
Cryptanalysis of a Protocol for Efficient Sorting
on SHE Encrypted Data ?

Shyam Murthy[0000−0002−0222−322X] and Srinivas Vivek[0000−0002−8426−0859]

IIIT Bangalore, IN
shyam.sm@iiitb.org, srinivas.vivek@iiitb.ac.in

Abstract. Sorting on encrypted data using Somewhat Homomorphic
Encryption (SHE) schemes is currently inefficient in practice when the
number of elements to be sorted is very large. Hence alternate protocols
that can efficiently perform computation and sorting on encrypted data is
of interest. Recently, Kesarwani et al. (EDBT 2018) proposed a protocol
for efficient sorting on data encrypted using an SHE scheme in a model
where one of the two non-colluding servers is holding the decryption key.
The encrypted data to be sorted is transformed homomorphically by the
first server using a randomly chosen monotonic polynomial with possibly
large coefficients, and then the non-colluding server holding the decryp-
tion key decrypts, sorts, and conveys back the sorted order to the first
server without learning the actual values except possibly for the order.

In this work we demonstrate an attack on the above protocol that allows
the non-colluding server holding the decryption key to recover the orig-
inal plaintext inputs (up to a constant difference). Though our attack
runs in time exponential in the size of plaintext inputs and degree of
the polynomial but polynomial in the size of coefficients, we show that
our attack is feasible for 32-bit inputs, hence accounting for several real
world scenarios. Of independent interest is our algorithm for recovering
the integer inputs (up to a constant difference) by observing only the
integer polynomial outputs.

Keywords: Somewhat Homomorphic Encryption · Comparison · Sort-
ing · Polynomial Reconstruction · Low-depth Circuit

1 Introduction

Cloud hosting solutions that offer pay-as-you-use models provide elasticity and
cost-efficiency thus attracting users from varied domains. Cloud providers also
offer services and computation capabilities on stored data thereby offloading
such overheads from their customers. However, these services can compromise
the privacy of the stored data. Hence while data has to be in encrypted form,
to be able to make use of the services offered by the cloud, there should be
ways to perform meaningful operations on encrypted data. One such service is

? The final publication will be available at www.springerlink.com

2 S. Murthy, S. Vivek

to search for k-Nearest Neighbours (k-NN) (according to a given metric) of an
encrypted δ-tuple in a database containing n encrypted δ-tuples. k-NN is a ba-
sic algorithm used in data mining, machine learning, pattern recognition, etc.
Many efficient solutions have been proposed for determining k-NN on private
data [WCKM09,XLY13,CGLB14,SHSK15,ZHT16], and [ESJ14], [KKN+18] give
solutions based on homomorphic encryption schemes.

Secure Sorting and k-NN Protocol from [KKN+18]. Suppose a (possi-
bly very large) data set consists of points in a multi-dimensional vector space
with the Euclidean distance as metric and that are stored in encrypted form in
the cloud for privacy reasons by a client. Also suppose that the client wishes
the server to compute k-NN on this encrypted data by providing an encrypted
query point. One obvious approach is to use Fully/Somewhat Homomorphic
Encryption (F/SHE) schemes [Gen09,BGV12,GSW13,CGGI19] to perform the
computing of the Euclidean distances, sorting and then the computing of the in-
dices of the k-NNs on the encrypted data. But with the current F/SHE schemes
it is impractical to even handle data that merely consists of a few hundred ele-
ments [ÇDSS15,CS15, ÇS19].

At EDBT 2018, Kesarwani et al. [KKN+18] proposed a secure way to solve
the k-NN problem on SHE encrypted data in a model where there is a non-
colluding pair of Cloud A and B, a.k.a. the federated cloud setting. In this
setting, the participating clouds do not collaborate with each other. A client uses
Cloud A as storage to store n data points encoded as integer values with each of
the δ coordinates encrypted in separate ciphertexts. A user (querier) provides an
encrypted query point in a similar format. Server A homomorphically computes
the square of the Euclidean distances between the query and the data points in n
different ciphertexts using an SHE scheme. The result of the computation is also
in encrypted form. Once the distances to the given query point are computed as
n ciphertexts, the Server A homomorphically evaluates a monotonic polynomial
p of degree d having positive integer coefficients, randomly permutes the order of
the ciphertexts and sends them to the Server B. The Server B has access to the
full decryption key, who decrypts the received data and sorts the (transformed)
plaintext distances, computes the indices of the k-NNs and sends back the indices
to Server A which then maps them back to the original encrypted indices and
sends the same to the client. The authors of [KKN+18] demonstrate that their
method takes only a few minutes when the number of elements is as large as
200,000 and the dimension is 2. It is also claimed in [KKN+18][Section 4.2] that
the Server B will not learn anything other than the value of k and the number of
equidistant points from the query point. Moreover, the authors claim that if the
size of squared plaintext distances is 16 bits, then a polynomial of degree d = 9
suffices to ensure that an adversary will only be able to recover the plaintext
distances with probability as small as 2−160.

It may be noted that though the protocol of [KKN+18] has been described
specifically in the context of securely evaluating k-NN, their technique of trans-
forming inputs through a random monotonic polynomial has applications in

Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data 3

many settings where sorting of SHE encrypted data is needed. Moreover, this
protocol may be of interest in scenarios where both computation and then sorting
on encrypted data is needed. It may be noted that if sorting is the only func-
tionality required, then order-preserving or order-revealing encryption schemes
would suffice for the purpose [BCLO09,BLR+15].

Polynomial Recovery from Only the Outputs. As is evident from the above
description of the k-NN (and the sorting) protocol from [KKN+18] on encrypted
data, one way of formalizing the cryptanalysis of this protocol is to formulate it
as the problem of recovering inputs of a randomly chosen monotonic polynomial
with positive coefficients by observing only the corresponding outputs. Here the
adversary is the Server B who is keen to learn more about the transformed input
distances than just their ordering. Formally, let p(x) = a0+a1 ·x+a2 ·x2+. . .+ad ·
xd be a polynomial of degree d, where each of the integer coefficients ai is picked
uniform randomly and independently in the range [1, 2α − 1]. The polynomial
is evaluated (homomorphically) on the (encrypted) unknown n integer inputs
xi ∈ [0, 2β − 1] (i = 1, 2, . . . , n). The adversary is provided only n outputs
p(xi). It may be assumed that it knows the parameters d, α and β as assumed
in [KKN+18]. The goal is to recover the inputs xi. In the context of Secure
k-NN problem, recovering xi would correspond to recovering the squares of the
Euclidean distances between the query point and data set points.

The problem of polynomial reconstruction, posed in different flavours, has
received good attention in the past. A well-known technique for this is the La-
grange interpolation. The problem of polynomial reconstruction also occurs in
the context of decoding error-correcting codes with many well-known techniques
to recover polynomials even when a sufficiently small fraction of the input-output
pairs are error prone [Ber68,GS99,GRS00], and many follow up works. But we
would like to emphasize that, to the best of our knowledge, in all the previous
works both the input to and the output of the polynomials are given. But in
the present setting, only the outputs are provided and we are not provided the
inputs (except that we only know the range where the inputs come and the
degree of polynomial). The goal is to recover the inputs and, consequently, the
polynomial itself.

We observe that given only the polynomial outputs there may be many poly-
nomial/input combinations (in the given input range) that result in the same
outputs. This is because if p(x) and xi are the chosen polynomial and the n
integer inputs, respectively, then, any polynomial of the form p(x+ c) (c, a con-
stant) will result in the same outputs for xi − c provided all the xi − c lie in
the given interval. So the best we could hope to recover for the current problem
is to recover the inputs up to a constant difference. Of course, there are other
possibilities too and the number of such equivalent solutions will likely be sig-
nificantly small if the number of outputs is much larger than the degree of the
polynomial. This is indeed the case for the secure k-NN problem when the input
data set is very large.

4 S. Murthy, S. Vivek

Our Contribution. We give an algorithm (cf. Algorithm 1) to the above defined
polynomial reconstruction problem where the goal is to recover the inputs (up
to a constant difference) of the randomly chosen monotonic polynomial with
positive integer coefficients by observing only their outputs assuming the number
of evaluation points is much greater in number compared to the degree of the
polynomial. Once (d+ 1) inputs are recovered, the degree d integer polynomial
can be reconstructed using the Lagrange interpolation technique. This result
invalidates the security claim in [KKN+18][Theorem 4.2] regarding the leakage
profile for Server B. In particular, the Server B will be able to learn the square
of the Euclidean distances (up to a constant difference) between the query point
and the data set points. It may not be able to tell the exact distance to a given
point due to random re-ordering but will be able to know all such values. Such
an information can potentially help the adversary to narrow down further if it
has access to extra information about the underlying data set or query point.

There can be many solutions to the above polynomial reconstruction prob-
lem, and hence we will output one solution that satisfies all the output points,
(there is also a possibility to enumerate all the solutions). But as discussed
above, when the number of output values is far bigger than the input degree,
the number of equivalent solutions will likely be small. Our algorithm readily
extends to recovering any integer polynomial (not necessarily a monotonic inte-
ger polynomial) and any input range (not necessarily [0, 2β − 1]). The proposed
algorithm (heuristically) runs in time exponential in the size of the inputs (β)
and degree (d) of the chosen polynomial, but polynomially dependent on the size
of the random coefficients (α). We would like to note that in many real world
scenarios the inputs are/can be encoded as integers of 16- or 32-bits length and
our method is feasible for inputs of such size. Note also that in SHE applications
d is required to be not large as well. This is because bigger values of d imply
deeper circuits w.r.t. homomorphic multiplications and hence more slow. For
the concrete parameters suggested in [KKN+18][Section 4.2], i.e., β = 16 and
d = 9, we can recover the inputs (up to a constant difference) for α = 16 in a
few seconds. We tested our attack using real-world data as well as with uniform
random data chosen within the input range, and this is described in detail in
Section 3.

Lastly, we investigate in Section 4 another variant of the protocol of [KKN+18]
where the (homomorphically) transformed polynomial outputs are perturbed by
a noise, yet maintaining the monotonicity. In this case our previously mentioned
attack will not work. But we show that it is still possible to recover ratios of the
inputs.

2 Cryptanalysis of a Secure k-NN Protocol

In Section 2.1 we describe the Secure k-Nearest Neighbour protocol from [KKN+18]
and formulate our attack as the polynomial reconstruction problem given only
the outputs. We describe our method for polynomial reconstruction and attack
on the k-NN protocol in Section 2.2. In Section 2.3 we provide a heuristic run-

Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data 5

ning time analysis of our method. This is followed by an optimisation of our
attack in Section 2.4.

2.1 Protocol from [KKN+18]

The Secure k-Nearest Neighbour (Secure k-NN) protocol from [KKN+18] makes
use of a non-colluding federated two cloud setting (Figure 1). The data owner
outsources his/her database in an encrypted form using an SHE scheme for stor-
age in the Cloud A, whereby the cloud is not privy to the data, thus preserving
confidentiality of the data. Each of the n data points are of δ-dimensions. Cloud
A provides storage for the database and provides services on the encrypted
database homomorphically. One of these services is computation of k-NN of a
given δ-dimension query point. End users are clients who are trusted entities
for accessing the database and hence possess the secret decryption key shared
by the data owner. These users who wish to avail of the computation services
provided by Server A form a δ-dimensional query point q, encrypts the same and
provides it to Server A.

When Server A receives the query, it homomorphically computes the square
of the Euclidean Distances (ED) between the δ-dimensional query point and
each of the n data points; if the query point is of the form q = (q1, q2, . . . , qδ)
and the kth data point is of the form (k1, k2, . . . , kδ), then the Euclidean distance
between this kth data point and q is ED2

k = (q1−k1)2+(q2−k2)2+ . . . (qδ−kδ)2.
This needs to be computed for each of the n data points in an encrypted manner.
Because this ED computation is of multiplicative depth 1, it can be efficiently
evaluated using an SHE scheme. The plaintext data points and the query point
are encoded as tuples of integers. Note that in the context of F/SHE schemes,
fixed-point values too are (exactly) encoded using essentially the scaled-integer
representation [CSVW16]. Since the Server A does not possess the decryption
key, it will not be able to efficiently uncover the underlying plaintext information
of either the query point or the data points. It now picks a monotonic polynomial
p(x) of degree d of the form a0 + a1 · x+ a2 · x2 + . . .+ ad · xd for some chosen
d ∈ N, where each of the integer coefficients ai are picked uniform randomly and
independently in the range [1, 2α−1], for example in the range [1, 232−1] as done
in [KKN+18][Section 3.4]. This polynomial is then evaluated homomorphically
for each of the Euclidean distances and the output ciphertexts are re-ordered
using a permutation σ picked uniformly at random, before sending them to
Server B for sorting.

Server B possesses the decryption key using which it will decrypt the values
received from Server A and sorts them. As the decrypted values are outputs of a
random polynomial, the original distances as computed by Server A are “hidden”
from Server B. Server B would then send the indices of k-NNs to Server A which
would then apply σ−1 to the received ordering of the indices and forward the
same to the client. The client would decrypt the encrypted indices of the k-NNs
of the query point q.

The Server B (and also A) is assumed to be honest but curious. It will
perform the computations correctly but is keen to learn more about the distances

6 S. Murthy, S. Vivek

Fig. 1. Secure k-NN Setting from [KKN+18]

between the query point and the data set points. After decryption, the Server B
would observe only the outputs of the polynomial evaluation (and not the input
squared distances). That is, it only sees the values on the L.H.S. of the following
set of equations:

p(x1) = a0 + a1 · x1 + a2 · x21 + . . .+ ad · xd1
p(x2) = a0 + a1 · x2 + a2 · x22 + . . .+ ad · xd2

... (1)

p(xn) = a0 + a1 · xn + a2 · x2n + . . .+ ad · xdn

It is assumed that the adversary B knows the degree d as it is usually small
since homomorphic evaluation of polynomials in encrypted form are efficient
only for small degree. It also knows the range [1, . . . , 2α − 1] for the unknown
coefficients ai, and the range [0, . . . , 2β − 1] for the unknown inputs xi. For our
attack, we need not know the exact values for the above three parameters, just
an upper bound on them would suffice. Also note that all the parameters above
take non-negative integer values.

As noted before, Server A evaluates the polynomial p(x) at n (squared Eu-
clidean distance) integer values x1, . . . , xn, and we can assume without loss of

Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data 7

generality that 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn. Since p(x) is monotonic the ordering of
p(xi) is identical to the ordering of xi (except possibly when there is equality).
If a0 ≤ x1, then for any given tuple of coefficients (a0, a1, . . . , ad), there will be a
set of positive real roots (χ1, χ2, . . . , χd) to (1). Hence the authors of [KKN+18]
seem to argue that if the range for ai is large enough, then it will be infeasible
to search for all possible polynomials satisfying (1). The authors claim that the
probability that Server B successfully recovers the coefficients ai, followed by
xi, is approximately 1/2α·(d+1), which is negligible when α is large. Referring to
the example given in [KKN+18, Section 4.2], for α = 16 and d = 9, this proba-
bility is approximately 2−160, which is negligible. Hence the protocol leaks only
negligible amount of information about either ai or xi to Server B and nothing
else other than the order of xi. We note here that the xi values may never be
uniquely recovered in (1) with probability = 1 since p(x+c) is also an equivalent
polynomial satisfying the equation for c ∈ Z and there may be many values of
c such that 0 ≤ xi − c < 2β . Hence the inputs and the polynomial may only be
recovered up to a constant difference. Other non-linear transformations may also
result in an equivalent solution. For instance, p(

√
x) can be a potential solution

when all the xi are perfect squares and p(x) contains only even powers. But
these possibilities will likely be significantly small when n� d, which indeed is
the scenario in [KKN+18].

2.2 Our Attack

Our key idea is to dramatically reduce the search space of xi by using the fact
that all the roots should be non-negative integers, not just non-negative real
values. The pseudocode of our method is given in Algorithm 1 on Page 10 and
is described in the steps below.

Step 1 - Guess the differences (xi − xj): Consider the two equations from
(1) for p(xi) and p(xj), where i > j :

p(xi)− p(xj) = (xi − xj)(·). (2)

Let Li,j = (p(xi)− p(xj)) ≥ 0 (as p(xi) ≥ p(xj)), and Di,j be the set of positive
divisors of Li,j that are less than 2β . From (2) we have that (xi−xj) is a “small”
divisor of Li,j . Note that 0 ≤ |xi − xj |< 2β . So we can sieve all the divisors of
Li,j of value less than 2β . In the sieve method, the quotient of Li,j/(xi − xj) is
divided by its smallest prime factor and the process of dividing the quotient by
its smallest prime factor is continued until we get 1. This is where we crucially use
the fact that the inputs and the outputs are represented as integers, and that the
(plaintext) input space is small enough to enumerate. The list Di,j constitutes
the guesses for the differences of the (unknown but to be determined) values xi.
It turns out that for many values of Li,j there may be too many divisors that are
less than 2β , so we need to sample larger number of output values (i.e., larger
n) and carefully pick up d number of Li,j ’s such that the value of each Di,j

is a small positive integer (say, ≤ ψ) whereby the search space for the guesses

8 S. Murthy, S. Vivek

becomes feasible to enumerate. There is another condition on how we choose the
set of d many Li,j . Namely, we must be able to determine the required d + 1
many xi from the given guesses for the differences when one of the free variable,
say, x1 is assigned a value. In other words, the corresponding equations must
be linearly independent. Because of the existence of one free variable, the input
values can only be determined up to a constant difference. Hence we may assign
x1 = 0 if the coefficients of the resulting polynomial are within the given range
and this polynomial is consistent with the remaining output values.

Each of the Di,j sets can be visualized as entries of a lower triangular matrix
with element D[i][j] represented by the set Di,j . One way to determine the d
independent set of equations is to stick on to elements of Column 1 of the D
matrix for simplicity. We walk the elements of the matrix examining the number
of divisors of each of the Di,1 lists. As soon as Di,1 is greater than ψ, we discard
the elements in the particular row D[i]. This is continued until we get at least
d valid rows in the D matrix. We again note here that the ith row element of
Column 1 of D matrix contains sets of divisors for each of (p(xi) − p(x1)) for
2 ≤ i ≤ n respectively. In Step 2 we look for a consistent set of divisors from
Column 1 and in Step 3 we use these d guesses of xi together with x1 to com-
pute the required degree d polynomial using Lagrange interpolation and check
whether this polynomial is consistent with the remaining n−d−1 output values.

Step 2 - Consistency check of the guessed differences: In Step 1 we would
have obtained d rows of divisors of polynomial differences in the D matrix that
contains the set of guesses for each of the d differences among the unknown in-
puts. In this step we try to filter out as many guessed tuples as possible before
executing the Step 3. This is because the Step 3 below consists of performing
Lagrange interpolation and then checking the validity of the constructed poly-
nomial on the remaining inputs and these steps are quite expensive to perform
for all the guessed tuples. We iterate over every d-tuple of divisors/guesses in
Column 1 of the D matrix and examine to check if that guessed divisor is con-
sistent as explained below. For integers i, j with Di,1, Dj,1 representing the set
of divisors in Rows i and j in Column 1 of D and given divisors di ∈ Di,1 and
dj ∈ Dj,1, then di and dj are said to be consistent if (di − dj) ∈ Di,j . This is
so because if (xi − x1) is a divisor of Li,1 and (xj − x1) is a divisor of Lj,1 then
(xi−xj) must be present in Di,j , which is evident in the way Li,j is obtained from
(2). Only the consistent values are considered and copied to an array state[]. In
summary, the output of this step is the array state where each of its elements
is a consistent divisor of Lj,1 obtained as above, and it is consistent with every
value of state[j], i 6= j.

Step 3 - Find a probable polynomial and verify its suitability: Lagrange
interpolation using the (d + 1) number of (x, y) tuples is used to compute a
degree d polynomial. The x values are based on values found in Step 2 and the
corresponding y values are the corresponding polynomial outputs, such that if
xi is a divisor of Li,1 then yi is the ith polynomial output enumerated in order.

Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data 9

Since the x values are guesses based on differences of d values of (xi − x1), the
polynomial obtained by setting x1 to 0 can actually be a potential polynomial
solution. If the polynomial coefficients do not happen to lie within [1,2α), we can
iterate over successive integer values of x from 0 up to (2β − 1), using it as an
offset for each of the (d + 1) values of x to get solutions that indeed satify the
needed bounds. Once a candidate polynomial is identified, using the remaining
(n − d − 1) points we verify the correctness by computing the roots of this
polynomial and checking if they are all in the range [0, 2β). If these verification
steps are successful, then the algorithm outputs the coefficients of a polynomial
that takes the same values as those of the n input points, and these points
are unique up to a constant difference. In other words, the differences of the
Euclidean distances are thus recovered in the most likely scenario.

2.3 Running Time Analysis

It looks difficult to do a tight analysis as we need to know the distribution of
the divisors of the polynomial outputs evaluated at independent and uniformly
random inputs. Hence we only provide a heuristic bound on the expected running
time.

Our method makes use of the sieving method to find divisors, in the given
range, of the polynomial differences. We then use Lagrange interpolation over
(d + 1) points to find a polynomial, and then find roots for c = (n − d − 1)
polynomials that satisfy the validity checks mentioned in Step 3 of Algorithm 1.
While the first polynomial output by Lagrange interpolation is very likely the
candidate polynomial, we may need to iterate over more values of x1 (bounded
by 2β) until the polynomial coefficients lie in the range [1,2α) and all the xi are
in [0,2β).

Suppose we consider ψ as a small integer bound on the number of divisors
for each of the d polynomial differences. Then the bound on the size of the
search space for the divisors is ψd. The number of divisors of an integer N is

bounded by NO(1
log log N); and on the average case it is logN [Tao08]. Though

we only consider divisors bounded by 2β , for ease of analysis we use the logN
expected bound. Based on this, we can set the value of ψ to be approximately
equal to α+ dβ, whereby the expected value of search space size is O(α+ dβ)d.
We then find the consistent set of divisors as described in Step 2 of Algorithm
1 and the worst case scenario to assume is that all the d-tuple divisors/guesses
are consistent. Using each of the ψd many d-tuple divisors/guesses, in the worst
case, we need to iterate over 2β values of x1 doing a Lagrange interpolation for
(d + 1) points and root finding for c polynomials. With Lagrange interpolation
being a O(d2 · (α+ dβ)2) algorithm and so is the cost of a root finding, then the
total cost for Step 3 comes to Õ(α+ dβ)d · 2β · n).

The heuristic expected running time of Algorithm 1 is Õ((α+ dβ)d · 2β · n).

10 S. Murthy, S. Vivek

Algorithm 1: Integer Polynomial Reconstruction From Only the Outputs

Procedure Main(Polynomial outputs : {p(x1), . . . , p(xn)}) :
D = GuessTheDifference({p(x1), . . . , p(xn)}, ψ)
state = CheckConsistency(D)
Q = FindCandidatePolynomial(state, {p(x1), . . . , p(xn)})
return Q

Procedure GuessTheDifference(Polynomial outputs : {p(x1), . . . , p(xn)}, ψ) :
for i = 2 to (n) do

for j = 1 to (i− 1) do
Use the sieve method to obtain all the (positive) divisors less than
2β of Li,j = (p(xi)− p(xj)) /∗ p(xi) > p(xj) ∗/
Di,j := Set of all divisors of Li,j less than 2β

end

end
/∗ We now have D: a lower triangular matrix ∗/
valid row count = 0 /∗ Count rows in which all row elements have their
divisor count less than ψ ∗/

forall Di do
forall Di,j elements in Di do

if Sizeof(Di,j) > ψ then
/∗ Number of factors of Di,j more than threshold ∗/
Discard row Di /∗ Mark Di,1 as -1 ∗/
Break out of this loop and start enumeration on row Di+1

end

end
valid row count++
if valid row count == d then

/∗ We now have d valid rows in D matrix ∗/
break /∗ Out of outer loop ∗/

end

end
Compact D matrix by removing all rows having first element = -1.
/∗ First row of D contains 0s, next (d+ 1) rows contain valid values ∗/
return D /∗ Set of divisors matrix ∗/

Procedure CheckConsistency(Set of positive divisors matrix D) :
for i = 3 to (d+ 2) do

for j = (i− 1) downto 2 do
∀(di, dj) where di ∈ Di,1 and dj ∈ Dj,1 and di 6= 0, dj 6= 0
if (di − dj) /∈ Di,j then

Set di = 0 in Di,1
end

end

end
forall dj 6= 0 ∈ D2,1 do

for i = 3 to (d+ 2) do
if di 6= 0 and (di − dj) /∈ Di,1 then

Set dj = 0 in D2,1

end

end

end
Iterate over Di and populate state[i] with non-zero divisor of Di,0 where i is
suitably offset to populate state[] starting from index 0

return state[] /∗ Divisor set consistent over all elements ∈ L ∗/

/∗ Continued on next page ∗/

Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data 11

Procedure FindCandidatePolynomial(Consistent Divisor set {state},
Polynomial outputs {p(x1), . . . , p(xn)}) :

for ν = 0 to (2β − 1) do
for i = 0 to d do

Form a set of tuples G := {(a, b) : a = (ν + state[i]) and b = p(xi)}
end
Use Lagrange interpolation on G to get polynomial Q
Verify if 1 ≤ coefficient of Q < 2α is true for all coefficients of Q
Verify if Q has non-negative integer roots, which are < 2β , with respect
to the remaining (n− d− 1) polynomial outputs, namely, p(xd+2) to
p(xn).

If all the above verification steps are successful, return Q
end
return 0

2.4 Further Optimisation

In Algorithm 1, in the worst case, we need to enumerate over ψd many d-tuples
of divisors/guesses. We provide here a way to choose the divisor sets such that
the enumeration complexity is as small as possible.

We refer to (1) giving the polynomial outputs. We compute differences p(xi)−
p(xj), where p(xi) ≥ p(xj) if xi ≥ xj . These nC2 values can be represented
as lower a triangular matrix L, with elements Li,j as described in Step 1 of
Algorithm 1, is given below :

L =

0 0 0 . . . 0

p(x2)− p(x1) 0 0 . . . 0
p(x3)− p(x1) p(x3)− p(x2) 0 . . . 0

...
p(xn)− p(x1) p(xn)− p(x2) p(xn)− p(x3) . . . p(xn)− p(xn−1) 0

The number of divisors for each of the differences up to a bound ψ are

obtained by sieving, represented as a matrix D where the element Dij represents
the set of divisors (with values < 2β) of (p(xi)− p(xj)).

D =

0 0 0 . . . 0

D2,1 0 0 . . . 0
D3,1 D3,2 0 . . . 0

...
Dn,1 Dn,2 Dn,3 . . . Dn,n−1 0

We now need to find the set of d many Dij elements of the matrix D such

that
∏
Dij is minimum, in other words, the product of the number of guesses is

minimum. This set of elements in the matrix D can be visualized as a complete

12 S. Murthy, S. Vivek

undirected graph on n vertices wherein the number of elements in Dij is the
edge cost between nodes Vi and Vj . Now finding the minimum

∏
Dij is akin

to finding the d-Minimum Spanning Tree (i.e., a minimum weight tree with d
edges only) in the graph, where the weight of the tree is represented by the
product of the weights. The requirement that the subgraph is a tree comes
from the linear independence requirement of the corresponding set of equations.
Essentially, we are transforming the problem of finding the small search space
of divisors to the problem of finding a d-minimum spanning tree having the
least cost (in terms of divisor product) across all divisors sets of matrix D yet
satisfying the linear independence condition. It is shown in [RSM+96] that the
d-MST problem is NP-hard for points in the Euclidean plane. The same paper
provides an approximation algorithm to find d-MST with performance ratio of
2
√
d for a general edge-weighted graph, with non-negative edge weights. Note

that this approximation algorithm also works for multiplication of edge weights
(weights greater than 1) since by extraction of logarithms this can be trivially
turned into addition of edge weights. Using this algorithm, we can carefully
select d < n nodes having close to the minimum enumeration complexity. in
order to make our search space feasible to guess the differences (xi − xj) with
xi ≥ xj . From the d-MST so obtained, we can now go on to find the set of
divisors (xi − xj) such that they are consistent as explained in Section 2.2 and
continue with finding the polynomial coefficients using Lagrange interpolation
as described in Algorithm 1. However, we did not implement this optimisation in
our code as the concrete running time was already small enough. But for larger
instances this optimisation will be useful.

3 Experiments and Results

We have performed two sets of experiments using the SAGE library [The19].
Our source code is available at [MV]. One set consists of choosing random val-
ues within given bounds for xi and ai, computing the outputs of a degree d
polynomial, and trying to recover the coefficients of the polynomial, namely the
ai values using only the polynomial output values. The second set consists of
using data available from the UCI Machine learning repository [DG17] which is
a real-world hospital data obtained from a hospital in Caracas, Venezuela.

All our experiments were run on a Lenovo ThinkStation P920 workstation
having a 2.3 GHz Intel R©Xeon R© processor with 12 cores. The algorithms for
sieving, consistency check and polynomial verification were exactly same in both
the cases, the only difference being in the datasets as described in the respective
sections below. As in [KKN+18], we have chosen the degree of the polynomial
d = 9.

3.1 Experiments with Random Values

We set the bound for ai and xi as given in Table 1 with the values being uniform
random and independently chosen from the respective ranges. We computed the

Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data 13

polynomial with ai as coefficients and computed n = 40 outputs for the xi values.
These n values were the input to our algorithm. The choice of n = 40 was based
on observations from the experiments; in majority of the instances we could
bound the number of divisors to less than 20 thereby making the search space
significantly less than 2010. We then used the divisor set and (d+ 1) polynomial
outputs to compute a possible polynomial using Lagrange interpolation which
we then used to verify successfully against the remaining (n − d − 1) output
values. We note that our search space is significantly less than the estimate of
2160 in [KKN+18]. It looks like many further optimization could be done to
reduce the search space. When we increased β to 32 for xi, SAGE encountered
an out-of-memory error while performing Lagrange interpolation. But we think
it should still be feasible to run this instance too.

α (in bits) β (in bits) Run time (in seconds)

16 16 4
16 24 288
16 28 552
24 16 8
24 24 374
24 28 1283
32 16 9
32 24 241
32 28 1676

Table 1. Run times for polynomial reconstruction for random parameters.

3.2 Experiments with Real World Data

We used the cervical cancer (risk factors) data set, same as the one used by
[KKN+18], also available from the UCI Machine learning repository [DG17]. This
data set consists of information pertaining to 858 patients, each consisting of 32
attributes comprising of demographic information, habits and historic medical
records. The dataset had a few missing values due to privacy concerns and these
were set to 0. Values with fractional part were rounded off to the nearest integer.
We repeated the experiment with different random polynomials and were able
to recover the polynomial successfully up to the differences. We also tested with
16, 24 and 32 bit values of α and have tabulated the time taken by SAGE to
compute the polynomial in each of the cases. β = 16 was suffice to encode this
data. Time for execution is given seconds and is averaged over 5 runs in each
case.

Our results invalidate the security claims in [KKN+18][Theorem 4.2] regard-
ing the leakage profile for Server B. For the parameters mentioned in [KKN+18]

14 S. Murthy, S. Vivek

α (in bits) β (in bits) Run time (in seconds)

16 16 2.25
24 16 73.81
32 16 109.87

Table 2. Run times for polynomial reconstruction for a real world data.

[Section 4.2], i.e., d = 9 and the (squared plaintext) distances are in the range
[0, 2β), where, β = 16. For the parameters mentioned there, with only n = 40
output values, we could recover the coefficients of the polynomial (up to a con-
stant difference) within a few minutes as given in Table 2.

Because of the random re-ordering of the distances, Server B will not learn
the exact distance of the query point to a specified point (say the ith point in the
original order). Nevertheless, in many real world scenarios the data set is publicly
available and this, and perhaps other auxilliary information, may potentially be
used in combination with our results to leak information about the query point.

4 Attack on the Secure k-NN protocol in the Noisy
Setting

In this section we give another attack on the protocol of [KKN+18] if one tries
to overcome our attack from Section 2 by perturbing the polynomial outputs by
adding noisy error terms. This modified protocol is not mentioned in [KKN+18]
but we consider it here for completeness.

In the original solution given in [KKN+18], in order to hide the Euclidean
distance values, Server A chooses a monotonic polynomial and homomorphically
evaluates this polynomial on its computed distances and permutes the order
before sending them to Server B. Now, instead of sending these (encrypted)
polynomial outputs as it is, if they are perturbed with some noise such that the
ordering is still maintained, it will make our attack in Section 2 unsuccessful
in recovering the polynomial or the inputs, as the attack relies on the exact
difference of the polynomial outputs. It is easy to see that the error value can
only be as large as the sum of all the coefficients except the constant term. Let
P (x) = a0 + a1 · x + . . . + ad · xd be the chosen monotonic polynomial, then,
P (0) = a0, P (1) = a0 +a1 + . . .+ad and the maximum value of the added noise
needs to be less than (P (1) − P (0)) so as to maintain the original ordering of
polynomial outputs, meaning the perturbation error may only be chosen from
the set [0, 1, . . . , (a1 + . . .+ ad)]. This safe choice of the error term is due to the
fact that the polynomial output values are encrypted and hence it is not possible
for the Server A to inspect the value and accordingly choose the error term. The
range of perturbation error terms still depends on the size of the coefficient space
that can potentially be very large (unlike the plaintext space as assumed). The
attack presented in the previous section will not work in this new setting because
in the attack we rely on the exact differences of the polynomial outputs.

Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data 15

In this new setting, we next show that it is still possible to leak ratios of the
inputs to the Server B, although recovering the exact values (even up to to a
constant difference) may be challenging. But still a lot more information about
the inputs is leaked than just a single bit. Let two of the values that the Adversary
B obtains after decryption be F (xi) = P (xi) + ei and F (xj) = P (xj) + ej ,

where ei and ej are the random error terms such that 0 ≤ ei, ej <
∑d
k=1 ak and

1 ≤ ak < 2α. Consider the ratio F (xi)/F (xj) with 0 ≤ xj ≤ xi < 2β :

F (xi)

F (xj)
=

(
∑d
k=0 ak) + a1 · xi + . . .+ ad · xdi

(
∑d
k=0 ak) + a1 · xj + . . .+ ad · xdj

. (3)

Note that each F (xk) > 0. When xi and xj are sufficiently large we obtain that
the ratio in (3) is approximately close to (xi/xj)

d. By taking the dth root of
this value, we can recover the ratio (xi/xj). Note also that if the error terms ek
were not significantly small than the leading terms (which, fortunately, is not
the case), then we would not be able to recover the ratios.

5 Conclusion and Future Work

In this paper we give an attack on the protocol of [KKN+18] for Secure k-NN
on encrypted data. This attack is based on our algorithm for integer polynomial
reconstruction given only the outputs. While, by just using the outputs, it is not
possible to accurately determine the coefficients or the inputs, we show that we
can feasibly recover the inputs (up to a constant difference) of size about 32 bits
when the number of outputs is much bigger than the degree of the polynomial.
Our experiments were conducted both on uniformly randomly selected values
as well as a real-world dataset. Since many of the datasets are available in the
public domain it may possible for an adversary to derive more information about
the exact values using our method together with some other available metadata.

Our method for polynomial reconstruction runs in exponential time in plain-
text space β and degree d of the chosen polynomial. In many real-world sce-
narios both these parameters will be small. Future work can look at having a
better algorithm and/or have a lower bound analysis of the time required for
this polynomial reconstruction problem. Finally, an FHE solution that can per-
form efficient sorting and searching on large datasets would eliminate the need
for service providers to be entrusted with decryption keys, thereby providing a
more secure cloud computation environment.

Acknowledgements

We thank Sonata Software Limited, Bengaluru, India for funding this work. We
also thank Debdeep Mukhopadhyay and Sikhar Patranabis for helpful discus-
sions. We also thank V.N. Muralidhara for pointing out results on the k-MST
problem.

16 S. Murthy, S. Vivek

References

BCLO09. Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill.
Order-Preserving Symmetric Encryption. In Antoine Joux, editor, Ad-
vances in Cryptology - EUROCRYPT 2009, pages 224–241, Berlin, Heidel-
berg, 2009. Springer Berlin Heidelberg.

Ber68. ER Berlekamp. Algebraic Coding Theory, McGraw-Hill. New York, Vol8,
1968.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully
Homomorphic Encryption Without Bootstrapping. In Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, ITCS ’12,
pages 309–325, New York, NY, USA, 2012. ACM.

BLR+15. Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry,
and Joe Zimmerman. Semantically Secure Order-Revealing Encryption:
Multi-input Functional Encryption Without Obfuscation. In Elisabeth
Oswald and Marc Fischlin, editors, Advances in Cryptology – EURO-
CRYPT 2015, Part II, volume 9057 of Lecture Notes in Computer Science,
pages 563–594, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg,
Germany.

ÇDSS15. Gizem S. Çetin, Yarkin Doröz, Berk Sunar, and Erkay Savas. Depth
Optimized Efficient Homomorphic Sorting. In Kristin E. Lauter and
Francisco Rodŕıguez-Henŕıquez, editors, Progress in Cryptology - LATIN-
CRYPT 2015: 4th International Conference on Cryptology and Informa-
tion Security in Latin America, volume 9230 of Lecture Notes in Computer
Science, pages 61–80, Guadalajara, Mexico, August 23–26, 2015. Springer,
Heidelberg, Germany.

CGGI19. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Tfhe: Fast Fully Homomorphic Encryption Over the Torus. Journal of
Cryptology, Apr 2019.

CGLB14. Sunoh Choi, Gabriel Ghinita, Hyo-Sang Lim, and Elisa Bertino. Secure
kNN Query Processing in Untrusted Cloud Environments. IEEE Transac-
tions on Knowledge and Data Engineering, 26:2818–2831, 2014.

CS15. Ayantika Chatterjee and Indranil Sengupta. Searching and Sorting of Fully
Homomorphic Encrypted Data on cloud. IACR Cryptology ePrint Archive,
2015:981, 2015.

ÇS19. Gizem S. Çetin and Berk Sunar. Homomorphic Rank Sort Using Surrogate
Polynomials. In Tanja Lange and Orr Dunkelman, editors, Progress in
Cryptology – LATINCRYPT 2017, pages 311–326, Cham, 2019. Springer
International Publishing.

CSVW16. Anamaria Costache, Nigel P. Smart, Srinivas Vivek, and Adrian Waller.
Fixed-point arithmetic in SHE schemes. In Roberto Avanzi and Howard M.
Heys, editors, SAC 2016: 23rd Annual International Workshop on Selected
Areas in Cryptography, volume 10532 of Lecture Notes in Computer Sci-
ence, pages 401–422, St. John’s, NL, Canada, August 10–12, 2016. Springer,
Heidelberg, Germany.

DG17. Dheeru Dua and Casey Graff. UCI Machine Learning Repository, 2017.
ESJ14. Yousef Elmehdwi, Bharath K. Samanthula, and Wei Jiang. Secure k-

Nearest Neighbor Query over Encrypted Data in Outsourced Environ-
ments. In IEEE 30th International Conference on Data Engineering,
Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, pages 664–675,
2014.

Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data 17

Gen09. Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis,
Stanford University, Stanford, CA, USA, 2009. AAI3382729.

GRS00. O. Goldreich, R. Rubinfeld, and M. Sudan. Learning Polynomials with
Queries: The Highly Noisy Case. SIAM Journal on Discrete Mathematics,
13(4):535–570, 2000.

GS99. V. Guruswami and M. Sudan. Improved Decoding of Reed-Solomon and
Algebraic-Geometry Codes. IEEE Transactions on Information Theory,
45(6):1757–1767, Sep. 1999.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic Encryption
from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology – CRYPTO 2013, pages 75–92, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

KKN+18. Manish Kesarwani, Akshar Kaul, Prasad Naldurg, Sikhar Patranabis,
Gagandeep Singh, Sameep Mehta, and Debdeep Mukhopadhyay. Efficient
Secure k-Nearest Neighbours over Encrypted Data. In Proceedings of the
21th International Conference on Extending Database Technology, EDBT
2018, Vienna, Austria, March 26-29, 2018., pages 564–575, 2018.

MV. Shyam Murthy and Srinivas Vivek. Available at http://github.com/

shyamsmurthy/knn_polynomial_recovery. Last accessed on 22nd Septem-
ber, 2019, at 15:30.

RSM+96. R. Ravi, Ravi Sundaram, Madhav V. Marathe, Daniel J. Rosenkrantz, and
S. S. Ravi. Spanning Trees - Short or Small. SIAM J. Discrete Math.,
9(2):178–200, 1996.

SHSK15. Ebrahim M. Songhori, Siam U. Hussain, Ahmad-Reza Sadeghi, and Farinaz
Koushanfar. Compacting Privacy-Preserving k-Nearest Neighbor Search
using Logic Synthesis. 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6, 2015.

Tao08. Terence Tao. Blog: The divisor bound, 2008. Available at https:

//terrytao.wordpress.com/2008/09/23/the-divisor-bound/. Last ac-
cessed on 19th July, 2019, at 15:30.

The19. The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 8.4), 2019. https://www.sagemath.org.

WCKM09. Wai Kit Wong, David Wai-lok Cheung, Ben Kao, and Nikos Mamoulis.
Secure kNN Computation on Encrypted Databases. In Proceedings of the
2009 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’09, pages 139–152, New York, NY, USA, 2009. ACM.

XLY13. Xiaokui Xiao, Feifei Li, and Bin Yao. Secure Nearest Neighbor Revisited.
In Proceedings of the 2013 IEEE International Conference on Data Engi-
neering (ICDE 2013), ICDE ’13, pages 733–744, Washington, DC, USA,
2013. IEEE Computer Society.

ZHT16. Youwen Zhu, Zhiqiu Huang, and Tsuyoshi Takagi. Secure and Controllable
k-NN Query over Encrypted Cloud Data with Key Confidentiality. Journal
of Parallel and Distributed Computing, 89(C):1–12, 2016.

http://github.com/shyamsmurthy/knn_polynomial_recovery
http://github.com/shyamsmurthy/knn_polynomial_recovery
https://terrytao.wordpress.com/2008/09/23/the-divisor-bound/
https://terrytao.wordpress.com/2008/09/23/the-divisor-bound/

	Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data

