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Jean-Sébastien Coron1, Aurélien Greuet2, and Rina Zeitoun2

1 University of Luxembourg
jean-sebastien.coron@uni.lu

2 IDEMIA, France
aurelien.greuet@idemia.com, rina.zeitoun@idemia.com

Abstract. High-order masking countermeasures against side-channel attacks usually require plenty
of randomness during their execution. For security against t probes, the classical ISW countermeasure
requires O(t2s) random bits, where s is the circuit size. However running a True Random Number Gen-
erator (TRNG) can be costly in practice and become a bottleneck on embedded devices. In [IKL+13]
the authors introduced the notion of robust pseudo-random number generator (PRG), which must
remain secure even against an adversary who can probe at most t wires. They showed that when
embedding a robust PRG within a private circuit, the number of random bits can be reduced to Õ(t4),
that is independent of the circuit size s (up to a logarithmic factor). Using bipartite expander graphs,
this can be further reduced to O(t3+ε); however the resulting construction is impractical.
In this paper we describe a construction where the number of random bits is only Õ(t2) for security
against t probes, without expander graphs; moreover the running time of each pseudo-random gen-
eration goes down from Õ(t4) to Õ(t). Our technique consists in using multiple independent PRGs
instead of a single one. We show that for ISW circuits, the robustness property of the PRG is not
required anymore, which leads to simple and efficient constructions. For example, for AES we only
need 48 bytes of randomness to get second-order security (t = 2), instead of 2880 in the original Rivain-
Prouff countermeasure. As a first feasibility result, we have implemented our countermeasure on an
ARM-based embedded device with a relatively slow TRNG, and obtained a 50% speed-up compared
to Rivain-Prouff.

1 Introduction

High-order masking. Side-channel analysis is a class of attacks which exploits the physical
environment of a cryptosystem during its execution, to reveal the secrets being manipulated. The
masking countermeasure is an efficient technique to protect sensitive data against this threat. To
protect a sensitive data x, the masking technique consists in generating a random variable r and
manipulating the masked variable x′ = x⊕ r and the random r separately, instead of x directly.
In that case, every intermediate variable has the uniform distribution and any first-order attack
is thwarted. However by combining information from both leakage points x′ and r, a second-order
attack can still be feasible (see for example [OMHT06]).

A natural countermeasure against high-order attacks is to use a high-order masking, where
each variable x is split into n Boolean shares x = x1 ⊕ x2 ⊕ · · · ⊕ xn, with n > t for security
against t probes. Initially the shares are generated uniformly at random under this condition; for
example one can generate x1, . . . , xn−1 randomly and let xn = x⊕ x1⊕ · · · ⊕ xn−1. The shares are
then processed separately in masked operations (also called gadgets) that enable to compute the
underlying secret variables in a secure way.

The study of circuits resistant against probing attacks was initiated by Ishai, Sahai and Wagner
in [ISW03]. They showed how to transform any circuit of size s into a circuit of size O(t2s) secure
against any adversary who can probe at most t wires. The ISW construction is based on secret
sharing every variable x into x = x1 ⊕ x2 ⊕ · · · ⊕ xn as above, with n = 2t+ 1 shares to guarantee
security against t probes. Processing a XOR gate is straightforward as the shares can be xored
separately. For processing an AND gate z = xy, one computes all cross-products xiyj in Equation
(1) below, and then uses a randomized algorithm to recombine the n2 cross-products into an
n-sharing of the output z.

z = xy =

(
n

⊕
i=1

xi

)
·
(

n

⊕
i=1

yi

)
= ⊕

1≤i,j≤n
xiyj (1)



Every AND gate is then expanded into a gadget of size O(t2) and the resulting circuit has size
O(t2s).

The ISW construction was adapted to AES by Rivain and Prouff in [RP10], by working in F28

instead of F2. The authors observed that the non-linear part S(x) = x254 of the AES SBox can
be efficiently evaluated with only 4 non-linear multiplications over F28 , and a few linear squarings.
Each of those 4 multiplications can in turn be evaluated with the previous ISW gadget based on
Equation (1), by working over F28 instead of F2.

Proving security. The approach initiated in [ISW03] for proving security against a t-probing
adversary is based on simulation; one must show that the view of an adversary probing at most
t wires can be perfectly simulated without knowing the secret variables from the original circuit.
To this aim, one shows that any set of t probed variables can be perfectly simulated from the
knowledge of at most n− 1 input shares. Since any subset of n− 1 input shares is uniformly and
independently distributed, this ensures that the adversary learns nothing from the t probes, since
he could simulate them by himself. It was shown in [DDF14] that security against t probes implies
security against noisy leakage, under the assumption that every variable leaks independently.

Recently, the notions of (Strong) Non-Interference (NI/SNI) were introduced by Barthe et al.
in [BBD+16], to allow easy composition of gadgets. The authors showed that the ISW multiplica-
tion gadget does satisfy the stronger t-SNI security definition. They also showed that with some
additional mask refreshing, the Rivain-Prouff countermeasure for the full AES can be made secure
with n = t+ 1 shares only, instead of n = 2t+ 1 shares in [ISW03].

More recently, a new security notion was introduced by Cassiers and Standaert in [CS18], called
PINI, that allows even simpler composition of gadgets. Namely it suffices to ensure that all gadgets
are PINI, and the composite gadget is then also PINI, which also implies security against t probes.
With its power and simplicity, the PINI definition appears to be the “right” notion for gadget
security and composition; therefore we will use this definition in this paper, either by proving the
PINI property of a gadget directly, or by first proving the t-SNI property and then PINI.

Minimizing randomness complexity. High-order masking countermeasures against side-chan-
nel attacks usually require plenty of randomness during their execution. The secure AND operation
from [ISW03] with t+1 shares requires t(t+1)/2 random bits, and therefore the randomness com-
plexity of the ISW countermeasure is O(t2s), where s is the circuit size. More concretely, the eval-
uation of the AES SBox in Rivain-Prouff [RP10] requires the execution of 4 secure multiplications
and 2 mask refreshing; each of those 6 gadgets requires t(t+ 1)/2 fresh random bytes. For the 16
SBoxes and the 10 rounds of the AES, this amounts to generating 6×16×10×t(t+1)/2 = 480t(t+1)
random bytes, which gives 2880 bytes for second-order security (t = 2).

However running a True Random Number Generator (TRNG) can be costly in practice and
become a major bottleneck on embedded devices such as smart-cards. Thus, high-order resistant
algorithms can rapidly become impractical when the number of shares grows. The main question
is therefore how to minimize the number of TRNG calls while still guaranteeing t-probing security
as in [ISW03].

Several attempts have been made to reduce the randomness complexity of private circuits. In
[BBP+16], the authors showed a variant of the ISW multiplication with roughly t2/4 randoms
instead of t2/2 in ISW. In [FPS17], the authors showed how to re-use randomness within several
gadgets, thereby reducing the total amount of randomness needed, for small values of t (t ≤
7). However the two above approaches only reduce the randomness complexity by a constant
factor; that is, their asymptotic complexity is still O(t2s) for circuit size s, as in the original ISW
countermeasure.

A natural idea to reduce the number of calls to the TRNG is to use a pseudo-random generator
(PRG) to generate all randoms in the circuit, while only a small seed will be generated by the
TRNG. Obviously the PRG circuit should also be secure against probing attacks. We recall below
that such approach, initiated by Ishai et al. in [IKL+13] with the concept of robust PRG, enables
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to reduce the randomness complexity of t-private circuits from O(t2s) to O(t4(log s+ log t)); with
respect to the circuit size s, this is therefore an exponential improvement. Our main contribution is
this paper will be to reduce this complexity further down to O(t2(log s+ log t)), and to describe a
concrete implementation of AES based on this approach. We refer to Table 2 below for the number
of bytes required to protect AES against t-th order attacks; we see that for small values of t, we
obtain almost two orders of magnitude improvement compared to previous methods.

Robust PRGs and private circuits. In [IKL+13], the authors introduced the notion of robust
pseudo-random number generator (PRG). A robust PRG must remain secure even if an adversary
can probe at most t intermediate variables in the PRG circuit. The authors showed that such
robust PRG can be used in the ISW countermeasure to minimize the randomness complexity.
Namely the resulting circuit uses a short random seed only, and remains secure against t-th order
attacks.

Recall that the original ISW countermeasure requires O(t2s) bits of randomness, where s is the
circuit size. Following [IKL+13], we first recall how this can be reduced toO(t4(log t+log s)), using a
trivial construction of robust PRG. More precisely, the construction is based on r-wise independent
PRG. A PRG is said to be r-wise independent if any subset of at most r output bits of the PRG
is uniformly and independently distributed. The authors show that the ISW countermeasure can
be adapted so that any wire in the ISW circuit depends on at most ` = O(t2) bits of randomness;
such parameter ` is called the locality of the randomness and will play a crucial role in this paper.
Since the adversary can probe at most t wires, the adversary’s side-channel observation can then
depend on at most t · ` = O(t3) bits of randomness. Therefore, instead of using a TRNG, it is
sufficient to use an r-wise independent PRG with parameter r = t · ` = O(t3); if the r-wise PRG
is secure against t probes, as shown in [IKL+13] the resulting circuit will remain secure against t
probes.

It is easy to obtain an r-wise independent PRG by evaluating a degree r − 1 polynomial on
distinct inputs in a finite field F; the r coefficients of the polynomials are initially generated at
random in F; this is the seed of the PRG. From r fresh randoms in F, one can then obtain m
pseudo-randoms with the r-wise independence property, as long as m ≤ |F|. To obtain an r-wise
independent PRG with robustness against t probes, as observed in [IKL+13] a trivial construction
consists in xoring the output of t + 1 PRGs, so that at least one PRG has not been probed. One
can therefore obtain an r-wise independent PRG robust against t probes by using r ·(t+1) = O(t4)
fresh randoms in F as input, and such PRG can then generate m ≤ |F| pseudo-randoms in F. Since
the original ISW countermeasure requires m = O(t2s) randoms (where s is the circuit size), using
F = F2k one can take k = O(logm) = O(log t + log s). One therefore needs O(t4(log t + log s)) =
Õ(t4) bits of randomness1, instead of O(t2s). The number of input random bits is then independent
of the circuit size s (up to some logarithmic factor). In summary, any t-private circuit in which
each wire depends on at most ` bits of randomness can be converted into a t-private circuit using
roughly t2` bits of randomness via the use of robust r-wise PRGs. As written by the authors:
“Improving the randomness locality ` of private circuits would immediately yield a corresponding
improvement [in the number of input random bits].”.

In [IKL+13], the authors describe an improved construction of robust PRG, based on unbal-
anced bipartite expander graphs. Using the Guruswami-Umans-Vadhan construction of expander
graphs [GUV09], they obtain r-wise independence and resistance against t = r probes with r1+η

bits of true randomness as input, for any η > 0. In the context of the ISW countermeasure, this
enables to use O(t3+ε) random bits as input for any ε > 0, instead Õ(t4). In Appendix A we provide
a simplified proof of strong robustness for expander graph based PRG, based on the proof of weak
robustness from [IKL+13]. We also argue that for minimizing the amount of input randomness,
expander graph based constructions are actually impractical.

1 We use the notation f(λ) = Õ(g(λ)) if f(λ) = O(g(λ) logk λ) for some k ∈ N. For simplicity we assume that the
circuit size s is polynomially bounded in t.
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Our contribution. Our main contribution is a countermeasure against side-channel attacks where
the number of random bits is only Õ(t2) for security against t probes, independently of the circuit
size (up to a logarithmic factor), and without using expander graphs. Moreover the running time
of pseudo-random generation goes down from Õ(t4) to Õ(t). We summarize in Table 1 below the
asymptotic complexities of existing techniques and our new techniques. We proceed in two steps.

In the first step, we show how to improve the locality ` of private circuits from ` = O(t2) down
to ` = O(t). As illustrated in the third line of Table 1 below, reducing ` from O(t2) to O(t) enables
to reduce the r-wise independence parameter from r = O(t3) down to r = O(t2); the number
of input random bits is then now decreased from Õ(t4) to Õ(t3) with the trivial construction
(and from O(t3+ε) to O(t2+ε) with expander graphs). Our technique is as follows. The authors
of [IKL+13] obtain ` = O(t2) by performing a mask locality refreshing at the end of each ISW
multiplication gadget. Instead we modify the ISW multiplication by performing a series of internal
locality refreshing. For this we consider successive i × i ISW submatrices and perform a mask
refreshing after the processing of each submatrix; these internal mask refreshing enable to bring
the locality down to ` = O(t). We have also performed a formal verification of our new algorithms,
using the CheckMasks tool [Cor18], for both the locality and the security properties; we provide
the source code in [Cor19a]. This first step is described in Section 3.

In the second step, our technique consists in using multiple independent PRGs instead of a single
one. This has two main advantages. The first advantage is that for ISW circuits, one can show that
the robustness property of the PRG is not required anymore; this implies that we can use a very
simple PRG based on polynomial evaluation as above. The second advantage is that the locality
with respect to each subset of randoms generated by each PRG becomes ` = O(1). Therefore each
independent PRG can be r-wise independent with a much smaller parameter r = O(t) instead of
r = O(t3), and therefore requires only r = O(t) randoms in the finite field (since robustness is
not needed). In that case, we need O(t2) independent PRGs and therefore the size of the input
randomness is Õ(t3); see Line 4 of Table 1. Finally, when using internal locality refreshing as in
the first step above, we only need O(t) independent PRGs, and eventually the number of input
random bits is reduced to Õ(t2), instead of O(t3+ε) with expander graphs in [IKL+13] (see Line 5
of Table 1). We stress that this asymptotic improvement over [IKL+13] is obtained without using
expander graphs, that is we can use a simple PRG based on polynomial evaluation in a finite field
(see Section 4). 2

As mentioned previously, we found that expander graphs PRG are impractical for minimizing
the amount of input randomness. However expander graphs can still be useful for optimizing the
time generation of each pseudo-random; namely the output locality of an expander graph PRG
(i.e., the number of inputs on which each output depends) can be at most polylogarithmic in the
seed length (as opposed to linear for a PRG based on polynomial evaluation); hence in Table 1
the pseudo-random time generation is always Õ(1). In Section 2.3 we give an example of a simple
construction based on expander graph that achieves very fast pseudo-random generation, at the
cost of significantly more input randomness.

Finally, we describe in Section 5 an application of our countermeasure to AES. We show that
for AES we only need 48 bytes of randomness to get second-order security (t = 2), instead of 2880
in the original Rivain-Prouff countermeasure. We see in Table 2 below that for small values of t, our
construction reduces the randomness complexity of masking AES by almost 2 orders of magnitude.
In Section 5, we also provide the results of a concrete implementation. When implemented on an
ARM-based embedded device with a relatively slow TRNG, we obtain a 50% speed-up compared
to Rivain-Prouff for t = 2. We provide the source code in C in [Cor19b]. Needless to say, we do
not claim that in practice our implementation would be secure against a t-th order attack. Namely
the implementation is only provided for illustrative purpose, and timing comparisons. Obtaining
a secure implementation would require to (at least) carefully examine the assembly code, and
perform a leakage test with concrete acquisitions from an oscilloscope.

2 The proceedings version of [AIS18] claimed to achieve randomness complexity O(t1+ε), but the claim was later
retracted in the final version.
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#PRG loc. ` r-wise PRG TRNG time PRG

ISW without PRG [ISW03] − − − − O(t2s) −

ISW with Final LR, single PRG [IKL+13] 1 O(t2) O(t3)
Trivial Õ(t4) Õ(t4)

EG O(t3+ε) Õ(1)

ISW with Internal LR, single PRG (Sec. 3) 1 O(t) O(t2)
Trivial Õ(t3) Õ(t3)

EG O(t2+ε) Õ(1)

ISW with Final LR, multiple PRGs (Sec. 4) O(t2) O(1) O(t)
Linear Õ(t3) Õ(t)

EG O(t3+ε) Õ(1)

ISW with Internal LR, multiple PRGs (Sec. 4) O(t) O(1) O(t)
Linear Õ(t2) Õ(t)

EG O(t2+ε) Õ(1)

Table 1. Asymptotic efficiency of various constructions. The Locality Refreshing (LR) is performed either at the end
of each gadget (Line 2 and Line 4), or sequentially within each gadget (Line 3 and Line 5). The trivial construction
of PRG is based on xoring t+ 1 linear PRGs to get robustness against t probes.

t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

Rivain-Prouff [RP10] 2880 5760 9600 14400 20160 26880

Beläıd et. al [BBP+16] 2560 5120 8000 13120 18240 24000

Faust et. al [FPS17] 1415 2530 6082 6699 20712 20726

This paper 48 108 192 300 432 588

Table 2. Number of bytes of randomness to get t-th order security for AES.

2 Definitions and Previous Work

2.1 Private circuits

In 2003, Ishai, Sahai and Wagner [ISW03] initiated the study of securing circuits against an attacker
who can probe a fraction of its wires. They showed how to transform any circuit of size |C| into a
larger circuit of size O(|C|·t2) with the same functionality but secure against a t-probing adversary,
based on splitting each variable x into n = 2t+ 1 shares with x = x1 ⊕ x2 ⊕ · · · ⊕ xn.

Definition 1 (Private circuit). A private circuit for f : {0, 1}ni → {0, 1}no is a triple (I, C,O)
where I : {0, 1}ni → {0, 1}n̂i is a randomized input encoder, C is a randomized boolean circuit with
input ω̂ ∈ {0, 1}n̂i, output ŷ ∈ {0, 1}n̂o, and randomness ρ ∈ {0, 1}m, and O : {0, 1}n̂o → {0, 1}no
is an output decoder, such that for any input ω ∈ {0, 1}ni we have Pr[O(C(I(ω), ρ)) = f(ω)] = 1,
where the probability is over the randomness of I and ρ.

For I and O we consider the canonical encoder and decoder: I encodes each input bit ωi by a
vector of 2t+ 1 random bits with parity ωi, and O takes the parity of each block of 2t+ 1 bits.

Definition 2 (t-privacy). We say that C is a t-private implementation of f with encoder I and
decoder O is t-private (or t-probing secure) if for any ω, ω′ ∈ {0, 1}ni and any set P of t wires
in C, the distributions CP (I(ω), ρ) and CP (I(ω′), ρ) are identical, where CP denotes the set of t
values on the wires from P .

2.2 PINI and t-SNI security

The Probe Isolating Non-Interference (PINI) security notion was introduced in [CS18] to enable
easy composition of gadgets. Let n be the number of shares. We let x? = (xi)i=1,...n be an n-sharing
of x if x =

⊕n
i=1 xi. Given a subset I ⊂ [1, n] of share indices, we denote by x|I := {xi : i ∈ I} the

corresponding subset of shares. A gadget with m inputs and ` outputs is a circuit with mn input
shares grouped into m n-sharings denoted (x?,1, . . . x?,m), and similarly `n output shares denoted
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(y?,1, . . . y?,`). For a given share index i, we also use the notation xi,? = {xi,j : 1 ≤ j ≤ m} to
denote all shares with index 1 ≤ i ≤ n; similarly, we also write x|I,? = {xi,? : i ∈ I}. Below we
recall the Probe Isolating Non-Interference (PINI) definition from [CS18]; we actually use a slightly
simplified (and equivalent) definition compared to [CS18]; we explain the difference in Appendix
B.1.

Definition 3 (PINI [CS18] (adapted)). Let G be a gadget with input shares xi,? and output
shares yi,? for 1 ≤ i ≤ n. The gadget G is PINI if for any t1 ∈ N, any set of t1 intermediate
variables and any subset O of output indices, there exists a subset I ⊂ [1, n] of input indices with
|I| ≤ t1 such that the t1 intermediate variables and the output shares y|O,? can be perfectly simulated
from the input shares x|I∪O,?.

It is straightforward to show that a PINI gadget with n shares is secure against t = n−1 probes.
We recall the proof of PINI composition (under our slightly modified definition) in Appendix B.1.

Proposition 1 (PINI security [CS18]). Any PINI gadget with n shares is (n − 1)-probing
secure.

Proposition 2 (PINI composition [CS18]). Any composite gadget made of PINI composing
gadgets is PINI.

Below we recall the SNI security notion introduced in [BBD+15]. We consider a gadget taking
as input two n-tuples (xi)1≤i≤n and (yi)1≤i≤n of shares, and outputting a single n-tuple (zi)1≤i≤n.
As previously, given a subset I ⊂ [1, n], we denote by x|I all elements xi such that i ∈ I.

Definition 4 (t-SNI security). Let G be a gadget taking as input n shares (xi)1≤i≤n and n shares
(yi)1≤i≤n, and outputting n shares (zi)1≤i≤n. The gadget G is said to be t-SNI secure if for any
set of t1 probed intermediate variables and any subset O of output indices, such that t1 + |O| ≤ t,
there exist two subsets I and J of input indices which satisfy |I| ≤ t1 and |J | ≤ t1, such that the
t1 intermediate variables and the output variables z|O can be perfectly simulated from x|I and y|J

Intuitively, the t-SNI security definition provides an “isolation” between the output shares and
the input shares, so that the number of input variables required for the simulation is upper-bounded
by the number of internal probes t1, and does not depend on the number of output variables that
must be simulated, as long as t1 + |O| ≤ t. There is an analogous definition for a gadget with a
single input (xi)1≤i≤n; in that case, the simulation is performed from x|I with |I| ≤ t1.

It is easy to see that for a single input gadget, (n − 1)-SNI security implies PINI security.
Moreover, for a 2-input (n − 1)-SNI gadget as considered in Definition 4, as shown in [CS18] we
can obtain a PINI gadget by pre-refreshing one of the inputs with a (n− 1)-SNI mask refreshing
algorithm; this is the double-SNI approach (see Fig. 1). A mask refreshing gadget takes as input
the n-sharing of a value x and outputs a randomized n-sharing of the same value x. Therefore, in
this paper, our strategy for proving gadget security is either to directly prove the PINI property,
or to first prove the t-SNI property and then apply the “double-SNI” strategy. Note that for
specific circuits such as the AES SBox, one can use some optimization; for example the full SBox
computation can be proven t-SNI and therefore PINI with 4 multiplications and 2 mask refreshing
only (instead of 4 mask refreshing as in the naive “double-SNI” strategy).

Proposition 3 (Double-SNI [CS18]). Let G be a (n− 1)-SNI gadget taking as input (ai)1≤i≤n
and (bi)1≤i≤n, and outputting (ci)1≤i≤n. Let R be a (n − 1)-SNI gadget taking as input (xi)1≤i≤n
and outputting (yi)1≤i≤n. The composite gadget G′ taking as input (xi)1≤i≤n and (bi)1≤i≤n, and
outputting (ci)1≤i≤n, with G′((xi), (bi)) = G(R((xi)), (bi)) is PINI.

Finally, we recall in Appendix B.2 the SecMult gadget used in [RP10] for protecting AES
against t-th order attacks. It is an extension to F2k of the original ISW countermeasure [ISW03]
described in F2. The SecMult gadget was proven t-SNI in [BBD+16]. We also recall in Appendix
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G

Rxi

bi
ci

G′

Fig. 1. The double-SNI approach: when both gadgets G and R are (n− 1)-SNI, the composite gadget G′ is PINI.

B.2 the mask refreshing gadget FullRefresh introduced by Duc et. al in [DDF14], based on SecMult;
it was also proven t-SNI in [BBD+16]. We can therefore use the FullRefresh gadget to apply the
above “double-SNI” strategy. Moreover, in this paper, when we describe a variant of SecMult, we
apply the same modifications to the FullRefresh gadget; this is straightforward, since the FullRefresh
gadget can be seen as a SecMult with one input equal to (1, 0, . . . , 0).

2.3 r-wise independent PRG: definition and construction

We recall the definition of an r-wise independent pseudo-random generator (PRG). We denote by
Un the uniform distribution in {0, 1}n.

Definition 5 (r-wise independent PRG). A function G : {0, 1}n → {0, 1}m is an r-wise
independent pseudo-random generator if any subset of r bits of G(x) is uniformly and independently
distributed when x← Un

We can construct an r-wise independent PRG via polynomial evaluation in a finite field F.
Letting a = (a0, . . . , ar−1) ∈ Fr, we consider the polynomial:

ha(x) =
r−1∑
i=0

aix
i

For any m ≤ |F|, we can define the function G : Fr → Fm by letting:

G(a) = (ha(0), . . . , ha(m− 1))

where we assume that we have some indexing of the field elements in F. The function G is an
r-wise independent PRG because there is a bijection between the r coefficients of a polynomial of
degree at most r − 1 and its evaluation at r distinct points xi.

For F = F2k , this gives an r-wise independent PRG taking as input rk bits and outputting
at most k · 2k bits. Namely when working over F2k and generating k-bit pseudo-randoms, we
can use each individual bit of the k-bit pseudo-random, and the PRG function remains r-wise
independent. The parameter k determines the expansion factor of the PRG. For our application to
AES in Section 5, for simplicity we will work over F216 , using F28 as a subfield. For a block-cipher
using single bits, one would work in F2k and use each of the k bits of F2k separately.

A simple 3-wise independent PRG. We also consider a very simple PRG that achieves 3-wise
independence only. We consider a set of 2d random bits xi and yi for 1 ≤ i ≤ d. We define the
following function G : {0, 1}2d → {0, 1}d2 :

G(x1, . . . , xd, y1, . . . , yd) = (xi ⊕ yj)1≤i,j≤d

The function G can be seen as a PRG based on expander graph; see Fig. 9 in Appendix A.

Lemma 1. The function G is a 3-wise independent PRG.
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Proof. We must show that any 3 variables (xi1 ⊕ yj1), (xi2 ⊕ yj2) and (xi3 ⊕ yj3) are uniformly and
independently distributed.

We distinguish 3 cases. If #{i1, i2, i3} = 3, then the three values are independent thanks to
randoms xi1 , xi2 and xi3 . If i1 = i2 = i3, then we must have #{j1, j2, j3} = 3 and the three values
are independent thanks to randoms yj1 , yj2 and yj3 . Eventually, if exactly two indices among i1,
i2 and i3 are equal, say wlog i1 = i2 6= i3, then we must have j1 6= j2 and the randoms yj1 , yj2 and
xi3 ensure the independence of the three values. ut

2.4 Robust PRG: definition and trivial construction

In [IKL+13], the authors introduced the notion of robust pseudo-random number generator (PRG),
which should remain secure even if an adversary can probe at most k intermediate variables in
the PRG circuit. We recall the definition of (strongly) robust PRG from [IKL+13] below. Under
this definition, the output bits of the PRG must remain r-wise independent outside some set T of
bounded size, conditioned on the values of any set S of at most k probes in the PRG circuit and
the outputs in T . In [IKL+13] the authors actually consider the robustness of three distinct types
of PRG: r-wise independent PRGs, where as above any r bits of output must be uniformly and
independently distributed, small-bias PRGs, where the distinguisher can compute the parity of
any subset of the outputs, and cryptographic PRGs, where the distinguisher is limited to arbitrary
polynomial-time computations. In the following we only consider r-wise independent PRGs.

In this paper we actually use a slightly weaker definition of strong robustness compared to
[IKL+13], in which we allow the output bits outside the set T to be only (r−q|S|)-wise independent,
instead of r-wise independent, where |S| ≤ k is the number of probes and q a parameter. In other
words, we allow the r-wise independence of the PRG to degrade gracefully with the number of
probes. This will give slightly more efficient constructions; in particular, the trivial construction of
xoring k+1 PRGs will only require the r-wise independence of each PRG, instead of the (r+k)-wise
independence in [IKL+13]. Obviously we need to ensure that a robust PRG under our definition
can still be embedded in a private circuit with the same parameters as in [IKL+13]; see Theorem
1 below.

Definition 6 (Strong robust PRG [IKL+13] (adapted)). A circuit implementation C of a
PRG G : {0, 1}n → {0, 1}m is strong (r, k, q)-robust if given Y = G(X) where X ← {0, 1}n, for
any set S of at most k probes in C, there is a set T of at most q|S| output bits such that conditioned
on any fixing of the values CS of the wires in S and of YT , the values YT̄ of the output bits not in
T are (r − q|S|)-wise independent and uniformly distributed.

Trivial construction. As noted in [IKL+13], we can obtain a strong (r, k, 1)-robust PRG by
taking the xor of k+ 1 PRGs, each with the r-wise independence property. More precisely, letting
g : {0, 1}n → {0, 1}m, we let G : {0, 1}n·(k+1) → {0, 1}m:

G(x1, . . . , xk+1) = g(x1)⊕ g(x2)⊕ · · · ⊕ g(xk+1)

where the xors are performed from left to right.

Lemma 2 (Strong robustness of G). If g is an r-wise independent PRG, then G is a strong
(r, k, 1)-robust PRG.

Proof. Since there are at most k probes and k+ 1 PRGs, there exists an index i? such that g(xi?)
has not been probed. In the following, we fix all inputs xi except xi? .

Let t ≤ k be the number of probes. We consider the set T of indices j ∈ [1,m] such that the
j-th bit of any partial sum g(x1)⊕· · ·⊕g(xi) is probed. We must have |T | ≤ t. Since g is an r-wise
independent PRG, by definition any set of r output bits of g(x?i ) is uniformly and independently
distributed; this implies that any set of r − t output bits of g(x?i ) with indices outside T are
uniformly and independently distributed, even conditioned on the output bits in T and the other
probes. Since we have fixed the inputs of all other PRGs, this also applies for the output of G.
Therefore G is a strong (r, k, 1)-robust PRG. ut
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Expander graph construction. Using an explicit construction of a bipartite expander graph
[GUV09], the authors of [IKL+13] obtain a construction of a strong (r, k, q)-robust PRG with
r, k = n1−η where n is the number of random input bits, for any η > 0. In Appendix A we provide
a simplified proof of strong robustness for expander graph based PRG, based on the proof of weak
robustness from [IKL+13]. We also argue that for minimizing the amount of input randomness,
while asymptotically better than the trivial construction, expander graph based constructions
are actually impractical. Namely in our analysis the expander graph PRG construction based on
[GUV09] becomes better than the trivial construction only for r ≥ 218 and at least 236 random
input bits.

2.5 Application to private circuits

We recall below the main theorem from [IKL+13], showing that we can plug a robust PRG in a
private circuit to generate all randomness from a small random seed, and the resulting construction
remains secure against probing attacks. Firstly an important parameter is the locality ` of the
randomness in the circuit.

Definition 7 (Randomness locality [IKL+13]). A circuit C is said to make an `-local use of
its randomness if the value of each of its wires is determined by its (original, unmasked) input and
at most ` bits of the randomness used in the circuit.

Theorem 1 (Private circuit with PRG [IKL+13] (adapted)). Suppose C(ω̂, ρ) is a qk-
private implementation of f with encoder I and decoder O, where C makes an `-local use of its
randomness, and uses at most m bits of randomness. Let G : {0, 1}n → {0, 1}m be a strong (r, k, q)-
robust linear PRG with r ≥ k ·max(`, q). Then, the circuit C ′ defined by C ′(ω̂, ρ′) = C(ω̂, G(ρ′))
is a k-private implementation of f with encoder I and decoder O which uses n random bits.

The proof of Theorem 1 is based on showing that the view of any adversary who attacks with
t probes an implementation in which the randomness is generated by a PRG, can be simulated
given the view of an adversary with at most qt probes who attacks an implementation with a true
source of randomness; see Figure 3 for an illustration.

In Appendix B.3 we provide a proof that is essentially the same as in [IKL+13, Theorem 30],
except that we use our slightly weaker definition of robustness. We recall the main steps of the
proof below. We start with the following Lemma, which is similar to [IKL+13, Lemma 29]. As
illustrated in Figure 2, any output of at most r − q|S| bits of the robust PRG can be replaced by
a TRNG and any set S of at most k probes in the PRG can be perfectly simulated using a subset
T of the output with |T | ≤ q|S|. This means that probing |S| probes within the PRG is not better
for the adversary than probing q|S| outputs of the TRNG. To simplify notation, we will use G to
denote both the function computed by a robust PRG and its circuit implementation. For a set S
of k wires in G, we denote by GS the value of these wires; similarly, for a subset T of output bits
of G, we denote by GT the values of these output bits.

PRG

X

Y

k ⇐⇒ SIM TRNG

Y

T

k

Fig. 2. With a strong (r, k, q)-robust PRG, any output of at most r − q|S| bits of the PRG can be replaced by a
TRNG and any set S of at most k probes can be perfectly simulated using a subset T of the output with |T | ≤ q|S|.
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Lemma 3 (Robust PRG). Let G : {0, 1}n → {0, 1}m be a strong (r, k, q)-robust linear PRG
with r ≥ kq. Let S be any set of at most k wires in G. Let L ⊂ [m] be any subset of r − q|S| bits.
There exists a subset T with |T | ≤ q|S| such that the distribution of Y = GL∪T (X) is uniform in
{0, 1}|L∪T | when X ← {0, 1}n and moreover GS(X) can be efficiently simulated given YT only.

Thanks to Lemma 3 we can now prove Theorem 1. As illustrated in Figure 3, we can simulate
any t probes within the PRG with a simulator SIM that uses qt random bits from the TRNG (see
Fig. 2); these qt random bits can actually be queried by probing the original circuit C. This shows
that when probing the PRG in C ′ the adversary does not learn more than by probing the circuit
C with true randomness, as required; see Appendix B.3 for the details.

PRG

C

t

k − t

` (k − t)

C′

SIM TRNG

C

|T |≤qt

t

k − t

SIM TRNG

C

t

k − t

qt

Fig. 3. Security proof when plugging a PRG into a private circuit.

2.6 Locality refreshing

As recalled in Theorem 1, the r-wise independence parameter r of the PRG depends on the
randomness locality ` of the circuit (see Definition 7). The goal is therefore to minimize the
parameter `. In the original ISW construction, the parameter ` would grow linearly with the
circuit size; namely some wires can depend on almost all the randoms used in the circuit. To keep
a small ` = O(t2), the authors of [IKL+13] use a mask refreshing at the end of each ISW gadget.
Such locality refreshing, that we denote by LR, proceeds as described in Algorithm 1; see Figure 4
for an illustration.

Algorithm 1 Locality refreshing LR
Input: shares x1, . . . , xn,
Output: shares y1, . . . , yn such that

⊕n
i=1 yi =

⊕n
i=1 xi

1: yn ← xn
2: for i = 1 to n− 1 do
3: s← F2k # referred by si
4: yi ← s
5: yn ← yn ⊕ (xi ⊕ s) # referred by y

(i)
n

6: end for
7: return (y1, . . . , yn)

At the end of the algorithm, we have yi = si for all 1 ≤ i ≤ n− 1, and yn = x⊕ s1⊕ · · · ⊕ sn−1

for the secret x = x1⊕· · ·⊕xn. Therefore one can show recursively over the circuit that the internal
variables of the ISW multiplication depend on at most ` = O(t2) randoms, and this actually holds
for any variable in the circuit. The following Lemma shows that the LR gadget is PINI, so that it
can be included in a circuit without degrading its security.

Lemma 4 (PINI security of LR). Let (xi)1≤i≤n be the input shares of the mask refreshing
Algorithm LR. For any t ∈ N, any set of t intermediate variables and any subset O of output
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x1 x2 xn−1 xn

⊕
⊕

⊕

ynyn−1y2y1

⊕
⊕

⊕

s1

s2

sn−1

Fig. 4. Locality refreshing algorithm.

indices, there exists a subset I ⊂ [1, n] of indices such the t intermediate variables and the output
shares y|O can be perfectly simulated from the input shares x|I∪O , with |I| ≤ t.

Proof. We consider the following simple gadget G: (x1, xn) → (s1, xn ⊕ (x1 ⊕ s1)), where s1 is a
random value. We start by showing that in Gadget G, we can always simulate t probes and |O|
output variables from the input shares x|I∪O , with |I| ≤ t.

If t + |O| ≥ 2, we can let I = {1, n} \ O which gives I ∪ O = {1, n} and all variables can
be simulated from the input shares x|I∪O . Moreover we have |I| = |{1, n} \ O| ≤ 2 − |O| ≤ t. If
t + |O| = 1, we distinguish two cases. If |O| = 1 and t = 0, then we can simulate either s1 or
xn ⊕ (x1 ⊕ s1) by generating a random value. If t = 1 and |O| = 0, we can simulate x1 or xn with
I = {1} or I = {n}; the other variables can be simulated by a random value.

We now consider the following gadget Gi for 1 ≤ i ≤ n− 1:

Gi : (x1, . . . , xi, . . . , xn)→ (x1, . . . , xi−1, si, xi+1, . . . , xn ⊕ (xi ⊕ si))

which is similar to Gadget G, but with n input shares instead of 2, and n − 2 unmodified input
shares. As previously, we can always simulate t probes and |O| output variables from the input
shares x|I∪O , with |I| ≤ t. This implies that the gadget Gi is PINI. Since the LR gadget is the
composition of G1, . . . , Gn−1, from Proposition 2 the LR gadget is also PINI. ut

In [IKL+13] the LR algorithm is then applied after each ISW gadget. In particular, for the
SecMult gadget recalled in Appendix B.2, we obtain the following SecMultFLR gadget. Since the
original SecMult is t-SNI, the SecMultFLR gadget is also t-SNI. The same LR algorithm is applied
after the Xor gadget and the FullRefresh gadgets (see Appendix B.2).

Algorithm 2 SecMultFLR
Input: shares ai satisfying

⊕n
i=1 ai = a, shares bi satisfying

⊕n
i=1 bi = b

Output: shares di satisfying
⊕n

i=1 di = a · b
1: c1, . . . , cn ← SecMult((ai)1≤i≤n, (bi)1≤i≤n)
2: d1, . . . , dn ← LR(c1, . . . , cn)
3: return (d1, . . . , dn)

Application to private circuits. We recall Claim 31 and Corollary 32 from [IKL+13]; we also
recall the proof in Appendix B.4. We use the notation f(λ) = Õ(g(λ)) if f(λ) = O(g(λ) logk λ)
for some k ∈ N. We assume that the circuit size s(λ) and the number of probes t(λ) are both
polynomial in the security parameter λ.

Lemma 5 (Private circuit with PRG [IKL+13]). Any function f with circuit size s admits
a t-private implementation (I, C,O) with the canonical encoder I and decoder O, where C uses
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O(t2s) random bits and makes an ` = O(t2)-local use of its randomness. Consequently, f admits
a t-private implementation (I, C ′, O), where C ′ uses Õ(t4) bits of randomness, and runs in time
Õ(t6s), using the trivial construction. Using the expander graph construction, for any ε > 0, it
uses O(t3+ε) random bits and runs in time Õ(t2s).

2.7 Composing `-local gadgets

In this section we provide an explicit definition of locality for a gadget, so that the locality property
can be composed over a full circuit (as for the PINI definition for security against probing). As in
[IKL+13], the basic technique is to perform a locality refresh (such as Algorithm 1) of the output of
each gadget. We say that a set of wires (yi)1≤i≤n is locality refreshed if yi = si for all 1 ≤ i ≤ n−1,
for randoms si, and yn = y ⊕ s1 ⊕ · · · ⊕ sn−1, where y is the original unmasked variable. In the
definition below of gadget locality, we take into account the randomness of the (locality refreshed)
inputs.

Definition 8 (`-local gadget). Let G be a gadget whose output is locality refreshed. Consider
the circuit C where G is given locality refreshed inputs x?,?. Let ρ be the randomness used by
C, including the randomness from the inputs. The gadget G is said to make an `-local use of its
randomness if C makes an `-local use of its randomness ρ

Theorem 2 (Composition of `-local gadgets). Any composite gadget made of `-local gadgets
is `-local.

Proof. We consider m gadgets G1, · · · , Gm that we order as a direct acyclic graph from output to
input in a reverse topological sort order. We assume that each gadget Gi makes an `-local use of
its randomness, with locality refreshed outputs. We prove by recurrence on n that the composition
of `-local gadgets is `-local.

If n = 1, then there is only one gadget and this is straightforward since by assumption the
gadget is `-local. Now we assume that the composition of gadgets G1, · · · , Gn is `-local and we
prove that the composition of gadgets G1, · · · , Gn+1 is still `-local. Since the composition of gadgets
G1, · · · , Gn is `-local, and since by definition the inputs of the gadget Gn are locality refreshed
because they correspond to outputs of Gadget Gn+1 which are locality refreshed, we get that the
composition of both parts Gn+1 and G1, · · · , Gn does not increase the global locality. Namely, the
global locality corresponds to the maximum locality between both parts. Since the composition of
gadgets G1, · · · , Gn is `-local and since Gadget Gn+1 is also `-local, the maximum locality is ` and
the composition of gadgets G1, · · · , Gn+1 is `-local. ut

In the above definition, in order to determine the locality ` of a gadget, we must therefore
assume that it receives locality refreshed inputs, and the randomness from this locality refreshed
inputs must be taken into account when computing `. Below we provide an example with the Xor
gadget; the Xor gadget takes as input ai and bi for 1 ≤ i ≤ n, and returns ci = ai ⊕ bi for all
1 ≤ i ≤ n.

Lemma 6 (Locality of Xor). The Xor gadget followed by a locality refresh makes an `-local use
of its randomness, with ` = 2(n− 1).

Proof. The gadget takes as input ai and bi for 1 ≤ i ≤ n, and then computes ci = ai ⊕ bi
for all 1 ≤ i ≤ n, and finally dn,j = cn ⊕ (⊕ji=1ai ⊕ bi ⊕ si) for 1 ≤ j ≤ n − 1, with outputs

di = si for 1 ≤ i ≤ n − 1 and dn = dn,n−1. We must consider ai = s
(a)
i for 1 ≤ i ≤ n − 1 and

an = a⊕ s(a)
1 ⊕ · · · ⊕ s

(a)
n−1, and similarly for bi. Therefore cn depends on 2(n− 1) randoms, while

dn,j depends on 2(n− 1)− j randoms, which proves the lemma. ut

We also compute the concrete locality ` of the SecMultFLR algorithm introduced above; in
[IKL+13] only the asymptotic bound ` = O(n2) was proved. Such concrete locality computations
will be important when implementing the countermeasure for AES in Section 5; namely for a
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locality `, from Theorem 1 the r-wise independence parameter of the PRG must be set to r = `t
for security against t probes. We refer to Appendix B.4 for the proof.

Lemma 7 (Locality of SecMultFLR). The SecMult algorithm followed by a final locality refresh
(SecMultFLR) is an `-local gadget with ` = n2/4 + 5n/2− c, where c = 3 for even n, and c = 11/4
for odd n.

3 Improving the locality of the multiplication gadget

In this section we describe two variants of the SecMult algorithm that improve the randomness
locality of t-private circuits from ` = O(t2) to ` = O(t). We show that this decreases the randomness
complexity of private circuits from Õ(t4) to Õ(t3) using the trivial robust PRG construction. For
our two new algorithms SecMultILR and SecMultILR2, we summarize in Table 3 below the number
of required randoms and their locality `. Since these randoms are eventually generated by a PRG,
one should minimize their locality `. We introduce SecMultILR first because the t-SNI proof of
SecMultILR2 is significantly more complex.

SecMult [ISW03] SecMultFLR [IKL+13] SecMultILR SecMultILR2

Number of randoms n(n− 1)/2 n(n− 1)/2 + n− 1 n(n− 1) n(n− 1)/2 + n− 1

Locality ` − n2/4 + 5n/2− c 4n− 5 4n− 6

Security t-SNI t-SNI t-SNI t-SNI

Table 3. Summary of the multiplication gadgets, their locality and security. We have c = 3 for even n, and c = 11/4
for odd n.

3.1 First Construction with Internal Locality Refreshing (SecMultILR)

We describe below a variant of the SecMultFLR algorithm with locality ` = O(t) instead of ` =
O(t2). Our new SecMultILR is described below. The idea is to process the ISW matrix differently.
In the original SecMult the final encoding is obtained by summing over all rows of the n× n ISW
matrix. Instead we compute the partial sums over the rows of the successive j × j submatrices for
2 ≤ j ≤ n. At each step we perform a locality refreshing of the j shares of the partial sum. In
particular, the output of the algorithm is locality refreshed, so there is no need to apply the LR
algorithm again.

We see that lines 6 to 9 are the same as in the original SecMult (see Appendix B.2), except
that they are processed in a different order, since the loop starts with j instead of i. This implies
that at Step 10 we have processed the j × j submatrix of the ISW matrix, and therefore the first
j shares ci must satisfy the equality:

c1 ⊕ · · · ⊕ cj = (a1 ⊕ · · · ⊕ aj) · (b1 ⊕ · · · ⊕ bj) (2)

From lines 11 to 15 we then perform a locality refresh of these j shares (ci)
j
i=1 using new randoms

sij ; therefore after the locality refresh the new shares ci satisfy the same equality (2), but now they
only depend on the j−1 randoms sij for 1 ≤ i ≤ j−1, and not on the rij ’s. This implies that at the
next step of the loop (for index j+1), the shares ci will only depend on a linear number of randoms
rij , instead of quadratic in the original SecMult. Thanks to these internal locality refreshings, the
new locality parameter becomes ` = O(t) instead of ` = O(t2); we provide the proof of the locality
lemma below in Appendix C.1. We also prove the completeness of our multiplication algorithm in
Appendix C.2, and we show that it remains t-SNI in Appendix C.3.

Lemma 8 (Locality of SecMultILR). The SecMultILR algorithm is an `-local gadget with ` =
4n− 5 for n ≥ 3.
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Algorithm 3 SecMultILR
Input: shares ai satisfying

⊕n
i=1 ai = a, shares bi satisfying

⊕n
i=1 bi = b

Output: shares ci satisfying
⊕n

i=1 ci = a · b
1: for i = 1 to n do
2: ci ← ai · bi
3: end for
4: for j = 2 to n do
5: for i = 1 to j − 1 do
6: r ← F2k # referred by ri,j
7: ci ← ci ⊕ r # referred by ci,j
8: r ← (ai · bj ⊕ r)⊕ aj · bi # referred by rj,i
9: cj ← cj ⊕ r # referred by cj,i

10: end for
11: for i = 1 to j − 1 do
12: s← F2k # referred by si,j
13: cj ← cj ⊕ (ci ⊕ s) # referred by cj,i
14: ci ← s
15: end for
16: end for
17: return (c1, . . . , cn)

Theorem 3 (Completeness of SecMultILR). The SecMultILR algorithm, when taking a1, . . . , an
and b1, . . . , bn as inputs, outputs c1, . . . , cn such that c1⊕ · · · ⊕ cn = (a1⊕ . . .⊕ an) · (b1⊕ . . .⊕ bn).

Theorem 4 (t-SNI of SecMultILR). The SecMultILR algorithm is t-SNI for any 1 ≤ t ≤ n− 1.

One can therefore use a robust PRG with r-wise independence parameter r = ` · t = O(t2)
instead of r = O(t3) in [IKL+13]. With the trivial construction of xoring t+ 1 PRGs, the number
of input randoms in the finite field becomes r · (t + 1) = O(t3) instead of O(t4). This gives the
following lemma, which improves over Lemma 5 from [IKL+13].

Lemma 9 (Efficiency properties of SecMultILR). Any function of circuit size s admits a t-
private implementation (I, C,O) with the canonic encoder I and decoder O, where C uses Õ(t3)
bits of randomness using the trivial construction, and runs in time Õ(s · t5).

3.2 Second construction with less randomness (SecMultILR2)

We describe in Appendix C.4 a variant called SecMultILR2 of the previous algorithm, that achieves
the same locality ` as SecMultILR but with roughly half as many randoms. It uses the same number
of randoms as SecMultFLR from [IKL+13], but with locality O(t) instead of O(t2). Therefore it is
strictly better than both SecMultFLR and SecMultILR; see Table 3. We provide the proof of the
locality lemma in Appendix C.5, the proof of completeness in Appendix C.6 and the proof of t-SNI
security in Appendix C.7.

Lemma 10 (Locality of SecMultILR2). The SecMultILR2 gadget uses `-local randomness, with
` = 4n− 6 for n ≥ 3.

Theorem 5 (Completeness of SecMultILR2). The SecMultILR2 algorithm, when taking a1, . . . , an
and b1, . . . , bn as inputs, outputs c1, . . . , cn such that c1⊕ · · · ⊕ cn = (a1⊕ . . .⊕ an) · (b1⊕ . . .⊕ bn).

Theorem 6 (t-SNI of SecMultILR2). The SecMultILR2 is t-SNI for any 1 ≤ t ≤ n− 1.

3.3 Formal verification of locality and security

We have performed a formal verification of the above locality and security lemmas, using the
CheckMasks tool [Cor18]. In this framework the circuit is represented as nested lists, which leads
to a simple and concise implementation in Common Lisp. The t-SNI property of SecMult was
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already formally verified up to n = 5 shares in [Cor18]; namely the verification has exponential
complexity in n. In tables 4 and 5 we have performed a similar verification of theorems 4 and 6 for
SecMultILR and SecMultILR2 respectively; although we could only verify the security up to n = 5,
this brings some confidence in the correctness of our t-SNI security proofs.

n #variables #tuples Security Time

3 39 741 X ε

4 72 59,640 X 3 s

5 115 6,913,340 X 12 min

Table 4. SecMultILR: formal verification of The-
orem 4, for small values of n.

n #variables #tuples Security Time

3 36 630 X ε

4 63 39,711 X 2 s

5 97 3,464,840 X 5 min

Table 5. SecMultILR2: formal verification of
Theorem 6, for small values of n.

Similarly the locality is easy to compute in the framework of CheckMasks; it requires only a
few lines of Common Lisp code. We provide in Table 6 the formal computation of the locality `
for the SecMultFLR, SecMultILR and SecMultILR2 algorithms; it matches the formulas from Table
3. This time the computation is polynomial-time in n, so we can compute the locality for large
values of n. We provide the source code for both locality and security verification in [Cor19a].

Number of shares n 3 4 5 6 7 8 9 10 11 12 13 14 15

SecMultFLR 7 11 16 21 27 33 40 47 55 63 72 81 91

SecMultILR 7 11 15 19 23 27 31 35 39 43 47 51 55

SecMultILR2 6 10 14 18 22 26 30 34 38 42 46 50 54

Table 6. Formal computation of the locality parameter `, as a function of the number of shares n.

4 Private Circuits with Multiple PRGs without Robustness

In the previous section we have described two variants of SecMult where following the [IKL+13]
paradigm a single robust PRG is used to generate all the randoms from the circuit; by improving
the locality parameter from ` = O(t2) to ` = O(t), we have decreased the number of input random
bits from Õ(t4) to Õ(t3), that is independent of the circuit size s (up to logarithmic factors).
In this section, we show that by using multiple independent PRGs instead of a single one, the
robustness property of the PRG is not required anymore, and therefore much more efficient PRG
constructions can be used; this allows to decrease the randomness complexity of private circuits
down to Õ(t2).

We start with a simple observation. In the security proof of ISW, if the attacker probes a given
random rij in some SecMult gadget, then it is easy to see that we could give away to the attacker

not only the probed rij , but actually all randoms r
(k)
ij for the same i, j in all other SecMult gadgets

k; namely in the ISW security proof with global index I, one would have i ∈ I, and therefore each

r
(k)
ij would then be simulated by letting r

(k)
ij ← F as in the original circuit, so it could be given to

the attacker without requiring the knowledge of more input shares.

Now assume that for every pair (i, j) we use an independent PRG to generate the randoms r
(k)
ij

for all gadgets k. In that case the attacker has no advantage in probing the intermediate variables
of the PRG circuit, since in our extended probing model he could get all corresponding randoms

r
(k)
ij with a single probe anyway. Therefore when each rij has a dedicated PRG (see Figure 5 for an

illustration), the robustness property of the PRG is not required anymore, and we can use a simple
PRG with r-wise independence only, as for example the PRG based on polynomial evaluation from
Section 2.3.
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Fig. 5. In Construction 1, each rij has its dedicated PRG across all gadgets, from a random seed ρ′ij .

Moreover, if a mask locality refreshing is performed at the end of each multiplication gadget,
it is easy to see that any intermediate variable of the circuit can depend on at most a single

random r
(k)
ij for a fixed i, j, and therefore the locality with respect to each randomness subset

ρij = {r(k)
ij : 1 ≤ k ≤ s} is ` = 1; this is because the locality refresh at the end of each multiplication

gadget cancels the dependence on the internal r
(k)
ij . In that case, with t probes on intermediate

variables the adversary can get information on at most t randoms within such set. Therefore
these randoms can be generated by a PRG with r-wise independence parameter r = t. Since
the robustness property is not required, we can use a PRG based on polynomial evaluation that
requires only r = t coefficients in a finite field, and therefore Õ(t) random bits per PRG. Since there
are O(t2) randoms rij , we need O(t2) independent PRGs to generate all of them, and the total
number of input random bits is therefore Õ(t3), as in our single PRG constructions from Section
3. Note that the time to generate a pseudo-random is now Õ(t), instead of Õ(t3) in Section 3.

We can improve the above randomness complexity as follows. Firstly, we observe as previously
that in the security proof of ISW, whenever the attacker probes a random rij , we can actually
give to the attacker the complete row of rij ’s, that is for a given i, all rij with i < j ≤ n; and

more generally, for a fixed i, all randoms r
(k)
ij with i < j ≤ n in all SecMult gadgets k. Therefore

as previously we can use for each 1 ≤ i < n a dedicated PRG to generate all r
(k)
ij for all i < j ≤ n

in all gadgets k, without needing the robustness property. Since we generate the complete row of
rij ’s (see Fig. 8 for an illustration), we only need O(t) independent PRGs, instead of O(t2).

Moreover, if we perform internal mask refreshing as in the SecMultILR algorithm from Section
3 (instead of only at the end of the SecMult gadget), then no intermediate variable can depend on
two distinct rij ’s in the same row i. This implies that the locality with respect to the randomness

subset ρi = {r(k)
ij : i < j ≤ n, 1 ≤ k ≤ s} is still equal to 1. Therefore a PRG can be used to

generate all r
(k)
ij from a given row i in all gadgets k, still with r-wise independence parameter

r = t. Since we need only O(t) independent PRGs instead of O(t2) previously, the number of
input random bits goes down to Õ(t2), while the time to generate a pseudo-random is still Õ(t).
Asymptotically this is the most efficient technique (see Table 1), and also the most efficient in
practice (see Section 5 for our implementation results on AES).

4.1 Security with multiple PRGs

The following lemma shows that the PRG robustness is not needed when the PRG generates only a
subset ρ of the randomness, and the adversary can get ρ with a single probe; the lemma is analogous
to Theorem 1 for a single robust PRG. We first consider a circuit C where we split the randomness
in two parts ρ and ρ̄, where only the randomness ρ will be replaced by pseudo-randoms. We consider
an extended security model in which the attacker can get ρ with a single probe. Intuitively probing
the PRG that generates ρ does not help the attacker, since in the extended security model he can
get ρ with a single probe.
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Lemma 11 (Security from r-wise independent PRG). Suppose C is a t-private implemen-
tation of f with encoder I and decoder O, where C(ω̂, ρ, ρ̄) uses m random bits ρ and makes
an `-local use of its randomness ρ, and the adversary can obtain ρ with a single probe. Let
G : {0, 1}nr → {0, 1}m be a linear `t-wise independent PRG. Then, the circuit C ′ defined by
C ′(ω̂, ρ′, ρ̄) = C(ω̂, G(ρ′), ρ̄) is a t-private implementation of f with encoder I and decoder O
which uses nr random bits ρ′ and random ρ̄.

Proof. We show that the view of an adversary A′ who attacks C ′(ω̂, ρ′, ρ̄) by probing a set S of
t′ ≤ t wires in G and a set of P of t − t′ wires in C is independent of the secret input ω. Since
C is t-private, it suffices to show that that the view of A′ can be simulated given the view of an
adversary A who probes at most t wires in C(ω̂, ρ, ρ̄), and who can obtain the randomness ρ with
a single probe.

Since C makes an `-local use of its randomness ρ, the t − t′ probes from the set P in the
circuit C can depend on at most `(t − t′) ≤ `t bits of ρ. More precisely, for any ω̂ and ρ̄, let
Qω̂,ρ̄(ρ) = CP (ω̂, ρ, ρ̄) be the value of these probes; the function Qω̂,ρ̄ depends on at most `t bits
of ρ. Let T ⊂ [1,m] be the corresponding subset of bits of ρ on which Qω̂,ρ̄ depends, with |T | ≤ `t;
we can write Qω̂,ρ̄(ρ) = Q′(ρT ), where ρT is the corresponding subset of ρ.

We now proceed as follows. Instead of generating the PRG seed X ← {0, 1}nr and then the
PRG output GT (X) corresponding to T , we can first generate the PRG output ρT ← {0, 1}|T |
and then sample the PRG seed; this is possible because G is a linear `t-wise independent PRG,
and moreover |T | ≤ `t. More precisely, as in the proof of Lemma 19, since G is a linear `t-wise
PRG, there exists a randomized simulator Sim that can perfectly sample the PRG input and
therefore the probes within the PRG, given at most `t bits of PRG output; formally this means
(GS(X), GT (X)) ≡ (Sim(ρT ), ρT ) where X ← {0, 1}nr and ρ← {0, 1}m. We obtain:

(GS(X), Q′(GT (X))) ≡ (Sim(ρT ), Q′(ρT ))

We now distinguish two cases. If the number of probes within the PRG is such that t′ ≥ 1,
then as in the proof of Lemma 19, we let Sim′(ρT , v) = (Sim(ρT ), v) and we obtain:

(GS(X), Q′(GT (X))) ≡ (Sim(ρT ), Q′(ρT )) ≡ Sim′(ρT , Q
′(ρT ))

which gives

(GS(X), QI(ω),ρ̄(G(X))) ≡ Sim′(ρT , QI(ω),ρ̄(ρ)).

In this case, the distribution to which Sim’ is applied captures the view of an adversary A who
corrupts a set T ∪ P of wires in C, where |P | ≤ t − t′ and by definition ρT can be obtained with
a single probe, which gives a total of at most t − t′ + 1 ≤ t probes in C. Since by assumption C
is t-private, this view is independent of the secret ω. Since the distribution on the left hand side
captures the view of A′, it follows that the view of A′ is also independent of ω, as required.

In the second case, G is not probed by the adversary A′. Since G is `t-wise independent and the
view of A′ depends on at most `t bits of ρ, the view of A′ is the same as the view of an adversary
A probing the same wires in C. More precisely, we have from GT (X) ≡ ρT :

QI(ω),ρ̄(G(X)) ≡ QI(ω),ρ̄(ρ)

As previously, the right hand side corresponds to the view of an adversary A who corrupts a set P
of at most t wires in C and the distribution of the left hand side captures the view of A′; therefore
the view of A′ is independent of ω also in the second case. ut

We now consider the main theorem where the circuit randomness ρ can be split into (ρi)
k
i=1,

and when considering each ρi separately, the circuit C makes an `-local use of ρi; moreover we
assume that C remains t-private even if the adversary can obtain each ρi with a single probe. The
proof follows from a recursive application of Lemma 11.
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Theorem 7 (Security with multiple PRGs). Suppose C is a t-private implementation of f
with encoder I and decoder O, where the circuit C(ω̂, ρ1, . . . , ρk) uses for each 1 ≤ i ≤ k, m random
bits ρi, and makes an `-local use of ρi, and the adversary can obtain each ρi with a single probe.
Let G : {0, 1}nr → {0, 1}m be a linear `t-wise independent PRG. Then, the circuit C ′ defined by
C ′(ω̂, ρ′1, . . . , ρ

′
k) = C(ω̂, G(ρ′1), . . . , G(ρ′k)) is a t-private implementation of f with encoder I and

decoder O which uses k · nr random bits.

4.2 Extended Security Model: PINI-R

In Theorem 7 above we have considered an extended model of security, where the adversary can
get any randomness subset ρi in the circuit with a single probe. Therefore, we define a variant of
the PINI notion from [CS18], called PINI-R, in which the adversary can also get access to a subset
of the randoms in a gadget, using a single probe.

Definition 9 (PINI-R). Let G be a gadget with input shares xi,? and output shares yi,?. Let
(ρi)1≤i≤n be a partition of the randoms used by G. The gadget G is PINI-R if for any t1 ∈ N, any
set of t1 intermediate variables, any subset O of output indices and any subset R ⊂ [1, n], there
exists a subset I ⊂ [1, n] of input indices with |I| ≤ t1 such that the t1 intermediate variables, the
output shares y|O∪R,? and the randoms ρi for i ∈ R can be perfectly simulated from the input shares
x|I∪O∪R,?.

The following proposition is analogous to Proposition 1. It shows that if a gadget with n = t+1
shares is PINI-R, then a t-probing adversary learns nothing about the underlying secrets, even in
an extended model of security where the adversary can get each randomness subset ρi with a single
probe. We provide the proof in Appendix D.1.

Proposition 4 (PINI-R security). Let G be a gadget with input shares xi,? and output shares
yi,? for 1 ≤ i ≤ n. Let (ρi)1≤i≤n be a partition of the randomness used by G. If G is PINI-R, then
G is (n − 1)-probing secure in an extended model of security where the adversary can get each ρi
with a single probe.

In the composition theorem below, the attacker can get the union of all corresponding subsets
of randoms from all gadgets, still with a single probe; see Appendix D.2 for the proof.

Theorem 8 (Composition of PINI-R). Any composite gadget made of PINI-R composing
gadgets Gi for i ∈ K is PINI-R, where for the composite gadget we take the randomness partition

ρi =
⋃
k∈K ρ

(k)
i for 1 ≤ i ≤ n.

It is straightforward to prove the PINI-R property of the locality refreshing algorithm from
Section 2.6, with the randomness partition ρi = {si} for 1 ≤ i ≤ n − 1. In Appendix D.3 we
consider an analogous extension of the t-SNI property, called t-SNI-R, which we prove for the
SecMult and SecMultILR constructions, and the corresponding FullRefresh. More precisely, we show
that those gadgets remain secure in an extended model of security where the adversary can get
all randoms rij (and all randoms sij for SecMultILR) for a given i with a single probe. Moreover
the “double-SNI” approach still works for the t-SNI-R and PINI-R notions. This implies that we
can base our construction on t-SNI-R and PINI-R gadgets, and the resulting construction will be
PINI-R. Note that the t-SNI security proof of SecMultILR2 is already complex, so we will not try
to prove the t-SNI-R property of SecMultILR2; therefore we will use the multiple PRGs approach
for SecMultFLR and SecMultILR only.

4.3 Constant locality with respect to a randomness subset

In this section we show that we can achieve constant locality, even ` = 1, when we consider different
subsets of randomness. Therefore we first provide a definition of gadget locality with respect to a
subset of the gadget randomness only (and excluding the randomness of the inputs, as opposed to
Section 2.7), and then a locality composition theorem as in Section 2.7.
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Definition 10 (`-local gadget with randomness subset). Let G be a gadget and let ρ be a
subset of the randomness used by G. The gadget G is said to make an `-local use of its randomness
ρ if any intermediate variable of G depends on at most ` bits of ρ.

For example, the SecMult gadget makes a 1-local use of its randomness ρ = {rij} for any
1 ≤ i < j ≤ n; this is obvious, since ρ contains a single random bit. We can now state our
composition theorem for locality with respect to a randomness subset. It shows that the gadget
locality ` is kept the same in the composite gadget, while the locality of the randoms used for

output refreshing is equal to 3 with respect to each subset {s(k)
i , k ∈ K} for 1 ≤ i ≤ n − 1. We

refer to Appendix D.4 for the proof.

Theorem 9 (Locality composition with randomness subset). Let Gk for k ∈ K be a set
of fan-in 2 gadgets which all make an `-local use of a subset ρk of their randomness. Consider

the gadgets G′k for k ∈ K where the output of Gk is locality refreshed with randoms s
(k)
i for

1 ≤ i ≤ n−1. Any composite gadget made of G′k makes an `-local use of the randomness
⋃
k∈K ρk,

and for any 1 ≤ i ≤ n− 1, it makes a 3-local use of the randoms in {s(k)
i : k ∈ K}.

For example if we compose a number of SecMultFLR gadgets, in the composite gadget the

locality with respect to the randoms r
(k)
ij for fixed i, j is ` = 1, while the locality with respect to

the randoms s
(k)
i for fixed i from the output locality refreshing is ` = 3. We stress that in the final

implementation all the randomness (including the randomness from the locality refreshing) will be
generated by the PRGs. Finally, we show in Appendix D.5 that the latter locality can be brought
down to 1; for this it suffices to additionally perform a locality refreshing of the two inputs of each
gadget, with independent sets of PRGs for the two inputs.

4.4 First construction: multiple PRGs with SecMultFLR

Our first construction is described in Figure 6. It consists in using the SecMult algorithm and
perform a locality refresh after each gadget; this includes the SecMult gadget, the Xor gadget and

the FullRefresh gadget. For every 1 ≤ i < j ≤ n, an independent PRG generates all randoms r
(k)
ij

in the SecMult and FullRefresh gadgets. Similarly, for each 1 ≤ i ≤ n − 1, an independent PRG

generates all randoms s
(k)
i in all locality refreshing gadgets.

Construction 1: multiple PRGs with SecMultFLR

1. Given a circuit C, generate a private circuit (I, C′, O) with n = t+ 1 shares as follows:
- replace every AND gate by the “double-SNI” gadget with SecMult and FullRefresh.
Perform a locality refreshing LR after SecMult and FullRefresh.
- replace every XOR gate by the Xor gadget. Perform a locality refreshing LR after each
Xor gadget.

2. Initialize n(n−1)/2 PRG functions Gij for 1 ≤ i < j ≤ n, each with r-wise independence
parameter r = t.

3. Generate all randoms r
(k)
ij in SecMult or FullRefresh gadget k with the PRG function Gij .

4. Initialize n−1 PRG functions G′i for 1 ≤ i < n, each with r-wise independence parameter
r = 3t.

5. Generate all randoms s
(k)
i in the LR algorithm from gadget k using the PRG function G′i.

Fig. 6. Private circuit construction with multiple PRGs with SecMultFLR.

From the locality composition theorem (Theorem 9), in the global construction the locality

with respect to the randoms {r(k)
ij : k ∈ K} is `r = 1, while the locality with respect to the

randoms {s(k)
i : k ∈ K} is `s = 3. From the PINI-R property of the gadgets and Theorem 8, the

full circuit is PINI-R. Therefore, from Proposition 4, it is secure in an extended model of security
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in which the adversary can get the previous randomness subsets with a single probe. From Lemma
11, the PRGs for the rij ’s must be t-wise independent, while the PRGs for the si’s must be 3t-wise
independent. Since one requires n(n−1)/2 independent PRGs for the rij ’s, and n−1 independent
PRGs for the si’s, the number of input randoms in the finite field is therefore, with n = t+ 1,

nr = n(n− 1)/2 · t+ (n− 1) · 3t = O(t3).

Thus we have shown the following lemma. Compared to Lemma 9 for a single robust PRG with
our SecMultILR algorithm, the randomness complexity is the same but the total running time goes
down from Õ(st5) to Õ(st3).

Lemma 12 (multiple PRGs with SecMultFLR). Any function of circuit size s admits a t-
private implementation (I, C,O) with the canonic encoder I and decoder O, where C uses O(t3 ·
log(st)) bits of randomness, and runs in time O(s · t3 · log2(st)).

4.5 Second construction: multiple PRGs with SecMultILR

Our second construction is described in Figure 7, based on the SecMultILR algorithm. As illustrated
in Figure 8, a dedicated PRG generates the rij ’s for a given row i, in all gadgets. We first show
that the SecMultILR algorithm makes a 1-local use of each row of randoms rij and a 2-local use of
each row of randoms sij ; see Appendix D.6 for the proof.

Lemma 13 (Locality of SecMultILR). The SecMultILR algorithm makes a 1-local use of each
randomness set ρi = {rij : i < j ≤ n} and a 2-local use of each randomness set ρ′i = {sij : i < j ≤
n}.

Construction 2: multiple PRGs with SecMultILR

1. Given a circuit C, generate a private circuit (I, C′, O) with n = t+ 1 shares as follows:
- replace every AND gate by the “double-SNI” gadget with SecMultILR and the cor-
responding FullRefreshILR. Perform a locality refreshing LR after each SecMultILR and
FullRefreshILR.
- replace every XOR gate by the Xor gadget. Perform a locality refreshing LR after each
Xor gadget.

2. Initialize n−1 PRG functions Gi for 1 ≤ i < n, each with r-wise independence parameter
r = t.

3. Generate all randoms r
(k)
ij in SecMultILR or FullRefreshILR gadget k with the PRG function

Gi.
4. Initialize n−1 PRG functions G′i for 1 ≤ i < n, each with r-wise independence parameter

r = 2t.
5. Generate all randoms s

(k)
ij in SecMultILR or FullRefreshILR gadget k using the PRG func-

tion G′i.
6. Initialize n−1 PRG functions G′′i for 1 ≤ i < n, each with r-wise independence parameter

r = 3t.
7. Generate all randoms s

(k)
i in the LR algorithm using the PRG function G′′i .

Fig. 7. Private circuit construction with multiple PRGs with SecMultILR.

From Lemma 13 and Theorem 9, in the global construction the locality with respect to the

subsets of randoms ρi = {r(k)
ij : i < j ≤ n, k ∈ K} is equal to 1, the locality with respect to the

subsets of randoms ρ′i = {s(k)
ij : i < j ≤ n, k ∈ K} is equal to 2, and the locality with respect to the

subsets of randoms ρ′′i = {s(k)
i : k ∈ K} is still equal to 3, for each 1 ≤ i < n. As previously, from

the PINI-R property of the gadgets and Proposition 8, the full circuit is PINI-R. Therefore, it is
secure in an extended model of security in which the adversary can get the previous randomness
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subsets with a single probe. From Lemma 11, the corresponding PRGs must therefore have r-wise
independence parameter r = t, r = 2t and r = 3t respectively. The main difference is that now

there are only n − 1 independent PRGs to generate the r
(k)
ij (instead of n(n − 1)/2 previously),

because a given PRG generates those randoms for all indices j. The total number of input randoms
in the finite field is therefore

nr = (n− 1) · t+ (n− 1) · 2t+ (n− 1) · 3t = O(t2).

Thus we have shown the following lemma. Asymptotically this is the most efficient technique (see
Table 1 for a comparison), and also the most efficient in practice (see the next section for our
implementation results on AES).

Lemma 14 (multiple PRGs with SecMultILR). Any function of circuit size s admits a t-private
implementation (I, C,O) with the canonic encoder I and decoder O, where C uses O(t2 · log(st))
bits of randomness, and runs in time O(s · t3 · log2(st)).

r
(1)
ij r

(1)

ij′ r
(2)
ij r

(2)

ij′ r
(s)
ij r

(s)

ij′

Gi

ρ′i

Fig. 8. In Construction 2, a dedicated PRG generates the rij ’s for a given row i in all gadgets, from a random seed
ρ′i.

5 Application to AES

In this section we describe a concrete implementation of our techniques for AES; the goal is to
minimize the total amount of randomness used to protect AES against t-th order attack. We
provide the source code in C in [Cor19b].

5.1 The AES circuit and the Rivain-Prouff countermeasure

To implement the AES SBox, we need to perform 4 multiplications, and 2 mask refreshing per
byte; see [RP10] for the sequence of operations. For the mask refreshing, we use the multiplication
based refreshing FullRefresh recalled in Appendix B.2. We refer to [BBD+16] for the proof that the
x254 gadget is (n− 1)-SNI; this implies that the gadget is PINI. Thus, this amounts to performing
6 multiplications per byte. Since there are 16 bytes to process per round, the number of required
multiplications is 6 × 16 = 96 per round. Thus for the 10 rounds of the AES, one will perform
96× 10 = 960 multiplications.

5.2 Implementation with single robust PRG

We first consider an implementation with a single robust PRG as in Section 3, with 3 possible algo-
rithms: the original [IKL+13] construction with a locality refresh after each multiplication gadget
(SecMultFLR), and our new SecMultILR and SecMultILR2 algorithms. For those three algorithms,
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we provide in Table 7 the total number of pseudo-randoms to be generated for the AES circuit, the
corresponding locality parameter `, and the number of 8-bit randoms from the TRNG to generate
the seed of the PRG, as a function of the number of shares n, for security against t probes with
n = t+ 1.

SecMult [RP10] SecMultFLR [IKL+13] SecMultILR SecMultILR2

Mult 480n(n− 1) (480n+ 960)(n− 1) 960n(n− 1) (480n+ 960)(n− 1)

Xor − 160(n− 1)

Pseudo-rand − (480n+ 1120)(n− 1) (960n+ 160)(n− 1) (480n+ 1120)(n− 1)

Locality ` − max(4(n− 1),
4(n− 1) 4(n− 1)

n2/4 + 5n/2− c)
True-rand 480n(n− 1) 2n(n− 1) ·max(4(n− 1),

8n(n− 1)2 8n(n− 1)2
n2/4 + 5n/2− c)

Table 7. For AES, total number of pseudo-randoms and number of 8-bit TRNG calls, for a single robust PRG, as
a function of the number of shares n. We have c = 3 for even n, and c = 11/4 for odd n. We assume that n ≤ 12.

We now explain the content of Table 7. For each of the 3 algorithms, the number of pseudo-
randoms is the number of randoms from Table 3 in Section 3, multiplied by 960, since one must
perform 960 multiplications. Furthermore, the MixColumns operation requires 48 xors. Normally
we should perform a locality refresh after each xor, but in the particular case of the AES, we can
do the locality refresh only after the 3 xors of the MixColumns for each byte. In that case, the
locality parameter with respect to MixColumns is then 4(n − 1), instead of 2(n − 1) for a single
xor. The locality of the global circuit is then the max of locality parameter ` from Table 3 and
4(n − 1). Equivalently, we can perform such locality refresh as input of the SubByte operation,
which enables to keep the MixColumns unmodified. For the MixColumns, one therefore needs to
perform 16 locality refresh per round, which gives a total of 160 locality refresh for the 10 rounds
of the AES, which requires 160(n − 1) pseudo-randoms. Finally, we assume that the round keys
are already masked without PRG, and so we don’t need to perform a locality refreshing after the
AddRoundKey.

Let m the total number of pseudo-randoms over F28 that must be generated. To determine the
finite field F = F28k used by the PRG, we must ensure m ≤ k · |F28k | = k · 28k. Namely a single
polynomial evaluation over F28k generates k bytes of pseudo-random. One must then use a PRG
with r-wise independence parameter r = ` · (n − 1). Using the trivial construction with the xor
of n = t + 1 polynomial evaluations (to provide resistance against t probes), the total number of
fresh random values over F28 is then nr = k · n · r = k · n(n− 1) · `.

For the three algorithms one can work over F216 for n ≤ 12; therefore for simplicity we take
k = 2 in Table 7. For SecMultILR and SecMultILR2, the total number of TRNG calls over F28 is
then nr = k ·n(n−1) ·4(n−1) = 4k ·n(n−1)2 with k = 2 for n ≤ 12, and k = 3 for 13 ≤ n ≤ 229,
instead of 480n(n − 1) for the original Rivain-Prouff countermeasure; therefore one needs fewer
TRNG calls than Rivain-Prouff for n ≤ 40. We summarize in Table 9 below the number of input
random bytes required for AES for small values of n, compared with the original Rivain-Prouff
countermeasure.

5.3 Implementation with multiple PRGs

We now consider an implementation of AES with multiple PRGs, as in Section 4. We consider the
SecMultFLR algorithm corresponding to Construction 1, and the SecMultILR algorithm correspond-
ing to Construction 2. As previously, we provide in Table 8 the total number of pseudo-randoms
to be generated for the AES circuit, and the number of 8-bit randoms from the TRNG.

As previously, we only perform a locality refresh after the 3 xors of the MixColumns (equiva-
lently, before each SubByte). Moreover we don’t perform the LR algorithm after SecMultILR as in
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SecMult [RP10] SecMultFLR SecMultILR

Pseudo-rand − (480n+ 1120)(n− 1) (960n+ 160)(n− 1)

Locality `r of rij − 1 1

Number of PRGs (rij) − n(n− 1)/2 n− 1

True-rand per PRG (rij) − 2(n− 1) 2(n− 1)

Locality `s of sij and si − 5 5

Number of PRGs (si and sij) − n− 1 n− 1

True-rand per PRG (sij and si) − 10(n− 1) 10(n− 1)

Total True-Rand 480n(n− 1) (n+ 10)(n− 1)2 12(n− 1)2

Table 8. For AES, total number of Pseudo-random and True-random values to generate with the multiple PRGs
approach, as a function of the number of shares n. Values for the Rivain-Prouff countermeasure are also recalled for
comparison.

Construction 2, since the output of SecMultILR is already locality refreshed. Therefore the num-
ber of pseudo-randoms is the same as in the previous section. We use two classes of independent
PRGs. The first class of independent PRGs is used to generate the rij ’s from SecMultFLR and
SecMultILR algorithms, with locality `r = 1; therefore the PRGs must be `rt-wise independent. We
need n(n − 1)/2 such PRGs for SecMultFLR, and only n − 1 for SecMultILR. Working over F216 ,
each PRG requires 2`rt = 2(n − 1) random bytes. Similarly, the second class of PRGs is used to
generate randoms si from the locality refresh, and also the randoms sij for the internal locality
refresh in SecMultILR, with locality `s = 5. Namely we only perform the locality refresh after the
3 xors of the MixColumns, and therefore the locality is `s = 5 (instead of `s = 3). Note that for
SecMultILR we can use the same class of PRGs to generate the randoms sij ’s from SecMultILR and
the randoms si’s from LR, instead of two classes in Construction 2 from Section 4; namely it is
easy to see that the locality with respect to the corresponding randomness subsets is still equal
to 5. Therefore the PRGs must be `st-wise independent; working over F216 , each PRG requires
10(n− 1) bytes of TRNG.

In summary, for SecMultFLR, the total number of 8-bit TRNG calls is therefore

nr = n(n− 1)/2 · 2(n− 1) + (n− 1) · 10(n− 1) = (n+ 10)(n− 1)2

and for SecMultILR, we get

nr = (n− 1) · 2(n− 1) + (n− 1) · 10(n− 1) = 12(n− 1)2

instead of 480n(n− 1) in the original Rivain-Prouff countermeasure.3

A simple 3-wise independent PRG. Finally, we consider the simple 3-wise independent PRG
from Section 2.3:

G(x1, . . . , xd, y1, . . . , yd) = (xi ⊕ yj)1≤i,j≤d

Since the PRG function G expands from 2d to d2 bits (or bytes), the number of input randoms
becomes O(

√
s) instead of O(s), where s is the circuit size. Note that this is worse than the

polynomial-based PRG used previously that requires onlyO(log s) randoms, but the above function
G is very fast since generating a pseudo-random only takes a single xor.

Since the above PRG only achieves 3-wise independence, we want to minimize the locality.
Therefore, we perform a locality refresh of the 2 inputs of each gadget (with two distinct sets of
independent PRGs), and we perform a locality refresh of the outputs of each gadget (SecMult, Xor
and FullRefresh), using another distinct set of independent PRGs. As shown in Appendix D.5, the
locality with respect to each subset of randoms is then always ` = 1; therefore, we can use a PRG

3 For the SecMultILR algorithm, a PRG for the sij and si must generate a maximum of 960(n − 1) + 160 pseudo-
randoms; therefore one can work over F216 as long as n ≤ 136.
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with r-wise independence r = t = n− 1. This implies that this specific PRG only works for n = 3
and n = 4 shares. We argue in Appendix E.2 that the total number of input bytes for AES is 642
for n = 3 and 1056 for n = 4, instead of 2880 and 5760 respectively for the original Rivain-Prouff
countermeasure.

Single robust PRG Multiple PRGs

[RP10] SecMultFLR SecMultILR SecMultILR2 SecMultFLR SecMultILR 3-wise SecMultFLR

n = 3 2880 96 96 96 52 48 642

n = 4 5760 288 288 288 126 108 1056

n = 5 9600 640 640 640 240 192 −
n = 6 14400 1260 1200 1200 400 300 −
n = 7 20160 2268 2016 2016 612 432 −
n = 8 26880 3696 3136 3136 882 588 −
n = 9 34560 5760 4608 4608 1216 768 −
n = 10 43200 8460 6480 6480 1620 972 −

Table 9. For AES, total number of TRNG bytes to generate for single and multiple PRGs methods, depending of
the number of shares n. We also provide the number of TRNG bytes for the original Rivain-Prouff countermeasure.

Summary. We summarize in Table 9 the number of input random bytes required for AES for
all previous methods, as a function of the number of shares n, in order to achieve t-th order
security, with t = n−1. We see that the most efficient method (in terms of minimizing the number
of TRNG calls) is the SecMultILR algorithm with multiple PRGs. Namely for small values of t
we obtain almost two orders of magnitude improvement compared to the original Rivain-Prouff
countermeasure.

5.4 Concrete Implementation

We have implemented our constructions for AES in C, on a 44 MHz ARM-Cortex M3 processor.
The processor is used in a wide variety of products such as passports, bank cards, SIM cards, secure
elements, etc. The embedded TRNG module can run in parallel of the CPU, but it is relatively
slow: according to our measurements on emulator, it outputs 32 bits of random in approximately
6000 cycles. Our results, obtained by running the code on emulator, are given in Table 10, and are
compared with the classical Rivain-Prouff countermeasure.

We see that the most efficient countermeasure is the SecMultFLR algorithm with multiple
PRGs, using the 3-wise independent PRG. For n = 3 and n = 4 we obtain a 52% and 61% speedup
respectively, compared to Rivain-Prouff. We provide the source code in [Cor19b].
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A PRG based on bipartite expander graph

A.1 Definitions

Bipartite graph and PRG. We note by [n] the set of integers between 1 and n. A bipartite graph
is a triple ([m], [n], E) where [m] is the set of left vertices, [n] of right vertices, and E ⊂ [m]×[n] is a
set of edges connecting the left vertices with the right vertices. Given any subset V ⊆ [m], we denote
by Γ (V ) the right neighbors of V ; formally Γ (V ) = {v ∈ [n] : ∃u ∈ [m] such that (u, v) ∈ E}.

We recall the simple construction of a PRG from bipartite graph [IKL+13]. A bipartite graph
H = ([m], [n], E) induces a linear function GH : {0, 1}n → {0, 1}m where the i-th output bit
for 1 ≤ i ≤ m is the parity of the input bits corresponding to the neighbors of i. Formally,
GH(x1, . . . , xn) = (y1, . . . , ym) where yi = ⊕j∈Γ (i)xj . In other words, every left vertex gives an
output bit, computed as the xor of the input bits corresponding to the right vertices to which it is
connected. See Figure 9 for an example of a simple bipartite graph, with the corresponding PRG.

Expander graphs. Letting V ⊂ [m] on the left, a vertex v ∈ [n] on the right is said to be a
unique neighbor of V if there is a single edge from V to v. We let U(V ) denote the collection of
unique neighbors of V . We say that a bipartite graph ([m], [n], E) is a `-unique neighbor expander
if any set V ⊂ [m] on the left with |V | ≤ ` has a unique neighbor.
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Fig. 9. Example of a ([m], [n], E) bipartite graph with m = 9 and n = 6, with the corresponding PRG. The graph
is a (2, 3/2)-expander.

Lemma 15. If a bipartite graph H = ([m], [n], E) is a `-unique neighbor expander, then the cor-
responding PRG GH is `-wise independent.

Proof. We consider the m×n matrix of row vectors corresponding to the linear function GH(x1, . . .
, xn). We show that any subset of at most ` rows are linearly independent. Namely a linear combi-
nation of at most ` rows cannot be equal to 0, since by the `-unique neighbor expander property,
there is an input xi that must appear in a single row. Since any subset of at most ` rows are
linearly independent, the PRG GH is `-wise independent. ut

Expander graphs. To construct bipartite graphs with the unique neighbor property, we will use
expander graphs.

Definition 11. A bipartite graph ([m], [n], E) with left vertices [m] and right vertices [n] is an
(`, b)-expander if for any subset V ⊆ [m] on the left with |V | ≤ `, we have that |Γ (V )| ≥ b|V |.

The following lemma shows that if the expansion factor b is such that b > d/2, then any set V such
that |V | ≤ ` has a unique neighbor; therefore the corresponding PRG will be `-wise independent.

Lemma 16. Consider an (`, b)-expander graph ([m], [n], E) of degree d. For any V ⊂ [m] with
|V | ≤ `,

d|V | ≥ |Γ (V )| ≥ |U(V )| ≥ (2b− d)|V |

Proof. The number of edges out of V is d|V |, so d|V | ≥ |Γ (V )|. Out of these d|V | edges, due to the
expansion property of the graph, at least b|V | go to distinct vertices; there remains (d−b)|V | edges,
which can eliminate the uniqueness of at most (d − b)|V | vertices in Γ (V ). Therefore |U(V )| ≥
b|V | − (d− b)|V | ≥ (2b− d)|V |. ut

A.2 A simplified proof of strong robustness for PRG

In this section we provide a simplified proof of strong robustness of PRG based on expander graph.

Theorem 10 ([IKL+13]). Suppose H is a d-left-regular (`, d/2 + c)-expander. Then GH is a
strong (`, c`/d, d/c)-robust PRG.

The proof of Theorem 10 is based on the lemma below, showing that an expander graph is
robust against the removal of vertices; that is, even if we remove some vertices on the right,
the induced graph remains an expander graph. More precisely, the following lemma is a slightly
stronger variant of [IKL+13, Lemma 6], which was used to prove the PRG weak robustness only.
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The difference is that in our lemma the induced graph has right vertices [n] \ (S ∪ Γ(T )) instead
of only [n] \ S; that is, we remove more vertices on the right. Another difference is that for the
resulting graph we only get the `-unique neighbor property (instead of the expansion property),
since this is only what we need. The rest of the proof is essentially the same as in [IKL+13].

Lemma 17. Suppose H = ([m], [n], E) is a d-left-regular (`, d/2 + c)-expander. Then for any
S ⊆ [n] on the right of size |S| ≤ c`, there exists T ⊆ [m] on the left with |T | ≤ |S|/c such that
the induced graph on left vertices [m] \ T and right vertices [n] \ (S ∪ Γ(T )) is a (` − |T |)-unique
neighbor expander.

Proof. We first construct a subset T on the left with a large fraction of its right neighbors Γ(T )
in S. We let T be a subset on the left that has the maximum size among all subsets T ′ on the left
with size at most ` such that |Γ(T ′) \ S| ≤ d/2 · |T ′|; the set T is well defined because T ′ = ∅ is
such a subset. We have by definition of T :

|Γ(T )| = |Γ(T ) \ S|+ |Γ(T ) ∩ S| ≤ d/2 · |T |+ |Γ(T ) ∩ S|

From the expansion property of H and |T | ≤ `, we must have:

|Γ(T )| ≥ (d/2 + c)|T |

Combining the two inequalities, we get:

|Γ(T) ∩ S| ≥ |Γ(T )| − d/2 · |T | ≥ c · |T |

which shows that T has a large fraction of neighbors in S. We obtain |T | ≤ |Γ(T) ∩ S|/c ≤ |S|/c
as required.

We now consider any non-empty subset V on the left with V ∩T = ∅ and |V | ≤ `−|T |. We show
that V must have many neighbors outside the set S ∪Γ(T ). Namely T ∪V has many neighbors by
the expansion property, and the neighbors of T are fairly concentrated in S. More precisely, since
|T ∪ V | = |T | + |V | ≤ ` and T was selected as a subset of maximal size with size at most ` such
that |Γ(T ) \ S| ≤ d/2 · |T |, we must have:

|Γ(T ∪ V ) \ S| > d/2 · |T ∪ V | = d/2 · (|T |+ |V |)

Moreover we have:

|Γ(T ∪ V ) \ S| =
∣∣(Γ(T ) ∪ Γ(V )) \ S

∣∣ = |Γ(T ) \ S|+
∣∣Γ(V ) \ (Γ(T ) ∪ S)

∣∣
Using |Γ(T ) \ S| ≤ d/2 · |T |, we obtain:∣∣Γ(V ) \ (Γ(T ) ∪ S)

∣∣ = |Γ(T ∪ V ) \ S| − |Γ(T ) \ S|
> d/2 · (|T |+ |V |)− d/2 · |T |
> d/2 · |V |

This shows that the induced graph on left vertices [m] \ T and right vertices [n] \ (S ∪ Γ(T )) is a
(`− |T |)-unique neighbor expander. ut

Proof (of theorem 10). Let t ≤ k be the number of probes in the circuit, with k = c`/d. Let S be
the vertices on the right that are affected by the probes. Since every output is the sum of exactly
d randoms, we must have |S| ≤ td ≤ kd = c`. Therefore we can apply Lemma 17, and there exists
a set T on the left with |T | ≤ |S|/c ≤ td/c such that the induced graph on left vertices [m] \ T
and right vertices [n] \ (S ∪ Γ(T )) is a (`− |T |)-unique neighbor expander. We let S′ = S ∪ Γ(T ).
Therefore, conditioned on any fixing of the input bits in S′, the input bits in S are fixed and the
output bits in T are fixed (because the input bits in Γ (T ) are fixed), and the output bits that are
not in T are r-wise independent, where r = `− |T | ≥ `− td/c, which gives q = d/c. ut
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A.3 The bipartite expander graph construction from [GUV09]

In this section we recall the bipartite expander graph construction from [GUV09], and its appli-
cation to PRG. We fix the field Fq. Let E(Y ) be an irreducible polynomial of degree n over Fq.
We identity elements of Fnq with univariate polynomials over Fq with degree at most n− 1. Let h
be an integer parameter. Let d ≤ q. The expander is the bipartite graph Γ : Fnq × [d] → [d] × Fmq
defined as:

Γ(f, i)
def
= [i, f(i), (fh mod E)(i), (fh

2
mod E)(i), . . . , (fh

m−1
mod E)(i)]

Theorem 11 ([GUV09]). The graph Γ : Fnq × [d]→ [d]×Fmq defined above is a (hm, A) expander
for A = d− (n− 1)(h− 1)m.

We note that we can obtain a better bound for m = 1, which enables to prove d-wise indepen-
dence for a bipartite graph construction of degree d.

Lemma 18. The graph Γ : Fnq × [d]→ [d]× Fq defined above with m = 1 is a (h,A) expander for
A = d− (n− 1)(h− 1)/2. Taking n = 2, GΓ is a d-wise independent PRG.

Proof. Let V be a list of distinct polynomials (f1, . . . , f|V |). Given two polynomials fj and fk for
j 6= k, we must have |Γ(fj) ∩ Γ(fk)| ≤ n − 1, since otherwise the two polynomials fj and fk of
degree at most n− 1 would take the same value on n distinct points and would be identical. This
implies:

|Γ(T )| ≥
|T |∑
i=1

(
d− (i− 1) · (n− 1)

)
≥ d|T | − (n− 1)

(|T | − 1)|T |
2

For |T | ≤ h, we obtain |Γ(T )| ≥ |T | ·
(
d− (n− 1)(h− 1)/2

)
as required.

Finally, taking h = d and n = 2, we get that Γ is a (d, d/2 + 1/2)-expander. Therefore it is a
d-unique neighbor expander, and the corresponding GΓ is a d-wise independent PRG. ut

We note that the 3-wise independent PRG construction of Section 2.3 corresponds to n = 2
and d = 2. We fix two distinct elements a and b of Fq. Given a polynomial f of degree at most
1 on the left, the polynomial f has two neighbors (1, f(a)) and (2, f(b)) on the right. Since there
are q2 polynomials f in Fq of degree at most 1, the expander graph Γ has q2 input vertices and
2q output vertices. Given any two right vertices (1, x) and (2, y) for x, y ∈ Fq, there is a unique
f ∈ F2

q on the left such that the two neighbors of f are (1, x) and (2, y). In the corresponding PRG
GΓ, each of the q2 bits of output is therefore the xor of two bits, each taken from the two input
lists of q bits.

Theorem 12 ([IKL+13]). For any η > 0, there exists δ, C, ñ0 > 0 such that for any ñ ≥ ñ0,
there is an explicit d-local strong (ñ1−η, ñ1−η, 4)-robust independent PRG G : {0, 1}ñ → {0, 1}m̃
for m̃ = exp(ñδ), with d ≤ logC m̃.

Proof. We recall the parameters of the bipartite graph and the corresponding PRG in Table 11.
The number of left vertices must be greater than the PRG output size, which gives the condition
qn ≥ m̃. Similarly the PRG input size must be greater than the number of right vertices, which
gives ñ ≥ qm+1. The maximum set size ` = hm of the bipartite expander graph must be greater
than the desired r-wise independence of the PRG, which gives the condition hm ≥ ñ1−η. In the
bipartite expander graph from [GUV09], the expansion factor is A = d− (n− 1)(h− 1)m. Writing
A = d/2 + c, this gives c = d/2− (n− 1)(h− 1)m. From Theorem 10, we must have d/c ≤ 4 and
` · c/d ≥ ñ1−η. This gives c ≥ d/4, which requires (n− 1)(h− 1)m ≤ d/4. We take q = d.

We obtain the following conditions:

qn ≥ m̃ = exp(ñδ) (3)

ñ ≥ qm+1 (4)

hm/4 ≥ ñ1−η (5)

(n− 1)(h− 1)m ≤ q/4 (6)
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Bipartite expander graph PRG

#left vertices qn Output size m̃

#right vertices qm+1 PRG input ñ

Set size ` = hm r-wise indep. ñ1−η

Expansion A = d/2 + c Robustness ` · c/d ≥ ñ1−η

Table 11. Parameters of the bipartite graph and the PRG.

Given the constant 0 < η < 1, we can take a large enough constant integer m > 0 such that

m(1− η/2) ≥ (m+ 1)(1− η) + 1 (7)

Namely, we can take m = d2(2− η)/ηe. We take q be the largest power of 2 smaller than ñ1/(m+1),
which gives:

ñ1/(m+1)/2 < q ≤ ñ1/(m+1) (8)

and Inequality (4) is satisfied. We take h = dq1−η/2e, which gives from (7) and (8):

hm ≥ qm(1−η/2) ≥ q · q(m+1)(1−η) > q · (ñ/2m+1)1−η ≥ ñ1−η · q/2m+1

For large enough ñ, we have q/2m+1 ≥ 4 (recall that m is a constant), and therefore Inequality (5)
is satisfied. We take the constant δ := η/(4(m + 1)). We take n = dñδe, so that Inequality (3) is
satisfied (since q > exp(1) for large enough ñ). Finally, we have using (8):

(n− 1)(h− 1)m ≤ ñδ · q1−η/2 ·m ≤ (ñ1/(m+1))η/4 · q1−η/2 ·m
≤ (2q)η/4 · q1−η/2 ·m ≤ 2m · q1−η/4 ≤ (8m/qη/4) · q/4

For large enough ñ we get 8m/qη/4 ≤ 1 and therefore Inequality (6) is satisfied. Finally, we have
d = q ≤ ñ1/(m+1) ≤ (log1/δ m̃)1/(m+1) ≤ logC m̃ for C := 4/η. ut

A.4 Concrete analysis of PRG based on [GUV09]

The [GUV09] bipartite graph expander recalled in the previous section is defined by the following
5 parameters: q, n, d, m and h. Therefore, finding the right parameters is not obvious. In the
following we study two possible regimes.

Minimizing the input randomness. In this regime, we want to minimize the size of the input
randomness of the r-wise independent PRG. We fix the parameter m. Therefore we must have
hm ≥ r, so we take h = dr1/me. The PRG takes as input dqm ≤ qm+1 random bits and outputs
qn pseudo-randoms, so we take n = m + 1, so that the PRG is at least expanding. For minimal
robustness, we take A > d/2, which gives the condition q > d > 2(n − 1)(h − 1)m. Therefore
we take d = q − 1 and q the smallest prime greater than 2(n − 1)(h − 1)m + 2. Recall that the
trivial construction based on polynomial evaluation can achieve r-wise independence and resistance
against r probes with r(r+ 1) input randoms. To do better than the trivial construction, one must
therefore ensure that dqm < r(r + 1). As illustrated in Table 12, the PRG based on expander
graph becomes better than the trivial construction only for r ≥ 218, which requires at least 236

input random bits. Therefore, if the goal is to use fewer TRNGs than the trivial construction, the
construction of expander graphs based on [GUV09] is totally impractical.

Small d regime. In this regime, we want to minimize the degree d for a given r, in order
to minimize the time of pseudo-random generation. For simplicity we only require the r-wise
independence. Therefore we can take d = 2(n− 1)m(h− 1) + 1 and we must have hm ≥ r; we take
n = m+ 1. We provide the result in Table 13. For large values of m, we can use the approximation
h = r1/m and d = 2m2h. We must therefore minimize the function f(m) = 2m2r1/m, and we find
that the function is minimized for m = log r, which gives d = O(log2 r). Therefore expander graphs
can be used to minimize the time generation of pseudo-randoms.
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r-wise independence 218 222 230 240

m 2 2 2 2

h 512 2048 32768 220

q 4091 16381 262139 ' 223

Number of input bits dqm 236 242 254 269

Table 12. Parameters of the PRG based on the [GUV09] bipartite expander graph.

d 2 3 · · · 54 55 65 73 89 91 97 109 127 129 145 151 161 181 193

r 2 3 · · · 54 64 81 125 144 216 256 343 512 625 729 1024 1296 1331 2401

Table 13. Maximal value of r-wise independence parameter r achievable for a given degree d.

B Definitions and Previous Work

B.1 Security Definition

The PINI security notion. We actually use a slightly simplified definition compared to [CS18],
in which the authors define t-PINI where t1 + t2 ≤ t, where t1 is the number of intermediate
variables and |O| = t2, and we must have |I| ≤ t1. In our definition we do not set an upper bound
on the total number of variables t that must be simulated, as this appears to be unnecessary. Clearly
a gadget that is PINI under our definition is t-PINI under [CS18] for any t ∈ N. Conversely, a
gadget that is (n−1)-PINI under [CS18] is actually t-PINI for any t ∈ N, and therefore PINI under
our definition. Namely it must be t-PINI for any t < n; and for t ≥ n, if t1 + t2 ≥ n, we can take
I = [1, n] \ O, and all intermediate variables can be perfectly simulated knowing all input shares
from I ∪ O = [1, n], with |I| = n− |O| = n− t2 ≤ t1; therefore it is t-PINI also for any t ≥ n.

Proof of Proposition 2 (PINI composition [CS18]). As in [CS18], we consider l Gadgets
G1, · · · , Gl that we order as a direct acyclic graph from output to input in a reverse topological
sort order. We assume that each gadget Gi has ti internal probes and that the sum of all internal
probes is equal to t. Furthermore, the last gadget G1 has O output probes. We prove by recurrence
on i that the composition of PINI gadgets remains PINI.

If i = 1, then there is only one gadget and this is straightforward since by assumption the gadget
is PINI. Now we assume that the composition of gadgets G1, · · · , Gi is PINI and we prove that the
composition of gadgets G1, · · · , Gi+1 is still PINI. Since the composition of gadgets G1, · · · , Gi is
PINI, we get that for any set of t1 + · · · + ti intermediate variables and any subset O of output
indices, there exists a subset Ii ⊂ [1, n] of input indices with |Ii| ≤ t1 + · · · + ti such that the
t1 + · · ·+ ti intermediate variables and the output shares y|O,? can be perfectly simulated from the
input shares x|Ii∪O,?. Furthermore, since gadget Gi+1 is PINI, one can simulate Gadget Gi+1 with
input shares corresponding to indices in Si+1 ∪ (Ii ∪ O) with |Si+1| ≤ ti+1.

Therefore we can compose these simulators to perfectly simulate the composition of gadgets
G1, · · · , Gi+1 from Ii+1 ∪ O with Ii+1 = Si+1 ∪ Ii, and since

|Ii+1| = |Si+1 ∪ Ii| ≤ |Si+1|+ |Ii| ≤ ti+1 + (t1 + · · ·+ ti) ≤ t

we conclude that the composition of i+ 1 gadgets PINI remains PINI.
For i+1 = l, we get that we can perfectly simulate the composition of gadgets G1, · · · , Gl from

Il ∪ O with |Il| = |
⋃i=l
i=1 Si| ≤ t1 + · · ·+ tl ≤ t. This terminates the proof.

B.2 Basic gadgets SecMult and FullRefresh

We recall in Algorithm 4 the SecMult gadget used in [RP10] for protecting AES against t-th order
attacks. It is an extension to F2k of the original ISW countermeasure [ISW03] described in F2. The
SecMult gadget was proven t-SNI in [BBD+16].
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Algorithm 4 SecMult
Input: shares ai satisfying

⊕n
i=1 ai = a, shares bi satisfying

⊕n
i=1 bi = b

Output: shares ci satisfying
⊕n

i=1 ci = a · b
1: for i = 1 to n do
2: ci ← ai · bi
3: end for
4: for i = 1 to n do
5: for j = i+ 1 to n do
6: r ← F2k # referred by ri,j
7: ci ← ci ⊕ r # referred by ci,j
8: r ← (ai · bj ⊕ r)⊕ aj · bi # referred by rj,i
9: cj ← cj ⊕ r # referred by cj,i

10: end for
11: end for
12: return (c1, . . . , cn)

The mask refreshing gadget FullRefresh recalled in Algorithm 5 was introduced by Duc et. al
in [DDF14]; it was proven t-SNI in [BBD+16].

Algorithm 5 FullRefresh
Input: a1, . . . , an
Output: c1, . . . , cn such that

⊕n
i=1 ci =

⊕n
i=1 ai

1: For i = 1 to n do ci ← ai
2: for i = 1 to n do
3: for j = i+ 1 to n do
4: r ← {0, 1}k
5: ci ← ci ⊕ r
6: cj ← cj ⊕ r
7: end for
8: end for
9: return c1, . . . , cn

B.3 Proof of Theorem 1 (Private implementation [IKL+13])

We start with the following simple Lemma. It shows that for a linear r-wise PRG, instead of
randomly generating the n-bit seed and computing the PRG output on r bits, one can first gen-
erate the r-bit output uniformly at random and then sample the n-bit seed, with the same joint
distribution.

Lemma 19 (PRG input sampling). Let G : {0, 1}n → {0, 1}m be an r-wise independent linear
PRG. Let T ⊂ [m] be any subset of at most r bits. Given any ρT ∈ {0, 1}|T |, one can efficiently
sample x′ such that GT (x′) = ρT , and moreover (X,GT (X)) ≡ (x′, RT ) where X ← {0, 1}n and
R← {0, 1}m.

Proof. Since G is an r-wise independent PRG and |T | ≤ r, the random variable Y = GT (X) is
uniformly and independently distributed. This implies for any ρT ∈ {0, 1}|T |:

Pr[GT (X) = ρT ] = 2−|T | = Pr[X ∈ G−1
T (ρT )] =

|G−1
T (ρT )|

2n

and therefore |G−1
T (ρT )| = 2n−|T | for all ρT ∈ {0, 1}|T |. Moreover we can efficiently sample x′

uniformly at random in G−1
T (ρT ) because the PRG is linear. When ρT ← {0, 1}|T |, we obtain that

x′ is uniformly distributed in {0, 1}n. This proves the lemma. ut
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Proof of Lemma 3 (Probing strong robust PRG). Let T be the set corresponding to S in
definition 6. From Lemma 19, we have (X,GT (X)) ≡ (x′, RT ) where x′ ← G−1

T (ρT ); this gives:

(GS(X), GT (X)) ≡ (GS(x′), RT )

From |L \ T | ≤ |L| ≤ r − q|S| and the strong (r, q, k)-robustness of G, we have that GL\T (X) is
uniform and independent from (GS(X), GT (X)). Therefore:

[(GL\T (X), GT (X)) |GS(X) = gS , GT (X) = gT ] ≡ [RL∪T |RT = gT ]

Since the distribution of x′ only depends on gT , we have:

[RL∪T |RT = gT ] ≡ [RL∪T |GS(x′) = gS , RT = gT ]

Combining the two equations, we get:

[GL∪T (X) |GS(X) = gS , GT (X) = gT ] ≡ [RL∪T |GS(x′) = gS , RT = gT ]

Combining with the first equation, we get

(GL∪T (X), GS(X), GT (X)) ≡ (RL∪T , GS(x′), RT )

and therefore:
(GL∪T (X), GS(X)) ≡ (RL∪T , GS(x′))

Therefore the distribution of Y = GL∪T (X) is uniform in {0, 1}|L∪T | when X ← {0, 1}n and
moreover GS(X) can be efficiently simulated given YT only.

Proof of Theorem 1. Consider the k probes in the circuit C ′ distributed as follows: let t be the
number of probes in the PRG and k−t be the number of probes in the circuit C. Since C makes an
`-local use of its randomness, the probes in C can depend on at most (k− t) · ` bits of randomness.
From Lemma 3, the output of r− qt bits of the PRG can be replaced by a TRNG, while at most
qt bits of output are required for the simulation of the t probes of the PRG. Therefore, we must
ensure:

(k − t) · ` ≤ r − qt

If q ≤ `, then from r ≥ k` we get (k− t) · ` = k`− `t ≤ r− qt as required. If q ≥ ` then from r ≥ kq
we get (k− t) · ` ≤ (k− t) · q = kq− qt ≤ r− qt as required. Eventually, the k probes in C ′ can be
perfectly simulated by using

q · t+ (k − t) ≤ q · t+ q(k − t) ≤ qk

probes in the original qk-private circuit C. Therefore, the circuit C ′ is a k-private implementation
of f .

B.4 Proof of Lemma 5 (Private circuit with PRG)

We first compute the concrete locality ` of the SecMultFLR algorithm. We assume that n ≥ 3. The
SecMult gadget takes as input two sets of shares ai and bi for 1 ≤ i ≤ n and we assume that those
shares correspond to previous outputs of a locality refresh LR. Therefore those shares are such
that for 1 ≤ i ≤ n − 1, the shares ai and bi are random values and the shares an and bn depend
respectively on the n − 1 random values ai and bi. As a consequence, the variable anbn which is
computed within the SecMult Gadget depends on `I = 2(n − 1) random values, i.e. on all input
randoms.

Furthermore in the SecMult Gadget, n(n − 1)/2 fresh randoms are generated. The variables
which have the largest dependence to the fresh randoms are the output shares ci; one can see that
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each output ci depends on exactly n−1 fresh randoms. In particular, the output cn which includes
the value anbn depends on n− 1 fresh randoms and on the `I input randoms.

Now we investigate the locality refreshing LR performed after SecMult. Within LR, all outputs
yi are fresh randoms i.e. they depend on one random value si, except for the last output yn which

depends on those fresh randoms si and on all inputs ci. More precisely, we have: y
(0)
n = cn and

y
(i)
n = y

(i−1)
n ⊕ (ci ⊕ si), where the last output is yn = y

(n−1)
n . Therefore we must investigate all

intermediate values y
(i)
n for 0 ≤ i ≤ n − 1 to determine which one depends on the most random

values. Note that since all values y
(i)
n include the share cn, they all depend on at least `I + (n− 1)

random values.

By construction of the ci output shares in the SecMult Gadget, each ci depends on exactly n−1
fresh random values. Furthermore, if we take an arbitrary share ci with i < n, we know that ci and
cn have exactly one random value in common. Therefore knowing that the shares cn and ci depend
respectively on n−1 random values, the value cn⊕ ci will depend on (n−1) + (n−1)−2 = 2n−4
random values since the ⊕ operation removes the common random in both cn and ci. Thus, for

example, the value y
(1)
n = cn ⊕ (c1 ⊕ s1) depends on `I + 2n − 4 + 1 random values since a new

random s1 is included. With `I = 2(n− 1), we get that y
(1)
n depends on 4n− 5 random values.

More generally, if we consider the xor of i+1 output shares ck, we know that they have exactly∑i
j=1 j random values in common among the fresh random values. Therefore, if we omit for now

the dependence to input randoms `I , the variable cn ⊕ c1 ⊕ · · · ⊕ ci depends on

`C = (i+ 1)(n− 1)− 2
i∑

j=1

j =
i∑

j=0

(n− 1− 2j)

random values. The value `C increases with the number of shares i provided that 2i ≤ n− 1 and
is maximized for i = b(n− 1)/2c, where we have:

`C =

b(n−1)/2c∑
j=0

(n− 1− 2j) =

⌊
n2

4

⌋
.

Therefore the maximum dependence with random values is reached with the variable cn⊕ c1⊕
· · · ⊕ cb(n−1)/2c. Therefore in the locality refreshing LR, we deduce that the intermediate variable
which has the largest dependency to random values is

y(b(n−1)/2c)
n = cn ⊕ (s1 ⊕ c1)⊕ · · · ⊕ (s(b(n−1)/2c) ⊕ c(b(n−1)/2c)) .

As a consequence, this value has additional dependence to `R random values si where `R =
⌊
n−1

2

⌋
.

In conclusion, the locality parameter ` is as follows:

` = `I + `C + `R = 2(n− 1) +

⌊
n2

4

⌋
+

⌊
n− 1

2

⌋
.

The SecMult algorithm followed by a final locality refresh (SecMultFLR) is therefore an `-local
gadget with ` = n2/4 + 5n/2− c, where c = 3 for even n, and c = 11/4 for odd n. With n = t+ 1
we have ` = O(t2)

The trivial construction of xoring (t+ 1) r-wise independent PRGs based on polynomial evalu-
ation, use (t+ 1) · r · log2 |F| bits of randomness and can generate m bits of output, where m ≤ |F|.
From Theorem 1 we must set r = t · `; with ` = O(t2), we get r = O(t3). Let s be the original
unprotected circuit size. We need m = O(s · t2) bits of randomness with the ISW construction,
therefore we can have log2 |F| = O(log s+ log t), and therefore the total amount of input random-
ness with the robust PRG is O(t4 · (log s + log t)) = Õ(t4). Each pseudo-random generation also
takes Õ(t4) time; therefore the circuit runs in time Õ(s · t6) with the trivial construction.
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C Improving the locality of the multiplication gadget

C.1 Proof of Lemma 8 (locality of SecMultILR)

We consider the SecMultILR algorithm which takes as input two sets of shares ai and bi for 1 ≤ i ≤ n
and we assume that those shares are already locality refreshed. Therefore the shares ai and bi are
random values for 1 ≤ i ≤ n−1 and the shares an and bn depend respectively on the n−1 random
values ai and bi. As a consequence, the variable anbn which is computed within the gadget depends
on 2(n− 1) random values.

The SecMultILR algorithm consists of a main loop divided into two sub-loops: a first sub-loop
A performing the ISW multiplication (lines 5 to 10), and a second loop B performing the locality
refreshing (lines 11 to 15).

In the following, we assume that n ≥ 3 and we prove by recurrence for 2 ≤ j ≤ n− 1 that the
variable cj,j−2 (or c2,1 if j = 2) in loop B has a dependence to 4j − 3 random values, which is the
maximal dependence to random values at loop j.

Base case: for j = 2, in Loop A, the variable c2,1 = a2b2 ⊕ (a1b2 ⊕ r1,2 ⊕ a2b1) depends on the
4 input random values a1, a2, b1, b2 and on the fresh random r1,2 with a total of 5 random values.
Furthermore in Loop B, the variable c2,1 = (a2b2 ⊕ a1b2 ⊕ r1,2 ⊕ a2b1)⊕ ((a1b1 ⊕ r1,2)⊕ s1,2) still
depends on the 4 input random values a1, a2, b1, b2, and on the fresh random value s1,2, but it does
not depend anymore on r1,2 which disappears with the ⊕ operation. Therefore, the variable c2,1 in
loop A and B has a dependence to 5 = 4j − 3 random values with j = 2.

Recurrence step: now, we assume that for j = k, the value ck,k−2 in Loop A and B has a
maximal dependence to 4k − 3 random values and we show that for j = k + 1, the value ck+1,k−1

in Loop B has a dependence to 4(k + 1) − 3 = 4k + 1 random values. We start by analyzing
Loop A at round j = k + 1, and more precisely we consider the values ck,k+1 and ck+1,k i.e.
values at lines 7 and 9 at loop i = j − 1 = k. The value ck+1,k depends on all inputs ai and bi
for 1 ≤ i ≤ k + 1 and on k fresh random values r1,k+1, . . . , rk,k+1, which gives a dependence to
2(k + 1) + k = 3k + 2 random values, which is smaller than 4k + 1. Furthermore, the value ck,k+1

is such that ck,k+1 = ck,k−1 ⊕ rk,k+1 and since by recurrence hypothesis the value ck,k−1 has a
dependence to at most 4k − 3 random values, the value ck,k+1 depends on (4k − 3) + 1 = 4k − 2
random values, which is still smaller than 4k + 1. Therefore in Loop A, we have shown that the
maximal dependence to random values is smaller than 4k+1, with a dependence to 3k+2 random
values for the variable ck+1,k at round j = k + 1.

Now we consider Loop B. At line 13 of the SecMultILR algorithm, a xor between ck+1,k and all
ci,k+1 computed in Loop A is performed for 1 ≤ i ≤ k, to which j − 1 = k fresh random values
s1,k+1, . . . , sk,k+1 are added. By construction, for 1 ≤ i ≤ k−1 we have ci,k+1 = si,k⊕ri,k+1, which
means that the computation at line 13 is ck+1,i⊕ (ci,k+1⊕ si,k+1) = ck+1,i⊕ (si,k ⊕ ri,k+1⊕ si,k+1).
Therefore, at each loop i, the dependence to random ri,k+1 is removed (since the random ri,k+1

also belongs to ck+1,i), but two new dependencies are created with the adding of random values
si,k and si,k+1; which overall amounts to adding a dependence to one random value at each loop
i. Note that this is true for i ≤ k − 1 since at round i = k the dependence to all randoms si,k is
removed (since they all belong to ck,k+1). Therefore, for j = k+ 1 the number of random values to
which ck+1,i depends goes increasing by one until i = k − 1. As a consequence, the value ck+1,k−1

depends on k− 1 new randoms, to which we add the original dependence of the variable ck+1,k at
end of loop A (the first cj value at loop B) which is, as previously shown, of 3k+ 2 random values.
We therefore get that the variable ck+1,k−1 depends on (k− 1) + (3k+ 2) = 4k+ 1 random values
and this asserts the recursive hypothesis.

As a consequence, one has shown that in loops A and B, the variable cj,j−2 has a dependence
to 4j − 3 random values for 2 ≤ j ≤ n − 1. In particular, for j = n − 1, the value cn−1,n−3 has a
dependence to 4(n− 1)− 3 = 4n− 7 random values.

Last step: for the specific case j = n, one has to consider the fact that the input variables an
and bn are not random values but depend each on the n − 1 random values ai and bi. Therefore,
when counting the randomness of cn,n−2, one has to remove both values an and bn which are
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already counted, that is, the variable cn,n−2 has a dependence to 4n − 3 − 2 = 4n − 5 random
values, and this variable has the largest dependence to random values in the SecMultILR algorithm.
As a conclusion, we have shown that the locality parameter is ` = 4n− 5 for n ≥ 3.

C.2 Proof of Theorem 3 (Completeness of SecMultILR)

The SecMultILR algorithm consists of a main loop which performs two loops: a first loop A from
line 5 to 10 which is the same as in the original SecMult and a second loop B from lines 11 to 15
which corresponds to a locality refresh of outputs from loop A. We proceed by recurrence on n.
For n = 1, the algorithm outputs c1 = a1 · b1 which is correct. Now we assume that the relation is
true for j = k and we show that it is still correct for j = k + 1.

The first loop A for j = k + 1 will compute the following:

ck+1 = ak+1bk+1 ⊕
k⊕
i=1

(aibk+1 ⊕ ak+1bi ⊕ ri) and ci = c′i ⊕ ri for 1 ≤ i ≤ k ,

where the c′i correspond to outputs after round j = k. Therefore, the sum between all new ci and
ck+1 gives:

k+1⊕
i=1

ci = ak+1bk+1 ⊕
k⊕
i=1

(aibk+1 ⊕ ak+1bi)⊕
k⊕
i=1

c′i

Since by recurrence assumption we have
⊕k

i=1 c
′
i =

⊕k
i=1,j=1 aibj , we deduce that

k+1⊕
i=1

ci = ak+1bk+1 ⊕
k⊕
i=1

(aibk+1 ⊕ ak+1bi)⊕
k⊕

i=1,j=1

aibj

=
k+1⊕

i=1,j=1

aibj =

(
k+1⊕
i=1

ai

)
·

(
k+1⊕
i=1

bi

)

Thus, at the end of Loop A at round j = k + 1, the completeness of SecMultILR is verified.
After Loop A has been performed, the second loop B is nothing but a refreshing of the outputs of
the first loop A. Therefore the outputs of Loop B verify the same property as the outputs of Loop
A, which terminates the proof.

C.3 Proof of Theorem 4 (t-SNI of SecMultILR)

The proof is based on the t-SNI property of the original SecMult algorithm (see Appendix B.2).
We describe a sequence of games.

Game 0: we generate the random variables as in the original circuit. Using all inputs ai and bj , we
can simulate all intermediate variables.

Game 1: we modify the distribution of the variables sij as follows. Instead of letting sij ← F2k , we
let sij ← s′ij ⊕ cij , where cij is the value of ci at Line 13, and s′ij ← F2k . Since we have replaced
a subset of random variables by identically distributed random variables, the adversary’s view
has the same distribution as in Game 0. Moreover, in Game 1, the following operations are now
performed:

for i = 1 to j − 1 do:
s′ ← F2k

cj ← cj ⊕ s′
ci ← ci ⊕ s′

end for

35



We see that the operations correspond to the mask refreshing from [RP10], applied to the first i
shares c1, . . . , cj .

Game 2: we modify the simulation of the intermediate variables as follows. We observe that the
circuit is linear in the variables s′ij ; more precisely, any intermediate variable can be written as
f((ai)i, (bi)i, (rij)ij) ⊕ g((s′ij)ij) for some function f and some linear function g. Note that the
function f corresponds to the value of the intermediate variable with all s′ij fixed to 0. To simulate
such intermediate variable, we therefore generate the randomness as in Game 1, except that all
s′ij are first set to 0; we then generate the randoms s′ij as in the original circuit, and compute
the function g to simulate the corresponding intermediate variable. Since the distribution of the
intermediate variable remains the same, the adversary’s view has the same distribution as in
Game 1.

Game 3: finally, we modify the way the function f is computed for a given intermediate variable.
The function f actually corresponds to the original SecMult algorithm without the internal locality
refreshing. Since the SecMult gadget is t-SNI, the t1 intermediate variables and the output variables
c|O can be perfectly simulated from the knowledge of a|I and b|J , with |I| ≤ t1 and |J | ≤ t1, under
the condition t1 + |O| ≤ t. Therefore, the adversary’s view for the full circuit can be perfectly
simulated from the same a|I and b|J .

C.4 The SecMultILR2 algorithm

We provide below in Algorithm 6 the SecMultILR2 algorithm.

Algorithm 6 SecMultILR2
Input: shares ai satisfying

⊕n
i=1 ai = a, shares bi satisfying

⊕n
i=1 bi = b

Output: shares ci satisfying
⊕n

i=1 ci = a · b
1: for i = 1 to n do
2: ci ← ai · bi
3: end for
4: for j = 2 to n do
5: for i = 1 to j − 1 do
6: r ← F2k # referred by ri,j
7: cj ← cj ⊕ (ci ⊕ r) # referred by cj,i
8: ci ← (ai · bj ⊕ r)⊕ aj · bi # referred by ci,j
9: end for

10: end for
11: for i = 1 to n− 1 do
12: s← F2k

13: cn ← cn ⊕ (ci ⊕ s)
14: ci ← s
15: end for
16: return (c1, . . . , cn)

C.5 Proof of Lemma 10 (Locality of SecMultILR2)

We consider the SecMultILR2 algorithm which takes as input two sets of shares ai and bi for
1 ≤ i ≤ n and we assume that those shares correspond to previous outputs of a locality refreshing
LR. Therefore the shares ai and bi are random values for 1 ≤ i ≤ n− 1 and the shares an and bn
depend respectively on the n − 1 random values ai and bi. As a consequence, the variable anbn
which is computed within the gadget depends on 2(n− 1) random values.

The SecMultILR2 algorithm consists of a main loop A performing a slightly modified ISW
multiplication (lines 4 to 10), and a final loop B performing the refresh mask R (lines 11 to 15). As
we will see, for 2 ≤ j ≤ n the variable which depends on the most random numbers is the variable
cj in Loop A (line 7) for i = j− 2, i.e. cj,j−2. In the following, we assume that n ≥ 3 and we prove
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that the variable cj,j−2 in loop A has a dependence to 4j− 4 random values, which is the maximal
dependence to random values at loop j.

At line 7, the cj variable is updated at each round i, for 1 ≤ i ≤ j − 1. More precisely, we have
that the last value cj is equal to

cj,j−1 = cj,j−2 ⊕ (cj−1,j−2 ⊕ rj−1,j) where cj,j−2 = ajbj ⊕
j−2⊕
i=1

(ci,j−1 ⊕ ri,j) .

We start by analyzing the variable cj,j−2. By construction, the variable cj,j−2 depends on all
input random variables ai and bi for 1 ≤ i ≤ j, since it depends on ajbj and on all intermediate
values ci,j−1 which themselves depend on aj−1, bj−1, ai and bi for 1 ≤ i ≤ j − 2. Therefore the
variable cj,j−2 depends on 2j random input values. Now we investigate the dependence of cj,j−2

to fresh random values r. All variables ci,j−1 have a simple structure, i.e. ci,j−1 = (aibj−1 ⊕
ri,j−1)⊕ aj−1bi and they depend on one fresh random only, which is ri,j−1. Therefore, the variable
ci,j−1 ⊕ ri,j depends on two fresh random values ri,j−1 and ri,j , and one deduces that the xor⊕j−2

i=1 (ci,j−1 ⊕ ri,j) depends on 2(j − 2) fresh randoms. Thus in total, the variable cj,j−2 depends
on 2(j − 2) + 2j = 4j − 4 random variables.

Now, we analyze the variable cj,j−1 which is equal to cj,j−2⊕(cj−1,j−2⊕rj−1,j). By construction,
the variable cj−1,j−2 contains the xor of all intermediate variables ci,j−1 for 1 ≤ i ≤ j − 2 (thus
contains the xor of the j − 2 randoms ri,j−1), which are themselves contained in cj,j−2. Therefore,
the xor between (cj−1,j−2⊕ rj−1,j) and cj,j−2 removes the dependence to j−2 fresh random values
r1,j−1, . . . , rj−2,j−1 and adds only one dependence to a fresh random rj−1,j . As a consequence, the
variable cj,j−1 has a dependence to 4j − 4 − (j − 2) + 1 = 3j − 1 random values, and we have
3j − 1 ≥ 4j − 4 for j ≥ 3.

Next, we observe that the final loop B performing the refresh mask R does not increase the
locality since at each loop on i, the operation cn ← cn ⊕ (ci ⊕ r) adds one fresh random r but also
removes one fresh random ri,n which appears in ci and cn.

As a consequence, one has shown that the maximal dependence to random values is reached in
loop A with the variable cj,j−2 which has a dependence to 4j− 4 random values for 2 ≤ j ≤ n− 1.
In particular, for j = n− 1, the value cn−1,n−3 has a dependence to 4(n− 1)− 4 = 4n− 8 random
values.

For the specific case j = n, one has to consider the fact that the input variables an and bn
are not random values but depend each on the n − 1 random values ai and bi. Therefore, when
counting the randomness of cn,n−2, one has to remove both values an and bn which are already
counted, that is, the variable cn,n−2 has a dependence to 4n− 4− 2 = 4n− 6 random values, and
this variable has the largest dependence to random values in the SecMultILR2 algorithm.

As a conclusion, we have shown that the locality parameter is ` = 4n− 6 for n ≥ 3 and since
n = t+ 1 we have that ` = O(t) which concludes the proof.

C.6 Proof of Theorem 5 (Completeness of SecMultILR2)

The SecMultILR2 algorithm consists of a main loop A performing a slightly modified ISW multi-
plication (lines 4 to 10), and a final loop B performing the refresh mask R (lines 11 to 15).

We proceed by recurrence on n. For n = 1, the algorithm outputs c1 = a1 · b1 which is correct.
Now we assume that the relation is true for j = k and we show that it is still correct for j = k+ 1.

The first loop A for j = k + 1 will compute the following:

ck+1 = ak+1bk+1 ⊕
k⊕
i=1

ri ⊕
k⊕
i=1

ci

Since by recurrence assumption we have
⊕k

i=1 ci =
⊕k

i=1,j=1 aibj we deduce that ck+1 = ak+1bk+1⊕⊕k
i=1 ri⊕

⊕k
i=1,j=1 aibj . Furthermore, each new ci for 1 ≤ i ≤ k is such that: ci = aibk+1⊕ak+1bi⊕
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cj−1

(aibj ⊕ ri,j)⊕ ajbi

1 ≤ i ≤ j − 1

Oj

Oj−1

t2

Fig. 10. Illustration of the t-NI proof. We maintain a list L of the variables in {ri,j , ci ⊕ ri,j , ai · bj ⊕ ri,j , (ai · bj ⊕
ri,j) ⊕ aj · bi} for 1 ≤ i ≤ j − 1 that must be simulated. This includes all variables that are directly probed, and
all output variables (ai · bj ⊕ ri,j) ⊕ aj · bi such that i ∈ Oj . Moreover, if j ∈ Oj or any variable cj,i is probed, we
include in L all variables ci ⊕ ri,j , so that we can simulate all intermediate variables cj,i.

ri. Therefore, the sum between all new ci and ck+1 gives:

k+1⊕
i=1

ci = ak+1bk+1 ⊕
k⊕

i=1,j=1

aibj ⊕
k⊕
i=1

(aibk+1 ⊕ ak+1bi)

=
k+1⊕

i=1,j=1

aibj =

(
k+1⊕
i=1

ai

)
·

(
k+1⊕
i=1

bi

)

Thus, at the end of Loop A, the completeness of SecMultILR2 is verified and therefore the property
is true for all k ≤ n, in particular for k = n. After Loop A has been performed, the second loop
B is nothing but a refreshing of the outputs of the first loop A. Therefore the outputs of Loop B
verify the same property as the outputs of Loop A, which terminates the proof.

C.7 Proof of Theorem 6 (t-SNI of SecMultILR2)

The proof of Theorem 6 is relatively complex. We prove two intermediate lemmas below that
consider some part of the SecMultILR2 algorithm.

Lemma 20 (t-NI property). Consider Algorithm 6 without lines 11 to 15. We consider an
adversary who does not probe the variables aibj for i 6= j. Any set of tn intermediate variables and
c|O for any O ⊂ [1, n], can be perfectly simulated from a|X∪O and b|X∪O, for some subset X with
|X| ≤ tn.

Proof. We prove Lemma 20 by recurrence on the number of input shares n. See Figure 10 for an
illustration of the proof. As written in Lemma 20, we assume that intermediate variables aibj for
any i 6= j are not probed.

Base Case: The call to Algorithm 6 (without lines 11 to 15) with n = 2 amounts to performing
the following computations: c2,1 = a2b2⊕(a1b1⊕r1,2) and c1,2 = (a1b2⊕r1,2)⊕a2b1. If tn+ |O| ≥ 2,
then we can perfectly simulate all variables from the knowledge of the inputs a1, a2, b1 and b2. If
we have tn + |O| < 2, three cases arise:

– If tn = 0 and |O| = 0, then no variable is probed and nothing has to be simulated. Thus, the
set X is left empty and |X| = 0 ≤ tn.
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– If tn = 1, then |O| = 0 and no output variable is probed. In this case, if the probed variable is
a1, b1 or a1b1 (resp. a2, b2 or a2b2), we put in X the index 1 (resp. the index 2) and the latter
can trivially be perfectly simulated from a|X and b|X . Thus, in this case we have |X| = 1 ≤ tn.
If the probed variable is r1,2 or a1b1⊕ r1,2 or a1b2⊕ r1,2, then the random r1,2 can play the role
of a one-time pad and the probed variable has a uniform distribution and can be simulated by
generating a random. In this case, the set X is left empty and |X| = 0 ≤ tn.

– If |O| = 1, then tn = 0 and only one output variable c1,2 or c2,1 is probed. In this case, the
probed output variable can be treated as a uniformly random and independent value since the
random r1,2 is never probed (otherwise we would have tn > 0). Thus, the set X is left empty
and |X| = 0 ≤ tn.

Inductive Step: We assume that for k = j − 1, any set of tj−1 intermediate variables and
any subset Oj−1 of outputs can be perfectly simulated from a|Xj−1∪Oj−1

and b|Xj−1∪Oj−1
, with

|Xj−1| ≤ tj−1, and we show that any set of tj intermediate variables and any subset Oj of outputs
can be perfectly simulated from a|Xj∪Oj and b|Xj∪Oj , with |Xj | ≤ tj . Let t′ be the number of
internal probes at round j, i.e. we have tj = tj−1 + t′.

In the following, we denote by ci the value from previous round j − 1, i.e. ci,j−1 for i ≤ j − 2
and cj−1,j−2, and we assume that all probed values ci are considered to be probed at round j − 1
and not at round j. The new ci values from round j will be denoted by ci,j . We maintain a list L
which is initially filled with all probed intermediate and output variables. The construction of the
set Xj is performed as follows: initially, we let Xj ← Xj−1. Then,

– if the variable cj,i for any i ≤ j − 1 is probed, or if j ∈ Oj , then we add the index j into Xj

and one must simulate all intermediate variables ci ⊕ ri,j for i ≤ j − 1, i.e. we add in the list
L all values ci ⊕ ri,j for i ≤ j − 1.

– if two variables among the four variables {ci ⊕ ri,j , aibj ⊕ ri,j , ri,j , ci,j = (aibj ⊕ ri,j) ⊕ ajbi}
are in the list L, i.e. are probed, or must be simulated (because cj,i is probed or j ∈ Oj , which
leads to the simulation of ci⊕ ri,j , or because i ∈ Oj which leads to the simulation of ci,j), then
we add the index j into Xj and the index i into Oj−1.

– Lastly, we add in Xj all indices which we added in Oj−1 but which are not in Oj .

For the simulation, we start by applying the recurrence assumption which asserts that any
set of tj−1 intermediate variables and any subset Oj−1 of outputs at round j − 1 can be perfectly
simulated from a|Xj−1∪Oj−1

and b|Xj−1∪Oj−1
, with |Xj−1| ≤ tj−1. Then, for the simulation of probed

variables at round j, we consider for all 1 ≤ i ≤ j − 1, the following three cases:

– if at least two elements among the four variables {ci ⊕ ri,j , aibj ⊕ ri,j , ri,j , ci,j} are in the list
L, then by construction, we have both indices i and j in Xj ∪Oj and we can perfectly simulate
all probed variables at round j with the knowledge of a|Xj∪Oj and b|Xj∪Oj , and by generating
a random for ri,j .

– If exactly one element among the four variables {ci ⊕ ri,j , aibj ⊕ ri,j , ri,j , ci,j} is in the list L,
then the random ri,j can play the role of a one-time pad and the probed variable has a uniform
distribution and can be simulated by generating a random.

– If j ∈ Oj or one of the cj,i variables for any i ≤ j − 1 is probed, then by construction we know
aj and bj since j ∈ Xj , and all variables ci ⊕ ri,j can be perfectly simulated (since we added
them into the list L and already simulated them with the two cases above), therefore we can
perfectly simulate the variable cj,i from a|Xj∪Oj and b|Xj∪Oj .

It remains to show that |Xj | ≤ tj . Indeed, by recurrence assumption we have |Xj−1| ≤ tj−1

and since at most one index per probe was added into the set Xj at round j, we have

|Xj | ≤ |Xj−1|+ t′ ≤ tj−1 + t′ ≤ tj .

As a conclusion, one has proven that the recurrence hypothesis is true for all rounds k, and
in particular for k = n. Thus, by taking O = On and X = Xn, one gets that the intermediate
and output variables can be perfectly simulated from a|X∪O and b|X∪O, with subset X such that
|X| ≤ tn, which terminates the proof. ut
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Lemma 21 (t-SNI property). We consider Algorithm 6 without lines 11 to 15. We consider
an attacker who does not probe the variables ai · bj. Consider any set of tn intermediate variables.
There exists a set X with |X| ≤ tn + 1 and n ∈ X such that the tn intermediate variables and
c|X can be perfectly simulated, while for any V ( [1, n] \X the variables in c|V are uniformly and
independently distributed, conditioned on the probed variables and c|X .

Proof. We prove Lemma 21 by recurrence on the number of input shares n. See Figure 11 for an
illustration of the proof.

Base Case: The call to Algorithm 6 (without lines 11 to 15) with n = 2 amounts to performing
the following computations: c2,1 = a2b2 ⊕ (a1b1 ⊕ r1,2) and c1,2 = (a1b2 ⊕ r1,2)⊕ a2b1. If tn ≥ 1 we
can take X = [1, 2] and we can perfectly simulate all variables from the knowledge of the inputs a1,
a2, b1 and b2, and we have |X| = 2 ≤ tn + 1. Furthermore, the set V ( [1, 2] \X where X = [1, 2],
is the empty set. If we have tn = 0, no intermediate variable has been probed. We take X = {2}
which gives |X| = 1 ≤ tn+1 and c2,1 = a2b2⊕(a1b1⊕r1,2) can be perfectly simulated. Indeed since
r1,2 acts as a one-time pad, the value (a1b1⊕r1,2) has a uniform distribution and one then perfectly
simulates c2,1 with the knowledge of a2b2 since 2 ∈ X. Then the set V ( [1, 2] \ X = V ( [1] is
empty.

Inductive Step: We assume that for k = j − 1, there exists a set Xj−1 with |Xj−1| ≤
tj−1 + 1 such that the tj−1 intermediate variables and c|Xj−1

can be perfectly simulated, while for
any Vj−1 ( [1, j − 1] \ Xj−1 the variables in c|Vj−1

are uniformly and independently distributed,
conditioned on the probed variables and c|Xj−1

. We show that this is still true for k = j.
Let t′ be the number of internal probes at round j, i.e. we have tj = tj−1 + t′. In the following,

we denote by ci the value from previous round j − 1, i.e. ci,j−1 for i ≤ j − 2 and cj−1,j−2, and we
assume that all probed values ci are considered to be probed at round j − 1 and not at round j.
The new ci values from round j will be denoted by c′i,j .

We consider two cases: a first case where none of the intermediate variables c′j,i is probed for
1 ≤ i < j, and a second case where at least one variable c′j,i is probed.

First case: None of the intermediate variables c′j,i is probed. We consider a set I which is constructed
as follows:

– if at least one variable among the four variables {ci⊕ri,j , aibj⊕ri,j , ri,j , c′i,j = (aibj⊕ri,j)⊕ajbi}
is probed, then we add the index i into I.

Then one can apply Lemma 20 with O = I which allows to assert that any set of tj−1 intermediate
variables and any subset O of outputs at round j − 1 can be perfectly simulated from a|Xj−1∪O
and b|Xj−1∪O, with |Xj−1| ≤ tj−1. Therefore, the ci variables for i ∈ Xj−1 ∪ O can be perfectly
simulated from a|Xj−1∪O and b|Xj−1∪O and the variables ci⊕ri,j and ri,j can be perfectly simulated
by generating a random for ri,j . Then, one constructs the set Xj as follows:

Xj = Xj−1 ∪ I ∪ {j}

and one can perfectly simulate the variables aibj ⊕ ri,j and c′i,j = (aibj ⊕ ri,j) ⊕ ajbi from a|Xj
and b|Xj since i and j are in Xj . The variable c′j,j−1 can also be perfectly simulated. Indeed, if
Xj = [1, j], then one can perfectly simulate it from the knowledge of all input variables ai and bi
with i ≤ j, and otherwise, there exists an index i? /∈ Xj , which means that the ci? variable is not
probed, nor needed to be simulated (otherwise we would have i? ∈ Xj), therefore the variable ri?,j
acts as a one-time pad and the c′j,j−1 value has a uniform and independent distribution. Thus we
have shown that the tj intermediate variables and c′|Xj can be perfectly simulated from a|Xj and

b|Xj .
We note that since |Xj−1| ≤ tj−1 and |I| ≤ t′, we have as required:

|Xj | = |Xj−1 ∪ I ∪ {j}| ≤ |Xj−1|+ |I|+ 1 ≤ tj−1 + t′ + 1 ≤ tj + 1 .

We now prove that for any Vj ( [1, j]\Xj the variables in c′|Vj are uniformly and independently

distributed, conditioned on the tj probed variables and c′|Xj .
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If Xj = [1, j], then the set Vj is empty. Otherwise, we consider the previously mentioned index
i? /∈ Xj and we take without loss of generality Vj = [1, j] \ (Xj ∪ {i?}).

We first observe that the variable c′j,j−1 can be rewritten as

c′j,j−1 = ajbj ⊕
j−1⊕
i=1

(ci ⊕ ri,j) = ajbj ⊕ ci? ⊕ ri?,j
j−1⊕

i=1,i 6=i?
(ci ⊕ ri,j) ,

therefore the variable c′j,j−1 has the same distribution as the random ri?,j , which is uniform and
independent, since it does not enter in the computation of any other probed variable. The variable
c′j,j−1 can thus be replaced by a random. As a second step, since the random values ri,j are not used
for the simulation of c′j,j−1 and are only used once for the computation of c′i,j = (aibj ⊕ ri,j)⊕ajbi,
the variables c′i,j for i ∈ Vj have the same distribution as the variables ri,j , which have a uniform and
independent distribution. Thus, we have shown that the c′i,j variables and the last c′j,j−1 variable
have a uniform and independent distribution. In particular, conditioned on the probed variables
and c′|Xj (containing c′j,j−1), the variables in c′|Vj are uniformly and independently distributed.

Second case: At least one of the intermediate variables c′j,i is probed. As in the first case, we
consider a set I which is constructed as follows: if at least one variable among the four variables
{ci ⊕ ri,j , aibj ⊕ ri,j , ri,j , c′i,j = (aibj ⊕ ri,j)⊕ ajbi} is probed, then we add the index i into I.

Then one can apply the recurrence hypothesis which allows us to perfectly simulate the tj−1

intermediate variables and c|Xj−1
at round j − 1 where |Xj−1| ≤ tj−1 + 1, and using both sets I

and Xj−1, one constructs the set Xj as before: Xj = Xj−1 ∪ I ∪ {j}.
Note that if Xj = [1, j], then one can perfectly simulate all variables from the knowledge of all

input variables ai and bi with i ≤ j, and furthermore, the set Vj is empty. Otherwise, there exists
an index i? /∈ Xj and we take without loss of generality Vj = [1, j] \ (Xj ∪ {i?}).

In the following we show that the tj intermediate variables and c′|Xj can be perfectly simulated.

We consider three cases depending on whether the considered index i ∈ Xj is in Xj−1, in I\Xj−1,
or i = j:

– If i ∈ Xj−1: the ci variables can be perfectly simulated from a|Xj and b|Xj thanks to the
recurrence assumption (since Xj−1 ⊂ Xj) and the variables ci ⊕ ri,j and ri,j can be perfectly
simulated by generating a random for ri,j . Then, since i and j are in Xj , one can perfectly
simulate the variables aibj ⊕ ri,j and c′i,j = (aibj ⊕ ri,j)⊕ ajbi from a|Xj and b|Xj .

– If i ∈ I\Xj−1: we apply the second part of the recurrence assumption which asserts that for
any Vj−1 ( [1, j−1]\Xj−1 the variables in c|Vj−1

are uniformly and independently distributed,
conditioned on the probed variables and c|Xj−1

. Therefore, we define the set Vj−1 = Vj ∪
(I\Xj−1) and the ci variables are uniformly and independently distributed. The variables ci⊕ri,j
and ri,j can be perfectly simulated by generating a random for ri,j . Then, since i and j are in
Xj , one can perfectly simulate the variables aibj ⊕ ri,j and c′i,j = (aibj ⊕ ri,j)⊕ ajbi from a|Xj
and b|Xj .

– If i = j, then we need to perfectly simulate the variable c′j,j−1. To this end, we prove that we
can perfectly simulate all intermediate variables ci ⊕ ri,j for all i ≤ j − 1. We have already
proven that is it the case for all i ∈ Xj−1∪I. Since we assume that the index i? belongs neither
to Vj nor Xj , it remains to show that it is still true for i ∈ Vj and for i = i?. If i = i?, then
the variables ci? and ri?,j are not probed, nor needed to be simulated (otherwise we would
have i? ∈ Xj), therefore the variable ri?,j acts as a one-time pad and the ci? ⊕ ri?,j value has a
uniform and independent distribution. If i ∈ Vj , we show in the following that we can perfectly
simulate the intermediate variables ci ⊕ ri,j , while proving the second part of the Lemma.

We note that the set I is such that |I| ≤ t′− 1 since we are in the case where at least one c′j,i is
probed and we did not add any index in I for this probed value. Therefore since |Xj−1| ≤ tj−1 + 1,
we have as required:

|Xj | = |Xj−1 ∪ I ∪ {j}| ≤ |Xj−1|+ |I|+ 1 ≤ (tj−1 + 1) + (t′ − 1) + 1

≤ tj−1 + t′ + 1 ≤ tj + 1
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We now prove the second part of the Lemma, i.e. that for any Vj ( [1, j] \Xj the variables in
c′|Vj are uniformly and independently distributed, conditioned on the tj probed variables and c′|Xj .

Since by construction we have defined Vj−1 = Vj ∪ (I\Xj−1), we deduce that Vj is a subset
of Vj−1, therefore one can apply the recurrence hypothesis which allows us to assert that the ci
variables are uniformly and independently distributed. The variables ci ⊕ ri,j and ri,j also have
a uniform and independent distribution since ri,j is a random value. It remains to show that the
variable c′i,j = (aibj ⊕ ri,j) ⊕ ajbi is uniformly and independently distributed. This is indeed the
case since there is a bijection between (ri,j , ci) and (c′i,j , ci⊕ri,j), which means that the distribution
of c′i,j and ci ⊕ ri,j is uniform and independent as it is the case for ri,j and ci.

Eventually, as mentioned previously, since j ∈ Xj , we need to perfectly simulate the variable
c′j,j−1. This can be done since we have shown that we could perfectly simulate all intermediate
variables (ci⊕ri,j) for all i ≤ j−1, and since j ∈ Xj we also know ajbj , which allows us to perfectly

simulate c′j,j−1 = ajbj ⊕
⊕j−1

i=1 (ci ⊕ ri,j).
Therefore we have shown that the variables c′i,j and ci ⊕ ri,j have a uniform and independent

distribution, in particular, conditioned on the probed variables and c′|Xj (containing c′j,j−1), the

variables in c′|Vj are uniformly and independently distributed, which concludes the proof. ut

j

i?

Xj

Vj

Xj−1

Vj−1

I \Xj−1

Fig. 11. Illustration of the t-SNI sets. Without loss of generality, we can consider any i? ∈ [1, j − 1] and let
Vj = [1, j − 1] \ (Xj ∪ {i?}).

We can now prove Theorem 6.

Proof. We prove Theorem 6 by considering both parts of Algorithm 6 as gadgets; namely, Gadget
1 is the first part of the algorithm (lines 1 to 10) and Gadget 2 is the final loop performing the
refresh mask R (lines 11 to 15). We show that the composition of Gadget 2 with Gadget 1 is t-SNI.

As a first step we assume that intermediate variables aibj for any i 6= j are not probed and we
will consider them at the end of the proof.

Let tn be the number of probes in Gadget 1 and t′ be the number of internal probes in Gadget
2, and let t′n be the total number of probes in Gadget 1 and 2, i.e. we have t′n = tn + t′. In the
following, we denote by ci the values from Gadget 1, i.e. ci,n for i ≤ n − 1 and cn,n−1, and we
assume that all probed values ci (including those in Gadget 2) are considered to be probed in
Gadget 1 and not in Gadget 2. The new ci values from Gadget 2 will be denoted by c′i,j .
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In the following, we look at Gadget 2 and we consider two cases: a first case where none of the
intermediate variables c′n,i (line 13) is probed for 1 ≤ i < n, and a second case where at least one
variable c′n,i is probed.

First case: None of the intermediate variables c′n,i is probed. We consider a set I ′ which is con-
structed as follows: if at least one variable among the two variables {ci⊕si, si} is probed in Gadget
2, then we add the index i into I ′.

Then one can apply Lemma 20 with the output set I ′, which allows to assert that the set of tn
intermediate variables and any subset I ′ of outputs of Gadget 1 can be perfectly simulated from
a|Xn∪I′ and b|Xn∪I′ , with |Xn| ≤ tn. Therefore, the ci variables for i ∈ I ′ can be perfectly simulated
from a|Xn∪I′ and b|Xn∪I′ and the variables ci ⊕ si and si in Gadget 2 can be perfectly simulated
by generating a random for si. Then, one constructs the set X ′n as follows:

X ′n = Xn ∪ I ′ .

We note that since |Xn| ≤ tn and |I ′| ≤ t′, we have as required:

|X ′n| = |Xn ∪ I ′| ≤ |Xn|+ |I ′| ≤ tn + t′ ≤ t′n .

Furthermore, since |X ′n| ≤ t′n and since by definition of Theorem 6 we have t′n+ |O| < n, we deduce
that |X ′n ∪O| ≤ |X ′n|+ |O| ≤ t′n + |O| < n. Thus, there exists an index i? /∈ X ′n ∪O and two cases
arise:

– If i? = n then n /∈ O which means that c′n,n−1 need not be simulated. Furthermore, all output
variables c′i = si with i ∈ O can also be simulated by generating a random.

– If i? 6= n, this means that the variables ci? , ci? ⊕ si? and si? are not probed nor needed to be
simulated. Thus, we first observe that the variable c′n,n−1 can be rewritten as

c′n,n−1 = cn ⊕
n−1⊕
i=1

(ci ⊕ si) = cn ⊕ ci? ⊕ si?
n−1⊕

i=1,i 6=i?
(ci ⊕ si) ,

therefore the variable c′n,n−1 has the same distribution as the random si? , which is uniform
and independent, since it does not enter in the computation of any other probed variable. The
variable c′n,n−1 can thus be replaced by a random. As a second step, since the random values
si are not used for the simulation of c′n,n−1 and are only used once for the output c′i = si, the
variables c′i for i ∈ O have the same distribution as the variables si, which have a uniform and
independent distribution and can thus be perfectly simulated by generating a random.

As a conclusion, we have shown that in the case where none of the intermediate variables c′n,i is
probed, the t′n intermediate variables and c′|O can be perfectly simulated from a|X′n and b|X′n with

|X ′n| ≤ t′n.

Second case: At least one of the intermediate variables c′n,i is probed. As in the first case, we
consider a set I ′ which is constructed as follows: if at least one variable among the two variables
{ci ⊕ si, si} is probed in Gadget 2, then we add the index i into I ′.

Then one can apply Lemma 21 on Gadget 1, namely, for j = n and i = n− 1 (i.e. at the end
of Gadget 1), there exists a set Xn with |Xn| ≤ tn + 1 and n ∈ Xn such that the tn intermediate
variables probed in Gadget 1 and the output values c|Xn from Gadget 1 can be perfectly simulated
from a|Xn and b|Xn , while for any Vn ( [1, n] \Xn the variables in c|Vn are uniformly and indepen-
dently distributed, conditioned on the probed variables and c|Xn . Using both sets I ′ and Xn, one
constructs the set X ′n as before: X ′n = Xn ∪ I ′.

We note that the set I ′ is such that |I ′| ≤ t′− 1 since we are in the case where at least one c′n,i
is probed and we did not add any index in I ′ for this probed value. Therefore since |Xn| ≤ tn + 1,
we have as required:

|X ′n| = |Xn ∪ I ′| ≤ |Xn|+ |I ′| ≤ (tn + 1) + (t′ − 1) ≤ tn + t′ ≤ t′n .
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Fig. 12. Illustration of the t-SNI sets for the second case of Theorem 6.

Furthermore, since |X ′n| ≤ t′n and since by definition of Theorem 6 we have t′n+ |O| < n, we deduce
that |X ′n∪O| ≤ |X ′n|+ |O| ≤ t′n+ |O| < n. Thus, there exists an index i? /∈ X ′n∪O and we consider
the set O′ = [1, n] \ (X ′n ∪ {i?}) which includes the set O \X ′n, that is we have O \X ′n ⊂ O′.

In the following we show that the t′n intermediate variables of gadgets 1 and 2 including c′|X′n
,

and the output variables c′|O can be perfectly simulated from a|X′n and b|X′n .

Since n ∈ Xn from Lemma 21, we will need to perfectly simulate the variable c′n,n−1. To this
end, we prove that we can perfectly simulate all intermediate variables ci ⊕ si for all i ≤ n − 1,
which will allow us to also perfectly simulate all probed intermediate variables c′n,i, including the
last one c′n,n−1.

Since we assume that the index i? belongs neither to O′ nor X ′n, and since we have X ′n = Xn∪I ′,
we consider four cases depending on whether the considered index i is in Xn, in I ′\Xn, in O′ or
i = i?:

– If i ∈ Xn: the ci variables in Gadget 1 can be perfectly simulated from a|X′n and b|X′n thanks
to Lemma 21 (since Xn ⊂ X ′n) and the variables ci ⊕ si and si can be perfectly simulated by
generating a random for si.

– If i ∈ I ′\Xn: we apply the second part of Lemma 21 which asserts that for any Vn ( [1, n] \Xn

the variables in c|Vn in Gadget 1 are uniformly and independently distributed, conditioned
on the probed variables and c|Xn . Therefore, we define the set Vn = O′ ∪ (I ′\Xn) and the
ci variables are uniformly and independently distributed. The variables ci ⊕ si and si can be
perfectly simulated by generating a random for si.

– If i = i? (we note that we have i? 6= n since n ∈ Xn), then the variables ci? and si? are not
probed, nor needed to be simulated (otherwise we would have i? ∈ X ′n), therefore the variable
si? acts as a one-time pad and the ci? ⊕ si? value has a uniform and independent distribution.

– If i ∈ O′, since by construction we have defined Vn = O′ ∪ (I ′\Xn), we deduce that O′ is a
subset of Vn, therefore one can apply Lemma 21 on Gadget 1 which allows us to assert that the
ci variables are uniformly and independently distributed and can thus be perfectly simulated
by generating a random value for ci. As a consequence, one can also perfectly simulate the
variables ci ⊕ si and c′i = si by generating a random value for si.

Eventually, the simulation of the variable c′n,n−1 can be done since we have shown that we
could perfectly simulate all intermediate variables ci ⊕ si for all i ≤ n − 1, and since n ∈ Xn we
can also simulate cn, which allows us to perfectly simulate c′n,n−1 = cn ⊕

⊕n−1
i=1 (ci ⊕ si).

Therefore we have shown that if at least one of the intermediate variables c′n,i is probed, then
the t′n intermediate variables of gadgets 1 and 2 including c′|X′n

can be perfectly simulated from
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a|X′n and b|X′n with |X ′n| ≤ t′n. We have also shown that the output variables c′|O′ , which includes

the variables c′|O\X′n
(since we have O \X ′n ⊂ O′), are uniformly and independently distributed.

It remains to deal with the intermediate variables aibj for i 6= j. Let tab be the number of such
probes. We construct the sets I and J as follows: I = X ′n and J = X ′n, and for all such probed
variables aibj , we add i into I and j into J . The variables aibj can trivially be perfectly simulated
from a|I and b|J . Furthermore, since we have shown that all other t′n probed intermediate variables
and c|O can be perfectly simulated from a|X′n and b|X′n , and since X ′n ⊂ I and X ′n ⊂ J , we deduce
that the total t = t′n + tab internal probed variables and c|O can be perfectly simulated from a|I
and b|J . Eventually, since

|I| = |J | = |X ′n|+ tab ≤ t′n + tab ≤ t

we get the required bounds |I| ≤ t and |J | ≤ t.
Thus, the composition of Gadget 2 with Gadget 1 is t-SNI which concludes the proof. ut

D Private Circuits with Multiple PRGs without Robustness

D.1 Proof of Proposition 4 (Security of PINI-R)

Let t1 be the number of probes on intermediate variables and let t2 be the number of extended
probes on the randomness subsets ρi, with t1 + t2 < n. From the PINI-R property, those t1 + t2
probes can be simulated from a subset I∪R of input shares, with |I| ≤ t1 and |R| ≤ t2, which gives
|I ∪R| ≤ t1 + t2 < n. Since any proper subset of the input shares is uniformly and independently
distributed, the adversary learns nothing from the secret variables of the original circuit.

D.2 Proof of Theorem 8 (Composition of PINI-R)

The proof is essentially the same as in [CS18]. We consider l Gadgets G1, · · · , Gl which are PINI-R,
that we order as a direct acyclic graph from output to input in a reverse topological sort order.
We assume that each gadget Gk has tk internal probes and that the sum of all internal probes is

equal to t. We will also denote by ρ
(k)
i the randoms for 1 ≤ i ≤ n in Gadget Gk. Furthermore, we

must simulate the output probes in O from the last gadget G1 . We prove by recurrence on k that
the composition of PINI-R gadgets is PINI-R.

If k = 1, then there is only one gadget and this is straightforward since by assumption the
gadget is PINI-R. Now we assume that the composition of gadgets G1, · · · , Gk is PINI-R and we
prove that the composition of gadgets G1, · · · , Gk+1 is still PINI-R.

Since the composition of gadgets G1, · · · , Gk is PINI-R, we get that for any set of t1 + · · ·+ tk
intermediate variables, any subset Rk ⊂ [1, n] of random indices and any subset O of output
indices, there exists a subset Ik ⊂ [1, n] of input indices with |Ik| ≤ t1 + · · · + tk such that the

t1 + · · · + tk intermediate variables, the randoms ρ̃i =
⋃k
j=1 ρ

(j)
i for i ∈ Rk and the output shares

y|O∪Rk,? can be perfectly simulated from the input shares x|Ik∪O∪Rk,?.

The output shares of Gk+1 are the input shares of the composite gadget G1, · · · , Gk. Since
gadget Gk+1 is PINI-R, for any Rk+1, one can simulate the tk+1 probes within Gadget Gk+1, the

randoms ρ
(k+1)
i for i ∈ Rk+1 and the output shares y|(Ik∪O∪Rk)∪Rk+1,? with input shares corre-

sponding to indices in Sk+1 ∪Rk+1 ∪ (Ik ∪ O ∪Rk) with |Sk+1| ≤ tk+1.

The PINI-R property must hold for any subset R. We take Rk+1 = Rk = R. Therefore we can
compose these simulators to perfectly simulate the composition of gadgets G1, · · · , Gk+1 (namely,

the t1 + · · · + tk+1 intermediate variables, the randoms ρ̂i =
⋃k+1
j=1 ρ

(j)
i for i ∈ R and the output

shares y|O∪R,?) from the input shares with indices in Ik+1 ∪O ∪R with Ik+1 = Sk+1 ∪ Ik. We get
as required

|Ik+1| = |Sk+1 ∪ Ik| ≤ |Sk+1|+ |Ik| ≤ tk+1 + (t1 + · · ·+ tk) ≤ t

which allows us to conclude that the composition of k + 1 gadgets PINI-R remains PINI-R.
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For k + 1 = l, we get that we can perfectly simulate the composition of gadgets G1, · · · , Gl
from the input shares with indices in Il ∪ O ∪ R with |Il| = |

⋃l
k=1 Sk| ≤ t1 + · · · + tl ≤ t. This

terminates the proof.

D.3 Security under the PINI-R and t-SNI-R notions

Lemma 22 (PINI-R of LR). The LR gadget is PINI-R.

Proof. The proof is straightforward from the PINI property of LR. Namely it suffices to take
O′ = O ∪R. ut

For simplicity we prove the t-SNI-R property of SecMult and SecMultILR with t = n− 1, since
this implies the t-SNI-R property for any 1 ≤ t ≤ n− 1.

Lemma 23 (t-SNI-R of SecMult). We consider the SecMult construction. Consider any set of
t intermediate variables, any subset O ⊂ [1, n] of output variables, and any subset R ⊂ [1, n − 1],
such that t + |O| + |R| < n. Then the t intermediate variables, the output variables c|O∪R, and
all randoms ri,j for i ∈ R can be perfectly simulated from the knowledge of a|I∪R and b|J∪R, with
|I| ≤ t and |J | ≤ t.

Proof. The proof is similar to the t-SNI proof of SecMult in [BBD+16]. We construct two sets I
and J corresponding to the input shares of a and b respectively. We divide the internal probes in 4
groups. The four groups are processed separately and sequentially, that is we start with all probes
in Group 1, and finish with all probes in Group 4.

• Group 1: If ai, bi or ai · bi is probed, add i to I and J .

• Group 2: If ri,j or ci,j is probed (for any i 6= j), add i to I and J .

Note that after the processing of Group 1 and 2 probes, we have I = J ; we denote by U the
common value of I and J after the processing of Group 1 and 2 probes, to which we add the set
R, that is we have U = I ∪R = J ∪R.

• Group 3: If ai · bj ⊕ ri,j is probed: if i ∈ U or j ∈ U , add {i, j} to both I and J .

• Group 4: If ai · bj is probed (for any i 6= j), then add i to I and j to J .

We have |I| ≤ t and |J | ≤ t, since for every probe we add at most one index in I and J .
The simulation of probed variables in groups 1 and 4 is straightforward. Note that for i < j, the
variable rij is used in all partial sums cik for k ≥ j; moreover rij is used in rij ⊕aibj , which is used
in rji, which is used in all partial sums cjk for k ≥ i. Therefore if i /∈ U , then rij is not probed
and does not enter in the computation of any probed cik; symmetrically if j /∈ U , then rji is not
probed and does not enter in the computation of any probed cjk.

For any pair i < j, we can now distinguish 4 cases:

• Case 1: {i, j} ∈ U . In that case, we can perfectly simulate all variables rij , ai · bj , ai · bj ⊕ rij ,
aj · bi and rji. In particular, we let rij ← F2k , as in the real circuit.

• Case 2: i ∈ U and j /∈ U . In that case we simulate rij ← F2k , as in the real circuit. If ai ·bj⊕ri,j
is probed (Group 3), we can also simulate it since i ∈ U and j ∈ J by definition of the process-
ing of Group 3 variables.

• Case 3: i /∈ U and j ∈ U . In that case rij has not been probed, nor any variable cik, since
otherwise i ∈ U . Therefore rij is not used in the computation of any probed variable (except
rji, and possibly ai · bj ⊕ ri,j). Therefore we can simulate rji ← F2k ; moreover if ai · bj ⊕ rij is
probed, we can perfectly simulate it using ai · bj ⊕ rij = aj · bi ⊕ rji, since j ∈ U and i ∈ J by
definition of the processing of Group 3 variables.
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• Case 4: i /∈ U and j /∈ U . If aibj ⊕ ri,j is probed, since rij is not probed and does not enter
into the computation of any other probed variable, we can perfectly simulate such probe with
a random value.

From cases 1, 2 and 3, we obtain that for any i 6= j, we can perfectly simulate any variable rij
such that i ∈ U . This implies that we can also perfectly simulate all partial sums cik when i ∈ U ,
including the output variables ci. Finally, all probed variables and all randoms ri,j for i ∈ R are
perfectly simulated from the knowledge of a|I∪R and b|J∪R.

We now consider the simulation of the output variables ci. We must show how to simulate ci for
all i ∈ O∪R, where O is an arbitrary subset of [1, n] and R is an arbitrary subset of [1, n−1], such
that t+ |O|+ |R| < n. For i ∈ U ⊃ R, such variables are already perfectly simulated, as explained
above. We now consider the output variables ci with i /∈ U . We construct a subset of indices V as
follows: for any probed Group 3 variable aibj ⊕ rij such that i /∈ U and j /∈ U (this corresponds to
Case 4), we put j in V if i ∈ O, otherwise we put i in V . Since we have only considered Group 3
probes, we must have |U |+ |V | ≤ t, which implies |U |+ |V |+ |O| < n. Therefore there exists an
index j? ∈ [1, n] such that j? /∈ U ∪ V ∪ O. For any i ∈ O, we can write:

ci = aibi ⊕
⊕
j 6=i

rij = ri,j? ⊕

aibi ⊕ ⊕
j 6=i,j?

rij


We claim that neither ri,j? nor rj?,i do enter into the computation of any probed variable or

other ci′ for i′ ∈ O. Namely i /∈ U so neither ri,j? nor any partial sum cik was probed; similarly
j? /∈ U so neither rj?,i nor any partial sum cj?,k was probed, and the output cj? does not have to
be simulated since by definition j? /∈ O. Finally if i < j? then aibj? ⊕ ri,j? was not probed since
otherwise j? ∈ V (since i ∈ O); similarly if j? < i then aj?bi⊕ rj?,i was not probed since otherwise
we would have j? ∈ V since j? /∈ O. Therefore, since neither ri,j? nor rj?,i are used elsewhere,
we can perfectly simulate ci by generating a random value. Thus, we have shown that the output
variables c|O∪R can be perfectly simulated from the knowledge of a|I∪R and b|J∪R. This terminates
the proof of Lemma 23.

Lemma 24 (t-SNI-R of SecMultILR). We consider the SecMultILR construction. Consider any
set of t intermediate variables, any subset O ⊂ [1, n] of output variables, and any subset R ⊂
[1, n−1], such that t+ |O|+ |R| < n. Then the t intermediate variables, the output variables c|O∪R,
and all randoms ri,j and si,j for i ∈ R can be perfectly simulated from the knowledge of a|I∪R and
b|J∪R, with |I| ≤ t and |J | ≤ t.

Proof. The proof is essentially the same as for Theorem 4. We proceed with a sequence of games. In
Game 0, the variables are simulated as in the original circuit. In Game 1, we modify the distribution
of the variables sij so that the circuit being computed with the new s′ij variables corresponds to
the mask refreshing of [RP10]. In Game 2, we rewrite the distribution of each intermediate variable
as the xor of a function f corresponding to all s′ij = 0, and a function g of the s′ij variables only.
Finally, in Game 3, we argue that the f function corresponds to the simulation of the original
SecMult circuit, with the t-SNI-R property, as proved in Theorem 23, while the g function can be
simulated directly from the random variables s′ij ; this terminates the proof.

D.4 Proof of Theorem 9 (Locality composition with randomness subset)

In the composite gadget G, each gadget G′k takes as input ai and bi which are locality refreshed

from previous gadgets G′k1 and G′k2 with randoms s
(k1)
i and s

(k2)
i for 1 ≤ i ≤ n − 1. Within

the Gk gadget, the locality is equal to ` with regards to the randomness ρk; since the output of
G′k1 and G′k2 are locality refreshed, the intermediate variables do not depend on any other ρu for
u 6= k. Moreover, within the Gk gadget, the locality of variables is equal to 2 with respect to the

randoms s
(u)
i for a fixed i; namely the inputs ai and bi depend on the randoms s

(k1)
i and s

(k2)
i only.
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Eventually, a mask refreshing is applied on the output of Gk, which implies that each intermediate

variable from the mask refreshing can depend on at most 3 of the randoms s
(k1)
i , s

(k2)
i and s

(k)
i

for a given i. Therefore we have shown that in the global construction G, the locality of variables
is equal to ` with regards to the set of randoms {ρu : u ∈ K}, and 3 with respect to the set of

randoms {s(u)
i : u ∈ K}.

D.5 Locality ` = 1 with respect to randomness subsets

Theorem 13. Let Gk for k ∈ K be a set of 2-input gadgets with locality refreshed output with

randoms s
c,(k)
i for 1 ≤ i ≤ n− 1, which all make an `-local use of their randomness ρk. Let G̃k be

the same gadgets where the 2 inputs of each gadget Gk is locality refreshed with randoms s
a,(k)
i and

s
b,(k)
i for 1 ≤ i ≤ n− 1. Any composite gadget made of G̃k makes an `-local use of the randomness

(ρk)k∈K , and for any 1 ≤ i ≤ n− 1, it makes a 1-local use of the randoms in each of the following

sets {sa,(k)
i , k ∈ K}, {sb,(k)

i , k ∈ K} and {sc,(k)
i , k ∈ K}.

Proof. In the composite gadget G, each gadget G̃k takes as input ai and bi which are locality

refreshed from previous gadgets k1 and k2 with randoms s
c,(k1)
i and s

c,(k2)
i . The inputs ai are then

locality refreshed in algorithms LRA and LRB with randoms s
a,(k)
i and s

b,(k)
i respectively.

Within the gadget LRA, the variables have a locality of 1 regarding the sets of randoms

{sa,(k)
i , k ∈ K} and {sc,(k)

i , k ∈ K}. Similarly, within the gadget LRB, the locality regarding the

sets of randoms {sb,(k)
i , k ∈ K} and {sc,(k)

i , k ∈ K} is 1. By construction, the outputs a′i and b′i of
gadgets LRA and LRB do not depend anymore on randoms of type C. Therefore the input shares

a′i and b′i of the Gk gadget have a locality of 1 regarding the sets of randoms {sa,(k)
i , k ∈ K} and

{sb,(k)
i , k ∈ K}, and they do not depend on randoms of type C.

Within the Gk gadget, the locality of variables is equal to ` with regards to the randomness ρk,

and equal to 1 with respect to s
a,(k)
i and s

b,(k)
i for any 1 ≤ i ≤ n− 1. Eventually, a mask refreshing

LRC is applied, using randoms s
c,(k)
i . Within Gadget LRC , by definition the locality of variables is

equal to ` with regards the randomness in ρk, and equal to 1 with respect to the randoms s
a,(k)
i ,

s
b,(k)
i and s

c,(k)
i . At the end of Gadget LRC the dependence to randoms from ρk, s

a,(k)
i and s

b,(k)
i

disappears, thus the only remaining dependence is the one regarding the random s
c,(k)
i , so with

locality 1.

Therefore we have shown that in the global construction G, the locality of variables is equal to `

with regards to sets of randoms (ρk)k∈K , and 1 with respect to the set of randoms {sa,(k)
i , k ∈ K},

{sb,(k)
i , k ∈ K} and {sc,(k)

i , k ∈ K}. ut

D.6 Proof of Lemma 13 (locality of SecMultILR)

Thanks to the loop from Line 11 to 15 of SecMultILR performing at each step j a locality refresh
of the shares (c1, . . . , cj), no intermediate variable can depend on two randoms rij on the same
row i; therefore the SecMultILR algorithm makes a 1-local use of each randomness set ρi = {rij :
i ≤ j ≤ n}. Similarly, at step j the intermediate variables can only depend on randoms si,j−1 and
si,j for a fixed i. Therefore the SecMultILR algorithm makes a 2-local use of each randomness set
ρ′i = {sij : i ≤ j ≤ n}.

E Implementation of AES

E.1 Working over F216

For the PRG based on polynomial evaluation we need to work over F216 , which is a degree-2
extension of F28 . This means that any element of F216 can be represented as a0 + a1 · z where
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a0, a1 ∈ F28 . The polynomial f(z) = z2 + z + t5 is irreducible over F28 . Working modulo f(z), we
have:

(a0 + a1 · z) · (b0 + b1 · z) = a0b0 + z(a1b0 + a0b1) + a1b1z
2

= a0b0 + t5a1b1 + z(a1b0 + a0b1 + a1b1)

E.2 Implementation of AES with multiple PRGs, SecMultFLR and 3-wise
independent PRG

We perform a locality refresh of the 2 inputs of each gadget (with two distinct sets of independent
PRGs), and we perform a locality refresh of the outputs of each gadget (including each Xor), using
another distinct set of independent PRGs. In that case, the locality with respect to each subset of
randoms is always ` = 1; therefore, we can use a PRG with r-wise independence r = t = n − 1.
With our 3-wise independent PRG function G, this implies that this specific PRG only works for
n = 3 and n = 4 shares.

There are therefore 4 classes of independent PRGs. The first class generates the randoms rij of
the SecMult gadgets, with a dedicated PRG for each rij . The other 3 classes generate the randoms
si for the locality refresh of the 2 inputs and output of each gadget. We must therefore determine
the number of SecMult gadgets (including the FullRefresh gadget), and the total number of gadgets.

As previously the number of SecMult gadgets (including the FullRefresh gadgets) is 960. More-
over, each MixColumns comprises 48 xors, for the 9 first rounds of the AES (the 10th round does
not have a MixColumns operation). This gives a total of 9 ·48 = 432 Xor gadgets. The total number
of gadgets is therefore 960 + 432 = 1392.

Therefore, each PRG from the first class must generate α1 = 960 pseudo-randoms, while each
PRG from the 3 other classes must generate α2 = 1392 pseudo-randoms. With the 3-wise function
G, in order to generate α pseudo-randoms, each PRG requires 2×d

√
αe true randoms for its seed.

Therefore, the total number of TRNGs is:

nr = 2× d
√
α1 e × n(n− 1)/2 + 2× d

√
α2 e × 3(n− 1)

We obtain nr = 642 for n = 3 and nr = 1056 for n = 4.
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