2||x3||x4. The round function employs an SPN-based construction that
consists of three operations pL ◦ pS ◦ pC .

– Addition of Constants fC
This step adds a round constant cr to word x2, i.e., x2 ← x2⊕cr. The round
constants cr for Ascon-Xof and Ascon-Hash is shown in Table 2.4.

– Substitution Layer fS
This step updates the state using 64 parallel applications of the 5-bit S-box
defined in Table 2.4.

– Linear Diffusion Layer fL
This step provides diffusion within each 64-bit word xi.

x0 ←
∑
0

(x0) = x0 ⊕ (x0 >>> 19)⊕ (x0 >>> 28)

x1 ←
∑
1

(x1) = x1 ⊕ (x1 >>> 61)⊕ (x1 >>> 39)

x2 ←
∑
2

(x2) = x2 ⊕ (x2 >>> 1)⊕ (x2 >>> 6)

x3 ←
∑
3

(x3) = x3 ⊕ (x3 >>> 10)⊕ (x3 >>> 17)

x4 ←
∑
4

(x4) = x4 ⊕ (x4 >>> 7)⊕ (x4 >>> 41)

Collision Attacks on Round-Reduced Gimli-Hash/Ascon-Xof/Ascon-Hash 7

Table 3. Constants cr used in the permutation of Ascon-Xof and Ascon-Hash

Round Constant cr Round Constant cr
0 000000000000000000f0 6 00000000000000000096
1 000000000000000000e1 7 00000000000000000087
2 000000000000000000d2 8 00000000000000000078
3 000000000000000000c3 9 00000000000000000069
4 000000000000000000b4 10 0000000000000000005a
5 000000000000000000a5 11 0000000000000000004b

Table 4. The 5-bit S-box

x 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

S(x) 4 b 1f 14 1a 15 9 2 1b 5 8 12 1d 3 6 1c 1e 13 7 e 0 d 11 18 10 c 1 19 16 a f 17

We denote the state within the i-th round function as follows:

Si
fC−−→ S′i

fS−→ S′′i
fL−→ Si+1

Ascon-Hash and Ascon-Xof. The state of the inner primitive has 320
bits with r = 64 and c = 256. For Ascon-Hash, the output size is 256 bits; for
Ascon-Xof, the output can have arbitrary length.

The hash function initializes the 320-bit state using a constant IV . For Ascon-
Xof, IV = 00400c0000000000; for Ascon-Hash, IV = 00400c0000000100. Then,
the permutation is applied to initialize the state S, i.e., S = f12(IV ||2256).

We regard S as the initial state of the absorbing phase, and its value for
Ascon-Hash (left) and Ascon-Xof (right) is:

ee9398aadb67f03d b57e273b814cd416

8bb21831c60f1002 2b51042562ae2420

S ←b48a92db98d5da62 S ←66a3a7768ddf2218

43189921b8f8e3e8 5aad0a7a8153650c

348fa5c9d525e140 4f3e0e32539493b6

The padding process for Ascon-Xof and Ascon-Hash is simple and the same:
it appends a single 1 and the smallest number of 0s to M such that the length
of the padded message is a multiple of r bits.

The complete description of the hashing process is given in Algorithm 3.

The security claim of Ascon-Hash is 2128. The security claim of Ascon-Xof is
min(2128, 2l/2), l is the output size.

8 Rui Zong, Xiaoyang Dong, and Xiaoyun Wang

Algorithm 3 Ascon-Hash and Ascon-Xof

Input: M ∈ {0, 1}∗, output bitsize l, l = 256 for Ascon-Hash, l is arbitrary for Ascon-
Xof.
Output: hash H ∈ {0, 1}l

Initialization
S ← f12(IV ||0c)

Absorbing
M1, · · ·,Ms ←M ||1||0∗

for i = 1, · · ·, s, do:
S ← f12(Sr ⊕Mi)||Sc

Squeezing
for i = 1, · · ·, t = dl/re, do:

Hi ← Sr

S ← f12(S)
return bH1|| · · ·Htcl

2.5 Target Difference Algorithm

The target difference algorithm (TDA) was proposed in [5]. It is a technique that
can leverage a (k − 1)-round differential characteristic that leads to a collision
at the output, to a k-round collision of a hash function.

More precisely, the initial state difference of the (k−1)-round difference char-
acteristic is called the target difference; the algorithm can output many message
pairs that satisfy the target difference after one permutation round. Hence, the
algorithm can be used to link the initial state of the internal permutation to the
target difference, using one extra permutation round.

2.6 Observations

This section describes the observations used when using the target differential
algorithm to derive the k-round differential characteristic from the original (k−
1)-round one.

Observation 1 We regard the operations in Equation (1) as the non-linear lay-
er of a Gimli round function.

xout← xin⊕ (zin << 1)⊕ ((yin ∧ zin) << 2)

yout← yin⊕ xin⊕ ((xin ∨ zin) << 1)

zout← zin⊕ yin⊕ ((xin ∧ yin) << 3)

(1)

Then, when the input difference of the non-linear layer is active only in the
X plane, i.e., ∆yin = ∆zin = 0, the input value and the output difference satisfy
the following constraints:

– For the output difference:
∆xout = ∆xin

(∆yout⊕∆xout)[i] ≤ (∆xout� 1)[i],

∆zout[i] = (∆xin� 3)[i], 0 ≤ i ≤ 31

(2)

Collision Attacks on Round-Reduced Gimli-Hash/Ascon-Xof/Ascon-Hash 9

– For the input value:{
if(∆xin� 1)[i] = 1, (zin� 1)[i]⊕ 1 = (∆yout⊕∆xout)[i]
if(∆xin� 3)[i] = 1, (yin� 3)[i] = ∆zout[i], 0 ≤ i ≤ 31

(3)

Observation 2 The ANF of Ascon’s 5-bit S-box with input x0x1x2x3x4 and
output y0y1y2y3y4 is shown in Equation 4.

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0,

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0,

y2 = x4x3 + x4 + x2 + x1 + 1,

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0,

y4 = x4x1 + x4 + x3 + x1x0 + x1.

(4)

When the last four input bits are all inactive, i.e., ∆x1 = ∆x2 = ∆x3 =
∆x4 = 0, the following constraints holds:

– For the output difference: 
∆y0 ⊕∆y4 = 1,

∆y1 = ∆x0,

∆y2 = 0,

(5)

– For the input value: {
x1 = ∆y0 ⊕ 1,

x3 ⊕ x4 = ∆y3 ⊕ 1.
(6)

3 The Attack Strategy

As described above, Gimli-Hash, Ascon-Hash and Ascon-Xof are all sponge-
based hash functions. In this section, we describe two different collision attack
strategies aiming at sponge-based hash functions. Assume that the inner primi-
tive is composed of k round functions.

The first strategy utilizes k-round differential characteristics with the input
and output difference are both nonzero only in the rate part. We choose the next
block pair with difference value equal to the characteristic output difference, then
the difference of subsequent states will all be zero. And we can get collisions.

The second strategy is appropriate for hash functions with output size less
than or equal to the rate part. It utilizes k-round differential characteristics with
the input difference is only active in the rate part and the output difference is
inactive in the rate part. The characteristic is applied in the last primitive of
the absorbing phase. Thus, the hash output difference is zero, and we can get
collisions.

Next we give detailed introduction of these two strategies.

10 Rui Zong, Xiaoyang Dong, and Xiaoyun Wang

Absorbing

p
s-1

p
s

 Ms-1 Ms= Ss-1
kr

p
s+1

p
s+t

c

 H1=0

r

c

 Ht=0

r

 Ss-1
kc=0

 Ss-1
kr 0

 S=0

Squeezing

Fig. 2. The 1st attack strategy.

3.1 The First Attack Strategy

The starting point of the first strategy is illustrated in Figure 2. During the
absorbing phase, if the output difference ∆Ss−1

kr of the penultimate primitive
ps−1 is active only in the rate part, we choose the last message block pair with
the same difference, i.e., ∆Ms = ∆Ss−1

kr . The input difference ∆Ss
0 of the last

primitive ps will be zero, and all subsequent state difference will also be zero.
Thus, we can get collisions.

Concretely, the attack strategy is composed of three steps.

– Find a k-round differential characteristic.
We add all constraints imported due to Observation 1 or Observation 2 for
the input difference and search for a (k− 1)-round differential characteristic
with the output difference is active only in the rate part. We assume its
probability is p.
After that, we can derive a k-round characteristic by linking this characteris-
tic to the initial state of the primitive using the target differential algorithm.
Its input and output difference are both active only in the rate part.

– Construct message pairs.
We choose message pairs that differs with each other only in the last two
blocks, i.e., ∆Mi = 0, 1 ≤ i ≤ s− 2. Each message is composed of s blocks.
As shown in Observation 1 and Observation 2, when given the input differ-
ence of the origin (k − 1)-round characteristic, there will be corresponding
constraints on the value of Ss−1

0c and ∆Ss−1
0r .

For the value of Ss−1
0c , we assume that there are X constraints to be satisfied.

Then we need at least dX
r
e blocks to get a qualified Ss−1

0c .

For ∆Ss−1
0r , we can just choose message pairs that satisfy ∆Ms−1 is equal

to the input difference of the k-round characteristic, as ∆Ss−1
0r = ∆Ms−1.

We also need to set the last message block difference ∆Ms is equal to the
output difference of the characteristic.

Thus, each message has at least dX
r
e+ 2 blocks.

– Search for the collisions.

Collision Attacks on Round-Reduced Gimli-Hash/Ascon-Xof/Ascon-Hash 11

Firstly we try to find some qualified Ss−1
0c by randomly choosing the first

dX
r
e blocks. The filter probability is

1

2X
.

For each qualified Ss−1
0c , as the probability of the characteristic is p, on

average, we can find a pair that conforms to the difference model of the

characteristic using
1

p
pairs of the (s − 1)-th block. The block Ms−1 can

provide r-bit degree freedom.

1) If 2r ≥ 1

p
, we need compute X values of the first dX

r
e blocks and

1

p
pairs

of the (s− 1)-th block;

2) If 2r ≤ 1

p
, we need

1

p · 2r
qualified values of Sc0 in ps−1. Thus we need

compute
2X

p · 2r
values of the first dX

r
e blocks and 2r pairs of the (s−1)-th

block.

After that, we need one last message block pair of which the difference is
equal to the output difference of the characteristic. The input difference of
the last primitive ps in the absorbing phase will be zero, and so will be all
subsequent state differences. And we get a collision.

3.2 The Second Attack Strategy

Absorbing

p
s

 Ms H1=0

 S=0

Squeezing

 Ss
kr=0

 Ss
kc=0

Fig. 3. The 2nd attack strategy.

As illustrated in Figure 3, the second attack strategy is appropriate for
sponge-based hash functions if the hash tag can be get by one primitive, i.e.,
there is no primitives in the squeezing phase. In this case, the hash tag is part
of the rate part of the output Ss

k of the last primitive ps in the absorbing phase.
Thus, if we can find some characteristic that has zero difference in ∆Ss

kr, we will
get a collision.

This strategy is also composed of three steps. As it is very similar with the
first strategy in Section 3.1, we only introduce the different points.

12 Rui Zong, Xiaoyang Dong, and Xiaoyun Wang

– Find a k-round differential characteristic.
In this step, the output difference of the origin (k − 1)-round differential
characteristic should be inactive in the rate part.
The input difference of the k-round characteristic we derive from the (k−1)-
round one is active only in the rate part, and the output difference is inactive
in the rate part.
The k-round differential characteristic is in the last primitive ps of the ab-
sorbing phase.

– Construct message pairs.
Firstly, the message pairs differs with each other only in the last block. The
difference value of the last block is equal to the input difference of the k-
round differential characteristic.
Secondly, because there is no need to use one extra block to eliminate the
output difference of the characteristic, in this strategy, each message is com-

posed of at least dX
r
e+ 1 blocks.

– Search for the collisions.
In this step, the only different point is that each message is composed of at

least dX
r
e+ 1 blocks.

4 Collision Attacks on Round-Reduced Gimli-Hash

In this section, following the first strategy in Section 3.1, we derive a 6-round
differential characteristic from a 5-round one, and use it mounting a 6-round
collision attack on Gimli-Hash.

4.1 The Differential Characteristic

The origin 5-round differential characteristic is shown in Table 5. It spans from
the state S

′

0 after the non-linear layer of the first round to the state S6 after the
5-th round with probability 2−112.

We first show that the input difference conforms to the constraints in Obser-
vation 1. ∆S

′

0 is the output difference of the non-linear layer of the first round.
The second and fourth column in S

′

0 have nonzero difference values. Notice that
the difference value of these two active columns are equivalent. We only need to
check one of them.

The checking process.

∆xout = 81ff8980,

∆yout = 80618880,

∆zout = 0,

∆yout⊕∆xout = 019e0100,

∆xout� 1 = 03ff1300,

∆xout� 3 = 0ffc4c00.

Collision Attacks on Round-Reduced Gimli-Hash/Ascon-Xof/Ascon-Hash 13

Table 5. The differential characteristic of 5-round Gimli.

State Difference Value Probability(log2)

0 81ff8980 0 81ff8980

S
′
0 0 80618880 0 80618880 0

0 0 0 0

0 0 0 0
S1 0 80618880 0 80618880 -56

0 81ff8980 0 81ff8980

0 42668080 0 42668080
S2 0 c0400000 0 c0400000 -40

0 00011100 0 00011100

0 80010080 0 80010080
S3 0 00402000 0 00402000 -16

0 80400080 0 80400080

0 00000080 0 00000080
S4 0 00400000 0 00400000 0

0 80000000 0 80000000

0 0 0 0
S5 0 0 0 0 0

0 80000000 0 80000000

0 80000000 0 80000000
S6 0 0 0 0

0 0 0 0

For each i, 0 ≤ i ≤ 31, (∆yout ⊕ ∆xout)[i] ≤ (∆xout � 1)[i], ∆zout[i] ≤
(∆xout � 3)[i]. Thus, the input difference conforms to the constraints derived
from Observation 1.

Derive the 6-round differential characteristic. As we already check that
the input difference conforms to the difference constraints in Observation 1, we
can use the target differential algorithm deriving a 6-round characteristic. We
show the input difference of the 6-round characteristic in Table 6.

Table 6. Input difference of the 6-round characteristic.

State Difference Value

0 ff898081 0 ff898081
S0 0 0 0 0

0 0 0 0

4.2 The Attack Process

The bit constraints. In the meanwhile, we can also get the bit constraints on
Sc0 in ps−1.

14 Rui Zong, Xiaoyang Dong, and Xiaoyun Wang

Concretely, for each active bit (∆xin � 1)[i], the corresponding bit (z �
1)[i] is equal to (∆yout ⊕ ∆xin)[i] ⊕ 1. For each active bit (∆xin � 3)[i], the
corresponding bit (y � 3)[i] is equal to ∆zout[i]. We list the constraints of one
column in Table 7.

Table 7. Bit constraints on Sc0 in ps−1.

State Difference Value Constraint Number

∆xout << 1 00000011111111110001001100000000
∆yout⊕∆xout 00000001100111100000000100000000 13
(z ⊕ ffffffff)� 1 ******0110011110***0**01********

∆xin << 3 00011111111110001001100000000000
∆zout 00000000000000000000000000000000 13
y � 3 ***0000000000***0**00***********

* means there is no constrains for the bit value,
0 or 1 means the bit value should be equal to 0 or 1 respectively.

In total, there are (13 + 13) × 2 = 52 constraints for our characteristic. For
Gimli-Hash, each block provides 128-bit degree freedom. We only need one mes-
sage block to get qualified input state values of the capacity part of ps−1.Thus we
can find collisions following the strategy in Section 3.2 with messages composed

of (d 52

128
e+ 2) = 3 blocks.

Search for collisions. The attack process is as follows:

1. Each message is composed of three blocks. The message pair should satisfy
three constraints: ∆M1 = (0, 0, 0, 0), ∆M2 = (0, ff898081, 0, ff898081),
∆M3 = (0, 80000000, 0, 80000000).

2. The filter probability of finding a qualified Sc0 in p2 is
1

252
. For Gimli-Hash,

each block provides r = 128 bits degree freedom. And the probability of our
6-round characteristic p is 2−112. As 2128 ≥ 2112, thus, to find a collision, we
need 252 the first blocks, 2112 the second block pairs and one the third block
pair.

The time complexity for finding qualified M1 is 252, the time complexity for
finding qualified M2 pair is 2112 × 2 = 2113, the time complexity for finding
qualified M3 pair is 2.

5 Collision Attacks on Round-Reduced Ascon-Xof and
Ascon-Hash

In this section, we present collision attacks on 2-round Ascon-Xof with a 64-bit
output and 2-round Ascon-Hash. The attack on 2-round Ascon-Xof follows the
second strategy in Section 3.2, it is a practical attack; the attack on 2-round
Ascon-Hash follows the first strategy in Section 3.1, it is a practical attack.

Collision Attacks on Round-Reduced Gimli-Hash/Ascon-Xof/Ascon-Hash 15

5.1 Practical Collisions in 2-round Ascon-Xof

In this section, we present our practical 2-round collision attack on Ascon-Xof
with a 64-bit output. Due to the birthday bound, the attack complexity needs
to be less than 232.

We use the difference characteristic in Table 8. It spans the linear layer of
the first round and the whole second round function with probability 2−14. The
input difference conforms to all constraints imported from Observation 2. After
that, we derive a 2-round differential characteristic using the target differen-
tial algorithm. Its input difference is shown in Table 9. In this characteristic,
∆S00[34] 3 is the only active bit in ∆S00. According to Observation 2, the value
of (S00[34], S30[34], S40[34]) needs to satisfy two constraints. The input and out-
put difference of the corresponding S-box is (10000, 11000), Table 10 shows the
corresponding two constraints.

Table 8. The characteristic of the 2-round Ascon-Xof

State Difference Value Probability(log2)

Ss
00 0000000020000000
Ss
10 0000000020000000
Ss
20 0000000000000000
Ss
30 0000000000000000
Ss
40 0000000000000000

S01 0000000020000402
S11 0040000120000000
S21 0000000000000000 -14
S31 0000000000000000
S41 0000000000000000

S02 0000000000000000
S12 0040000924002412
S22 00610001b4800000
S32 0040102100408000
S42 040000020100040a

Table 9. The input difference of the 2-round characteristic of Ascon-Xof

State Difference Value Active Bit Number

S00 0000000020000000 1
S10 0000000000000000
S20 0000000000000000
S30 0000000000000000
S40 0000000000000000

3 We use Sij denoting the i-th word in the j-th round.

16 Rui Zong, Xiaoyang Dong, and Xiaoyun Wang

Table 10. Constraints for the characteristic in Table 8.

Active Bits ∆S00[34] = 1

Constraints S10[34] = 0
S30[34]⊕ S40[34] = 1

The padded message pair need to satisfy∆M1 = 0,∆M2 = 0000000020000000.
For Ascon-Xof, each block is composed of 64 bits, i.e., r = 64. The number X of

constraints is 2. Thus, we can use d 2

64
e = 1 block to get qualified capacity part

value in p1. The probability of the characteristic is 2−14. We can get one block
pair that conforms to the 2-round differential characteristic by trying 214 pairs.

On average, we need compute 22 first blocks to get a qualified capacity part
of the input value, and 214 the second block pairs to get a collision. The time
complexity is 215.

One concrete example of 2-block collision in 2-round Ascon-Xof is given in
Table 11.

Table 11. A collision in 2-round Ascon-Xof with a 64-bit output

Message 1 05b93c0000000000fd000000fb

Message 2 05b93c0000000000fd000000db

Output 387fc9cc6fc5e428

5.2 Collision Attacks on 2-round Ascon-Hash

In this section, we use the difference characteristic in Table 12 to mount a non-
practical 4-block collision attack on 2-round Ascon-Hash. The attack follows the
strategy in Section 3.1.

As shown in Table 12, the input difference conforms to the constraints im-
ported due to Observation 2. Using the target differential algorithm, we derive
a 2-round characteristic and its input difference is shown in Table 13.

There are 43 active bits in ∆S00. According to Observation 2, for all indexes
i that ∆S00[i] = 1, there are two constraints that the value of S10[i], S30[i], S40[i]
need to satisfy. In total, there are 43 × 2 = 86 constraints. For Ascon-Hash,

each block provides 64-bit freedom. We need at least d86

64
e = 2 blocks to get one

qualified S0 in p3.
We construct 4-block message pairs that satisfy ∆M1 = ∆M2 = 0, ∆M3 =

e6765f2bfb737f78, ∆M4 = d255739452530b86. We need compute 286 values of
(M1,M2) to get a qualified value S0 in p3. The probability of the differential
characteristic is 2−103. Thus, on average, we can get one pair that conforms to
the differential of the characteristic by computing 2103 pairs. For Ascon-Hash,
each block is 64 bit and 64 < 103. We compute 286+103−64 = 2125 the first two

Collision Attacks on Round-Reduced Gimli-Hash/Ascon-Xof/Ascon-Hash 17

Table 12. The differential characteristic of one round Ascon-Hash

State Difference Value Probability (log2)

Ss
00 00144000c0404000
Ss
10 e6765f2bfb737f78
Ss
20 0000000000000000 0
Ss
30 0400000008101000
Ss
40 e6621f2b3b333f78

S01 0c10400249045804
S11 8232408ad1246801
S21 0000000000000000 -103
S31 0c0102000812100c
S41 8233428ad1366809

S02 d255739452530b86
S12 0000000000000000
S22 0000000000000000
S32 0000000000000000
S42 0000000000000000

Table 13. The input difference of the 2-round differential characteristic

State Difference Value Active Bit Number

S00 e6765f2bfb737f78 43
S10 0000000000000000
S20 0000000000000000
S30 0000000000000000
S40 0000000000000000

18 Rui Zong, Xiaoyang Dong, and Xiaoyun Wang

block values and get 239 qualified values of S0 in p3. Then, for each S0, we try
264 pairs of the third block. After that, we use one pair of the fourth block and
get one collision.

We compute 2125 values of the first two blocks, 2103 pairs of the third block
and one pair of the fourth block. In total, the time complexity is 2125.

6 Conclusion

In this paper, we mount collision attacks on three sponge-based hash function-
s: Gimli-Hash, Ascon-Xof and Ascon-Hash. Our attacks follow two interesting
strategies, one utilizes differential characteristics with the input and output dif-
ference is active only in the rate part and the other strategy utilizes character-
istics with the input difference is inactive in the capacity part and the output
difference is inactive only in the rate part. We search for the differential charac-
teristics using the MILP technique and the target differential algorithm. Finally,
we give a practical attack on 2-round Ascon-Xof and non-practical attacks on
6-round Gimli-Hash, 2-round Ascon-Hash.

Collision Attacks on Round-Reduced Gimli-Hash/Ascon-Xof/Ascon-Hash 19

References

1. The nist lightweight cryptography project, https://csrc.nist.gov/Projects/lightweight-
cryptography

2. Bernstein, D.J., Kolbl, S., Lucks, S., Massolino, P.M.C., Mendel, F.,
Nawaz, K., Schneider, T., Schwabe, P., Standaert, F.X., Todo, Y., Vigu-
ier, B.: Gimli 20190329. https://csrc.nist.gov/CSRC/media/Projects/Lightweight-
Cryptography/documents/round-1/spec-doc/gimli-spec.pdf

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: E-
CRYPT hash workshop. vol. 2007. Citeseer (2007)

4. Christoph Dobraunig, Maria Eichlseder, F.M., Schláffer, M.: Preliminary analysis
of ascon-xof and ascon-hash. Technique Report (2019)

5. Dinur, I., Dunkelman, O., Shamir, A.: New attacks on keccak-224 and keccak-256.
In: International Workshop on Fast Software Encryption. pp. 442–461. Springer
(2012)

6. Dobraunig, C., Eichlseder, M., Mendel, F.: Heuristic tool for linear cryptanalysis
with applications to caesar candidates. In: International Conference on the Theory
and Application of Cryptology and Information Security. pp. 490–509. Springer
(2015)

7. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon. Submission to the
CAESAR competition: http://ascon. iaik. tugraz. at (2014)

8. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Cryptanalysis of ascon.
In: Cryptographers Track at the RSA Conference. pp. 371–387. Springer (2015)

9. Dwivedi, A.D., Kloucek, M., Morawiecki, P., Nikolic, I., Pieprzyk, J., Wójtowicz,
S.: Sat-based cryptanalysis of authenticated ciphers from the caesar competition.
IACR Cryptology ePrint Archive 2016, 1053 (2016)

10. Leander, G., Tezcan, C., Wiemer, F.: Searching for subspace trails and truncated
differentials. IACR Transactions on Symmetric Cryptology pp. 74–100 (2018)

11. Li, Y., Zhang, G., Wang, W., Wang, M.: Cryptanalysis of round-reduced ascon.
Science China Information Sciences 60(3), 038102 (2017)

12. Li, Z., Dong, X., Wang, X.: Conditional cube attack on round-reduced ascon. IACR
Transactions on Symmetric Cryptology pp. 175–202 (2017)

13. Tezcan, C.: Truncated, impossible, and improbable differential analysis of ascon.
IACR Cryptology ePrint Archive 2016, 490 (2016)

14. Yosuke, T.: Structural evaluation by generalized integral property. In: Annual In-
ternational Conference on the Theory and Applications of Cryptographic Tech-
niques. pp. 287–314. Springer (2015)

20 Rui Zong, Xiaoyang Dong, and Xiaoyun Wang

Appendix A

Proof of Observation 1
When the input difference is only active in the x plane, the output difference

is as follows: 
∆xout = ∆xin

∆yout = ∆xin⊕ (∆xin ∩ (z ⊕ ffffffff) << 1

∆zout = (∆xin ∩ y) << 3

The constraints in Equation (2) and Equation (3) is are easy to get.

Proof of Observation 2
The relation of the input and the output difference is shown as follows:

∆y0 = ∆x0 · (x1 + 1)

∆y1 = ∆x0

∆y2 = 0

∆y3 = ∆x0 · (x4 + x3 + 1)

∆y4 = ∆x0 · x1
The constraints in Equation (5) and Equation (6) are easy to get.

