
Puncturable Proxy Re-Encryption supporting to
Group Messaging Service

Tran Viet Xuan Phuong1,2, Willy Susilo1, Jongkil Kim1, Guomin Yang1, and
Dongxi Liu2

1 Institute of Cybersecurity and Cryptology
School of Computing and Information Technology

University of Wollongong, Australia.
{txuan, wsusilo, jongkil, gyang}@uow.edu.au

2 Data61, CSIRO
Syndey, Australia.

Dongxi.Liu@data61.csiro.au

Abstract. This work envisions a new encryption primitive for many-
to-many paradigms such as group messaging systems. Previously, punc-
turable encryption (PE) was introduced to provide forward security for
asynchronous messaging services. However, existing PE schemes were
proposed only for one-to-one communication, and causes a significant
overhead for a group messaging system. In fact, the group communi-
cation over PE can only be achieved by encrypting a message multiple
times for each receiver by the sender’s device, which is usually suit-
able to restricted resources such as mobile phones or sensor devices. Our
new suggested scheme enables to re-encrypt ciphertexts of puncturable
encryption by a message server (i.e., a proxy) so that computationally
heavy operations are delegated to the server who has more powerful
processors and a constant power source. We then proposed a new Punc-
turable Proxy Re-Encryption (PPRE) scheme. The scheme is inspired
by unidirectional proxy re-encryption (UPRE), which achieves forward
secrecy through fine-grained revocation of decryption capability by inte-
grating the PE scheme. This paper first presents a forward secure PPRE
in the group messaging service. Our scheme is IND-CCA secure under
3-weak Decision Bilinear Diffie-Hellman Inversion assumption.

Keywords: Puncturable Encryption, Proxy Re-Encryption, Group Messaging
Service, CCA Security

1 Introduction

Green and Miers introduced Puncturable Encryption (PE) [15] to produce effi-
cient forward-secure encryption for asynchronous communication with low over-
head. Forward secrecy is a crucial trend on secure communication. For example,
a new version of TLS v1.3 mandates forward secrecy for its key exchange. The
protocols that do not support forward secrecy will be gradually deprecated in

2 Tran Phuong, Willy Susilo, Jongkil Kim, Guomin Yang, and Dongxi Liu

the near future. PE enables users to utilize forward secure asynchronous com-
munication such as a messaging service.

A group messaging service in real-world applications such as Snapchat and
Whatsapp is essential since the communication between users is not always one-
to-one. Many-to-many communication (e.g., a group messaging service) has a
capability to boost customer convenience in the business/private conversation
for a group of users. Therefore, supporting group messaging service makes a con-
versation more specific and focused. Forward secrecy and asynchronous proper-
ties that PE offers are still important in a group messaging service. However,
messages in group communication are not always synchronized. Participants who
are traveling or on-the-go will receive the messages with a significant delay. Fur-
thermore, in the event that a user key in group communication is compromised;
the confidentiality of past messages will fail.

In the existing work, the proposed PE schemes are constructed only for one-
to-one communication between a sender and a receiver. How to use those PE
schemes for many-to-many communication such as a group messaging service
remains daunting. One of the most trivial ways is a participant of a group com-
munication encrypts a message for all other participants in the communication
one-by-one using PE, but this requires significant computation overhead to the
sender. Particularly, if a message is sent from resource-constraint devices such
as mobiles and sensor devices, this causes a substantial amount of battery con-
sumption and delay as the number of participants grows.

To mitigate the delay time or support messaging for individuals who are
away, we revisit the Proxy Re-Encryption (PRE) [3, 2, 17]. Suppose that Alice
makes a group chatting room and invites multiple users, every time a new user
joins in the group chatting, Alice computes the re-encryption key for this user
by his public key and uploads to a messaging server, which is considered as a
proxy. If anyone sends a message in this room, the message is encrypted only
for Alice and send to the message server. The message server re-encrypts the
encrypted message for all participants one-by-one using the re-encryption keys
that Alice uploaded, then delivers it to the participants. Because the message
server has more powerful processors and constant power source, it will reduce the
delay caused by multiple encryptions. Moreover, each participant will encrypt
the message only once as a general PE scheme; it prolongs the battery life of
participant devices, significantly.

Contribution: Motivated by the aforementioned scenario, we investigate the
fine-grained revocation of decryption capability only for specific messages while
all other messages are decryptable in [15], then incorporate the unidirectional
proxy re-encryption (UPRE) to firstly propose Puncturable Proxy Re-Encryption
(PPRE). In a nutshell, PPRE scheme has both PE and UPRE scheme; how-
ever, it is not straightforward to deploy both schemes into the typical proxy
re-encryption. At a high-level idea, each message is attached to a tag t ∈
{t1, . . . , td}, which can be time stamps or message identifiers. The ciphertext also
includes the set of tags corresponding to the stamped messages. The delegator
applies the puncture algorithm to puncture her secret key by tag t ∈ {t1, . . . , td}

Puncturable Proxy Re-Encryption supporting to Group Messaging Service 3

if she wants to revoke the capability of decryption tag t. This addressing issue
is achieved the forward secrecy in the messaging system. Next to delegate the
decryption right, the delegator sends the template of puncture key TK and the
re-encryption key RB←A to the proxy server, then the proxy uses the RB←A to
re-encrypt the ciphertext. The proxy will delegate TK and ciphertext to the dele-
gatee. From the template key TK, the delegatee can derive his/her own puncture
keys. The decryption of delegatee is input of the puncture key and his secret key.
The proposed scheme first achieve IND-CCA security, which is a considerable se-
curity assumption to provide a more realistic adversarial model. We are inspired
by the papers of [7, 9, 17] which present scheme to apply a strongly unforgeable
one-time signature to bind ciphertext components altogether and offer a secure
against chosen ciphertext attacks in the manner of [8].

Table 1. Performance Comparison between Our Proposed Scheme and [17] scheme.

Scheme Level 1 - Ciphertext Level 2 - Ciphertext Level 1 Dec Level 2 Dec Attack
[17] 2 Sig + 4|G|+ 1|GT | 2 Sig + 2|G|+ 1|GT | 1p 1p IND-CCA

PPRE 2 Sig + (7 + d)|G|+ 1|GT | 2 Sig + (2 + d)|G|+ 1|GT | tp tp IND-CCA

We highlight a detailed computation of our Puncturable Proxy Re-Encryption
and typical Unidirectional PRE of [17]. The schemes are compared in terms of
the order of the underlying group, ciphertext size, decryption cost, and secu-
rity assumption. We use d to denote the number of tags, and t the number of
puncture tags.
Related Work. In the early concept presented in [18], the original recipient
must be available for re-encrypting ciphertexts when needed, which is not al-
ways feasible. Later, [4] first proposed a proxy re-encryption, which establishes
an actual notion with the elegance of the construction. This scheme is based on
Elgamal, and it is constructed upon a group G of prime order p. [3, 2] proposed
the first unidirectional PRE scheme, based on bilinear pairings. These schemes
are also the first to present the idea of multiple ciphertext space. Apart from [3,
2], [9] presents the first CCA-secure bidirectional scheme in the standard model,
while the unidirectional case, [17, 16] achieve the chosen ciphertext security in
the standard model. [24] then proposed bidirectional schemes without pairings
under CCA-secure in the random oracle model. [14] proposed a new fashion of
PRE scheme as the first identity-based encryption proxy encryption (IBPRE)
scheme. Using the identity-based, this scheme uses the identities of the delegator
and delegatee as their public keys. Another interesting proposal proposed by [1]
defines the notion of key privacy in the context of PRE, which prevents the proxy
to derive the identities of both sender and receiver from a re-encryption key. As
the new variances of IBPRE, [10] presented IB-PRE scheme built upon the re-
ductions to the security of IBE [22]. [19] proposed Hybrid proxy re-encryption,
which ciphertext encrypted by public key encryption scheme can be re-encrypted
to ciphertexts under an identity-based encryption scheme. Recently, [20] intro-
duces proxy re-encryption with the scenario of key rotation of data stored on the

4 Tran Phuong, Willy Susilo, Jongkil Kim, Guomin Yang, and Dongxi Liu

cloud to reduce the rotating cost. Several works proposed as condition [23], type-
based proxy re-encryption [21] to produce the diversity for PRE. In addition,
PRE is appropriate to deploy in the cloud services. [13] proposed the variant
of proxy re-encryption schemes in the dropbox, and [5] produced efficient and
secure shared storage.

2 Preliminaries

2.1 Bilinear Map

Let G and GT be two multiplicative cyclic groups of same prime order p, and g a
generator of G. We define e : G×G→ GT be a bilinear map with the following
properties: (1) Bilinearity : e(ua, vb) = e(ub, va) = e(u, v)ab for all u,v ∈ G and
a,b ∈ Zp. (2) Non-degeneracy : e(g, g) ̸= 1. Notice that the map e is symmetric
since e(ga, gb) = e(g, g)ab = e(gb, ga).

2.2 The 3-weak Decision Bilinear Diffie-Hellman Inversion
(3-wDBDHI)

The Decision 3-wDBDHI problem is the intractability of a variant of Deci-
sional Bilinear Diffie-Hellman [6] assumption, which consider the indistinguish-
able computational of e(g, g)b/a from tuple of random elements (g, ga, ga2

, ga
q

, gb).
There is a distinguisher At, ϵ- breaks the assumption if it runs in polynomial t
time and |Pr[A(g, ga, ga2

, ga
3

, gb, e(g, g)b/a) = 1|a, b ∈R Z∗p]−Pr[A(g, ga, ga
2

, ga
3

,

gb, e(g, g)z) = 1|a, b, z ∈R Z∗p| ≤ ϵ(k). In the works of [12, 17], the 3-wDBDHI
problem is shown obviously that it is not easier than the (q-DBDHI) problem
[6] for q ≤ 3, which is to recognize e(g, g)1/a given (g, ga, . . . , ga

q

) ∈ Gq+1.

2.3 One-time signatures

We apply the CHK method [8] to use one-time signatures, which consist of a
triple of algorithms Sig = (G,S,V). The algorithm inputs of a security param-
eter λ, G generates a one-time key pair (ssk, svk) while, for any message M ,
V(σ, svk,M) outputs 1 whenever σ = S(ssk,M) and 0 otherwise. The strongly
unforgeable one-time signatures are presented [8], which means that no PPT
adversary can create a new signature for a previously signed message.

Definition 1 Sig= (G,S,V) is a strong one time signature if the probability is
negligible for any PPT forger F

AdvOTS = Pr [(ssk, svk)← G(λ); (M,St)← F(svk);σ ← S(ssk,M); (M ′, σ′)

← F(M,σ, svk, St) : V(σ′, svk,M ′) = 1 ∧ (M ′, σ′) ̸= (M,σ)],

where St denotes F ’s state information across stages.

Puncturable Proxy Re-Encryption supporting to Group Messaging Service 5

2.4 Lagrange Polynomial and Interpolation

Suppose that a polynomial of degree d is uniquely defined by a set of points
(x0, y0), (x1, y1), . . . , (xd+1, yd+1). The Lagrange form of the polynomial allows
the computation of a point x on the polynomial using only d+1 points as follows:

q(x) = L(x, xc, yc) =

d∑
j=0

(yc[j] · ℓ(x, j, xc)),

where, xc = [x0, . . . , xd+1] and yc = [y0, . . . , yd+1] and the Lagrange basis poly-
nomial ℓ(. . .) is:

ℓ(x, j, xc) =
∏

0≤m,m ̸=j≤d

x− xc[m]

xc[j]− xc[m]
.

Applying the Lagrange polynomial form, a random degree d polynomial q(x)
is selected, which consists of sampling d random values r1. . . . , rd from Zp,
setting points (1, r1), (2, r2), . . . , (d, rd) and setting the final point to (0, β) to
guarantee q(0) = β. Lagrange interpolation can compute V (x) without knowl-
edge of the polynomial coefficients by only the public values gq(0), . . . , gq(d) as:

V (x) = gq(x) = g
∑d

j=0 yjℓ(x,j,xc) =
d∏

j=0

(gq(j))ℓ(x,j,xc), where ℓ(x, j, xc) is already

defined.

3 Model and security notions

3.1 Puncturable Proxy Re-Encryption

Puncturable Proxy Re-Encryption scheme has Global-setup, KeyGeneration, Re-
KeyGen, Puncture, Encryption1 (is not re-encrypt-able), Encryption2, Re-Encryption,
and Decryption1, Decryption2 algorithms defined in the following.

I Global-setup(1k, d). On input a security parameter k, a maximum number
of tags per ciphertext d, the algorithm outputs the public parameter param,
and initial puncture key PSK0.

I Key-Generation(param,PSK0). On input the public parameter param and an
initial puncture key PSK0, the algorithms generates the public/secret key
pair for a user A, then combines the secret key A and PSK0 to produce new
puncture key PSK′0.

I Puncture(param,TK,PSKi−1, t). On input an existing key PSKi−1 as {PSK′0,
PSK1, . . . ,PSKi−1}, and a tag t, the algorithm outputs PSKi.

I Re-KeyGen(param, skA, pkB). On input the public parameter param, secret
key A, and public key B. A first generates a template puncture key TK by
the param and skA. Then A then publicly delegates to user B a re-encryption
key RB←A, and encrypted form EncpkB(TK).

I Encryption1(param, pkA,M, t1, . . . , td). On input the param, public key of the
user A, a message M , and a set of tags (t1, . . . , td), the algorithm outputs
the first level ciphertext CT1 along with the tags (t1, . . . , td).

6 Tran Phuong, Willy Susilo, Jongkil Kim, Guomin Yang, and Dongxi Liu

I Encryption2(param, pkA,M, t1, . . . , td). On input the param, public key of user
A, a message M , and a set of tags (t1, . . . , td), the algorithm outputs the
second level ciphertext CT2 along with the tags t1, . . . , td.

I Re-Encryption(CT2,RB←A). On input the second level ciphertext CT2 along
with the tags t1, . . . , td, a re-key RA←B . The algorithm first checks the va-
lidity of CT2. If CT2 is well-formed, the algorithm computes from CT2 by
the re-encryption key RB←A, and produce the ciphertext CT1, along with the
tags t1, . . . , td. Otherwise, CT2 is declared ‘invalid.’

I Decryption1(param, skB,CT1, t1, . . . , td). On the input param, the secret key
of user B, punctured key PSKi ,ciphertext CT1 along with (t1, . . . , td), the
algorithm outputs message M or ‘invalid.’

I Decryption2(param, skA,PSKi,CT2, t1, . . . , td). On the input param, the se-
cret key of user A, punctured key PSKi, second ciphertext CT2 along with
(t1, . . . , td), the decryption outputs message as M or ‘invalid.’

Correctness. For any common public parameters param, for any message
m ∈ {0, 1}∗ and any couple of public/secret key pair (pkA, skA), (pkB, skB) these
algorithms should satisfy the following conditions:

Decryption1(param, skA,PSKi,CT1) = M ;

Decryption2(param, skA,PSKi,CT2) = M ;

Decryption1(param, skB,Re-Encryption(CT2,RB←A),

Re-KeyGen(param, skA, pkB),PSKi) = M.

We use the standard security notions of proxy re-encryption schemes [3, 2,
17, 11], which initializes empty lists of corrupted users CU and honest users HU.
In addition, we define two empty sets P,C, a counter n, a targeted user x∗, and
a set of tags t∗1, . . . , t

∗
d. Then, A Puncturable Proxy Re-Encryption scheme is

replayable chosen-ciphertext attack (RCCA) secure at level 2 ciphertexts for any
PPT adversary A if the probability

Pr[param← Global-setup(1k, d); (pkx∗ , skx∗)← Key-Generationx∗(param);

{(pkx, skx)← Key-GenerationHU(param)}; {(pky, sky)← Key-GenerationCU(param)};
{Rx←x∗ ← Re-KeyGen(skx∗ , pkx)}, {Rx∗←x ← Re-KeyGen(skx, pkx∗)};
{Rx′←x ← Re-KeyGen(skx, pk′x)}, {Rx←y ← Re-KeyGen(sky, pkx)};

{n++,PSKn = Puncturex∗(param,TK,PSK′n−1, t), P ← t};
{n++,PSKn = PunctureHU(param,TK,PSK′n−1, t), P ← t};

{n++,PSKn = PunctureCU(param,TK,PSK′n−1, t), P ← t};Corrupt();
(m1,m0, St)← AO1−dec,Oreenc(pkx∗ , {(pkx, skx)},

{Rx←x∗}, {Rx←x∗}, {Rx′←x}, {Rx←y}, (t1, . . . , td), (t∗1, . . . , t∗d));

µ
R← {0, 1},CT∗2 = Encryption2(mµ∗ , pkx∗ , (t

∗
1, . . . , t

∗
d));

µ′ ← AO1−dec,Oreenc(CT∗2, St)) : µ′ = µ]− 1

2
< ϵ(k),

with St is the state information, {x′} are honest users.

Puncturable Proxy Re-Encryption supporting to Group Messaging Service 7

– Corrupt() is invoked in the first time; the adversary issues this query. Then,
the challenger returns the most recent punctured key PSKn to the adversary,
and sets C ← P . All subsequent queries return ⊥.

– O(reenc): Responding a re-encryption query from user pkx to user pky, PSK,
and tags (t1, . . . , td) for a second level ciphertext CT2, this oracle returns
‘invalid’ if CT2 is not encrypted by pkx, (t1, . . . , td). It returns ⊥ if pky ∈
CU and (pkx∗ ,CT∗2, (t∗1, . . . , t∗d)) = (pkx,CT2, (t1, . . . , td)). Otherwise, CT1 =
Re-Encryption(CT2, skx, pky) is returned to A.

– O(1-dec): Given pkx′ ,CT1, (t1, . . . , td), this oracle returns ‘invalid’ if CT1 is
not belongs to pkx′ and (t1, . . . , td). If the condition in ‘guess’ stage oc-
curs similarly in the ‘queries’ stage, B outputs ⊥. If (pkx′ ,CT1, (t1, . . . , td))
is Derivative of challenge pair (pkx∗ ,CT∗1, (t∗1, . . . , t∗d)) as CT1 is the first
level ciphertext and pkx′ = pkx∗ or x′ ∈ HU, it returns ⊥. If Decryp-
tion1(param, skx′ ,CT1,PSKi, t1, . . . , td) ∈ {m0,m1}, it returns ⊥. Otherwise,
m = Decryption1(param, skx′ ,PSKi,CT1,.

A Puncturable Proxy Re-Encryption scheme is also replayable chosen-ciphertext
attack (RCCA) secure at level 1 ciphertexts. In fact, the adversary is guar-
anteed to access to re-encryption keys. Since first level ciphertexts cannot be
re-encrypted, the attackers is not equipped to obtain the honest-to-corrupt re-
encryption keys. The Oreenc oracle is unusable since all re-encryption keys are
available to A, O2−dec is also unnecessary. Finally, Derivative of the challenge
ciphertext is simply defined as encryptions of either m0 or m1 with the target
public key pkx∗ .

4 Puncturable Proxy Re-Encryption under Chosen
Ciphertext Attack

The main construction of Puncturable Proxy Re-Encryption (PPRE) applies
the inherent Unidirectional Proxy Re-Encryption (UPRE) [3], where the second
ciphertext is ((ga)s,M · e(g, g)s); ga is public key of Alice. Then the proxy re-
encrypts the second ciphertext into the first ciphertext as (e((ga)s, gb/a),M ·
e(g, g)s) = (e(g, g)bs,M · e(g, g)s), which gb/a is the re-encryption key between
Alice and Bob.

Hence, [17, 16] employs the CHK transform [8] to product the re-encrypted
ciphertext by the following fashion. The proxy replaces gas by a randomized pair
(gb/ar, gars), for a blinding random r ∈R Zp. All components in second ciphertext
remain in G. Bob can eventually decrypt the message M · e(g, g)s/(e(g, g)bs)1/b.
Firstly, we are inspired [17]’s method incorporating the Puncturable Encryption
(PE) and URPE schemes. The global setup algorithm initially shares a master
secret key α as α1, α2, which are used as the master secret keys of PE, UPRE
schemes respectively. In order to recover α1, α2 in decryption process, we produce
a delegation key DK = gα2+r2 and puncture key PSK = gα1+r1−r2 as the mode of
[15]. The second ciphertext is generated to ((DKa)s,M ·e(g, g)(α1+α2)s, F (t)s), in
which F (t) is the arbitrary formula to compute the tags in Puncturable Encryp-
tion. Secondly, the component of ciphertext includes the F (t)s, then the first

8 Tran Phuong, Willy Susilo, Jongkil Kim, Guomin Yang, and Dongxi Liu

ciphertext should have F (t)rs. Consequently, the proxy should replace DKas by
a randomized pair (DKb/ak, garsk) for “double blinding randoms” r, k ∈R Zp. By
this way, e(DKb/ak, garsk) = e(DK, g)brs can be cancel out with the exponent’s
components including rs. In this manner, Bob can recover the e(g, g)(α1+α2)s to
read message M by computing the α1, α2 in term of puncture key, re-encryption
form, respectively. In addition, we produce (ct12, ct′12, ct′′12) = (gr, gark, gak) in
order to check whether the safety of ciphertext is, meanwhile the verifying step
is required to achieve the IND-CCA security. We will elaborate PPRE scheme
in the next description.

4.1 Description

We elaborate the Global-setup, Key-Generation, Puncture, Re-KeyGen, Encryption1

(is not re-encryptable), Encryption2, Re-Encryption, Decryption1, and Decryption2

algorithms defined in the following.

I Global-setup(1k, d). On input a security parameter k, a maximum number of
tags per ciphertext d, the algorithm firstly chooses a group G of prime or-
der p, a bilinear map e : G × G → GT , a generator g, w, v, a hash function
H : {0, 1}∗ → Zp, and a strongly unforgeable one-time signature scheme Sig =
(G,S,V). Then the algorithm randomly selects exponents r1, r2, α1, α2 ∈ Zp.
It samples polynomial q(x) of degree d. From i = 1 to d, it computes q(i),
subjects to the constraint that q(0) = 1.
Secondly, the algorithms defines V (x) = gq(x), and let t0 be a distinguished tag
not used during normal operation. Next, it computes the initial puncture key
using the master key α1, and distinguished tag t0: PSK0 = (PSK01,PSK02,PSK03,
PSK04) = (gα1+r1−r2 , V (H(t0))

r1 , gr1 , t0). Using the master key α2, the algo-
rithm generates the global key for user key generation: DK = gα2+r2 . Finally, it
outputs the public parameter: param = (g, Y = e(g, gα1+α2),Sig,DK, gq(1), . . . ,
gq(d), t0), and initial puncture key PSK0.

I Key-Generation(param,PSK0). To generate the public/secret key pair for a user
A, the algorithm randomly picks a ∈R Zp. Then, it sets the public key, the
secret key, and new initial puncture key from SK0 to be: pkA = DKa, skA =
a,PSK′0 = (PSK′01,PSK′02,PSK′03,PSK′04) = ((gα1+r1−r2)1/a, (V (H(t0))

r1)1/a,
gr1 , t0).

I Re-KeyGen(param,DK,PSKi). A user A delegates to B as follows:
• B chooses and stores a random value u ∈ Zp, then publishes (gu,DKu).
• A creates (RB←A = DKu/a).
• A create TK = {g1/a, gq(1)/a, . . . , gq(d)/a}.
• A uses public key B to encrypt A’s puncture keys as EncpkB(PSKi).
• A then delegates (RB←A,EncpkB(TK)) to B.

Puncturable Proxy Re-Encryption supporting to Group Messaging Service 9

I Puncture(param,TK,PSK′i, t). On input an existing key PSKi−1 as {PSK0,PSK1,
. . . ,PSKi−1}, the algorithm chooses λ′, r′, rt randomly from Zp, and computes:

PSK′0 = (PSK′01 · (g1/a)r
′−λ′

,PSK′02 · (V (H(t0))
1/a)r

′
,PSK′03 · gr

′
, t0)

PSKi = ((g1/a)λ
′+rt , (V (H(t))1/a)rt , grt , t).

Then it outputs: PSKi = (PSK′0,PSK1, . . . ,PSKi−1,PSKi).

I Encryption1(param, pkA,M, t1, . . . , td). On input the param, public key of user
A, a message M , and a set of tags t1, . . . , td ∈ {0, 1}∗\{t0}, the algorithm
first randomly chooses s, r, k in Zp. Secondly, the algorithm selects a one-time
signature key pair (ssk, svk) randomly from G(λ). It outputs:

CT1 = (ct10, ct11, ct12, ct′12, ct′′12, ct′′′12, ct13, ct14, ct15i , ct16, σ)
= (svk,M · Y rs, gars, gr, gark, gak,DK1/k, gakrs, {V (H(ti))

rs}i∈{1,...,d},
(wsvk · v)rs,S(ssk, (ct11, ct15i , ct16)))

along with the tags t1, . . . , td. In such a way, the ciphertext can be decrypted
by only the user A.

I Encryption2(param, pkA,M, t1, . . . , td). On input the param, public key of user
A, a message M , and a set of tags t1, . . . , td ∈ {0, 1}∗\{t0}, the algorithm first
randomly chooses s in Zp. Secondly, the algorithm selects a one-time signature
key pair (ssk, svk) randomly from G(λ). It outputs:

CT2 = (ct20, ct21, ct22, ct23i , ct24, σ)
= (svk,M · Y s, gas, {V (H(ti))

s}i∈{1,...,d}, (wsvk · v)s,S(ssk, (ct21, ct23i , ct24i))),

along with the tags t1, . . . , td. In such a way, the ciphertext can be decrypted
by user A and her delegatees.

I Re-Encryption(CT2,RB←A). On input the second level ciphertext CT2, a re-key
RB←A, and a set of tags t1, . . . , td ∈ {0, 1}∗\{t0}. The algorithm first checks
the validity of CT2 by verifying the following conditions:

e(ct22, wct20 · v) ?
= e(ga, ct24), (1)

V(ct20, σ, (ct21, ct23i , ct24)) ?
= 1. (2)

If CT2 is well-formed, the algorithm chooses r, k randomly from Zp, then
computes from CT2 :

CT1 = (ct10, ct11, ct12, ct′12, ct′′12, ct′′′12, ct13, ct14, ct15i , ct16, σ)
= (svk,M · Y rs, gars, gr, gark, gak, (DKu/a)1/k, gakrs, {V (H(ti))

rs}i∈{1,...,d},
(wsvk · v)rs,S(ssk, (ct11, ct15i , ct16))),

along with the tags t1, . . . , td. Otherwise, CT2 is declared ‘invalid’.

10 Tran Phuong, Willy Susilo, Jongkil Kim, Guomin Yang, and Dongxi Liu

I Decryption1(param, skB,EncpkB(PSKi),CT1, t1, . . . , td). On the input param, the
secret key of user B, encrypted form EncpkB(PSKi) , re-encrypted ciphertext
CT1 along with {t1, . . . , td}, the algorithm first checks the validity of CT1 by
verifying the following conditions:

e(ct′′12, ct14) ?
= e(DKu, ct′12), (3)

e(ct13, wct10 · v) ?
= e(ct′′12, ct16), (4)

V(ct10, σ, (ct11, ct15i , ct16)) ?
= 1. (5)

If (3)-(5) hold, then for j = 0, . . . , i, the punctured key PSKi is parsed as
(PSKi1,PSKi2,PSKi3,PSKi4). Next, it computes a set of coefficients w1, . . . , wd,

w∗ such that: w∗ · q(H(PSKi4)) +
d∑

k=1

(wk · q(H(tk))) = q(0) = 1 Finally, it
computes:

A =

i∏
j=0

e(PSKj1, ct12)

e(PSKj3,
d∏

k=1

ctwk

15,k) · e(PSKj2, ct12)w∗

=
e((gα1+r1−r2+r′−λ′

)1/a, gars)

e(gr1+r′ ,
d∏

k=1

V (H(tk))rswk) · e((V (H(t0))r
′+r0)1/a, gars)w∗

· · · e(gλ
′+rt , grs)

e(grt ,
d∏

k=1

V (H(tk))wk) · e(V (H(t))rt , grs)w∗

=
e(g, g)(α1+r1−r2+r′−λ′)rs

e(g, g)rs(r1+r′)
· · · e(g, g)

(rt+λ′)rs

e(g, g)rtsr
= e(g, g)(α1−r2)rs.

B = e(ct13, ct14) = e(g(α2+r2)u/ak, garks) = e(g, g)(α2+r2)rus,

and outputs message as: M = ct11
A·B1/u .

I Decryption2(param, skA,PSKi,CT2, t1, . . . , td). On the input param, the secret
key of user A, puncture key PSKi ,ciphertext CT2 along with {t1, . . . , td}, t,
the decryption algorithm first computes: for j = 0, . . . , i, the punctured key
PSKi is parsed as (PSKi1,PSKi2,PSKi3,PSKi4). Next, it computes a set of

coefficients w1, . . . , wd, w
∗ such that w∗ · q(H(PSKi4)) +

d∑
k=1

(wk · q(H(tk))) =

q(0) = 1. Finally, it computes:

A =

i∏
j=0

e(PSKj1, ct22)

e(PSKj3,
d∏

k=1

ctwk

23,k) · e(PSKj2, ct22)w∗

Puncturable Proxy Re-Encryption supporting to Group Messaging Service 11

=
e((gα1+r1−r2+r′−λ′

)1/a, gas)

e(gr1+r′ ,
d∏

k=1

V (H(tk))swk) · e((V (H(t0))r
′+r0)1/a, gas)w∗

· · · e(gλ
′+rt , gs)

e(grt ,
d∏

k=1

V (H(tk))wk) · e(V (H(t))rt , gs)w∗

=
e(g, g)(α1+r1−r2+r′−λ′)s

e(g, g)s(r1+r′)
· · · e(g, g)

(rt+λ′)rs

e(g, g)rts
= e(g, g)α1se(g, g)−r2s.

B = e(ct22,DK) = e(gas, gα2+r2),

and outputs message as: M = ct11
A·B1/a .

4.2 Security

Theorem 1. Assuming the strong unforgebility of the one-time signature, our
Puncturable Proxy Re-Encryption scheme is RCCA−secure at level 2 under the
3− wDBDHI assumption.

Proof. Let (g,A−1 = g1/a, A1 = ga, A2 = ga
2

, B = gb, T) be modified 3 −
wDBDHI instance. We build an algorithm B deciding if T = (g, g)b/a

2 out of a
successful RCCA adversary A.

We define an event FOTS and bound its probability to occur. Let CT∗2 =
(ct∗20, ct∗21, ct∗22, ct∗23i , ct∗24, σ∗) be the challenge ciphertext received by A, and
the set (t∗1, . . . , t

∗
d) be the target set initially output by A. At some points in

the process, FOTS is the even that A issues a decryption query for a first level
ciphertext CT1 = (svk∗, ct11, ct12, ct′12, ct′′12, ct′′′12, ct13, ct14, ct15i , ct16, σ) or a re-
encryption query RC∗ = (svk∗, rc1, rc2, rc3i , rc4, σ) where (ct11, ct15i , ct16, σ) ̸=
(ct∗21, ct∗23i , ct∗24, σ∗) but V(σ, svk, (ct11, ct15i , ct16)) = 1 (resp. V(σ, svk, (ct11, ct15i ,
ct16)) = 1). In the queries stage, A has simply no information on svk∗. There-
fore, the probability of a pre-challenge occurrence of FOTS does not exceed
q0 · δ if q0 is the overall number of oracle queries and δ denotes the maxi-
mal probability. In the guess stage, FOTS is enhanced to an algorithm breaking
the strong unforgeability of the one-time signatures. Therefore, the probability
Pr[FOTS] ≤ q0/p+AdvOTS, where q0/p+AdvOTS must be negligible by assump-
tion.

Global setup phase. B generates a one-time signature key pair (ssk∗, svk∗)←
G(λ) and provides A with public parameters including w = A

β1(α1+α2)
1 and

v = A
(−β1svk

∗)((α1+α2))
1 · Aβ2(α1+α2)

2 for random β1, β2, α1, α2 in Zp. Observe
that w and v define a hash function F (svk) = wsvk · v = A

α1(svk−svk∗)
1 · Aα2

2 ,
and computes gα1 , gα2 . B chooses d+1 points θ0, θ1, . . . , θd uniformly at random
from Zp, in which θ0 is a distinguished value not used normal simulation. Then
it implicitly sets q(0) = 1, while q(ti) = θi, then V (H(ti)) = A

q(ti)
2 = ga

2θi . B
continuously initializes two empty sets P,C and a counter τ = 0.

12 Tran Phuong, Willy Susilo, Jongkil Kim, Guomin Yang, and Dongxi Liu

B generates the initial puncture key as PSK0 = (PSK01,PSK02,PSK03,PSK04) =
(Aα1+r1+r2

1 , V (H(t0))
r1 , gr1 , t0), and the global key for user key generation DK =

gα2+r2 , with r1, r2,∈R Zp.

Phase 1. A can repeatedly issue any of the following queries: Hereafter, we
call HU the set of honest parties, including user x∗ that is assigned the target
public key pkx∗ , and CU the set of corrupt parties. Throughout the game, A’s
environment is simulated as follows:

– Key-Generation: public keys of honest users x ∈ HU\x∗ are defined as pkx =
Ax

1 = gax for a randomly chosen x in Zp, also implicitly sets skx = x. In
addition, user x will generate the PSK′0:

PSK′0 = (PSK′01,PSK′02,PSK′03,PSK′04) = (A
(α1+r1−r2)1/x
1 , A

θ0r11/x
1 , gr1 , t0).

The target user’s public key is set as Ax∗

2 = gx
∗a2 , also implicitly sets skx∗ =

ax∗ with x∗ ∈R Zp. User x∗ generates the key PSK′0

PSK′0 = (PSK′01,PSK′02,PSK′03,PSK′04) = (A
(α1+r1−r2)1/x∗

1 , A
θ0r11/x

∗

1 , gr1 , t0).

The key pair of a corrupted user x ∈ CU is set as (gx, x), for a random x ∈R Zp.
The key PSK′0 of corrupted user is generated

PSK′0 = (PSK′01,PSK′02,PSK′03,PSK′04) = (A
(α1+r1−r2)1/x
1 , A

θ0r11/x
1 , gr1 , t0).

So that all pairs of keys can be given to A.
To generate re-encryption keys from player x to player y, B has to distinguish
several situations:
• If x ∈ HU\{x∗} and y = x∗, B returns Rx←x∗ = (gα2+r2)x

∗·a2/(ax) =

A
(α2+r2)x

∗/x
1 , and TK = {g1/x, ga2θi/x}, which is a valid re-encryption

key.
• If x = x∗ and y ∈ HU\{x∗}, B responds with Rx∗←y = (gα2+r2)ax/x

∗a2

= A
(α2+r2)x/x

∗

−1 . and TK = {g1/x∗
, ga

2θi/x
∗}, that also has the correct

distribution.
• If x, y ∈ HU\{x∗}, B returns Rx←y = (gα2+r2)(ay)/(ax) = g(α2+r2)y/x, and

TK = {g1/x, ga2θi/x},.
• If x ∈ HU\{x∗} and y ∈ CU, B outputs Rx←y = (gα2+r2)y/(ax) = A

(α2+r2)y/x
−1 ,

and TK = {g1/x, ga2θi/x}, which is also computable.
• Finally, B uses public key y to encrypt Encpky

(TK) x’s puncture key.
– Puncture: B increments n, and computes: PSKn = Puncture(param,PSK′n−1,TK,

t), and adds t to set P , we consider:
Corrupt() query and {t∗1, . . . , t∗d}∩C = ∅. B now chooses randomly r′, rt, λ ∈
Zp. Thus, it outputs the following:

PSK′′0 = ((PSK′01 ·Ar′−λ′

1)1/x,PSK′02 · (Aθ0r
′

1)1/x,PSK′03 · gr
′
, t0),

PSKi = ((Aλ′+rt
1)1/x, (V (H(t))rt)1/x, grt , t) = ((A1)

(λ′+rt)1/x, A
θtrt1/x
1 , grt , t)

Puncturable Proxy Re-Encryption supporting to Group Messaging Service 13

Corrupt() is invoked at the first time; the adversary issues this query. Then,
the challenger returns the most recent punctured key PSKn to the adversary
and sets C ← P . All subsequent queries return ⊥.

– Re-Encryption queries: Responding to a re-encryption query from user x to
user y for a second level ciphertext CT2 = (ct20, ct21,
ct22, ct23i , ct24, σ), B returns ‘invalid’ if the following testing is not bypassed
(1)− (2)

• If x ̸= x∗ or if x = x∗ and y ∈ HU\{x∗},B simply re-encrypts using the
re-encryption key which is available in either case.

• If x = x∗, and y ∈ CU,
∗ If ct20 = svk∗, B encounters an occurrence of FOTS and halts. Indeed,

re-encryptions of the challenge ciphertext towards corrupt users are
disallowed in the ‘guess’ stage. Therefore, (ct21, ct23i , ct24, σ) ̸= (ct∗21,
ct∗23i , ct∗24, σ∗) since we would have CT2 ̸= CT∗2 and x ̸= x∗ if (ct21, ct23i ,
ct24, σ) ̸= (ct∗21, ct∗23i , ct∗24, σ∗).

∗ With the case ct20 ̸= svk∗, x = x∗ and y ∈ CU. Given ct1/x
∗

22 = As
2,

from ct16 = ct24 = F (svk)s = (A
β(svk−svk∗).A

β2
2

1)s, B can compute:
As

1 = gas = (ct24
ctβ2/x∗

22

)
1

β1(svk−svk∗) .
∗ Knowing gas and user y’s private key, B picks r, k ∈R Zp to com-

pute: ct12 = Ars
1 = gars, ct′12 = gr, ct′′12 = gark, ct′′′12 = gak, ct13 =

(A−1)
(α2+r2)y/x

∗k = (gy/x
∗
)(α2+r2)/kct14 = Arsk

1 = gars, ct15i = Aθisr
2 ,

and return CT1 = (ct10, ct11, ct12, ct′12, ct′′12, ct′′′12, ct13, ct14, ct15i , ct16, σ)
which has the proper distribution.

– First level decryption queries:Amay ask the decryption of a first level ciphertext
CT1 = (ct10, ct11, ct12, ct′12, ct′′12, ct′′′12, ct13, ct14, ct15i , ct16, σ) under the public
key gx. For such a request, B returns ‘invalid’ if (3) − (5) do not hold. We
assume y ∈ HU since B can decrypt using the known private key, then B can
decrypt Decsky (Encpky

(PSKi)) to receive the PSKi. In the next step, let us first
assume that ct10 = ct∗10 = svk∗. If (ct11, ct15i , ct16, σ) ̸= (ct∗11, ct∗15i , ct∗16, σ),
B is presented with occurrence of FOTS and halts. If (ct11, ct15i , ct16, σ) =
(ct∗11, ct∗15i ,
ct∗16, σ), B outputs ⊥ which deem CT1 as a derivative of the challenge pair of
CT∗, x∗. Additionally, we reduce the computation of e(ct13, ct14) = e(DKy, g)

rs

to simulate conveniently in the next step. Lets ct10 ̸= svk∗, we assume that y =
x∗, then we pky = ga

2x∗ since B can decrypt using the known private key y.
The validity of the ciphertext guarantees : e(ct13, ct14) = e(DK, g)a2yrs, ct16 =

F (svk)rs = gβ1ars(svk−svk∗)(α1+α2) · ga2rβ2(α1+α2).

A =

i∏
j=0

e(PSKj1, ct12)x
∗

e(PSKj3,
d∏

k=1

ctwk

15,k) · e(PSKj2, ct12)x∗w∗

14 Tran Phuong, Willy Susilo, Jongkil Kim, Guomin Yang, and Dongxi Liu

=
e((Aα1+r1−r2+r′−λ′

1)1/x
∗
, gars)x

∗

e(gr1+r′ ,
d∏

k=1

(Aθ0
2)rswk) · e(Aθ0r11/x

1 , gars)x∗w∗

· · · e(gλ
′+rt , gars)x

∗

e(grt ,
d∏

k=1

V (H(tk))wk) · e(Aθtr11/x
1 , gars)x∗w∗

= e(g, g)a
2(α1−r2)rs.

Next, B computes:

γ = e(g, g)ars(α1+α2) =

(
e(ct16, g)

Aβ2 · (ct13, ct14)β2/y(α2+r2)

) 1
β1(svk−svk∗)

.

B continually computes: e(ct16, A−1) = e(ct16, g1/a) = e(g, g)β1rs(svk−svk∗)(α1+α2)·

e(g, g)arsβ2(α1+α2). γ uncovers: e(g, g)rs(α1+α2) =

(
e(ct16,A−1)

γβ2/x∗

) 1
β1(svk−svk∗)

,

and the plaintext m = ct11/e(g, g)rs(α1+α2).

In the next phases, B must check that m differs from messages m0,m1 in-
volved in the challenge query. If m ∈ {m0,m1}. B returns ⊥ according to the
RCCA-security rules.

Challenge. A chooses messages m0,m1. At this stage, B flips a coin µ∗ ∈R
{0, 1}, and generates the challenge ciphertext ct∗2 as:

ct∗20 = svk∗, ct∗21 = mµ∗ · Tα1+α2 , ct∗22 = Bx∗
, ct∗23i = Bθi , ct∗24 = Bβ2 ,

and σ∗ = S(ssk∗, (ct∗21, ct∗23, ct∗24i)). With pkx = gx
∗a2 , B = gb, and the random

exponent s = b/a2.

Phase 2. It is identical to Phase 1 with the following restrictions: (1)Corrupt()
returns ⊥ if {t∗1, . . . , t∗d} ∩ P = ∅; (2)Re-Encryption queries if (1) − (2) is by-
passed and CT2 ̸= CT∗2 ∧ x ̸= x∗. (3)Decrypt1(param, skx,PSKi,CT1, t1, . . . , td)
is queried.

Guess. CT∗2 is a valid encryption of mµ∗ if T = e(g, g)b/a
2 . In contrast, if T

is random in GT , CT∗2 perfectly hides mµ∗ and A cannot guess µ∗ with better
probability than 1/2. WhenA eventually outputs her result µ′ ∈ {0, 1}, B decides
T = e(g, g)b/a

2 if µ′ = µ and that T is randomly chosen.

Theorem 2. Assuming the strong unforgebility of the one-time signature, Punc-
turable Proxy Re-Encryption scheme is RCCA−secure at level 1 under the 3 −
wDBDHI assumption.

Proof. The proof of Theorem 2 will be provided in Appendix A.

Puncturable Proxy Re-Encryption supporting to Group Messaging Service 15

5 Conclusion

We present a Puncturable Proxy Re-Encryption Scheme supporting forward se-
crecy for asynchronous communication. Particularly, the proposed scheme is
well-suited to many-to-many communication such as a group messaging service
since a participant securely delegates computational demand operations to com-
municate with multiple parties to a proxy (i.e. a message server). Therefore, it
allows many participants to exchange messages efficiently in group communi-
cation. One opening problem is the transformation of these schemes to obtain
adaptive security. We leave it as our future work.

References

1. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In:
Proceedings of the CT-RSA ’09. pp. 279–294. Springer-Verlag (2009)

2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: ACM Trans. Inf. Syst.
Secur. vol. 9, pp. 1–30 (2006)

3. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: NDSS (2015)

4. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Advances in Cryptology — EUROCRYPT (1998)

5. Blazy, O., Bultel, X., Lafourcade, P.: Two secure anonymous proxy-based data
storages. In: Proceedings of the 13th ICETE. pp. 251–258 (2016)

6. Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random
oracles. J. Cryptology 24, 659–693 (2011)

7. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Proceedings of the 22Nd EUROCRYPT. pp. 255–271. Springer-Verlag (2003)

8. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: EUROCRYPT. pp. 207–222. Springer-Verlag (2004)

9. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 14th ACM CCS (2007)

10. Chu, C.K., Tzeng, W.G.: Identity-based proxy re-encryption without random ora-
cles. In: Proceedings of the 10th ISC. pp. 189–202. Springer-Verlag (2007)

11. Derler, D., Krenn, S., Lorünser, T., Ramacher, S., Slamanig, D., Striecks, C.: Re-
visiting proxy re-encryption: Forward secrecy, improved security, and applications.
In: Public-Key Cryptography - PKC. pp. 219–250. Springer International Publish-
ing (2018)

12. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Proceedings of the 8th PKC. pp. 416–431 (2005)

13. Ge, C., Susilo, W., Fang, L., Wang, J., Shi, Y.: A cca-secure key-policy attribute-
based proxy re-encryption in the adaptive corruption model for dropbox data shar-
ing system. Designs, Codes and Cryptography 86(11), 2587–2603 (2018)

14. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Proceedings of the
5th ACNS. pp. 288–306. Springer-Verlag (2007)

15. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: Proceedings of the 2015 IEEE S and P. pp. 305–320. IEEE Com-
puter Society (2015)

16 Tran Phuong, Willy Susilo, Jongkil Kim, Guomin Yang, and Dongxi Liu

16. Libert., B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. IEEE Transactions on Information Theory 57(3), 1786–1802 (2011)

17. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Proceedings of the 11th PKC. pp. 360–379. Springer-Verlag (2008)

18. MAMBO, M., OKAMOTO, E.: Proxy cryptosystems: Delegation of the power to
decrypt ciphertexts. IEICE Trans. Fundamentals, A 80, 54–63 (1997)

19. Matsuo, T.: Proxy re-encryption systems for identity-based encryption. In: Pro-
ceedings of the First Pairing. pp. 247–267. Springer-Verlag (2007)

20. Myers, S., Shull, A.: Efficient hybrid proxy re-encryption for practical revo-
cation and key rotation. Cryptology ePrint Archive, Report 2017/833 (2017),
https://eprint.iacr.org/2017/833

21. Tang, Q.: Type-based proxy re-encryption and its construction. In: Proceedings of
the 9th INDOCRYPT. pp. 130–144. Berlin, Heidelberg (2008)

22. Waters, B.: Efficient identity-based encryption without random oracles. In: Pro-
ceedings of the 24th EUROCRYPT. pp. 114–127. Springer-Verlag (2005)

23. Weng, J., Deng, R.H., Ding, X., Chu, C.K., Lai, J.: Conditional proxy re-encryption
secure against chosen-ciphertext attack. In: Proceedings of the 4th ASIACCS. pp.
322–332 (2009)

24. Weng, J., Deng, R.H., Liu, S., Chen, K.: Chosen-ciphertext secure bidirectional
proxy re-encryption schemes without pairings. Information Sciences 180(24), 5077
– 5089 (2010)

A Proof of Theorem 2

Let (g,A−1 = g1/a, A1 = ga, A2 = ga
2

, B = gb, T) be modified 3 − wDBDHI

instance. We build an algorithm B deciding if T = (g, g)b/a
2 out of a successful

RCCA adversary A.
In this proof, our simulator B simply halts and outputs a random bit if

FOTS ever occurs. Let CT∗1 = (svk∗, ct∗11, ct∗12, ct∗13, ct∗14, ct∗15i , ct∗16, σ∗) denotes
the challenge ciphertext at the first level received by A, and the set (t∗1, . . . , t

∗
d)

be the target set initially output by A.
Global setup phase. B generates a one-time signature key pair (ssk∗, svk∗)←
G(λ) and provides A with public parameters including w = Aβ1

1 and v =

A−β1svk
∗

1 · Aβ2

2 for random β1, β2 in Zp. Observe that w and v define a hash
function F (svk) = wsvk · v = A

α1(svk−svk∗)
1 ·Aα2

2 .
B also selects randomly α1, α2 ∈ Zp, and computes gα1 , gα2 . B chooses d + 1
points θ0, θ1, . . . , θd uniformly at random from Zp, in which θ0 be a distin-
guished value not used normal simulation. Then, B implicitly sets q(0) = 1,
while q(ti) = θti , then V (H(ti)) = gA

q(ti)
1 = gaθti . B continuously initializes two

empty sets P,C and a counter τ = 0.
B generates the initial puncture key as PSK0 = (PSK01,PSK02,PSK03,PSK04) =
(Aα1+r1+r2

1 , V (H(t0))
r1 , gr1 , t0), and the global key for user key generation DK =

gα2+r2 , with r1, r2,∈R Zp.
Phase 1. A can repeatedly issue any of the following queries: we call HU the
set of honest parties, including user x∗ that is assigned the target public key
pkx∗ , and CU the set of corrupt parties. Throughout the game, A’s environment
is simulated as follows:

Puncturable Proxy Re-Encryption supporting to Group Messaging Service 17

– Key-Generation: public keys of honest users x ∈ HU\x∗ and corrupt users
x ∈ CU are defined as pkx = gx for a randomly chosen x in Zp. In addition,
user x will generate the PSK′0:

PSK′0 = (PSK′01,PSK′02,PSK′03,PSK′04) = (A
(α1+r1−r2)1/x
1 , A

θ0r11/x
1 , gr1 , t0).

The target user’s public key is set as Ax∗

1 = ga.

PSK′0 = (PSK′01,PSK′02,PSK′03,PSK′04) = (g(α1+r1−r2), gθ0r1 , gr1 , t0).

For corrupt users i ∈ CU, public key and secret key are both disclosed To
generate re-encryption keys from player x to player y, all re-encryption keys
are computed:
• If x, y ̸= x∗,Rx←y = g(α2+r2)y/x

• If y ̸= x∗,Rx∗←y = A
(α2+r2)y
−1 and Ry←x∗ = A

(α2+r2)1/y
1 .

– Puncture: . B increments n, and computes: PSKn = Puncture(param,PSK′n−1,
TK, t), and adds t to set P , we consider: Corrupt() is queried and {t∗1, . . . , t∗d}∩
C = ∅. B now chooses randomly r′, rt, λ ∈ Zp. Thus it outputs the following:

PSK′′0 = (PSK′01 · (Ar′−λ′

1)1/x,PSK′02 · (V (H(t0))
r′)1/x,PSK′03 · gr

′
, t0)

= (PSK′01 · (Ar′−λ′

1)1/x,PSK′02 · (Aθ0r
′

1)1/x,PSK′03 · gr
′
, t0),

PSKi = ((Aλ′+rt
1)1/x, (Aθtrt

1)1/x, grt , t).

Corrupt() is called at the first time; the adversary issues this query. Then
the challenger returns the most recent punctured key PSKn to the adversary
and sets C ← P . All subsequent queries return ⊥.

– First level decryption queries: A may ask the decryption of a first level cipher-
text CT1 = (ct10, ct11, ct12, ct′12, ct′′12, ct′′′12, , ct13, ct14, ct15i , ct16, σ) under the
public key gx. For such a request, B returns ‘invalid’ if (3)− (5) do not hold.
We assume y ∈ HU since B can decrypt using the known private key, then B
can decrypt Decsky (Encpky

(PSKi)) to receive the PSKi. In the next step, let
us first assume that ct10 = ct∗10 = svk∗. If (ct11, ct15i , ct16, σ) ̸= (ct∗11, ct∗15i ,
ct∗16, σ), B is presented with occurence of FOTS and halts. If (ct11, ct15i , ct16, σ) =
(ct∗11, ct∗15i , ct∗16, σ), B outputs ⊥ which deem CT1 as a derivative of the chal-
lenge pair of CT∗, x∗. We have to compute:

ct12 = Ars
1 = gars, ct′12 = gr, ct′′12 = gark, ct′′′12 = gak, ct13 = (A−1)

(α2+r2)y/k

= (g1/y)(α2+r2)/k, ct14 = A1rsk = gars, ct15i = Aθisr
2 ,

for unknown exponents r, k ∈R Zp. We reduce the computation of e(ct13, ct14)
equals to e(DKy, g)

rs to simulate conveniently in the next step. Lets ct10 ̸=
svk∗, we assume that y = x∗, then we pky = ga since B can decrypt using the
known private key y. The validity of the ciphertext guarantees

e(ct13, ct14) = e(DK, g)ars,
ct16 = F (svk)rs = gβ1ars(svk−svk∗)(α1+α2) · ga

2rβ2(α1+α2).

18 Tran Phuong, Willy Susilo, Jongkil Kim, Guomin Yang, and Dongxi Liu

Then,

A =

i∏
j=0

e(PSKj1, ct12)x
∗

e(PSKj3,
d∏

k=1

ctwk

15,k) · e(PSKj2, ct12)x∗w∗

=
e((gα1+r1−r2+r′−λ′

)1/x
∗
, gars)x

∗

e(gr1+r′ ,
d∏

k=1

(Aθ0
1)rswk) · e(gθ0r11/x, gars)x∗w∗

· · · e(gλ
′+rt , gars)x

∗

e(grt ,
d∏

k=1

V (H(tk))wk) · e(gθtr11/x, gars)x∗w∗

= e(g, g)a(α1−r2)rs.

B computes: e(g, g)rs(α1+α2) =

(
e(ct16,A−1)

Aβ2 ·(ct13,ct14)β2/y(α2+r2)

) 1
β1(svk−svk∗)

, and re-

covers the plaintext m = ct11/e(g, g)rs(α1+α2).
• If e(ct13,ct14) = e(ct∗13,ct∗14), B returns ⊥ meaning that CT1 is simply a

re-randomization of the challenge ciphertext.
• We require (ct11, ct15i , ct16, σ) ̸= (ct∗11, ct∗15i , ct∗16, σ), which is an occurence

of FOTS and implies B’s termination.

In the next phases, B must check that m differs from messages m0,m1 involved
in the challenge query. If m ∈ {m0,m1}. B returns ⊥ according to the RCCA-
security rules.

Challenge. A chooses messages m0,m1. At this stage, B flips a coin µ∗ ∈R
{0, 1}, and generates the challenge ciphertext ct∗1 as:

ct∗10 = svk∗, ct∗11 = mµ∗ · Tα1+α2 , ct∗12 = Bγx∗
, ct′∗12 = Aγ

1 , ct′′∗12 = Aγk
2 , ct′′′∗12 = Ak

1 ,

ct∗13 = A
k(α2+r2)
−1 , ct∗14 = Bkγ , ct∗15i = Bθiγ , ct∗16 = Bβ2 ,

and σ∗ = S(ssk, (ct∗11, ct∗14i , ct∗15, ct∗16)). With pkx = gx
∗a, B = gb, and r =

aγ, k, s = b/a2 with the random numbers γ, k ∈ Zp.

Phase 2. This phase is identical to Phase 1 with following restrictions: (1)Cor-
rupt() returns⊥ if {t∗1, . . . , t∗d}∩P = ∅. (2)Decrypt1(param, skA,PSKi,CT1, t1, . . . ,
td) returns ⊥ if (CT1, t1, . . . , td) ̸= (CT∗1, t∗1, . . . , t∗d).
Guess. CT∗1 is a valid encryption of mµ∗ if T = e(g, g)b/a

2 . In contrast, if T
is random in GT , CT∗1 perfectly hides mµ∗ and A cannot guess µ∗ with better
probability than 1/2. WhenA eventually outputs her result µ′ ∈ {0, 1}, B decides
T = e(g, g)b/a

2 if µ′ = µ and that T is randomly chosen.

