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Abstract. Multipartite secret sharing schemes are those having a multipartite access structure, in which
the set of participants is divided into several parts and all participants in the same part play an equivalent
role. Secret sharing schemes for multipartite access structures have received considerable attention due
to the fact that multipartite secret sharing can be seen as a natural and useful generalization of threshold
secret sharing.

This work deals with efficient and explicit constructions of ideal multipartite secret sharing schemes,
while most of the known constructions are either inefficient or randomized. Most ideal multipartite secret
sharing schemes in the literature can be classified as either hierarchical or compartmented. The main
results are the constructions for ideal hierarchical access structures, a family that contains every ideal
hierarchical access structure as a particular case such as the disjunctive hierarchical threshold access
structure and the conjunctive hierarchical threshold access structure, the constructions for three families of
compartmented access structures, and the constructions for two families compartmented access structures
with compartments.

On the basis of the relationship between multipartite secret sharing schemes, polymatroids, and ma-
troids, the problem of how to construct a scheme realizing a multipartite access structure can be trans-
formed to the problem of how to find a representation of a matroid from a presentation of its associated
polymatroid. In this paper, we give efficient algorithms to find representations of the matroids associated
to several families of multipartite access structures. More precisely, based on know results about integer
polymatroids, for each of those families of access structures above, we give an efficient method to find
a representation of the integer polymatroid over some finite field, and then over some finite extension
of that field, we give an efficient method to find a presentation of the matroid associated to the integer
polymatroid. Finally, we construct ideal linear schemes realizing those families of multipartite access
structures by efficient methods.

Keywords: Secret sharing schemes · Multipartite access structures · Matroids · Polymatroids.

1 Introduction

Secret sharing is an important cryptographic primitive, by means of which a secret value is distributed into
shares among a number of participants in such a way that only the qualified sets of participants can recover the
secret value from their shares. A scheme is perfect if the unqualified subsets do not obtain any information about
the secret. The first proposed secret sharing schemes [8, 33] realized threshold access structures, in which the
qualified subsets are those having at least a given number of participants. In addition, these schemes are ideal
and linear. A scheme is ideal if the share of every participant has the same length as the secret, and it is linear
if the linear combination of the shares of different secrets results in shares for the same linear combination of
the secret values. Even though there exists a linear secret sharing scheme for every access structure [6, 26], the
known general constructions are not impractical because the length of the shares grows exponentially with the
number of participants. Actually, the optimization of secret sharing schemes for general access structures has
appeared to be an extremely difficult problem and not much is known about it. Nevertheless, secret sharing
schemes have found numerous applications in cryptography and distributed computing, such as threshold
cryptography [17], secure multiparty computations [5, 11, 15, 16], and oblivious transfer [34, 38]. In many of the
applications mentioned above, we hope to use practical schemes, namely, the linear schemes in which the size
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of the share of each participant is a polynomial of the size of the secret. In particular, we want to use the ideal
schemes since they are the most space-efficient.

Due to the difficulty of constructing an ideal liner scheme for every given access structure, it is worthwhile to
find families of access structures that admit ideal linear schemes and have useful properties for the applications
of secret sharing. Several such families are formed by multipartite access structures, in which the set of
participants is divided into different parts and all participants in the same part play an equivalent role.
Weighted threshold access structures [33, 4], hierarchical access structures [36, 37, 19], and compartmented
access structures [9, 24, 39] are typical examples of such multipartite access structures. Readers can refer to
[20] for comprehensive survey on multipartite access structures. A great deal of the ongoing research in this
area is devoted to the properties of multipartite access structures and to secret sharing schemes (especially
ideal and linear ones) that realize them.

The first class of multipartite access structures is weighted threshold access structures which appeared in
the seminal paper by Shamir [33]. Weighted threshold access structures do not admit an ideal secret sharing
scheme in general. Ideal multipartite secret sharing and their access structures were initially studied by Kothari
[27] and by Simmons [36]. Kothari [27] presented some ideas to construct ideal linear schemes with hierarchi-
cal properties. Simmons [36] introduced the multilevel access structures (also called disjunctive hierarchical
threshold access structures (DHTASs) in [37]) and compartmented access structures, and constructed ideal
linear schemes for some of them by geometric method [8], but the method is inefficient. The efficient method to
construct ideal linear schemes for DHTASs was presented by Brickell [9] based on primitive polynomials over
finite fields. He also presented a more general family, that is the so-called compartmented access structures
with lower bounds (LCASs) as a generalization of Simmons’ compartmented access structures and offered a
method to construct ideal linear schemes realizing LCASs too. This method is efficient to construct schemes
realizing Simmons’ compartmented access structures but is inefficient to construct the schemes realizing LCASs
in general because it is required to check (possible exponentially) many matrices for non-singularity. Tassa
[37] presented conjunctive hierarchical threshold access structures (CHTASs) and offered a method to con-
struct ideal linear schemes realizing them based on Birkhoff interpolation. In the case of random allocation of
participant identities, this method is probabilistic. A method is probabilistic if it produces a scheme for the
given access structure with high probability. In the probabilistic method, it is still required to check many
matrices for non-singularity. In general, we hope to construct schemes by efficient methods. By allocating
participant identities in a monotone way, Tassa gave an efficient method to construct ideal linear schemes for
CHTASs over a sufficiently large prime field based on Birkhoff interpolation. Tassa and Dyn [39] presented
compartmented access structures with upper bounds (UCASs) and offered probabilistic methods to construct
ideal linear schemes for UCASs, LCASs and CHTASs based on bivariate interpolation.

Another related line of work deals with the characterization of the ideal multipartite secret sharing schemes
and their access structures. This line of research was initiated by Brickell [9] and by Brickell and Davenport
[10]. They introduced the relationship between secret sharing schemes and matroids, and characterized the
ideal secret sharing schemes by matroids. Beimel et al [4] characterized ideal weighted threshold secret sharing
schemes by matroids. The bipartite access structures were characterized in [31] and some partial results about
the tripartite case were presented in [14] and [24]. On the basis of the works in [9, 10], Farràs et al [18–
20] introduced integer polymatroids for the study of ideal multipartite secret sharing schemes. They studied
the connection of multipartite secret sharing schemes, matroids and polymatroids, and presented many new
families of multipartite access structures such as ideal hierarchical access structures (IHASs), compartmented
access structures with upper and lower bounds (ULCASs) and others. Their work implies the problem of how
to construct a scheme realizing a multipartite access structure can be transformed to the problem of how to
find a representation of a matroid from a presentation of its associated polymatroid. Nevertheless, Farràs et
al. [18, 20] pointed out it remains open whether or not exist efficient algorithms to obtain representations of
matroids from representations of their associated polymatroids in general.

1.1 Related Work

Efficient Explicit Constructions of Ideal Multipartite Secret Sharing. The most of the known con-
structions of ideal multipartite secret sharing schemes are either inefficient or randomized in the literature.
Efficient methods to construct ideal hierarchical secret sharing schemes were given by Brickell [9] and by Tassa
[37]. Brickell’s construction provides a representation of a matroid associated to DHTASs over finite fields of
the form Fqλ with λ ≥ mk2, where q is a prime power, m is the number of parts that the set of participants is
divided into, and k is the rank of the matroid. An irreducible polynomial of degree λ over Fq has to be found,
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but this can be done in time polynomial in q and λ by using the algorithm given by Shoup [35]. Therefore, a
representation can be found in time polynomial in the size of the ground set. Accordingly, ideal linear schemes
realizing DHTASs can be obtained by an efficient method. Tassa [37] offered a representation of a matroid
associated to CHTASs over prime fields Fp with p larger than 2−k+2(k− 1)(k−1)/2(k− 1)!N (k−1)(k−2)/2, where
k is the rank of the matroid and N is the maximum identity assigning to participants. A matrix M is the
representation if some of its submatrices are nonsingular. The non-singularity of these submatrices depends
on the Birkhoff interpolation. There is an efficient algorithm to solve this kind of interpolation over the prime
fields Fp, and consequently, ideal linear schemes realizing CHTASs can be obtained by an efficient method.
Ball et al. [1] extended the methods in [9, 37] and obtained two different kinds of representations of biuniform
matroids, one by using a primitive element of an extension field and another one by using a large prime field.
The schemes for some bipartite access structures can be obtained based on these representations. In addition,
efficient methods to construct schemes for some multilevel access structures with two levels and three levels
were presented in [7] and [23], respectively. Very recently, an efficient method to construct ideal compartmented
secret sharing schemes were given by Chen et al. [12]. They offered representations of the matroids associated
to UCASs, LCASs and ULCASs, respectively, over finite fields of the form Fqλ , where q is a prime power
and λ is a positive integer depending on the parameters of the given access structure. These representable
matroids were constructed by combining the polymatroid-based techniques presented by Farràs et al [18–20]
with Gabidulin codes [22]. The properties of Gabidulion codes implies the method is efficient, and hence ideal
linear schemes realizing the three types of compartmented access structures can be obtained by an efficient
method.

Multipartite Secret Sharing, Polymatroids and Matroids. On the basis of the connection of multi-
partite secret sharing schemes, matroids and polymatroids, Farràs et al [18–20] introduced a unified method
based on polymatroid techniques, which simplifies in great measure the task of determining whether a given
multipartite access structures is ideal or not. Furthermore, they presented many new families of multipartite
access structures and proved the existence of ideal linear schemes realizing these access structures by the uni-
fied method. In particular, they characterized ideal secret sharing schemes for hierarchical access structures
in [19]. They defined the accurate form of IHASs and showed that every ideal hierarchical access structure
is of this form or it can be obtained from a structure of this form by removing some participants. Moreover,
they presented a general method to construct ideal linear schemes realizing multipartite access structures.
Specially, to construct a secret sharing scheme realizing a given multipartite access structure, first find an
integer polymatroid associated to the access structure, then find a representation of the integer polymatroid
over some finite field, and third find a representation of the matroid associated the access structure over some
finite extension of the finite field based on the representation of the integer polymatroid. The result in [18]
implies the matroid can be used to construct an ideal linear scheme realizing the access structure. In particular,
based on this general method, the efficient constructions of some ideal compartmented schemes were obtained
in [12].

1.2 Our Results

In this paper, we study how to construct secret sharing schemes realizing multipartite access structures. The
main results are the constructions for IHASs, a family that contains all ideal hierarchical access structure as
a particular case such as DHTASs and CHTASs, the constructions for three families of compartmented access
structures such as UCASs, LCASs and ULCASs, and the constructions for two families of compartmented ac-
cess structures with compartments such as compartmented access structures with hierarchical compartments
and compartmented access structures with compartmented compartments. We give efficient methods to explic-
itly construct ideal linear schemes realizing these access structures combining the general polymatroid-based
method in [18] and Brickell’s method to construct ideal linear schemes for DHTASs in [9]. The ideal of our
construction is described as follows.

Our method to construct multipartite schemes is closely related to the representations of the multipartite
matroid associated to the given multipartite access structure. The problem of how to obtain a representation
of the multipartite matroid can be transformed to find a matrix M such that its some special submatrices are
nonsingular. Thus, our main goal is that providing a polynomial time algorithms to construct such a matrix M
such that all the determinants of those special submatrices are nonzero over some finite fields. More precisely,
we construct the matrix M with special form such that every determinant of those submatrices can be viewed
as a nonzero polynomial on x of the form x`f(x) over some finite field Fq, where ` is an non-negative integer
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and the degree of f(x) is at most t. Based on such a matrix M , over Fqλ with λ > t, the algorithm given by
Shoup [35] implies a representation of the matroid associated the given access structure can be found in time
polynomial in the size of the ground set.

The idea of finding a matrix M such that the determinants of some of its submatrices are denoted by a
nonzero polynomial on x comes from Brickell [9]. This is the key to find a representation of the matroid. This
is related to the determinant function of matrix. To solve this question, we introduce approaches to calculate
two class of matrices with special form, one can be applied to the constructions for IHASs and another one
can be applied to the constructions for compartmented access structures.

Specifically, based on the integer polymatroids associated to those families of multipartite access structures
presented in [18–20], for every family of access structures above, we give an efficient method to find a repre-
sentation of the integer polymatroid over some finite field, and then over some finite extension of that field,
we give an efficient method to find a presentation of the matroid associated to the integer polymatroid. Ac-
cordingly, we construct ideal linear schemes for those access structures. First, we construct a Fq-representation
of an integer polymatroid that is as simple as possible. The representations associated to those families of
access structures are constructed based on unit matrix or Vandermonde matrix. Second, based on the special
representation for some access structure, we construct the matrix M satisfied the required conditions such
that every determinant of some of its submatrices can be viewed as a nonzero polynomial on x over Fq. Thus,
a representation of the matroid associated the given access structure can be found in time polynomial in the
size of the ground set by the algorithm in [35].

In addition, we compare our results with the efficient methods to construct hierarchical secret sharing
schemes from [9, 37] in Section 4.3, and in particular, we point out that our construction for DHTASs is the
same as the one in [9], but we improve the bound for the size of the ground set. We also compare our results
with the efficient methods to construct compartmented secret sharing schemes from [12] in Section 5.4.

1.3 Organization of the Paper

Section 2 introduces some knowledge about access structures, secret sharing schemes, polymatroids, matroids,
and the methods to construct secret sharing schemes by matroids and polymatroids. Section 3 introduces
the approaches to calculate the determinant functions of two classes of matrices with special form. Section 4
gives two classes of constructions for ideal linear secret sharing schemes realizing IHASs. Section 5 constructs
ideal linear secret sharing schemes realizing UCASs, LCASs and ULCASs. Section 6 constructs ideal linear
secret sharing schemes realizing two families of compartmented access structures with compartments. Section
7 concludes the paper.

2 Preliminaries

We introduce here some notation that will be used all through the paper. In particular, we recall the compact
and useful representation of multipartite access structures as in [18–20].

We use Z+ to denote the set of the non-negative integers. for every positive integer i we use the notation
[i] := {1, . . . , i} and for every i, j ∈ Z+ we use the notation [i, j] := {i, . . . , j} with i < j. Consider a finite set J
and given two vectors u = (ui)i∈J and v = (vi)i∈J in ZJ+, we write u ≤ v if ui ≤ vi for every i ∈ J . The modulus
|u| of a vector u ∈ ZJ+ is defined by |u| =

∑
i∈J ui. For every subset X ⊆ J , we notate u(X) = (ui)i∈X ∈ ZX+ .

For every positive integer m, we notate Jm = {1, . . . ,m} and J ′m = {0, 1, . . . ,m}. Of course the vector notation
that has been introduced here applies as well to Zm+ = ZJm+ .

2.1 Access Structures and Secret Sharing Schemes

Let P = {p1, . . . , pn} denote the set of participants and its power set be denoted by P(P ) = {V : V ⊆ P} which
contains all the subsets of P . A collection Γ ⊆ P(P ) is monotone if V ∈ Γ and V ⊆ W imply that W ∈ Γ . An
access structure is a monotone collection Γ ⊆ P(P ) of nonempty subsets of P . Sets in Γ are called authorized,
and sets not in Γ are called unauthorized. An authorized set V ∈ Γ is called a minimal authorized set if for
every W  V, the set W is unauthorized. An unauthorized set V /∈ Γ is called a maximal unauthorized set if
for every W ) V, the set W is authorized. The set Γ ∗ = {V : Vc /∈ Γ} is called the dual access structure to
Γ . It is easy to see that Γ ∗ is monotone too. In particular, an access structure is said to be connected if all
participants are in at least one minimal authorized subset.



Efficient Explicit Constructions of Multipartite Secret Sharing Schemes 5

A family Π = (Πi)i∈Jm of subsets of P is called here a partition of P if P =
⋃
i∈Jm Πi and Πi ∩ Πj = ∅

whenever i 6= j. For a partition Π of a set P , we consider the mapping Π : P(P ) → Zm+ defined by Π(V) =
(|V ∩Πi|)i∈Jm . We write P = Π(P(P )) = {u ∈ Zm+ : u ≤ Π(P )}. For a partition Π of a set P , a Π-permutation
is a permutation σ on P such that σ(Πi) = Πi for every part Πi of Π. An access structure on P is said to be
Π-partite if every Π-permutation is an automorphism of it.

As in [18–20], we describe a multipartite access structure in a compact way by taking into account that its
members are determined by the number of elements they have in each part. If an access structure Γ on P is
Π-partite, then V ∈ Γ if and only if Π(V) ∈ Π(Γ ). That is, Γ is completely determined by the partition Π and
set of vectors Π(Γ ) ⊆ P ⊆ Zm+ . Moreover, the set Π(Γ ) ⊆ P is monotone increasing, that is, if u ∈ Π(Γ ) and
v ∈ P is such that u ≤ v, then v ∈ Π(Γ ). Therefore, Π(Γ ) is univocally determined by min Π(Γ ), the family
of its minimal vectors, that is, those representing the minimal qualified subsets of Γ . By an abuse of notation,
we will use Γ to denote both a Π-partite access structure on P and the corresponding set Π(Γ ) of points in
P, and the same applies to minΓ .

Now, we introduce some families of multipartite access structures.

Definition 1. (Ideal hierarchical access structures) Take k̂, k ∈ Zm+ such that k̂1 = 0 and k̂i ≤ k̂i+1 <
ki ≤ ki+1 for i ∈ [m−1]. The following access structures are called ideal hierarchical access structures (IHASs)

Γ ={u∈P : |u([`])|≥k` for some `∈Jm and |u([i])|≥ k̂i+1 for all i∈ [`− 1]}. (1)

In particular, if k̂i = 0 for every i ∈ Jm and 0 < k1 < · · · < km = k, then IHASs is the disjunctive
hierarchical threshold access structures (DHTASs), which can be denoted by

Γ ={u∈P : |u([i])|≥ki for some i∈Jm}, (2)

and if 0 = k̂1 < · · · < k̂m and k1 = · · · = km = k then IHASs is the conjunctive hierarchical threshold access
structures (CHTASs), which can be denoted by

Γ ={u∈P : |u([i])|≥ k̃i for all i∈Jm}, (3)

where k̃i = k̂i+1 for i ∈ [m− 1] and k̃m = km.

Definition 2. (Compartmented access structures) Take t, r ∈ Zm+ and k ∈ N such that t ≤ r ≤ Π(P ),
|t| ≤ k ≤ |r| and ri ≤ k for every i ∈ Jm. The following access structures are called compartmented access
structures with upper and lower bounds (ULCASs)

minΓ = {u ∈ P : |u| = k and t ≤ u ≤ r}. (4)

Particularly, if r = Π(P ), then ULCASs is the compartmented access structure with lower bound (LCASs),
which can be denoted by

minΓ = {u ∈ P : |u| = k and u ≥ t}, (5)

and if t = 0, then ULCASs is the compartmented access structure with upper bound (UCASs), which can be
denoted by

minΓ = {u ∈ P : |u| = k and u ≤ r}. (6)

In addition, we will introduce the definitions of two families of compartments access structures with com-
partments in Section 6.

We next present the definition of unconditionally secure perfect secret sharing scheme as given in [13, 3].
For more information about this definition and secret sharing in general, see [2].

Definition 3. (Secret sharing schemes) Let P = {p1, . . . , pn} be a set of participants. A distribution
scheme Σ = (Φ, µ) with domain of secrets S is a pair, where µ is a probability distribution on some finite set
R called the set of random strings and Φ is a mapping from S × R to a set of n-tuples S1 × S2 × · · · × Sn,
where Si is called the domain of shares of pi. A dealer distributes a secret s ∈ S according to Σ by first
sampling a random string r ∈ R according µ, computing a vector of shares Φ(s, r) = (s1, . . . , sn), and privately
communicating each share si to participant pi. For a set V ⊆ P , we denote ΦV(s, r) as the restriction of Φ(s, r)
to its V-entries (i.e., the shares of the participants in V).

Let S be a finite set of secrets, where S ≥ 2. A distribution scheme Σ = (Φ, µ) with domain of secrets S is
a secret sharing scheme realizing an access structure Γ ⊆ P(P ) if the following two requirements hold:
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CORRECTNESS. The secret s can be reconstructed by any authorized set of participants. That is, for any
authorized set V ∈ Γ (where V = {pi1 , . . . , pi|V|}), there exists a reconstruction function ReconV : Si1 × · · · ×
Si|V| → S such that for every s ∈ S and every random string r ∈ R,

ReconV
(
ΦV(s, r)

)
= s.

PRIVACY. Every unauthorized set can learn nothing about the secret (in the information theoretic sense)
from their shares. Formally, for any unauthorized set W /∈ Γ , every two secrets s, s′ ∈ S, and every possible
|W|-tuple of shares (si)ui∈W ,

Pr
[
ΦW(s, r) = (si)ui∈W

]
= Pr

[
ΦW(s′, r) = (si)ui∈W

]
when the probability is over the choice of r from R at random according to µ.

Definition 4. (Ideal linear secret sharing schemes) Let P = {p1, . . . , pn} be a set of participants. Let
Σ = (Φ, µ) be a secret sharing scheme with domain of secrets S, where µ is a probability distribution on a set
R and Φ is a mapping from S ×R to S1×S2× · · ·×Sn, where Si is called the domain of shares of pi. We say
that Σ is an ideal linear secret sharing scheme over a finite field K if S = S1 = · · · = Sn = K, R is a K-vector
space, Φ is a K-linear mapping, and µ is the uniform probability distribution.

In this paper, we focus on unconditionally secure perfect ideal linear secret sharing schemes.

2.2 Polymatroids and Matroids

In this section we introduce the definitions and some properties of polymatroids and matroids. Most results of
this section are from [18–20]. For more background on matroids and polymatroids, see [30, 40, 32, 25].

Definition 5. A polymatroid S is defined by a pair (J, h), where J is the finite ground set and h : P(J)→ R
is the rank function that satisfies

1) h(∅) = 0;
2) h is monotone increasing: if X ⊆ Y ⊆ J , then h(X) ≤ h(Y );
3) h is submodular: if X,Y ⊆ J , then h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X) + h(Y ).

An integer polymatroid Z is a polymatroid with an integer-valued rank function h. An integer polymatroid
such that h(X) ≤ |X| for any X ⊆ J is called a matroid.

While matroids abstract some properties related to linear dependency of collections of vectors in a vector
space, integer polymatroids do the same with collections of subspaces. Suppose (Vi)i∈J is a finite collection
of subspaces of a K-vector space V , where K is a finite field. The mapping h(X) : P(J) → Z defined by
h(X) = dim(

∑
i∈X Vi) is the rank function of an integer polymatroid with ground set J . Integer polymatroids

and, in particular, matroids that can be defined in this way are said to be K-representable.
Following the analogy with vector spaces we make the following definitions. For an integer polymatroid Z,

the set of integer independent vectors of Z is

D = {u ∈ ZJ+ : |u(X)| ≤ h(X) for every X ⊆ J},

in which the maximal integer independent vectors are called the integer bases of Z. Let B or B(Z) denote the
collection of all integer bases of Z. Then all the elements of B(Z) have the identical modulus. In fact, every
integer polymatroid Z is univocally determined by B(Z) since h is determined by h(X) = max{|u(X)| : u ∈
B(Z)}.

Given an integer polymatroid Z = (J, h) and a subset X ⊆ J , let Z|X = (X,h) denote a new integer
polymatroid restricted Z on X, and B(Z, X) = {u ∈ D : supp(u) ⊆ X and |u| = h(X)} where supp(u) =
{i ∈ J : ui 6= 0}. Then there is a natural bijection between B(Z, X) and B(Z|X).

We next introduce the sum operations on integer polymatroids. Consider two integer polymatroids Z1 and
Z2 on the same ground set J while with different rank functions h1, h2. Their sum is a new integer polymatroid
Z = (J, h) = Z1 +Z2 such that h = h1 +h2. In particular, if Z1 and Z2 are K-representable, then Z = Z1 +Z2

is K-representable too. Precisely, if Z1 and Z2 are represented by vector subspaces (Vi)i∈J of V and (Wi)i∈J of
W , respectively, then Z = Z1 +Z2 is represented by the vector subspaces (Vi×Wi)i∈J of V ×W . In particular,
the integer bases of Z satisfies the following property.
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Proposition 1. ([32]) B(Z)=B(Z1) + B(Z2)={a+ b : a∈ B(Z1), b∈ B(Z2)}.

Finally, we introduce a class of polymatroids as follows.

Definition 6. (Boolean polymatroids) Let S be a finite set and consider a family (Si)i∈J of subsets of S.
The mapping h : P(J)→ Z defined by h(X) = |

⋃
i∈X Si| is clearly the rank function of an integer polymatroid.

Integer polymatroids that can be defined in this way are called Boolean polymatroids.

Boolean polymatroids are very simple integer polymatroids that are representable over every finite field K.
If |S| = t, we can assume that S is a basis of the vector space V = Kt. For every i ∈ J , consider the vector
subspace Vi = 〈Si〉. Obviously, these subspaces form a K-representation of a polymatroid.

2.3 Secret Sharing Schemes, Matroids and Polymatroids

In this section we review the methods to construct ideal linear secret sharing schemes for multipartite access
structures by matroids and polymatroids. Most results of this section are from [18–20]. We first introduce the
method to construct ideal linear schemes by matroids.

Let P = {p1, . . . , pn} be a set of participants and p0 /∈ P be the dealer. Suppose M is a matroid on the
finite set P ′ = P ∪ {p0}, and let

Γp0
(M) = {A ⊆ P : h(A ∪ {p0}) = h(A)}.

Then Γp0
(M) is an access structure on P because monotonicity property is satisfied, which is called the port

of the matroid M at the point p0.
Matroid ports play a very important role in secret sharing. Brickell [9] proved that the ports of representable

matroids admit ideal secret sharing schemes and provided a method to construct ideal schemes for ports of
K-representable matroids. These schemes are called a K-vector space secret sharing schemes. This method was
described by Massey [28, 29] in terms of linear codes. Suppose M is a k × (n + 1) matrix over K. Then the
columns of M determine a K-representable matroidM with ground set P ′ such that the columns of M are in
one-to-one correspondence with the elements in P ′. In this situation, the matrix M is called a K-representation
of the matroidM. Moreover, M is a generator matrix of some (n+1, k) linear code C over K, that is, a matrix
whose rows span C. A code C of length n+ 1 and dimension k is called an (n+ 1, k) linear code over K which
is a k-dimensional subspace of Kn+1. A secret sharing scheme can be constructed by the matrix M based the
code C as follows.

Let s ∈ K be a secret value. Secret a codeword c = (c0, c1, . . . , cn) ∈ C uniformly at random such that
c0 = s, and define the share-vector as (c1, . . . , cn), that is ci is the share of the participant pi for i ∈ [n]. Let
LSSS(M) denote this secret sharing scheme.

Theorem 1. ([28]) LSSS(M) is a perfect ideal linear scheme such that a set V ⊂ P is qualified if and only
if the first column in M is a linear combination of the columns with indices in V.

The dual code C⊥ for a code C consists of all vectors c⊥ ∈ Kn+1 such that 〈c⊥, c〉 = 0 for all c ∈ C, where
〈·, ·〉 denotes the standard inner product. Suppose M and M∗ are generator matrices of some (n+ 1, k) linear
code C and its dual C⊥ over K, respectively. Then LSSS(M) and LSSS(M∗) realize Γ and Γ ∗, respectively.
Sometimes it is not easy to construct an ideal linear scheme for a given access structure Γ directly. In this
case we can first construct a scheme for Γ ∗ and then translate the scheme into an ideal linear scheme for Γ ∗

using the explicit transformation of [21]. In Section 5.2, we will present the construction for LCASs (5) by this
method.

Brickell’s method can be applied to construct such schemes. Nevertheless, it is difficult to determine whether
a given access structure admits an ideal linear secret sharing scheme or not. Moreover, even for access structures
that admit such schemes, it may not be easy to construct them. Some strategies based on matroids and
polymatroids were presented in [18, 20] to attack those problems for multipartite access structures.

The relationship between ideal multipartite access structures and integer polymatroids is summarized as
follows.

Theorem 2. ([18]) Let Π = (Πi)i∈Jm be a partition of the set P , and Z ′ = (J ′m, h) is an integer polymatroid
such that h({0}) = 1 and h({i}) ≤ |Πi| for every i ∈ Jm. Take Γ0(Z ′) = {X ⊆ Jm : h(X ∪ {0}) = h(X)} and

Γ0(Z ′,Π)={u∈P : there exist X∈Γ0(Z ′) and v∈ B(Z ′|Jm, X) such that v≤u}.
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Then Γ = Γ0(Z ′,Π) is a Π-partite access structure on P and a matroid port. Moreover, if Z ′ is K-representable,
then Γ can be realized by some L-vector space secret sharing scheme over every large enough finite extension
L of K. In addition, Z ′ is univocally determined by Γ if it is connected.

The general method presented by Farràs et al. [18] to construct ideal schemes for the multipartite access
structures satisfying the conditions in Theorem 2 is summarized as follows.

Let Π0 = {p0} and Π′ = (Πi)i∈J′m be a partition of the set P ′ = P ∪ {p0} such that |Πi| = ni. Given a
connected Π-partite access structure Γ satisfying the conditions in Theorem 2.

Step 1. Find an integer polymatroid Z ′ such that Γ = Γ0(Z ′,Π);
Step 2. Find a representation (Vi)i∈J′m of Z ′ over some finite field K;
Step 3. Over some finite extension of K, find a representation of the matroidM such that Γ is a port ofM.

More precisely, construct a k × (n+ 1) matrix M = (M0|M1| · · · |Mm) with the following properties:
1. k = h(J ′m) and n =

∑m
i=1 ni;

2. Mi is a k × ni matrix whose columns are vectors in Vi;
3. Mu is nonsingular for any u ∈ B(Z ′), where Mu is the k×k submatrix of M formed by any ui columns

in every Mi.

Farràs et al. [18–20] proved that all the multipartite access structures introduced in Section 2.1 are connected
matroid ports. Moreover, they presented the associated integer polymatroids and proved that they are rep-
resentable. Therefore, the results in [18–20] solve Step 1. In this paper, we will give an efficient method to
explicitly solve Steps 2 and 3, and hence to construct ideal linear schemes for those families of access structures.
Our method is based on the properties of determinant functions.

3 Some Properties of Determinant Functions

In this section, we study determinant functions of two classes of matrices with special form, which will be
applied to the constructions of representations of matroids associated to multipartite access structures.

3.1 The First Class of Matrices

In this Section, we introduce the approach to calculate the determinant of a class of matrices with special
form. This approach is very useful to calculate the determinant of the matrices with some zero blocks. This
class of matrices will be applied to the construction of representable matroid associated to IHASs. We will use
the well known Laplace Expansion Theorem of determinant.

Theorem 3. (The Laplace Expansion Theorem) Take a n × n matrix A. Let r = (r1, . . . , rk) be a list
of k column indices for A such that 1 ≤ r1 < · · · < rk < n where 1 ≤ k < n and t = (t1, . . . , tk) be a list of k
row indices for A such that 1 ≤ t1 < · · · < tk < n where 1 ≤ k < n. The submatrix obtained by keeping the
entries in the intersection of any column and row that are in the lists is denoted by S(A : r, t). The submatrix
obtained by removing the entries in the columns and rows that are in the list is denoted by S′(A : r, t). Then
the determinant of A is

det(A) = (−1)|r|
∑
t∈T

(−1)|t| det
(
S(A : r, t)

)
det
(
S′(A : r, t)

)
,

where T denotes the set of all k-tuples t = (t1, . . . , tk) for which 1 ≤ t1 < · · · < tk < n.

Example 1. Take a 7× 7 matrix A = (A1|A2|A3) where A1 and A2 are 7× 2 blocks, and A3 is a 7× 3 block.
Then the determinant of A can be calculated as follows.

Take r1 = (r1,1, r1,2) = (1, 2) and t1 = (t1,1, t1,2). Then from Theorem 3,

det(A) = (−1)|r1|
∑
t1∈T1

(−1)|t1| det
(
S(A : r1, t1)

)
det
(
S′(A : r1, t1)

)
,

where T1 denotes the set of all 2-tuples t1 = (t1,1, t1,2) for which 1 ≤ t1,1 < t1,2 ≤ 7. We proceed to
calculate det(S′(A : r1, t1)) by Theorem 3. Take r2 = (r2,1, r2,2) = (3, 4), r = (r1, r2) = (r1,1, r1,2, r2,1, r2,2),
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t2 = (t2,1, t2,2), t = (t1, t2) = (t1,1, t1,2, t2,1, t2,2), and let T2 denote the set of all 2-tuples t2 = (t2,1, t2,2) for
which 1 ≤ t2,1 < t2,2 ≤ 7. For a given t1 = (t1,1, t1,2), let

T2(t1) = T2\{(t2,1, t2,2) : t2,1 ∈ {t1,1, t1,2} or t2,2 ∈ {t1,1, t1,2}}.

Then
det(S′(A:r1,t1))=(−1)|r2|

∑
t2∈T2(t1)

(−1)|t2|det(S(A:r2,t2))det(S′(A:r,t)).

Hence the determinant of A can also be denoted by

det(A)=(−1)|r|
∑
t1∈T1

∑
t2∈T2(t1)

(−1)|t|det
(
S(A :r1,t1)

)
det
(
S(A :r2,t2)

)
det
(
S′(A :r,t)

)
.

In general, we have the following result.

Proposition 2. Take a n × n matrix A = (A1| · · · |Am) where Ai is a n × ni matrix, and take n0 = 0. For

every i ∈ Jm, let ri = (ri,1, . . . , ri,ni) = (
∑i−1
j=0 nj +1, . . . ,

∑i
j=0 nj), and ti = (ti,1, . . . , ti,ni) be a list of ni row

indices for Ai such that 1 ≤ ti,1 < · · · < ti,ni ≤ n. Take r = (r1, . . . , rm) and t = (t1, . . . , tm). Let Ti denote
the set of all ni-tuples ti = (ti,1, . . . , t1,ni) for which 1 ≤ ti,1 < · · · < t1,ni ≤ n. For a given ti = (ti,1, . . . , t1,ni),
take S(ti) = {ti,1, . . . , ti,ni}, and for given ti′ = (ti′,1, . . . , ti′,ni′ ) with i′ ∈ [i− 1], take

Ti(ti′ , i′∈ [i− 1]) = Ti
∖{

(ti,1, . . . , ti,ni) : ti,j ∈
⋃i−1
i′=1 S(ti′) for some j ∈ [ni]

}
.

Then

det(A)=(−1)|r|
∑
t1∈T1

∑
t2∈T2(t1)

· · ·
∑

tm−1∈Tm−1(ti′ ,

i′∈[m−2])

(−1)|t|
m−1∏
i=1

det
(
S(A :ri,ti)

)
det
(
S′(A :r,t)

)
.

Proof. Theorem 3 implies

det(A)=(−1)|r1|
∑
t1∈T1

(−1)|t1|det(S(A:r1,t1)) det(S′(A:r1, t1)).

We proceed to calculate det(S′(A : r1, t1)) by Theorem 3 and the following result can be obtained

det(S′(A :r1,t1))=(−1)|r2|
∑

t2∈T2(t1)

(−1)|t2| det(S(A :r2,t2)) det(S′(A :(r1,r2),(t1,t2)).

Accordingly, det(S′(A : (r1, . . . ,ri),(t1, . . . ,ti))) can be obtained by Theorem 3 for i ∈ [2,m− 1], and the result
follows. ut

Example 2. Take

A =



a1,1 a1,2 0 0 0 0 0
a2,1 a2,2 a2,3 a2,4 0 0 0
a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

0 0 a4,3 a4,4 a4,5 a4,6 a4,7

0 0 a5,3 a5,4 a5,5 a5,6 a5,7

0 0 0 0 a6,5 a6,6 a6,7

0 0 0 0 a7,5 a7,6 a7,7


.

Then from Example 1,

det(A)=(−1)|r|
∑
t1∈T1

∑
t2∈T2(t1)

(−1)|t|det(S(A :r1,t1))det(S(A :r2,t2))det(S′(A :r,t)).

Note that the T1 and T2 are different from the ones in Example 1. Here, there are some zero blocks in A. In
this case, T1 denotes the set of all 2-tuples t1 = (t1,1, t1,2) for which 1 ≤ t1,1 < t1,2 ≤ 3 and T2 denotes the set
of all 2-tuples t2 = (t2,1, t2,2) for which 2 ≤ t2,1 < t2,2 ≤ 5.

This example implies that Proposition 2 is more suitable for calculating the determinant function of the
matrix which has more zero blocks in its submatrices consist of some columns.
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3.2 The Second Class of Matrices

In this section, we introduce the calculation approach to the determinant function of another class of matrices
with special form. These matrices will be applied to the construction of representable matroid associated to
UCASs and LCASs. Recall that the determinant function is linear in the columns of a matrix as follows.

Proposition 3. If a and b are scalars, ᾱ and β̄ are columns vectors, and B is some matrix, then det
(
(aᾱ+

bβ̄ |B)
)

= adet
(
(ᾱ |B)

)
+ bdet

(
(β̄ |B)

)
.

Example 3. Let Ai = (au,v)2×3 and Bi = (bu,v)3×2 be a 2 × 3 matrix and a 3 × 2 matrix, respectively. Then

AB =
(∑3

i1=1 bi1,1āi1
∣∣∑3

i2=1 bi2,2āi2
)

is a 2× 2 matrix, where āi denotes the ith column of A. Hence, from
Proposition 3,

det(AB) =

3∑
i1=1

bi1,1 det

((
āi1

∣∣∣ 3∑
i2=1

bi2,2āi2

))

=

3∑
i1=1

3∑
i2=1

bi1,1bi2,2 det
(
(āi1 |āi2)

)
= b1,1b2,2 det

(
(ā1|ā2)

)
+b1,1b3,2 det

(
(ā1|ā3)

)
+b2,1b1,2 det

(
(ā2|ā1)

)
+b2,1b3,2 det

(
(ā2|ā3)

)
+b3,1b1,2 det

(
(ā3|ā1)

)
+b3,1b2,2 det

(
(ā3|ā2)

)
=
∑

1≤j1<j2≤3

det

(
bj1,1 bj1,2
bj2,1 bj2,2

)
det
(
(āj1 |āj2)

)
.

In general, we have the following proposition.

Proposition 4. Take a k×k matrix (AB|D) where A = (au,v) is a k× r matrix, B = (bu,v) is a r× l matrix,
and k ≥ r ≥ l, and take j = (j1, . . . , jl) such that 1 ≤ j1 < · · · < jl ≤ r. Let A(j) and B(j) denote the k × l
submatrix formed by the j1th column, . . . , jlth column of A and the l × l submatrix formed by the j1th row,
. . . , jlth row of B, respectively. Then

det
(
(AB|D)

)
=
∑
j∈J

det
(
B(j)

)
det
(
(A(j)|D)

)
,

where J denotes the set of all l-tuples j = (j1, . . . , jl) for which 1 ≤ j1 < · · · < jl ≤ r.

Proof. If there are two identical columns in a square matrix, then its determinant equals 0. Therefore, from
this and Proposition 3,

det
(
(AB|D)

)
= det

(( r∑
i1=1

bi1,1āi1

∣∣∣ · · · ∣∣∣ r∑
il=1

bil,lāil

∣∣∣D))
=

∑
iv∈[r],v∈[l]

( ∏
v∈[l]

biv,v

)
det
(
(āi1 | · · · |āil |D)

)
=
∑
i

( ∏
v∈[l]

biv,v

)
det
(
(āi1 | · · · |āil |D)

)
,

where the summation is over all l-tuples i = (i1, . . . , il) for which iv ∈ [r] and iv 6= iv′ , v 6= v′ ∈ [l].
For a given j = (j1, . . . , jl) such that 1 ≤ j1 < · · · < jl ≤ r, let S(j) denote the set of all the permutations

on the set {j1, . . . , jl}. we claim that∑
i∈S(j)

( ∏
v∈[l]

biv,v

)
det
(
(āi1 | · · · |āil |D)

)
= det

(
B(j)

)
det
(
(A(j)|D)

)
Without loss of generality, we may assume that j = (1, . . . , l), that is jv = v with v ∈ [l]. Then( ∏

v∈[l]

biv,v

)
det
(
(āi1 | · · · |āil |D)

)
= sgn(i)

( ∏
v∈[l]

biv,v

)
det
(
(ā1| · · · |āl|D)

)
,
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where sgn(i) denotes the sign of i. Note that for j = (1, . . . , l),∑
i∈S(j)

sgn(i)
( ∏
v∈[l]

biv,v

)
= det

(
B(j)

)
.

This implies the claim, and the result follows. ut

We next give a formula to calculate the determinant function of a matrix with special form which will be
used to the schemes for compartmented access structures.

Proposition 5. Let G = (A1B1| · · · |AmBm) be a k × k matrix such that Ai is a k × ri block and Bi is
a ri × li block, where li ≤ ri ≤ k and

∑m
i=1 li = k. For any ji = (ji,1, . . . , ji,li) with i ∈ Jm such that

1 ≤ ji,1 < · · · < ji,li ≤ ri, let Ai(ji) and Bi(ji) denote the k × li submatrix formed by the ji,1th column, . . . ,
ji,li th column of Ai and the li× li submatrix formed by the ji,1th row, . . . , ji,li th row of Bi, respectively. Then

det(G) =
∑

ji,i∈[m]

( m∏
i=1

det
(
Bi(ji)

))
det
((
A1(j1)| · · · |Am(jm)

))
,

where the summation is over all li-tuples ji = (ji,1, . . . , ji,li) with i ∈ Jm, for which 1 ≤ ji,1 < · · · < ji,li ≤ ri.

Proof. Let Ai := (a
(i)
u,v) with u ∈ [k] and v ∈ [ri], Bi := (b

(i)
u,v) with u ∈ [ri] and v ∈ [li], and ā

(i)
j denote the

jth column of matrix Ai. From Proposition 4,

det(G) = det

(( r1∑
i1,1=1

b
(1)
i1,1,1

ā
(1)
i1,1

∣∣∣ · · · ∣∣∣ r1∑
i1,l1=1

b
(1)
i1,l1 ,l1

ā
(1)
i1,l1

∣∣∣A2B2

∣∣∣ · · · ∣∣∣AmBm))
=
∑
j1

det
(
B1(j1)

)
det
((
A1(j1)|A2B2| · · · |AmBm

))
,

where the summation is over all l1-tuples j1 = (j1,1, . . . , j1,l1), for which 1 ≤ j1,1 < · · · < j1,l1 ≤ r1. The
conclusion can be obtained by computing AiBi for i ∈ [2,m] using the similar method to A1B1. ut

4 Secret Sharing Schemes for Ideal Hierarchical Access Structures

In this section, we construct ideal linear secret sharing schemes realizing IHASs by an efficient method. We
will present two classes of constructions based on the same representation of an integer polymatroid. We first
present an integer polymatroid Z ′ satisfying Theorem 2 such that the IHASs (1) are of the form Γ0(Z ′,Π).

Given two vectors k̂, k ∈ ZJ
′
m

+ such that k̂0 = k̂1 = 0, k0 = 1, km = k, and k̂i ≤ k̂i+1 < ki ≤ ki+1

for i ∈ [0,m − 1], consider the subsets Si = [k̂i + 1, ki] of the set S = [k] and the Boolean polymatroid
Z ′ = Z ′(k̂, k) with ground J ′m defined from them. The following result was presented in Section IX of [19].

Lemma 1. Let Π = (Πi)i∈Jm be a partition of the set P with |Πi| ≥ h({i}) = ki − k̂i. Then the IHASs (1)
are of the form Γ0(Z ′,Π).

Now we introduce a linear representation of the polymatroid defined in Lemma 1, that is a collection
(Vi)i∈J′m of subspaces of some vector space. Recalled that Boolean polymatroids are representable over every
finite field. Here, we give a simple representation of Z ′ based on the unit matrix as follows.

Take a k × k unit matrix Ik, and for every i ∈ J ′m, let Ei denote the submatrix formed by the (k̂i + 1)th
column to the kith column of Ik. Consider the Fq-vector subspace Vi ⊆ Fkq spanned by all the columns of Ei.

Let the integer polymatroid Z ′ = (J ′m, h) such that h(X) = dim
(∑

i∈X Vi
)

for every X ⊆ J ′m. We have the
following result.

Proposition 6. For the integer polymatroid Z ′ defined above, the IHASs (1) are of the form Γ0(Z ′,Π) and
B(Z ′) = B1 ∪ B2, where

B1 ={u∈ZJ
′
m
+ : |u|=k, u0 =0 and k̂i+1≤|u([i])|≤ki for all i∈ [m−1]},

B2 ={u∈ZJ
′
m
+ : |u|=k, u0 =1 and k̂i+1−1≤|u([i])|≤ki−1 for all i∈ [m−1]}.

(7)
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Proof. Suppose the set S = [k] and the subsets Si = [k̂i + 1, ki] for every i ∈ J ′m. Then for every X ⊆ J ′m,
h(X) = dim

(∑
i∈X Vi

)
= | ∪i∈X Si|. This implies Z ′ is a linear representation of the polymatroid Z ′(k̂, k),

and the first claim follows. In addition, since Ik is nonsingular and Ei is an submatrix of Ik for every i ∈ J ′m,
it follows that any k distinct columns vectors from Ei with i ∈ J ′m are linearly independent, and the second
claim follows. ut

This proposition implies that the collection (Vi)i∈J′m is a linear representation of the integer polymatroid
Z ′ associated to the IHASs (1). We will present two class of constructions for ideal linear schemes realizing
IHASs by representable matroids obtained based on Z ′.

4.1 Construction for Ideal Hierarchical Access Structures

In this section, we represent a class of ideal linear scheme for IHASs, which can be obtained by a representation
of the matroid associated to IHASs.

Suppose Π0 = {p0} and let Π′ = (Πi)i∈J′m and Π = (Πi)i∈Jm be the partition of P ′ = P ∪ {p0} and P ,
respectively, such that |Πi| = ni. For every i ∈ Jm, take different elements βi,v ∈ F\{0} with v ∈ [ni] and

define a (ki − k̂i)× ni matrix

Bi =
(
(βi,vx

m−i)u−1
)

u ∈ [ki − k̂i], v ∈ [ni].

Let a k × (n+ 1) matrix be defined as

M = (M0|M1| · · · |Mm), (8)

where M0 = (1, 0, . . . , 0)T is a k-dimensional column vector and Mi = EiBi for every i ∈ Jm. Then the secret
sharing scheme LSSS(M) is as follows:

Secret Sharing Scheme.

1. Let s ∈ K be a secret value. The dealer chooses randomly a k-dimensional vector a such that aM0 = s;
2. The share of each participant pi,j from compartment Πi is abTi,j , where bTi,j denotes the jth column of Mi

with i ∈ Jm and j ∈ [ni].

We proceed to show that LSSS(M) is a perfect ideal linear scheme realizing IHASs. This can be done by
proving M is a representation of the matroid associated the IHASs (1). Obviously, M satisfies the first two
conditions in Step 3 of Section 2.3. We will prove that it satisfies the third condition too. We first give the
following lemmas.

Lemma 2. For any u ∈ B1, (7), det(Mu) is a nonzero polynomial on x of degree at most K where

K =
1

2

m−1∑
i=1

ki(ki − 1)−
m−1∑
i=2

(m− i)(ki − ki−1)k̂i.

Proof. For every i ∈ Jm, take
B′i =

(
βu−1
i,v

)
u ∈ [ki − k̂i], v ∈ [ni],

and for any u ∈ B1, (7), let Bi(ui) and B′i(ui) denote the submatrices formed by any ui columns in Bi and
B′i, respectively.

Let us exemplify how such an event may occur. Assume, for example, that m = 3, k = (k1, k2, k3) = (3, 5, 7),

k̂ = (k̂1, k̂2, k̂3) = (0, 1, 2). Take u = (u1, u2, u3) = (2, 2, 3) and the corresponding matrix Mu has the following
form:

Mu =



1 1 0 0 0 0 0
β1,1x

2 β1,2x
2 1 1 0 0 0

(β1,1x
2)2 (β1,2x

2)2 β2,1x β2,2x 1 1 1
0 0 (β2,1x)2 (β2,2x)2 β3,1 β3,2 β3,3

0 0 (β2,1x)3 (β2,2x)3 β2
3,1 β

2
3,2 β

2
3,3

0 0 0 0 β3
3,1 β

3
3,2 β

3
3,3

0 0 0 0 β4
3,1 β

4
3,2 β

4
3,3


.
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Suppose 1 ≤ t1,1 < t1,2 ≤ 3, 2 ≤ t2,1 < t2,2 ≤ 5, 3 ≤ t3,1 < t3,2 < t3,3 ≤ 7, and {t1,1, t1,2, t2,1, t2,2, t3,1, t3,2, t3,3} =

[7]. Let B̂1 and B̂′1 be the blocks formed by the t1,1th and t1,2th rows of B1(u1) and B′1(u1), respectively, B̂2

and B̂′2 be the blocks formed by the t2,1th and t2,2th rows of B2(u2) and B′2(u2), respectively, and B̂3 and B̂′3
be the blocks formed by the t3,1th, t3,2th and t3,3th rows of B3(u3) and B′3(u3), respectively. Then Proposition
2 implies that the summation in det(Mu) can be denoted by

|atxt| := det(B̂1) det(B̂2) det(B̂3) = det(B̂′1) det(B̂′2) det(B̂′3)xt

where t = 2(t1,1 − 1) + 2(t1,2 − 1) + (t2,1 − 2) + (t2,2 − 2). Therefore, when t1,1 = 1, t1,2 = 2, t2,1 = 3 and

t2,2 = 4, t is minimal. In this case t = 5 and B̂′i with i ∈ [3] are all nonsingular. This implies a5 6= 0.
In addition, take u′ = (u′1, u

′
2, u
′
3) such that u′([i]) = ki for every i ∈ [3]. Then u′ ∈ B1. In this case let

t′1,1 = 1, t′1,2 = 2, t′1,3 = 3, t′2,1 = 4, t′2,2 = 5, t′3,1 = 6 and t′3,2 = 7, then t ≤ 2
∑3
i′=1(t′1,i′−1)+

∑2
i′=1(t′2,i′−2) =

11. Therefore, det(Mu) is a nonzero polynomial on x of degree at most 11. In fact, by computing, we have
t < 11.

In general, for any u ∈ B1, let B̂i and B̂′i be the blocks formed by all the ti,i′th rows of Bi(ui) and B′i(ui),
respectively, where i′ ∈ [ui] such that

k̂i + 1 ≤ ti,1 < · · · < ti,ui ≤ ki and
⋃m
i=1

{
ti,i′ : i′ ∈ [ui]

}
= [k].

Then Proposition 2 implies that the summation in det(Mu) can be denoted by

|atxt| =
m∏
i=1

det(B̂i) =

m∏
i=1

det(B̂′i)x
t

where

t =

m−1∑
i=1

(
(m− i)

ui∑
i′=1

(ti,i′ − k̂i − 1)
)

=

m−1∑
j=1

( j∑
i=1

( ui∑
i′=1

(ti,i′ − k̂i − 1)
))

. (9)

For every j ∈ [m− 1], take Tj =
∑j
i=1

(∑ui
i′=1(ti,i′ − k̂i − 1)

)
. We have that Tm−1 is minimal if

⋃m−1
i=1

{
ti,i′ :

i′ ∈ [ui]
}

=
[
|u([m− 1])|

]
. In this case Tm−2 is minimal if

⋃m−2
i=1

{
ti,i′ : i′ ∈ [ui]

}
=
[
|u([m− 2])|

]
. Therefore,

t is minimal if
⋃j
i=1

{
ti,i′ : i′ ∈ [ui]

}
=
[
|u([j])|

]
for all j ∈ [m − 1]. This implies that t1,i′ = i′ and

ti,i′ = |u([i− 1])|+ i′ for i ∈ [2,m− 1]. Hence,

t ≥ (m− 1)

u1∑
i′=1

(i′ − 1) +

m−1∑
i=2

(
(m− i)

ui∑
i′=1

(
|u([i− 1])|+ i′ − k̂i − 1

))
= t0.

In this case each B̂′i is nonsingular since it is the square submatrix formed by the successive ui rows of B′i(ui).
This implies that at0 6= 0.

In addition, take a vector u′ ∈ Zm+ such that |u([i])| = ki for every i ∈ Jm. Then u′ ∈ B1. In this case
t1,i′ = i′ with i′ ∈ [k1] and t′i,i′ = ki−1 + i′ with i ∈ [2,m− 1] and i′ ∈ [ki − ki−1]. Then

t ≤ (m−1)

k1∑
i′=1

(i′−1) +

m−1∑
i=2

(
(m− i)

ki−ki−1∑
i′=1

(ki−1 + i′ − k̂i − 1)
)

= (m−1)

k1∑
i′=1

(i′−1) +

m−1∑
i=2

(
(m− i)

ki−ki−1∑
i′=1

(ki−1+i′−1)
)
−
m−1∑
i=2

(m−i)
ki−ki−1∑
i′=1

k̂i

=

m−1∑
i=1

(1 + 2 + · · ·+ (ki − 1))−
m−1∑
i=2

(m− i)(ki − ki−1)k̂i

=
1

2

m−1∑
i=1

ki(ki − 1)−
m−1∑
i=2

(m− i)(ki − ki−1)k̂i.

(10)

This implies the conclusion. ut

Lemma 3. For any u ∈ B2, (7), det(Mu) is a nonzero polynomial on x of degree at most K.
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Proof. Let M ′ denote the submatrix obtained by removing the first row and the first column of M and take
k′, k̂′ ∈ Zm+ such that for every i ∈ Jm, k′i = ki − 1, and k̂′i = k̂i if k̂i = 0 and k̂′i = k̂i − 1 if k̂i > 0. For every

i ∈ Jm, let E′i denote the submatrix formed by the (k̂′i + 1)th column to the the k′ith column of Ik−1. Let D1

and D′1 denote the submatrices formed by the last k′1 rows of B1 and B′1, respectively. For every i ∈ [2,m], if

k̂i = 0, let Di and D′i denote the submatrices formed by the last k′i − 1 rows of Bi and B′i, respectively, and if

k̂i > 0, let Di = Bi and D′i = B′i. Then

M ′ = (M ′1| · · · |M ′m)

where M ′i = E′iDi and for any u ∈ B2, (7), det(Mu) = det
(
M ′u(Jm)

)
. In particular, for any u ∈ B2, (7),

k̂′i+1 ≤ |u([i])| ≤ k′i for all i ∈ [m − 1] and |u| = k − 1. Therefore, this claim can be proved by the the same
method in the proof of Lemma 2.

For any u ∈ B2, (7), let D′i(ui) denote the block formed by any ui columns in D′i, and let D̂′i be the block

formed by all the ti,i′th rows of D′i(ui). Here, i′ ∈ [ui] such that k̂′i+ 1 ≤ ti,1 < · · · < ti,ui ≤ k′i and
⋃m
i=1

{
ti,i′ :

i′ ∈ [ui]
}

= [k−1]. Then the summation in det
(
M ′u(Jm)

)
can be denoted by |bt′xt

′ | =
∏m
i=1 det(D̂′i)x

t′ . Similar

to (9),

t′ =

m−1∑
i=1

(
(m− i)

ui∑
i′=1

(ti,i′ − k̂′i − yi)
)

where yi = 0 if k̂′i = 0 and yi = 1 if k̂′i > 0. From k̂′i = k̂i if k̂i = 0 and k̂′i = k̂i − 1 if k̂i > 0, we have

t′ =

m−1∑
i=1

(
(m− i)

ui∑
i′=1

(ti,i′ − k̂i)
)
.

Similar to the proof in Lemma 2, we can obtain t′ is minimal if t1,i′ = i′ and ti,i′ = |u([i − 1])| + i′ for

i ∈ [2,m − 1], and in this case each D̂′i is nonsingular, thus det
(
M ′u(Jm)

)
is a nonzero polynomial on x. In

addition, take a vector u′ ∈ Zm+ such that |u([i])| = k′i for every i ∈ Jm. Then k̂′i+1 ≤ |u′([i])| ≤ k′i for all
i ∈ [m − 1] and |u′| = k − 1. In this case t1,i′ = i′ with i′ ∈ [k′1] and t′i,i′ = k′i−1 + i′ with i ∈ [2,m − 1] and
i′ ∈ [k′i − k′i−1]. Similar to (10),

t′ ≤ (m−1)

k′1∑
i′=1

i′ +

m−1∑
i=2

(
(m− i)

k′i−k
′
i−1∑

i′=1

(k′i−1 + i′ − k̂i)
)

= (m−1)

k1∑
i′=1

(i′−1) +

m−1∑
i=2

(
(m− i)

ki−ki−1∑
i′=1

(ki−1 + i′ − k̂i − 1)
)

= K

since k′i = ki − 1 for every i ∈ Jm. This implies det
(
M ′u(Jm)

)
is a nonzero polynomial on x of degree at most

K, and the claim follows. ut

The following result was proved by Shoup [35].

Theorem 4. ([35]) Take a finite field Fqλ where q is a prime power and λ is a positive integer. Then there
exists an element x ∈ Fqλ such that its minimal polynomial over Fq is of degree λ which can be found in time
O(q, λ).

Now, take a finite field Fqλ , where q > maxi∈Jm{ni} is a prime power and λ > K. Take all βi,v in the
matrix (8) from Fq\{0} and take x ∈ Fqλ such that its minimal polynomial over Fq is of degree λ. We have
the following result.

Theorem 5. The matrix (8) is a representation of the matroid associated to IHASs (1) over Fqλ for some
prime power q > maxi∈Jm{ni} and some λ > K. Moreover, such a representation can be obtained in time
O(q, λ).

Proof. Since all the entries in the matrix (8), except the powers of x, are in Fq, and Theorem 4 implies that
such an element x can be found in time O(q, λ), it follows that for any u ∈ B(Z ′), (7), det(Mu) must be a
nonzero Fq-polynomial on x with degree smaller than λ, and consequently, the matrix Mu is nonsingular. This
implies the claim. ut
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Proposition 7. Suppose M is the matrix (8). Then LSSS(M) realizes the IHASs (1) over Fqλ defined as in
Theorem 5. Moreover, such a scheme can be obtained in time O(q, λ).

Proof. Theorem 1 implies that proving this claim is equivalent to proving that v(Jm) ∈ Γ if and only M0 is a
linear combination of all the columns in Mv(Jm).

Let v(Jm) ∈ minΓ , (1), namely, v(Jm) = (v1, v2, . . . , v`, 0, . . . , 0) for some ` ∈ Jm such that k̂i+1 ≤
|v([i])| < ki for all i ∈ [` − 1] and |v([`])| = k`. Then there must exist a vector u ∈ B1, (7), such that u ≥ v
and ui = vi for every i ∈ [`]. Note that the last k− k` rows of Mv(Jm) are all zero rows, it follows that Mu(Jm)

has the following form

Mu(Jm) =

(
M̂v(Jm) A1

O A2

)
where M̂v(Jm) is the square block formed by the first k` rows of Mv(Jm), A1 is a (k−k`)×k` block and A2 is a

(k−k`)×(k−k`) block. From Theorem 5,Mu(Jm) is nonsingular. This with det(Mu(Jm)) = det(M̂v(Jm))·det(A2)

implies that M̂v(Jm) is nonsingular. In this case, the k`-dimensional column vector formed by the first k`

elements of M0 can be spanned by the columns of M̂v(Jm). Accordingly, M0 can be spanned by the columns
in Mv(Jm) as the last k− k` elements of M0 are all zero. Hence, M0 can be spanned by the columns in Mv(Jm)

for any v(Jm) ∈ Γ .

Assume that v(Jm) /∈ Γ . We know every unauthorized subset may be completed into an authorized subset
(though not necessarily minimal) by adding to it at most k participants. without loss of generality, we may
assume that there exists a vector v′(Jm) ∈ Γ such that v′(Jm) ≥ v(Jm) and |v′(Jm)| = |v(Jm)|+ 1.

First, assume that v(Jm) = (v1, v2, . . . , v`, 0, . . . , 0) for some ` ∈ Jm such that k̂i+1 − 1 ≤ |v([i])| ≤
ki − 1 for all i ∈ [` − 1] and |v([`])| = k` − 1. Then for the vector v(J ′m) with u0 = 1, namely, v(J ′m) =
(1, v1, v2, . . . , v`, 0, . . . , 0), there must exist a vector u(J ′m) ∈ B2, (7), such that u(J ′m) ≥ v(J ′m) and ui = vi
for every i ∈ [0, `]. From Theorem 5, Mu(J′m) is nonsingular. This with v(Jm) ≤ u(Jm) implies that M0 can’t
be spanned by all the columns in Mv(Jm).

Second, assume that v(Jm) = (v1, v2, . . . , vm) with |v(Jm)| ≥ k such that for some ` ∈ Jm, |v([`])| =

k̂l+1 − 1, k̂i+1 − 1 ≤ |v([i])| < ki for every i ∈ [` − 1], and vi = ni for every i ∈ [` + 1,m]. Then M0 can’t be
spanned by the columns in Mv′(Jm) for any v′(Jm) ≤ v(Jm) if M0 can’t be spanned by the columns in Mv(Jm).
We claim that every column in Mv(Jm) can be spanned by the columns in Mu(Jm) for any u(Jm) ≤ v(Jm)

with |u(Jm)| = k − 1 such that |u([i])| = |v([i])| for every i ∈ [l] and k̂i+1 − 1 ≤ |u([i])| < ki for every
i ∈ [`+ 1,m− 1].

For such a vector u(Jm), if u0 = 1, then u(J ′m) ∈ B2, (7). This implies M0 can’t be spanned by the columns
in Mu(Jm). Furthermore, M0 can’t be spanned by the columns in Mv(Jm) if the claim is true.

We proceed to prove the claim. Note that

Mu(J′m) =
(
Mu([0,`]) Mu([`+1,m])

)
=

(
D1 O
D2 M̄u([`+1,m])

)
where M̄u([`+1,m]) is the square block formed by the last k−k̂`+1 rows of Mu([`+1,m]). As Mu(J′m) is nonsingular,

thus M̄u([`+1,m]) is nonsingular. On the other hand, Mv(Jm) =
(
Mv([`]) Mv([`+1,m])

)
, where

Mv([`+1,m]) =

(
O

M̄v([`+1,m])

)
for which M̄v([`+1,m]) is the block formed by the last k − k̂`+1 rows of Mv([`+1,m]). Since M̄u([`+1,m]) is a
submatrix of M̄v([`+1,m]) and M̄u([`+1,m]) is nonsingular, it follows that any column in M̄v([`+1,m]) can be
spanned by the columns in M̄u([`+1,m]). Accordingly, any column in Mv([`+1,m]) is a linear combination of the
columns in Mu([`+1,m]). This with Mv([`]) = Mu([`]) impies the claim. ut

4.2 Another Construction for Ideal Hierarchical Access Structures

In this section, we give another construction of ideal linear secret sharing schemes for IHASs using the similar
technique in Section 4.1. The parameters of this construction may be better than the construction in Section
4.1 in some cases.
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For every i ∈ Jm, take ni different elements βi,v ∈ F\{0} and let the (ki− k̂i)×ni matrix Bi be defined as
follows:

Bi =
(
(βi,vx

i−1)ki−k̂i−u
)

u ∈ [ki − k̂i], v ∈ [ni].

Take a k-dimensional column vector M0 = (1, 0, . . . , 0)T and Mi = EiBi for every i ∈ Jm. Define a k× (n+ 1)
matrix as

M = (M0|M1| · · · |Mm). (11)

Similar to the case in Section 4.1, we will prove that LSSS(M) realizes IHASs. First, we give an example to
explain this construction as follows.

Example 4. As in Lemma 2, assume that m = 3, k = (k1, k2, k3) = (3, 5, 7), and k̂ = (k̂1, k̂2, k̂3) = (0, 1, 2).
Take u = (u1, u2, u3) = (2, 2, 3) and the matrix Mu has the following form:

Mu =



β2
1,1 β

2
1,2 0 0 0 0 0

β1,1 β1,2 (β2,1x)3 (β2,2x)3 0 0 0
1 1 (β2,1x)2 (β2,2x)2 (β3,1x

2)4 (β3,2x
2)4 (β3,3x

2)4

0 0 β2,1x β2,2x (β3,1x
2)3 (β3,2x

2)3 (β3,3x
2)3

0 0 1 1 (β3,1x
2)2 (β3,2x

2)2 (β3,3x
2)2

0 0 0 0 β3,1x
2 β3,2x

2 β3,3x
2

0 0 0 0 1 1 1


.

Note that Mu can be transformed to the following form by exchanging rows and columns

M̃u =



1 1 1 0 0 0 0
β3,1x

2 β3,2x
2 β3,3x

2 0 0 0 0
(β3,1x

2)2 (β3,2x
2)2 (β3,3x

2)2 1 1 0 0
(β3,1x

2)3 (β3,2x
2)3 (β3,3x

2)3 β2,1x β2,2x 0 0
(β3,1x

2)4 (β3,2x
2)4 (β3,3x

2)4 (β2,1x)2 (β2,2x)2 1 1
0 0 0 (β2,1x)3 (β2,2x)3 β1,1 β1,2

0 0 0 0 0 β2
1,1 β

2
1,2


,

Therefore, |det(Mu)| = |det(M̃u)|.
Take κ = (κ1, κ2, κ3) = (k − k̂3, k − k̂2, k − k̂1) = (5, 6, 7), and κ̂ = (κ̂1, κ̂2, κ̂3) = (k − k3, k − k2, k − k1) =

(0, 2, 4). Then Lemma 2 implies that det(M̃u) is a nonzero polynomial on x of degree at most L with

L =
1

2

2∑
i=1

κi(κi − 1)− (κ2 − κ1)κ̂2 = 23.

Accordingly, det(Mu) is a nonzero polynomial on x of degree at most L.

In general, we have the following result.

Lemma 4. For any u ∈ B(Z ′), (7), det(Mu) is a nonzero polynomial on x of degree at most L where

L =
1

2

m∑
i=2

(k − k̂i)(k − k̂i − 1)−
m−1∑
i=2

(i− 1)(k̂i+1 − k̂i)(k − ki).

Proof. For every i ∈ Jm, take

B̃i =
(
(βm−i+1,vx

m−i)u−1
)

u ∈ [km−i+1 − k̂m−i+1], v ∈ [nm−i+1]

and let Ẽi be the submatrix formed by the (k − km−i+1 + 1)th column to the (k − k̂m−i+1)th column of Ik.
Let

M̃ = (M̃0|M̃2| · · · |M̃m),

where M̃0 = (0, 0, . . . , 0, 1)T is a k-dimensional column vector and M̃i = ẼiB̃i for every i ∈ Jm. Take Π̃0 = Π0

and Π̃i = Πm−i+1 for every i ∈ Jm. Then Π̃ = (Π̃i)i∈J′m is a partition of P ′ = P ∪ {p0} too. Moreover, take

κ, κ̂ ∈ ZJ
′
m

+ such that κ0 = k, κ̂0 = k − 1, and for every i ∈ Jm, κi = k − k̂m−i+1 and κ̂i = k − km−i+1. Then
κ̂i ≤ κ̂i+1 < κi ≤ κi+1 for i ∈ [m− 1].
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If u ∈ B1, (7), then for any matrix Mu, as in Example 4, by exchanging rows and columns we can obtain

the matrix M̃u such that |det(Mu)| = |det(M̃u)|. As k̂m−i+1 ≤ |u([m− i])| ≤ km−i for every i ∈ [m− 1],

κ̂i+1 = k − km−i ≤ |u([m− i+ 1,m])| ≤ k − k̂m−i+1 = κi

for every i ∈ [m− 1]. From Lemma 2, det(M̃u) is a nonzero polynomial on x of degree at most L where

L =
1

2

m−1∑
i=1

κi(κi − 1)−
m−1∑
i=2

(m− i)(κi − κi−1)κ̂i

=
1

2

m∑
i=2

(k − k̂i)(k − k̂i − 1)−
m−1∑
i=2

(i− 1)(k̂i+1 − k̂i)(k − ki).

If u ∈ B2, (7), then for any matrix Mu, we can obtain a matrix M̃u such that |det(Mu)| = |det(M̃u)| =
|det(M̃ ′u)|, where M̃ ′u is the submatrix obtained by removing the first column and the last row of M̃u. In this

case k̂m−i+1 − 1 ≤ |u([m− i])| ≤ km−i − 1 for every i ∈ [m− 1], hence

κ̂i+1 = (k − 1)− (km−i − 1) ≤ |u([m− i+ 1,m])| ≤ (k − 1)− (k̂m−i+1 − 1) = κi

for every i ∈ [m − 1]. Lemma 2 implies that det(M̃ ′u) is a nonzero polynomial on x of degree at most L too,
and the claim follows. ut

Now, take a finite field Fqλ , where q > maxi∈Jm{ni} is a prime power and λ > L. Take all βi,v in the
matrix (11) from Fq\{0} and take x ∈ Fqλ such that its minimal polynomial over Fq is of degree λ. Using the
similar method to prove Theorem 5 and Proposition 7, we can obtain the following results.

Theorem 6. The matrix (11) is a representation of the matroid associated to IHASs (1) over Fqλ for some
prime power q > maxi∈Jm{ni} and some λ > L. Moreover, such a representation can be obtained in time
O(q, λ).

Proposition 8. Suppose M is the matrix (11). Then LSSS(M) realizes the IHASs (1) over Fqλ defined as
in Theorem 6. Moreover, such a scheme can be obtained in time O(q, λ).

Remark 1. In some cases, Proposition 8 can give schemes for IHASs superior to the ones given by Proposition 7.
For example, Proposition 7 can give the scheme for the DHTASs (2) over Fqλ with λ > K = 1

2

∑m−1
i=1 ki(ki−1)

since k̂1 = · · · = k̂m = 0 and the scheme for the CHTASs (3) over Fqλ with λ > K = 1
2

∑m−1
i=1 ki(ki − 1) =

1
2 (m− 1)k(k − 1) since 0 = k̂1 < · · · < k̂m and k1 = · · · = km = k.

On the other hand, Proposition 8 give the scheme for the DHTASs (2) over Fqλ with λ > L = 1
2

∑m
i=2(k−

k̂i)(k − k̂i − 1) = 1
2 (m− 1)k(k − 1) and the scheme for the CHTASs (3) over Fqλ with λ > L = 1

2

∑m−1
i=1 (k −

k̃i)(k − k̃i − 1).
Therefore, Proposition 7 gives the scheme for DHTASs superior to the one given by Proposition 8. Never-

theless, Proposition 8 gives the scheme for CHTASs superior to the one given by Proposition 7.

4.3 Comparison to Hierarchical Secret Sharing Schemes

Comparison to the Construction of Brickell. Brickell [9] presented an efficient method to construct the
ideal linear scheme for the DHTASs (2) over Fqλ′ with q > maxi∈Jm{ni} and λ′ ≥ mk2. Proposition 7 gives a
scheme for the DHTASs (2) too. In fact, our scheme is the same as Brickell’s scheme. Nevertheless, Proposition

7 implies the scheme for the DHTASs (2) can be obtained over Fqλ with λ > K = 1
2

∑m−1
i=1 ki(ki−1). Therefore,

we improve the bound for the field size since

1

2

m−1∑
i=1

ki(ki − 1) + 1 ≤ 1

2
(m− 1)km−1(km−1 − 1) + 1 <

1

2
(m− 1)k2

m−1 < mk2.

The reason for the improvement is that we give a relatively precise description of det(Mu) by the formula
provided in Proposition 2.
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Comparison to the Construction of Tassa. Tassa [37] presented an efficient method to construct the
ideal linear scheme for the CHTASs (3) over Fp where

p > 2−k+2(k − 1)(k−1)/2(k − 1)!N (k−1)(k−2)/2 (12)

is a prime and N is the maximum identity assigning to participants. Proposition 8 gives a scheme for the
CHTASs (3) over Fqλ with q > maxi∈Jm{ni} and λ > L = 1

2

∑m−1
i=1 (k − k̃i)(k − k̃i − 1).

Since (k − 1)! ≥ 2k−2 when k ≥ 2, it follows that the right hand of (12) is great than or equal to
(k − 1)(k−1)/2N (k−1)(k−2)/2. From this with N ≥ n ≥ maxi∈Jm{ni}, we have

qL ≤ N (k−1)(k−2)/2 < 2−k+2(k − 1)(k−1)/2(k − 1)!N (k−1)(k−2)/2

if L ≤ 1
2 (k− 1)(k− 2). In fact, maxi∈Jm{ni} � N in general. This implies in this case 2−k+2(k− 1)(k−1)/2(k−

1)!N (k−1)(k−2)/2 � qL, and consequently, our result is superior to Tassa’s result. In the case of L > 1
2 (k −

1)(k− 2), it is very possible that qL is smaller than the right hand of (12). In particular, our efficient methods
can also work for non-prime fields.

5 Secret Sharing Schemes for Compartmented Access Structures

In this section, we study ideal linear secret sharing schemes for three families of compartmented access struc-
tures by efficient methods.

5.1 Construction for Compartmented Access Structures with Upper Bounds

In this section, we construct ideal linear secret sharing schemes realizing UCASs. We first present a represen-
tation of the integer polymatroid Z ′ satisfying Theorem 2 such that the UCASs (6) are of the form Γ0(Z ′,Π).

Take Π = (Πi)i∈Jm be a partition of the set P such that |Πi| = ni. Let r ∈ ZJ
′
m

+ and k ∈ N such that
r0 = 1, r(Jm) ≤ Π(P ) and ri ≤ k ≤ |r(Jm)| for every i ∈ Jm. The following result was presented in Section
8.2 of [18].

Lemma 5. Suppose Z ′ = (J ′m, h) is an integer polymatroid such that h(X) = min
{
k, |r(X)|

}
for every

X ⊆ J ′m. Then the UCASs (6) are of the form Γ0(Z ′,Π).

Now, we introduce a linear representation of the polymatroid defined in Lemma 5. Take different elements
αi,j ∈ Fq with i ∈ J ′m and j ∈ [ri], where q ≥ maxi∈Jm{ni, |r(Jm)|+ 1} is a prime power. For every i ∈ J ′m, let

Ai =
(
αu−1
i,v

)
u ∈ [k], v ∈ [ri]

and consider the Fq-vector subspace Vi ⊆ Fkq spanned by all the columns of Ai. Let the integer polymatroid

Z ′ = (J ′m, h) such that h(X) = dim
(∑

i∈X Vi
)

for every X ⊆ J ′m. We have the following result.

Proposition 9. For the integer polymatroid Z ′ defined above, the UCASs (6) are of the form Γ0(Z ′,Π) and

B(Z ′) = {u ∈ ZJ
′
m

+ : |u| = k and u ≤ r}. (13)

Proof. Let A = (A0|A1| · · · |Am). Then it is a k × (|r(Jm)| + 1) Vandermonde matrix. Therefore, any k × k
submatrix of A is nonsingular. This with dim(Vi) = ri for every i ∈ J ′m implies the second claim. In addition,∣∣∣ ⋃

i∈X
{ai,v : v ∈ [ri]}

∣∣∣ = |r(X)|

for every X ⊆ J ′m, where ai,v denotes the vth columns of Ai. Therefore, h(X) = min
{
k, |r(X)|

}
for every

X ⊆ J ′m, and the first claim follows. ut

This proposition implies that the collection (Vi)i∈J′m is a linear representation of the integer polymatroid
Z ′ associated to the UCASs (6). We next present a matrix M based on Z ′, which is a representation of a
matroid M such that the UCASs (6) are of the form Γp0(M).
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Let Π0 = {p0} and let Π′ = (Πi)i∈J′m and Π = (Πi)i∈Jm be the partition of P ′ = P ∪ {p0} and P ,
respectively, such that |Πi| = ni. For every i ∈ J ′m, take ni different elements βi,v ∈ Fq with v ∈ [ni] and let

Bi =
(
(βi,vx)u−1

)
u ∈ [ri], v ∈ [ni].

Let a k × (n+ 1) matrix be defined as
M = (M0|M1| · · · |Mm) (14)

where Mi = AiBi.
Take r = maxi∈Jm{ri}, then we have the following result.

Lemma 6. For any u ∈ B(Z ′), (13), det(Mu) is a nonzero polynomial on x that can be denoted by det(Mu) :=
x`f(x), where ` is a positive integer and deg(f) ≤ K1 with

K1 = max
{(
r − k

m

)
k,
(
r − k − 1

m

)
(k − 1)

}
.

Proof. Without loss of generality, we may assume that Mu is the k × k submatrix of M formed by the first
ui columns in every Mi. For every i ∈ J ′m, take B̄i =

(
βu−1
i,v

)
with u ∈ [ri] and v ∈ [ni], and let B′i and

B̄′i denote the submatrices formed by the first ui columns in Bi and B̄i, respectively. In addition, for any
ji = (ji,1, . . . , ji,ui) with i ∈ J ′m such that 1 ≤ ji,1 < · · · < ji,ui ≤ ri, let B′i(ji) and B̄′i(ji) denote the ui × ui
submatrices formed by the ji,1th row, . . . , ji,uith row of B′i and B̄′i, respectively, and let Ai(ji) denote the
submatrix formed by the first ui columns in Ai. Then

det
(
B′i(ji)

)
= det

(
B̄′i(ji)

)
x
∑ui
v=1(ji,v−1). (15)

This with Proposition 5 implies that det(Mu) can be viewed as a polynomial on x as follows

det(Mu)=
∑

ji,i∈J′m

( m∏
i=1

det
(
B̄′i(ji)

))
det
((
A0(j0)|A1(j1)|· · ·|Am(jm)

))
xh(ji,i∈Jm), (16)

where the summation is over all ui-tuples ji = (ji,1, . . . , ji,ui) with i ∈ J ′m such that 1 ≤ ji,1 < · · · < ji,ui ≤ ri
and

h(ji, i ∈ Jm) =

m∑
i=1

( ui∑
v=1

(ji,v − 1)
)
.

If ji,v = v for every i ∈ Jm and v ∈ [ui], then the exponent of x in det(Mu) is minimum, that is

` =

m∑
i=1

( ui∑
v=1

(v − 1)
)

=

m∑
i=1

ui−1∑
v=1

v. (17)

In this case for every i ∈ Jm, B̄′i(ji) is nonsingular since it is formed by the first ui rows of B̄′i, and the matrix(
A0(j0)|A1(j1)| · · · |Am(jm)

)
is nonsingular too. Therefore, det(Mu) is a nonzero polynomial on x.

If ji,v = ri − ui + v for every i ∈ Jm and v ∈ [ui], the exponent of x in det(Mu) is maximum, that is

m∑
i=1

( ui∑
v=1

(ji,v − 1)
)

=

m∑
i=1

( ui∑
v=1

(ri − ui + v − 1)
)

=

m∑
i=1

(
ui(ri − ui) +

ui−1∑
v=1

v
)
.

This implies that

deg
(

det(Mu)
)
≤

m∑
i=1

ui(ri − ui) +

m∑
i=1

ui−1∑
v=1

v.

From this with (17), det(Mu) can be denoted by det(Mu) := x`f(x), where

deg(f)≤
m∑
i=1

ui(ri − ui)≤r
m∑
i=1

ui −
m∑
i=1

u2
i ≤max

{(
r − k

m

)
k,
(
r − k − 1

m

)
(k − 1)

}
(18)

since
∑m
i=1 u

2
i ≥ 1

m (
∑m
i=1 ui)

2 and
∑m
i=1 ui = k or k − 1. Using the same method, we can prove the claim for

any u ∈ B(Z ′), (13). ut
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Now, take a finite field Fqλ , where q ≥ maxi∈Jm{ni, |r(Jm)|+ 1} is a prime power and λ > K1. Take αi,v
and βi,v in the matrix (14) from Fq and take x ∈ Fqλ such that its minimal polynomial over Fq is of degree λ.
Then similar to Theorem 5 and Proposition 7, from this lemma, we can obtain the following result.

Theorem 7. The matrix (14) is a representation of the matroid associated to UCASs (6) over Fqλ for some
prime power q ≥ maxi∈Jm{ni, |r(Jm)|+1} and some λ > K1. Moreover, such a representation can be obtained
in time O(q, λ).

Proposition 10. Suppose M is the matrix (14). Then LSSS(M) realizes the UCASs (6) over Fqλ defined as
in Theorem 7. Moreover, such a scheme can be obtained in time O(q, λ).

Proof. If u(Jm) ∈ minΓ and u0 = 0, then u(J ′m) ∈ B(Z ′), (13). Theorem 7 implies Mu(Jm) is nonsingular.
Accordingly, M0 can be spanned by the columns in Mu(Jm) for any u(Jm) ∈ Γ . Assume that u(J) /∈ Γ .
As h({(i)}) = ri for every i ∈ Jm, thus without loss of generality, we may assume that u(Jm) ≤ r(Jm).
Furthermore, we may assume that |u(Jm)| = k − 1, since if |u(Jm)| < k − 1, we may find a vector u′(Jm) ≥
u(Jm) such that u′(Jm) ≤ r(Jm) and |u′(Jm)| = k − 1. In this case if u0 = 1, then u(J ′m) ∈ B(Z ′). Theorem
7 implies Mu(J′m) is nonsingular, and the claim follows. ut

5.2 Construction for Compartmented Access Structures with Lower Bounds

In this section, we describe ideal linear secret sharing schemes realizing LCASs based on the schemes for the
dual access structures of LCASs.

The dual access structures of LCASs (5) presented in [39] are defined as

Γ ∗ = {u ∈ P : |u| ≥ l or ui ≥ τi for some i ∈ Jm} (19)

where l = |P | − k + 1, τi = |Πi| − ti + 1 for i ∈ J , and |τ | ≥ l +m− 1.

We first present a representation of the integer polymatroid Z ′ satisfying Theorem 2 such that the access
structures (19) are of the form Γ0(Z ′,Π).

Take Π = (Πi)i∈Jm be a partition of the set P such that |Πi| = ni. Let τ ∈ ZJ
′
m

+ and l ∈ N such that

τ0 = 1, τ (Jm) ≤ Π(P ) and |τ (Jm)| ≥ l + m − 1. Take τ ′ ∈ ZJ
′
m

+ such that τ ′0 = 1 and τ ′i = τi − 1 for every
i ∈ Jm. The following result was presented in Section IV-D of [20].

Lemma 7. Suppose Z ′ = (J ′m, h) is an integer polymatroid with h satisfying
1) h({0}) = 1;
2) h(X) = min{l, 1 + |τ ′(X)|} for every X ⊆ Jm;
3) h(X ∪ {0}) = h(X) for every X ⊆ Jm.

Then the access structures (19) are of the form Γ0(Z ′,Π).

We next introduce a linear representation of the polymatroid defined in Lemma 7. Take elements αi,j ∈ Fq
with i ∈ J ′m and j ∈ [τi] where q > maxi∈Jm{ni, |τ ′(Jm)|} is a prime power such that

• αi,1 = α0 for all i ∈ J ′m and
• the elements α0 and αi,j with i ∈ Jm and j ∈ [2, τi] are pairwise distinct.

For every i ∈ J ′m, let
Ai =

(
αu−1
i,v

)
u ∈ [l], v ∈ [τi]

and consider the Fq-vector subspace Vi ⊆ Fkq spanned by all the columns of Ai. Let the integer polymatroid

Z ′ = (J ′m, h) such that h(X) = dim
(∑

i∈X Vi
)

for every X ⊆ J ′m.

Proposition 11. For the integer polymatroid Z ′ defined above, the access structures (19) are of the form
Γ0(Z ′,Π) and B(Z ′) = B1 ∪ B2, where

B1 = {u ∈ ZJ
′
m

+ : |u| = l, u0 = 0, ui′ ≤ τi′ for some i′ ∈ Jm
and ui ≤ τ ′i for all i ∈ Jm\{i′}},

B2 = {u ∈ ZJ
′
m

+ : |u| = l, u0 = 1 and u(Jm) ≤ τ ′(Jm)}.

(20)
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Proof. Proving the first claim is equivalent to proving that h satisfies the three conditions in Lemma 7. First,
h({0}) = 1 as dim(V0) = 1. Let A be the matrix formed by the column A0 and the last τ ′i columns of Ai for
every i ∈ Jm. Then it is a l × (1 + |τ ′(Jm)|) Vandermonde matrix. Accordingly, any l × l submatrix of A is
nonsingular. Since ∣∣∣ ⋃

i∈X
{ai,v : v ∈ [τi]}

∣∣∣ = 1 + |τ ′(X)|

for every X ⊆ Jm where ai,v denotes the vth columns of Ai, it follows that h(X) = min{l, 1 + |τ ′(X)|} for
every X ⊆ Jm. Moreover, V0 ⊆ Vi for every X ⊆ Jm, Therefore, h(X ∪ {0}) = h(X) for every X ⊆ Jm.

In addition, since any l × l submatrix of A is nonsingular, on the one hand, any l distinct columns from
Ai with i ∈ Jm are linearly independent, and on the other hand, A0 and any l − 1 columns from the last τ ′i
columns of Ai with i ∈ Jm are linearly independent too. This implies the second claim. ut

We next present a matrix M which is a representation of a matroidM such that the access structures (19)
are of the form Γp0(M).

Suppose Π0 = {p0} and let Π′ = (Πi)i∈J′m and Π = (Πi)i∈Jm be the partition of P ′ = P ∪ {p0} and P ,
respectively, such that |Πi| = ni. Take β0,1 = 0 and for every i ∈ Jm, take ni different elements βi,v ∈ Fq with
v ∈ [ni] such that βi,v 6= 0. For every i ∈ J ′m, take

Bi =
(
(βi,vx)u−1

)
u ∈ [τi], v ∈ [ni]

and Mi = AiBi. Define a l × (n+ 1) matrix as

M = (M0|M1| · · · |Mm). (21)

Take τ = maxi∈Jm{τi}, then we have the following result.

Lemma 8. For any u ∈ B1, (20), det(Mu) is a nonzero polynomial on x that can be denoted by det(Mu) :=
x`f1(x), where ` is a positive integer and deg(f1) ≤ K2 with

K2 = max
{(
τ − 1− l − 1

m

)
(l − 1),

(
τ − 1− l

m

)
l + τ − 1

}
.

Proof. Without loss of generality, we may assume that Mu is the l × l submatrix of M formed by the first ui
columns in every Mi. For every i ∈ J ′m, take B̄i =

(
βu−1
i,v

)
with u ∈ [τi] and v ∈ [ni], and let B̄′i denote the

submatrix formed by the first ui columns in B̄i. Then similar to (16),

det(Mu) =
∑

ji,i∈Jm

( m∏
i=1

det
(
B̄′i(ji)

))
det
((
A1(j1)|· · ·|Am(jm)

))
xh(ji,i∈Jm),

where

h(ji, i ∈ Jm) =

m∑
i=1

( ui∑
v=1

(ji,v − 1)
)
.

and the summation is over all ui-tuples ji = (ji,1, . . . , ji,ui) with i ∈ Jm such that one of the following
conditions holds

1) ji′,v = v with v ∈ [τi′ ] for some i′ ∈ Jm and 1 ≤ ji,1 < · · · < ji,ui ≤ τ ′i for every i ∈ J ′′ = Jm\{i′};
2) 1 ≤ ji,1 < · · · < ji,ui ≤ τ ′i for every i ∈ Jm.

As the first columns in all Ai with i ∈ Jm are identical, thus the matrix
(
A1(j1)| · · · |Am(jm)

)
is nonsingular

if its l distinct columns are from the last τ ′i columns of Ai with i ∈ Jm, or its one column is the first column
of some Ai′ with i′ ∈ Jm and other l − 1 distinct columns are from the last τ ′i columns of Ai with i ∈ Jm.

In the case of u ∈ B1 such that ui′ = τi′ for a given i′ ∈ Jm and ui ≤ τ ′i for every i ∈ J ′′ = Jm\{i′}, if
ji′,v = v with v ∈ [τi′ ] and ji,v = v+1 for every i ∈ J ′′ and v ∈ [ui], the exponent of x in det(Mu) is minimum,
that is

`1 =

τi′∑
v=1

(v − 1) +
∑
i∈J′′

( ui∑
v=1

v
)
,
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and in this case B̄′i(ji) with i ∈ Jm is nonsingular and
(
A1(j1)| · · · |Am(jm)

)
is nonsingular too. Accordingly,

det(Mu) is a nonzero polynomial on x. Moreover, if ji′,v = v for every v ∈ [τi′ ] and ji,v = τi − ui + v for every
i ∈ J ′′ and v ∈ [ui], the exponent of x in det(Mu) is maximum, that is

τi′∑
v=1

(v − 1) +
∑
i∈J′′

( ui∑
v=1

(ji,v − 1)
)

=

τi′∑
v=1

(v − 1) +
∑
i∈J′′

( ui∑
v=1

(τi − ui + v − 1)
)

=

τi′∑
v=1

(v − 1) +
∑
i∈J′′

(
ui(τi − ui − 1) +

ui∑
v=1

v
)
.

This implies that det(Mu) := x`1f0(x), where

deg(f0) ≤
∑
i∈J′′

ui(τi − ui − 1).

Take v ∈ ZJm+ such that vi′ = ui′ − 1 and vi = ui for every i ∈ J ′′, then |v| = l − 1 and hence

deg(f0) ≤
∑
i∈J′′

ui(τi − ui − 1) ≤
m∑
i=1

vi(τi − vi − 1) ≤ (τ − 1)

m∑
i=1

vi −
m∑
i=1

v2
i ≤

(
τ − 1− l − 1

m

)
(l − 1).

In the case of u ∈ B1 with u(Jm) ≤ τ ′(Jm), suppose ji′,v = v with v ∈ [ui′ ] for some i′ ∈ Jm and ji,v = v+1
with v ∈ [ui] for every i ∈ J ′′. Then the minimal exponent of x in det(Mu) is

`2 = min
i′∈Jm

{ ui′∑
v=1

(v − 1) +
∑
i∈J′′

( ui∑
v=1

v
)}

=

m∑
i=1

ui∑
v=1

v − max
i′∈Jm

{ui′}. (22)

Moreover, if ji,v = τi−ui + v for every i ∈ Jm and v ∈ [ui], the exponent of x in det(Mu) is maximum, that is

m∑
i=1

( ui∑
v=1

(ji,v − 1)
)

=

m∑
i=1

( ui∑
v=1

(τi − ui + v − 1)
)

=

m∑
i=1

(
ui(τi − ui − 1) +

ui∑
v=1

v
)
. (23)

Note that if there exist i1, i2 ∈ Jm with i1 6= i2 such that ui1 = ui2 ≤ ui for every i ∈ Jm\{i1, i2}. Then from
(22), the minimal exponent of x in det(Mu) is

∑m
i=1

∑ui
v=1 v − ui1 =

∑m
i=1

∑ui
v=1 v − ui2 . This implies the

summation with minimal exponent of x in det(Mu) is not sole. Therefore, we can’t determine whether or not
det(Mu) is a nonzero polynomial on x by the coefficient of x`2 . Nevertheless, the summation with maximal
exponent of x in det(Mu) is sole. Hence, det(Mu) is a nonzero polynomial on x if the coefficient of the
summation with maximal exponent of x in it does not equal zero. When the exponent of x is maximal, B̄′i(ji)
and

(
A1(j1)| · · · |Am(jm)

)
are all nonsingular, hence, we can conclude that det(Mu) is a nonzero polynomial

on x. From (22) and (23), det(Mu) := x`2f ′0(x), where

deg(f ′0) ≤
m∑
i=1

ui(τi − ui − 1) + max
i′∈Jm

{ui′} ≤ (τ − 1)

m∑
i=1

ui −
m∑
i=1

u2
i + τ − 1 ≤

(
τ − 1− l

m

)
l + τ − 1.

This implies the conclusion. ut

Lemma 9. For any u ∈ B2, (20), det(Mu) is a nonzero polynomial on x that can be denoted by det(Mu) :=
x`f2(x), where ` is a positive integer and deg(f2) ≤

(
τ − 1− l−1

m

)
(l − 1).

Proof. Without loss of generality, we may assume that Mu is the l × l submatrix of M formed by the first ui
columns in every Mi. For every i ∈ J ′m, take B̄i =

(
βu−1
i,v

)
with u ∈ [τi] and v ∈ [ni], and let B̄′i denote the

submatrix formed by the first ui columns in B̄i. Then similar to (16),

det(Mu) =
∑

ji,i∈Jm

( m∏
i=1

det
(
B̄′i(ji)

))
det
((
A0|A1(j1)|· · ·|Am(jm)

))
xh(ji,i∈Jm),

where

h(ji, i ∈ Jm) =

m∑
i=1

( ui∑
v=1

(ji,v − 1)
)
.
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and the summation is over all ui-tuples ji = (ji,1, . . . , ji,ui) with i ∈ Jm such that 1 ≤ ji,1 < · · · < ji,ui ≤ τ ′i .
As A0 is a column of the matrix

(
A0|A1(j1)| · · · |Am(jm)

)
, thus this matrix is nonsingular if its other l− 1

distinct columns are from the last τ ′i columns of Ai with i ∈ Jm. Therefore, if ji,v = v + 1 for every i ∈ Jm
and v ∈ [ui], then the minimal exponent of x in det(Mu) is minimal, that is

` =

m∑
i=1

ui∑
v=1

v,

and if ji,v = τi − ui + v for every i ∈ Jm and v ∈ [ui], the exponent of x in det(Mu) is maximum, that is

m∑
i=1

( ui∑
v=1

(ji,v − 1)
)

=

m∑
i=1

( ui∑
v=1

(τi − ui + v − 1)
)

=

m∑
i=1

(
ui(τi − ui − 1) +

ui∑
v=1

v
)
,

and in this case B̄′i(ji) and
(
A0|A1(j1)| · · · |Am(jm)

)
are nonsingular. Therefore, det(Mu) := x`f2(x) is a

nonzero polynomial on x, where

deg(f2) ≤
m∑
i=1

ui(τi − ui − 1) ≤ (τ − 1)

m∑
i=1

ui −
m∑
i=1

u2
i ≤

(
τ − 1− l − 1

m

)
(l − 1)

since
∑m
i=1 ui = l − 1. This implies the conclusion. ut

From the two lemmas above, we have the following result.

Proposition 12. For any u ∈ B(Z ′), (20), det(Mu) is a nonzero polynomial on x that can be denoted by
det(Mu) := x`f(x), where ` is a positive integer and deg(f) ≤ K2 with

K2 = max
{(
τ − 1− l − 1

m

)
(l − 1),

(
τ − 1− l

m

)
l + τ − 1

}
.

Now, take a finite field Fqλ with q > maxi∈Jm{ni, |τ ′(Jm)|} is a prime power and λ > K2. Take αi,v and
βi,v in the matrix (21) from Fq\{0} and take x ∈ Fqλ such that its minimal polynomial over Fq is of degree λ.
Similar to Theorem 7, we can obtain the following result.

Theorem 8. The matrix (21) is a representation of the matroid associated to access structures (19) over Fqλ
for some prime power q > maxi∈Jm{ni, |τ ′(Jm)|} and some λ > K2. Moreover, such a representation can be
obtained in time O(q, λ).

Proposition 13. Suppose M is the matrix (21). Then LSSS(M) realizes the access structures (19) over Fqλ
defined as in Theorem 8. Moreover, such a scheme can be obtained in time O(q, λ).

Proof. Let u(Jm) ∈ Γ ∗, (19), be a minimal set, then |u(Jm)| = l and u(Jm) ≤ τ ′(Jm), or ui = τi for some
i ∈ Jm. In the first case, Theorem 8 implies M0 is can be spanned by all the columns in Mu(Jm). Moreover,
Theorem 8 implies any τi columns of Mi are linearly independent. From this with h({0, i}) = h({i}) = τi
for every i ∈ Jm, M0 is a linear combination of any τi columns in Mi. Hence, in the second case M0 can be
spanned by all the columns in Mu(Jm) too.

Assume that u(Jm) /∈ Γ ∗, (19). Then u(Jm) ≤ τ ′(Jm) and |u(Jm)| ≤ l− 1. Without loss of generality, we
may assume that |u(Jm)| = l − 1, since if |u(Jm)| < l − 1, we may find a vector u′(Jm) ≥ u(Jm) such that
u′(Jm) ≤ τ ′(Jm) and |u′(Jm)| = l− 1. As l ≤ |τ ′(Jm)|+ 1, the above-described procedure is possible. In this
case if u0 = 1, then u(J ′m) ∈ B2. Theorem 8 implies Mu(J′m) is nonsingular, and the claim follows. ut

Remark 2. From the dual relationship of the access structures (19) and the LCASs (5), we can translate the
scheme in Proposition 13 into an ideal linear scheme for the LCASs (5) using the explicit transformation of
[21]. Specially, the efficient construction of ideal linear schemes realizing LCASs (5) can be obtained over Fqλ
in time O(q, λ) for some prime power q > maxi∈Jm{ni,

∑m
i=1(ni − ti)} and some

λ > max
{(
t− n− k

m

)
(n− k),

(
t− n− k + 1

m

)
(n− k + 1) + t

}
,

where t = maxi∈Jm{ni − ti}.
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5.3 Construction for Compartmented Access Structures with Upper and Lower Bounds

In this section, we describe the efficient method to construct ideal linear secret sharing schemes realizing
ULCASs.

Take Π = (Πi)i∈Jm be a partition of the set P such that |Πi| = ni. Let t, r ∈ ZJ
′
m

+ and k ∈ N such that
t(Jm) ≤ r(Jm) ≤ Π(P ), |t(Jm)| ≤ k ≤ |r(Jm)|, ri ≤ k for every i ∈ Jm, t0 = 0 and r0 = 1.Take k1 = |t(Jm)|
and k2 = k − k1. The following result was presented in Section 5.1 of [12].

Lemma 10. Suppose Z ′ = (J ′m, h) is an integer polymatroid with h satisfying
1) h({0}) = 1;
2) h(X) = min{|t(X)|+ k2, |r(X)|} for every X ⊆ Jm;
3) h(X ∪ {0}) = min{k, h(X) + 1} for every X ⊆ Jm.

Then the ULCASs (4) are of the form Γ0(Z ′,Π) and B(Z ′) = B1 ∪ B2 ∪ B3, where

B1 = {u ∈ ZJ
′
m

+ : |u| = k, u0 = 0 and t(Jm) ≤ u(Jm) ≤ r(Jm)},

B2 = {u ∈ ZJ
′
m

+ : |u| = k, u0 = 1 and t(Jm) ≤ u(Jm) ≤ r(Jm)},

B3 = {u ∈ ZJ
′
m

+ : |u| = k, u0 = 1, ui′ = ti′ − 1 for some i′ ∈ Jm
and ui ∈ [ti, ri] for all i ∈ Jm\{i′}}.

(24)

We next present a linear representation of the polymatroid defined in Lemma 10 based on the sum of two
polymatroids.

Let Ik1
denote the k1×k1 unit matrix over Fq, and t̄i =

∑i
j=0 tj for i ∈ J ′m. For every i ∈ Jm, consider the

Fq-vector subspace Ei spanned by the (t̄i−1 + 1)th column to t̄ith column of Ik1
. Let the integer polymatroid

Z1 = (Jm, h1) such that

h1(X) = dim
(∑
i∈X

Ei

)
for every X ⊆ Jm.

In addition, take different elements αi,j ∈ Fq with i ∈ Jm and j ∈ [ri − ti], where q > maxi∈Jm{ni, |r(Jm)| −
|t(Jm)|} is a prime power. For every i ∈ Jm, let

Ai =
(
αu−1
i,v

)
u ∈ [k2], v ∈ [ri − ti]

and consider the Fq-vector subspace Vi ⊆ Fk2
q spanned by all the columns in Ai. Let the integer polymatroid

Z2 = (Jm, h2) such that

h2(X) = dim
(∑
i∈X

Vi

)
for every X ⊆ Jm.

For i ∈ Jm, let Wi = Ei × Vi, and let W0 be the Fq-vector subspace spanned by the k-dimensional vector

ε = (1, 1, . . . , 1, 1, α0, α
2
0, . . . , α

k2−1
0 ),

where α0 ∈ Fq such that α0 6= αi,j for all i ∈ Jm and j ∈ [ri − ti]. Let the integer polymatroid Z ′ = (J ′m, h)
such that

h(X) = dim
(∑
i∈X

Wi

)
for every X ⊆ J ′m.

Proposition 14. For the polymatroid Z ′ = (J ′m, h) defined above, the ULCASs (4) are of the form Γ0(Z ′,Π)
and B(Z ′) = B1 ∪ B2 ∪ B3, (24).

Proof. proving the claim is equivalent to proving the rank function h satisfies the three conditions in Lemma
10. Obviously, h({0}) = 1. In addition, as Z ′|Jm = Z1 + Z2, Proposition 1 implies that h satisfies the second
condition. We proceed to prove that h satisfies the third condition. Suppose for every i ∈ Jm, I ′i denotes the
k1 × ti submatrix formed by the (t̄i−1 + 1)th column to t̄ith column of Ik1 , and take F = (F0|F1| · · · |Fm),
where F0 = εT and

Fi =

(
I ′i O
O Ai

)
(25)
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for every i ∈ Jm. For any X ′ = X ∪ {0} with X = {x1, x2, . . . , xw} ⊆ Jm, by interchanging columns FX′ =
(F0|Fx1

| · · · |Fxw) can be transform to the following form

F ′X′ =

(
1k1 I

′
X O

α0 O AX

)
,

where 1k1 = (1, 1, . . . , 1)T is a k1-dimensional vector, α0 = (1, α0, . . . , α
k2−1
0 )T , I ′X = (I ′x1

|I ′x2
| · · · |I ′xw) and

AX = (Ax1
|Ax2
| · · · |Axw).

If X = Jm, then h(X) = k, I ′X = Ik1
and AX = (A1|A2| · · · |Am). Since AX is a k2 × (|r(Jm)| − |t(Jm)|)

Vandermonde matrix, α0 can be spanned by the columns in AX . From this and 1k1 can be spanned by all
column in I ′X , F0 can be spanned by the columns in FX . This implies h(X ∪ {0}) = k.

If X ⊂ Jm and X 6= Jm, then h(X) < k, and h(X) = |r(X)| if |r(X)| − |t(X)| < k2 or h(X) = |t(X)|+ k2

if |r(X)| − |t(X)| ≥ k2. In the first case there are at most k2 − 1 columns in AX , hence α0 and all columns in
AX are linearly independent. Moreover, 1k1 and all columns in I ′X are linearly independent. This implies all
columns in F ′X′ are linearly independent. Accordingly, h(X ∪ {0}) = h(X) + 1.

In the second case, there are at least k2 columns in AX . This implies α0 can be spanned by some columns
in AX . Therefore, by the elementary column operators, F ′X′ can be transformed to(

1k1 |I ′X O
O AX

)
.

Therefore, h(X ∪ {0}) = h(X) + 1 since all the columns in
(
1k1 |I ′X

)
are linearly independent. ut

We proceed to construct a matrix M based on the representable polymatroid Z ′ in Proposition 14 that is
a representation of a matroid M such that the ULCASs (4) are of the form Γp0(M), and then prove that the
scheme for ULCASs can be obtained by this matrix.

Take Π0 = {p0} and let Π′ = (Πi)i∈J′m and Π = (Πi)i∈Jm be the partition of P ′ = P ∪ {p0} and P ,
respectively, such that |Πi| = ni. For every i ∈ Jm, take ni different elements βi,v ∈ Fq with v ∈ [ni] such that
βi,v 6= 1 and consider

Di =
(
βu−1
i,v

)
ti×ni

u ∈ [ti], v ∈ [ni],

Bi =
(
βti+u−1
i,v xu

)
(ri−ti)×ni

u ∈ [ri − ti], v ∈ [ni].

Let
M = (M0|M1| · · · |Mm) (26)

be the k × (n+ 1) matrix such that M0 = εT and for every i ∈ Jm,

Mi = Fi

(
Di

Bi

)
, (27)

where Fi is the matrix (25).
From (27), we know that each column of Mi is a vector in Wi for every i ∈ Jm. Therefore, M satisfies the

first two conditions in Step 3 in Section 2.3. We next prove that the last condition in Step 3 holds.
Take γ = maxi∈Jm(ri − ti), we have the following result.

Lemma 11. For any u ∈ B1, (24), det(Mu) is a nonzero polynomial on x that can be denoted by det(Mu) =:
x`f1(x), where ` is a positive integer and deg(f1) ≤

(
γ − k2

m

)
k2.

Proof. Without loss of generality, we may assume that Mu is the k× k submatrix of M formed by the first ui
columns in every Mi. For every i ∈ Jm, suppose

Ni =

(
Di

Bi

)
(28)

and let N ′i denote the submatrix formed by the first ui columns in Ni. For any ji = (ji,1, . . . , ji,ui) with i ∈ Jm
such that 1 ≤ ji,1 < · · · < ji,ui ≤ ri, let Fi(ji) and N ′i(ji) denote the k × ui submatrix formed by the ji,1th
column, . . . , ji,uith column of Fi and the ui × ui submatrix formed by the ji,1th row, . . . , ji,uith row of N ′i ,
respectively.
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For every i ∈ Jm, suppose u′i columns of Fi(ji) are chosen from the first ti columns in Fi and ui − u′i
columns of Fi(ji) are chosen from the last ui − ti columns in Fi. Then

Fi(ji) :=

(
I ′′i O
O A′i

)
,

where I ′′i denotes a k1×u′i block of I ′i and A′i denotes a k2× (ui−u′i) block of Ai. Therefore, by interchanging
columns,

(
F1(j1)| · · · |Fm(jm)

)
can be transformed to(

I ′′1 · · · I ′′m O · · · O
O · · · O A′1 · · · A′m

)
,

Hence, det
((
F1(j1)| · · · |Fm(jm)

))
6= 0 if and only if I ′′i = I ′i for every i ∈ Jm. From this with Proposition 5,

det(Mu) =
∑

ji,i∈Jm

( m∏
i=1

det
(
N ′i(ji)

))
det
((
F1(j1)| · · · |Fm(jm)

))
where the summation is over all ui-tuples ji = (ji,1, . . . , ji,ui) with i ∈ Jm, for which ji,v = v for every v ∈ [ti]
and ti + 1 ≤ ji,ti+1 < · · · < ji,ui ≤ ri. For every i ∈ Jm, take

N̄i =
(
βu−1
i,v

)
ri×ni

u ∈ [ri], v ∈ [ni]

and let N̄ ′i denote the submatrix formed by the first ui columns in N̄i. In addition, for any ji = (ji,1, . . . , ji,ui)
with i ∈ Jm such that ji,v = v for every v ∈ [ti] and ti + 1 ≤ ji,ti+1 < · · · < ji,ui ≤ ri, let N̄ ′i(ji) denote the
ui × ui submatrix formed by the ji,1th row, . . . , ji,uith row of N̄ ′i . Then

det
(
N ′i(ji)

)
= det

(
N̄ ′i(ji)

)
x
∑ui
v=ti+1(ji,v−ti),

and consequently,

det(Mu) =
∑

ji,i∈Jm

( m∏
i=1

det
(
N̄ ′i(ji)

))
det
((
F1(j1)| · · · |Fm(jm)

))
xh(ji,i∈Jm),

where

h(ji, i ∈ Jm) =

m∑
i=1

( ui∑
v=ti+1

(ji,v − ti)
)
. (29)

If ji,v = v for every i ∈ Jm and v ∈ [ui], the exponent of x in det(Mu) is minimal, that is

` =

m∑
i=1

( ui∑
v=ti+1

(v − ti)
)

=

m∑
i=1

ui−ti∑
v′=1

v′. (30)

In this case N̄ ′i(ji) is nonsingular as it is formed by the first ui rows of N̄ ′i . This with det
((
F1(j1)| · · · |Fm(jm)

))
6=

0 imples that det(Mu) is a nonzero polynomial on x.
On the other hand, for every i ∈ Jm, if ji,v = v for v ∈ [ti] and ji,v = ri − ui + v for v ∈ [ti + 1, ui], the

exponent of x in det(Mu) is maximum, that is

m∑
i=1

( ui∑
v=ti+1

(ji,v − ti)
)

=

m∑
i=1

( ui∑
v=ti+1

(ri − ui + v − ti)
)

=

m∑
i=1

( ui−ti∑
v′=1

(ri − ui + v′)
)

=

m∑
i=1

(
(ui − ti)(ri − ui) +

ui−ti∑
v′=1

v′
)

=

m∑
i=1

u′i(ri − ti − u′i) + `,

(31)
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where u′i = ui − ti.
As
∑m
i=1 u

′
i = k2, then similar to the case in the proof of Lemma 6, from (29), (30), and (31), det(Mu) can

be denoted by det(Mu) =: x`f1(x), where

deg(f1) ≤
m∑
i=1

u′i(ri − ti − u′i) ≤
(
γ − k2

m

)
k2.

This implies the conclusion. ut

Lemma 12. For any u ∈ B2, (24), det(Mu) is a nonzero polynomial on x that can be denoted by det(Mu) :=
x`f2(x), where ` is a positive integer and deg(f2) ≤

(
γ − k2−1

m

)
(k2 − 1) + γ.

Proof. Without loss of generality, we may assume that Mu is the k× k submatrix of M formed by the first ui
columns in every Mi. For any ji = (ji,1, . . . , ji,ui) with i ∈ Jm such that 1 ≤ ji,1 < · · · < ji,ui ≤ ri, let Fi(ji),
N ′i(ji) and N̄ ′i(ji) denote the identical matrices as in the proof of Lemma 11.

For every i ∈ Jm, suppose u′i columns of Fi(ji) are chosen from the first ti columns in Fi and ui − u′i
columns of Fi(ji) are chosen from the last ui − ti columns in Fi. Then as in the proof of Lemma 11,

Fi(ji) :=

(
I ′′i O
O A′i

)
and by interchanging columns, F̄ =

(
F0|F1(j1)| · · · |Fm(jm)

)
can be transformed to

F̄ ′ =

(
1k1 I

′′
1 · · · I ′′m O · · · O

α0 O · · · O A′1 · · · A′m

)
.

If I ′′i = I ′i for every i ∈ Jm, then F̄ ′ can be transformed to the following form by the elementary column
operators (

Ik1
O O · · · O

O α0 A
′
1 · · · A′m

)
.

From this and the matrix
(
α0|A′1| · · · |A′m

)
is a k2×k2 nonsingular matrix, det(F̄ ) 6= 0. In addition, if for some

i′ ∈ Jm, I ′′i′ is formed by any ti′ − 1 columns of I ′i′ and for every i ∈ Jm with i 6= i′, I ′′i = I ′i, then F̄ ′ can be
transformed to the following form by the elementary column operators(

Ik1 O · · · O
O A′1 · · · A′m

)
where

(
A′1| · · · |A′m

)
is a k2 × k2 nonsingular matrix. In this case det(F̄ ) 6= 0 too. On the other hand, if the

number of the columns in
(
I ′′1 | · · · |I ′′m

)
is smaller than k1 − 1, the number of the columns in

(
A′1| · · · |A′m

)
is

larger than k2. Accordingly, F̄ ′ is singular. Therefore, det(F̄ ) 6= 0 if and only if I ′′i = I ′i for every i ∈ Jm, or I ′′i′
is formed by any ti′ − 1 columns of I ′i′ for some i′ ∈ Jm and I ′′i = I ′i for every i ∈ Jm\{i′}.

Now, for l = 1 or 2, take

Tl =
∑

ji,i∈[m]

( m∏
i=1

det
(
N ′i(ji)

))
det
((
F0|F1(j1)| · · · |Fm(jm)

))
,

where the summation in T1 is over all ui-tuples ji = (ji,1, . . . , ji,ui) with i ∈ Jm such that ji,v = v for every
v ∈ [ti] and ti+ 1 ≤ ji,ti+1 < · · · < ji,ui ≤ ri, and the summation in T2 is over all ui-tuples ji = (ji,1, . . . , ji,ui)
with i ∈ Jm such that for some i′ ∈ Jm, 1 ≤ ji′,1 < · · · < ji′,ti′−1 ≤ ti′ and ti′ + 1 ≤ ji′,ti′ < · · · < ji′,ui′ ≤ ri′ ,
and for every i ∈ Jm\{i′}, ji,v = v for every v ∈ [ti] and ti + 1 ≤ ji,ti+1 < · · · < ji,ui ≤ ri. Then Proposition 5
implies that

det(Mu) = T1 + T2.

Take

` =

m∑
i=1

ui−ti∑
v′=1

v′ and `1 =

m∑
i=1

u′i(ri − ti − u′i) + `, (32)
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where u′i = ui − ti. Then using the same method to prove Lemma 11, we can conclude that T1 is a nonzero
polynomial on x, its minimal and maximal exponents of x are ` and `1, respectively, and the coefficient of the
term x` in T1 is nonzero.

In addition, for some given i′ ∈ Jm, if the vector ji′ is such that 1 ≤ ji′,1 < · · · < ji′,ti′−1 ≤ ti′ and
ti′ + 1 ≤ ji′,ti′ < · · · < ji′,ui′ ≤ ri′ , then in the case of ji′,v = v+ 1 for v ∈ [ti′ , ui′ ] the exponent of x in N ′i′(ji′)
is minimum, that is

ui′∑
v=ti′

(ji′,v − ti′) =

ui′∑
v=ti′

(v − ti′ + 1) =

ui′−ti′∑
v′=1

v′ + (ui′ − ti′ + 1), (33)

and in the case of ji′,v = ri′ − ui′ + v for v ∈ [ti′ , ui′ ] the exponent of x in N ′i′(ji′) is maximum, that is

ui′∑
v=ti′

(ji′,v − ti′) = (ji′,ti′ − ti′) +

ui′∑
v=ti′+1

(ji′,v − ti′)

= (ri′ − ui′) +

ui′∑
v=ti′+1

(ri′ − ui′ + v − ti′)

= (ri′ − ui′) +

ui′−ti′∑
v′=1

(ri′ − ui′ + v′)

= (ri′ − ui′) + (ui′ − ti′)(ri′ − ui′) +

ui′−ti′∑
v′=1

v′

= (ri′ − ui′) + u′i′(ri′ − ti′ − u′i′) +

ui′−ti′∑
v′=1

v′,

(34)

where u′i′ = ui′ − ti′ . Moreover, for the vector ji with i ∈ Jm\{i′} such that ji,v = v for every v ∈ [ti] and
ti + 1 ≤ ji,ti+1 < · · · < ji,ui ≤ ri, in the case of ji′,v = v for v ∈ [ti + 1, ui] the exponent of x in N ′i(ji) is
minimum, that is

ui∑
v=ti+1

(ji,v − ti) =

ui∑
v=ti+1

(v − ti) =

ui−ti∑
v′=1

v′, (35)

and in the case of ji,v = ri − ui + v for v ∈ [ti + 1, ui] the exponent of x in N ′i(ji) is maximum, that is

ui∑
v=ti+1

(ji,v − ti) =

ui∑
v=ti+1

(ri − ui + v − ti)

=

ui−ti∑
v′=1

(ri − ui + v′)

= (ui − ti)(ri − ui) +

ui−ti∑
v′=1

v′

= u′i(ri − ti − u′i) +

ui−ti∑
v′=1

v′,

(36)

where u′i = ui − ti.
From (32)–(36), by computing the minimal and maximal exponents of x in T2 are

`2 = `+ min
i′∈Jm

{ui′ − ti′}+ 1 and `3 = `1 + max
i′∈Jm

{ri′ − ui′},

respectively. As ` < `2 and the coefficient of the term x` in T1 is nonzero, thus det(Mu) is a nonzero polynomial
on x. Moreover, `3 ≥ `1, hence det(Mu) := x`f2(x), where

deg(f2) ≤ `3 − ` ≤
m∑
i=1

u′i(ri − ti − u′i) + γ ≤
(
γ − k2 − 1

m

)
(k2 − 1) + γ

as
∑m
i=1 u

′
i = k2 − 1. ut
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Lemma 13. For any u ∈ B3, (24), det(Mu) is a nonzero polynomial on x that can be denoted by det(Mu) :=
x`f3(x), where ` is a positive integer and deg(f3) ≤

(
γ − k2

m

)
k2.

Proof. Without loss of generality, we may assume that Mu is the k× k submatrix of M formed by the first ui
columns in every Mi and ui′ = ti′ − 1 for some i′ ∈ Jm. Then

Mu =


1t1 D′1 O · · · O
1t2 O D′2 · · · O

...
...

...
. . .

...
1tm O O · · · D′m

(ψ(β0))T A1B
′
1 A2B

′
2 · · · AmB′m


where 1ti = (1, 1, . . . , 1)T is a ti-dimensional column vector, D′i and B′i are the submatrices formed by the
first ui columns in Di and Bi, respectively. By interchanging rows and columns, Mu can be transformed to

1ti′ D′i′ O · · · O O · · · O
1t1 O D′1 · · · O O · · · O

...
...

...
. . .

...
...

. . .
...

1ti′−1
O O · · · D′i′−1 O · · · O

1ti′+1
O O · · · O D′i′+1 · · · O

...
...

...
. . .

...
...

. . .
...

1tm O O · · · O O · · · D′m
(ψ(β0))T Ai′B

′
i′ A1B

′
1 · · · Ai′−1B

′
i′−1 Ai′+1B

′
i′+1 · · · D′m


Let M̄ denote the submatrix formed by removing the entries in the first ti′ rows and the first ti′ columns in
the matrix above. Then ∣∣det

(
Mu

)∣∣ =
∣∣ det

(
(1ti′ |D

′
i′)
)

det
(
M̄
)∣∣.

Now, take a vector v ∈ Zm+ such that vi′ = ti′ and vi = ui for every i ∈ Jm\{i′}. Assume that Mv is the k× k
submatrix of M formed by the first vi columns in every Mi. Suppose D′′i′ denote the sbmatrix formed by the
first ti′ columns in Di. Then ∣∣det(Mv)

∣∣ =
∣∣det(D′′i′) det(M̄)

∣∣.
Hence, ∣∣ det

(
Mu

)∣∣ =
∣∣∣det

(
(1ti′ |D

′
i′)
)

det(D′′i′)
det(Mv)

∣∣∣
As
(
(1ti′ |D

′
i′) and D′′i′ are all nonsingular over Fq and v ∈ B1, (24), Lemma 11 implies the claim. ut

The three lemmas above imply the following result.

Proposition 15. For any u ∈ B(Z ′), (24), det(Mu) is a nonzero polynomial on x that can be denoted by
det(Mu) := x`f(x), where ` is a positive integer and deg(f) ≤ K3 with

K3 = max
{(
γ − k2

m

)
k2,
(
γ − k2 − 1

m

)
(k2 − 1) + γ

}
.

Now, take a finite field Fqλ , where q > maxi∈Jm{ni, |r(Jm)| − |t(Jm)|} is a prime power and λ > K3 .
Take αi,v and βi,v in the matrix (26) from Fq and take x ∈ Fqλ such that its minimal polynomial over Fq is of
degree λ. We can obtain the following result.

Theorem 9. The matrix (26) is a representation of the matroid associated to ULCASs (4) over Fqλ for some
prime power q > maxi∈Jm{ni, |r(Jm)| − |t(Jm)|} and some λ > K3. Moreover, such a representation can be
obtained in time O(q, λ).

Proposition 16. Suppose M is the matrix (26). Then LSSS(M) realizes the ULCASs (4) over Fqλ defined
as in Theorem 9. Moreover, such a scheme can be obtained in time O(q, λ).
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Proof. If u(Jm) ∈ minΓ , (4), the claim is straightforward. Indeed, Theorem 9 implies Mu(Jm) is nonsingular,
and consequently, M0 can be spanned by all the columns in Mu(Jm).

Since h({i}) = ri for every i ∈ Jm, any ri + 1 columns in Mi are linearly dependent. Therefore, in the case
of u(Jm) /∈ Γ , (4), we may assume that

1) |u(Jm)| < k and t(Jm) ≤ u(Jm) ≤ r(Jm); or
2) ui < ti for some i ∈ Jm and u(Jm) ≤ r(Jm).

In the first case, furthermore, we may assume that |u(Jm)| = k − 1, since if |u(Jm)| < k − 1, we may find a
vector u′(Jm) ≥ u(Jm) such that t(Jm) ≤ u′(Jm) ≤ r(Jm) and |u′(Jm)| = k − 1. In this case u(J ′m) ∈ B2 if
u0 = 1. Theorem 9 implies M0 must not be spanned by all the columns in Mu(Jm).

In the second case, furthermore, we may assume that ui′ = ti′ − 1 for some i′ ∈ Jm, ti ≤ ui ≤ ri for all
i ∈ Jm\{i′} and |u(Jm)| ≥ k−1. Otherwise, we may find a vector u′(Jm) ≥ u(Jm) satisfying these conditions.
If |u(Jm)| = k − 1 and u0 = 1, then u(J ′m) ∈ B3. Theorem 9 implies M0 must not be a linear combination
of all the columns in Mu(Jm). If |u(Jm)| > k − 1, then there must exist a vector v(J ′m) with v0 = 1 and
v(Jm) ≤ u(Jm) such that vi′ = ui′ = ti′ − 1, ti ≤ vi ≤ ri for all i ∈ Jm\{i′} and |v(Jm)| = k − 1. We claim
that every column in Mu(Jm) is a linear combination of the columns in Mv(Jm).

Since such a vector v(J ′m) ∈ B3, M0 must not be a linear combination of all the columns in Mv(Jm).
Therefore, if this clam is true, then M0 must not be a linear combination of all the columns in Mu(Jm).

We proceed to prove the claim. Recall that t̄i =
∑i
j=0 tj for every i ∈ J ′m. Take J = Jm\{i′} and

J ′ = J ′m\{i′}, and let M ′ be the (k − ti′)× (n+ 1− ni′) submatrix obtained by removing the (t̄i′−1 + 1)th to
t̄i′th rows of the matrix (M0| · · · |Mi′−1|Mi′+1| · · · |Mm). Then M ′ is a representation of the matroid associated
to an access structure Γ ′ with

Γ ′ = {u(J) ∈ ZJ+ : |u(J)| = k − ti′ and t(J) ≤ u(J) ≤ r(J)}.

Theorem 9 implies that M ′v(J) is nonsingular. As M ′v(J) is a submatrix of M ′u(J), thus any column in M ′u(J)

is a linear combination of the columns in M ′v(J). Note that M ′v(J) and M ′u(J) are the submatrices obtained by

removing the (t̄i′−1 + 1)th to t̄i′th rows of Mv(J) and Mu(J), respectively, and these rows are all zero rows. It
follows that any column in Mu(J) is a linear combination of the columns in Mv(J). This with Mu({i′}) = Mv({i′})
implies the claim. ut

Remark 3. From the connection of LCASs, UCASs and ULCASs, Proposition 16 implies that the ideal linear
schemes for LCASs and UCASs can be obtained in polynomial time. In particular, Proposition 16 gives a
method to construct the scheme for LCASs directly, which is different from the method based on duality
presented in Sect. 5.2.

5.4 Comparison to Compartmented Secret Sharing Schemes

By combining the polymatroid-based techniques and Gabibulin codes, Chen et al. [12] presented efficient
methods to construct ideal linear schemes for UCASs, LCASs and ULCASs, respectively. More precisely, they
gave the constructions for the UCASs (6), the access structures (19), and the ULCASs (4) over the finite fields
F1, F2, and F3, respectively, where

|F1| >
(

max
i∈Jm

{
ni
})|r(Jm)|+1

, (37)

|F2| >
(

1 + max
i∈Jm

{
ni
})|τ ′(Jm)|+1

,

|F3| >
(

1 + max
i∈Jm

{
ni
})|r(Jm)|−|t(Jm)|+1

.

Proposition 10 gives a construction for the UCASs (6) over finite fields F of size

|F| >
(

max
i∈Jm

{
ni, |r(Jm)|+ 1

})K1+1

. (38)

If the lower bound (38) is less than the lower bound (37), then estimate (38) is better than (37). For example,
in the case of K1 < |r(Jm)| < maxi∈Jm{ni}, estimate (38) is better than (37).
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Nevertheless, it is worth mentioning that the lower bound (38) is not tight. From the proof of Lemma 6,

|F| >
(

max
i∈Jm

{
ni, |r(Jm)|+ 1

})deg(f)+1

,

where f(x) is defined as in Lemma 6. From (18), the upper bound of deg(f) can be obtained by solving the
integer programming problem defined below:

F (u) = max
{ m∑
i=1

ui(ri − ui)
}

where the ‘max’ is subject to 
u, r ∈ Zm+ ,
u ≤ r,
ri ≤ k ≤ |r|,
|u| = k, or |u| = k − 1.

The solution to this problem implies a tighter lower bound of |F|, which may be less than the lower bound
(37) in more cases. Similar comparisons can be done for the schemes realizing the access structures (19) and
the ULCASs (4).

In addition, as far as we know, the method presented in [12] does not seem to be used to construct ideal
linear schemes for hierarchical access structures. Therefore, the method presented in this paper is more general
to construct secret sharing schemes for multipartite access structures.

6 Secret Sharing Schemes for Compartmented Access Structures with
Compartments

In this section, we describe the efficient method to construct ideal linear schemes realizing the two families of
compartmented access structures with compartments presented in [20] which are defined as follows.

Take J = Jm × Jm′ and a partition Π = (Πi,j)(i,j)∈J of the set P . Let k ∈ N and for every i ∈ Jm,

take ki = (ki,1, . . . , ki,m′) ∈ Zm
′

+ such that ki,j ≤ ki,j+1 for every j ∈ [m′ − 1], and ki,m′ ≤ k ≤
∑m
i=1 ki,m′ .

The following access structure are called the compartmented access structures with hierarchical compartments
(HCCASs)

minΓ = {u ∈ ZJ+ : |u| = k and

j∑
j′=1

ui,j′ ≤ ki,j for every (i, j) ∈ J}. (39)

In addition, take Ti = {(i, j) ∈ J : j ∈ Jm′} for every i ∈ Jm, and let t ∈ ZJ+, r ∈ Zm+ and κ ∈ N such that
|t| ≤ κ ≤ |r| and |t(Ti)| ≤ ri ≤ κ for every i ∈ Jm. The following access structure are called the compartmented
access structures with compartmented compartments (CCCASs)

minΓ = {u ∈ P : |u| = κ,u ≥ t and |u(Ti)| ≤ ri for every i ∈ Jm}. (40)

The former family is an extension to the UCASs and DHTASs, and the latter family is an extension to the
ULCASs and LCASs. The schemes for them can be constructed by the method summarized in Sect. 2.3. Here,
we will simply the process based on the results in Sect. 4 and Sect. 5.

6.1 Construction for Compartmented Access Structures with Hierarchical Compartments

In this section, we construct ideal linear secret sharing schemes realizing HCCASs. Suppose the UCASs Γ0 are
defined as

minΓ0 = {u ∈ Zm+ : |u| = k and ui ≤ ki,m′ for every i ∈ Jm}

and for every i ∈ Jm, the DHTASs Γi are defined as

minΓi = {v ∈ Zm
′

+ : |v([j])| ≥ ki,j for some j ∈ Jm′}.
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Then the HCCASs (39) can be seen as the UCASs Γ0 with compartments Πi =
⋃m′
j=1 Πi,j for i ∈ Jm and

the participants in every compartment Πi satisfy the property of the DHTASs Γi with compartments Πi,j for
j ∈ Jm′ . Therefore, from Lemma 1, Lemma 5, Proposition 6 and Proposition 9, there must exist an integer
polymatroid Z ′ with the ground set J ′ = J ∪ {0} such that the HCCASs (39) are of the form Γ0(Z ′,Π) and

B(Z ′)={u∈ZJ
′

+ : |u|=k, u0 ≤ 1, and

j∑
j′=1

ui,j′ ≤ ki,j for every (i, j) ∈ J}. (41)

We next present a representation of a matroid M such that the HCCASs (39) are of the form Γp0
(M)

based on the connection between HCCASs, UCASs and DHTASs.
Take J ′ = J ∪ {0} and Π0 = {p0}. Let Π = (Πi,j)(i,j)∈J be the partition of P such that |Πi,j | = ni,j .

Suppose matrix Ni is a representation of the matroid associated to the DHTASs Γi over Fqλ for every i ∈ Jm,

where q ≥ max(i,j)∈J{ni,j} is a primer power and λ > maxi∈Jm{ 1
2

∑m′−1
j=1 ki,j(ki,j−1)}. These representations

can be obtained from Theorem 5. For every i ∈ Jm, let Di =
(
d

(i)
u,v

)
denote the submatrix obtained by deleting

the first column of Ni and

D̄i =
(
d̄(i)
u,v

)
where d̄

(i)
u,v = d

(i)
u,vyu−1. As in the matrix (14), take Ai =

(
αu−1
i,v

)
with u ∈ [k] and v ∈ [ki,m′ ] for every i ∈ J ′m.

In this case, αi,j ∈ Fq̄ with i ∈ J ′m and j ∈ [ki,m′ ] are pairwise distinct, where q̄ ≥ max{qλ, 1 +
∑m
i=1 ki,m′} is

a prime power. Let

M = (M0|M1| · · · |Mm) (42)

be a matrix such that M0 = A0 and Mi = AiD̄i for every i ∈ Jm.

We will prove that M is a representation of a matroid associated the HCCASs (39) by choosing the
appropriate parameter y.

Actually, a representation of an integer polymatroid associated the HCCASs (39) can be obtained by the
matrix A = (A0|A1| · · · |Am). For every (i, j) ∈ J , let Ai,j denote the submatrix formed by the first ki,j columns
of Ai. Consider the Fq̄-vector subspace V0 ⊆ Fkq̄ spanned by A0 and the Fq̄-vector subspace Vi,j ⊆ Fkq̄ spanned
by all the columns in Ai,j for every (i, j) ∈ J . Let the integer polymatroid Z ′ = (J ′, h) such that for every
X ⊆ J ,

h(X) = dim
( ∑

(i,j)∈X

Vi,j

)
and h(X ∪ {0}) = dim

(
V0 +

∑
(i,j)∈X

Vi,j

)
.

As in the proof of Proposition 9, A is a k × (1 +
∑m′

i=1 ki,m′) Vandermonde matrix. Therefore, any k × k
submatrix of A is nonsingular. This with dim(V0) = 1 and dim(Vi,j) = ki,j implies B(Z ′) is the set (41).
Hence, the matrix M is constructed by a representation of an integer polymatroid associated to the HCCASs
(39). Obviously, M satisfies the second conditions in Step 2 of Section 2.3. We next prove that it satisfies the
third condition.

First, we prove a property of Di for every i ∈ Jm. From Theorem 5, we know that Ni is of the form (8).
Therefore, Di has the following form

Di =
(
Di,1| · · · |Di,m′

)
.

Proposition 17. For every v = (v1, . . . , vm′) ∈ minΓi, suppose Di,v denotes the submatrix of Di formed by

any vj columns in every Di,j with j ∈ Jm′ . Let D̂i,v denote the submatrix formed by the first |v| rows of Di,v.

Then D̂i,v is nonsingular if |v([j])| ≤ ki,j for every j ∈ Jm′ .

Proof. Without loss of generality, we may assume that ki,l < |v| ≤ ki,l+1 for some l ≤ [0,m′ − 1], where
ki,0 = 0.

Take ` ∈ Zm′+ such that `j = ki,j for every j ∈ [l] and `j = |v| for every j ∈ [l + 1,m′]. We can define a
class of DHTASs Γ ′ as follows

Γ ′ = {w ∈ Zm
′

+ : |w([j])| ≥ `j for some j ∈ [m′]}.

Then the submatrix formed by the first |v| rows of Di can be used to constructed a secret sharing scheme for
Γ ′. Theorem 5 implies that D̂i,v is nonsingular. ut
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Take r = maxi∈Jm{ki,m′}, then from Proposition 17, we can obtain the following result by the similar
method to prove Lemma 6.

Lemma 14. For any u ∈ B(Z ′), (41), det(Mu) is a nonzero polynomial on y that can be denoted by
det(Mu) := y`f(y), where ` is a positive integer and deg(f) ≤ L1 with

L1 = max
{(
r − k

m

)
k,
(
r − k − 1

m

)
(k − 1)

}
.

Proof. For every u ∈ B(Z ′), (41), let u0 = (u0) and ui = (ui,1, . . . , ui,m′) for i ∈ Jm. Then Mu can be denotes
by

Mu = (M0,u0 |M1,u1 | · · · |Mm,um),

where Mi,ui = AiD̄i,ui . Take ui = |ui| for every i ∈ J ′m. Then similar to (15),

det
(
D̄i,ui(ji)

)
= det

(
Di,ui(ji)

)
y
∑ui
v=1(ji,v−1),

where ji and Di,ui(ji) are defined as in the proof of Lemma 6. From this with Proposition 5,

det(Mu) =
∑

ji,i∈J′m

( m∏
i=1

det
(
Di,ui(ji)

))
det
((
A0(j0)|A1(j1)| · · · |Am(jm)

))
yh(ji,i∈Jm),

where the summation is over all ui-tuples ji = (ji,1, . . . , ji,ui) with i ∈ J ′m, for which 1 ≤ ji,1 < · · · < ji,ui ≤
ki,m′ , and h(ji, i ∈ Jm) =

∑m
i=1

(∑ui
v=1(ji,v − 1)

)
.

As in the proof of Lemma 6, the exponent of y in det(Mu) is minimal if and only if the exponent of
y in det

(
D̄i,ui(ji)

)
is minimal for every i ∈ Jm. In this case ji,v = v for every i ∈ Jm and v ∈ [ui], and

consequently, Di,ui(ji) is the submatrix formed by the first ui rows of Di,ui . Proposition 17 implies that
Di,ui(ji) is nonsingular for every i ∈ Jm. From this and (A0(j0)|A1(j1)| · · · |Am(jm)) is nonsingular, we have
that det(Mu) is a nonzero polynomial on y.

On the other hand, the exponent of y in det(Mu) is maximal if and only if the exponent of y in det
(
D̄i,ui(ji)

)
is maximal for every i ∈ Jm. The remaining part of the proof goes along the same line of argumentation as in
the proof of Lemma 6. ut

As above, take matrix Di over Fqλ for every i ∈ Jm, where q ≥ max(i,j)∈J{ni,j} is a primer power and

λ > maxi∈Jm{ 1
2

∑m′−1
j=1 ki,j(ki,j−1)}, and take a finite field Fq̄λ̄ , where q̄ ≥ max{qλ, 1+

∑m
i=1 ki,m′} is a prime

power and λ̄ > L1. In addition, take the matrix Ai over Fqλ for every i ∈ J ′m and take y ∈ Fq̄λ̄ such that its

minimal polynomial over Fq̄ is of degree λ̄. Then the following results can be obtained.

Theorem 10. The matrix (42) is a representation of the matroid associated to the HCCASs (39) over the
finite fields Fq̄λ̄ defined as above. Moreover, such a representation can be obtained in time O(q̄, λ̄).

Proposition 18. Suppose M is the matrix (42). Then LSSS(M) realizes the HCCASs (39) over the finite
fields Fq̄λ̄ defined as above. Moreover, such a scheme can be obtained in time O(q̄, λ̄).

Proof. If u(J) ∈ minΓ and u0 = 0 then u(J ′) ∈ B(Z ′), (41). Therefore, Theorem 10 implies M0 can be
spanned by the columns in Mu(J) for any u(J) ∈ Γ . In the case of u(J) /∈ Γ , as h({(i, j)}) = ki,j for every

(i, j) ∈ J , we may assume that
∑j
j′=1 ui,j′ ≤ ki,j for every (i, j) ∈ J . Similar to the proof of Proposition 10,

we may assume that |u(J)| = k − 1, and then arguing along the same lines as in the proof of Proposition 10,
we can arrive at the result. ut

6.2 Construction for Compartmented Access Structures with Compartmented Compartments

In this section, we describe how to construct ideal linear secret sharing schemes realizing CCCASs by an
efficient method.

For every i ∈ Jm, take ti = |t(Ti)| and define the LCASs Γi by

minΓi = {v ∈ Zm
′

+ : |v| = ri and vj ≥ ti,j for every j ∈ Jm′}.



34 Q. Chen et al.

Then the CCCASs (40) can be seen as the ULCASs (4) with compartments Πi =
⋃m′
j=1 Πi,j for i ∈ Jm and

the participants in every compartment Πi satisfy the property of the LCASs Γi with compartments Πi,j for
j ∈ Jm′ .

Therefore, by the similar method to obtain the representation of a matroid associated the ULCASs (4) and
the connection between the CCCASs (40), the UCASs (4), and the LCASs Γi, we can obtain a matrix M as
follows, which is the representation of a matroid associated the CCCASs (40).

Take J ′ = J∪{0} and Π0 = {p0}. Let Π = (Πi,j)(i,j)∈J be the partition of P such that |Πi,j | = ni,j . Suppose
matrix Ni is a representation of the matroid associated to the LCASs Γi over Fqλ for every i ∈ Jm, where q >
max(i,j)∈J{ni,j , |n(Ti)|−ti} is a primer power and λ > maxi∈Jm{(`i− ri−ti

m′ )(ri−ti), (`i− ri−ti−1
m′ )(ri−ti−1)+`i}

with `i = maxj∈Jm′{ni,j − ti,j}. These representations can be obtained from Theorem 9. For every i ∈ Jm, let
Hi denote the submatrix obtained by deleting the first column of Ni, and let Di and Bi denote the submatrices

formed by the first ti rows and the last ri − ti rows of Hi, respectively. Take Bi =
(
b
(i)
u,v

)
and

B̄i =
(
b̄(i)u,v

)
where b̄

(i)
u,v = b

(i)
u,vyu. Let

M = (M0|M1| · · · |Mm) (43)

be a matrix such that M0 = εT and for every i ∈ Jm,

Mi = Fi

(
Di

B̄i

)
(44)

where ε and Fi have same forms in the matrix (26). Here, they are the vector and matrix over Fq̄, respectively,
where q̄ > max{qλ, |r(Jm)| − |t(J)|} is a prime power.

Take λ̄ > max
{(
γ − k2

m

)
k2,
(
γ − k2−1

m

)
(k2 − 1) + γ

}
as in Proposition 15. Then using the same method to

prove Theorem 9, we can prove, omitting further details, that a representation of a matroid associated to the
CCCASs (40) can be obtained over Fq̄λ̄ by an efficient method. Accordingly, the ideal linear schemes for the
CCCASs (40) can be obtained.

7 Conclusion

In this paper, we presented an efficient method to explicitly construct ideal linear secret sharing schemes
realizing several families of multipartite access structures based on polymatroid-based techniques and linear
algebraic techniques. The method can be applied to construct either hierarchical secret sharing schemes or
compartmented secret sharing schemes. The versatility of this method deserves further study by detecting
whether it can be used to the constructions for other families of multipartite access structures. In addition,
from the relationship between polymatroids, matroids, and general secret sharing schemes, it is worthwhile
to study whether this method can be used to construct secret sharing schemes for other classes of access
structures.
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