
More Efficient MPC from Improved Triple Generation and
Authenticated Garbling

Kang Yang
State Key Laboratory of Cryptology

yangk@sklc.org

Xiao Wang
Northwestern University

wangxiao@cs.northwestern.edu

Jiang Zhang
State Key Laboratory of Cryptology

jiangzhang09@gmail.com

October 8, 2020

Abstract

Recent works on distributed garbling have provided highly efficient solutions for constant-round
MPC tolerating an arbitrary number of corruptions. In this work, we improve upon state-of-the-art
protocols in this paradigm for further performance gain.

First, we propose a new protocol for generating authenticated AND triples, which is a key building
block in many recent works.

– We propose a new authenticated bit protocol in the two-party and multi-party settings from bare IKNP
OT extension, allowing us to reduce the communication by about 24% and eliminate many computa-
tion bottlenecks. We further improve the computational efficiency for multi-party authenticated AND
triples with cheaper and fewer consistency checks and fewer hash function calls.

– We implemented our triple generation protocol and observe around 4× to 5× improvement compared
to the best prior protocol in most settings. For example, in the two-party setting with 10 Gbps network
and 8 threads, our protocol can generate more than 4 million authenticated triples per second, while
the best prior implementation can only generate 0.8 million triples per second. In the multi-party
setting, our protocol can generate more than 37000 triples per second over 80 parties, while the best
prior protocol can only generate the same number of triples per second over 16 parties.

We also improve the state-of-the-art multi-party authenticated garbling protocol.

– We take the first step towards applying half-gates in the multi-party setting, which enables us to
reduce the size of garbled tables by 2κ bits per gate per garbler, where κ is the computational security
parameter. This optimization is also applicable in the semi-honest multi-party setting.

– We further reduce the communication of circuit authentication from 4ρ bits to 1 bit per gate, using
a new multi-party batched circuit authentication, where ρ is the statistical security parameter. Prior
solution with similar efficiency is only applicable in the two-party setting.

For example, in the three-party setting, our techniques can lead to roughly a 35% reduction in the size of
a distributed garbled circuit.

1

Contents

1 Introduction 3
1.1 Our Contributions . 4
1.2 Discussion of Some Related Works . 5
1.3 Organization . 5

2 Background and Technical Overview 5
2.1 Notation . 6
2.2 Multi-Party Authenticated Bits . 6
2.3 Multi-Party Authenticated Shares . 8
2.4 Improved Authenticated AND triples . 8
2.5 Improved Distributed Garbling with Partial Half-Gates . 8
2.6 Batch Circuit Authentication in the Multi-Party Setting . 11
2.7 Other Optimization . 12

3 Improved Preprocessing Protocols 12
3.1 Optimized Multi-Party Authenticated Bits . 13
3.2 Improved Multi-Party Authenticated Shares . 15

4 Optimized Multi-Party Authenticated Garbling 17
4.1 Construction in the Fprep-hybrid model and Proof of Security 17
4.2 Communication Complexity . 17

5 Performance Evaluation 20
5.1 Improvements for Authenticated Triple Generation Protocols 21
5.2 Improvements for Authenticated Garbling . 22
5.3 Evaluation on Real Applications . 24

A More Background 28
A.1 Commitment and Coin-tossing . 28
A.2 Almost Universal Linear Hash Functions . 29
A.3 Amortized Opening Procedures . 29

B Proof of Security for Our Authenticated Bit Protocol 30
B.1 Analysis of Checking in the aBit Protocol . 30
B.2 Proof of Theorem 1 . 32

C Complexity and Security of Our Authenticated Share Protocol 35
C.1 Communication Complexity . 35
C.2 Proof of Security . 35

D Improved Authenticated Triple 37
D.1 Protocol for Leaky AND Triples . 37
D.2 From Leaky Authenticated AND Triples to Authenticated AND Triples 43

E Security Proof of Our MPC Protocol 43
E.1 Related Lemmas . 43
E.2 Proof of Theorem 3 . 48

2

1 Introduction
Secure multi-party computation (MPC) protocols [Yao86, GMW87] allow a set of parties with private inputs
to compute a joint function without revealing anything more than the output of the function. A variety
of adversarial models have been considered regarding the adversarial behaviors, the threshold of corrupt
parties, etc. In this paper, we focus on statically secure MPC protocols tolerating an arbitrary number of
malicious corruptions.

Distributed garbling [BMR90, DI05] allows a set of parties to jointly generate a garbled circuit in a dis-
tributed manner. It is a core tool to construct constant-round MPC protocols. Recent advances on distributed
garbling have led to a set of efficient protocols [CKMZ14, LPSY15, LSS16, WRK17a, WRK17b, HSS17,
HIV17, KRRW18, ZCSH18] for constant-round MPC tolerating an arbitrary number of malicious corrup-
tions. For example, Wang et al. [WRK17b] demonstrated an implementation that can securely compute
AES-128 among 32 parties in about one second, something unimaginable a few years ago. For example,
recent works [GM17, ZMM+20] have used these implementations to introduce extra privacy features on
real products. As a brief overview, these protocols all follow a similar paradigm consisting of three phases:

1. Function-independent phase, when parties only know an upper bound on the size of the circuit to be
computed. In most protocols, this stage requires computing authenticated version of Beaver triples and
takes the most computation and communication resources.

2. Function-dependent phase, when parties now know the function being computed. This phase usually
involves generating a multi-party garbled circuit, which may be either asymmetric [WRK17b] or sym-
metric [HSS17].

3. Online phase, when parties know their inputs and can evaluate the garbled circuit generated in the
previous phase.

Although this paradigm has significantly improved the efficiency of constant-round maliciously secure MPC
protocols, we find that inefficiencies still exist in many key building blocks that, if optimized, can potentially
lead to huge improvements.

– The communication overhead to obtain malicious security is still high. For example, the best-known
maliciously secure two-party computation (2PC) protocol [KRRW18] still requires sending about 310
bytes per gate, even with amortization. This is about 10×more communication than the best semi-honest
garbled-circuit protocol [ZRE15] sending only about 32 bytes per gate.

– The computational overhead of existing maliciously secure protocols is surprisingly higher than com-
monly thought. For example, the most efficient implementation [WRK17a] in the two-party setting re-
ports a speed of 833K authenticated AND triples per second under 10 Gbps network bandwidth and a
36-core CPU. However, if the network was fully used, we would expect at least 4300K authenticated
AND triples to be generated per second,1 which is a 5× performance gap due to high computation cost!

The problem is more prominent in the multi-party setting, where additional consistency checks are needed
among the parties and this causes even more computation overhead. For example, with eight parties,
the implementation from Wang et al. [WRK17b], benchmarked using the same hardware as above, can
compute about 68K multi-party authenticated AND triples per second. The speed would be 510K triples
per second, if the 10 Gbps network bandwidth is fully utilized. This is a performance gap of 7.5×.
1Since every authenticated AND triple in their protocol takes ≈ 290 bytes of communication, 10 Gbps bandwidth can support

around 4.3× 106 triples.

3

#Parties 2 (8 threads) 2 (32 threads) 3 8 24 40 48

[WRK17a, WRK17b] 1.26 0.59 5.02 10.77 40.55 62.66 75
This paper 0.24 0.18 1.26 2.31 6.37 11.41 13.54

Improvements 5.28× 3.28× 3.98× 4.66× 6.36× 5.5× 5.54×

Table 1: Comparison of the best prior implementation and ours for generating an authenticated AND
triple. All reported numbers are the running time, in microseconds (µs), to generate one authenticated AND
triple. All experiments are performed with machines with 10 Gbps network bandwidth and 36 vCPUs. Both
implementations are applied with the same level of code optimizations.

These computation and communication overheads become increasingly prominent as the need of malicious
security emerges in real life. However, as numerous prior works have extensively studied approaches to op-
timize this paradigm recently [WRK17a, WRK17b, HSS17, HIV17, KRRW18, ZCSH18], any improvement
requires novel insights and careful analysis of the protocol.

1.1 Our Contributions
In this paper, we present a set of improvements to the distributed garbling paradigm for constant-round MPC
protocols tolerating an arbitrary number of malicious corruptions. Our implementation shows significant
performance boost compared to the best prior work. See Table 1 for a selected set of comparison points and
Section 5 for more details. Below we summarize our results and provide intuitions of our ideas in Section 2.

First, we design a new authenticated AND triple (aAND) protocol from scratch with improved efficiency.
To exploit every possible improvement, we start our analysis from the most basic building blocks, within
the KOS protocol [KOS15] for maliciously secure OT extension. Our improvements can be directly applied
right out of the box to many MPC protocols that need authenticated AND triples [WRK17a, WRK17b,
HSS17, KRRW18, ZCSH18, AOR+19, RW19, DEF+19]. In detail, we improve three key components in
the protocol.

– Improved multi-party authenticated bit. The state-of-the-art protocol [NST17] for each authenticated
bit (aBit) requires (κ+ ρ)-bit communication and a high computational cost due to the use of bit-matrix
multiplication and multiple checks for correlation and consistency. As an evidence, two-party authenti-
cated bit is about 3× slower than the ordinary maliciously secure OT extension even when running over
a local host [Rin].

We propose a new multi-party authenticated bit protocol directly based on the bare IKNP OT exten-
sion [IKNP03, ALSZ13] with a small harmless leakage. Our new protocol reduces the communication
per aBit from (κ + ρ) bits to κ bits and eliminates all sources of slowdown mentioned above. See Sec-
tion 2.2 for more elaboration.

– Improved multi-party authenticated share. Multi-party authenticated share (aShare) is another key
building block towards aAND (See Section 2.3). The previous protocol [WRK17b] for multi-party au-
thenticated shares needs to repeat a checking procedure ρ times, to boost the soundness error from 2−1

to 2−ρ. We propose an improved checking procedure based on the re-randomization idea by Hazay et
al. [HSS17] where a single check is sufficient.

– Improved multi-party leaky AND triple. Leaky authenticated AND triple (LaAND) is yet another
important building block towards fully secure AND triples. We reduce the number of hash function calls
by a factor of 2× when computing leaky AND triples and show that the security preserves even given the
leakage introduced in aBit as above. See Section 2.4 for more details.

4

By applying the above optimizations, we can reduce the communication cost of authenticated AND triple
generation by ≈ 24%. Our implementation shows that in most settings, it leads to an improvement of
running time by 4× to 5× in both the two-party and the multi-party settings. See Table 1 for a performance
summary.

Our next bundle of optimizations are specific to the WRK multi-party authenticated garbling [WRK17b]
with an emphasize on the function-dependent phase.

– Towards multi-party half-gates. Although it is known how to distributively compute the half-gates
scheme [ZRE15] in the two-party setting [KRRW18], the multi-party setting is completely open. Here
we partially enables half-gates in the multi-party setting and reduce the size of a distributed garbled
circuit from each garbler by 2κ bits per gate. Our technique here is also applicable in the semi-honest
setting [BLO16]. See Section 2.5 for a high-level description.

– Improved circuit authentication. Katz et al. [KRRW18] proposed an efficient way to authenticate dis-
tributed garbled circuits using the amortized MAC check in the two-party setting. However, it does not
directly apply to settings with more than two parties. To obtain similar efficiency in the multi-party
setting, we design a new batched circuit authentication based on almost universal linear hash func-
tions [CDD+16]. The resulting solution improves the communication from 4ρ bits to 1 bit per gate.
See Section 2.6 for more discussion.

As a result, for example in the three-party setting, our optimizations result in an about 35% reduction in
communication for function-dependent phase.

1.2 Discussion of Some Related Works
Recently, Boyle et al. [BCG+19] presented a maliciously secure protocol that can be used to realize cor-
related OT with sublinear communication. In the two-party setting, their protocol can be used to further
reduce the communication of our protocol. Based on their performance benchmark, it would be faster
than the KOS OT extension [KOS15] when the network bandwidth is below 500 Mbps. In the same se-
curity setting, Hazay, Venkitasubramaniam, and Weiss [HVW20] recently proposed a maliciously secure
MPC protocol with constant communication overhead over the semi-honest GMW protocol, which implies
constant-round MPC based on BMR distributed garbling, while our protocol has a communication overhead
of O (ρ/log |C|). However, their result remains mostly theoretical and here we are mainly interested in the
practical efficiency.

1.3 Organization
In Section 2, we introduce important concepts and building blocks needed for our constructions. We also
present the intuitions about how our improvements work. Then in Section 3 and Section 4, we describe
in detail the improved protocol for authenticated AND triples and the improved multi-party authenticated
garbling protocol, respectively. Finally, in Section 5, we discuss the concrete efficiency gain of the protocol.
We defer some basic concepts and protocols/proofs to Appendix and our full version [YWZ19].

2 Background and Technical Overview
In this section, we introduce some background information on the state-of-the-art protocols for authenticated
AND triples and authenticated garbling. Alongside, we also provide high-level ideas on how our work
improves these protocols. In Appendix A, we describe more commonly known preliminaries, including
two useful functionalities FCom and FRand for commitments and coin-tossing respectively, almost universal
linear hash functions, and the amortized opening procedure of authenticated bits/shares.

5

2.1 Notation
We use κ and ρ to denote the computational and statistical security parameters respectively. We use a← S
to denote sampling a uniformly at random from a finite set S. We will use [n] to denote the set {1, . . . , n}.
For a bit-string x, we use lsb(x) to denote the least significant bit of x, and x[k] to denote the k-th bit of
x. Depending on the context, we use {0, 1}k, Fk2 and F2κ interchangeably, and thus addition in Fk2 and F2κ

corresponds to XOR in {0, 1}κ. We use bold lower-case letters such as x ∈ Fk2 to denote a vector, and x[k]
to denote the k-th component of x. We will use a hash function H : {0, 1}∗ → {0, 1}κ modeled as a random
oracle. We use negl(·) to denote some unspecific negligible function such that negl(κ) = o(κ−c) for every
constant c. We write F2κ

∼= F2[X]/f(X) for some monic, irreducible polynomial f(X) of degree κ. We
denote by P1, . . . , Pn the parties.

A boolean circuit C is represented as a list of gates of the form (α, β, γ, T), which denotes a gate with
input-wire indices α and β, output-wire index γ and gate type T ∈ {⊕,∧}. By |C|, we denote the number of
AND gates in a circuit C. We use Ii to denote the set of circuit-input wire indices with the input from party
Pi,W to denote the set of output wire indices for all AND gates, and Oi to denote the set of circuit-output
wire indices associated with the output of Pi. Without loss of generality, we assume that the input and output
of all parties have the same length, i.e., |I1| = · · · = |In| and |O1| = · · · = |On|. We use |I| and |O| to
denote the length of all circuit-input wires and circuit-output wires respectively. Our MPC protocol will use
H({Zw}w∈W) to denote H(Zw1 , . . . , Zw|C|) for Zw ∈ {0, 1}κ, where here w1, . . . , w|C| are the sorted output
wire indices of all AND gates in an increasing order.

In this paper, we consider a static, malicious adversary who can corrupt up to n− 1 out of n parties. We
use A ⊂ [n] to denote the set of all corrupt parties. All our protocols allow abort, and are provably secure in
the standard simulation-based security model [Gol04]. Our protocols need a broadcast channel, which can
be efficiently implemented using a standard 2-round echo-broadcast protocol [GL05] as we allow abort. The
communication of this broadcast protocol can be optimized in a batch [DPSZ12] by using either an almost
universal linear hash function or a collision-resistant hash function.

2.2 Multi-Party Authenticated Bits
Authenticated bits (or equivalently information-theoretic MACs) were firstly proposed for maliciously se-
cure two-party computation by Nielsen et al. [NNOB12], and can also be extended to the multi-party set-
ting [BDOZ11, LOS14]. Every party Pi holds a uniform global key ∆i ∈ {0, 1}κ. We say that a party Pi
holds a bit x ∈ {0, 1} authenticated by Pj , if Pj holds a random local key Kj [x] ∈ {0, 1}κ and Pi holds
the MAC Mj [x] = Kj [x] ⊕ x∆j . We write [x]ji = (x,Mj [x],Kj [x]) to represent a two-party authenti-
cated bit where x is known to Pi and authenticated to only one party Pj . In the multi-party setting, we let
[x]i = (x, {Mj [x]}j 6=i, {Kj [x]}j 6=i) denote a multi-party authenticated bit, where the bit x is known by Pi
and authenticated to all other parties. In more detail, Pi holds (x, {Mj [x]}j 6=i), and Pj holds Kj [x] for j 6= i.

We note that [x]i is XOR-homomorphic. That is, for two authenticated bits [x]i and [y]i held by Pi, it
is possible to locally compute an authenticated bit [z]i with z = x ⊕ y by each party locally XOR their
respective values. That is, Pi computes z := x ⊕ y and {Mj [z] := Mj [x] ⊕ Mj [y]}j 6=i; Pj computes
Kj [z] := Kj [x] ⊕ Kj [y] for each j 6= i. We use [z]i := [x]i ⊕ [y]i to denote the above operation. As such,
[x]ji is also XOR-homomorphic.

With a slight abuse of the notation, we can also authenticate a constant bit b: Pi sets {Mj [b] := 0}j 6=i;
Pj sets Kj [b] := b∆j for each j 6= i. Similarly, let [b]i = (b, {Mj [b]}j 6=i, {Kj [b]}j 6=i). Now we can write
[x]i ⊕ b = [x]i ⊕ [b]i, and let b[x]i be equal to [0]i if b = 0 and [x]i otherwise.

Prior solution. Prior solution for multi-party authenticated bits is very complicated, involving the following
steps to generate a bit known by Pi and authenticated to all other parties:

1. First, using the maliciously secure KOS OT extension [KOS15], Pi computes random correlated strings
with Pj , e.g., Mj [x] and Kj [x] such that Mj [x] ⊕ Kj [x] = x∆j . This includes an IKNP OT exten-

6

sion [IKNP03, ALSZ13] followed by a KOS correlation check [KOS15] for the consistency of the
choice-bit vector. The correlation check is leaky in which it allows the adversary to guess a few bits
of Pj’s global key ∆j .

2. To establish two-party authenticated bits, Nielsen et al. [NST17] proposed a way to eliminate the above
leakage. We can execute the first step to obtain random correlated strings of length (κ + ρ) bits. Then,
we can use a random bit matrix to compress the bit string to κ bits and at the same time eliminate the
leakage.

3. To generate multi-party authenticated bits for Pi, we can execute the above two steps between Pi and each
other party, where the KOS correlation check and bit-matrix multiplication compression are executed
n− 1 times for each authenticated bit.

4. The above procedure for multi-party authenticated bits is not fully secure, as a malicious Pi may use
inconsistent bits when executing the two-party authenticated bit protocol with different parties. Wang et
al. [WRK17a] designed an extra consistency check that allows honest parties to catch such inconsistent
behavior with probability 1/2. The check needs to be repeated by ρ times to ensure a cheating probability
of 1/2ρ.

In practice, the above steps are very costly in computation. Different layers of consistency checks and com-
pression cause heavy computation and require the data to flow through the CPU cache back and forth. The
computation of bit-matrix multiplication is particularly expensive, even after carefully optimized. For ex-
ample, libOTe [Rin] shows that two-party authenticated bit is about 3× slower than the ordinary maliciously
secure OT extension even when running on the same machine.

Our solution. Towards improving the efficiency of the above protocol, we make the following crucial
observations:

1. The leakage caused by the KOS correlation check is harmless in our setting because, intuitively, the
resulting correlated strings will be used either for authentication or for constructing distributed garbled
circuits, where learning all bits of a global key is required to break the security. In particular, an adversary
can guess a few bits of honest parties’ global keys but get caught if any guess is incorrect. Therefore, the
probability that the protocol does not abort and the adversary learns the whole global key is bounded by
2−c × 2−(κ−c) = 2−κ for the leakage of c bits, which is the same as the case without such leakage.

2. The two consistency checks are of similar goals and thus one may already achieve the goal of the other.
In detail, both checks aim to ensure that a malicious receiver uses consistent choice bits: the first KOS
consistency check is to ensure that a unique choice-bit vector is used among all columns of the extension
matrix within one execution between two parties such that the unique choice-bit vector can be extracted
by the simulator; while the second multi-party check is to ensure that a consistent choice-bit vector is
used across two or more executions between multiple parties.

As a result, we propose an improved multi-party authenticated bit protocol that allows the adversary to
guess a small number of bits of the global keys of honest parties with the risk of being caught if any guess is
incorrect. The protocol consists of only two steps: 1) Pi executes the IKNP OT extension protocol [ALSZ13]
with every party Pj for j 6= i; 2) All parties jointly execute a single check that serves both purposes
of correlation check and consistency check in the prior work. The check works similarly with the KOS
correlation check, except that it is done jointly by all parties in a batch.

Compared with prior solutions, we improve the communication overhead and computation cost per
authenticated bit as follows: 1) reduce the communication from κ + ρ bits to κ bits; 2) reduce the number
of base OTs between each pair of parties from κ+ ρ to κ; 3) eliminate the need of bit-matrix multiplication,

7

as well as the multi-party consistency check. The detailed protocol and proof of security can be found in
Section 3.1.

2.3 Multi-Party Authenticated Shares
In most cases, authenticating a bit known to one party is not sufficient. We would like a way to authenticate
a bit unknown to all parties, which can be done by secret sharing together with authenticating each share. In
detail, to generate an authenticated secret bit x, we can generate XOR shares of x (i.e., shares {xi}ni=1 such
that

⊕n
i=1 x

i = x), and then ask every party to authenticate to every other parties about their shares. We use
〈x〉 =

(
[x1]1, . . . [x

n]n
)

to denote an authenticated share of bit x, i.e., 〈x〉 means that every party Pi holds(
xi, {Mj [x

i],Ki[x
j]}j 6=i

)
. It is straightforward to see that authenticated shares are also XOR-homomorphic.

For a constant bit b ∈ {0, 1}, we let 〈x〉 ⊕ b =
(
[x1]1 ⊕ b, [x2]2, . . . , [x

n]n
)
, and define b〈x〉 to be equal to

〈0〉 = ([0]1, . . . , [0]n) if b = 0 and 〈x〉 otherwise.

Prior solution. In prior works, authenticated shares are constructed by letting each party execute the au-
thenticated bit protocol with their only shares of the secret bit. However, since every party participates in
multiple authentication processes, it is possible that a malicious party uses different global keys in multiple
executions of the authenticated bit protocol with different parties, and thus causes the inconsistency. In
WRK [WRK17b], they proposed a protocol to check the consistency of global keys by making use of the
XOR-homomorphic property of authenticated bits. Their checking protocol requires each party to compute
2ρ+ 1 commitments.

Our solution. Based on the re-randomization technique by Hazay et al. [HSS17], we improve the WRK
consistency check for authenticated shares by reducing the number of commitments from 2ρ + 1 to 1. In
particular, we use a linear map that maps κ random shares of a party Pi to a random element yi in F2κ . Then
we use a random zero-share to re-randomize each element yi. To prevent the collusion, each party needs
to make only a single commitment. Note that the inconsistency may occur only when there are at least two
honest parties. In this case, yi is kept secret from the re-randomization based on zero-share, which assures
the consistency of global keys.

The checking procedure can also be efficiently implemented given hardware support for finite field
multiplications. See Section 3.2 for the detailed protocol and proof of security.

2.4 Improved Authenticated AND triples
The protocol for leaky authenticated AND triples is to generate a random authenticated AND triple

(
〈x〉, 〈y〉,

〈z〉
)

with one caveat that the adversary can choose to guess the share xi of an honest party Pi. A correct
guess remains undetected, while an incorrect guess will be caught.

Prior solution. The multi-party leaky AND triple protocol by Wang et al. [WRK17b] consists of two steps:
1) the parties execute a protocol to generate AND triples without correctness guarantee; 2) all parties run a
checking procedure to ensure correctness, which also introduce some potential leakage to the adversary. Re-
cently, Katz et al. [KRRW18] proposed an efficient checking protocol reducing the number of hash function
calls by half in the two-party setting. The key idea is to apply the point-and-permute technique [BMR90]
for garbled circuits to the context of AND triple generation. They integrated the above two steps into one as
the least significant bit can represent the underlying share.

Our solution. We extend their idea from two-party setting to the multi-party setting. The extension of the
protocol is fairly straightforward; nevertheless, we believe it is an important task to figure out all details of
the security proof. We give the protocol description and a full proof that the protocol is still provably secure
given the leakage of global keys introduced as above in Appendix D.1.

2.5 Improved Distributed Garbling with Partial Half-Gates
Classical and half-gates garbling. The classical garbling with point-and-permute [BMR90] and free-

8

XOR [KS08] requires 4 garbled rows per AND gate. Let P2 and P1 be the garbler and evaluator respectively.
Each wire w is associated with a random garbled label Lw,0 ∈ {0, 1}κ and a wire mask λw ∈ {0, 1} both
known only to the garbler. The garbled label for a bit b is defined as Lα,b = Lα,0 ⊕ b∆2, where ∆2 is a
random global offset only known to P2. The garbled table computed by P2, namely {Guv}u,v∈{0,1} , for an
AND gate (α, β, γ,∧) consists of four garbled rows in the following form

Guv := H(Lα,u, Lβ,v)⊕ Lγ,0 ⊕ ruv∆2,

where ruv = (u ⊕ λα) ∧ (v ⊕ λβ) ⊕ λγ , and we omit γ in H for simplicity. Half-gates by Zahur et
al. [ZRE15] is the state-of-the-art garbling scheme that only requires 2 garbled rows per AND gate. In this
case, the garbled table can be written as:

G0 :=H(Lα,0)⊕ H(Lα,1)⊕ λβ∆2,

G1 :=H(Lβ,0)⊕ H(Lβ,1)⊕ Lα,0 ⊕ λα∆2.

Garbler P2 can compute the 0-label for the output wire as:

Lγ,0 := H(Lα,0)⊕ H(Lβ,0)⊕ (λαλβ ⊕ λγ)∆2.

Classical and half-gates two-party distributed garbling. Following the previous observation by Katz et
al. [KRRW18], we can conceptually divide the authenticated garbling protocol into two parts: 1) jointly
generate a distributed garbled circuit among all parties; 2) authenticate the correctness of the garbled circuit
for the evaluator. Here we only consider the first part about distributed garbling. The WRK distributed
garbling [WRK17a] in the two-party setting can be written as:

P2 : G2
uv := H(Lα,u, Lβ,v)⊕

(
Lγ,0 ⊕ K2[r1

uv]⊕ r2
uv∆2

)
P1 : G1

uv := M2[r1
uv],

where r1
uv⊕r2

uv = ruv is defined as above. The correctness can be checked given the fact that G1
uv⊕G2

uv =
Guv as in the classical garbling.

Recently, Katz et al. [KRRW18] showed that the half-gates technique can be applied to the above two-
party distributed garbling. Although P2 cannot compute G0, G1 and Lγ,0 as in the half-gates garbling
(because P2 does not know the wire masks, and thus cannot compute the terms λβ∆2, λα∆2 and (λαλβ ⊕
λγ)∆2), both parties P1 and P2 hold the authenticated shares, say, R1⊕R2 = λβ∆2, S1⊕S2 = λα∆2, and
T1 ⊕ T2 = (λαλβ ⊕ λγ)∆2. Thus, they can conceptually “shift” the entire garbling procedure by R1, S1

and T1. In detail, P2 can compute

G2
0 := H(Lα,0)⊕ H(Lα,1)⊕R2,

G2
1 := H(Lβ,0)⊕ H(Lβ,1)⊕ Lα,0 ⊕ S2,

Lγ,0 := H(Lα,0)⊕ H(Lβ,0)⊕ T2.

Evaluator P1 can recover G0 and G1 by computing G0 := G2
0 ⊕ R1 and G1 := G2

1 ⊕ S1. Then P1 can
perform the standard half-gates evaluation, and adds T1 as a correction value, so as to compute the garbled
label for output wire γ.

Applying half-gates for multi-party authenticated garbling. Applying half-gates to the multi-party set-
ting has been an open problem proposed by multiple prior works [BLO16, WRK17b, BLO17, KRRW18,
BJPR18]. We present how to partially use half-gates in the multi-party distributed garbling for boolean
circuits. Recently, Ben-Efraim [Ben18] proposed a technique for distributed garbling of arithmetic circuits,
which makes it compatible with some of the half-gates optimizations. Note that their technique does not

9

reduce the size of distributed garbled circuits for the case of boolean circuits. Thus, their work still leaves
the open problem of applying half-gates to the multi-party distributed garbling for boolean circuits.

Let’s first recall the classical multi-party distributed garbling [WRK17b]. For each wire w, every garbler
Pi (i ≥ 2) has a pair of garbled labels Liw,0, L

i
w,1 such that Liw,0 ⊕ Liw,1 = ∆i, where ∆i is a random offset

only known to Pi. For each AND gate (α, β, γ,∧) and u, v ∈ {0, 1}, the distributed garbling is constructed
in the following form:

Pi, i ≥ 2 : Giuv := H(Liα,u, L
i
β,v)⊕

(
{Mj [r

i
uv]}j 6=i,1, Liγ,0 ⊕

(⊕
j 6=iKi[r

j
uv]
)
⊕ riuv∆i

)
,

P1 : G1
uv := {Mj [r

1
uv]}j 6=1,

where
⊕

i∈[n] r
i
uv = ruv is defined as above.

As we can see above, the multi-party garbling is very complicated and difficult to analyze. Our first step
is to further split the distributed garbled table into two parts as below:

Aiuv := H(Liα,u, L
i
β,v)⊕

(
Liγ,0 ⊕ (

⊕
j 6=iKi[r

j
uv])⊕ riuv∆i

)
,

Bi
uv := H′(Liα,u, L

i
β,v)⊕

(
{Mj [r

i
uv]}j 6=i,1

)
.

Essentially, we can view Giuv as (Aiuv, B
i
uv). Now we can see that Aiuv is very similar to the two-party

distributed garbling. Thus we can attempt to apply the half-gates optimization on this portion:

Ai0 := H(Liα,0)⊕ H(Liα,1)⊕Ri,
Ai1 := H(Liβ,0)⊕ H(Liβ,1)⊕ Liα,0 ⊕ Si,
Liγ,0 := H(Liα,0)⊕ H(Liβ,0)⊕ Ti,

where
⊕

i∈[n]Ri = λβ∆i,
⊕

i∈[n] Si = λα∆i and
⊕

i∈[n] Ti = (λαλβ ⊕ λγ)∆i. Unlike the two-party
setting, here P1 cannot recover H(Liα,0)⊕H(Liα,1)⊕ λβ∆i and H(Liβ,0)⊕H(Liβ,1)⊕ Liα,0⊕ λα∆i, and then
perform the standard half-gates evaluation, since it does not get the other parties’ shares for λβ∆i and λα∆i.
By a careful evaluation, we show that evaluator P1 can still compute the garbled label for output wire γ in the
following way. If P1 holds public values Λα,Λβ and the corresponding garbled labels {Liα,Λα , L

i
β,Λβ
}i 6=1,

then for each i 6= 1, it computes as follows:

1. Evaluate the half-gates portion:

H(Liα,Λα)⊕ H(Liβ,Λβ)⊕ Λα ·Ai0 ⊕ Λβ · (Ai1 ⊕ Liα,Λα)

= H(Liα,0)⊕ H(Liβ,0)⊕ ΛαRi ⊕ ΛβSi ⊕ ΛαΛβ∆i.

2. Evaluate classical garbling portion. Let u = Λα and v = Λβ . Then, the evaluator P1 can compute{
Mj [r

i
uv]
}
j 6=i,1 := H′(Liα,Λα , L

i
β,Λβ

)⊕Bi
uv,

where Mj [r
i
uv] is Pi’s share of Λγ∆j for j 6= i.

3. P1 can compute its share Mi[r
1
uv] of Λγ∆i for each i 6= 1. Then, P1 combines them with the above

results as follows:(
H(Liα,0)⊕ H(Liβ,0)⊕ ΛαRi ⊕ ΛβSi ⊕ ΛαΛβ∆i

)
⊕
(⊕

j 6=iMi[r
j
uv]
)

= H(Liα,0)⊕ H(Liβ,0)⊕ Ti ⊕ Λγ∆i = Liγ,0 ⊕ Λγ∆i = Liγ,Λγ .

10

The correctness holds because

Λγ∆i = ΛαΛβ∆i ⊕ Λαλβ∆i ⊕ Λβλα∆i ⊕ (λαλβ ⊕ λγ)∆i

= ΛαΛβ∆i ⊕ Λα
(⊕

i∈[n]Ri
)
⊕ Λβ

(⊕
i∈[n] Si

)
⊕
(⊕

i∈[n] Ti
)

=
(
ΛαΛβ∆i ⊕ ΛαRi ⊕ ΛβSi ⊕ Ti

)
⊕
(⊕

j 6=i(ΛαRj ⊕ ΛβSj ⊕ Tj)
)

=
(
ΛαΛβ∆i ⊕ ΛαRi ⊕ ΛβSi ⊕ Ti

)
⊕
(⊕

j 6=iMi[r
j
uv]
)
,

where Λγ = (Λα ⊕ λα) ∧ (Λβ ⊕ λβ) ⊕ λγ and Mi[r
j
uv] = ΛαRj ⊕ ΛβSj ⊕ Tj is Pj’s share of Λγ∆i.

As a result, we can reduce the communication per AND gate from each garbler by 2κ bits in the function-
dependent phase. We refer the reader to Section 4 for the detailed construction.

2.6 Batch Circuit Authentication in the Multi-Party Setting
In this section, we focus on the circuit authentication part, which is used to authenticate the correctness of a
garbled circuit. Specifically, this part roughly works as follows:

– In the preprocessing phase, for each AND gate (α, β, γ,∧), every party Pi holds authenticated shares of
λα, λβ , λγ and λαβ = λα · λβ .

– After evaluating the distributed garbled circuit in the online phase, for each wire w, the evaluator P1

obtains a public value Λw, which is the XOR of the actual value on the wire (based on the input) and a
wire mask λw. P1 would like to check correctness of all public values by using the above authenticated
shares. In particular, it will guarantee that for each AND gate, the actual values on the wires form an
AND relationship.

Prior solution. For each AND gate (α, β, γ,∧) and u, v ∈ {0, 1}, we define ruv = (u ⊕ λα) ∧ (v ⊕
λβ) ⊕ λγ . In the original WRK protocol [WRK17b], the circuit authentication was essentially done by
encrypting authenticated bits of the form (riuv,M1[riuv]) in each garbled row, where riuv is Pi’s share of ruv.
This because the garblers do not know the public values at the stage of garbling. When incorporating the
optimization [WRK17a] into the protocol, their solution requires 4ρ bits of communication per AND gate
in the function-dependent phase.

Katz et al. [KRRW18] observed that in the two-party setting, such circuit authentication can be done in a
batch, which reduces the communication to 1 bit per AND gate. In particular, evaluator P1 needs to send the
public values on the output wires of all AND gates to P2, as P2 cannot evaluate the circuit. For each AND
gate (α, β, γ,∧), for correctness of Λγ , it suffices to show that tγ = (Λα⊕λα)∧(Λβ⊕λβ)⊕(Λγ⊕λγ) = 0.
Two parties compute the authenticated shares t1γ and t2γ of tγ by using the authenticated shares of λα, λβ ,
λγ and λα · λβ . Then P2 sends M1[t2γ] to P1, who checks its validity by comparing it with K1[t2γ] ⊕ t1γ∆1,
where tγ = 0 if and only if t1γ = t2γ . This authentication procedure can be made in a batch for all AND
gates by checking whether H({M1[t2w]}w∈W) = H({K1[t2w]⊕ t1w∆1}w∈W). A malicious P1 may flip some
public values, and reveals some secret shares held by P2 from such authentication, which may break the
privacy. To prevent the attack, P1 also needs to send H({M2[t1w]}w∈W) to P2 who checks that it is equal to
H({K2[t1w] ⊕ t2w∆2}w∈W). This solution does not extend to the multi-party setting directly, because when
there are multiple garblers, P1 only knows t1γ but not individual tiγ for i 6= 1.

Our solution. For each wire w ∈ W , we let P1 check that tw =
⊕

i∈[n] t
i
w = 0, after P1 sends {Λw}w∈W

to all other parties, where tw is defined as above. In a naive approach, each garbler Pi sends (tiw,M1[tiw]) to
P1, who checks that M1[tiw] = K1[tiw]⊕ tiw∆1. This requires |C| · (κ+ 1) bits of communication per garbler.
By optimizing the approach with batched MAC check, the communication is reduced to |C|+ κ bits.

We propose a new circuit authentication procedure in the multi-party setting based on an almost-universal
linear hash function H (as defined in Appendix A.2), which further reduces the communication per garbler

11

to κ bits. Specifically, each garbler Pi (i 6= 1) sends zi = H({M1[tiw]}w∈W) ∈ F2κ to P1, and P1 computes
M1[t1w] :=

⊕
i 6=1 K1[tiw]⊕ t1w∆1 for each wire w ∈ W . For each w ∈ W , tw = 0 if and only if⊕
i∈[n] M1[tiw] = t1w∆1 ⊕

⊕
i 6=1

(
K1[tiw]⊕M1[tiw]

)
=
⊕

i∈[n] t
i
w∆1 = tw∆1 = 0.

P1 computes z1 := H({M1[t1w]}w∈W), and then checks that
⊕

i∈[n] zi = 0. As H is XOR-homomorphic,
we have that ⊕

i∈[n] zi =
⊕

i∈[n] H({M1[tiw]}w∈W) = H({
⊕

i∈[n] M1[tiw]}w∈W) = 0.

From the almost-universal property, we have
⊕

i∈[n] M1[tiw] = 0 for w ∈ W . We can use a polynomial
hash based on GMAC to instantiate the linear hash function H, whose computation is blazing fast given
hardware-instruction support.

To prevent the attack mentioned above, we let P1 send hi = H({Liw,Λw}w∈W) to every garbler Pi who
checks that hi = H({Liw,0⊕Λw∆i}w∈W). Through the approach, every garbler Pi can check the correctness
of the public values sent by P1, because evaluator P1 can learn only one garbled label for each wire and
garbled label Liw,Λw can be viewed as an MAC on bit Λw. After the circuit authentication procedure, all
parties can obtain the correct public values, which allows our protocol to support multi-output functions in
a straightforward way. We give the detailed protocol in Section 4 and the full proof in Appendix E.

2.7 Other Optimization
In the WRK protocol [WRK17b], the input bits are masked with authenticated shares. However we ob-
serve that this is not necessary and that an extended form of authenticated bits is already sufficient. In-
tuitively, since every party can arbitrarily choose its input, and thus the shares from all other parties can
be set to 0. We define a useful operation called Bit2Share, which takes as input an authenticated bit
[λ]i =

(
λ, {Mk[λ]}k 6=i, {Kk[λ]}k 6=i

)
with bit λ known by Pi, and extends it to an authenticated share 〈λ〉 as

follows:

– Set [λi]i := [λ]i: Pi sets λi := λ and
{
Mk[λ

i] := Mk[λ]
}
k 6=i, Pk sets Kk[λi] := Kk[λ] for each k 6= i;

– Set [λj]j := [0]j for each j 6= i: Pj sets λj := 0 and {Mk[λ
j] := 0}k 6=j , and Pk defines Kk[λj] := 0 for

each k 6= j.

In our protocol, the circuit-input wires are processed using the above procedure instead of a full-fledged
authenticated shares. This is partially effective when the input is large (See Section 5). A similar idea is
used in the semi-honest MPC protocol [BLO16], where the MACs need not to be considered.

3 Improved Preprocessing Protocols
In this section, we present the details of our optimizations for faster authenticated AND triple generation.
Since we have discussed the key insights and high-level ideas of the preprocessing protocols in Section 2,
here we will focus on detailed description of the protocols and their proofs of security.

In Section 3.1, we will present our improved multi-party authenticated bit protocol with a detailed proof
of security. Then in Section 3.2, we will show the authenticated share protocol with an improved global-
key consistency check. We defer the detailed description and security proof of the improved protocol for
authenticated AND triples to Appendix D.

Our protocols for authenticated bits, shares and AND triples jointly implement the preprocessing func-
tionality Fprep as shown in Figure 1. In functionality Fprep, we allow the adversary to make multiple (leak)
queries on the same index i /∈ A. Each bit guess of ∆i made by the adversary will be caught with probabil-
ity 1/2. For each (leak) query, the adversary needs to provide a subset S ⊆ [κ] representing the positions
in which the guessed bits locate. Our MPC protocol with improved authenticated garbling as shown in
Section 4 will work in the Fprep-hybrid model.

12

Functionality Fprep

This functionality runs with parties P1, . . . , Pn. Let A ⊂ [n] be the set of corrupt parties.
Initialize: Upon receiving (init) from all parties, sample ∆i ← {0, 1}κ for i /∈ A and receive ∆i ∈ {0, 1}κ from
the adversary for i ∈ A. Store ∆i for i ∈ [n] and send ∆i to party Pi.
Macro AuthBit(i, x) (this is an internal subroutine only)

1. If Pi is corrupted, receive an MAC Mj [x] ∈ {0, 1}κ from the adversary and compute Kj [x] := Mj [x]⊕ x∆j

for each j 6= i.

2. Otherwise, sample honest parties’ keys Kj [x]← {0, 1}κ for j /∈ A, j 6= i. Receive keys Kj [x] for j ∈ A from
the adversary. Compute the MACs Mj [x] := Kj [x]⊕ x∆j for j 6= i.

3. Output (x, {Mj [x]}j 6=i) to Pi and Kj [x] to Pj for j 6= i.

Authenticated bits/shares/triples: This functionality generates random authenticated bits, shares and triples as
follows:

1. Upon receiving (aBit, i) from all parties, sample x← {0, 1} if Pi is honest and receive x ∈ {0, 1} otherwise,
and then generate a (random) authenticated bit [x]i by executing AuthBit(i, x).

2. Upon receiving (aShare) from all parties, sample x ← {0, 1}, and then execute the following macro
AuthShare(x) to generate a random authenticated share 〈x〉:

– Receive xi ∈ {0, 1} from the adversary for i ∈ A ; sample xi ← {0, 1} for i /∈ A such that
⊕

i∈[n] x
i = x.

– For each i ∈ [n], execute AuthBit(i, xi).

3. Upon receiving (aAND) from all parties, sample random bits a, b← {0, 1}, compute c := a∧ b, and generate
a random authenticated AND triple (〈a〉, 〈b〉, 〈c〉) via running AuthShare(x) for each x ∈ {a, b, c}.

Selective failure leakage: Wait for the adversary to input (leak, i, S, {∆′[k]}k∈S). If Pi is honest, this function-
ality executes the macro GKleak(i, S, {∆′[k]}k∈S) defined as follows:

– If there exists some k ∈ S such that ∆′[k] 6= ∆i[k], this functionality sends fail to all parties and aborts.

– Otherwise, it sends success to the adversary and proceeds as if nothing has happened.

Figure 1: The multi-party preprocessing functionality.

3.1 Optimized Multi-Party Authenticated Bits
We propose a new protocol ΠaBit to generate authenticated bits in the multi-party malicious setting. Our
protocol uses a correlated OT with errors functionality FCOTe [KOS15] shown in Figure 2. In functionality
FCOTe, if a receiver PR is honest, it will input a “monochrome” vector xi = xi · (1, . . . , 1) for i ∈ [`] and
xi ∈ {0, 1}, which results in the correct correlation, i.e., M[xi] = K[xi] + xi ·∆. If PR is malicious, it may
input a “polychromatic” vector xi 6= xi · (1, . . . , 1) for i ∈ [`], which results in M[xi] = K[xi] + xi ∗ ∆,
where xi ∗∆ = (xi[1] ·∆[1], . . . ,xi[κ] ·∆[κ]). We can rewrite xi = xi · (1, . . . , 1) + ei, and get M[xi] =
K[xi]+xi·∆+ei∗∆, where ei ∈ Fκ2 is an error vector counting the number of positions in which PR cheated.
An efficient protocol, which implements the functionality FCOTe, has been described in [Nie07, KOS15].
This protocol is the same as the IKNP OT extension protocol [IKNP03, ALSZ13], except that it terminates
before hashing the output with the random oracle to break the correlation and executing the final round of
communication. Nielsen [Nie07] has shown that the protocol securely realizes the functionality FCOTe.

We present the details of our protocol ΠaBit in Figure 4, where ΠaBit works in the (FCOTe,FRand)-
hybrid model. The bits sampled by a party Pi in our protocol are authenticated by weak global keys, where

13

Functionality FCOTe

Initialize: Upon receiving (init,∆) from a sender PS where global key ∆ ∈ Fκ2 , and (init) from a receiver PR,
store ∆ and ignore all subsequent (init) commands.
Extend: Upon receiving (extend, `,x1, . . . ,x`) from PR where xi ∈ Fκ2 , and (extend, `) from PS , this function-
ality does the following:

1. For each i ∈ [`], sample K[xi]← Fκ2 . If PS is corrupted, instead receive K[xi] ∈ Fκ2 from the adversary.

2. Compute M[xi] := K[xi] + xi ∗∆ ∈ Fκ2 for each i ∈ [`], where ∗ denotes component-wise product.

3. If PR is corrupted, receive M[xi] ∈ Fκ2 from the adversary and recompute K[xi] := M[xi] + xi ∗∆.

4. For each i ∈ [`], output K[xi] to PS and M[xi] to PR.

Figure 2: Functionality for correlated OT with errors.

Functionality FaBit

This functionality generates random bits known by a party Pi and authenticated to all other parties.
Initialize: Upon receiving (init, i) from Pi and (init, i,∆j) from Pj for j 6= i where ∆j ∈ {0, 1}κ, store ∆j for
j 6= i and ignores all subsequent (init) commands.
Authentication: Upon receiving (aBit, i, `) from all parties, sample x1, . . . , x` ← {0, 1} if Pi is honest, and
receive bits {xk}k∈[`] from the adversary otherwise. Generate ` authenticated bits {[xk]i}k∈[`] by running
AuthBit(i, xk) defined in Figure 1 for k ∈ [`].
Selective failure leakage: If Pi is corrupted, wait for the adversary to input (leak, j, S, {∆′[k]}k∈S). If Pj is
honest, this functionality executes GKleak(j, S, {∆′[k]}k∈S) as defined in Figure 1.

Figure 3: Functionality for multi-party authenticated bits.

the adversary is allowed to guess a few bits on the global keys of honest parties. We use a functionality
FaBit shown in Figure 3 to define authenticated bits with selective failure leakage of global keys. In the
(init) command of FaBit, an honest party Pj will input a random global key ∆j , while a corrupt party Pj
allows to send an arbitrary string ∆j ∈ {0, 1}κ. By the (leak) command of FaBit, the adversary may guess
a few bits of global key ∆j for j /∈ A. A correct guess keeps undetected, while an incorrect guess will
be caught. In particular, while the adversary succeeds to leak cj bits of ∆j with probability 2−cj for some
cj ∈ [κ] ∪ {0}, the remaining κ− cj bits of ∆j are still uniform and unknown from the adversary’s view.

Security of our authenticated bit protocol. We first analyze the checking procedure (Steps 5−7) of pro-
tocol ΠaBit shown in Figure 4 and give several important lemmas. The analysis and lemmas can be found in
Appendix B.1. Then, we prove the security of our authenticated bit protocol ΠaBit in the following theorem.
The full formal proof of the theorem is postponed to Appendix B.2.

Theorem 1. Protocol ΠaBit shown in Figure 4 securely realizes functionality FaBit with statistical error
max{1/2ρ, 8/2κ} in the (FCOTe,FRand)-hybrid model.

Optimization and communication complexity. We first optimize the generation of random coefficients
in Step 5 of protocol ΠaBit described in Figure 4. Specifically, instead of calling functionality FRand, the
parties can use the Fiat-Shamir heuristic to compute the random coefficients {χk}k∈[`′] by hashing the
transcript during the authenticated bit generation procedure, which is secure in the random oracle model.
This optimization reduces the communication rounds of protocol ΠaBit by two rounds.

14

Protocol ΠaBit

Let `′ = `+ (κ+ ρ). A party Pi generates ` bits authenticated by all other parties.
Initialize: All parties initialize the protocol as follows:

1. For each j 6= i, Pj picks a random global key ∆j ← {0, 1}κ.

2. For j 6= i, Pj sends (init,∆j) to FCOTe; Pi sends (init) to FCOTe.

Generate authenticated bits: The parties generate `′ authenticated bits without correctness guarantee as follows:

3. Pi picks random bits x1, . . . , x`′ ← {0, 1}, and then sets a monochrome vector xk := xk · (1, . . . , 1) ∈ Fκ2
for each k ∈ [`′].

4. For each j 6= i, Pj and Pi call FCOTe on respective inputs (extend, `′) and (extend, `′,x1, . . . ,x`′), which
returns the keys {Kj [xk]}k∈[`′] to Pj and the MACs {Mj [xk]}k∈[`′] to Pi.

Check correlation and consistency: The parties check the correlation of their outputs from FCOTe and the
consistency of Pi’s inputs in multiple calls of FCOTe as follows:

5. The parties call coin-tossing functionality FRand to obtain `′ random coefficients χ1, . . . , χ`′ ∈ F2κ .

6. Pi locally computes over F2κ the value yi :=
∑`′

k=1χk · xk, and
{
Mj [y

i] :=
∑`′

k=1 χk · Mj [xk]
}
j 6=i and

broadcasts yi to all parties. For each j 6= i, Pi also sends Mj [y
i] to Pj .

7. For each j 6= i, Pj computes Kj [yi] :=
∑`′

k=1χk · Kj [xk], and checks that Mj [y
i] = Kj [y

i] + yi ·∆j . If the
check fails, Pj aborts.

8. The parties output ` authenticated bits [x1]i, . . . , [x`]i with [xk]i = (xk,Mj [xk],Kj [xk]) for k ∈ [`].

Figure 4: Protocol for generating multi-party aBits.

Now, we analyze the rounds and communication cost of protocol ΠaBit with the above optimization,
including the rounds and cost of the IKNP OT extension protocol [ALSZ13] realizingFCOTe. When ignoring
the communication rounds in the initialization phase, our protocol ΠaBit needs only one round. If we adopt
the base OT protocols such as [PVW08, CO15, CSW20] to implement the initialization procedure, the whole
protocol has three rounds. We ignore the communication cost of global keys setup in the initialization phase
(Step 1 and Step 2), as the setup needs to be run only once, and the one-time setup cost depends on which
base OT protocol is used and is minor for the efficiency of the whole protocol. The communication cost of
protocol ΠaBit is about (n− 1)(`+ κ+ ρ)κ bits.

3.2 Improved Multi-Party Authenticated Shares
We propose an efficient protocol ΠaShare, which allows n parties to compute authenticated shares of secret
bits. One straightforward approach is to call FaBit n times, where in the j-th call, the parties obtain a
random authenticated bit [xj]j for a random bit xj known only by Pj . However, a malicious party Pi may
use inconsistent global keys in multiple calls of FaBit. This results in that two authenticated bits [xj0]j0
and [xj1]j1 are authenticated by two different global keys ∆i and ∆′i respectively. Based on a similar
observation [WRK17b], we note that the two-party functionality FCOTe has already guaranteed that Pi uses
the same global key ∆i, when Pi and Pj generate the MACs on multiple bits. Therefore, if one authenticated
share has the consistent global keys, then all authenticated shares have the consistent global keys. In our
construction, we let all parties additionally generate κ authenticated shares, and then open them to check the
consistency of global keys.

The detailed construction of authenticated share protocol ΠaShare is described in Figure 5. If ri1, . . . , r
i
κ ∈

{0, 1} are sampled at random, then yi =
∑κ

h=1 r
i
h ·Xh−1 is uniformly random over F2κ . In the following

15

Protocol ΠaShare

Initialize: All parties initialize the protocol as follows:

1. For each i ∈ [n], Pi picks a random global key ∆i ← {0, 1}κ.

2. For each i ∈ [n], for each j 6= i, Pj sends (init, i,∆j) to FaBit.

Generate authenticated shares: All parties generate ` + κ authenticated shares without consistency guarantee
by calling FaBit.

3. For each i ∈ [n], all parties send (aBit, i, `+ κ) to FaBit, which samples xi1, . . . , x
i
`, r

i
1, . . . , r

i
κ ← {0, 1} and

sends random authenticated bits {[xik]i}k∈[`] and {[rih]i}h∈[κ] to the parties.

If receiving fail from functionality FaBit, the parties abort.

Consistency check: The parties check the consistency of global keys.

4. Each party Pi locally computes over F2κ the following values:

yi :=

κ∑
h=1

rih ·Xh−1, Mj [y
i] :=

κ∑
h=1

Xh−1 ·Mj [r
i
h] for j 6= i, Ki[y

j] :=

κ∑
h=1

Xh−1 · Ki[rjh] for j 6= i.

5. Every party Pi obtains a random zero-share ui ∈ F2κ such that
∑n
i=1 u

i = 0 by exchanging random elements
over a private channel as follows:

– For each i ∈ [n] and j 6= i, Pi picks a random element ui,j ← F2κ and privately sends it to Pj .

– Every party Pi computes ui :=
∑
j 6=i
(
ui,j + uj,i

)
over F2κ .

6. Every party Pi computes ỹi := yi + ui, and then broadcasts it to all parties. Then, for each i ∈ [n], Pi
computes y :=

∑n
i=1 ỹ

i.

7. Each party Pi computes zii :=
∑
j 6=i Ki[y

j] + (yi +y) ·∆i, and commits to
({

zij := Mj [y
i]
}
j 6=i, z

i
i

)
∈ Fn2κ

by calling the (Commit) command of FCom.

8. After all commitments have been made, all parties open their commitments by calling the (Open) command
of FCom, and then check that:

for each i ∈ [n],

n∑
j=1

zji = 0.

If the check fails, the parties abort.

9. The parties output ` authenticated shares 〈x1〉, . . . , 〈x`〉 with 〈xk〉 = ([x1
k]1, . . . , [x

n
k]n) for k ∈ [`].

Figure 5: Protocol for generating multi-party authenticated shares.

theorem, we prove that protocol ΠaShare securely realizes the functionality FaShare for authenticated shares
with weak global keys as shown in Figure 12 of Appendix C. The full proof of the theorem is provided in
Appendix C. We also give the communication rounds and complexity of protocol ΠaShare in Appendix C.

Theorem 2. Protocol ΠaShare shown in Figure 5 securely realizes functionality FaShare with statistical error
1/2κ in the (FaBit,FCom)-hybrid model.

Implementing the (aBit) command of Fprep. In functionality Fprep shown in Figure 1, all parties can call
the (aBit) command to generate authenticated bits in which the bits are known by n different parties. The

16

parties can execute the protocol ΠaBit described in Figure 4 n times to implement this command. In this
case, a malicious party Pi may use inconsistent global keys in n different executions of ΠaBit. Nevertheless,
we note that if one authenticated share has the consistent global keys, then all multi-party authenticated
bits have also the consistent global keys. Therefore, by one execution of protocol ΠaShare, we have already
guaranteed that all authenticated bits from n executions of ΠaBit have the consistent global keys. In a very
special case that ΠaShare is not executed by the parties when the circuit does not include any AND gate,
the parties still need to perform the consistency check underlying the protocol ΠaShare to guarantee the
consistency of global keys.

4 Optimized Multi-Party Authenticated Garbling
4.1 Construction in the Fprep-hybrid model and Proof of Security
In this section, we present our MPC protocol Πmpc in the Fprep-hybrid model. Since we have already
discussed the main ideas of our improvements in Section 2, we directly show the complete description
of the protocol in Figure 6 and Figure 7. In protocol Πmpc, we use an amortized opening process for
authenticated bits/shares described in Appendix A.3, which has also been used in the previous protocols
such as [NNOB12, KRRW18]. Specifically, every party can send the bits/shares along with a hash value of
the corresponding MACs to the other parties, which implements the amortized opening procedure denoted
by Open. In Appendix A.3, we prove that the amortized opening is still secure in our setting where a few
bits of global keys may be leaked via the selective failure attack.

In addition, protocol Πmpc uses an almost universal linear hash function H(z) = z[1]·χ+· · ·+z[m]·χm,
where z ∈ Fm2κ and m = |C|. The definition of such hash functions and the security of the construction are
given in Appendix A.2. In the output processing of protocol Πmpc, without loss of generality, we assume
that every party’s output is associated with different circuit-output wires. If we allow two parties to obtain
the same output from the same circuit-output wires such as Oi = Oj , then for each w ∈ Oi the wire masks
λiw and λjw need to be revealed over a private channel.

In Appendix E, we give a detailed security proof of protocol Πmpc. In particular, we are able to prove
the following result.

Theorem 3. Let f : {0, 1}|I| → {0, 1}|O| be an n-party functionality. Then protocol Πmpc shown in
Figures 6 and 7 securely computes f in the presence of a static malicious adversary corrupting up to n− 1
parties in the Fprep-hybrid model, where H is a random oracle.

4.2 Communication Complexity
In this section, we first give the communication complexity of our protocol Πmpc shown in Figures 6 and 7,
and then compare it with the state-of-the-art constant-round maliciously secure MPC protocols [HSS17,
WRK17b] in the dishonest majority setting.

In the function-independent phase, our protocol Πmpc needs 8 communication rounds, when the initial-
ization procedure for the setup of global keys is instantiated by the base OT protocols such as [PVW08,
CO15, CSW20]. In this phase, protocol Πmpc needs to compute |I| authenticated bits, |C| authenticated
shares and |C| AND triples, and thus needs about (4B+ 1)|C|(n− 1)κ+ |I|(1− 1/n)κ bits of communica-
tion per execution for every party. In each execution of the function-dependent phase, our protocol needs two
rounds for computing circuit-dependent AND triples and sending a distributed garbled circuit, and requires
at most (4n−6)|C|κ+(2n−1)|C| bits of communication per party and (4n−6)(n−1)|C|κ+2n(n−1)|C|+|C|
bits in total. In the online phase, protocol Πmpc requires 4 rounds for that all parties obtain their outputs,
and needs about |I|κ+ |I|/n+ |O| (resp., |C|+ |I|/n+ |O|) bits of communication per execution for every
garbler Pi (resp., the evaluator P1).

In Table 2, we compare our MPC protocol with the state-of-the-art constant-round protocols [HSS17,
WRK17b], where all protocols are optimized by using the amortized opening procedure (as described in

17

Protocol Πmpc

Inputs: In the function-independent phase, all parties know |C| and |I|. In the function-dependent phase, the
parties agree on a circuit C for a function f : {0, 1}I1 × · · · × {0, 1}In → {0, 1}O1 × · · · × {0, 1}On . In
the online phase, Pi holds an input xi ∈ {0, 1}Ii for every i ∈ [n], where xiw denotes the bit of input xi on a
circuit-input wire w ∈ Ii.
Function-independent phase:

1. All parties send (init) to Fprep, which returns a random ∆i ∈ {0, 1}κ to Pi for each i ∈ [n] with lsb(∆2) = 1.

2. For each i ∈ [n] and w ∈ Ii, the parties send (aBit, i) to Fprep, which returns a random authenticated bit [λw]i
to the parties. Then the parties define an authenticated share 〈λw〉 via running Bit2Share([λw]i).

3. For each w ∈ W , the parties send (aShare) to Fprep, which returns a random authenticated share 〈λw〉 to them.

4. For each w ∈ W , the parties send (aAND) to Fprep, which returns a random authenticated AND triple
(〈a〉, 〈b〉, 〈c〉) to the parties.

5. For each w ∈ I1 ∪ · · · ∪ In, Pi samples Liw,0 ← {0, 1}κ for i 6= 1.

If receiving fail from Fprep in Steps 2−4, the parties abort.

Function-dependent phase:

6. For each XOR gate (α, β, γ,⊕), the parties compute 〈λγ〉 := 〈λα〉 ⊕ 〈λβ〉. For i 6= 1, Pi also computes
Liγ,0 := Liα,0 ⊕ Liβ,0.

7. For all AND gates (α, β, γ,∧), the parties execute in parallel:

(a) Take a fresh authenticated AND triple (〈a〉, 〈b〉, 〈c〉) from the previous phase, and then compute 〈d〉 :=
〈λα〉 ⊕ 〈a〉 and 〈e〉 := 〈λβ〉 ⊕ 〈b〉.

(b) Compute d := Open(〈d〉) and e := Open(〈e〉).

(c) Compute 〈λαβ〉 = 〈λα · λβ〉 := 〈c〉 ⊕ d · 〈b〉 ⊕ e · 〈a〉 ⊕ d · e.

8. For each AND gate (α, β, γ,∧), for i 6= 1, Pi computes Liα,1 := Liα,0 ⊕ ∆i and Liβ,1 := Liβ,0 ⊕ ∆i, and
computes the following:

Giγ,0 := H(Liα,0, γ)⊕ H(Liα,1, γ)⊕ (
⊕

j 6=i Ki[λ
j
β])⊕ λiβ∆i

Giγ,1 := H(Liβ,0, γ)⊕ H(Liβ,1, γ)⊕ Liα,0 ⊕ (
⊕

j 6=i Ki[λ
j
α])⊕ λiα∆i

Liγ,0 := H(Liα,0, γ)⊕ H(Liβ,0, γ)⊕ (
⊕

j 6=i Ki[λ
j
αβ])⊕ λiαβ∆i ⊕ (

⊕
j 6=i Ki[λ

j
γ])⊕ λiγ∆i

bγ := lsb(Liγ,0) if i = 2. For u, v ∈ {0, 1}, compute the following:{
Mj [r

i
uv] := u ·Mj [λ

i
β]⊕ v ·Mj [λ

i
α]⊕Mj [λ

i
αβ]⊕Mj [λ

i
γ]
}
j 6=i,1

Gi,jγ,00 := H(Liα,0, L
i
β,0, γ, j)⊕Mj [r

i
00] for j 6= i, 1

Gi,jγ,01 := H(Liα,0, L
i
β,1, γ, j)⊕Mj [r

i
01] for j 6= i, 1

Gi,jγ,10 := H(Liα,1, L
i
β,0, γ, j)⊕Mj [r

i
10] for j 6= i, 1

Gi,jγ,11 := H(Liα,1, L
i
β,1, γ, j)⊕Mj [r

i
11] for j 6= i, 1

For each wire w ∈ W , every garbler Pi sends
(
Giw,0,Giw,1,

{
Gi,jw,00, G

i,j
w,01, G

i,j
w,10, G

i,j
w,11

}
j 6=i,1

)
to P1. Addi-

tionally P2 sends {bw}w∈W to P1.

Figure 6: Our MPC protocol in the Fprep-hybrid model.

18

Protocol Πmpc, continued

Online phase:

9. For each i ∈ [n] and w ∈ Ii, the parties execute as follows:

(a) Pi computes Λw := xiw ⊕ λw, and then broadcasts Λw to all parties.

(b) For each j 6= 1, Pj computes and sends Ljw,Λw := Ljw,0 ⊕ Λw∆j to P1.

10. P1 evaluates the circuit following the topological order. For each gate (α, β, γ, T), P1 holds (Λα, {Liα,Λα}i6=1)

and (Λβ , {Liβ,Λβ}i 6=1), and

– If T = ⊕, compute Λγ := Λα ⊕ Λβ and Liγ,Λγ := Liα,Λα ⊕ Liβ,Λβ for i 6= 1.

– If T = ∧, let u = Λα and v = Λβ , and compute the following:

(a) For each j 6= 1, Mj [r
1
uv] := Λα ·Mj [λ

1
β]⊕ Λβ ·Mj [λ

1
α]⊕Mj [λ

1
αβ]⊕Mj [λ

1
γ].

(b) For i 6= 1 and j 6= i, 1, Mj [r
i
uv] := H(Liα,Λα , L

i
β,Λβ

, γ, j)⊕Gi,jγ,uv.
(c) For each i 6= 1, compute the garbled label on the output wire:

Liγ,Λγ := H(Liα,Λα , γ)⊕ H(Liβ,Λβ , γ)⊕ ΛαGiγ,0 ⊕ Λβ(Giγ,1 ⊕ Liα,Λα)⊕
(⊕

j 6=iMi[r
j
uv]
)
.

(d) Compute the public value Λγ := bγ ⊕ lsb(L2
γ,Λγ

).

11. P1 computes hi := H({Liw,Λw}w∈W) for each i 6= 1, and also samples a seed χ ← F2κ . For i 6= 1, P1 sends(
{Λw}w∈W , hi, χ

)
to Pi. Then, Pi checks that hi = H({Liw,0 ⊕ Λw∆i}w∈W). If the check fails, Pi aborts.

For each XOR gate (α, β, γ,⊕) and i 6= 1, Pi computes locally Λγ := Λα ⊕ Λβ .

12. For all AND gates (α, β, γ,∧), P1 checks tγ = (Λα ⊕ λα) ∧ (Λβ ⊕ λβ) ⊕ (Λγ ⊕ λγ) = 0 in a batch, by
interacting with all other parties as follows:

(a) For each AND gate (α, β, γ,∧) and i 6= 1, Pi computes

M1[tiγ] := Λα ·M1[λiβ]⊕ Λβ ·M1[λiα]⊕M1[λiαβ]⊕M1[λiγ].

(b) For each AND gate (α, β, γ,∧), P1 computes t1γ := Λα ·Λβ ⊕Λγ ⊕Λα · λ1
β ⊕Λβ · λ1

α ⊕ λ1
αβ ⊕ λ1

γ and
the following values:{

K1[tiγ] := Λα · K1[λiβ]⊕ Λβ · K1[λiα]⊕ K1[λiαβ]⊕ K1[λiγ]
}
i 6=1

, M1[t1γ] :=
(⊕

i 6=1 K1[tiγ]
)
⊕ t1γ∆1.

(c) Let H be the almost universal linear hash function defined by χ. For each i 6= 1, Pi computes and sends
zi := H({M1[tiw]}w∈W) ∈ F2κ to P1.

(d) P1 computes z1 := H({M1[t1w]}w∈W) ∈ F2κ , and checks that
∑n
i=1 zi = 0. If the check fails, P1 aborts.

13. For each i ∈ [n], Pi computes its output as follows:

(a) For each wire w ∈ Oi and j 6= i, Pj and Pi compute λjw := Open([λjw]ij).

(b) For each wire w ∈ Oi, Pi computes yiw := Λw ⊕
(⊕

j∈[n] λ
j
w

)
. Then Pi outputs yi.

Figure 7: Our MPC protocol in the Fprep-hybrid model, continued.

Appendix A.3) for authenticated bits/shares. Recall that B = ρ
log |C|+1 + 1 denotes the bucket size. The

communication rounds and complexity are obtained from the work [HSS17] for HSS and calculated from

19

Func. Ind. phase Communication (bits) Rounds

[HSS17] (3B2 + 1)(n− 1)|C|(κ+ ρ) + (n− 1)|I|(κ+ ρ) 13

[WRK17b] (3B + κ
κ+ρB + 1)(n− 1)|C|(κ+ ρ) + (n− 1)|I|(κ+ ρ) 9

This paper (4B + 1)(n− 1)|C|κ+ (1− 1/n)|I|κ 8

Func. Dep. phase Communication (bits) Rounds

[HSS17] 4n|C|κ+ 2(n− 1)|C|+ (n− 1)|I|+ |O| 2

[WRK17b] 4(n− 1)|C|κ+ 4|C|ρ+ 2(n− 1)|C|+ (n− 1)|I| 2

This paper (4n− 6)|C|κ+ (2n− 1)|C| 2

Online phase Communication (bits) Rounds

[HSS17] |I|(n− 1)κ+ |I|/n 2

[WRK17b] |I|κ+ |I|/n+ |O| 3

This paper max{|I|κ, |C|}+ |I|/n+ |O| 4

Table 2: Comparison of communication complexity and rounds between our MPC protocol and the state-of-the-art
protocols. The communication complexity is the maximum amount of data sent by any one party per execution. The
columns for #R denote the rounds. |I| (resp., |O|) is the length of all circuit-input (resp., circuit-output) wires, and
thus |I|/n is the length of every party’s input. |C| is the number of AND gates in the circuit.

the protocol description for WRK [WRK17b].
In the online phase, we assume that every party obtains a possible different output. It is straightforward to

extend the HSS protocol [HSS17] for supporting multiple different outputs. No explicit approach to support
multiple outputs is described for the WRK protocol in their work [WRK17b]. The main problem is how
every garbler Pi with i 6= 1 obtains the correct public values on its circuit-output wires in an efficient way,
where recall that only the evaluator P1 can compute the circuit. We can solve the problem, by considering a
garbled label Liw,Λw = Liw,0⊕Λw∆i as an MAC on bit Λw. Thus, we can let P1 send the public values along
with a hash value of garbled labels on these values to every garbler Pi who can check the correctness of
these values. In this way, we can extend the WRK protocol [WRK17b] to support multiple different outputs.

From Table 2, our protocol obtains lower communication complexity in the preprocessing phases, and
has the (almost) same online communication overhead. Although our protocol has more rounds in the
online phase, we believe that this is a reasonable trade-off for lower communication cost in the function-
dependent phase. We refer the reader to Section 5 for the comparison of the concrete communication cost
and performance.

5 Performance Evaluation
In this section, we compare the performance of our protocol with the best prior work. We developed an
automatic benchmarking platform to remotely control a large number of machines executing MPC without
the need to log in each machine. We will make it publicly available on EMP toolkit [WMK16] for all
implementations that we produced from this work, as well as this testing platform. For all protocols, we
choose computational security parameter κ = 128 and statistical security parameter ρ = 40. All experiments
are executed across machines of type c5.9xlarge with 36 vCPUs. The network bandwidth is 10 Gbps with

20

Comm. Running time with different threads (ns)

(bytes) 2 4 8 26 32

[WRK17a] 286 3978 2255 1263 765 588
This paper 193 677 412 239 203 184

Improvement 1.48× 5.88× 5.47× 5.28× 3.77× 3.2×

Table 3: Comparison of our protocol and WRK in the two-party setting. The running time, which is
needed to generated one authenticated AND triple, is reported in nanoseconds (ns). Communication cost is
the amount of bandwidth needed per party to compute one authenticated triple.

2 4 6 8 10 12
Number of Parties

0

2

4

6

8

10

12

14

16

18

Tr
ip

le
 G

en
er

at
io

n
Ti

m
e

(µ
s)

This paper
WRK17

Figure 8: Comparing our protocol with WRK for generating a multi-party authenticated AND triple
(small number of parties). The cost of generating one triple in the multi-party setting with number of
parties from 3 to 12. Error bars show the standard derivation.

latency about 0.1 ms.

5.1 Improvements for Authenticated Triple Generation Protocols

Two-party setting. In Table 3, we compare our authenticated triple generation protocol with the best prior
implementation available by Wang et al. [WRK17a]. We compare the performance by using both implemen-
tations to compute 223 authenticated triples and report the number of nanoseconds per triple. To demonstrate
the computation-communication cost, we run the same experiment with different number of threads. For
a fair comparison, we applied the same code optimization that we did in our code to the original WRK
code. As a result, our reported WRK performance is actually twice faster than the performance reported in
their paper. However, even after all these extra optimizations are applied to WRK, our protocol is still 5×
faster than WRK when eight or less number of threads are used. When the number of threads approaches
32, we observe that the improvement decreases to 3×. This is because the network gradually becomes the
bottleneck and limits the performance of our protocol.

Multi-party setting. In Figure 9, we compare our authenticated triple generation protocol with the best
prior implementation [WRK17b] in the multi-party setting. Similar to the two-party setting, we applied all
our code optimizations to the original WRK protocol [WRK17b] so that the comparison does not include

21

0 10 20 30 40 50 60 70 80 90
Number of Parties

0

10

20

30

40

50

60

70

80

Tr
ip

le
 G

en
er

at
io

n
Ti

m
e

(µ
s)

This paper
WRK17

Figure 9: Comparing our protocol with WRK for generating a multi-party authenticated AND triple (large
number of parties). The cost of generating one triple in the multi-party setting with number of parties from 8 to 80.
Error bars show the standard derivation.

pure engineering effort. We keep the number of threads used in both cases and two protocols the same:
for n-party triple generation, the number of threads used is 2(n − 1). We observe higher fluctuation in
running time for the multi-party setting, especially when n is large. Therefore, we also include the standard
derivation as the error bar.

The WRK implementation frequently hangs when computing across more than 50 parties. It runs fine
when the triple is less than 215 where the bucket size is 4. To make it fair, we only compare up to the number
of parties when WRK can run smoothly over 220 triples. We can observe that our protocol consistently
improves the efficiency by at least 5×. What’s more, the running time of WRK for 16 parties is already
slower than our protocol executed over 80 parties! We also give the exact running time for both protocols in
Table 4 for different number of parties.

5.2 Improvements for Authenticated Garbling
Our improvements in the triple generation protocol directly translate to improvements of the function-
independent phase in our MPC protocol. Here, we will mainly describe our improvements in the function-
dependent phase for the authenticated garbling protocol. Our improvements mostly focus on the communi-
cation complexity in the multi-party setting, which also reflect the overall running time since the computation
is cheap. Therefore, we will compare the communication complexity in the multi-party setting with the best
known MPC protocol [WRK17b].

To make the comparison fair, we optimize the size of distributed garbled circuit of WRK [WRK17b]
by using the trick proposed in the two-party setting [WRK17a]. This reduces the size of garbled circuit for
WRK [WRK17b] from 4nκ bits per AND gate to 4(n− 1)κ+ 4ρ bits per AND gate. In addition, the online
communication cost of WRK is obtained by using the amortized opening of authenticated bits.

Comparison of communication cost based on AES circuit. An AES circuit consists of 6800 AND gates
and 128 bits of input and output. In the multi-party setting, we assume that all parties hold XOR shares of
the input and the circuit will first XOR all input shares before the AES computation. Table 5 compares the
communication cost for secure AES evaluation between our protocol and the best prior protocol [WRK17b]
in the multi-party setting.

Compared to WRK [WRK17b], our protocol gives about 1.52× improvement for three-party case and

22

#Parties 3 4 5 6 7 8

WRK [WRK17b] 5.02 5.98 7.13 8.26 9.46 10.77
This paper 1.26 1.43 1.62 1.86 2.17 2.31

Improvement 3.98× 4.12× 4.4× 4.44× 4.36× 4.66×
#Parties 16 24 32 40 48 56

WRK [WRK17b] 29.09 40.55 51.6 62.66 75 −
This paper 4.95 6.37 8.7 11.41 13.54 16.86

Improvement 5.88× 6.36× 5.9× 5.5× 5.54× −

Table 4: Comparison of our protocol and WRK in the multi-party setting. The running time, which is needed to
generated one authenticated AND triple, is reported in microsecond (µs).

#Parties Protocol
Func. Ind. (MB) Func. Dep. Online

#1 #1024 (MB) (KB)

n = 3
WRK [WRK17b] 4.8 3.6 1.0 6.3

Ours 3.7 2.8 0.66 6.2

n = 5
WRK [WRK17b] 9.7 7.2 1.9 10.4

Ours 7.5 5.7 1.5 10.3

Table 5: Comparison of communication cost between our MPC protocol and the best known protocol for secure
AES evaluation. All numbers are the maximum amount of data sent by any one party per execution. The columns
for “#1” and “#1024” denote the communication cost over a single execution and the amortized cost over 1024
executions respectively.

#Parties Protocol Func. Ind. (MB) Func. Dep. (MB) Online (MB)

n = 3
WRK [WRK17b] 1352.2 311.4 101.5

Ours 942.2 202.6 100.9

n = 5
WRK [WRK17b] 3056.6 580.9 169.1

Ours 1884.3 472.1 168.0

Table 6: Communication cost of our and prior best protocols for computing Hamming distance.

1.27× improvement for five-party case in the function-dependent phase. In terms of the communication cost
of function-independent phase, our protocol leads to a 1.3× improvement with a single execution and 1.26×
improvement with 1024 executions. While reducing the communication in both preprocessing phases, we
do not increase the communication cost in the online phase. In terms of the total communication from three
phases, our protocol results in about 1.3× improvement for both a single execution and 1024 executions.

Comparison of communication cost based on other circuits. In Table 6 and Table 7 shown in the
Appendix, we also compare our protocol with the state-of-the-art protocol [WRK17b] for circuits of other
shapes, including hamming distance and sorting. As described in [WRK17a], these two circuits provide the
following functionalities:

– Hamming distance. In the multi-party setting, every party inputs an XOR-share of two bit-strings of

23

#Parties Protocol Func. Ind. (MB) Func. Dep. (MB) Online (MB)

n = 3
WRK [WRK17b] 5319.7 1518.1 6.4

Ours 4269.8 987.8 6.3

n = 5
WRK [WRK17b] 10661.5 2831.8 10.6

Ours 8539.5 2301.5 10.5

Table 7: Communication cost of our and prior best protocols for secure sorting evaluation.

Applications 25 Mbps 50 Mbps 200 Mbps 1 Gbps

Bolt [GM17] 611 305 75 15
DECO [ZMM+20] 49 24 6 1.2

Table 8: Performance of our protocol used in other applications under different network bandwidthes. All
numbers are in seconds (s).

length 1048576 bits. The circuit first XORs the shares to recover the underlying two bit-strings, and then
output a 22-bit number containing the hamming distance of the two strings. The circuit includes 2097K
AND gates.

– Sorting. Each party inputs an XOR-share of 4096 32-bit numbers. The circuit first XORs them to recover
the numbers, and then sorts the numbers. The sorting circuit has 10223K AND gates.

Here, we only compare the communication cost of a single execution, as the circuits are large enough to take
advantage of amortization within the circuit. In the function-independent phase of secure Hamming distance
evaluation, our optimizations result in 1.44× and 1.62× improvements for three-party and five-party cases
respectively. For sorting circuit, our protocol gives a 1.25× improvement in the function-independent phase.
In the function-dependent phase, our protocol gets a 1.54× improvement in the communication for three-
party case, and a 1.23× improvement for five-party case. In particular, compared to WRK, our protocol
reduces the total communication by more than 500 MB when n = 3 (1 GB for n = 5) for secure Hamming
distance evaluation and 1.5 GB when n = 3 (2.5 GB for n = 5) for sorting.

5.3 Evaluation on Real Applications
Here we evaluate the improvement of our protocol in real applications, which includes Bolt [GM17] and
DECO [ZMM+20]. Note that both works need a two-party computation protocol. We use the same hardware
as above and limited network bandwidth to emulate a realistic setting. The circuit needed in Bolt is about
10 million AND gates while the circuit in DECO is about 770 thousand gates. We present the experimental
results in Table 8.

Acknowledgements
Kang Yang and Jiang Zhang are supported by the National Key Research and Development Program of
China (Grant Nos. 2018YFB0804105, 2017YFB0802005), the National Natural Science Foundation of
China (Grant Nos. 61932019, 61802021), and the Opening Project of Guangdong Provincial Key Laboratory
of Data Security and Privacy Protection (No. 2017B030301004). Xiao Wang is also supported by a Gift
from PlatON. We thank the anonymous reviewers for their helpful comments.

24

References
[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient obliv-

ious transfer and extensions for faster secure computation. In ACM Conf. on Computer and
Communications Security (CCS) 2013, pages 535–548. ACM Press, 2013.

[AOR+19] Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru, Nigel P. Smart, and Tim Wood. Za-
phod: Efficiently combining lsss and garbled circuits in scale. In Proceedings of the 7th ACM
Workshop on Encrypted Computing & Applied Homomorphic Cryptography, WAHC’19, page
33–44, 2019.

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter
Scholl. Efficient two-round OT extension and silent non-interactive secure computation. In
ACM Conf. on Computer and Communications Security (CCS) 2019, pages 291–308. ACM
Press, 2019.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic en-
cryption and multiparty computation. In Advances in Cryptology—Eurocrypt 2011, LNCS,
pages 169–188. Springer, 2011.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Advances in
Cryptology—Crypto 1991, LNCS, pages 420–432. Springer, 1992.

[Ben18] Aner Ben-Efraim. On multiparty garbling of arithmetic circuits. In Advances in Cryptology—
Asiacrypt 2018, Part III, LNCS, pages 3–33. Springer, 2018.

[BJPR18] Megha Byali, Arun Joseph, Arpita Patra, and Divya Ravi. Fast secure computation for small
population over the internet. In ACM Conf. on Computer and Communications Security
(CCS) 2018, pages 677–694. ACM Press, 2018.

[BLO16] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest secure multi-
party computation for the internet. In ACM Conf. on Computer and Communications Security
(CCS) 2016, pages 578–590. ACM Press, 2016.

[BLO17] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Efficient scalable constant-round MPC via
garbled circuits. In Advances in Cryptology—Asiacrypt 2017, Part II, LNCS, pages 471–498.
Springer, 2017.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). In 22nd Annual ACM Symposium on Theory of Computing (STOC), pages
503–513. ACM Press, 1990.

[CDD+16] Ignacio Cascudo, Ivan Damgård, Bernardo David, Nico Döttling, and Jesper Buus Nielsen.
Rate-1, linear time and additively homomorphic UC commitments. In Advances in
Cryptology—Crypto 2016, Part III, volume 9816 of LNCS, pages 179–207. Springer, 2016.

[CKMZ14] Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and Vassilis Zikas. Efficient three-party
computation from cut-and-choose. In Advances in Cryptology—Crypto 2014, Part II, volume
8617 of LNCS, pages 513–530. Springer, 2014.

[CO15] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer. In Progress in
Cryptology—Latincrypt 2015, LNCS, pages 40–58. Springer, 2015.

25

[CSW20] Ran Canetti, Pratik Sarkar, and Xiao Wang. Blazing fast OT for three-round UC OT extension.
In Intl. Conference on Theory and Practice of Public Key Cryptography 2020, Part II, LNCS,
pages 299–327. Springer, 2020.

[DEF+19] Ivan Damgård, Daniel Escudero, Tore Kasper Frederiksen, Marcel Keller, Peter Scholl, and
Nikolaj Volgushev. New primitives for actively-secure MPC over rings with applications to
private machine learning. In IEEE Symposium on Security and Privacy (S&P) 2019, pages
1102–1120, 2019.

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-box
pseudorandom generator. In Advances in Cryptology—Crypto 2005, volume 3621 of LNCS,
pages 378–394. Springer, 2005.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Advances in Cryptology—Crypto 2012, volume
7417 of LNCS, pages 643–662. Springer, 2012.

[GKWY20] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure multiparty computation
from fixed-key block ciphers. In IEEE Symposium on Security and Privacy (S&P) 2020, 2020.

[GL05] Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without agreement. J.
Cryptology, 18(3):247–287, July 2005.

[GM17] Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentralized curren-
cies. In ACM Conf. on Computer and Communications Security (CCS) 2017, pages 473–489.
ACM Press, 2017.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In 19th Annual ACM Symposium on
Theory of Computing (STOC), pages 218–229. ACM Press, 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge
University Press, Cambridge, UK, 2004.

[HIV17] Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Actively secure
garbled circuits with constant communication overhead in the plain model. In Theory of Cryp-
tography Conference (TCC) 2017, LNCS, pages 3–39. Springer, 2017.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC com-
bining BMR and oblivious transfer. In Advances in Cryptology—Asiacrypt 2017, Part I, LNCS,
pages 598–628. Springer, 2017.

[HVW20] Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss. The price of active
security in cryptographic protocols. In Advances in Cryptology—Eurocrypt 2020, Part II,
LNCS, pages 184–215. Springer, 2020.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers ef-
ficiently. In Advances in Cryptology—Crypto 2003, volume 2729 of LNCS, pages 145–161.
Springer, 2003.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal
overhead. In Advances in Cryptology—Crypto 2015, Part I, volume 9215 of LNCS, pages 724–
741. Springer, 2015.

26

[KRRW18] Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang. Optimizing authenticated
garbling for faster secure two-party computation. In Advances in Cryptology—Crypto 2018,
Part III, volume 10993 of LNCS, pages 365–391. Springer, 2018.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and
applications. In Intl. Colloquium on Automata, Languages, and Programming (ICALP), LNCS,
pages 486–498. Springer, 2008.

[LOS14] Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. Dishonest majority multi-party com-
putation for binary circuits. In Advances in Cryptology—Crypto 2014, Part II, volume 8617 of
LNCS, pages 495–512. Springer, 2014.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant
round multi-party computation combining BMR and SPDZ. In Advances in Cryptology—
Crypto 2015, Part II, volume 9216 of LNCS, pages 319–338. Springer, 2015.

[LSS16] Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. More efficient constant-round
multi-party computation from BMR and SHE. In Theory of Cryptography Conference
(TCC) 2016, LNCS, pages 554–581. Springer, 2016.

[Nie07] Jesper Buus Nielsen. Extending oblivious transfers efficiently - how to get robustness almost
for free. Cryptology ePrint Archive, Report 2007/215, 2007. http://eprint.iacr.
org/2007/215.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A
new approach to practical active-secure two-party computation. In Advances in Cryptology—
Crypto 2012, volume 7417 of LNCS, pages 681–700. Springer, 2012.

[NST17] Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant round maliciously
secure 2PC with function-independent preprocessing using LEGO. In Network and Distributed
System Security Symposium (NDSS), 2017.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and com-
posable oblivious transfer. In Advances in Cryptology—Crypto 2008, volume 5157 of LNCS,
pages 554–571. Springer, 2008.

[Rin] Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious Transfer Library.
https://github.com/osu-crypto/libOTe.

[RW19] Dragos Rotaru and Tim Wood. MArBled circuits: Mixing arithmetic and Boolean circuits with
active security. In Progress in Cryptology – Indocrypt 2019, LNCS, pages 227–249. Springer,
2019.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient MultiParty com-
putation toolkit. https://github.com/emp-toolkit, 2016.

[WRK17a] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and efficient ma-
liciously secure two-party computation. In ACM Conf. on Computer and Communications
Security (CCS) 2017, pages 21–37. ACM Press, 2017.

[WRK17b] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty compu-
tation. In ACM Conf. on Computer and Communications Security (CCS) 2017, pages 39–56.
ACM Press, 2017.

27

http://eprint.iacr.org/2007/215
http://eprint.iacr.org/2007/215
https://github.com/osu-crypto/libOTe
https://github.com/emp-toolkit

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science (FOCS), pages 162–167. IEEE, 1986.

[YWZ19] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from improved triple generation
and authenticated garbling. Cryptology ePrint Archive, Report 2019/1104, 2019. https:
//eprint.iacr.org/2019/1104.

[ZCSH18] Ruiyu Zhu, Darion Cassel, Amr Sabry, and Yan Huang. NANOPI: Extreme-scale actively-
secure multi-party computation. In ACM Conf. on Computer and Communications Security
(CCS) 2018, pages 862–879. ACM Press, 2018.

[ZMM+20] Fan Zhang, Sai Krishna Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari Juels.
Deco: Liberating web data using decentralized oracles for tls. In ACM Conf. on Computer and
Communications Security (CCS) 2020. ACM Press, 2020.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In Advances in Cryptology—Eurocrypt 2015,
Part II, volume 9057 of LNCS, pages 220–250. Springer, 2015.

A More Background
A.1 Commitment and Coin-tossing
Our protocols need two standard functionalities for commitment and coin-tossing respectively.

Functionality FCom

This functionality runs with parties P1, . . . , Pn as follows:

Commit: On input (Commit, i, x, τx) from Pi, store (i, x, τx) and output (i, τx) to all parties.

Open: On input (Open, i, τx) from Pi, if a tuple (i, x, τx) was previously stored, output (i, x, τx) to all parties.
If instead (NoOpen, i, τx) is given by the adversary and Pi is corrupted, output (i,⊥, τx) to all parties.

Figure 10: Functionality for commitments.

Commitment. We will use a commitment functionality shown in Figure 10. This functionality can easily
be implemented in the random oracle model [HSS17] via defining Commit(i, x) = H(i, x, r) where H :
{0, 1}∗ → {0, 1}2κ is a random oracle and r ∈ {0, 1}κ is a randomness, where note that Commit(i, x)
needs to be broadcast in the multi-party setting.

Functionality FRand

This functionality runs with n parties P1, . . . , Pn as follows:

– Upon receiving (Rand,R) from all parties whereR is any efficiently sampleable set, sample r←$R and send
r to all parties.

Figure 11: Coin-tossing functionality.

Coin tossing. We will use a standard coin-tossing functionality FRand shown in Figure 11, which samples
an entry from any efficiently sampleable setR. This can be securely realized in the random oracle model by

28

https://eprint.iacr.org/2019/1104
https://eprint.iacr.org/2019/1104

having every party commit to a random seedi ∈ {0, 1}κ via calling FCom, and then open all commitments
and use

⊕
i∈[n] seedi as a seed to sample an element from setR.

A.2 Almost Universal Linear Hash Functions
We will use a family of almost universal linear hash functions [CDD+16] over F2s for some parameter
s ∈ N, which is defined as follows:

Definition 1 (Almost Universal Linear Hashing). We say that a familyH of linear hash functions Fm2s → F2s

is ε-almost universal, if it holds for every non-zero vector x ∈ Fm2s such that

Pr
H←H

[H(x) = 0] ≤ ε,

where H is chosen uniformly at random from the familyH.

Efficient constructions for a family of almost universal linear hash functions have been proposed such
as [DPSZ12, CDD+16, NST17]. In this paper, we adopt the following practical construction, which is a
polynomial hash based on GMAC and also used in [NST17, HSS17]:

– Sample a random seed χ← F2s .

– Use χ to define the following linear hash function H:

H : Fm2s → F2s , H(x1, x2, . . . , xm) = x1 · χ+ x2 · χ2 + · · ·+ xm · χm

The seed χ ∈ F2s is short, but the computational complexity is O(m · s). When s = 128 is adopted, the
finite field multiplication over F2s can be performed very efficiently in hardware on modern CPUs by using
the Intel SSE instruction [NST17]. This construction described as above provides an almost universal family
with ε = m · 2−s, as χ is uniformly random in F2s and independent of the input x = (x1, x2, . . . , xm). This
can be improved to 2−s, at the cost of a larger seed, by using m different random coefficients.

A.3 Amortized Opening Procedures
In this section, we present how to open authenticated bits/shares in an amortized way (i.e., it is possible to
open ` authenticated bits with less than ` times the communication) using the standard techniques [NNOB12,
DPSZ12]. In a naive approach, a party Pi can open [x]ji to Pj via just sending x and Mj [x] to Pj . Party
Pj is able to verify the validity of x by checking that Mj [x] = Kj [x] ⊕ x∆j . As observed in previous
work [NNOB12], authenticated bits/shares can be opened in the following amortized process.

– aBits: For each i ∈ [n], j 6= i, Pi can open ` two-party authenticated bits [x1]ji , . . . , [x`]
j
i to Pj as follows:

1. Pi sends x1, . . . , x` and τj := H(Mj [x1], . . . ,Mj [x`]) to Pj .

2. Pj checks that τj = H(Kj [x1]⊕ x1∆j , . . . ,Kj [x`]⊕ x`∆j). If the check fails, Pj aborts.

We use Open([xk]
j
i) for each k ∈ [`] to denote the above amortized opening process for two-party au-

thenticated bits. Pi can also open `multi-party authenticated bits [x1]i, . . . , [x`]i to all parties via opening
[x1]ji , . . . , [x`]

j
i to Pj for each j 6= i.

– aShares: All parties can open ` authenticated shares 〈x1〉, . . . , 〈x`〉 by every party Pi opening its portion
in the following way.

1. For each j 6= i, Pi sends xi1, . . . , x
i
` along with τi,j := H(Mj [x

i
1], . . . ,Mj [x

i
`]) to Pj .

2. For j 6= i, Pj checks that τi,j = H(Kj [x
i
1]⊕ xi1∆j , . . . ,Kj [x

i
`]⊕ xi`∆j), and aborts if the check fails.

29

Let Open(〈xk〉) for each k ∈ [`] denote the above amortized opening process for authenticated shares.

Below, we prove that the above opening process in a batch is secure in the random oracle model, even if
the adversary can leak a few bits of global keys such that each bit leaked of global keys will be caught with
probability 1/2. We focus on the case of two-party authenticated bits, where the security proof is easy to be
generalized to multi-party authenticated bits and authenticated shares.

Lemma 1. If H : {0, 1}∗ → {0, 1}κ is a random oracle, in the amortized opening process for two-party
authenticated bits, either an honest party Pj aborts, or Pj receives the correct bits from a malicious party
Pi except with probability (q+ 1)/2κ, where q is an upper bound of the number of queries to H. Let A be a
probabilistic polynomial time (PPT) adversary, which corrupts the party Pi. Assume that A leaks c bits of
global key ∆j for some c ∈ [κ] ∪ {0}, and honest party Pj will abort with probability 1/2c.

Proof. Let x1, . . . , x` be the correct bits that will be sent by semi-honest Pi. In the opening process, ad-
versary A on behalf of Pi sends the bits x′1, . . . , x

′
` along with τ ′j to honest party Pj . If Pj does not abort,

then τ ′j = H(K[x1] ⊕ x′1∆j , . . . ,K[x`] ⊕ x′`∆j). If A makes a query z to H such that H(z) = τ ′j but
z 6= (K[x1]⊕x′1∆j , . . . ,K[x`]⊕x′`∆j), thenA finds a target collision for random oracle H, which happens
with probability q/2κ.

Below, we assume that A does not find a target collision, and then analyze the probability that there
exists some k ∈ [`] such that x′k 6= xk. The probability that A forges an information-theoretic MAC
Mj [x

′
k] = Kj [xk]⊕ x′k∆j is bounded by 1/2κ−c. Note that Pj will abort except with probability 1/2c, due

to the c leaked bits of ∆j . Together, the probability that Pj does not abort and A forges an MAC Mj [x
′
k] is

1/2c · 1/2κ−c = 1/2κ.
Overall, except with probability (q + 1)/2κ, Pj will receive the correct bits, if it does not abort.

B Proof of Security for Our Authenticated Bit Protocol
B.1 Analysis of Checking in the aBit Protocol

Analysis of correlation check: For the security analysis of correlation check, we recall an important lemma
by Keller et al. [KOS15]. Here we consider that Pi is corrupted by the adversary. Without loss of gener-
ality, we fix an honest party Pj to analyze the correlation check. When calling the (extend) command of
functionality FCOTe, a corrupt party Pi may send a vector xk,j for k ∈ [`′] to FCOTe, and receives an MAC
M′j [xk,j] := Kj [xk,j] + xk,j ∗ ∆j for k ∈ [`′]. We take Pi’s inputs x1,j , . . . ,x`′,j ∈ Fκ2 to be the rows of
an `′ × κ matrix. Let x̂j,1, . . . , x̂j,κ ∈ F`′2 be the columns of the same matrix. If Pi is semi-honest, then
xk,j for k ∈ [`′] is monochrome, and x̂j,1, . . . , x̂j,κ are all equal. Given a sender Pj and a receiver Pi, our
correlation check for two parties without broadcast is the same as that by Keller et al. [KOS15]. Thus, we
can use the following lemma by Keller et al. [KOS15] to prove the security of the correlation check in our
protocol ΠaBit.

Lemma 2 ([KOS15]). Let S∆j ⊆ Fκ2 be the set of all ∆j for which the correlation check passes, given the
view of receiver Pi. Except with probability 2−κ, there exists dj ∈ N such that

1. |S∆j | = 2dj .

2. For each s ∈ {x̂j,l}l∈[κ], let Hs = {l ∈ [κ] | s = x̂j,l}. Then one of the following holds:

– For all l ∈ Hs and any ∆
(1)
j ,∆

(2)
j ∈ S∆j , ∆

(1)
j [l] = ∆

(2)
j [l].

– |Hs| ≥ dj and
∣∣{∆j [Hs]}∆j∈S∆j

∣∣ = 2dj , where ∆j [Hs] denotes the vector consisting of the bits
{∆j [l]}l∈Hs . In other words, S∆j restricted to the bits corresponding to Hs has entropy at least dj .
Furthermore, there exists ŝ such that |Hŝ| ≥ dj .

30

According to the analysis by Keller et al. [KOS15], we give some intuition about the above lemma. The
probability of passing the correlation check is |S∆j |/2κ, as ∆j is sampled uniformly at random by Pj . For
a semi-honest Pi, Hs is always the set {1, . . . κ}. So the size of Hs reflects the number of deviation in the
protocol for a given s. Furthermore, the precise indices in Hs correspond to a subset of the bits of ∆j . The
second part of Lemma 2 implies that for any s, either the bits of ∆j corresponding to the indices in Hs

are known, or the size of Hs is at least dj . In the first case, the bits of ∆j are revealed by the adversary
corrupting Pi by guessing the bits and observing whether the correlation check passes. In the second case,
we have a bound on the amount of information that the adversary can learn. In particular, the total amount
of the bits of ∆j learned by the adversary is bounded by cj = κ− dj , since |S∆j | = 2dj and S∆j restricted
to the bits corresponding to Hŝ has entropy at least dj .

Let x1,j , . . . , x`′,j be the bits in vector ŝ. Then, for k ∈ [`′], we can write the MAC with an error received
by the malicious party Pi as M′j [xk,j] = Kj [xk,j]+xk,j ·∆j+ek,j∗∆j , where ek,j = (xk,j , . . . , xk,j)+xk,j ∈
Fκ2 is an adversarially chosen error vector. For each k ∈ [`′], by the definition of Hs and ek,j , we have that
ek,j [l] = ek,j [l

′] for all l, l′ ∈ Hs, for any s ∈ {x̂j,1, . . . , x̂j,κ}. Note that ek,j [l] = 0 for all l ∈ Hŝ, as
xk,j [l] = xk,j for all l ∈ Hŝ. This implies that ek,j [l] · ∆j [l] = 0 for all l ∈ Hŝ. Lemma 2 implies that
there exists only one s = ŝ such that the second case happens, except with probability 2−κ. 2 That is, for
s 6= ŝ, the first case occurs in Lemma 2 except with probability 2−κ. In this case, for all k ∈ [`′] and l ∈ Hs,
ek,j [l] · ∆j [l] is known by the adversary by the fact that ∆j ∈ S∆j . Therefore, for k ∈ [`′], the adversary
knows ek,j ∗ ∆j and thus the correct MAC Mj [xk,j] = Kj [xk,j] + xk,j · ∆j . In addition, we will use the
following lemma.

Lemma 3 ([KOS15]). Let A be a random (t + m) × t matrix over F2 where m > 0. Then A has rank t
except with probability less than 2−m.

Analysis of consistency check: Now, we assume that the outputs have the correct correlation, i.e., Mj [xk,j] =
Kj [xk,j] + xk,j · ∆j for all k ∈ [`′], j 6= i. When calling the (extend) command of FCOTe, the malicious
party Pi may use inconsistent inputs xk for k ∈ [`′] with two different honest parties. In particular, we
define {xk,j}k∈[`′] to be the actual bits used by Pi when calling FCOTe with an honest party Pj . Without
loss of generality, we choose an honest party Pj0 and fix xk = xk,j0 for each k ∈ [`′]. For each j ∈ H and
k ∈ [`′], xk,j can be denoted as xk,j = xk + δk,j ∈ F2, where δk,j0 = 0. Based on Lemma 2 and the above
analysis, we prove that the malicious party Pi cannot use inconsistent values xk,j to different honest parties
in the following lemma.

Lemma 4. For a corrupt party Pi and every honest party Pj /∈ A, Pi and Pj holds a secret sharing of
xk ·∆j for each k ∈ [`′]. In other words, for each k ∈ [`′] and j /∈ A, δk,j = 0.

Proof. For each j /∈ A, we define the MAC of corrupt party Pi on value
∑`′

k=1 χk · xk,j as Mj [y
i] =∑`′

k=1 χk ·Mj [xk,j], and the local key of honest party Pj on the same value as Kj [yi] =
∑`′

k=1 χk ·Kj [xk,j].
For each j /∈ A, k ∈ [`′], we have that Mj [xk,j] = Kj [xk,j] + xk,j ·∆j known by the adversary corrupting
Pi. In Step 6 of protocol ΠaBit, Pi may broadcast an incorrect value ỹi = yi + ei to other parties where
yi =

∑`′

k=1 χk ·xk, and send an incorrect MAC M̂j [y
i] = Mj [y

i]+Ei,j to every honest party Pj . If Pj /∈ A
2One can easily prove if there are two different s, s′ satisfying the second case of Lemma 2, then the correlation check will not

pass except with probability 2−κ.

31

does not abort, then M̂j [y
i] = Kj [y

i] + ỹi ·∆j . Thus, we have:

Mj [y
i] + Ei,j = Kj [y

i] + yi ·∆j + ei ·∆j

⇔ Ei,j + yi∆j + ei∆j = Mj [y
i] + Kj [y

i] =
(`′∑
k=1

χk · xk,j
)
·∆j

⇔ Ei,j =
(
yi + ei +

`′∑
k=1

χk ·
(
xk + δk,j

))
·∆j

⇔ Ei,j =
(
ei +

`′∑
k=1

χk · δk,j
)
·∆j

For each j /∈ A, a corrupt Pi has the following two possible ways to cheat Pj , but succeeds with negligible
probability in both cases.

1. If Ei,j 6= 0, then (ei +
∑`′

k=1 χk · δk,j) 6= 0, and thus the adversary can learn ∆j . The Pj’s check passes
with probability |S∆j | · 2−κ + 2−κ = 2dj−κ + 2−κ. Therefore, the probability, that honest party Pj does
not abort and the adversary learns ∆j , is (2dj−κ + 2−κ) · 2−dj = 2−κ + 2−(κ+dj) < 2−κ+1.

2. If Ei,j = 0, then ei =
∑`′

k=1 χk · δk,j unless ∆j = 0 with probability 2−κ. As δk,j0 = 0 for each k ∈ [`′],
this implies that ei = 0. Thus, for each j /∈ A\{j0}, we have that

∑`′

k=1 χk · δk,j = 0. The probability,
that there exists some k ∈ [`′] such that δk,j 6= 0, is at most 2−κ, as {δk,j}k∈[`′] are independent of
{χk}k∈[`′] and χ1, . . . , χ`′ are uniformly random.

Overall, with probability at least 1− 4 · 2−κ, this lemma holds.

B.2 Proof of Theorem 1
Theorem 4 (Theorem 1, restated). Protocol ΠaBit shown in Figure 4 securely realizes functionality FaBit

with statistical error max{1/2ρ, 8/2κ} in the (FCOTe,FRand)-hybrid model.

Proof. Let A be a probabilistic polynomial time (PPT) adversary, who corrupts a subset of parties A ⊂ [n].
We construct a PPT simulator S that has access to the functionalityFaBit and simulates the adversary’s view.
Simulator S outputs whateverA outputs before it aborts or terminates the simulation. We consider two cases
of honest Pi and malicious Pi separately. In both cases, we prove that the real world is indistinguishable
from the ideal world.

DESCRIPTION OF SIMULATOR. S emulates functionalities FCOTe and FRand, interacts with adversary A
and simulates as follows.

Case 1 (honest party Pi /∈ A):

1. For each j ∈ A, S emulates the functionality FCOTe, and receives ∆j and Kj [x1], . . . ,Kj [x`′] from A.
Then S sends these values to FaBit.

2. For the call of FRand from A, S samples random χ1, . . . , χ`′ , and then sends them to A.

3. Acting as honest party Pi, for each j ∈ A, S computes Kj [yi] :=
∑`′

k=1 χk · Kj [xk], samples yi ← F2κ ,
and sends yi and Mj [y

i] = Kj [y
i]+yi ·∆j toA. For each l /∈ A\{i}, S samples a random Ml[y

i]← F2κ

and sends it to dummy party Pl.

Case 2 (corrupt party Pi ∈ A):

32

1. For each corrupt party j ∈ A\{i}, S receives ∆j from A for FCOTe, and then sends ∆j to FaBit. For
each j /∈ A, S emulates FCOTe and receives x1,j , . . . ,x`′,j and M′j [x1,j], . . . ,M

′
j [x`′,j] from A acting as

corrupt party Pi.

2. For each j /∈ A, let ŝ and Hŝ be as in Lemma 2, i.e., |Hŝ| ≥ dj and x̂j,l = x̂j,l′ for all l, l′ ∈ Hŝ. This
implies xk,j [l] = xk,j [l

′] for all l, l′ ∈ Hŝ and k ∈ [`′]. For each k ∈ [`′], S sets xk,j := xk,j [l] for some
l ∈ Hŝ. For each j /∈ A, S computes ek,j := (xk,j , . . . , xk,j) + xk,j for k ∈ [`′]. Simulator S defines a
set Sj = {l ∈ [κ] | ∃k ∈ [`′] s.t. ek,j [l] = 1} and sets cj := |Sj |.

3. Upon receiving (Rand, `′) from A, S emulates the functionality FRand, samples χk ← F2κ for each
k ∈ [`′], and sends these random coefficients to A.

4. For each j /∈ A, S computes yi,j :=
∑`′

k=1 χk · xk,j , and receives ỹi from A over a broadcast channel.
Then, S computes ei,j := ỹi + yi,j . If ei,j 6= 0, S aborts. Additionally, S receives M̂j [y

i] from A, and
then computes Ej := M̂j [y

i] +
∑`′

k=1 χk · M′j [xk,j] ∈ F2κ . If Sj = ∅, S aborts if Ej 6= 0, and sets
ek,j ∗∆j = 0 for k ∈ [`′] otherwise. Otherwise, S continues the simulation.

5. For each j /∈ A, if Sj 6= ∅, S can re-write
∑`′

k=1 χk ·(ek,j ∗∆j) as Xj ·tj , where Xj ∈ Fκ×|Sj |2 is a matrix

determined by {ek,j}k∈[`′] and {χk}k∈[`′], and tj ∈ F|Sj |2 is a column vector such that tj [l] = ∆j [l] for
each l ∈ Sj . Then, S establishes the equation Xj · tj = Ej , and does the following:

– If there is no solutions for the equation, S aborts.

– If there is a unique solution for the equation (i.e., Xj has rank cj = |Sj |), S computes the solution tj ,
and thus obtains a guess {∆′j [l]}l∈Sj from A.

– If there are at least two solutions for the equation, S aborts.

6. For each j /∈ A, if Sj 6= ∅, S sends (leak, j, Sj , {∆′j [l]}l∈Sj) to FaBit. If S receives fail from FaBit, S
aborts. Otherwise, S receives success from FaBit and is confirmed ∆j [l] = ∆′j [l] for each l ∈ Sj .

7. For each j /∈ A, if Sj 6= ∅, S computes ek,j ∗∆j for each k ∈ [`′], where ek,j [l] ·∆j [l] = 0 for all l ∈ Hŝ,
and S knows ek,j [l] and ∆j [l] for each l ∈ Sj . Then, S computes Mj [xk,j] := M′j [xk,j] + ek,j ∗∆j for
k ∈ [`′].

8. If there exists two different j, j′ /∈ A such that xk,j 6= xk,j′ for some k ∈ [`], then S aborts. Otherwise,
for each k ∈ [`], S sets xk := xk,j for some j /∈ A.

9. S sends x1, . . . , x` and Mj [x1] := Mj [x1,j], . . . ,Mj [x`] := Mj [x`,j] to FaBit.

This concludes the description of the simulation. Below, we show that the simulation is indistinguishable
from the real protocol execution for two cases.

Analysis for Case 1. It is easy to see that the correlation and consistency checks pass in the case of honest
party Pi. For j /∈ A\{i}, Mj [y

i] sampled by S has the same distribution as the one in the real protocol
execution, as Kj [yi] =

∑`′

k=1 χk · Kj [xk] is uniformly random in F2κ . Below, all we need to do is to prove
that yi and Mj [y

i] for j ∈ A sent by S are statistically indistinguishable from the values sent by Pi in the
real protocol execution.

Recall that in the real protocol execution, honest party Pi sends the following value:

yi =
`′∑
k=1

χk · xk =
∑̀
k=1

χk · xk +

`+κ+ρ∑
k=`+1

χk · xk.

33

The second summation corresponds to the image of a linear map ψ : Fκ+ρ
2 7→ Fκ2 . From Lemma 3, we know

that the map ψ has full rank with probability 1 − 2−ρ. In this case,
∑`+κ+ρ

k=`+1 χk · xk is uniformly random
in F2κ , since (x`+1, . . . , x`+κ+ρ) are sampled uniformly at random by honest Pi. Thus yi in the real world
is statistically indistinguishable from the value simulated by S. Finally, Mj [y

i] has the same distribution in
both worlds, since there is only one Mj [y

i] satisfying the equation Mj [y
i] = Kj [y

i] + yi ·∆j .

Analysis for Case 2. Without loss of generality, we first fix an honest party Pj /∈ A and analyze the
simulation of S. In the real protocol execution, if Pj does not abort, then M̂j [y

i] = Kj [y
i] + ỹi · ∆j =

Kj [y
i] + yi,j ·∆j + ei,j ·∆j , where Kj [y

i] =
∑`′

k=1 χk · Kj [xk,j]. Besides, we have that

M′j [y
i] =

`′∑
k=1

χk ·M′j [xk,j] =
`′∑
k=1

χk · (Kj [xk,j] + xk,j ·∆j + ek,j ∗∆j)

=
`′∑
k=1

χk · Kj [xk,j] +
(`′∑
k=1

χk · xk,j
)
·∆j +

`′∑
k=1

χk · (ek,j ∗∆j)

= Kj [y
i] + yi,j ·∆j +

`′∑
k=1

χk · (ek,j ∗∆j) .

FromEj = M̂j [y
i]+
∑`′

k=1 χk ·M′j [xk,j] = M̂j [y
i]+M′j [y

i], we haveEj =
∑`′

k=1 χk ·
(
ek,j∗∆j

)
+ei,j ·∆j .

Since A knows ek,j ∗ ∆j for k ∈ [`′] and Ej , we have that ei,j = 0 unless A learns the global key ∆j .
The probability that the Pj’s check passes is |S∆j | · 2−κ + 2−κ = 2dj−κ + 2−κ. By Lemma 2, we have
that S∆j restricted to the bits corresponding to Hŝ has entropy at least dj . Therefore, with probability at
most 2−dj , A guesses successfully the bits {∆j [l]}l∈Hŝ

. Overall, the probability that ei,j 6= 0 and the Pj’s
check passes is 2−dj · (2dj−κ + 2−κ) = 2−κ + 2−(κ+dj). Therefore, the probability, that S aborts in Step 4
of the simulation but the real protocol execution does not abort, is 2−κ + 2−(κ+dj) = negl(κ). As a result,
if the protocol does not abort, we have that Ej =

∑`′

k=1 χk ·
(
ek,j ∗ ∆j

)
in both worlds with probability

1− negl(κ).
If Sj = ∅, i.e., ek,j = 0 for all k ∈ [`′], then it is easy to see that the simulation of S is indistinguishable

from the real protocol execution. Below, for each j /∈ A, we only consider the case that Sj 6= ∅. If the
equation Xj · tj = Ej has no solutions, this means that the real protocol execution will abort, which is
the same as the simulation. If this equation has a unique solution (i.e., Xj has rank cj = |Sj |), then S
can extract a guess made by A about global key ∆j , and forwards a decision from FaBit to A. Clearly,
in this case, the simulation of S is indistinguishable from the real protocol execution. If this equation has
at least two different solutions, it means that matrix Xj has rank < cj . By Lemma 3, we know that this
happens with probability at most 2−dj . In the real protocol execution, the probability that Pj does not abort
is |S∆j | · 2−κ + 2−κ = 2dj−κ + 2−κ. In all, the probability, that S aborts in Step 5 of the simulation but
the real protocol execution will not abort, is bounded by 2−dj · (2dj−κ + 2−κ) = 2−κ + 2−(κ+dj), which is
negligible in κ. From Lemma 4, the probability that S aborts in Step 8 of the simulation is negligible in κ.
Therefore, the simulation of S is indistinguishable from the real protocol execution.

In all, we have that the simulation is statistically indistinguishable from the real protocol execution,
except with probability at most 1/2ρ for Case 1 and 8/2κ for Case 2. The outputs of honest parties are either
independent from the adversary’s view or always determined uniquely by their independent inputs and the
outputs of corrupt parties. Therefore, we obtain that the joint distribution of the outputs of honest parties
and adversary A in the real world execution is statistically indistinguishable from the joint distribution the
outputs of honest parties and simulator S in the ideal world execution, which completes the proof.

34

Functionality FaShare

Initialize: Upon receiving (init) from all parties, sample ∆i ← {0, 1}κ for i /∈ A and receive ∆i ∈ {0, 1}κ from
the adversary for i ∈ A. Store ∆i for i ∈ [n] and send ∆i to party Pi.
Authentication: Upon receiving (aShare, `) from all parties, sample x1, . . . , x` ← {0, 1} and generate authenti-
cated shares {〈xk〉}k∈[`] by executing AuthShare(xk) defined in Figure 1 for k ∈ [`].
Selective failure leakage: Wait for the adversary to input (leak, i, S, {∆′[k]}k∈S). If Pi is honest, this function-
ality executes the macro GKleak(i, S, {∆′[k]}k∈S) defined in Figure 1.

Figure 12: Functionality for authenticated shares.

C Complexity and Security of Our Authenticated Share Protocol
We have already described the authenticated share protocol ΠaShare in Section 3.2. In the following, we
analyze the rounds and communication complexity for protocol ΠaShare. Then, we prove that protocol
ΠaShare securely realizes functionality FaShare shown in Figure 12 in the (FaBit,FCom)-hybrid model.

C.1 Communication Complexity
Now, we analyze the rounds and communication cost of protocol ΠaShare (Figure 5) involving the cost of our
authenticated bit protocol ΠaBit. Without considering the base OT protocol in the initialization phase, our
protocol ΠaShare needs 4 rounds of communication. When the base OT protocol such as [PVW08, CO15,
CSW20] is used, one extra round is required, as random zero shares can be computed in parallel with the
base OT protocol. Note that all the calls of FaBit (related to the executions of ΠaBit) can be made in parallel.
The communication cost per party is dominated by (n− 1)(`+ 2κ+ ρ)κ bits for generating authenticated
shares. The consistency check needs only about 5nκ bits of extra communication, which is negligible for a
moderate large `.

C.2 Proof of Security
In the following, we provide the detailed security proof of our protocol ΠaShare. First we can see that ΠaShare

is correct when all parties are honest, because

n∑
j=1

zji = zii +
∑
j 6=i

zji = (yi + y) ·∆i +
∑
j 6=i

(
Ki[y

j] + Mi[y
j]
)

= (yi + y) ·∆i +
∑
j 6=i

yj ·∆i = y ·∆i + y ·∆i = 0.

In the (init) command of FaBit, a corrupt party Pi may deviate the protocol by providing inconsistent inputs
∆i with two different honest parties. We define ∆i,j to be actual inputs used by corrupt Pi, i.e., Pi sends
(init, j,∆i,j) to FaBit. Without loss of generality, we pick an honest party Pj0 and fix ∆i = ∆i,j0 . We define
Ri,j := ∆i,j + ∆i for j 6= i, and thus Ri,j0 = 0. Note that Ri,j is fixed in the initialization phase. In the
following lemma, we prove that a corrupt party Pi is impossible to provide inconsistent global keys ∆i,j

with different honest parties Pj /∈ A.

Lemma 5. If all honest parties do not abort in protocol ΠaShare, then for every corrupted party Pi ∈ A, all
the global keys ∆i,j are consistent with probability 1− 1/2κ, i.e., Ri,j = 0 for each j /∈ A.

Proof. In Step 6 of protocol ΠaShare, if all corrupt parties are semi-honest, then every corrupt party Pi
broadcasts ỹi and computes y :=

∑n
i=1 ỹ

i. However, every malicious party Pi ∈ A may broadcast an

35

adversarial value ŷi, such that ŷ :=
∑

i∈A ŷi +
∑

i/∈A ỹi = y + e, where e is an additive error of the
adversary’s choice. We define zji to be the value committed by a party Pj when Pj behaves honestly.
The corrupt parties may deviate the protocol by committing the values ẑki for k ∈ A, in such a way that∑

k∈A ẑki =
∑

k∈A zki + Ei, where Ei is an adversarially chosen error.
If a malicious party Pi tries to cheat, then it has to pass the check in Step 8 of protocol ΠaShare. Therefore,

we have the following:

0 =
∑

j /∈A zji +
∑

j∈A ẑji = zii +
∑

j 6=i z
j
i + Ei

=
(∑

j 6=i Ki[y
j] +

(
yi + y + e

)
·∆i

)
+
∑

j 6=iMi[y
j] + Ei

=
∑

j 6=i
(
Ki[y

j] + Mi[y
j]
)

+
(
yi + y + e

)
·∆i + Ei

=
∑

j 6=i y
j ·∆i,j +

(
yi + y + e

)
·∆i + Ei

=
∑

j 6=i y
j ·Ri,j +

(
yi + y + e +

∑
j 6=i y

j
)
·∆i + Ei

=
∑

j 6=i y
j ·Ri,j + e ·∆i + Ei.

If a malicious party Pi provides inconsistent global keys, then there exists j0, j1 /∈ A such that Ri,j0 6= Ri,j1
and j0 6= j1. Therefore, the attack requires the adversary to set Ei+e ·∆i = yj0 ·Ri,j0 +yj1 ·Ri,j1 . Due to
the re-randomization by random zero-sharing, from the adversary’s view, yj0 and yj1 are uniformly random
additive shares of y. Thus, the adversary succeeds to cheat with probability 2−κ.

Based on Lemma 5, we easily prove the following theorem.

Theorem 5 (Theorem 2, restated). Protocol ΠaShare shown in Figure 5 securely realizes functionalityFaShare

with statistical error 1/2κ in the (FaBit,FCom)-hybrid model.

Proof. It is easy to construct a simulator S, since all parties only communicate to each other in the phase of
consistency check and S is allowed to know the shares ri1, . . . , r

i
κ for each i /∈ A. Specifically, for any PPT

adversary A, we construct a PPT simulator S with access to functionality FaShare as follows:

1. In the initialization phase, S emulates FaBit, and receives (j,∆i,j) for i ∈ A and j 6= i from A. On
behalf of every Pi ∈ A, S defines and sends ∆i := ∆i,j0 for some j0 /∈ A to FaShare.

2. In the generation phase of authenticated shares, S plays the role of FaBit and records all the values
received fromA. On behalf of every corrupt party Pi, S sends the corresponding shares, MACs and local
keys to FaShare. For each i /∈ A, S also samples ri1, . . . , r

i
κ ← {0, 1}, and for each h ∈ [κ], computes

Mj [r
i
h] using the keys Kj [rih] and ∆j,i from A if j ∈ A and samples Mj [r

i
h]← {0, 1}κ otherwise.

3. When S plays the role of FaBit, upon receiving the (leak) queries from A, S forwards these queries to
FaShare, and sends the decision results from FaShare to A. If FaShare aborts, S aborts. Otherwise, S
continues to the simulation.

4. For each i /∈ A, S samples a dummy global key ∆i ← {0, 1}κ such that ∆i is consistent with the real
global key of Pi on the bits that have been leaked. For each i /∈ A and h ∈ [κ], S defines Ki[r

j
h] using

the corresponding Mi[r
j
h] and ∆i.

5. S uses the values obtained in previous steps to perform the consistency check honestly on behalf of all
honest parties. If the check fails, then S aborts.

6. If there are two different honest parties j0, j1 /∈ A such that ∆i,j0 6= ∆i,j1 for some i ∈ A, then S aborts.

36

Functionality FLaAND

Initialize: Upon receiving (init) from all parties, sample ∆i ← {0, 1}κ for i /∈ A and receive ∆i ∈ {0, 1}κ from
the adversary for i ∈ A. Store ∆i for i ∈ [n] and send ∆i to party Pi.
Triples: Upon receiving (LaAND) from all parties, sample x, y ← {0, 1}, compute z := x ∧ y, and generate a
random authenticated triple (〈x〉, 〈y〉, 〈z〉) by executing AuthShare(u) for each u ∈ {x, y, z}.
Selective failure queries for shares: Wait for the adversary to input (Q, q, {Ri}i/∈A) where Q ∈ {0, 1}κ, q ∈
{0, 1} and Ri ∈ {0, 1}κ. This functionality checks that

Q⊕
(⊕

i/∈A x
iRi
)

=
(
q ⊕

⊕
i/∈A x

ilsb(Ri)
) (⊕

i/∈A ∆i

)
.

If the check fails, this functionality sends fail to all parties and aborts. Otherwise, this functionality sends
success to the adversary, and proceeds as if nothing has happened.
Selective failure queries for global keys: Wait for the adversary to input (leak, i, S, {∆′[k]}k∈S). If Pi is honest,
this functionality executes GKleak(i, S, {∆′[k]}k∈S) as defined in Figure 1.

Figure 13: Functionality for leaky AND triples.

In the above simulation, before S would abort, it outputs whatever A outputs. By Lemma 5, we guarantee
the probability that S aborts in Step 5 is bounded by 2−κ. Therefore, it is easy to see that the simulation
of S is statistically indistinguishable from the real protocol execution. Note that S does not know the real
global keys of honest parties in the ideal world. Simulator S samples a dummy global key for every honest
party to just perform the consistency check, and never uses these keys in any other place. Again, the outputs
of honest parties are either independent from the adversary’s view or always determined uniquely by their
independent inputs and the outputs of corrupt parties. Therefore, we have that the joint distribution of the
outputs of honest parties and adversary A in the real world execution is statistically indistinguishable from
the joint distribution the outputs of honest parties and simulator S in the ideal world execution.

D Improved Authenticated Triple
In Appendix D.1, we present an optimized protocol for authenticated AND triples with the leakage of
partial shares. Then, we show that the bucketing technique [NNOB12] for eliminating the leakage can still
be applied in our setting in Appendix D.2.

D.1 Protocol for Leaky AND Triples
We first describe a functionality FLaAND for leaky authenticated AND triples in Figure 13. Then, we present
an efficient protocol ΠLaAND shown in Figure 14 that securely computes FLaAND in the (FaShare,FCom)-
hybrid model, where H : {0, 1}2κ → {0, 1}κ is a random oracle.

For functionalityFLaAND, similar to prior works, an adversaryA is allowed to guess a share xi
∗ ∈ {0, 1}

of an honest party Pi∗ . An incorrect guess will be caught immediately, while a correct guess keep undetected.
In more detail,A does not directly learn the share xi

∗
, but instead is allowed to make a query on some linear

combination of xi
∗

and ∆i∗ . In this special way, A cannot obtain more information than making a query on
xi
∗

and ∆i∗ directly. Moreover, A cannot learn any information on yi
∗

or zi
∗
.

For the protocol ΠLaAND shown in Figure 14, we require that FaShare generates global keys {∆i}i∈[n]

such that
⊕

i∈[n] lsb(∆i) = 1, e.g., lsb(∆i) = 1 if i 6= 1 and lsb(∆i) = n mod 2 otherwise. In protocol
ΠLaAND, we add a tweak i‖j‖t to the computation of hash function H for generating the t-th leaky AND
triple. It aims to prevent the attack described in [GKWY20] that a malicious party Pj may send the same
share and MAC in multiple executions. In addition, we do not let a party Pi straightforwardly broadcast a

37

Protocol ΠLaAND

Initialize: All parties send (init) to FaShare, which returns ∆i ∈ {0, 1}κ to Pi for i ∈ [n] such that⊕
i∈[n] lsb(∆i) = 1.

Generate leaky AND triples: The parties generate the t-th leaky AND triple as follows:

1. All parties send (aShare, 3) to FaShare, which returns random authenticated shares 〈x〉, 〈y〉, 〈r〉 to the parties.

If receiving fail from functionality FaShare, the parties abort.

2. For each i ∈ [n], Pi locally computes Φi := yi∆i ⊕
(⊕

k 6=i(Ki[y
k]⊕Mk[yi])

)
.

3. For each ordered pair (Pi, Pj) where i 6= j, Pi computes

Ki[x
j]Φi := H(Ki[x

j], i‖j‖t) and Ui,j := Ki[x
j]Φi ⊕ H(Ki[x

j]⊕∆i, i‖j‖t)⊕ Φi,

and then sends Ui,j to Pj . Upon receiving Ui,j from Pi, Pj computes

Mi[x
j]Φi := xj · Ui,j ⊕ H(Mi[x

j], i‖j‖t).

4. For each i ∈ [n], Pi executes as follows:

(a) Compute the following value

Si := xiΦi ⊕
(⊕

k 6=i(Ki[x
k]Φi ⊕Mk[xi]Φk)

)
⊕ ri∆i ⊕

(⊕
k 6=i(Ki[r

k]⊕Mk[ri])
)
.

(b) Commit to di := lsb(Si) by calling the (Commit) command of FCom.

(c) After all commitments have been made, open its commitment via calling the (Open) command of FCom,
and then compute d :=

⊕
i∈[n] di.

5. For each i ∈ [n], Pi computes and commits to Ti := Si ⊕ d∆i by calling the (Commit) command of FCom.

6. For each i ∈ [n], after all commitments have been made, all parties open their commitments by calling the
(Open) command of FCom, and then check that

⊕
i∈[n] Ti = 0. If the check fails, the parties abort.

7. For each i 6= 1, the parties define [zi]i := [ri]i. The parties also compute [z1]1 := [r1]1 ⊕ d.

8. The parties output a leaky AND triple (〈x〉, 〈y〉, 〈z〉).

Figure 14: Protocol for leaky authenticated AND triples in the (FaShare,FCom)-hybrid model. For a bit
x and i ∈ [n], Ki[x]Φi and Mi[x]Φi = Ki[x]Φi ⊕ xΦi denote the local key and MAC respectively associated
with a global key Φi.

bit di. Instead, we make the party commit to di, and then open it. This because the simulator needs to know
the bits from the adversary before sending a bit di on behalf of honest party Pi, in the security proof.

For the sake of simplicity, we only describe one leaky AND triple generation in protocol ΠLaAND. When
` leaky authenticated AND triples need to be computed, we can run ` executions of protocol ΠLaAND in
parallel with the same initialization, where all parties send (aShare, 3`) to FaShare. In this case, we can
further reduce the communication complexity by combining ` commitments into one commitment in a
natural way.

Optimization and communication complexity. When the parties need to check that
⊕

i∈[n] Ti,t = 0 for
t ∈ [`], every party must open ` values in protocol ΠLaAND, which leads to `κ bits of communication. We
can reduce the communication to only κ bits by using the following batched check procedure.

38

1. After all Ti,t for i ∈ [n], t ∈ [`] have been computed, the parties call FRand to generate random coeffi-
cients χ1, . . . , χ` ∈ F2κ .

2. Every party Pi computes Vi :=
∑`

t=1 χt · Ti,t (with arithmetic over F2κ) and commits to Vi via calling
functionality FCom .

3. After all commitments have been made, all parties open their commitments by calling FCom and check
that

⊕
i∈[n] Vi = 0.

All the coefficients {χt}t∈[`] are uniformly random after the values {Ti,t}i∈[n],t∈[`] have been defined. There-
fore,

⊕
i∈[n] Vi = 0 implies that

⊕
i∈[n] Ti,t = 0 for t ∈ [`] except with probability 2−κ. For selective failure

queries of shares, this functionality can check a random linear combination of errors chosen by the adver-
sary. As such, the adversary can still guess a bit xi of honest party correctly with probability 1/2, and an
incorrect guess will be caught except with probability 1/2κ. The communication used to implement FRand

can be eliminated by using the Fiat-Shamir heuristic. In particular, the parties can compute the random
coefficients by hashing the transcript, which is secure in the random oracle model.

With the above optimization, we analyze the communication rounds and complexity of ΠLaAND (Fig-
ure 14) in the FaShare-hybrid model. When generating ` leaky AND triples, this protocol needs 5 rounds
and about `(κ+ 1)(n− 1) bits of communication per party.

Proof of security for protocol ΠLaAND. To prepare for the security proof of our main protocol, we first
show that: 1) our protocol is correct if all parties are honest; and 2) if the protocol execution does not abort,
then the parties generate a correct authenticated AND triple with probability 1− negl(κ).

Lemma 6. Protocol ΠLaAND shown in Figure 14 would output a correct AND triple, if all parties are honest.

Proof. According to the definition of Φi, we have the following:⊕
i∈[n] Φi =

⊕
i∈[n]

(
yi∆i ⊕

⊕
k 6=i
(
Ki[y

k]⊕Mk[y
i]
))

=
⊕

i∈[n]

(
yi∆i ⊕

⊕
k 6=i
(
Ki[y

k]⊕Mi[y
k]
))

=
⊕

i∈[n]

(
yi∆i ⊕

⊕
k 6=i y

k∆i

)
=
(⊕

i∈[n] y
i
)(⊕

i∈[n] ∆i

)
.

Note that Ki[xj]Φi ⊕Mi[x
j]Φi is equal to:

= H(Ki[x
j], i‖j‖t)⊕ H(Mi[x

j], i‖j‖t)⊕ xj · Ui,j
= H(Ki[x

j], i‖j‖t)⊕ H(Ki[x
j]⊕ xj∆i, i‖j‖t)⊕

xj ·
(
H(Ki[x

j], i‖j‖t)⊕ H(Ki[x
j]⊕∆i, i‖j‖t)⊕ Φi

)
= H(Ki[x

j], i‖j‖t)⊕ H(Ki[x
j], i‖j‖t)⊕ xj · Φi = xjΦi.

Taking the above two equations, we have that⊕
i∈[n] Si =

⊕
i∈[n]

(
xiΦi ⊕

⊕
k 6=i
(
Ki[x

k]Φi ⊕Mk[x
i]Φk

)
⊕ ri∆i ⊕

⊕
k 6=i
(
Ki[r

k]⊕Mk[r
i]
))

=
⊕

i∈[n]

(
xiΦi ⊕

⊕
k 6=i
(
Ki[x

k]Φi ⊕Mi[x
k]Φi

))
⊕
⊕

i∈[n]

(
ri∆i ⊕

⊕
k 6=i
(
Ki[r

k]⊕Mi[r
k]
))

=
⊕

i∈[n]

(
xiΦi ⊕

⊕
k 6=i x

kΦi

)
⊕
⊕

i∈[n]

(
ri∆i ⊕

⊕
k 6=i r

k∆i

)
=
(⊕

i∈[n] x
i
)(⊕

i∈[n] Φi

)
⊕
(⊕

i∈[n] r
i
)(⊕

i∈[n] ∆i

)
=
((⊕

i∈[n] x
i
)
∧
(⊕

i∈[n] y
i
)
⊕
(⊕

i∈[n] r
i
))(⊕

i∈[n] ∆i

)
.

39

Since lsb(
⊕

i∈[n] ∆i) = 1, it holds that

d = lsb(
⊕

i∈[n] Si) =
(⊕

i∈[n] x
i
)
∧
(⊕

i∈[n] y
i
)
⊕
(⊕

i∈[n] r
i
)
.

From zi = ri and z1 = r1⊕d, we have
(⊕

i∈[n] x
i
)
∧
(⊕

i∈[n] y
i
)

= d⊕
(⊕

i∈[n] r
i
)

=
⊕

i∈[n] z
i. Finally,

it is easy to see that the following holds:
⊕

i∈[n] Ti =
⊕

i∈[n](Si⊕d∆i) =
(⊕

i∈[n] Si

)
⊕d
(⊕

i∈[n] ∆i

)
=

0. Therefore, no parties would abort.

Lemma 7. Let A be the set of malicious parties. If the honest parties do not abort, then the parties would
output a correct AND triple such that(⊕

i∈[n] x
i
)
∧
(⊕

i∈[n] y
i
)

=
⊕

i∈[n] z
i,

where
{
zi := ri

}
i 6=1

and z1 := r1 ⊕ d′, the bit d′ is computed in Step 4c of protocol ΠLaAND, and{
xi, yi, ri

}n
i=1

are defined from authenticated shares 〈x〉, 〈y〉, 〈r〉 output by FaShare.

Proof. Let U ′i,j , d
′, S′i, T

′
i denote the values computed by a party Pi in the protocol ΠLaAND when some

malicious parties deviate the protocol, and Ui,j , d, Si, Ti be the values that Pi would have computed when
all parties are honest. For each i ∈ A, we define Ri,j := U ′i,j ⊕ Ui,j for each j /∈ A and Qi := T ′i ⊕ Ti. For
each j /∈ A, we also define Rj :=

⊕
k∈ARk,j .

Firstly, we show that if d′ = d =
(⊕

i∈[n] x
i
)
∧
(⊕

i∈[n] y
i
)
⊕
(⊕

i∈[n] r
i
)

,
⊕

i∈[n] z
i =

(⊕
i∈[n] x

i
)
∧(⊕

i∈[n] y
i
)

holds with probability 1. Since zi = ri for i 6= 1 and z1 = r1 ⊕ d′, we have:

⊕
i∈[n] z

i =
(⊕

i∈[n] r
i
)
⊕ d′ =

(⊕
i∈[n] x

i
)
∧
(⊕

i∈[n] y
i
)
.

Below, we assume that d′ 6= dwhile at the same time that the check passes, and we will derive a contradiction
from this. For each i ∈ A, an honest partyPj /∈ Awould compute M′i[x

j]Φi := xj ·U ′i,j⊕H(Mi[x
j], i‖j‖t) =

xj · Ui,j ⊕ H(Mi[x
j], i‖j‖t) ⊕ xj · Ri,j = Mi[x

j]Φi ⊕ xj · Ri,j . Then Pj will compute S′j = Sj ⊕(⊕
k∈A x

jRk,j
)

= Sj ⊕ xj ·Rj . Note that we have
⊕

i∈[n] Ti = 0. Thus, we know that⊕
i∈[n] T

′
i =

⊕
i∈A T

′
i ⊕

⊕
i/∈A T

′
i

=
⊕

i∈A (Ti ⊕Qi)⊕
⊕

i/∈A (S′i ⊕ d′∆i)

=
⊕

i∈A (Ti ⊕Qi)⊕
⊕

i/∈A
(
Si ⊕ xiRi ⊕ d∆i ⊕∆i

)
=
⊕

i∈[n] Ti ⊕
⊕

i∈AQi ⊕
⊕

i/∈A x
iRi ⊕

⊕
i/∈A ∆i

=
⊕

i∈AQi ⊕
⊕

i/∈A x
iRi ⊕

⊕
i/∈A ∆i.

To make
⊕

i∈[n] T
′
i = 0, the adversary must find errors such that⊕

i∈AQi ⊕
⊕

i/∈A x
iRi =

⊕
i/∈A ∆i (1)

We here consider the case that there is only one honest party, because if there are at least two honest parties,
adversary A will have a lower probability to guarantee the above equation (1) holds. Let Pi∗ /∈ A be
the unique honest party. If A succeeds to guess c bits of ∆i∗ for some c ∈ [κ] ∪ {0} via the (leak)
command of FaShare, the protocol will abort except with probability 1/2c. If A makes at most q queries
to random oracle H, then it will learn ∆i∗ from {Ui∗,j}j 6=i∗ sent by Pi∗ with probability at most q/2κ−1−c.
Therefore, the probability, that the protocol does not abort and the above equation (1) holds, is bounded by
q/2κ−1−c · 1/2c = q/2κ−1.

40

Theorem 6. Let H be a random oracle. Protocol ΠLaAND shown in Figure 14 securely realizes functionality
FLaAND in the (FaShare, FCom)-hybrid model.

Proof. Let A be a PPT adversary who corrupts a subset of parties A. We construct a PPT simulator S with
access to functionality FLaAND, which runs A as a subroutine and simulates A’s view. Before S aborts, it
outputs whatever A outputs.

Description of the simulation.

1. When playing the role of FaShare, S receives global key ∆i and Pi’s authenticated shares of 〈x〉, 〈y〉, 〈r〉
from A for each i ∈ A. Then S samples d ← {0, 1}, and defines [zi]i := [ri]i for each i 6= 1 and
[z1]1 := [r1]1 ⊕ d. For i ∈ A, S sends ∆i and Pi’s authenticated shares for (〈x〉, 〈y〉, 〈z〉) to FLaAND.

2. For all (leak) queries on global keys of honest parties from A against FaShare, S forwards these queries
to FLaAND, and then sends the decision results to A. If FLaAND aborts, S aborts.

3. For each i /∈ A, S picks a random Ui,j ← {0, 1}κ as a message sent from Pi to Pj for each j 6= i. For
each i ∈ A, using global key ∆i and the Pi’s authenticated shares of 〈x〉, 〈y〉, 〈r〉, S computes locally
Ui,j for each j /∈ A, j 6= i, di := lsb(Si) and Ti := Si ⊕ d∆i, which will be sent by a semi-honest
party Pi, where Si is the value computed by semi-honest party Pi with its authenticated shares and the
messages {Uj,i}j 6=i.

4. For each i /∈ A, S acts as honest party Pi and sends Ui,j sampled in the previous step to Pj for each
j 6= i. For each i ∈ A, for every j /∈ A, j 6= i, S acts as honest party Pj and receives U ′i,j from A, and
then computes Ri,j := U ′i,j ⊕ Ui,j . For each i /∈ A, S computes Ri :=

⊕
k∈ARk,i.

5. S emulates FCom and receives d′i for each i ∈ A from A. Then, S computes qi := d′i ⊕ di and q :=⊕
i∈A qi. By Lemma 7, we know that d′ =

⊕
i∈[n] d

′
i is equal to d =

⊕
i∈[n] di in the real protocol

execution with probability 1−negl(κ). Therefore, S sets d′ := d. For each i /∈ A, S samples d′i ← {0, 1}
such that

⊕
i∈[n] d

′
i = d′ = d. Then, S emulates FCom and opens d′i for each i /∈ A to all parties.

6. S plays the role ofFCom, and receives T ′i from every corrupt party Pi ∈ A. S computesQi := T ′i⊕Ti for
each i ∈ A, and then computes Q :=

⊕
i∈AQi. Then, S sends (Q, q, {Ri}i/∈A) to FLaAND as a selective

failure query on x-shares. If FLaAND aborts, S aborts. Otherwise, for each i /∈ A, S picks T ′i ← {0, 1}κ
such that lsb(T ′i) = d′i ⊕ d′ · lsb(∆i) and

⊕
i∈[n] T

′
i = 0, and then opens it to all parties.

For each i /∈ A, we assume thatA guesses ci bits of ∆i for some ci ∈ [κ]∪{0} with probability of aborting
1− 1/2ci . Since H is a random oracle, the probability that (Mi[x

j]⊕∆i, i‖j‖t) for j 6= i has been queried
is bounded by q/2κ−1−ci , where q is the number of queries to H. Therefore, for each i /∈ A, j 6= i, random
value Ui,j simulated by S is indistinguishable from the value in the real protocol execution, except with
probability at most 1/2ci · q/2κ−1−ci = q/2κ−1, which is negligible in κ. In the FaShare-hybrid model, the
shares of all honest parties for 〈y〉, 〈r〉 are uniform and kept secret from the adversary’s view. Therefore,
{d′i}i/∈A simulated by S have the same distribution as the bits sent in the real protocol execution.

Below, we show that the probability of aborting due to the selective failure attack in the real world is the
same as the one in the ideal world. By the proof of Lemma 7, we have that S′i = Si⊕xi ·Ri. Thus, for each
i /∈ A, d′i = di ⊕ xi · lsb(Ri). Due to d′i = di ⊕ qi for each i ∈ A, we know that

d′ =
⊕

i∈[n] d
′
i =

⊕
i/∈A d

′
i ⊕
⊕

i∈A d
′
i

=
⊕

i∈[n] di ⊕
⊕

i/∈A x
i · lsb(Ri)⊕

⊕
i∈A qi

= d⊕
⊕

i/∈A x
i · lsb(Ri)⊕ q.

41

Based on the above equation, we have that⊕
i∈[n]

T ′i =
⊕
i∈A

T ′i ⊕
⊕
i/∈A

T ′i

=
⊕
i∈A

(Ti ⊕Qi)⊕
⊕
i/∈A

(
S′i ⊕ d′∆i

)
=
⊕
i∈A

(Ti ⊕Qi)⊕
⊕
i/∈A

(
Ti ⊕ xiRi ⊕

(⊕
j /∈A

xj lsb(Rj)
)
∆i ⊕ q∆i

)
=
⊕
i∈[n]

Ti ⊕
⊕
i∈A

Qi ⊕
⊕
i/∈A

xiRi ⊕
(
q ⊕

⊕
i/∈A

xilsb(Ri)
)(⊕

i/∈A

∆i

)
= Q⊕

(⊕
i/∈A

xiRi

)
⊕
(
q ⊕

⊕
i/∈A

xilsb(Ri)
)(⊕

i/∈A

∆i

)
.

Therefore,
⊕

i∈[n] T
′
i = 0 if and only if the following holds:

Q⊕
(⊕

i/∈A x
iRi
)

=
(
q ⊕

⊕
i/∈A x

ilsb(Ri)
) (⊕

i/∈A ∆i

)
,

which implies the same probability of aborting for both two worlds.
In the simulation of S, if FLaAND does not abort, for each i /∈ A, T ′i is chosen at random except

for the least significant bit. We need to show that if the protocol does not abort, then {T ′i}i/∈A simulated
by S is indistinguishable from the values opened in the real protocol execution. Firstly, we prove that⊕

i∈[n] lsb(T ′i) = 0 with probability at least 1 − q/2κ−1, where q is an upper bound of the number of
H queries. From a similar analysis of the proof of Lemma 7, we have that Q =

⊕
i/∈A x

iRi and q =⊕
i/∈A x

ilsb(Ri), except with probability at most q/2κ−1. Thus, with probability at least 1−q/2κ−1,FLaAND

does not abort, lsb(Q) = q and d′ = d⊕ q⊕
⊕

i/∈A x
ilsb(Ri) = d. From the simulation by simulator S, we

have that
⊕

i∈[n] lsb(T ′i) is equal to:

=
⊕
i/∈A

(
d′i ⊕ d′ · lsb(∆i)

)
⊕
⊕
i∈A

(lsb(Ti)⊕ lsb(Qi))

=
⊕
i/∈A

d′i ⊕ d′ ·
⊕
i/∈A

lsb(∆i)⊕
⊕
i∈A

(di ⊕ d · lsb(∆i))⊕
⊕
i∈A

lsb(Qi)

=
⊕
i/∈A

d′i ⊕ d′ ·
⊕
i/∈A

lsb(∆i)⊕
⊕
i∈A

(d′i ⊕ qi)⊕ d ·
⊕
i∈A

lsb(∆i)⊕ q

= d′ ⊕ d ·
(⊕
i∈[n]

lsb(∆i)
)

= d′ ⊕ d = 0.

Below, we prove if the protocol execution does not abort, then T ′i computed by honest party Pi is uniformly
random under the condition that

⊕
i∈[n] T

′
i = 0 and lsb(T ′i) = d′i⊕d′ · lsb(∆i) in the real protocol execution.

When only one party is honest, it is obvious that T ′i with i /∈ A is defined by the equation
⊕

i∈[n] T
′
i = 0. In

the following, we focus on the case that there are at least two honest parties. In particular, for each i /∈ A,
we define

Fi :=
⊕
k 6=i

(
Ki[r

k]⊕Mk[r
i]
)
.

We show that for any proper subset S ⊂ [n]\A,
⊕

i∈S Fi is perfectly indistinguishable from a random value
in {0, 1}κ. We use e to denote an honest party such that e /∈ A and e /∈ S. Such e always exists, as S is a

42

proper subset of [n]\A. We have the following holds:⊕
i∈S

Fi =
⊕
i∈S

⊕
k 6=i

(
Ki[r

k]⊕Mk[r
i]
)

=
⊕
i∈S

⊕
k 6=i

Ki[r
k]⊕

⊕
i∈S

⊕
k 6=i

Mk[r
i]

=
⊕
i∈S

⊕
k 6=i

Ki[r
k]⊕

⊕
k∈S

⊕
i 6=k

Mi[r
k]

=
⊕
i∈S

⊕
k 6=i

Ki[r
k]⊕

⊕
i∈[n]

⊕
k∈S,k 6=i

Mi[r
k].

From the above equation, we have that for i ∈ S, Ke[r
i] is not in the computation, while Me[r

i] =
Ke[r

i] ⊕ ri∆e is. Since Ke[r
i] is uniform at random from FaShare and is kept unknown for A as both

i, e /∈ A,
⊕

i∈S Fi is random and unknown for A. Therefore, for any proper subset S ⊂ [n]\A,
⊕

i∈S S
′
i is

indistinguishable from a random value, except that the least significant bit is revealed, where S′i is the value
computed by honest party Pi in Step 4a for i ∈ S. Thus, for any proper subset S ⊂ [n]\A,

⊕
i∈S T

′
i is

indistinguishable from a random value except that lsb
(⊕

i∈S T
′
i

)
is fixed.

From Lemma 7, if
(⊕

i∈[n] x
i
)
∧
(⊕

i∈[n] y
i
)
6=
⊕

i∈[n] z
i, then the real protocol execution will abort

with probability 1 − q/2κ−1. Therefore, if honest parties do not abort, then protocol ΠLaAND will output a
correct authenticated AND triple with probability 1 − negl(κ), while functionality FLaAND always outputs
a correct AND triple. In conclusion, we complete the proof.

D.2 From Leaky Authenticated AND Triples to Authenticated AND Triples
Similar to prior works, we can eliminate the triple leakage based on bucketing. Based on the techniques
in [NNOB12, WRK17b], we present an efficient protocol ΠaAND for authenticated AND triples, which se-
curely computes a functionalityFaAND shown in Figure 15. The details of ΠaAND are described in Figure 16.
Our protocol is essentially the same as the one by Wang et al. [WRK17b], except that a) opening authenti-
cated shares in an amortized way rather than directly sending the MACs; b) calling the functionality FLaAND

for leaky AND triples with weak global keys. Given prior works [NNOB12, WRK17b], the security proof
of protocol ΠaAND follows immediately, and thus is omitted. Note that although the adversary may leak a
few bits of global keys via the selective failure attack, this has no impact on the security, by following the
proof in Lemma 1.

According to Theorem 8 in [NNOB12], we have thatB = ρ
log `+1 +1 such that the success probability of

the adversary is bounded by 2−ρ. We analyze the communication rounds and complexity of protocol ΠaAND

shown in Figure 16 in the FaShare-hybrid model, including the cost of LaAND. Specifically, this protocol
needs 5 rounds as the executions for FRand and Open in Figure 16 can be merged with the final three rounds
of ΠLaAND. Protocol ΠaAND needs to communicate about B`(κ+ 1)(n−1) + (B−1)`(n−1) bits for each
party per execution.

E Security Proof of Our MPC Protocol
In this section, we give a full proof of security to the protocol Πmpc described in Section 4.

E.1 Related Lemmas
Prior to proceeding the main proof, we present four related lemmas. The first lemma addresses the correct-
ness of our distributed garbling scheme in the honest case. The second lemma shows that malicious party
P1 can learn only one label generated by an honest party for each wire. The third lemma addresses the cor-
rectness of P1’s output when other parties are corrupted. The fourth lemma addresses the correctness of the

43

Functionality FaAND

Initialize: Upon receiving (init) from all parties, sample ∆i ← {0, 1}κ for i /∈ A and receive ∆i ∈ {0, 1}κ from
the adversary for i ∈ A. Store ∆i for i ∈ [n] and send ∆i to party Pi.
Triples: Upon receiving (aAND, `) from all parties, for each k ∈ [`], sample xk, yk ← {0, 1}, compute zk :=
xk ∧ yk, and generate a random authenticated triple (〈xk〉, 〈yk〉, 〈zk〉) by executing AuthShare(uk) for each
uk ∈ {xk, yk, zk}.
Selective failure leakage: Wait for the adversary to input (leak, i, S, {∆′[k]}k∈S). If Pi is honest, this function-
ality executes the macro GKleak(i, S, {∆′[k]}k∈S) as defined in Figure 1.

Figure 15: Functionality for authenticated AND triples.

Protocol ΠaAND

Initialize: All parties send (init) to FLaAND, which returns ∆i ∈ {0, 1}κ to Pi for i ∈ [n].
Generate leaky AND triples: All parties set `′ := B · ` where B is the bucket size, and then call FLaAND `

′ times
and obtains `′ leaky authenticated AND triples {(〈xk〉, 〈yk〉, 〈zk〉)}k∈[`′]. If receiving fail from functionality
FLaAND, the parties abort.
Eliminate the leakage with bucketing: The parties eliminate the possible leakage on x-shares as follows.

1. All parties call FRand to sample a random permutation π on {1, . . . , `′}. Then the parties randomly partition
all leaky AND triples into ` buckets of size B accordingly, i.e., for j ∈ {0, 1, . . . , ` − 1}, the B triples
{(〈xπ(k)〉, 〈yπ(k)〉, 〈zπ(k)〉)}j·B+B

k=j·B+1 are defined to be in the j-th bucket.

2. For each bucket, the parties combine the B leaky AND triples into one non-leaky AND triple. We describe
how to combine two leaky AND triples, calling them (〈x1〉, 〈y1〉, 〈z1〉) and (〈x2〉, 〈y2〉, 〈z2〉), into one calling
the result (〈x〉, 〈y〉, 〈z〉). In particular, the parties execute as follows:

(a) Compute d := Open(〈y1〉 ⊕ 〈y2〉).

(b) Set 〈x〉 := 〈x1〉 ⊕ 〈x2〉, 〈y〉 := 〈y1〉, and 〈z〉 := 〈z1〉 ⊕ 〈z2〉 ⊕ d〈x2〉.

To combine all B leaky triples in the same bucket, the parties just iterate by taking the result and combine it
with the next triple in the bucket.

3. All parties output the ` non-leaky AND triples.

Figure 16: Protocol for authenticated AND triples without leakage of shares.

output of honest party Pi with i 6= 1, when P1 and other parties are corrupted. We omit the proof of correct-
ness for generating authenticated shares of multiplication of two wire masks by using random authenticated
AND triples (Step 7 of protocol Πmpc), when some parties are corrupted. Recall that this procedure adopts
a standard technique (i.e., authenticated Beaver triples [Bea92, BDOZ11]), and uses a random oracle H to
perform the amortized opening of authenticated shares in which the security is proved in Appendix A.3.

Lemma 8. When all parties follow the protocol description honestly, then after Step 10, for each wire w in
the circuit, evaluator P1 can obtain the correct public value Λw and garbled labels

{
Liw,Λw

}
i 6=1

.

Proof. In the following, we prove this lemma by induction on the gates in the circuit.

Base step. It is easy to verify that this lemma holds for all circuit-input wires after input processing has
been executed (Step 9).

44

Induction step. This lemma trivially holds for XOR gates. Thus, we focus on each AND gate (α, β, γ,∧).
By the induction hypothesis, P1 holds the correct (Λα, {Liα,Λα}i 6=1) and (Λβ, {Liβ,Λβ}i 6=1). Let u = Λα and
v = Λβ , P1 evaluates the circuit as follows:{

Mj [r
1
uv] := Λα ·Mj [λ

1
β]⊕ Λβ ·Mj [λ

1
α]⊕Mj [λ

1
αβ]⊕Mj [λ

1
γ]
}
j 6=1

,{
Mj [r

i
uv] := H(Liα,Λα , L

i
β,Λβ

, γ, j)⊕Gi,jγ,uv
}
i 6=1,j 6=i,1,{

Liγ,Λγ := H(Liα,Λα , γ)⊕ H(Liβ,Λβ , γ)⊕ ΛαGiγ,0 ⊕ Λβ(Giγ,1 ⊕ Liα,Λα)⊕ (
⊕

j 6=iMi[r
j
uv])
}
i 6=1
.

Observe that for each i 6= 1, we have:

Liγ,Λγ :=
(
H(Liα,Λα , γ)⊕ ΛαGiγ,0 ⊕ Λα(

⊕
j 6=iMi[λ

j
β])
)
⊕
(
H(Liβ,Λβ , γ)⊕ Λβ(Giγ,1 ⊕ Liα,Λα)⊕

Λβ(
⊕

j 6=iMi[λ
j
α])
)
⊕
(⊕

j 6=iMi[λ
j
αβ]
)
⊕
(⊕

j 6=iMi[λ
j
γ]
)
.

It is easy to verify that the following holds:

H(Liα,Λα , γ)⊕ ΛαGiγ,0 ⊕ Λα(
⊕

j 6=iMi[λ
j
β])

= H(Liα,Λα , γ)⊕ Λα
(
H(Liα,0, γ)⊕ H(Liα,1, γ)

)
⊕ Λα(

⊕
j 6=i Ki[λ

j
β]⊕ λiβ∆i ⊕

⊕
j 6=iMi[λ

j
β])

= H(Liα,0, γ)⊕ Λαλβ∆i

and
H(Liβ,Λβ , γ)⊕ Λβ(Giγ,1 ⊕ Liα,Λα)⊕ Λβ(

⊕
j 6=iMi[λ

j
α])

= H(Liβ,Λβ , γ)⊕ Λβ
(
H(Liβ,0, γ)⊕ H(Liβ,1, γ)

)
⊕ Λβ(Liα,0 ⊕ Liα,Λα)

⊕Λβ(
⊕

j 6=i Ki[λ
j
α]⊕

⊕
j 6=iMi[λ

j
α]⊕ λiα∆i)

= H(Liβ,0, γ)⊕ ΛαΛβ∆i ⊕ Λβλα∆i.

Each garbler Pi locally computes the 0-label Liγ,0 as:

Liγ,0 := H(Liα,0, γ)⊕ H(Liβ,0, γ)⊕
(⊕

j 6=i Ki[λ
j
αβ]
)
⊕ λiαβ∆i ⊕

(⊕
j 6=i Ki[λ

j
γ]
)
⊕ λiγ∆i.

Thus, we conclude that Liγ,0 ⊕ Liγ,Λγ is equal to:

= ΛαΛβ∆i ⊕ Λαλβ∆i ⊕ Λβλα∆i ⊕
(⊕

j 6=i Ki[λ
j
αβ]⊕

⊕
j 6=iMi[λ

j
αβ]⊕ λiαβ∆i

)
⊕
(⊕

j 6=i Ki[λ
j
γ]⊕

⊕
j 6=iMi[λ

j
γ]⊕ λiγ∆i

)
= ΛαΛβ∆i ⊕ Λαλβ∆i ⊕ Λβλα∆i ⊕ λαβ∆i ⊕ λγ∆i

= ΛαΛβ∆i ⊕ Λαλβ∆i ⊕ Λβλα∆i ⊕ λαλβ∆i ⊕ λγ∆i

=
(
(Λα ⊕ λα) ∧ (Λβ ⊕ λβ)⊕ λγ

)
∆i = Λγ∆i,

where it is easy to verify that λαβ = λα · λβ according to the Beaver triples. This means that according
to Pi’s definition of Lγ,Λγ , the label evaluated by P1 is always correct. The public value is correct, since
lsb(∆2) = 1 and bγ ⊕ lsb(L2

γ,Λγ
) is equal to:

lsb(L2
γ,0)⊕ lsb(L2

γ,Λγ) = lsb(L2
γ,0 ⊕ L2

γ,Λγ) = lsb(Λγ∆2) = Λγ .

45

Lemma 9. Let A be a PPT adversary who corrupts a subset of parties such that P1 ∈ A is corrupted.
Either the execution of protocol Πmpc aborts, or A learns at most one of two garbled labels for any wire
and honest party, except with probability at most q/2κ−1, where q is the number of H queries.

Proof. Clearly, adversaryA learns both garbled labels from some honest party Pi /∈ A for some wire if and
only if A learns the global key ∆i. Thus, we only need to prove the probability that the protocol execution
does not abort andA learns ∆i is at most q/2κ−1. IfA succeeds to guess ci bits of ∆i for some ci ∈ [κ]∪{0}
via the (leak) command of Fprep, then the real protocol execution will abort except with probability 1/2ci .

Note that all the MACs received by A from Fprep do not include any information on ∆i, as the local
keys are uniformly random. Therefore, only the garbled tables generated by Pi may include the infor-
mation of ∆i. In the half-gates garbled rows, ∆i is encrypted by both garbled labels, and thus is known
by A if and only if A has queried both garbled labels to random oracle H. Besides, in the garbled rows{
Gi,jw,00, G

i,j
w,01, G

i,j
w,10, G

i,j
w,11

}
j 6=i,1 for w ∈ W computed by Pi, the information of ∆i is only available in

the computations H(Liα,u, L
i
β,v, γ, j) for (u, v) ∈ {0, 1}2\{(Λα,Λβ)}, γ ∈ W and j 6= i, 1, and thus A can

only obtain ∆i if and only if it makes the queries including both garbled labels for some wire to random
oracle H.

In both cases, the only way that A learns ∆i is to make queries to random oracle H. As a result, the
probability, that both garbled labels for some wire have been queried to H by A (i.e., ∆i is learned by A),
is bounded by q/2κ−1−ci . Overall, with probability at most 1/2ci · q/2κ−1−ci = q/2κ−1, the protocol does
not abort and A learns ∆i (thus both garbled labels for some wire).

Lemma 10. For each i ∈ [n], let xiw
def
= Λw ⊕ λw for each w ∈ Ii, where Λw is what Pi sends in

Step 9a of protocol Πmpc and λw is from Fprep. If any PPT adversary A corrupts a set of parties such
that P1 /∈ A is honest, then either P1 aborts, or P1 outputs y1 = f1(x1, . . . , xn) with probability at least
1− (|C|+ q + 2)/2κ, where H is |C|/2κ-almost universal, A makes at most q queries to H and f1 denotes
the P1’s output on multi-output function f .

Proof. After Step 10, P1 obtains a set of public values for all wires in the circuit C. In the following, we
will prove that if these public values are not correct, then P1 will abort with probability 1 − (|C| + 1)/2κ,
where recall that we use a polynomial hash to instantiate almost universal hash function H.

We first prove that for each w ∈ W , we have tw = 0. For each AND gate (α, β, γ,∧), from the
definition of tiγ for i ∈ [n], we have⊕

i∈[n] t
i
γ = Λα · Λβ ⊕ Λγ ⊕ Λα ·

(⊕
i∈[n] λ

i
β

)
⊕ Λβ ·

(⊕
i∈[n] λ

i
α

)
⊕
(⊕

i∈[n] λ
i
αβ

)
⊕
(⊕

i∈[n] λ
i
γ

)
= Λα · Λβ ⊕ Λγ ⊕ Λα · λβ ⊕ Λβ · λα ⊕ λα · λβ ⊕ λγ
= (Λα ⊕ λα) ∧ (Λβ ⊕ λβ)⊕ (Λγ ⊕ λγ) = tγ .

According to the definition of {M1[tiw]}i 6=1 and M1[t1w] for w ∈ W , we have the following:

n∑
i=1

M1[tiw] =
∑
i 6=1

K1[tiw] + t1w∆1 +
∑
i 6=1

M1[tiw]

=
∑
i 6=1

(K1[tiw] + M1[tiw]) + t1w∆1

=

n∑
i=1

tiw∆1 = tw∆1.

For each i 6= 1, we use zi to denote the correct value computed with H and the MACs held by Pi, and ẑi
to denote the value sent by a malicious party Pi. Thus,

∑
i 6=1 ẑi =

∑
i 6=1 zi + e, where e is an adversarily

46

chosen error. Note that z1 is correct, as P1 is honest. Since H is additively homomorphic, we have that
n∑
i=1

zi =

n∑
i=1

H
({

M1[tiw]
}
w∈W

)
= H

({ n∑
i=1

M1[tiw]
}
w∈W

)
= H

({
tw∆1

}
w∈W

)
= H({tw}w∈W) ·∆1.

Thus, H({tw}w∈W) ·∆1 = e, as
∑

i 6=1 ẑi = 0 if P1 does not abort.
Below, we analyze the probability that H({tw}w∈W) 6= 0 but P1 does not abort. We assume that the

adversary A leaks c1 bits of ∆1 for some c1 ∈ [κ] ∪ {0} by the (leak) command of Fprep. In this case,
the real protocol execution will abort except with probability 2−c1 . Then the remaining κ − c1 bits of ∆1

are uniformly random from the adversary’s view. Thus, e and {tw}w∈W are independent of the unknown
κ − c1 bits of ∆1. As P1 is honest, linear hash function H defined by a random seed χ is independent
of ∆1. Therefore, under the condition that c1 bits of ∆1 have already been leaked, the probability that
∆1 = H({tw}w∈W)−1 · e is at most 2c1−κ. Overall, with probability 2−c1 · 2c1−κ = 2−κ, P1 does not
abort and H({tw}w∈W) 6= 0. Since {tw}w∈W are independent of H and H is |C|/2κ-almost universal, the
probability that there exists one w ∈ W such that tw 6= 0 is at most |C|/2κ. Overall, with probability at least
1− (|C|+ 1)/2κ, we have tw = 0 for all w ∈ W .

Below, we prove by induction that for each wire w, public value Λw is correct.

Base step: The public values for all circuit-input wires are correct, according to how xiw is defined for each
i ∈ [n], w ∈ Ii.

Induction step: It is easy to verify that the public values for the output wires of XOR gates are correct. So,
we will focus on each AND gate (α, β, γ,∧). According to the induction hypothesis, we have that P1 holds
correct public values Λα and Λβ . Recall that the correctness of public value Λγ is checked by computing
the following value:

tγ = (Λα ⊕ λα) ∧ (Λβ ⊕ λβ)⊕ (Λγ ⊕ λγ).

From tγ = 0, we have Λγ = (Λα ⊕ λα) ∧ (Λβ ⊕ λβ) ⊕ λγ . According to the correctness of Λα and Λβ ,
Λα ⊕ λα and Λβ ⊕ λβ are the correct actual values for input wires α and β respectively. Therefore, Λγ is
correct.

If P1 does not abort in Step 13 of protocol Πmpc, the probability that there exists a corrupt party Pj flipping
its share λjw for some w ∈ O1 is (q+ 1)/2κ, according to Lemma 1. From the above proof by induction, we
have that public value Λw is correct for each w ∈ O1, except with probability (|C|+1)/2κ. In conclusion, if
P1 does not abort, y1

w = Λw⊕λw is correct for each w ∈ O1, except with probability (|C|+ q+ 2)/2κ.

Lemma 11. For every PPT adversary A corrupting a subset of parties, every honest party Pi /∈ A either
aborts, or outputs yi = fi(x

1, . . . , xn) with probability at least 1 − 3q/2κ, where fi denotes the output of
function f to Pi and q is the number of H queries.

Proof. We first prove that Pi /∈ A either aborts or obtains the correct public values in Step 11 of protocol
Πmpc, even if P1 is corrupted by A. Let {Λ′w}w∈W be the public values received by Pi in Step 11 when P1

is corrupted, and {Λw}w∈W be the correct public values that should be sent by an honest P1. Below, we
analyze the probability that there exists some w ∈ W such that Λ′w 6= Λw. In Step 11, A on behalf of P1

sends a value h′i to Pi. If Pi /∈ A does not abort, then we have that

h′i = H
({

Liw,0 ⊕ Λ′w∆i

}
w∈W

)
.

47

Since H is a random oracle, the probability thatA finds a target collision is q/2κ. Therefore, with probability
1 − q/2κ, Liw,Λ′w = Liw,0 ⊕ Λ′w∆i for each w ∈ W is learned by A. In addition, A has learned Liw,Λw =

Liw,0 ⊕∆w∆i by evaluating the circuit on behalf of P1. If Λ′w 6= Λw for some w ∈ Oi, then A learns both
garbled labels Liw,0 and Liw,1 for the wire w. By Lemma 9, this happens with probability at most q/2κ−1.
Overall, except with probability at most 3q/2κ, the public values on all wires in W received by Pi are
correct, if Pi does not abort. Together with that the public values for all circuit-input wires are correct and
the public values on the output wires of XOR gates are correct by induction, we obtain that the public values
on all wires in the circuit are correct, except with probability at most 3q/2κ.

Based on the proof of Lemma 1, the probability that Pi does not abort in Step 13 and there exists a
malicious party Pj flipping its share λjw for some w ∈ Oi is bounded by 3q/2κ. In this probability, the
probability that A finds a target collision for H is bounded by q/2κ; the probability that the real protocol
execution does not abort and adversaryA learns ∆i is at most q/2κ−1 from the proof of Lemma 9. Therefore,
Pi will obtain a correct wire mask λw for each w ∈ Oi, except with probability at most 3q/2κ.

In conclusion, if Pi does not abort, then yiw = Λw ⊕ λw is correct for each w ∈ Oi, except with
probability at most 3q/2κ.

E.2 Proof of Theorem 3
Given the Lemmas 8−11, the proof of Theorem 3 is relatively easy. Below, we present the details of the
proof.

Theorem 7 (Theorem 3, restated). Let f : {0, 1}|I| → {0, 1}|O| be an n-party functionality. Then pro-
tocol Πmpc shown in Figures 6 and 7 securely computes f in the presence of a static malicious adversary
corrupting up to n− 1 parties in the Fprep-hybrid model, where H is a random oracle.

Proof. Let A be a PPT adversary who corrupts a subset of parties A. We construct a PPT simulator S,
which runs A as a subroutine, simulates the adversary’s view, and has access to an ideal functionality Fmpc

that implements f . Whenever any honest party simulated by S aborts or A aborts, S outputs whatever A
outputs and aborts. The simulator S is defined as below.

Description of the simulation.

– INITIALIZATION: AfterA corrupted a subset of parties A, S corrupts the same parties in the ideal world,
and internally emulates an execution of the honest parties running Πmpc with A.

– PREPROCESSING: S emulates the functionality Fprep, and records all the values from adversary A. Sim-
ulator S acts as every honest party Pi /∈ A and simulates honestly the execution of Pi in function-
(in)dependent phases.

– ONLINE: S simulates honestly the execution of honest parties, with the following exceptions:

– For every honest party Pi /∈ A, S adopts xi := 0|Ii| as Pi’s input, and broadcasts Λw := λw to all
parties for each circuit-input wire w ∈ Ii.

– For each corrupt party Pi ∈ A, for every w ∈ Ii, S receives a public value Λw from A, and computes
xiw := Λw ⊕ λw as an input bit of Pi.

– For every corrupt party Pi ∈ A, S sends (input, xi) on behalf of Pi to Fmpc, and receives an output yi.
S computes

(ỹ1, . . . , ỹn) := f(x̃1, . . . , x̃n),

where
{
x̃i := 0|Ii|

}
i/∈A and

{
x̃i := xi

}
i∈A. Then S chooses any j∗ /∈ A, and then for each i ∈ A,w ∈

Oi, defines λ̃j
∗
w := λj

∗
w ⊕ yiw⊕ ỹiw and computes Mi[λ̃

j∗
w] := Mi[λ

j∗
w]⊕ (λ̃j

∗
w ⊕λj

∗
w)∆i. For each i ∈ A,

S acts as honest party Pj∗ and opens {λ̃j
∗
w }w∈Oi to corrupt party Pi in the amortized way.

48

Based on Lemmas 8–11 in the previous section, we prove that the real protocol execution is indistinguishable
from the ideal world execution by a sequence of games.

Hybrid0. This is the same as the real protocol execution shown in Figures 6 and 7, where the actual inputs
{xi}i/∈A are used for honest parties.

Hybrid1. This is the same as Hybrid0, except that S plays the role of honest parties {Pi}i/∈A.

Hybrid1 is essentially the same as Hybrid0.

Hybrid2. This is the same as Hybrid1, except that a) for each i ∈ A,w ∈ Ii, S receives a public value
Λw from A and computes xiw := Λw ⊕ λw; b) for each i ∈ A, S sends (input, xi) on behalf of Pi to Fmpc

and receives an output yi.

The distributions on the view of adversary A in Hybrid1 and Hybrid2 are identical. If P1 is honest,
then the outputs obtained byP1 in two hybrids are the same except with probability at most (|C|+q+2)/2κ =
negl(κ) from Lemma 8 and Lemma 10, where q is an upper bound of the number of H queries. If Pi is
honest for each i /∈ A, i 6= 1, then the outputs obtained by Pi in two hybrid games are the same except with
probability at most 3q/2κ = negl(κ) by Lemma 11. Therefore, the distributions in Hybrid1 and Hybrid2

are indistinguishable, except with probability negl(κ).

Hybrid3. This is the same as Hybrid2, except that simulator S executes as follows:

1. Use {xi = 0|Ii|}i/∈A as the inputs of honest parties in Step 9 of protocol Πmpc.

2. Compute (ỹ1, . . . , ỹn) := f(x̃1, . . . , x̃n), where x̃i := 0|Ii| for each i /∈ A and x̃i := xi for each i ∈ A.

3. Choose any j∗ /∈ A, and for each i ∈ A,w ∈ Oi define λ̃j
∗
w := λj

∗
w ⊕ yiw ⊕ ỹiw. Then compute

Mi[λ̃
j∗
w] := Mi[λ

j∗
w]⊕ (λ̃j

∗
w ⊕ λj

∗
w)∆i.

4. For each i ∈ A, act as honest party Pj∗ and open {λ̃j
∗
w }w∈Oi to corrupt party Pi in the amortized way.

We first prove that for every honest party Pi, its share λiw for each wire w in the circuit is uniformly
random and kept secret in A’s view, before these shares are revealed in the phases of input and output
processing. Here we do not consider the circuit-input wires associated with other parties’ inputs, as the
corresponding shares are set as 0. If i = 1, it is easy to see that the P1’s shares for all wires are kept secret
in the information-theoretic sense. If i 6= 1, we show that Pi’s shares are computationally hidden, even if
P1 is corrupted. For each XOR gate (α, β, γ,⊕), λiγ = λiα ⊕ λiβ is kept unknown for A, if at least one of
λiα and λiβ is kept secret. Thus, we focus on each AND gate (α, β, γ,∧). The half-gates garbled rows Giγ,0
and Giγ,1 for γ ∈ W are encrypted by both garbled labels for input wires. Therefore, A are still unknown
for Pi’s shares λiα and λiβ on input wires α and β, unless it learns ∆i. From Lemma 9, this occurs with

probability at most q/2κ−1 = negl(κ). Besides, each garbled row Gi,jγ,uv for each γ ∈ W , u, v ∈ {0, 1} and
j 6= i, 1 is encrypted using different combinations of Liα,0, L

i
α,1 and Liβ,0, L

i
β,1. To open at least two garbled

rows, A needs to learn both garbled labels for some wire. From Lemma 9, this happens with probability
at most q/2κ−1 = negl(κ). Therefore, A does not learn the shares λiα and λiβ for the input wires. In the
process of checking public values, if Pi with i 6= 1 does not abort, the public values on the output wires
of all AND gates are correct except with probability at most 3q/2κ = negl(κ), according to the proof of
Lemma 11. Therefore, the value zi sent by Pi does not reveal its shares for each AND gate (α, β, γ,∧), as
λiαβ is uniformly random and masks Pi’s shares.

For each i /∈ A,w ∈ Ii, we have proved that λiw is uniformly random and unknown for A. Therefore,
the distributions of the public values {Λw}w∈⋃i/∈A Ii in Hybrid2 and Hybrid3 are both independently
random, and thus are exactly the same. For each wire w associated with the outputs of corrupt parties, A

49

does not know the share λj
∗
w of Pj∗ /∈ A, and both λj

∗
w and λ̃j

∗
w are uniformly random. Therefore, for each

i ∈ A,w ∈ Oi, λ̃j
∗
w sent by S in Hybrid3 has the same distribution as λj

∗
w sent by honest party Pj∗ in

Hybrid2.

For each w ∈ W , the public value Λw is uniformly random and has the same distribution in Hybrid2

and Hybrid3, as {λiw}i/∈A are uniformly random and not known to A. If P1 ∈ A, then P1 is able to
learn only one garbled label for each wire except with probability at most q/2κ−1 = negl(κ) by Lemma 9.
Thus, P1 can open only one of four garbled rows Gi,jγ,00, G

i,j
γ,01, G

i,j
γ,10, G

i,j
γ,11 for each γ ∈ W , i /∈ A and

j 6= i, 1. In two hybrids, the distribution of garbled rows evaluated by corrupt party P1 is indistinguishable,
as the distribution of public values {Λw}w∈W is the same. Moreover, the garbled labels obtained by P1 are
indistinguishable in two hybrids.

Based on the proof of Lemma 10, if honest party P1 /∈ A does not abort in Step 12 of protocol Πmpc,
Λw = ỹiw⊕(

⊕
j∈[n] λ

j
w) for eachw ∈ Oi except with probability at most (|C|+1)/2κ = negl(κ). Therefore,

for each i ∈ A and w ∈ Oi, Λw ⊕ (
⊕

j 6=j∗ λ
j
w)⊕ λ̃j

∗
w = Λw ⊕ (

⊕
j∈[n] λ

j
w)⊕ yiw ⊕ ỹiw = yiw, which means

that A will obtain the correct output. If P1 ∈ A, A will also get the correct output for each i ∈ A, due to
the setting of the shares {λ̃j

∗
w }w∈Oi of honest party Pj∗ .

In conclusion, Hybrid3 is indistinguishable from Hybrid2, except with probability negl(κ).

50

	Introduction
	Our Contributions
	Discussion of Some Related Works
	Organization

	Background and Technical Overview
	Notation
	Multi-Party Authenticated Bits
	Multi-Party Authenticated Shares
	Improved Authenticated AND triples
	Improved Distributed Garbling with Partial Half-Gates
	Batch Circuit Authentication in the Multi-Party Setting
	Other Optimization

	Improved Preprocessing Protocols
	Optimized Multi-Party Authenticated Bits
	Improved Multi-Party Authenticated Shares

	Optimized Multi-Party Authenticated Garbling
	Construction in the [prep]-hybrid model and Proof of Security
	Communication Complexity

	Performance Evaluation
	Improvements for Authenticated Triple Generation Protocols
	Improvements for Authenticated Garbling
	Evaluation on Real Applications

	More Background
	Commitment and Coin-tossing
	Almost Universal Linear Hash Functions
	Amortized Opening Procedures

	Proof of Security for Our Authenticated Bit Protocol
	Analysis of Checking in the aBit Protocol
	Proof of Theorem 1

	Complexity and Security of Our Authenticated Share Protocol
	Communication Complexity
	Proof of Security

	Improved Authenticated Triple
	Protocol for Leaky AND Triples
	From Leaky Authenticated AND Triples to Authenticated AND Triples

	Security Proof of Our MPC Protocol
	Related Lemmas
	Proof of Theorem 3

