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Abstract

We present a new methodology to efficiently realize recursive composition of succinct non-interactive
arguments of knowledge (SNARKS). Prior to this work, the only known methodology relied on pairing-
based SNARKSs instantiated on cycles of pairing-friendly elliptic curves, an expensive algebraic object.
Our methodology does not rely on any special algebraic objects and, moreover, achieves new desirable
properties: it is post-quantum and it is transparent (the setup is public coin).

We exploit the fact that recursive composition is simpler for SNARKSs with preprocessing, and the
core of our work is obtaining a preprocessing zkSNARK for rank-1 constraint satisfiability (R1CS) that is
post-quantum and transparent. We obtain this latter by establishing a connection between holography and
preprocessing in the random oracle model, and then constructing a holographic proof for R1CS.

We experimentally validate our methodology, demonstrating feasibility in practice.
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1 Introduction

Succinct non-interactive arguments (SNARGS) are cryptographic proofs for non-deterministic languages
that are small and easy to verify. In the last few years, researchers from across multiple communities have
investigated many aspects of SNARGS, including constructions under different cryptographic assumptions,
improvements in asymptotic efficiency, concrete performance of implementations, and real-world applications.
The focus of this paper is recursive composition, a notion that we motivate next.

Recursive composition. The time to validate a SNARG can be exponentially faster than the time to run the
non-deterministic computation that it attests to, a property known as succinct verification. This exponential
speedup raises an interesting prospect: could one produce a SNARG about a computation that involves
validating prior SNARGs? Thanks to succinct verification, the time to run this (non-deterministic) computa-
tion would be essentially independent of the time of the prior computations. This recursive composition of
SNARGs enables incrementally verifiable computation | ValO8] and proof-carrying data [CT10; BCCT13].
A critical technicality here is that, for recursive composition to work, the SNARG must be an argument of
knowledge, i.e., a SNARK. This is because the security of a SNARG holds only against efficient adversaries,
and the knowledge property ensures that prior SNARGs must have been efficiently produced, and so we can
rely in turn on their security. A formal treatment of this can be found in [BCCT13], which discusses how the
“strength” of a SNARG’s knowledge property relates to how many recursions the SNARG supports.

Efficient recursion. Theory tells us that any succinct-verifier SNARK is recursively composable [BCCT13].
In practice, however, recursive composition is exceedingly difficult to realize efficiently. The reason is
that, even if we have a SNARK that is concretely efficient when used “standalone”, it is often prohibitively
expensive to express the SNARK verifier’s computation through the language supported by the SNARK.
Indeed, while by now there are numerous SNARK constructions with remarkable concrete efficiency, to date
there is only a single efficient approach to recursion. The approach, due to [BCTV14], uses pairing-based
SNARKSs with a special algebraic property discussed below.! This has enabled real-world applications such
as Coda [Col17], a cryptocurrency that uses recursive composition to achieve strong scalability properties.

Limitations. The above efficient approach to recursion suffers from significant limitations.

e [t is pre-quantum. Pairing-based SNARKSs rely (at least) on the hardness of extracting discrete logarithms,
and so are insecure against quantum attacks. Hence the approach of [BCTV 14] is also insecure against
quantum attacks. Devising an efficient post-quantum approach to recursion is an open problem.

e [t introduces toxic waste. All known pairing-based SNARKSs that can be used in the approach of [BCTV14]
rely on a structured reference string (SRS). Sampling the SRS involves secret values (the “toxic waste”)
that must remain secret for security. Ensuring that this is the case in practice is difficult: the SRS must be
sampled by some trusted party or via a cryptographic ceremony [BCGTV15; BGG17; BGM17; ABLSZ19].
Devising an efficient transparent (toxic-waste free) approach to recursion is an open problem.

e [t uses expensive algebra. The approach of [BCTV14] uses pairing-based SNARKSs instantiated via
pairing-friendly cycles of elliptic curves. Only a single cycle construction is known, MNT cycles; it consists
of two prime-order elliptic curves, with embedding degrees 4 and 6 respectively. Curves in an MNT
cycle must be much bigger than usual in order to compensate for the loss of security caused by the small
embedding degrees. Moreover the fields that arise from MNT cycles are imposed on applications rather
than being chosen depending on the needs of applications, causing additional performance overheads.
Attempts to find “better” cycles, without these limitations, have resulted in some negative results [CCW19].
Indeed, finding any other cycles beyond MNT cycles is a challenging open problem.

"Bowe, Grigg, and Hopwood [BGH19] propose an alternative approach for recursion that does not require the SNARK to have
succinct verification. We refer the interested reader to [BCMS20], which develops theoretical foundations for this approach in detail.



1.1 Our results

We present a new methodology for recursive composition that simultaneously overcomes all of the limitations
discussed above. We experimentally validate our methodology, demonstrating feasibility in practice.

The starting point of our work is the observation that recursive composition is simpler when applied to a
SNARG (of knowledge) that supports preprocessing, as we explain in Section 2.1. This property of a SNARG
means that in an offline phase one can produce a short summary for a given circuit and then, in an online
phase, one may use this short summary to verify SNARGs that attest to the satisfiability of the circuit with
different partial assignments to its inputs. The online phase can be as fast as reading the SNARG (and the
partial assignment), and in particular sublinear in the circuit size even for arbitrary circuits. Throughout, by
“preprocessing SNARG” we mean a SNARG whose verifier runs in time polylogarithmic in the circuit size.?

Our methodology has three parts: (1) a transformation that maps any “holographic proof” into a pre-
processing SNARG in the random oracle model; (2) a holographic proof for (rank-1) constraint systems,
which leads to a corresponding preprocessing SNARG; (3) a transformation that recurses any preprocessing
SNARK (once the random oracle is heuristically instantiated via a cryptographic hash function).

We now summarize our contributions for each of these parts.

(1) From holographic proofs to preprocessing SNARGs. A probabilistic proof is holographic if the
verifier does not receive the circuit description as an input but, rather, makes a small number of queries to
an encoding of the circuit [BFLS91]. Recent work [CHMMYVW20] has established a connection between
holography and preprocessing (which we review in Section 1.2). The theorem below adds to this connection,
by showing that interactive oracle proofs (IOPs) [BCS16; RRR16] that are holographic can be compiled into
preprocessing SNARGS that are secure in the quantum random oracle model [BDFLSZ11; CMS19].

Theorem 1 (informal). There is an efficient transformation that compiles any holographic IOP for a relation
‘R into a preprocessing SNARG for R that is unconditionally secure in the random oracle model. If the IOP
is a (honest-verifier) zero knowledge proof of knowledge then the transformation produces a zero knowledge
SNARG of knowledge (zkSNARK). This extends to hold in the quantum random oracle model.

By applying Theorem 1 to known holographic proofs for non-deterministic computations (such as the
PCP in [BFLS91] or the IPCP in [GKR15]), we obtain the first transparent preprocessing SNARG and the
first post-quantum preprocessing SNARG. Unfortunately, known holographic proofs are too expensive for
practical use, because encoding the circuit is costly (as explained in Section 1.2.1). In this paper we address
this problem by constructing an efficient holographic proof, discussed below.

We note that holographic proofs involve relations R that consist of triples rather than pairs because the
statement being checked has two parts. One part is called the index, which is encoded in an offline phase by
the indexer and this encoding is provided as an oracle to the verifier. The other part is called the instance,
which is provided as an explicit input to the verifier. For example, the index may be a circuit description and
the instance a partial assignment to its inputs. We refer to this notion as indexed relations (see Section 3.2).

(2) Efficient protocols for R1ICS. We present a holographic IOP for rank-1 constraint satisfiability (R1CS),
a standard generalization of arithmetic circuits where the “circuit description” is given by coefficient matrices.
We describe the corresponding indexed relation.

Definition 1 (informal). The indexed relation Rr1cs is the set of triples (1, x, w) = ((IF, n,m, A, B,C),x, w)
where F is a finite field, A, B, C are n x n matrices over F, each containing at most m non-zero entries, and

«“_

z := (z,w) is a vector in F" such that Az o Bz = Cz. (Here “o” denotes the entry-wise product.)

’In contrast, non-preprocessing SNARGs can achieve fast verification only for structured circuits, because the verification
procedure must at a minimum read the description of the circuit whose satisfiability it checks. The description of a circuit can be
much smaller than the circuit itself only when the circuit has suitable structure, e.g., repeated sub-components in parallel or in series.



Theorem 2 (informal). There exists a public-coin holographic IOP for the indexed relation Rrics that is a
zero knowledge proof of knowledge with the following efficiency features. In the offline phase, the encoding
of an index is computable in O(mlogm) field operations and consists of O(m) field elements. In the online
phase, the protocol has O(logm) rounds, with the prover using O(mlog m) field operations and the verifier
using O(|x|+logm) field operations. Proof length is O(m) field elements and query complexity is O(logm).

The above theorem improves, in the holographic setting, on prior IOPs for R1CS (see Fig. 1): it offers an
exponential improvement in verification time compared to the linear-time verification of [BCRSVW19], and
it offers succinct verification for all coefficient matrices compared to only structured ones as in [BCGGRS19].

Armed with an efficient holographic IOP, we use our compiler to construct an efficient preprocessing
SNARG in the random oracle model. The following theorem is obtained by applying Theorem 1 to Theorem 2.

Theorem 3 (informal). There exists a preprocessing zkSNARK for RICS that is unconditionally secure in
the random oracle model (and the quantum random oracle model) with the following efficiency features. In
the offline phase, anyone can publicly preprocess an index in time Oy(mlog m), obtaining a corresponding
verification key of size Ox(1). In the online phase, the SNARG prover runs in time Oy(mlogm) and the
SNARG verifier runs in time Oy (|z| + log® m); argument size is Oy (log® m).

We have implemented the protocol underlying Theorem 3, obtaining the first efficient realization of a
post-quantum transparent preprocessing zkSNARK.

For example, for a security level of 128 bits over a 181-bit prime field, arguments range from 80 kB to
160 kB for instances of up to millions of constraints. These argument sizes are two orders of magnitude
bigger than pre-quantum non-transparent preprocessing zkSNARKSs (see Section 1.2.2), and are 2 x bigger
that the state of the art in post-quantum transparent non-preprocessing zkSNARKs [BCRSVW19]. Our
proving and verification times are comparable to prior work: proving takes several minutes, while verification
takes several milliseconds regardless of the constraint system. (See Section 13.1 for performance details.)

Besides its application to post-quantum transparent recursion, our preprocessing zkSNARK provides
attractive benefits over prior constructions, as we discuss in Section 1.2.2.

Note that, when the random oracle in the construction is heuristically instantiated via an efficient
cryptographic hash function (as in our implementation), the resulting preprocessing zkSNARK is in the
uniform reference string (URS) model, which means that the system parameters consist of a uniformly
random string of fixed size.’ The term “transparent” refers to a construction in the URS model.

(3) Post-quantum transparent recursion. We obtain the first efficient realization of post-quantum trans-
parent recursive composition for SNARKS. The cryptographic primitive that formally captures this capability
is known as proof carrying data (PCD) [CT10; BCCT13], and so this is what we construct.

Theorem 4 (informal). There is an efficient transformation that compiles any preprocessing SNARK in the
URS model into a preprocessing PCD scheme in the URS model. Moreover; if the preprocessing SNARK is
post-quantum secure then so is the preprocessing PCD scheme.

The above transformation, which preserves the “transparent” property and post-quantum security, is
where recursive composition occurs. For details, including the notion of PCD, see Section 11.

Moreover, we provide an efficient implementation of the transformation in Theorem 4 applied to our
implementation of the preprocessing zkSNARK from Theorem 3. The main challenge is to express the
SNARK verifier’s computation in as few constraints as possible, and in particular to design a constraint

3We stress that this step is a heuristic due to well-known limitations to the random oracle methodology [CGH04; GKO3].
Investigating how to provably instantiate the random oracle for many natural constructions is an active research frontier.



system for the SNARK verifier that on relatively small instances is smaller than the constraint system that
it checks (thereby permitting arbitrary recursion depth). Via a combination of computer-assisted design
and recent advances in algebraic hash functions, we achieve this threshold for all computations of at least 2
million constraints. Specifically, we can express a SNARK verifier checking 2 million constraints using only
1.1 million constraints, and this gap grows quickly with the computation size. This is the first demonstration
of post-quantum transparent recursive composition in practice. (See Section 13.2 for performance details.)

RICS indexer prover verifier round proof query
instances holographic? time time time complexity  length  complexity
[BCRSVW19] arbitrary NO N/A O(m + nlogn) O(|x| +m) O(logn) O(n) O(logn)
[BCGGRS19] t  semi-succinct NO N/A O(m+nlogn)  O(|x|+ logn) O(logn) O(n) O(logn)
this work arbitrary YES O(mlogm) O(mlogm) O(|x|+1logm) O(logm) O(m) O(logm)

Figure 1: Comparison of IOPs for R1CS: two prior non-holographic IOPs, and our holographic IOP. Here n
denotes the number of variables and m the number of non-zero coefficients in the matrices.

1: The parameters stated for [BCGGRS19] reflect replacing the constant-query low-degree test in the construction
with a concretely-efficient logarithmic-query low-degree test such as [BBHR18], to simplify comparison.
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Figure 2: Diagram of our methodology to recursive composition that is post-quantum and transparent.

1.2 Comparison with prior work

We provide a comparison with prior work in the three areas to which we contribute: holographic proofs (Sec-
tion 1.2.1); preprocessing SNARGs (Section 1.2.2); and recursive composition of SNARKSs (Section 1.2.3).
We omit a general discussion of the now ample literature on SNARGS, and in particular do not discuss
non-preprocessing SNARGs for structured computations (e.g., [XZZPS19], [BBHR19], and many others).

1.2.1 Prior holographic proofs

The verifier in a proof system cannot run in time that is sublinear in its input, because it must at a minimum
read the input in order to know the statement being checked. Holographic proofs [BFLS91] avoid this
limitation by considering a setting where the verifier does not receive its input explicitly but, instead, has
query access to an encoding of it. The goal is then to verify the statement in time sublinear in its size; note
that such algorithms are necessarily probabilistic.*

“The goal of sublinear verification via holographic proofs is similar to, but distinct from, the goal of sublinear verification via
proximity proofs (as, e.g., studied in [EKR04; DR04; BGHSV06; RVW13; GR15]). In this latter setting, the verifier has oracle access
to an input that is not promised to be encoded and, in particular, cannot in general decide if the input is in the language without



In Fig. 3 we compare the efficiency of prior holographic proofs and our holographic proof for the case of
circuit satisfiability, where the input to the verifier is the description of an arbitrary circuit. There are two
main prior holographic proofs in the literature. One is the PCP construction in [BFLS91], where it suffices
for the verifier to query a few locations of a low-degree extension of the circuit description. Another one is
the “bare bones” protocol in [GKR15], which is a holographic IP for circuit evaluation that can be re-cast as
a holographic IPCP for circuit satisfaction; the verifier relies on the low-degree extensions of functions that
describe each layer of the circuit. The constructions in [BFLS91] and [GKR15] are unfit for practical use as
holographic proofs in Theorem 1, because encoding the circuit incurs a polynomial blowup due to the use of
multivariate low-degree extensions (which yield encodings with inverse polynomial rate).

In the table we exclude the “algebraic holographic proof” of Marlin [CHMMVW20], because the
soundness guarantee of such a proof is incompatible with Theorem 1.

Comparison with this work. Our holographic proof is the first to achieve efficient asymptotics not only for
the prover and verifier, but also for the indexer, which is responsible for producing the encoding of the circuit.

proof indexer prover verifier

type time time time
[BFLS91] PCP poly(NV) poly (V) poly(|x| + log(N))
[GKRI15] IPCP poly(N) poly(Jjw|) + O(N)  O(|x|+ DlogW)
this work  IOP  O(Nlog N) O(NlogN) O(|x| +1og N)

Figure 3: Comparison of holographic proofs for arithmetic circuit satisfiability. Here x denotes the known inputs,
w the unknown inputs, and N the total number of gates; if the circuit is layered, D denotes circuit depth and
W circuit width. Our Theorem 1 can be used to compile any of these holographic proofs into a preprocessing
SNARG. (For better comparison with other works, [GKR15] is stated as an IPCP for circuit satisfiability rather
than as an IP for circuit evaluation; in the latter case, the prover time would be O(N). The prover times for
[GKR15] incorporate the techniques for linear-time sumcheck and others introduced in [Thal3; XZZPS19].)

1.2.2 Prior preprocessing SNARGs

Prior works construct preprocessing SNARGs in a model where a trusted party samples, in a parameter setup
phase, a structured reference string (SRS) that is proportional to circuit size. We summarize the main features
of these constructions, distinguishing between the case of circuit-specific SRS and universal SRS.

e Circuit-specific SRS: a circuit is given as input to the setup algorithm, which samples a (long) proving
key and a (short) verification key that can be used to produce and validate arguments for the circuit.
Preprocessing SNARGs with circuit-specific SRS originate in [Gro10; Lip12; GGPR13; BCIOP13], and
have been studied in an influential line of work that has led to highly-efficient constructions (e.g., [Grol6])
and large-scale deployments (e.g., [Zc14]). They are obtained by combining linear interactive proofs and
linear-only encodings. The argument sizes achievable in this setting are very small: less than 200 bytes.

e Universal SRS: a size bound is given as input to the setup algorithm, which samples a (long) proving key and
a (short) verification key that can be used to produce and validate arguments for circuits within this bound.
A public procedure can then be used to specialize both keys for arguments relative to the desired circuit.
Preprocessing SNARGs with universal (and updatable) SRS were introduced in [GKMMM18], and led

reading all of the input. To allow for sublinear verification without any promises on the input, the decision problem is relaxed: the
verifier is only asked to decide if the input is in the language or far from any input in the language.



to efficient constructions in [MBKM19; CHMMVW20; GWC19]. They are obtained by combining
“algebraic” holographic proofs (see below) and polynomial commitment schemes. The argument sizes
currently achievable with universal SRS are bigger than with circuit-specific SRS: less than 1000 bytes.

Comparison with this work. Theorem 1 provides a methodology to obtain preprocessing SNARGS in the
(quantum) random oracle model, which heuristically implies (by suitably instantiating the random oracle)
preprocessing SNARGS that are post-quantum and transparent. Neither of these properties is achieved by prior
preprocessing SNARGs. Theorem 1 also develops the connection between holography and preprocessing
discovered in [CHMMVW20], which considers the case of holographic proofs where the completeness and
soundness properties are restricted to “algebraic provers” (which output polynomials of prescribed degrees).
We consider the case of general holographic proofs, where completeness and soundness are not restricted.

Moreover, our holographic proof (Theorem 2) leads to a preprocessing SNARG (Theorem 3) that, as
supported by our implementation, provides attractive benefits over prior preprocessing SNARGs.

e Prior preprocessing SNARGs require cryptographic ceremonies to securely sample the long SRS, which
makes deployments difficult and expensive. This has restricted the use of preprocessing SNARGs to proving
relatively small computations, due to the prohibitive cost of securely sampling SRSs for large computations.
This is unfortunate because preprocessing SNARGs could be useful for “scalability applications”, which
leverage succinct verification to efficiently check large computations (e.g., verifying the correctness of
large batches of trades executed at a non-custodial exchange [RU19; SD19]).

The transparent property of our preprocessing SNARG means that the long SRS is replaced with a fixed-size
URS (uniform reference string). This simplifies deployments and enables scalability applications.

e Prior preprocessing SNARGs are limited to express computations over the prime fields that arise as the
scalar fields of pairing-friendly elliptic curves. Such fields are imposed by parametrized curve families that
offer little flexibility for optimizations or applications. (Alternatively one can use the Cocks—Pinch method
[FST10] to construct an elliptic curve with a desired scalar field, but the resulting curve is inefficient.)

In contrast, our preprocessing SNARG is easily configurable across a range of security levels, and supports
most large prime fields and all large binary fields, which offers greater flexibility in terms of performance
optimizations and customization for applications.

Remark 1.1 (weaker forms of preprocessing). Prior work proved recursive composition only for non-
interactive arguments of knowledge with succinct verifiers [BCCT13]; this is the case for our definition of
preprocessing SNARGs. In this paper we show that recursive composition is possible even when the verifier
is merely sublinear in the circuit size (see Section 11), though the cost of each recursion is much steeper than
in the polylogarithmic case. This provides additional motivation to the study of preprocessing with sublinear
verifiers (e.g., [BCGGHI17; Set19]).

1.2.3 Recursion for pairing-based SNARKSs

The approach to recursive composition of [BCTV14] uses pairing-based (preprocessing) SNARKSs based on
pairing-friendly cycles of elliptic curves. This approach applies to constructions with circuit-specific SRS
(e.g. [Grol6]) and to those with universal SRS (e.g. [GKMMM18; MBKM19; CHMMVW20; GWC19]).
Informally, pairing-based SNARKSs support languages that involve the satisfiability of constraint systems
over a field that is different from the field used to compute the SNARK verifier — this restriction arises
from the mathematics of the underlying pairing-friendly elliptic curve used to instantiate the pairing. This



seemingly mundane fact has the regrettable consequence that expressing the SNARK verifier’s computation
in the language supported by the SNARK (to realize recursive composition) is unreasonably expensive due to
this “field mismatch”. To circumvent this barrier, prior work leveraged rwo pairing-based SNARKSs where the
field to compute one SNARK verifier equals the field of the language supported by the other SNARK, and
vice versa. This condition enables each SNARK to efficiently verify the other SNARK’s proofs.

These special SNARKS rely on pairing-friendly cycles of elliptic curves, which are pairs of pairing-
friendly elliptic curves where the base field of one curve equals the scalar field of the other curve and vice versa.
The only known construction is MNT cycles, which consist of two prime-order elliptic curves with embedding
degrees 4 and 6 respectively. An MNT cycle must be much bigger than usual in order to compensate for the
low security caused by the small embedding degrees. For example, for a security level of 128 bits, curves
in an MNT cycle must be defined over a prime field with roughly 800 bits; this is over three times the 256
bits that suffice for curves with larger embedding degrees. These performance overheads can be significant
in practice, e.g., Coda [Col7] is a project that has deployed MNT cycles in a product, and has organized a
community challenge to speed up the proof generation for pairing-based SNARKSs [SN]. A natural approach
to mitigate this problem would be to find “high-security” cycles (i.e., with higher embedding degrees) but to
date little is known about pairing-friendly cycles beyond a few negative results [CCW19].

Comparison with this work. The approach to recursion that we present in this paper is not tied to
constructions of pairing-friendly cycles of elliptic curves. In particular, our approach scales gracefully across
different security levels, and also offers more flexibility when choosing the desired field for an application. In
addition, our approach is post-quantum and, moreover, uses a transparent (i.e., public-coin) setup.

On the other hand, our approach has two disadvantages. First, argument size is about 100 times bigger
than the argument size achievable by cycle-based recursion. Second, the number of constraints needed to
express the verifier’s computation is about 40 times bigger than those needed in the case of cycle-based
recursion (e.g., the verifier of [Gro16] can be expressed in about 40,000 constraints). The vast majority of
these constraints come from the many hash function invocations required to verify the argument.

Both of the above limitations are somewhat orthogonal to our approach and arguably temporary: the
large proof size and many hash invocations come from the many queries required from current constructions
of low-degree tests [BBHR18; BGKS19]. As the state of the art in low-degree testing progresses (e.g., to
high-soundness constructions over large alphabets), both argument size and verifier size will also improve.



2 Techniques

We discuss the main ideas behind our results. In Section 2.1 we explain how preprocessing simplifies
recursive composition. In Section 2.2 we describe our compiler from holographic IOPs to preprocessing
SNARGS (Theorem 1). In Section 2.3 we describe our efficient holographic IOP (Theorem 2), and then in
Section 2.4 we discuss the corresponding preprocessing SNARG (Theorem 3). In Section 2.5 we describe
how to obtain post-quantum and transparent PCD (Theorem 4). In Section 2.6 we discuss our verifier circuit.

Recall that indexed relations consist of triples (i, x, w) where 1 is the index, x is the instance, and w
is the witness (see Section 3.2). We use these relations because the statements being checked have two
parts, the index 1 (e.g., a circuit description) given in an offline phase and the instance x (e.g., a partial input
assignment) given in an online phase.

2.1 The role of preprocessing SNARKSs in recursive composition

We explain why preprocessing simplifies recursive composition of SNARKSs. For concreteness we consider
the problem of incrementally proving the iterated application of a circuit F': {0,1}"™ — {0, 1}" to an initial
input 29 € {0, 1}". We are thus interested in proving statements of the form “given zp there exists zy such
that zr = FT(29)”, but wish to avoid having the SNARK prover check the correctness of all T invocations
at once. Instead, we break the desired statement into 7" smaller statements {“z; = F'(z;—1)”},_; and then
inductively prove them. Informally, for7 =1, ..., T, we produce a SNARK proof 7; for this statement:

“Given a counter i and claimed output z;, there exists a prior output z;_1 such that z; = F(z;_1)
and, if i > 1, there exists a SNARK proof m;_1 that attests to the correctness of z;_1.”

Formalizing this idea requires care, and in particular depends on how the SNARK achieves succinct verifica-
tion (a prerequisite for recursive composition). There are two methods to achieve succinct verification.

(1) Non-preprocessing SNARKs for structured computations. The SNARK supports non-deterministic
computations expressed as programs, i.e., it can be used to prove/verify statements of the form “given a
program M, primary input x, and time bound ¢, there exists an auxiliary input w such that M accepts
(x,w) in ¢ steps”. (More generally, the SNARK could support any computation model for which the
description of a computation can be significantly smaller than the size of the described computation.)

(2) Preprocessing SNARKs for arbitrary computations. The SNARK supports circuit satisfiability, i.e., it can
be used to prove/verify statements of the form “given a circuit C' and primary input X, there exists an
auxiliary input w such that C'(x, w) = 0”. Preprocessing enables the circuit C' to be summarized into
a short verification key ivkc that can be used for succinct verification regardless of the structure of C.
(More generally, the SNARK could support any computation model as long as preprocessing is possible.)

We compare the costs of recursive composition in these two cases, showing why the preprocessing case
is cheaper. Throughout we consider SNARKSs in the uniform reference string model, i.e., parameter setup
consists of sampling a fully random string urs of size poly(\) that suffices for proving/verifying any statement.

(1) Recursion without preprocessing. Let (P, V) be a non-preprocessing SNARK for non-deterministic
program computations. In this case we follow [BCCT13]: recursion is realized via a program R, which
depends on urs and F, that checks one invocation of the circuit F' and the validity of a prior SNARK proof
relative to the reference string urs. The program R is defined as follows:



Primary input: atuple x = (M, i, z;) consisting of the description of a program M, counter i,
and claimed output z;. (We later set M := R to achieve recursion, as explained shortly.)

Auxiliary input: a tuple w = (z;_1,m;_1) consisting of a previous output z;_; and corre-
sponding SNARK proof 7;_; that attests to its correctness.

Code: R(x,w) accepts if z; = F(z;—1) and, if ¢ > 1, V(urs, M,x;_1,t,m;_1) = 1 where
x;—1 := (M,i—1,2_1) and t is a suitably chosen time bound.

The program R can be used to incrementally prove the iterated application of the circuit F'. Given a tuple
(i — 1, z;—1,m—1) consisting of the current counter, output, and proof, one can use the SNARK prover to
obtain the next tuple (i, z;, ;) by setting z; := F'(z;—1) and computing the proof 7; := P(urs, R, x;,t, w;)
for the instance x; := (R, i, z;) and witness w; := (2;_1, m;—1) (and a certain time bound ¢). Note that we
have set M := R, so that (the description of) R is part of the primary input to R. A tuple (i, z;, 7;) can then
be verified by running the SNARK verifier, as V(urs, R, x;, t, ;) for x; := (R, i, 2;).>

We refer the reader to [BCCT13] for details on how to prove the above construction secure. The aspect
that we are interested to raise here is that the program R is tasked to simulate itself, essentially working as
a universal machine. This means that every elementary operation of 12, and in particular of F', needs to be
simulated by R in its execution. This essentially means that the computation time of R, which dictates the
cost of each proof composition, is at least a constant ¢ > 1 times the size of |F'|. This multiplicative overhead
on the size of the circuit F', while asymptotically irrelevant, is a significant overhead in concrete efficiency.

(2) Recursion with preprocessing. We describe how to leverage preprocessing in order to avoid universal
simulation, and in particular to avoid any multiplicative performance overheads in recursive composition.
Intuitively, preprocessing provides a “cryptographic simplification” to the requisite recursion, by enabling us
to replace the description of the computation with a succinct cryptographic commitment to it.

Let (Z,P,V) be a preprocessing SNARK for circuits. Recursion is realized via a circuit R that depends
on urs and F', and checks one invocation of F' and a prior proof. The circuit R is defined as follows:

Primary input: a tuple x = (ivk, 4, z;) consisting of an index verification key ivk, counter ¢,
and claimed output z;. (We later set ivk := ivkg to achieve recursion.)

Auxiliary input: a tuple w = (z;_1,7;—1) consisting of a previous output z;_; and corre-
sponding SNARK proof 7;_1 that attests to its correctness.

Code: R(x,w) accepts if z; = F(z;_1) and, if ¢ > 1, V(urs,ivk,x;_1,m;—1) = 1 where
X;—1 = (IVk,’L — 1, Zi—l)-

The circuit R can be used for recursive composition as follows. In the offline phase, we run the indexer Z
on the circuit 12, obtaining a long index proving key ipkp and a short index verification key ivkg that can be
used to produce and validate SNARKSs with respect to the circuit 2. Subsequently, in the online phase, one
can use the prover P to go from a tuple (i — 1, z;_1,m;—1) to a new tuple (i, z;, 7;) by letting z; := F(z;_1)
and 7; := P(urs, ipkp, x;, w;) for the instance x; := (ivkg, 7, z;) and witness w; := (z;_1, m;—1). Note that
we have set ivk := ivkg, so that the verification key ivkp is part of the primary input to the circuit R. A tuple
(i, z;, m;) can then be verified by running the SNARK verifier, as V(urs, ivkg, x;, 7;) for x; := (ivkg, 7, 2;).

Crucially, the circuit R does not perform any universal simulation involving the circuit F', and in particular
does not incur multiplicative overheads. Indeed, |R| = |F| + [V| = |F| + o(|F|). This was enabled by
preprocessing, which let us provide the index verification key ivkr as input to the circuit R.

3The astute reader may notice that we could have applied the Recursion Theorem to the program R to obtain a new program R*
that has access to its own code, and thereby simplify primary inputs from triples x = (M, 4, ;) to pairs x = (4, ;). This, however,
adds unnecessary complexity. Indeed, here we can rely on the SNARK verifier to provide R with its own code as part of the primary
input, obviating this extra step. (For reference, the Recursion Theorem states that for every program A(z, y) there is a program B(y)
that computes A((B),y), where the angle brackets emphasize that the first argument is the description of the program B.)



In fact, preprocessing is already part of the efficient approach to recursive composition in [BCTV 14].
There the preprocessing SNARK uses a structured, rather than uniform, reference string but the benefits of
preprocessing are analogous (even when the reference string depends on the circuit or a bound on it).

In summary: preprocessing SNARKSs play an important role in efficient recursive composition. Our
first milestone is post-quantum and transparent preprocessing SNARKSs, which we then use to achieve
post-quantum and transparent recursive composition.

2.2 From holographic proofs to preprocessing with random oracles

We describe the main ideas behind Theorem 1, which provides a transformation that compiles any holographic
IOP for an indexed relation R into a corresponding preprocessing SNARG for R. See Section 10 for details.

Warmup: holographic PCPs. We first consider the case of PCPs, a special case of IOPs. Recall that the
Micali transformation [Mic0O0] compiles a (non-holographic) PCP into a (non-preprocessing) SNARG. We
modify this transformation to compile a holographic PCP into a preprocessing SNARG, by using the fact
that the SNARG verifier output by the Micali transformation invokes the PCP verifier as a black box.

In more detail, the main feature of a holographic PCP is that the PCP verifier does not receive the index
as an explicit input but, rather, makes a small number of queries to an encoding of the index given as an
oracle. If we apply the Micali transformation to the holographic PCP, we obtain a SNARG verifier that must
answer queries by the PCP verifier to the encoded index. If we simply provided the index as an input to
the SNARG verifier, then we cannot achieve succinct verification and so would not obtain a preprocessing
SNARG. Instead, we let the SNARG indexer compute the encoded index, compute a Merkle tree over it,
and output the corresponding root as an index verification key for the SNARG verifier. We can then have
the SNARG prover extend the SNARG proof with answers to queries to the encoded index, certified by
authentication paths relative to the index verification key. In this way the SNARG verifier can use the answers
in the SNARG proof to answer the queries to the encoded index by the underlying PCP verifier.

This straightforward modification to the Micali transformation works: one can prove that if the soundness
error of the holographic PCP is ¢ then the soundness error of the preprocessing SNARG is te + O(t2 - 27)
against t-query adversaries in the random oracle model. (A similar expression holds for quantum adversaries.)

General case: holographic IOPs. While efficient constructions of holographic PCPs are not known, in
this paper we show how to construct an efficient holographic IOP (see Section 2.3). Hence we are actually
interested in compiling holographic IOPs. In this case our starting point is the BCS transformation [BCS16],
which compiles a (non-holographic) IOP into a (non-prepreprocessing) SNARG. We adopt a similar strategy
as above: we modify the BCS transformation to compile a holographic 10P into a preprocessing SNARG,
using the fact that the SNARG verifier output by the BCS transformation invokes the IOP verifier as a black
box. Indeed, the main feature of a holographic IOP is the fact that the IOP verifier makes a small number of
queries to an encoding of the index given as an oracle. Therefore the SNARG indexer can output the Merkle
root of the encoded index as an index verification key, which subsequently the SNARG verifier can use to
authenticate answers about the encoded index claimed by the SNARG prover.

An important technical difference here is the fact that the soundness error of the resulting preprocessing
SNARG is not related to the soundness error of the holographic IOP but, instead, to its state-restoration (SR)
soundness error, a stronger notion of soundness introduced in [BCS16]. Namely, we prove that if the SR
soundness error of the holographic PCP is e () then the soundness error of the preprocessing SNARG is
€se(t) + O(t% - 27*). This phenomenon is inherited from the (unmodified) BCS transformation.

Proof of knowledge. All known constructions of PCD from SNARGs require that the SNARG is an
argument of knowledge (i.e., it is a SNARK). We show that if the holographic IOP is a (state-restoration)
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proof of knowledge (PoK), our transformation yields a preprocessing SNARK. In the simple non-adaptive
setting this can be shown straightforwardly from known properties of the BCS transformation. However, in
order to provide the strongest possible evidence for the existence of SNARKSs satisfying the requirements for
our IVC/PCD construction (see Section 2.5), we prove a stronger adaptive knowledge soundness property,
which is not known to hold for the standard BCS transformation. We show that a standard modification of the
BCS transformation achieves this stronger notion for a wide class of holographic IOPs.

Post-quantum security. A primary contribution of this work is to construct post-quantum preprocessing
SNARKSs (and to show that these yield post-quantum PCD). Using techniques developed in [Zha19; CMS19],
we show that our transformation yields a preprocessing SNARG in the QROM. Here the relevant soundness
notion of the holographic IOP is the round-by-round (RBR) soundness error, defined in [CCHLRR18].

Moreover, if the holographic IOP is round-by-round knowledge sound, as defined in [CMS19], our
transformation yields a preprocessing SNARK in the QROM,; this establishes, for the first time, the existence
of adaptively-secure SNARKSs in the QROM. We prove security by exhibiting a universal quantum extractor.
As in the classical case, we prove a strong adaptive knowledge soundness property that is a close analogue
for the property required in our IVC/PCD construction.

2.3 An efficient holographic proof for constraint systems

We describe the main ideas behind Theorem 2, which provides an efficient construction of a holographic IOP
for rank-1 constraint satisfiability (R1CS). See Definition 1 for the indexed relation representing this problem.

Our starting point: Marlin. Our construction borrows ideas from the algebraic holographic proof (AHP)
underlying Marlin, a pairing-based zZkSNARK due to [CHMMVW?20]. An AHP is similar to a holographic IOP,
except that the indexer and the prover (both honest and malicious) send low-degree univariate polynomials
rather than evaluations of functions. The verifier may evaluate these polynomials at any point in the field.

To understand how AHPs and holographic 10Ps differ, it is instructive to consider how one might
construct a holographic IOP from an AHP. A natural approach is to construct the indexer and prover for the
hIOP as follows: run the indexer/prover of the AHP, and whenever the indexer/prover outputs a polynomial,
evaluate it and send this evaluation as the oracle. There are several issues with this approach. First, hIOPs
require a stronger soundness guarantee: soundness must hold against malicious provers that send arbitrary
oracles. Second, evaluating the polynomial requires selecting a set L C [ over which to evaluate it. In
general, since the verifier in the AHP may query any point in [F, we would need to take L := F, which is
prohibitively expensive for the indexer and prover if F is much larger than the instance size (as it often is,
for both soundness and application reasons). Third, assuming that one manages to decouple L and [F, the
soundness error of one invocation of the AHP will (at best) decrease with 1/|L| instead of 1/|F|, which
requires somehow reducing the soundness error of the AHP to, say, 1/2*, and simply re-running in parallel
the AHP for A — log |L| would be expensive in all relevant parameters.

The first issue could be resolved by composing the resulting protocol with a low-degree test. This
introduces technicalities because we cannot hope to check that the oracle is exactly low-degree (as required in
an AHP) — we can only check that the oracle is close to low-degree. The best way to resolve the second issue
depends on the AHP itself, and would likely involve out-of-domain sampling [BGKS19]. Finally, resolving
the third issue may not be possible in general (in fact, we do not see how resolve it for the AHP in Marlin).

These above issues show that, despite some similarities, there are markedly different design considerations
on hIOPs versus AHPs. For this reason, while we will follow some of the ideas outlined above, we do not
take the Marlin AHP as a black box. Instead, we will draw on the ideas underlying the Marlin AHP in order
to build a suitable hIOP for this paper. Along the way, we also show how to reduce the round complexity of
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the Marlin AHP from 3 to 2, an ideas that we use to significantly improve the efficiency of our construction.

Aurora. The structure of our holographic IOP, like the Marlin AHP, follows the one of Aurora [BCRSVW19],
an IOP for RICS that we now briefly recall. Given an R1CS instance (A, B, C'), the prover sends to the verifier
f~, the RS-encoding of a vector z, and three oracles f4, f, fo which are purportedly the RS-encodings of
the three vectors Az, Bz, C'z respectively. The prover and verifier then engage in subprotocols to prove that
(1) fa, fB, fc are indeed encodings of Az, Bz,Cz, and (ii) f4 - fg — fc is an encoding of the zero vector.

Together these checks ensure that (A, B, C) is a satisfiable instance of R1CS. Testing (ii) is a straightfor-
ward application of known probabilistic checking techniques, and can be achieved with a logarithmic-time
verifier. The primary challenge in the Aurora protocol (and protocols based on it) is testing (i).

In the Aurora protocol this is achieved via a reduction to univariate sumcheck, a univariate analogue of the
sumcheck protocol in [LFKN92]. Univariate sumcheck also has a logarithmic verifier, but the reduction itself
runs in time linear in the number of nonzero entries in the matrices A, B, C. A key technical contribution of
the Marlin AHP is showing how to shift most of the cost of the reduction to the indexer in order to reduce the
online cost of verification to logarithmic, as we now explain.

Challenges. We describe the original lincheck protocol of [BCRSVW19], and explain why it is not
holographic. The lincheck protocol, on input a matrix M € F*** and RS-encodings of vectors Z, i € ¥,
checks whether © = M. It makes use of the following two facts: (i) for a vector of linearly-independent
polynomials @ € F[X]* and any vectors &,/ € F¥, if ¥ # ¢ then the polynomials (i, %) and (i, i)
are distinct, and so differ with high probability at a random o € F, and (ii) for any matrix M € FF**,
(u, M) = (&M, 3). The lincheck verifier sends a random « € F to the prover, and the prover then convinces
the verifier that (@M, )(a) — (@, ©) () = 0 using the univariate sumcheck protocol.

This requires the verifier to evaluate the low-degree extensions of i, and %, M at a point 5 € F, where
il, € F* is obtained by evaluating each entry of @ at . This is equivalent to evaluating the bivariate
polynomials u(X,Y), up (X,Y) € F[X, Y], obtained respectively by extending @, @M over Y, at a random
pointin (c, 3) € F2. By choosing i appropriately, we can ensure that u(X, Y") can be evaluated in logarithmic
time [BCGGRS19]. But, without help from an indexer, evaluating u,/(«, 5) requires time Q(||M||).

A natural suggestion in the holographic setting is to have the indexer evaluate u,; over some domain
S C F x F, and make this evaluation part of the encoded index. This does achieve the goal of logarithmic
verification time. Unfortunately, the degree of uj; in each variable is about &, and so even writing down the
coefficients of uys requires time Q(k?), which for sparse M is quadratic in || M]||.

In the Marlin lincheck the indexer instead computes a certain linear-size (polynomial) encoding of M,
which the verifier then uses in a multi-round protocol with the prover to evaluate w s at its chosen point. Our
holographic lincheck improves upon this protocol, reducing the number of rounds by one; we describe it next.

Our holographic lincheck. Recall from above that the lincheck verifier needs to check that (i, Z) and
(M, gy are equal as polynomials in X. To do this, it will choose a random « € F and send it to the prover,
then engage in the univariate sumcheck protocol to show that ), u(c, h)&(h) — ups (e, h)g(h) = 0, where
z, y are low-degree extensions of x and y.

To verify the above sum, the verifier must compute u(cv, 8) and ups(«, §) for some § € F. The former
can be computed by the verifier in logarithmic time as discussed; for the latter, we ask the prover to help.
Specifically, we show that uy; = M*, the unique bivariate low-degree extension of a matrix M* which
can be computed in quasilinear time from M (and in particular has || M*|| = ||M||). Hence to show that
ups (e, B) = ~y the prover and verifier can engage in a holographic matrix arithmetization protocol for M*
to show that M *(a, B) = . Marlin makes use of a similar matrix arithmetization protocol, but for M
itself, with a subprotocol to compute u s from M, which is a cost that we completely eliminate. Another
improvement is that for our matrix arithmetization protocol we can efficiently reduce soundness error even
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when using a low-degree test, due to its non-recursive use of the sumcheck protocol.

Matrix arithmetization. Our matrix arithmetization protocol is a holographic IOP for computing the
low-degree extension of a matrix M € F7*H (provided in the index). It is useful here to view M in its
sparse representation as a map (M): K — H x H x F for some K C F, where if (M) (k) = (a,b,y) for
some k € K then M, ; = v, and M, ;, = 0 otherwise.

The indexer computes row, cE)I, val which are the unique low-degree extensions of the functions K — F
induced by restricting (M) to its first, second, and third coordinates respectively, and outputs their evaluations
over L. It is not hard to verify that

M(aa B) = Z LH,rdW(k) (O[)LH,CEﬂ(k) (/B)VEﬂ(k) s
keK

for any «, 5 € F, where Ly, is the polynomial of minimal degree which is 1 on @ and 0 on H \ {a}. In
order to check this equation using the sumcheck protocol we must modify the right-hand side: the summand
must be a polynomial which can be efficiently evaluated. To this end, we make use of the “unnormalized
Lagrange” polynomial uy (X,Y) := (vg(X) —vg(Y))/(X —Y) from [BCGGRS19]. This polynomial has
the property that for every a,b € H, ug(a,b) is 0 if a # b and nonzero if a = b; and it is easy to evaluate at
every point in F. By having the indexer renormalize val appropriately, we obtain

M(X,Y) = up(réw(k), a)ug/(col(k), B)val(k) .
keK

We have made progress, but now the summand has quadratic degree: (| H||K|) because we compose the
polynomials u g and row, col. Next we show how to avoid this composition.

Observe that since the image of K under réw, col is contained in H, v (réw(k)) = vg(col(k)) = 0.
Hence the rational function

vy (@) _ v (B)

@ rowun ) (ol (0] -valy (X)

agrees with the summand on K; it is a rational extension of the summands. Moreover, the degrees of the
numerator and denominator of the function are both O(|K|). Now it remains to design a protocol to check
the sum of a univariate rational function.

Rational sumcheck. Suppose that we want to check that ), .- p(k)/q(k) = ~, where p, q are low-degree
polynomials. First, we have the prover send the (evaluation of the) unique polynomial f of degree |K| — 1
which agrees with p/q on K; that is, the unique low-degree extension of p/q viewed as a function from K to
IF. We can use the standard univariate sumcheck protocol from [BCRSVW19] to test that >, ;- f(k) = 7.
It then remains to check that f does indeed agree with p/q on K. This is achieved using standard
techniques: if p(k)/q(k) = f(k) forall k € K, then p(k) = q(k) - f(k) for all k € K (at least if ¢ does
not vanish on K). Then p — ¢ - f is a polynomial vanishing on K, and so is divisible by vg. This can be
checked using low-degree testing; for more details, see Section 5. Moreover, the degree of this equation is
max(deg(p), deg(q) + |K]); in the matrix arithmetization protocol, this is O (| K|).
Proof of knowledge and zero knowledge. Our full protocol for R1CS is a proof of knowledge, because
when the verifier accepts with high enough probability it is possible to decode f, into a satisfying assignment.
We further achieve zero knowledge via techniques inherited from [BCRSVW19]. (Note that zero knowledge
is not relevant for the matrix arithmetization protocol because the constraint matrices A, B, C' are public.)
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2.4 Post-quantum and transparent preprocessing

If we apply the compiler described in Section 2.2 (as captured in Theorem 1) to the efficient holographic
proof for R1CS described in Section 2.3 (as captured in Theorem 2) then we obtain an efficient preprocessing
zkSNARK for R1CS that is unconditionally secure in the (quantum) random oracle model (as captured in
Theorem 3). We refer to the resulting construction as FRACTAL.

Implementation. We have implemented FRACTAL by extending the 1ibiop library to support generic
compilation of holographic proofs into preprocessing SNARGs, and then writing in code our holographic
proof for R1CS. Our implementation supports a range of security levels and fields. (The only requirement on
the field is that it contains certain smooth subgroups.) See Section 12.1 for more details on the implementation.

Clearly, the security of our implementation relies on the random oracle methodology applied to prepro-
cessing SNARGs produced by our compiler, namely, we assume that if we replace every call to the random
oracle with a call to a cryptographic hash function then the resulting construction, which formally is in the
URS model, inherits the relevant security properties that we proved in the (quantum) random oracle model.

Evaluation. We have evaluated FRACTAL, and its measured performance is consistent with asymptotic
predictions. In particular, the polylogarithmic argument size and verification time quickly become smaller
than native witness size and native execution time as the size of the checked computation increases.

We additionally compare the costs of FRACTAL to prior preprocessing SNARGs, finding that (a) our
prover and verifier times are comparable to prior constructions; (b) argument sizes are larger than prior
constructions (that have an SRS). The larger argument sizes of FRACTAL are nonetheless comparable with
other post-quantum transparent non-preprocessing SNARGs. See Section 13.1 for more details on evaluation.

2.5 Post-quantum and transparent recursive composition

We summarize the ideas behind our contributions to recursive composition of SNARKSs.

Proof-carrying data. Recursive composition is captured by a cryptographic primitive called proof-carrying
data (PCD) [CT10; BCCT13], which will be our goal. Consider a network of nodes, where each node
receives messages from other nodes, performs some local computation, and sends the result on. PCD is a
primitive that allows us to check the correctness of such distributed computations by recursively producing
proofs of correctness for each message. Here “correctness” is locally specified by a compliance predicate
®, which takes as input the messages received by a node and the message sent by that node (and possibly
some auxiliary local data). A distributed computation is then considered ®-compliant if, for each node, the
predicate @ accepts the node’s messages (and auxiliary local data).

PCD captures proving the iterated application of a circuit as in Section 2.1, in which case the distributed
computation evolves along a path. PCD also captures more complex topologies, which is useful for support-
ing distributed computations on long paths (via “depth-reduction” techniques [Val08; BCCT13]) and for
expressing dynamic distributed computations (such as MapReduce computations [CTV15]).

From random oracle model to the URS model. While we have so far discussed constructions that are
unconditionally secure in the (quantum) random oracle model, for recursion we now leave this model (by
heuristically instantiating the random oracle with a cryptographic hash function) and start from preprocessing
SNARKSs in the URS model. The reason for this is far from mundane (and not motivated by implementation),
as we now explain. The verifiers from Theorem 1 make calls to the random oracle, and therefore proving that
the verifier has accepted would require using a SNARK that can prove the correctness of computations in
a relativized world where the oracle is a random function. There is substantial evidence from complexity
theory that such SNARKSs do not exist (e.g., probabilistic proofs do not relativize with respect to a random
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oracle [CCRR92; For94; CL20]). By instantiating the random oracle, all oracle calls can be “unrolled” into
computations that do not involve oracle gates, and thus we can prove the the correctness of the resulting
computation.® We stress that random oracles cannot be securely instantiated in the general case [CGHO04],
and so we will assume that there is a secure instantiation of the random oracle for the preprocessing SNARKs
produced via Theorem 1 (which, in particular, preserves proof of knowledge).

From SNARK to PCD. We prove that any preprocessing SNARK in the URS model can be transformed
into a preprocessing PCD scheme in the URS model (Theorem 11.5).” The construction, described in
Section 11, realizes recursive composition by following the template given in Section 2.1, except that the
compliance predicate ® may expect multiple input messages. This construction simplifies that of [BCCT13]
for preprocessing SNARKSs in the SRS model: we do not need to rely on collision-resistant hash functions to
shrink the verification key ivk because we require it to be succinct, as captured in Lemma 11.8.8

Security against quantum adversaries. A key feature of our result (Theorem 11.5) is that we prove that
if the SNARK is secure (i.e., is a proof of knowledge) against quantum adversaries then so is the resulting
PCD scheme (i.e., it is also a proof of knowledge). Therefore, if we assume that FRACTAL achieves proof of
knowledge against quantum adversaries when the random oracle is suitably instantiated, then by applying our
result to FRACTAL we obtain a post-quantum preprocessing PCD scheme in the URS model.

For this result we require a suitable definition of adaptive proof of knowledge in the quantum setting. Our
definition was chosen to achieve the following two goals: it must be strong enough to imply security for our
PCD construction, and it must have a (Q)ROM analogue that is fulfilled by FRACTAL.

We highlight below two important issues that arose in finding this definition.

The proof of [BCCT13] uses the fact that, in the classical case, we may assume that the adversary is
deterministic by selecting its randomness. This is not the case for quantum adversaries, as a quantum circuit
can create its own randomness (e.g. by measuring a qubit in superposition). This means that we must be
careful in defining the proof-of-knowledge property we require of the underlying SNARK. In particular, we
must ensure that when we recursively extract proofs, these proofs are consistent with previously extracted
proofs. For deterministic adversaries, this is implied by the proof of knowledge definition in [BCCT13]; for
quantum adversaries, it is not.

A further complication arises when defining proof of knowledge in the QROM. In the classical (non-
programmable) ROM, we can view the extractor and verifier as machines interacting with the same “real”
oracle; in particular, the extractor simply passes the adversary’s queries to the real oracle and notes the
answers. Hence we can ask for an extraction guarantee of the type: “whenever the verifier accepts, the
extractor succeeds” (this is the definition in [BCCT13]). In the QROM, no-cloning precludes this view: the
extractor cannot act as an intermediary between the adversary and an external random oracle but must instead
simulate the oracle itself.

Given these issues, we arrive at the following knowledge soundness definition. We observe that the
function of the strong extraction guarantee in [BCCT13] is to ensure closeness in distribution between the
outputs of the prover and the extractor. (This is similar to the witness-extended emulation property introduced
by [Lin03].) To emulate this in the QROM, we simply impose the closeness-in-distribution requirement

SThe necessity to instantiate the random oracle before recursion also arises in the first construction of incrementally verifiable
computation [ValO8]. One way to circumvent this difficulty is to consider oracles that are equipped with a public verification
procedure [CT10], however this requires embedding a secret in the oracle, which does not lend itself to straightforward software
realizations and so we do not consider this approach in this paper.

7 Analogously to a SNARK, here preprocessing denotes the fact that the PCD scheme enables succinct verification regardless of
the computation expressed by the compliance predicate ® (as opposed to only for structured computations).

81n contrast, the verification key ivk in [BCCT13] is allowed to grow linearly with the public input to the circuit that it summarizes,
and so recursion required replacing ivk with a short hash of it, and moving ivk to the witness of the recursion circuit.
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explicitly. In particular, we require that if the prover outputs some auxiliary information, the joint distribution
of that auxiliary information and the adaptively-chosen instance is maintained in the output of the extractor.
We show that this is both achievable in the QROM and sufficient for PCD in the standard model.

2.6 The verifier as a constraint system

In order to recursively compose FRACTAL (the preprocessing zZkSNARK discussed in Section 2.4), we need
to express FRACTAL’s verifier as a constraint system. The size of this constraint system is crucial because
this determines the threshold at which recursive composition becomes possible. Towards this goal, we design
and implement a constraint system that applies to a general class of verifiers, as outlined below. FRACTAL’s
verifier is obtained as an instantiation within this class. See Section 12.2 for details.

Hash computations introduced by the compiler. Our compiler (Theorem 1) transforms any holographic
IOP into a corresponding preprocessing SNARG, while preserving relevant zero knowledge or proof of
knowledge properties. The preprocessing SNARG verifier makes a black-box use of the holographic
IOP verifier, which means that we can design a single (parametrized) constraint system representing the
transformation that works for any holographic IOP. All additional computations introduced by the compiler
involve cryptographic hash functions (which heuristically instantiate the random oracle). In particular, there
are two types of hash computations: (1) a hash chain computation used to derive the randomness for each
round of the holographic IOP verifier, based on the Merkle roots provided by the preprocessing SNARG
prover; and (2) verification of Merkle tree authentication paths in order to ensure the validity of the query
answers provided by the preprocessing SNARG prover. We design generic constraint systems for both of
these tasks. Since we are designing constraint systems it is more efficient to consider multiple hash functions
specialized to work in different roles: a hash function to absorb inputs or squeeze outputs in the hash chain; a
hash function to hash leaves of the Merkle tree; a many-to-one hash function for the internal nodes of the
Merkle tree; and others.

Choice of hash function. While our implementation is generic with respect to the aforementioned hash
functions (replacing any one of them with another is straightforward), the choice of hash function is
nonetheless critical for concrete efficiency as we now explain. Expressing standard cryptographic hash
functions, such as from the SHA or Blake family, as a constraint system requires more than 20,000 constraints.
While this is acceptable for certain applications, these costs are prohibitive for hash-intensive computations, as
is the case for the verifiers output by our compiler. Fortunately, the last few years have seen exciting progress
in the design of algebraic hash functions [AD18; ACGKLRS19; GKRRS19; AABSDS19; AGPRRRRS19],
which by design can be expressed via a small number of arithmetic constraints over large finite fields. While
this is an active research front, and in particular no standards have been agreed upon, many of the proposed
functions are significantly cheaper than prior ones, and their security analyses are promising. In this work we
decide to use one of these as our choice of hash function (Poseidon [GKRRS19]). We do not claim that this
is the “best” choice among the currently proposed ones. (In fact, we know how to achieve better results via
a combination of different choices.) We merely make one choice that we believe to be reasonable, and in
particular suffices to demonstrate the feasibility of our methodology in practice.

Holographic IOP computations. The constraint system that represents the holographic IOP verifier will,
naturally, depend on the specific protocol that is provided as input to the compiler.

That said, all known efficient IOPs, holographic or otherwise, are obtained as the combination of two
ingredients: (1) a low-degree test for the Reed—Solomon (RS) code; and (2) an RS-encoded 10P, which is a
protocol where the verifier outputs a set of algebraic claims, known as rational constraints, about the prover’s
messages. Examples of I0OPs that fall in this category include our holographic IOP for R1CS, as well as
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protocols for R1CS in [AHIV17; BCRSVW19; BCGGRS19] and for AIR in [BBHR19].

We thus provide two constraint systems that target these two components. First, we provide a constraint
system that realizes the FRI low-degree test [ BBHR 18], which is used in many efficient IOPs, including in
our holographic IOP for R1CS. Second, we provide infrastructure to write constraint systems that express a
desired RS-encoded IOP. This essentially entails specifying how many random elements the verifier should
send in each round of the protocol, and then specifying constraints that express the rational constraints output
by the verifier at the end of the RS-encoded IOP.

We then use the foregoing infrastructure to express the verifier of our holographic IOP for R1CS as a
constraint system. We note that the very same generic infrastructure would make it straightforward to express
the verifiers of other protocols with the same structure [AHIV17; BBHR19; BCRSVW19; BCGGRS19].

Remark 2.1 (succinct languages). Our work in writing constraints for the verifier is restricted to non-uniform
computation models such as R1CS (i.e., we are not concerned about the global structure of the constraint
system). We do not claim to have an efficient way to express the same verifier via succinct languages such as
AIR [BBHR19] or Succinct-R1CS [BCGGRS19]. Doing so remains an open problem that, if addressed, may
lead to additional opportunities in recursive composition (through non-preprocessing SNARKSs).
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3 Preliminaries

We state time costs in terms of basic operations over a given field IF, and size costs in terms of field elements
in F. We use the “big-oh” notation Op to remind the reader that F-operations and [F-elements have unit cost.

3.1 Sparse representations of matrices

Our protocols leverage sparse representations of matrices for efficiency, following the definition below. The
definition is primarily for convenience in the sense that any reasonable sparse representation of a matrix can
be transformed, in linear time, into one that follows the definition that we use.

Definition 3.1. Ler H, K C . A sparse representation of a matrix is a function (M): K — H x H x F
that is injective when its output is restricted to H x H. The matrix M € FH*H is obtained from (M) by
setting, for a,b € H, My, := vy if there exists k € K such that (M )(k) = (a,b,) and M, := 0 otherwise.

Note that a matrix M € F*H has many possible sparse representations. In particular, we may choose
any large enough K and any injection from K to H x H that “covers” the nonzero entries of M.

3.2 Indexed relations

An indexed relation R is a set of triples (2, x, w) where 1 is the index, x the instance, and w the witness; the
corresponding indexed language L(R) is the set of pairs (1, x) for which there exists a witness w such that
(1,x,w) € R. For example, the indexed relation of satisfiable boolean circuits consists of triples where 1 is
the description of a boolean circuit, x is an assignment some of the input wires, and w is an assignment to
the remaining input wires that makes the circuit output O.

In this paper we build protocols for the indexed relation that represents rank-1 constraint satisfiability
(R1CS), a generalization of arithmetic circuits where the “circuit description” is given by coefficient matrices.

Definition 3.2 (R1CS indexed relation). The indexed relation Rgrics is the set of all triples
(i,x,w) = ((F,H, K, (4),(B),(C)), [, z),w)

where I is a finite field, H, K are subsets of F, (A),(B),(C): K — H x H x IF are sparse representations
of H x H matrices over I, I is a subset of H, x € FL,we IFH\I, and z = (z,w) € FH is a vector such
that Az o Bz = Cz. (Here “o” denotes the entry-wise product between two vectors.)

Remark 3.3. The above definition can be generalized to the case where the matrices are non-square, namely,
the matrices are in F71 %12 for possibly distinct domains Hy, Ho C F [BCRSVW19]. All results stated in
this paper extend to this non-square case. Our focus on the square case is only for simplicity of exposition.

3.3 Algebra

Polynomial encodings. For a finite field I, subset 5 C F, and function f: S — F we denote by f the
(unique) univariate polynomial over F with degree less than [ S| such that f(a) = f(a) for every a € S. More

explicitly, f(X) := " cq f(a)Las(X), where Lg 5 (for a € S) is the unique (Lagrange) polynomial of
degree less than |.S| such that L, s(a) =1 and L, g(b) =0forallb e S\ {a}.
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Reed-Solomon code. Given a subset L of a field F and degree bound d < |L|, we denote by RS[L, d] C F*
all evaluations over L of univariate polynomials of degree at most d:

RS|L, d] := {f; L — Fst 3f e F[X] with deg(f) < dand f(L) = f}

Whenever a polynomial f as above exists, then f is unique. The rate of RS[L, d] is p := (d+1)/|L| € (0,1),
and its distance is 1 — p. The message encoded by f € RS[L, d] is the restriction of f to a distinguished
subset H C F of size d + 1. (Note that H need not be a subset of L.) Observe that for every polynomial
f € F[X] with degree less than |L| it holds that the word f7, := f| is in RS|L, deg(f)] (we will drop the
subscript when the choice of domain L is clear from context). This means that there is a bijection between
words in RS[L, d] and polynomials in F[X] of degree at most d.

We frequently move between univariate polynomials over I and their evaluations on domains L C F.
We use plain letters like f, g, h to denote functions from L to I, and “hatted letters” f 50, h to denote the
polynomials of minimal degree that agree with the corresponding functions on L. Conversely, if we “drop the
hat” from a polynomial, then we consider its evaluation over L (which will always be larger than the degree).

Domains with subgroup structure. For a finite field IF, by “subgroup of [’ we mean either a subgroup of
the additive group of IF or a subgroup of F*. By “coset of [F”” we mean a coset of a subgroup of I (additive
or multiplicative). Throughout the paper we assume that the domain L for the Reed—Solomon code has
“smooth” subgroup structure, meaning that it factors as a direct product of small (i.e., constant-size) subgroups.
Under this assumption we can encode a message using the Reed—Solomon code in time O (|L|log|L|). This
assumption is also required by the low-degree test that we use [BBHR18; BGKS19].

Vanishing polynomials. For a finite field IF and subset S C F, we denote by vg the unique non-zero monic
polynomial of degree at most |S| that is zero on S; vg is called the vanishing polynomial of S. If S is a coset
in T then the coefficients of vg can be found in time O (log? |S|), and subsequently vg can be evaluated
at any point in time Og(log |S|).° In the holographic setting we can have the indexer find vg for any S of
interest, so that the verifier can evaluate vg in time Op(log |S|). In this paper we assume that this is the case,
so that for any coset S in F we can evaluate its vanishing polynomial at any point in time Op(log |S|).

Derivative of vanishing polynomials. We rely on various properties of the bivariate polynomial ug related
to the formal derivative of vg, first exploited to obtain efficient probabilistic proofs in [BCGGRS19]. For a
finite field F and subset S' C F, we define

vs(X) —wg(Y)
X-Y ’

ug(X,Y) =

which is a polynomial of individual degree |S| — 1 because X — Y divides X* — Y for any positive integer i.
Note that ug (X, X) is the formal derivative of the vanishing polynomial vg(X).!

The bivariate polynomial ug(X,Y") satisfies two useful algebraic properties. First, it is strongly related
to the Lagrange polynomials L, s for a € S. Specifically, ug(X, a) = us(a, X) = Lo s(X) - us(a, a) for
all a € S. In particular, this implies that the polynomials (us(X, a))qes are linearly independent. Second,
the (unique) low-degree extension (in Y) of the vector (us(X, a))acs € F[X]° is precisely ug(X,Y).

°If S is a multiplicative subgroup of F then vg(X) = X 151 — 1. More generally, if S is a £-coset of a multiplicative subgroup So
(namely, S = £S) then vs (X) = £1¥lug, (X/€) = X5 — 151 In either case, vs can be found and then evaluated at any point in
time Or(log | S|). If instead S is an additive subgroup then there is an algorithm to find the coefficients of vg in time Or (log? |S|).
Being a linearized polynomial, vs has only O(log |S|) nonzero coefficients, and in particular can be evaluated at any point in time
Or(log|S|). An analogous statement holds if S is a coset of an additive subgroup.

'9This follows from the general fact that, for g(X,Y) := (f(X) — f(Y))/(X = Y), g(X, X) is the formal derivative of f(X).
To see this, observe that (X™ — Y™) /(X —Y) = 37 X'V~ !. Setting Y := X yields nX" ", the derivative of X".
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If S is a coset in IF, an expression for ug(X,Y") can be found in time Og (log? |S|), and subsequently one
can use this expression to evaluate ug(X,Y) at any point («, ) € F? in time O (log |S|).!!

Univariate sumcheck for cosets. For S C F, g € F[X], o € F, define the polynomial:

S4(3, 0) = Xg(X)+0a/|S] if S is a multiplicative coset of F
g +0o - o=t if S is an additive coset o
s X)+oXIS-1/5 calSlElif s dd fF

Note that X (-, -) may be viewed as an arithmetic circuit. We will use the following lemma from [BCRSVW19],
which leads to a univariate analogue of the multivariate sumcheck protocol [LFKN92].

Lemma 3.4 ((BCRSVW19)). Let S be a coset of F, and let f € FIX] be such that deg(f) < |S|. Then
Y wcs f(a) = o if and only if there exists § with deg(g) < |S| — 1 such that f = ¥5(g,0).

"If S is a multiplicative coset in F then us(X,Y) = (X! — YI51) /(X — V) and us(X, X) = |S| X571, 50 both can be
evaluated in time Or(log |S]). If S is an additive coset in IF then us(X,Y") is obtained directly from the linearized polynomial vsg,
and us (X, X) is the constant polynomial that equals the coefficient of the linear term in the linearized polynomial vs.
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4 Definition of holographic IOPs

A holographic IOP for an indexed relation R is specified by a tuple HOL = (I, P, V), where I is the
indexer, P the prover, and 'V the verifier. The indexer is a deterministic polynomial-time algorithm, while
the prover and verifier are probabilistic polynomial-time interactive algorithms. In an offline phase, given an
index 1, the indexer I computes an encoding of 1, denoted I(i). Subsequently, in an online phase, the prover
P receives as input a triple (i, x, w), while the verifier V receives as input x and is granted oracle access to
the encoded index I(2). The online phase consists of multiple rounds, and in each round the verifier V sends
a message p; and the prover P replies with a proof string II;, which the verifier can query at any location. At
the end of the interaction, the verifier V accepts or rejects.
We say that HOL has perfect completeness and soundness error ¢ if the following holds.

e Completeness. For every index-instance-witness triple (i,x,w) € R, the probability that P (i, x, w)
convinces V1) (x) to accept in the interactive oracle protocol is 1.

e Soundness. For every index-instance pair (1, x) ¢ £(R) and prover P, the probability that P convinces
Vi) (x) to accept in the interactive oracle protocol is at most €.

The round complexity k is the number of back-and-forth message exchanges between the verifier and the
prover. The proof length L is the sum of the length of the encoded index plus the lengths of all proof strings
sent by the prover. The query complexity q is the total number of queries made by the verifier; this includes
queries to the encoded index and to the oracles sent by the prover.

The holographic IOPs that we construct achieve the stronger property of knowledge soundness and
optionally also zero knowledge. We define both of these properties below.

Knowledge soundness. HOL has knowledge error & if there exists a probabilistic polynomial-time extractor
E such that for every instance i, witness x, and unbounded prover P:

Pri(l,x,w) € R |w Els(ﬁ,x)} > Pr [(f’,VI(ﬁ)(x» = 1] -k,

where EP means that we give the extractor black-box access to P. We provide this definition purely for
illustrative purposes. In this paper we only use the stronger knowledge notions described in Section 4.2.

Zero knowledge. HOL has (perfect) zero knowledge with query bound b if there exists a probabilistic
polynomial-time simulator S such that for every (1, x, w) € R and b-query algorithm V the random variables
View(P (1, x,w), V) and SV (1, x), defined below, are identical. (An algorithm is b-query if it makes less
than b queries in total to any oracles it has access to.)

e View(P(1,x,w), \7) is the view of V, i.e., is the random variable (r, a1, . .. ,aq) Where r is V’s random-
ness and aq, . . ., aq are the responses to V’s queries determined by the oracles sent by P.

o SV(i,x) is the output of S(i,x) when given straightline access to V (S may interact with V, without
rewinding, by exchanging messages with V and answering its oracle queries), prepended with Vs
randomness 7. Note that r could be of super-polynomial size, so S cannot sample 7 on Vs behalf and
then output it; instead, we restrict S to not see r, and prepend r to S’s output.

HOL is honest-verifier zero knowledge if the above holds with V := VI(#)(x).

Public coins. HOL is public-coin if each verifier message to the prover is a random string. This means
that the verifier’s randomness is its messages p1,...,px € {0,1}* and possibly additional randomness
Pr+1 € {0, 1}* used after the interaction. All verifier queries can be postponed, without loss of generality, to
a query phase that occurs after the interactive phase with the prover.
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4.1 Reed-Solomon encoded holographic IOPs

Reed—Solomon encoded IOPs (RS-encoded IOPs) were introduced in [BCRSVW19] to provide a formal
framework for separating protocol design from the technical issues introduced by low-degree testing. We
adopt this formalism in this paper as well, with straightforward modifications for the holographic setting.

Informally, in an RS-encoded IOP, the prover and verifier engage in a public-coin IOP interaction
and, after the interaction, the verifier outputs a set of algebraic claims about the prover’s messages. The
completeness condition requires that in the “yes” case, when the verifier interacts with the honest prover, the
output claims are true with probability 1. The soundness condition requires that in the “no” case, when the
verifier interacts with a malicious prover, at least one of the output claims will be false with high probability
no matter what the prover’s messages are. The holographic setting introduces the sole difference that the
verifier’s algebraic claims may include statements about the codewords output by the indexer.

In more detail, by “algebraic claim” we specifically mean a rational constraint, defined next.

Definition 4.1. A rational constraint is a tuple ¢ = (p,q,d) where p: F'** — F and q: F — T are
arithmetic circuits, and d € N is a degree bound. The arithmetic circuits (p,q) and a list of words
fis--+y fer L — Fjointly define the word (p, q)[f1, ..., fe]: L — T given by

VaeL, (pg)lf.... fi(a) = 2% fl(ajéc-bj. ela)

A rational constraint ¢ = (p, q, d) is satisfied with respect to f1,..., fo if (p,q)[f1,- .., fo] € RS[L, d]."?

N

When describing rational constraints, we will often use the shorthand notation “deg(f) < d”, where
f: L — F is defined as a rational equation over some oracles. This should be taken to mean the rational
constraint ¢ = (p, g, d) that is naturally induced by the expression that defines f.

A special type of rational constraint is a boundary constraint, defined next.

Definition 4.2. A boundary constraint is a rational constraint that expresses a condition such as “ f (a) =p”
for some word f: L — T and elements o, 5 € F. Such a condition is represented via the rational constraint

~

c = (p,q,deg(f) — 1) where p(X,Y) :=Y — B and q(X) := X — «, which can be summarized as

“deg(§) < deg(f)— 17 where g(a) := (f(a) — B)/(a— a). We denote this constraint simply by “f (o) = 3.
In the following we use RS[L, (d1, . .., d)] € (F¥)’ to denote the interleaved Reed—Solomon code over
L with degree bounds (dy,...,d), i.e., the set of k& x |L| matrices where the i-th row is a codeword of
RS[L, d;] (which itself is all evaluations over L of univariate polynomials of degree at most d;).
A Reed—Solomon encoded holographic IOP (RS-hIOP) for an indexed relation R is a tuple

(Ia Pa V7 {d_)L JP,I) cee 7JP,k})

where I is a deterministic algorithm, P and V are probabilistic interactive algorithms, and dr € Nfo, JPJ €
N% are vectors of degree bounds, that satisfies the following properties.

Degree bounds: On input any i, the indexer I outputs a codeword of RS[L, d}] Moreover, on input any
(1,x, w) € R and for every round ¢, the i-th message of P (i, x, w) is a codeword of RS[L, dp ;].

Completeness: For every (i,x,w) € R, all rational constraints output by V1) (x) after interacting with
P(1,x, w) are satisfied with respect to I(1) and P (1, x, w)’s messages with probability 1.

For a € L, if g(a) = 0 then we define (p, ¢)[f1, ..., f¢](a) := L. Note that if this holds for some a € L then, for any words
f1,-.., fe and degree bound d, the rational constraint (p, ¢, d) is not satisfied by f1, ..., fe.
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Soundness: For every (i,x) ¢ £(R) and unbounded malicious prover P whose i-th message is a codeword
of RS[L, dp ], all rational constraints output by V() (x) after interacting with P are satisfied with
respect to I(1) and the prover’s messages with probability at most €.

Often we will write that V “accepts”, which means that all of the rational constraints it outputs are satisfied,
or that it “rejects”, which means that at least one rational constraint is not satisfied.
We conclude by discussing useful complexity measures for RS-encoded 10Ps.

e The query evaluation time ¢ is the natural complexity measure for V, and equals the sum of the query
evaluation times of the rational constraints output by V. The query evaluation time of a single rational
constraint ¢ = (p, ¢, d) is the time required to compute (p, ¢)[f1,- - -, f¢](a) € F given a € L and oracle
access to f1,..., fs (and possibly additional information provided by the indexer). That is, it is the time
needed to (construct and) evaluate the arithmetic circuits (p, ¢) at a single point.

e The maximum degree is a pair (dc, d.) € N x N defined as follows.

dc is the “constraint degree”, defined as the maximum specified degree of any oracle sent by the prover
and any constraint output by the verifier, i.e., dc := max dp; U---Udpx U {d : V outputs (p,q,d)}.

de is the “effective degree”, which is a quantity arising from the compilation from an RS-encoded IOP to a
standard IOP via low-degree testing that is defined as follows:

de = max{dc} U {deg(pa CZI, JP,I? ey JP,k)v d + deg(q) 'V OUtPUtS (p7 q, d)}

where deg(P; J} for an arithmetic circuit P: F!*™ — [ and degree bounds d € F™ denotes the degree of
the composed polynomial P(X,Q1(X),...,Qmn(X)) when deg(Q;) = d;. Note that de > d..

4.2 Stronger notions of soundness

Aside from the standard notion of soundness above, there are two further soundness notions that arise when
constructing non-interactive arguments from IOPs. These are round-by-round soundness [CCHLRR18;
CMS19] and state-restoration soundness [BCS16], adapted to holographic IOPs. We discuss these below.

Round-by-round soundness. We begin by defining the notion of a (partial) transcript of an IOP, which
means all proof strings and verifier messages up to a point where the prover is about to move.

Definition 4.3. A transcript tr of a holographic IOP (I, P, V) is a tuple of the form (111, my, ..., II;; m;)
for some i € (K], where each 11 is a prover (oracle) message and each mj is a verifier message. We denote
the empty transcript by (). A transcript is full if i = k, where k is the round complexity of (I, P, V).

A protocol HOL = (I, P, V) has round-by-round soundness error €, if there exists a function State
from the set of transcripts to {accept, reject} such that for every transcript tr:
e if (1,x) ¢ L(R) and tr = (), then State(1, x, tr) = reject;
e if State(i, x, tr) = reject, then rbr(tr) < €1, where

rbr(tr) := max Pr [State(1, x, tr||II|jm) = accept] ;
m

e if State(i, x, tr) = reject and tr is a full transcript, then VI (x: tr) rejects.
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The notion of round-by-round soundness for RS-encoded holographic IOPs is as above, except that the
maximum in the definition of rbr is taken over II; € RS[L, CZPJ‘], for tr a transcript of ¢ — 1 rounds, and the
third condition above need only hold for full transcripts tr where II; € RS[L, Jp7i] for all <. In particular,
it suffices to define State(i,x, tr) only for tr where the prover messages are of the prescribed degrees;
otherwise, the state can be taken to be accept.

Finally we recall the definition of round-by-round knowledge soundness from [CMS19].

Definition 4.4. A holographic IOP (1, P, V) for a relation R has round-by-round knowledge error .y,
if there exists a function State and a polynomial-time extractor E such that for every index 1, instance x,
transcript tr such that State(1, x, tr) = reject, and every oracle message 11, if Pry, [State(i, x, tr||II||m) =
accept]| > by then (1, x, E(1, x, tr||II)) € R.

For RS-encoded holographic IOPs we relax the above so that E need only succeed for tr where the prover
messages are of the prescribed degrees.

State-restoration soundness. State-restoration soundness captures the ability of the prover to cheat when
it is able to rewind the verifier a bounded number of times. State-restoration soundness essentially exactly
captures the soundness of non-interactive arguments derived from IOPs via the BCS transformation [BCS16].
In Section 10 we prove that this continues to be true when we modify the BCS transform to construct
preprocessing non-interactive arguments from holographic I0Ps. However here we do not define state-
restoration soundness because in our proof of the compiler we will rely on the BCS transformation as a black
box. We note only that if a protocol has round-by-round soundness error €., then it has state-restoration
soundness error € (t) < t - €1,, Where ¢ is the bound on the number of rewinds. This fact is relevant because
in Section 8 we prove that our efficient holographic IOP for R1CS has small round-by-round soundness error.

Knowledge soundness is somewhat delicate and so we discuss it in more detail. In this work we will use
the following (fairly strong) definition for state-restoration knowledge soundness.

Definition 4.5. An IOP (P, V) for a relation R has state restoration knowledge error K if there exists a
polynomial-time extractor B such that for all 1,x and every state-restoration prover P,

trr is accepting N\ trg < <f’, Vg

br (i,x,w) ¢ R w <+ E(1,x,try) | —

(51

Note that the power of the extractor is limited compared to the definition given in [BCS16]; in particular,
we do not allow the extractor even black-box access to the prover itself, only to a (state-restoration) transcript.

If (P, V) has round-by-round knowledge error k.1, then it has state-restoration knowledge error xg; () <
t - kibe- This can be seen as follows: recall that a state-restoration transcript trg, consists of a collection
of partial (standard) transcripts generated via the state restoration game. The state restoration extractor E
applies the RBR extractor to every partial transcript in trg;, and outputs the first valid witness it obtains. Since
trgr is accepting and the empty transcript is rejecting, at least one such partial transcript changes state from
reject to accept. Round-by-round knowledge error implies that if the RBR extractor fails for this transcript,
this happens with probability at most k1, ; the result follows by a union bound.
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5 Sumcheck for rational functions

We describe how to extend the univariate sumcheck protocol of [BCRSVW19] from univariate polynomials
to univariate rational functions. We thus obtain a protocol for checking the value of the sum of a rational
function p(X)/¢(X) € F(X) over a subgroup K of F.

Definition 5.1. Let R be the set of all pairs (x, w) = ((F, L,K,dy,dg,0),(p, q)) such that p € RS[L, d,),
q € RS[L, d,), and ¢(a) # 0 for all a € K. The promise relation Rysum = (Ragonm: Rusoum) IS defined as
follows: RYES,, is the subset of pairs in R such that ), ;- p(a)/4(a) = 0, and R{gyy := R\ Rifou-

Let o € FF be the claimed value for the sum. We know from Lemma 3.4 that a polynomial f (X) of degree
at most || — 1 sums to o over K if and only if there exists a polynomial §(X) with degree at most | K| — 2
such that X (§, 0)(X) equals f(X). While we do not know how to obtain an equivalence like this one for
the case of rational functions, there is a natural approach to build on the case of polynomials.

The prover computes the polynomial f (X)) of minimal degree that agrees with the rational function
p(X)/q(X) on K, and then sends (the evaluation of) the corresponding polynomial § guaranteed by
Lemma 3.4 (i.e., such that g (§,0)(X) = f(X)). The verifier can check that X (§,0)(X) sums to
o via the rational constraint “deg(g) < |K| — 2”. Then the verifier is left to check that X (g, o) (X)) agrees
with p(X)/q¢(X) on K, which is equivalent to checking that X (g, 0)(X)§(X) — p(X) vanishes on K (as
G(a) # 0 for all a € K'), which can be done via a standard use of a second rational constraint.

Construction 5.2 (rational sumcheck). Let (x,w) = ((F, L, K, dp,dq, o), (p,q)) be a pair in R. In the
rational sumcheck protocol, the honest prover P receives as input (x, w), and sends a codeword g €
RS[L, | K| — 2] that is obtained as follows: compute the unique polynomial f of degree at most | K| — 1 that
agrees with p(X)/¢(X) on K; compute the unique polynomial §(X) of degree at most | K| — 2 such that
i (9,0)(X) = f(X); evaluate §(X) over L to obtain g. The honest verifier V receives as input x, and
outputs the following two rational constraints: “deg(g) < |K| — 2” and “deg(é) < d.”, where e: L — Fis
a function and d. € N is a degree bound that are defined as follows:

Vae L, e(a) = Exlg,0)(a) -ala) = pla) and d. :=max(dy, |K|—1+dy) —|K| . (1)

vk (a)

Formally, the above is an RS-encoded PCP of proximity for Risym (see [BCRSVW19] for definitions).
For simplicity, in the lemma below we directly establish the properties that we need without this abstraction.

Lemma 5.3. Let (x,w) = ((]F, L,K,dy,dg,0),(p, q)) € R be such that LN K = (), K is a subgroup of I,

and max(dy, | K| — 1+ dy) < |L|. The protocol (P, V) in Construction 5.2 satisfies the following.

1. Completeness: if (x, w) € RYES,, then V (x) outputs rational constraints that are satisfied by (p, q, g),
where g is the oracle sent by the honest prover P (x, w).

2. Soundness: if (x, w) € RXQ,,, then for every malicious prover P at least one of the rational constraints
output by V (x) is not satisfied by (p, q, g), where g is the oracle sent by the malicious prover P.

The protocol has constraint degree max(d, —| K|, d;—1,|K|—2) and effective degree max(d,, | K|—1+d;).

The query evaluation time of the verifier is Op(log | K).

Proof. We first argue completeness and then soundness.

Completeness. Suppose that ) ;- p(a)/G(a) = o. The honest prover P sends the polynomial §(X') with
degree at most | K| — 2 such that X (g,0)(X) agrees with p(X)/G(X) on K; the existence of §(X) is
guaranteed by Lemma 3.4. Since (a) # 0 for all @ € K, we also have that X (g, 0)(a) - §(a) = p(a) for all
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a € K. Thus the polynomial X (g, 0)(X) - g(X) — p(X) is divisible by the vanishing polynomial vy (X).
We conclude that the two rational constraints “deg(g) < |K| — 2” and “deg(é) < d.” are satisfied.
Soundness. Suppose that ) - p(a)/G(a) # o. Let g be the oracle sent by P and suppose that the
rational constraint “deg(g) < |K| — 2” is satisfied (or else we are done). By Lemma 3.4 we know that
> wek 2K(9,0)(a) = o. Hence there must exist a* € K such that ¥ (g,0)(a*) - ¢(a*) # p(a*), so
a* is not a root of the polynomial Xx(g,0)(X) - ¢(X) — p(X). By definition of e, the polynomials
Yk(g,0)(X)-¢(X)—p(X)and é(X) vk (X) agree on L. Since d. + |K| = max(dp, |K|—1+d,) < |L|,
if the rational constraint “deg(é) < d.” is also satisfied, then we can conclude that these two polynomials are
identical, which is a contradiction because a* is a root of é(X) - vi (X).

Efficiency. The verifier outputs a rational constraint on g, which is the oracle sent by the prover, and
a rational constraint on e, which is the virtual oracle defined in Eq. (1). So the query evaluation time is
dominated by the number of field operations to evaluate e at a single point, which is O(log | K|) (due to the
need to evaluate the vanishing polynomial vy at that point). The stated constraint and effective degrees can
be obtained by keeping track of the degrees of the relevant real and virtual oracles in the protocol (as in the
table) and then using the definitions in Section 4.1.

oracle type  constraint degree numerator degree denominator degree
g real |K|—2 - -
e virtual de max(dp, |K| —1+dg) |K|

O]

Remark 5.4 (zero knowledge). In Section 6, the above construction will be used as a subprotocol to evaluate
the arithmetization of a public matrix. For this reason, we do not require any zero knowledge properties
of the above construction (and indeed, the construction as described is not zero knowledge). Nonetheless,
it is relatively straightforward to obtain a zero knowledge variant of this construction by using bounded
independence and zero knowledge sumcheck as in [BCRSVW19].
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6 Holographic lincheck

We describe a holographic variant of the lincheck protocol of [BCRSVW19]. The lincheck problem involves
checking linear relations between encodings: given H C F, Reed—Solomon codewords f, g € RS[L, d], and
matrix M € FH>H check that f| = M - §|z. Below we consider matrices M that are given in a sparse
representation (see Definition 3.1), as the protocol that we describe leverages this sparsity for efficiency.

Definition 6.1. Let R be the set of all pairs (i, x,w) = ((F, L, H, K, d, (M)),1"°8 KL (f1, f2)) such that
F is a finite field, L, H, K are subsets of F, (M): K — H x H x [ is a sparse representation of a matrix
M € FHXH 4 e Nis a degree bound, and f1, fo € RS[L, d] are codewords. The indexed promise relation
Rom = (RYES, RYQ) is such that RYES is the subset of R with fi|g = M - fao|g, and RYS, := R\ RYES.

The goal of this section is to prove the following lemma.

Lemma 6.2. Let (1,x,w) = ((IF, L, H K, d,(M)),1°8 K1, (f1, f2)) € R be such that H, K are subgroups
of F, |L| > 3|K|—3, and LN (H U K) = (. The protocol (I, P, V) in Construction 6.8 satisfies the
following.
1. Completeness: if (1,x,w) € RYES then V (x) outputs rational constraints that are satisfied by (f1, f2)
and the oracles sent by the honest prover P (1, x).
2. Soundness: if (i,x,w) € RYS, then for every malicious prover P all of the rational constraints output by
V (x) are satisfied by (f1, f2) and the oracles sent by P with probability at most 2(|H| — 1) /(|F| — |H|).
In particular, the construction has two rounds and RBR soundness error (|[H| — 1)/(|F| — |H|). Moreover,
the construction can be made zero knowledge; the RBR soundness error is then |H|/(|F| — |H|).
The prover and indexer run in time Op(|L| log |L|), and the verifier’s query evaluation time is O (log | K |).
The constraint degree is max(d—1, |H|—2, 2| K| — 3) and the effective degree is max(|H|—1+d, 3| K|—3).

Formally, Construction 6.8 is an RS-encoded IOP of proximity for R;;y. However, for simplicity, we
directly establish the properties we need without this abstraction. The notion of zero knowledge is as usual
for proximity notions: we require that if a malicious verifier V makes ¢ queries across all of the oracles
available to it, the simulator can reproduce its view by making ¢ queries to each of the witness oracles.

The remainder of this section proceeds as follows. In Section 6.1, we describe a subprotocol for checking
an evaluation of the low-degree (bivariate) extension of a matrix. In Section 6.2, we describe how to use this
subprotocol to build a holographic lincheck protocol, proving Lemma 6.2. Throughout this section we rely on
the notion of a sparse representation of a matrix (see Section 3.1) and on facts about vanishing polynomials
and their derivatives (see Section 3.3).

6.1 Holographic proof for sparse matrix arithmetization

The bivariate low-degree extension of a given matrix M € FH*H is the unique polynomial M e FIX,Y]

of minimal degree such that M (a,b) = M, for all a,b € H. We wish to check statements of the form
“N (a, B) = 7 for v, 8 chosen (almost) arbitrarily in F.

Definition 6.3. The indexed relation Ryiat is the set of triples (1, x,w) = ((F, H, K, (M)), (o, 8,7), J_)
where I is a finite field, H and K are subsets of F, (M): K — H x H x F is a sparse representation of a
matrix M € FH*H o B ~ € T are field elements, and M (o, B) = ~. (This relation has no witnesses.)

The indexed relation Rypar is tractable: one can check if M (c, ) = ~ in time O (|| M) by directly
computing the value of the low-degree extension M (X,Y") at («, 3). Without holography, it is not possible
to verify this equation in time op(||M||) since in general M («, ) depends on every entry of M.
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We show how to significantly reduce this cost via a protocol that holographically stores information about
M in the encoded index in order to achieve an online verification time of O(log|| M ||). Our protocol relies on
expressing the bivariate low-degree extension M (X,Y) in terms of univariate low-degree extensions that
describe the non-zero entries of M. We explain this algebraic identity, and then how our protocol uses it.

Given a sparse representation (M) : K — H x H x IF, define réw ), CE)|<M> : K — H, anI(M) € F[X]
to be the unique polynomials of minimal degree such that for each k& € K, letting (a, b, ) := (M)(k),

ug(a,a) - ug(b,b)

rown (k) ==a, colpny(k):=b, valngy(k) =

The following claim expresses M in terms of oW a7y, CE)I< M) v23|< M)-
Claim 6.4. For any sparse representation (M): K — H x H x F of a matrix M € FH*H,

v (X) ‘ v (Y)
(X —rowan (k) (Y — colia (k)

MX,Y)=> ~valoy (k)

keK

Proof. Denote the right-hand side of the equation by P(X,Y’). Since row s (k), c6I< wmy(k) € H for
all k € K, P(X,Y) is a polynomial of degree at most |[H| — 1 in both X and Y. We now argue that
P(a,b) = M, forarbitrary a, b € H (which implies that P agrees with M on H x H and hence that P = M).
Suppose first that there is no & € K,~ € [ such that (M) (k) = (a,b,~). By definition of M, M,; = 0;
moreover for any k € K either vy (X)/(X —rowyp (k)) has aroot at a or UH(Y)/(Y—CE)|<M> (k)) has a root
at b, and so P(a,b) = 0 as well. Now suppose that there exists k € K,~ € F such that (M) (k) = (a,b,7);
note that k is unique because (M) is injective. Hence P(a,b) = ug(a,a) - ug (b, b) -v5I<M)(k:) =M,p. O

Construction 6.5. The indexer I receives as input an index 1 = (F, H, K, (M) along with an evaluation do-
main L C IF, computes the low-degree extensions row ,y, cE>I< M) vzal< y» and then outputs their evaluations
row ), coliary, valiary € RS[L, | K| — 1]. The indexer I also outputs descriptions of IF, H, K.

Subsequently, given an instance x = («, 3,), the honest prover P receives as input (i, x) and the honest
verifier V receives as input x and oracle access to I(1). The prover P and verifier V engage in the rational
sumcheck protocol (see Section 5) to show that

: V;!|<M>(k) =7 .

va(a) . va(P)
k;( (o = rowry (k) (B — colippy (k)

In particular, the verifier V outputs the rational constraints “deg(g) < |K| — 2” for g sent by P, and
“deg(é) < 2|K| — 3” fore: L — T defined as

Y (g,7)(a) - (@ = rowppy (a)) (B — coliary(a)) — va(a)va(B)valary(a)
v (a) '

Vae L, e(a):= 2

Lemma 6.6. For any field F and evaluation domain L C F, Construction 6.5 is an RS-encoded holographic

PCP over domain L for the indexed relation Ryat with perfect completeness and perfect soundness, for

indices 1 = (F, H, K, (M)) and instances x = («, 3,7) with H, K subgroups of F, |L| > 3|K| — 3,

LNK =0, and o, 8 € F\ H. In particular, the following properties hold.

1. Completeness: if (i,x, 1) € Ryar then VIO (x) outputs rational constraints that are satisfied by the
oracles sent by the honest prover P (i, x).
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2. Soundness: if (1,x, L) & Rynat then for every malicious prover P at least one of the rational constraints
output by VI (x) is not satisfied by the oracles sent by P.

The constraint degree is 2| K| — 3, and the effective degree is 3| K| — 3. The indexer and prover run in time

Or(|L|log |L|), and the query evaluation time of the verifier is O (log | K|).

Proof. Completeness and soundness follow immediately from Claim 6.4, the completeness and soundness
of the rational sumcheck protocol, and the observation that the denominator of the rational summand for
M (c, B) is nonzero for all k € K when o, 8 € F \ H. The query evaluation time is dominated by the cost
of evaluating vy and v at a point, which is Op(log |H| 4 log | K|) = Op(log | K|). The constraint degree
and effective degree are obtained from setting d,, := |K| — 1 and d,; := 2| K| — 2 in the rational sumcheck
protocol (see Lemma 5.3). O

6.2 The protocol

Recall from Section 3.3 that 7 := (ug(a,Y))scn € F[Y]¥ is a vector of linearly independent polynomials
in Y. The primary computational task in the lincheck protocol is to evaluate the low-degree extension
up (X,Y) of "M € F[Y]H at a uniformly chosen point in F x F. For this, we use the protocol for sparse
matrix arithmetization discussed above, along with an observation showing that it suffices to compute the
arithmetization of a matrix M* related to M.

Claim 6.7. For any matrix M € FH>H Jet M* € F7*H pe the matrix given by M, := My, - up (b, b)
forall a,b € H; note that |M*|| = ||M||. Then

up(X,Y) = M*(X,Y) .

Proof. By the definition of low-degree extension,

un(X,Y) =D (FM)o - Lag(X) =Y Lau(X) Y Mya - um(b,Y) .
a€eH a€eH beH

Recall that ug (b,Y) = ug (b,b) Ly g (Y'). Hence

up (X, Y) =Y Lo (X)L g (V) Myqup (b,b) = M*(X,Y) . O
a€H beH

Construction 6.8 (holographic lincheck). The indexer I receives as input an index 1 = (F, L, H, K, d, (M),
computes a sparse representation (M *) of the matrix M™* (as in Claim 6.7), and then runs the indexer of the
sparse matrix arithmetization protocol (Construction 6.5) on the index (F, H, K, (M*)); note that the output
of the latter includes descriptions of ', H, K.

Subsequently, given an instance x = 1215 and witness w = (f1, f2), the honest prover P receives
as input (1, x), the honest verifier V receives as input x and oracle access to I(1), and they engage in the
following protocol.

1. V sends a € F \ H uniformly at random.
2. P sends the evaluation t € RS[L, |H| — 1] of the polynomial £(X) := up/ (X, a).
3. P,V engage in the sumcheck protocol to show that } ", _ ;; urr (D, @) f1(b) — £(b) fo(b) = 0.
That is, P sends g; € RS[L, |H| — 2] and V outputs the rational constraints “deg(g1) < |H| — 2” and

~

“deg(h) < d — 1” where

up (b, ) f1(b) — t(b) f2(b) — X (g1,0)(b) .

Vbe L, h(b) = o5 (5)
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4. Vsends § € F\ H uniformly at random.

5. P sends the field element v := uy; (3, o) = £(8), and V outputs the boundary constraint “¢(3) = 7.

6. P,V engage in the matrix arithmetization protocol (Construction 6.5) to show that M* (B, ) = 7.
That is, P sends g2 € RS[L, |K| — 2] and V outputs the rational constraints “deg(g2) < |K| — 2” and
“deg(é) < 2|K| — 37, where e: L — F is as in Eq. (2) with go in place of g and M* in place of M.

Proof of Lemma 6.2. Fora € F,let 7 := (up (b, ) € FH. One can verify that 7, M = (ups(b, o))

beH beH"

Completeness. Suppose that f1| =M - g|pg. Then for every o € F\ H it holds that

A~

> un(b, @) fi(b) = (7o, film) = (Fa, M - folm) = (FaM, folu) = unr(b, @) fa(b) = Y () fa(b)

beH beH beH

and so the sumcheck protocol in Step 3 succeeds. Next, Claim 6.7 tells us that ups (X, Y) = M+ (X,Y) and
so for every 3 € F\ H it holds that ups (3, o) = M*(j3, «). This means that M*(3, a) = () = ~, and so
the matrix arithmetization subverifier accepts, and the boundary constraint “£(3) = 7 is satisfied.

Round-by-round soundness. We define the State function as follows.

State(M’flanv(avt’glaB7 ('2592))): .

1. If & # L is such that (7, fi|g) = (Fa, M - fo| i), output accept.

2. If £(X) # upr(X, ) and B # L is such that £(3) = ups(3, ), output accept.
3. Otherwise, output reject.

Clearly State(()) = reject. Suppose that fi|g # M - fo|s. Then Procm i [{Ta filg) = (Fay M -
falz)] < (|H| — 1)/(|F| — |H|), and so the probability of moving to accept in the first round is at most
(1H|—1)/(F| — [H]). Similarly,if {(X) % uas (X, ), then Pracm [i(8) = unr(8,)] < (|H|—1)/(|F| —
|H|), and so the probability of moving to accept in the second round is at most (|H| — 1)/(|F| — |H]).

Now suppose that State(M, f1, fa, (o, t, 91,0, (7,92))) = reject; we show that with probability 1
there is some constraint which is not satisfied. By definition of State, (7u, fi|g) # (Fa, M - folgr). If
t(X) = upr(X, a) then the sumcheck constraint is not satisfied with probability 1, by the soundness of the
sumcheck protocol. Otherwise #(X) # uas(X, «); then by definition of State, it holds that #(3) # uas (8, @).

Hence with probability 1, either the sumcheck constraint is not satisfied, the boundary constraint “f(3) =
~” is not satisfied, or v = £(3) # un(8,) = M*(8, ), and so the matrix arithmetization subverifier
outputs a rational constraint that is not satisfied.

Zero knowledge. Note that since M is part of the index rather than the witness, it is not relevant for zero
knowledge; in particular, the simulator has access to M. Hence to ensure zero knowledge we need only
modify Step 3 to use the zero knowledge sumcheck protocol. This adds an additional oracle (the random
mask) but not an additional round, since we can run the protocols in parallel. The soundness error increases
by at most 1/|F| (and since the ZK sumcheck protocol is one round, so does the RBR soundness error). The
sumcheck simulator satisfies the property that the view of a malicious verifier making ¢ queries across all
oracles can be simulated by making ¢ queries to the summand. Since the summand is defined pointwise with
respect to (f1, f2), this results in at most ¢ queries to each of fi, fa.

Efficiency. The indexer runs the indexer of the holographic protocol for sparse matrix arithmetization on (a
modification of) the given matrix, and so runs in time Op(|L| log | L|). The first message of the prover is for the
sumcheck protocol and the second message of the prover is for the sparse matrix arithmetization protocol, and
so the prover runs in time Op(|L|log |L|). The query evaluation time of the verifier is dominated by the cost
to evaluate the vanishing polynomials v and v at a point, and so is Op(log | H| + log | K|) = Op(log | K]|).
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The constraint degree is max(d — 1, |H| — 2,2|K| — 3) and the effective degree is max(|H| — 1 +
d,3|K| — 3), as can be seen by keeping track of the degrees of all relevant real and virtual oracles in the
protocol (as in the table) and then using the definitions in Section 4.1.

oracle type constraint degree numerator degree denominator degree

g1 real |H| —2 - -
h virtual d—1 |H|—1+d |H|
92 real | K| —2 - -
e virtual 2|K|—3 3|K|—3 | K|
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7 RS-encoded holographic IOP for R1CS

We describe an RS-encoded holographic IOP for R1CS. The main subroutine that we use is the RS-encoded
holographic protocol for lincheck that we obtained in Section 6.

Theorem 7.1. Fix some L C F and b € N. Construction 7.2 below is a RS-encoded holographic IOP of
knowledge for Rrics (Definition 3.2) over domain L for indices (F, H, K, (A), (B), (C)) such that H, K
—3,and LN (H U K) = (. The protocol has 5 messages (prover moves
first), is zero knowledge against verifiers making less than b queries, and has round-by-round knowledge
error |H|/(|F| — |H|). The index length is Og(|L|), and the proof length is Og(|L|). The prover and
indexer run in time Og(|L|log |L|) and the verifier runs in time Og(|x| 4 log | K|). The constraint degree is
max(|H|+ b — 2,2|K| — 3), and the effective degree is max(2|H|+ b — 2, 3| K| — 3).

Construction 7.2. We describe an RS-encoded holographic IOP (I, P, V) for R1CS. (See Fig. 4 for a
diagram of this protocol after applying optimizations described in Remark 7.3 below.) In the description below
we denote by (I, Priv, Vi) the zero knowledge holographic protocol for lincheck (Construction 6.8).
The indexer I receives as input an index 1 = (F, H, K, (A), (B), (C)), computes the encoded index
Iy < Ton (i) where iM, := (F, L, H, K, |H| + b — 1, (M)) for each M € {A, B,C} for each M &
{A, B, C}, and then outputs the tuple (I 4,15, Ic). (Implicitly this includes descriptions of I, H, K; recall
also that in an RS-encoded protocol all parties have access to a description of the evaluation domain L.)
Subsequently, the prover P receives as input the index 1, an instance x = (I, z), and a witness w = w;
the verifier V receives as input the instance x only. Let z := (z,w) € FH be the full variable assignment.
1. Compute LDE of the input. Before the interaction, the prover P constructs fz( ), the unique polyno-
mial of degree less than |I| such that, for all b € I, fx( ) = xp. Define f, := fx| .. Note that the verifier
V., which knows , can evaluate f,(X) at any point in F in time Op(||).

2. Witness and auxiliary oracles. The prover P sends to the verifier V the oracles
fuw €RSIL,|H| — [I| +b—1] and fa., fp:, fo- € RS[L, |H| +b — 1]

defined as follows.

o fu = fu|L Where f,, is a random polynomial of degree less than |H | — |I| + b such that

Wq — fx(a) )

Yac H\I, fu(a)= 1@

o fa.:= fa-|z where f4. is a random polynomial of degree less than |H | + b such that, for all a € H,
faz(a) = pem Aap - 2b = (Az)q. The other codewords, fp. and fc., are defined similarly.

The codewords f; and f,, implicitly define the “virtual oracle” f, € RS[L, |H| + b — 1] where f(a) :=

fw(a)vr(a) + fu(a) for a € L. Note that f,(a) = z, forall a € H, so f. is a low-degree extension of z.

3. Rowcheck. To test that f Az\ HO fBz\ H= sz| 1, the verifier V outputs the rational constraint “deg(§) <
|H|+ 2b — 2” where s: L — F is defined as

fAz(a) i fBz(a) — sz(a) )

VYa€e L, s(a):= on(a)

4. Linchecks. To test that sz|H =M - fZ]H for each M € {A, B, C}, the prover P and verifier V run
the following in parallel. Recall that the verifier V has oracle access to the encoded index is (I4, g, I¢).
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© (PuniGp 151K, (fc. ). VG2 (108161

LIN
Proof. Fix anindex 1 = (F, H, K, (A), (B), (C)) and instance x = (I, x).

Completeness. Suppose that (i, x, w) € Rrics, and let z := (z, w). Note that, by construction, f- is a low-
degree extension of z. Since Az o Bz = C'z, we know that fAz\H o fBz\H = sz’H and sz!H = M- fZ\H
foreach M € {A, B,C'}. Hence, for all a € H itholds that f4.(a) - fp.(a) — fc.(a) =0, and so §(X) is
a polynomial of degree at most 2(|H| + b — 1) — |H| = |H| + 2b — 2, so the rational constraint in Step 3
is satisfied. Moreover, the holographic lincheck protocol in Step 4a yields rational constraints which are
satisfied; by a similar argument, Steps 4b and 4c yield satisfied rational constraints.

Round-by-round soundness. We define the following State function (recall 1 = (F, H, K, (A4), (B), (C))):
State(m <[7 CC)7 (fw» fAZ7 fBZ7 fCZ7 trLIN)):

L If (4, (I, z), fulm\1) € Rrics, output accept.

2. Split try;y into (partial) transcripts tri ., tr2 trC for the three lincheck subprotocols on
A, B, C respectively. If there exists M € {A, B, C'} such that sz\ g # M- fz\ 7 but the state
function for the lincheck protocol accepts (M, farz, f, truiy), Output accept.

3. Otherwise, output reject.

Suppose that (2, (I, z)) ¢ L(Rrics). Item 1 never holds. By the round-by-round soundness of the lincheck
protocol, the probability that State moves to accept at any round is at most |H|/(|F| — |H|). It remains to
show that when State(i, (1, z), (fuw faz: B2, fez: trun)) = reject, the verifier rejects with probability 1.

Let f, be the virtual oracle induced by f,, as sent by P. Then either f Az’ gof Bz| H# sz |77, or there
exists M € {A, B,C'} such that sz| o #* M- fz| - In the former case, the rational constraint output in
Step 3 is not satisfied (with probability 1), so suppose that the latter holds. Then by the definition of State,
the state function for the lincheck protocol rejects for some such M. Hence some rational constraint output
by the verifier in Steps 4a, 4b and 4c is not satisfied.

Proof of knowledge. The extractor E(i, x, tr) operates as follows: read f,, from tr and output fw | m\1- Let

Si={fu: ({1 x, fw\ o) € Rrics}- From the round-by-round soundness analysis, it holds that conditioned
on f,, ¢ S, the state moves to accept with probability at most € := |H|/(|F| — | H|). Hence if the state moves
to accept with probability greater than e, it must be that f,, € .S, and so E succeeds.

Zero knowledge. The simulator S simulates the oracles fy,, fa», [B2, fc» by answering Vs queries with
uniformly random elements of IF. It runs the simulator for the zero knowledge holographic lincheck protocol
as appropriate, answering the subsimulators’ queries to the oracles with uniformly random field elements.
Since V makes ¢ < b queries across all oracles, the guarantees of the subsimulators ensure that we only need
to simulate at most ¢ evaluations of each of f,,, fa., fB2, fc» in L (with L N H = (), which by bounded
independence properties of random polynomials will be uniformly random elements of F. For a detailed
simulator construction for a similar protocol, see [ BCRSVW19, Section 7.1].

Efficiency. The running time of the indexer follows from the running time of the lincheck indexer; in
particular, its computation cost is dominated by the cost of a constant number of FFTs over L. The running
time of the prover is similarly dominated. The constraint cost of the verifier consists of evaluating the low
degree extension of x at a single point in IF, and running the lincheck and rowcheck subverifiers whose cost is
dominated by evaluating vy and vg; using preprocessing this can be achieved for H, K subgroups of F in
time Op(log | K]|). O
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Remark 7.3 (batching linchecks). We would like to batch the three lincheck protocols from Steps 4a to 4c
into a single one, similarly to what is done in the non-holographic protocol for R1CS of [BCRSVW19].
Informally, we want the verifier to send random elements 74, 175, n¢ and then run a holographic lincheck for
the matrix n4 A + npB + ncC. However doing this requires some care because the verifier only has access
to the encoded indices (I4, 15, I¢) for the matrices A, B, C, as opposed to an encoded index for the matrix
naA 4+ npB + ncC, and our holographic lincheck protocol is not linear in the encoded indices.

We now explain how to overcome this issue by “opening up” the lincheck protocol into its components,
described in Construction 6.8 in Section 6. The resulting protocol is summarized in Fig. 4.

The first message of the verifier consists of random elements 74, 15, nc for the random linear combina-
tion, along with the random challenge « prescribed by Step 1 of the holographic lincheck protocol.

The subsequent two steps are straightforward to adapt due to linearity:

e In Step 2, the prover must send the evaluation of the polynomial #(X) := u,, 44np B+nec (X, @), which
by linearity equals to >/ 4 .oy Mmun (X, @). The prover thus sends ¢ := t|r€ RS[L, |H| - 1].

e In Step 3, the prover and verifier must run the zero knowledge sumcheck protocol (relative to a random
mask 7 sent earlier) to show that >,  ,; up (b, ) fg(b) — £(b) f-(b) = 0 where fg(X) is the low-degree

extension of the vector (3 /¢4 5,0y M M)z. By linearity, fs(X) = D Me{AB,C) narfar(X), which
means that the verifier can do this since the prover has sent f., f4, B, fc.

Then there are two steps that remain unchanged: the verifier sends the random challenge 3 prescribed by
Step 4 of the holographic lincheck protocol, and the prover answers with the evaluation ~y := £(/3) prescribed
in Step 5 of the holographic lincheck protocol.

The final step of the holographic lincheck protocol, Step 6, involves a rational sumcheck checking that
is the value of the low-degree extension of ) ;. (a,B,c} MM at (8, ). This is the step that lacks linear
structure and we need to modify it. Specifically we need to turn the expression

vri () : vn () val/ e (X
ME{ZAEB’C} M= row (<) (X)) (8 — colipre) (X)) ) (X)

into a rational function in X. This is achieved by “multiplying up” denominators, to obtain the rational
function p(X)/G(X) where

PX) =wvm(@oa(B) D nuvalp(X) 11 (a — rowny (X)) (B — col vy (X)) (3)
Me{A,B,C} Ne{A,B,C}\{M}
iX)= [ (&= rowum(X)(B - coliar(X)) . )
Me{A,B,C}

Crucially, the verifier can easily evaluate p and ¢ at any point on L by having oracle access to the encoded
indices (I4,Ip,1¢).
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P((F, H, K, (A),(B),(C)), (w,I),w)  vlrovarmcolamvelar e ncy (B, H, K, (1))

sample f,, € RS[L, |lw| + b — 1]
sample fa., fB2, fo. € RS[L, |H| +b— 1]
sample € RS[L,2|H|+b —2]s.t. > y7(a) =0

fw7fAZ)fBZ7f027r .

o= fuvr+ fe
.o JasSBs — Jou “deg(8) < |H| +2b— 2"
1 vH !

Holographic Lincheck

771477737770<_F
a+—F\H

na, B, Nc, &

compute £(X) := > omefa,p,cy Mvun (X, @)
t:=t|,€ RS[L, |H| — 1]

t

Polynomial Sumcheck for ;. f(b) =0
where f(b) = r(b) — t(b) f2(b) + ZME{A,B,C} v wp (bs o) far (D)

compute g1 € RS[L, [H| — 2]
where g1 is unique s.t. 3h g1
u(91,0) +hvg=f .

b o= 200 | “deg(h) < [H|+b—2"
B+ F\H
v =1(8) ’
. “(8) = "
Rational Sumcheck for ;- % =7
p(k) _ vy (a) v (B) -
where 175 = > Me{A,B,C} M (afrﬁvf/I(Mﬂ(k)) ' (,gfcaﬁMﬂ(k)) ~valiag (k)
compute g3 € RS[L, | K| — 2] 92 A
where §o is unique s.t. 3¢ [T T L7 7T b “deg(e) < deg(p) — K] 1.,
L ' Zr(92,7)9-p cg(€) < max deg(d) — 1
S (a NG A s ¢ ;= a0 eg(q) —
k(92,74 — b = évk ] K .
************* here 408(0) = 5|K| =5
deg(q) = 6|K| -6

Figure 4: Diagram of our RS-encoded holographic IOP for R1CS (Construction 7.2), after applying the optimiza-
tions described in Remark 7.3 (which batch the three holographic linchecks into one holographic protocol).
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8 Holographic IOP for R1CS

We construct an efficient holographic IOP for rank-1 constraint satisfiability (R1CS). Our preprocessing
zkSNARK is obtained by applying our compiler to this protocol (reparametrized to reduce soundness error).

Theorem 8.1. There exists a public-coin holographic IOP HOL = (I, P, V) for the indexed relation Ry1cs
(Definition 3.2) that is a zero knowledge proof of knowledge with the following efficiency features.

o Indexing. The indexer 1, given an index 1 = (F, H, K, (A), (B), (C)), where H, K are subgroups of I,
runs in time Op (| K |log | K|) to compute an encoded index 1(1) of size Op(|K|). Note that |I(1)| = O(]i]).

e Proving and verification. To achieve zero knowledge against b queries, the prover P and verifier V interact
over O(log(|K|+b)) rounds with a round-by-round soundness (and knowledge) error of O((| K|+b)/|F|+
erri(F, p, 0)) where p,§ = O(1). The prover P runs in time Or((|K| + b) log(|K| + b)), and the total
length of the proof oracles that it outputs is Og (| K|+b). The verifier V runs in time O (|z|+log(| K|+Db)),
and makes O(log(| K| + b)) queries to the encoded index and proof oracles.

Above, epr1(F, p, §) denotes the round-by-round soundness error of the FRI low-degree test [BBHR18]
over the field F for proximity parameter ¢ and rate parameter p.

The rest of this section is organized as follows: (1) we introduce a generic theorem (Theorem 8.2) that
allows us to “compile” an RS-encoded holographic IOP into a holographic IOP via a low-degree test; then
(2) we show how to apply this theorem with the FRI low-degree test [BBHR18] to prove Theorem 8.1.
Theorem 8.2 is adapted from [BCRSVW19] to handle holography and round-by-round soundness, and to
more carefully account for the running time of the verifier. Before stating the theorem, we briefly describe
the construction.

The compiled holographic IOP consists of two conceptual stages: first, the prover and verifier engage
in the RS-encoded holographic IOP; then, the prover proves to the verifier that the oracles it sent were of
degree d using the low-degree test. For efficiency, rather than proving the degree of fi, ..., fi separately, we
introduce an additional round of interaction where the verifier chooses a vector Z € F¥ and the prover shows
that the oracle ) _, z; f; has degree d. (If the oracles sent have differing prescribed degrees, then we “shift”
them so they all have the same degree.) Finally, for zero knowledge, the prover sends a random fj of degree
d (before seeing 2) and shows instead that fo + ) . 2; f; is of degree d. We now state and prove the theorem.

Theorem 8.2 (adapted from [BCRSVW19]). Suppose that we are given:

e an RS-encoded holographic IOP HOLyr = (Igx,Px, Vg, {(fi, CZPJ, . d_’pyk}) over L, with maximum
degree (d¢, de), for an indexed relation R;

o a low-degree test (PLpt, VLDT) for the Reed—Solomon code RS[L, d.|.

Fix any proximity parameter §*°T such that

. 1_2/) 1_Pc dc+1 de"‘l
SEPT < < 1-— h = d = .
min 5 3 Pe where p. izl and pe Iz

Then we can combine the above two ingredients to obtain a holographic IOP (1, P, V) for R with the
following parameters. (Parameters with superscript “R” and “LDT” are parameters for (Ix,Pr, Vg)
and (PLpr, VLpT) respectively.)
(i) kKR + KEPT rounds,
(ii) query complexity g-PT 4- qLPT . (kR 4- 1),
(iii) proof length L™ + LMPT,
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(iv) soundness error €™ + € , and
(v) round-by-round soundness error max(e  e-PT |L|/|F)).
The new indexer 1 equals I ; the new prover P runs in time time(PYPT) 4 time(PR); and the new verifier
V runs in time time(VIPT) 4 gLPT . tR
If I, Pr, VR) is zero- knowledge then (I, P, V) is also zero-knowledge (with the same query bound).
If (Ig, Pr, VR ) has round-by-round knowledge error % then (1, P, V) has round-by-round knowl-

edge error max(/qz%r, rLIET, |L|/|F|).

Proof. The proof is essentially identical to [BCRSVW19, Theorem 8.1]; note, however, that we do not need
to low-degree test the encoded index since it is honestly generated.

To show round-by-round soundness, we define a state function State using the state functions State™
and State'PT of the holographic IOP and low-degree test, respectively. Since the protocols are sequentially
composed, we can split the transcript into three parts: tr’, the first k™ rounds; Z, the verifier message in
round k™ + 1 (to make a full round we precede this with a “dummy” prover message); and tr“PT the last
kIPT rounds. The state function is described by the following algorithm:

State(i, x, tr®, 2, trPT):

1. Let (Hl,ml,...,Hj,mj) = tr® (for some j < k®). If II; is 6*PT-close
to RS[L, dp,] for all i € [j], output State™ (1T}, my, ... 1015, m;) where II; €
RS[L, Jp’i] is the closest codeword to IT;.

2. If 7 is empty then output reject; if z7TI is §*PT-close to RS[L, d.] then output
accept, where II is the “stacked” proof matrix (see [BCRSVW 19, Protocol 8.2]).

3. Otherwise, output State"PT (i, x, tr*PT).

Clearly State(, x, ) = State”™ (1, x, (}) = reject. For any partial transcript tr, if tr ends during the first
stage of the protocol then rbr(tr) < €%, . If tr ends with round k® and State(i,x, tr) = reject then the
probability that 27 T is §“PT-close to RS[L, d.] is bounded by | L|/|F|; hence rbr(tr) < |L|/|F|. Finally, if tr
ends after round k™ + 1, if State(i, x, tr) = reject then 27Tl is 6“PT-far from RS[L, d.], and so by the RBR
soundness guarantee of the low-degree test rbr(1, x, tr) < eLDT.

The same state function witnesses round-by-round knowledge soundness. Suppose that for some transcript
tr with State(1, x, tr) = reject, rbr(tr) > max( R ,eLDT |L|/|F|). Since rbr(tr) > max(e5PT |L|/|F|),
it must be that TI; is 6P -close to RS[L, dp ;] for all ; hence State(i, x, tr/¥) = State(i, x, tr) = accept.
We apply the knowledge extractor of the RS-hIOP to P., which runs P and corrects its output words. The

knowledge soundness guarantee for the RS-hIOP ensures that this extractor succeeds. O

Proof of Theorem 8.1. The two main ingredients in the proof are the RS-hIOP of Theorem 7.1 and the FRI
low-degree test [BBHR18]. These are combined using Theorem 8.2 to build the described IOP. The indexer
in our construction will choose L to be a coset of a smooth subgroup of IF with, say, 8| K| < |L| < 16|K],
and (HUK)NL = 0. O
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9 Definition of preprocessing non-interactive arguments in the ROM

We denote by 2/()\) the set of all functions that map {0, 1}* to {0,1}*. A random oracle with security
parameter \ is a function p: {0,1}* — {0, 1}* sampled uniformly at random from 2/()).

A tuple of algorithms ARG = (Z, P, V) is a preprocessing non-interactive argument in the random oracle
model (ROM) for an indexed relation R if the following properties hold.

e Completeness. For every adversary A,

(I,x,w) € R . P u(/\/),
Pr v oy o | =1
o _ ipk, ivk) < ZP(1
VP(ivk,x,m) =1 7 <+ PP(ipk,x, w)
e Soundness. For every ¢-query adversary P,
(1,%) ¢ L(R) P UN)
Pr A (1,x,7) « PP | <€t A) .

Ve(ivk,x,m) =1 | (ipk,ivk) < Z°(i)

The above formulation of completeness allows (i, x, w) to depend on the random oracle p, and the above
formulation of soundness allows (i, x) to depend on the random oracle p.

All constructions in this paper achieve the stronger property of knowledge soundness, and optionally also
the property of (statistical) zero knowledge. We define both of these properties below.

Knowledge soundness. We say that ARG = (Z, P, V) has (adaptive) knowledge error « if there exists an
efficient extractor £ such that for every t-query adversary P and predicate p,

p(I, %, aux) = 1

Pr| AVjel], |(L%waux)« P11
(flj,Xj,Wj) eR
p(1, %, aux) = 1 p U
> Pr AV j e /], (1,%, 7, aux) < PP | —k(t,\,0) . 5)

VP(ivkj,xj,mj) =1 | Vj, (ipk;,ivk;) < Z°(i;)

Thii implies that the distributions of (f, X, aux) in the following experiments are x-close:

e (1,%,7,aux) < PP, restricted to the space where for all j, 7; is a valid proof for (1;,x;); and

o (I,X,W,aux) Sﬁ(lt, 1*), restricted to the space where for all 7, (i,,%x;, w;) € R.

Zero knowledge. We say that ARG = (Z, P, V) has (adaptive statistical) zero knowledge if there exists a

probabilistic polynomial-time simulator S such that for every ¢-query honest adversary A the distributions
below are statistically close (as a function of \):

p U
. (i, x,w) + A i . P U
(p,1,x,m) (ipk, ivk) 77 (1) and (plpl, 1, x, ) (1, x,w) < A°

o
7w + PP(ipk, x, w) () = S#(3, x)
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Above, p[u] is the function that, on input =, equals pu(z) if p is defined on z, or p(z) otherwise. This
definition uses explicitly-programmable random oracles [BR93]. (Non-interactive zero knowledge with
non-programmable random oracles is impossible for non-trivial languages [Pas03; BCS16].) Here, by an
honest adversary we mean an adversary whose output satisfies (1, x, w) € R with probability 1.

Post-quantum security. The above definitions consider security against classical adversaries that make a
bounded number of queries to the oracle (and are otherwise computationally unbounded). We also consider
security against quantum adversaries, whose queries to the oracle can be in superposition. This setting is
known as the quantum random oracle model (QROM) [BDFLSZ11], and is the established model to study
post-quantum security for constructions that use random oracles. The soundness definition and knowledge
soundness definition for post-quantum security are identical to the ones above, except that PP is now taken to
mean that P has superposition query access to p; the zero knowledge definition remains unchanged because
indistinguishability holds against unbounded adversaries that see the whole oracle.

We do not know if, in the quantum setting, knowledge soundness with auxiliary output is polynomially
related to knowledge soundness without auxiliary output.
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10 From holographic IOPs to preprocessing arguments

We describe how to transform any public-coin holographic IOP (Section 4) into a corresponding preprocessing
non-interactive argument in the ROM (Section 9). We additionally explain how the same transformation
achieves post-quantum security in the QROM. A main goal is achieving adaptive knowledge soundness.

Theorem 10.1. There exists a polynomial-time transformation T such that if HOL = (I, P, V) is a public-
coin holographic IOP for an indexed relation R then ARG = (Z,P,V) := T(HOL) is a preprocessing
non-interactive argument in the ROM for R. The transformation 'T satisfies the following properties:

e EFFICIENCY: IfHOL has oracle length L and query complexity q then ARG has argument size O(A-q-logL);
moreover, the time complexities of the argument indexer, prover, and verifier are as follows

time(Z) = time(I) + O(AL) ,
time(P) = time(P) + O(AL)
time(V) = time(V) + O(X - q - logl) .

e ZK PRESERVATION: if HOL is honest-verifier zero knowledge then ARG is adaptive statistical zero
knowledge.

e ADAPTIVE KNOWLEDGE FROM SR: If HOL has state-restoration knowledge error kg (t) then ARG has
adaptive knowledge error k(t,\,£) =t - (kg (t) + O(t? - 272)).13

e ADAPTIVE KNOWLEDGE FROM RBR: If HOL has round-by-round knowledge error k., then ARG has
adaptive knowledge error k(t,\,£) = t - ki + O(t? - 27*) in the ROM and adaptive knowledge error
k(t, A\ £) = O(t? - kypy + t3 - 27) in the QROM.

10.1 Construction

The transformation T has two parts. First, we apply the BCS transformation [BCS16] to the holographic IOP to
obtain a “holographic” non-interactive argument, namely, a non-interactive argument where the (deterministic)
argument verifier is fast when given oracle access to the encoded index. Next, we transform this into a
preprocessing non-interactive argument by having the argument indexer output a Merkle commitment to the
encoded index, and having the argument prover additionally output Merkle openings to the positions of the
encoded index queried by the IOP verifier.

We now describe the transformation T' in more detail: in Construction 10.2 we recall the transformation
Tges of [BCS16], adapting its presentation to holographic IOPs (but the construction is identical otherwise);
then in Construction 10.3 we describe the transformation T, using T'zcs as a subroutine.

Construction 10.2 (Tgcs). The transformation Tpcs takes as input a holographic IOP HOL = (I, P, V) and
outputs the (standard) non-interactive argument ARGges = (Phacs, Vacs) defined below.

o chs(ﬁ’ X, W):

1. Set og := ivk||x, where (ivk, ipk) <— Z(1) and Z is the argument indexer in Construction 10.3.
2. Fort=1,...,k:

3This is not tight; a more sophisticated analysis using state-restoration soundness directly would eliminate a factor of . We leave
this to future work, since in our application we apply the transformation to a protocol that satisfies round-by-round soundness.
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(a) Compute randomness p; := p(o;_1) for the i-th round.
(b) Provide p; to the IOP prover P (i, x, w) to obtain a proof oracle II;.
(c) Use p to compute a Merkle tree on II;, and in particular to obtain a Merkle root rt;.
(d) Seto; := p(ai,lﬂrti).
3. Compute randomness py11 := p(oy) for the query phase.

4. Run the IOP verifier VI®) (x; py, ..., pk, ps1), answering queries via the proof oracles (IIy, . . ., II),
so to deduce the set of queries () that are asked on randomness (p1, . . ., Pk, Pk+1)-
5. Output the proof string 7 that contains all the Merkle roots (rty, - - - , rtx) and, for each query in ), an

answer supported by an authentication path (against the appropriate root).

o V(i x, m) = Vi (x, )

1. Set o := 0* and use the i-th root rt; in 7 to set o; := p(o;_1||rt;) fori = 1,... k.
2. Compute each randomness: p1 := p(09), ..., pk := p(ok_1), Pkt1 := p(oK).
3. Run the IOP verifier VI(®) (X; P15+ Pk, Pk+1)- Whenever V queries a proof oracle II;, validate the

authentication path for this query in 7, and answer the query with the corresponding value in 7. (If 7
contains no entry for a query, reject.) Accept if and only if V accepts.

We write Vgcs as an algorithm with oracle access to I(1) to emphasize that Tgcs is black-box with respect to
V: the queries Vs makes to I(1) are exactly the queries V makes to I(1) (on appropriate randomness).

Construction 10.3 (T). The transformation T takes as input a public-coin holographic IOP HOL = (I, P, V)
and outputs the preprocessing non-interactive argument ARG = (Z, P, V) defined below. We let (Pgcs, Vics)
be the BCS prover and verifier output by Tgcs(I, P, V), and view Vscs as having oracle access to I(1).

o Indexer. On input 1, Z” computes the encoded index I(1), computes a Merkle commitment rt to I(1) using
the sub-oracle po, and outputs the key pair (ipk, ivk) := ((2, (1)), (rt, po(1)).

e Prover. On input (ipk,x, w), P” parses the proving key ipk as (1,1I(1)), computes z := po(po(1)||x),
computes the output of the BCS prover mgcs := Phés(i, X, w), simulates the BCS verifier Vgés’l(ﬁ) (x, Tacs)
letting ap; be the authentication path for its i-th query to I(1), and outputs the proof string m :=
(Tecs, (apys - - - apy))-

o Verifier. On input (ivk,x, ), V? parses the proof string 7 as (7gcs, (apy, - - -, apy)) and ivk as (rt, a),
computes z := po(al/x), and runs the BCS verifier V5&® (x, mscs) and answers its i-th query to the second
oracle (denoted via the symbol “e”) using the provided authentication paths. If for any ¢, ap; is not a valid
authentication path with respect to pg, the Merkle root rt, and the position requested in the ¢-th query, then
V rejects. Otherwise, V accepts if Vs does.

Above we use certain domain separations for the random oracle. We define py(m) := p(b||m) for b € {0,1}

and p,(m) := p1(z||m). The sub-oracle py is used to commit to the index 1, while the sub-oracle p; is used

by BCS prover and BCS verifier (further specialized with session identifier 2).

10.2 Completeness, efficiency, and non-adaptive zero knowledge

Completeness. This is straightforward from the protocol description.

Efficiency. The proof string 7 output by the argument prover P has two components: the proof string
Tecs output by the BCS prover Pgcs, and authentication paths (apy, ..., ap;) that answer queries by the IOP
verifier V to the encoded index. Each of these components has size O(\ - q - logL). We now discuss time
complexities. The overhead of the argument indexer Z with respect to the IOP indexer I is O(\ - L), due to
the cost of committing to the encoded index output by I. The overhead of the argument prover P with respect

41



to the IOP prover P is O(\ - L), due to the cost of committing to each oracle output by P (and the cost to
answer queries by the IOP verifier V to the oracles or the encoded index). The overhead of the argument
verifier V with respect to the IOP verifier V is O(\ - q - log L), due to the cost to validate the authentication
path associated to each query made by V (to a proof oracle or the encoded index).

Non-adaptive zero knowledge. The fact that the transformation T preserves zero knowledge follows
from the fact that the BCS transformation Tpcs preserves zero knowledge (if leaves in the Merkle tree are
suitably salted), because the simulator is given the index 1 as input. See [BCS16] for details on why if HOL
is honest-verifier zero knowledge (when viewed as a non-holographic proof system) then (Pgcs, Vics) is
statistical zero knowledge, in the non-adaptive case (where the index and instance are fixed in advance).
Note that in the non-adaptive case there is no difference between classical and post-quantum statistical zero
knowledge for a non-interactive protocol.

10.3 Non-adaptive soundness and knowledge

We first consider non-adaptive soundness and knowledge soundness in both the classical and post-quantum
settings as a warm up to the adaptive case.

Classical soundness. Consider an index-instance pair (1,x) that is not in £(R) and a ¢t-query malicious
prover P. Let E be the event that, over a random oracle p < () and letting (ipk, ivk) < Z?° (1), for the
proof string @ = (7cs, (apy, - - - , ap)) output by P” there exists an authentication path ap; for some query
location j € |I(1)| that is valid with respect to ivk, p but the opened value is not equal to I(1);. If E occurs
then we can find a collision in p via O(|I(1)|) additional queries. Therefore

Pr[VP(ivk,x,7) = 1]
P

<Pr[V*(ivk,x,7) =1 | —=E] + Pr[E]
P P

< Pr(vees!® (e fiees) = 1] + (+ O(L))*/2 (®)

The (non-adaptive) soundness guarantee of Tgcs ensures that for any string 2, Pr,, | é’és’l(ﬁ) (x,Tees) = 1] <
€sc(t) + O(t% - 27*), which yields the stated bound (since the query bound  can be assumed to be at least L).

Post-quantum soundness. The post-quantum soundness argument follows the same outline as the classical
argument, except that: (i) we now use the result of [CMS19] to bound the probability that the BCS verifier
accepts in the QROM, and (ii) we use the quantum query lower bound for collisions [AS04] to bound the
probability of the event £/ (which implies that a collision was found). This yields the stated bound.

Classical knowledge soundness. We will prove the following non-adaptive knowledge soundness property.
For all 1, x, and t-query adversaries P,

1,X P UQ\)

p:= Pr ¢ ’“XWR (W;.Q)<—73p
VP(ivk, x, ) =1 W %?(n,xﬂr,Q')

T (ipk, ivk) < ZP(1)

< HT(ta )‘) :

where (; Q) + P” denotes that 7 is the output of PP and Q: {0,1}* — {0,1}" is a database of its oracle
queries and answers. Note that if P has some auxiliary output (as in the full adaptive knowledge soundness
definition) then the distribution of this output is clearly preserved when we extract.
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Inspection of the proof of knowledge soundness in [BCS16] shows that if HOL is state-restoration
knowledge sound in the sense of Definition 4.5 then the extractor Egcs for ARGgcs fulfills the guarantee

(i,%w) g R p=UR)
Pr A (M:Q) + PP | < hult) +0O(t2-27) @)
VP»I(ﬁ) (X, 71') =1 W < chs(ﬁ; X, T, Q)

for all 1, x and t-query P;in particular, the extractor Ezcs need only see the queries and answers of the prover,
and does not otherwise interact with it. This leads naturally to the extractor £ for ARG described below:

o £(1,x,m, Q):

1. Let z := Q(0]|Q(0]|1)||x) be the “session identifier” for the index 1 and instance x.

2. Let Q" :={(qo,a) : (1]|z]/qo,a) € Q} be the query-answer pairs for session identifier z.
3. Run the BCS extractor w <+ Egcs (1, X, Taes, Q).

4. Output w.

Fix arbitrary 1, x, P. Observe that running £ on P is equivalent to running Egcs on the algorithm:
o Pf:
1. Simulate P, answering its queries with uniform randomness, until it queries (0]]1); respond with random
a € {0,1}* (else abort).
2. Continue simulating 7 until it queries (0||a||x); respond with random z € {0, 1}* (else abort).
3. Continue simulating P until it halts and outputs (mgcs, ap), answering its queries (1]z||q) with p(q)

and other queries with uniform randomness.
4. Output macs.

From Eq. (6) and standard random oracle arguments it is then straightforward to show that

p < Pr A (Tecs; Q) + P4 | +0(>-27Y)
Vacs( )(Xa Taes) = 1 W < Epes(1, X, Taces, Q)

which, combined with Eq. (7), completes the proof of classical non-adaptive knowledge soundness.

Post-quantum knowledge soundness. We omit a proof of non-adaptive post-quantum knowledge sound-
ness. Instead, we sketch the main idea and how it differs from the classical case. Knowledge soundness for
the BCS transformation in the QROM is argued in [CMS19] by analyzing the “instability” of a certain set of
partial functions related to the queries the verifier makes to the oracle. Showing non-adaptive knowledge
soundness for Construction 10.3 amounts to showing that this quantity does not change significantly when we
prefix each query with the session identifier. Note that in the classical proof above we were able to construct a
new adversary Po by simulating P and monitoring its queries to the oracle; this is not possible in the quantum
setting due to no-cloning.

10.4 Classical adaptive knowledge from state restoration knowledge

We provide a “direct” proof of classical adaptive knowledge soundness from state-restoration knowledge of the
hIOP. In some cases this provides a tighter bound in the classical setting than the bound from round-by-round
soundness in Section 10.5; it also uses more standard techniques.
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We will prove an adaptive transcript extraction property that, in the classical setting, directly implies the
knowledge soundness property given in Section 9. The property states that there exists an efficient extractor
& such that for every ¢-query adversary P:

p UL
(I, x,7;Q) < PP
w <+ (I, x, T, Q)
(ipk, ivk) «— ZP(1)

(b, x,w) ¢ R
Pr A
VP(ivk,x, ) =1

< HT(ta )‘) :

In particular, if £ satisfies the above, then we can achieve knowledge error (¢, A\, £) = (¢, \) in the sense
of Eq. (5), simply by running &(1;,x;, 7;, Q) for all j.

We use a series of hybrids to prove the adaptive transcript extraction property. We assume, without loss
of generality, that P repeats no oracle query. For convenience we write py(-) for p(b||-) for b € {0,1}.

Hj: Real adaptive transcript extraction experiment.

Cp U

(1,x,7m;Q) « PP.

w <+ E(L,x, 7, Q).

(ipk, ivk) « Z7(1).

I (1, x, w) € R and VP(ivk, x, m) = 1, output 1.

N

Hy: Choose a random query % to pg to be the commitment to the index and instance.
L. p<—UN).
2. Choose i € {1,...,t} uniformly at random. Run PP until just before its i-th query to pg, and parse
this query as a'||x’. Let Q1 be the set of all queries made so far.
3. Continue running P” until it halts and outputs (1, x, 7). Let Q2 be the queries made in this phase.
W < S(ﬁ,xl,ﬂ',Ql U Qg)
5. (ipk,ivk) <= Z”(1), and then parse ivk as a pair (rt, a). Recall from Construction 10.3 that rt is a
Merkle tree commitment of I(1) and a = po(1).
6. If (1, x', w) € R, @’ = a, and V*(ivk,x/, 7) = 1, output 1.

>

Hy: Extract index from Q1.
L. p<—UN).
2. Choose i € {1,...,t} uniformly at random. Run PP until just before its i-th query to po, and parse
this query as a'||x’. Let ()1 be the set of all queries made so far.
If there exists ((0]|¢), a’) € Q1, then set i’ := ¢; otherwise, abort.
Continue running PP until it halts and outputs (1, x, 7). Let Q2 be the queries made in this phase.
W g(ﬁ’, x',m QLU Q2).
(ipk’, ivk’) < ZP(1').
If (,x',w) ¢ R, and V*(ivk', x', 1) = 1, output 1.

Nk w

Hj: Unpack € and V.

L. p<—UN).

2. Choose i € {1,...,t} uniformly at random. Run Pr until just before its ¢-th query to pg, and parse
this query as a'||x’. Let Q1 be the set of all queries made so far.

3. If there exists ((0]|¢), a’) € Q1, then set i’ := ¢; otherwise, abort.
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4. Continue running PP until it halts and outputs (1, x, 7). Let Q2 be the queries made in this phase.
Parse 7 as (7gcs, ap).

5. W Epes(1, X, maes, @) U @%), where @ := {(qo,b) : (1]|z]lg0, @) € Q;} and z := Q(0||a’||x").

6. If (i, %', w) & R, and Ve )= (x/, mrges) = 1, output 1.

H,: Answer P’s queries with uniform randomness, except for those after the i-th with the prefix a/||x’.

1. Choose i € {1,...,t} uniformly at random. Run P until just before its i-th query with prefix 0,
answering all of its queries with uniform randomness. Parse the i-th query as ivk||x. Let 1 be the
set of all (simulated) queries made so far.

2. If there exists ((0]|q), a’) € Q1, then set i’ := g; otherwise, abort.

pl—UN).

4. Respond to the i-th query with random z € {0, 1}*. Continue running P until it halts and outputs
(1, x, ), answering its queries of the form (1/z||go) with p’(qo) and all other queries uniformly at
random. Let @, be the set of queries made to p'.

5. w <+ Eaes(i, X, Taes, @5)-

6. If (', x',w) ¢ R and vég')”)/ (x/, aes) = 1, output 1.

(98]

Fori = 0,...,4, let p; := Pr[H; outputs 1]. Note that p is the probability we wish to bound, and
pa < Kgr(t) + O(% - 27) by the knowledge guarantee of the BCS transformation (Eq. (7)), since i’ and x’
are chosen independently of the oracle p’. We prove the following claims.

Claim 10.4. py < t-p; +2°\

Proof. Let E; be the event that P* outputs (i, x) such that 0||a||x is never queried for a = po(i). Then the
probability that V accepts given Ej is at most 2~*. If F; does not hold then with probability at least 1/¢,
x=x"anda = d.

Claim 10.5. p; < po + (t +2)2- 27\

Proof. If there does not exist ((0]|q), a) € Q1 then the probability that a’ = po(i) = a is at most (¢ +1) -2,
Otherwise, since pg(i) = a = a’ = po(i’), the probability that i # i’ is at most (¢ + 1)2 - 27, since this
would constitute a collision. 0

Claim 10.6. ps < p3 + (t + O(logL))? - 27,
Proof. This follows directly from the soundness argument, and the definition of £. O
Claim 10.7. p3 < py +t- 27\

Proof. Let z := po(ivk||x). Since P queries py at ivk||x for the first time at query i, its queries before the
i-th are independent of z. Hence the probability that any of those queries has prefix 1||z is at most ¢ - 272, If
none of these queries have prefix 1||z, then @} = 0, and Vics’s queries are disjoint from Q. Neither Egcs nor
Vics query po, and so making the specified modifications to the oracles does not change their behavior. [

We thus obtain that py < t - ke (t) + O(t3 - 27), from which the stated expression follows. O
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10.5 Adaptive knowledge from round-by-round knowledge

In this section we obtain a bound on adaptive knowledge soundness from round-by-round soundness. We rely
heavily on concepts and notation introduced in [CMS19, Sections 3-5], and we strongly recommend that the
interested reader become familiar with these before proceeding with this section.

We begin with some additional preliminaries on modeling the random oracle. In this analysis, we will
model the random oracle as a random function with fixed input length 3\ 4+ 1 and output length A. For
larger inputs to p, which for us will have prefix 0, we recursively define p(0||sol[s1) := p(0||p(0||s0)||s1) for
so € {0,1}** and s; € {0,1}?**, k > 1 (we will implicitly pad inputs up to an odd multiple of \). For a
database D: {0,1}***! — {0, 1}* we use almost the same convention, except when D(b||s¢) is undefined:

1 if D(0l|sg) = L;
DOlsollsr) = Ol

D(0[|D(0]|so)||s1) otherwise.
For a database D: {0,1}3*1 — {0,1}*, let Sp(D) := {sp € {0,1}* : 3s; € {0,1}**, (b]|so]|s1) €
supp(D)}. We make use of the following simple lemma.

Lemma 10.8. Let D: {0,1}3*! — {0,1}* be a database. Let k > 3 be an odd integer, and let s €
{0,1}F* 2 € {0, 1}3M1\ supp(D), y,a € {0, 1}* be such that D(0||s) # (D + [z — y])(0||s) = a. Then
y €{a}USo(D).

Proof. We proceed by induction on k. Let D' := D + [z + y|. Note first that if D(0]|s) # D’(0||s),
it must be that D(0||s) = L. For the base case, if ¥ = 3, then z = 0||s and so y = a. Now suppose
that for all odd &' < k, the lemma holds for all s’ € {0,1}**. Let sq|s1 := s, where s € {0,1}**,
51 € {0,133 1f D(0||sg) = L, then = = 0||sg, and so D'(0[|s) = D'(0||y|s1) # L. Ifk —3 = 2,
then y € So(D) immediately; otherwise, D'(0]|y||s1) = D'(0]|D’(0]|y||s})||s2) for some s} € {0,1}?*, and
so D'(0||y||s}) # L, whence y € Sy(D). Otherwise, let b := D(0]|sg); we have that D(0||b||s1) = L, but
D'(0]|b]|s1) = a. Since b]|s; € {0,1}#=2, by induction y € {a} U Sp(D). O

For a database D, z € {0,1}*, we write Dy, for the database {(x,y) : (1]|z]|z,y) € D}.

Lemma 10.9. Let {P; « }+ x be a set of database properties indexed by 1,x. Let P be the property consisting
of databases D for which there exist 1,x, a, b such that D(0[i) = a, D(0||al[x) = b and Dy, € Pjx. Then
I(P|Peols t) < max(max; sy I(Pix|Peol, t),t/22).

Proof. We first bound flip(P N Peop — P N Peo). Let D € P N Py, fix some z € {0, 11321\ supp(D).
We consider two cases.

e The first bit of z is 0. We show that if y is such that D" = D+[z > y] € PNPeol, theny € So(D)US; (D),
and so Pry[D + [z — y] € PN Peol] < [So(D) U S1(D)|/2* < t/27.
By definition there exist 1, x, a, b such that D’(0]|1) = a, D'(0||a||x) = b and D’le € Pix. Since
D € P N P and the first bit of z is 0, one of the first two conditions does not hold for D; we consider
these in turn.
- D(0]jal|x) # b; then y € Sp(D) U {b} by Lemma 10.8. Then since D’le € Pix, b e Si(D), and so
y € So(D) U S1(D).
- D(0||laljx) = b but D(0]|1) # a; theny € Sp(D) U {a} by Lemma 10.8. Then since D(0||al|x) # L,
y € So(D).
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e The first bit of  is 1. Then Dy, ¢ P x; let @ = 1||b|2’ for some 2’ € {0, 1}*. Note that since D € P,
there exists a unique choice of 1, x such that D(0[|D(0||1)[|x) = b. Hence in this case, Pry[D + [z
y] ePn Pcol] = Pry[D1||b + [‘T, = y] € Pﬁ,x N ’Pcol} < I(,Pﬁ,xllpcol; t) < maxi x I<Pﬁ,x|7)cola t)-

We now bound flip(P N Py —>_75 ﬂ_ﬁcol). Let D € P N P,,. Note that if the first bit of @ is 0, there
is no y such that D + [z — y] € P N Peor. If the first bit of z is 1, Pry[D + [z — y] € PN Pea] <
max; x 1 (Pix|Peol, t) by a similar argument to the above. This completes the proof. O

To simplify the subsequent analysis we define a modified verifier algorithm Vy(1, x, ) which parses 7
p1 (=), 1(1)

as (mgcs, ap), computes z := po(po(1)||x) and accepts if Vgcs (x, mees) accepts. Fix some predicate p.
We denote by p the probability
p(f, X,aux) =1
— U
Pr AV j e l], P )

. > L L . -
Vi, x5,m5) =1 (1,%,7,aux) < P

By a similar argument to the non-adaptive soundness case,

p(i, =, aux) = 1 p U
1> Pr AYj €[], (I,%,7,aux) « P* | —O(t*-27%) |
Vp(ivkj,Xj,ﬂj) =1 \V/], (ipkj,ivkj) (—Ip(]l])
and so it suffices to show the proof of knowledge property for the verifier V.
Let Pv(iﬁﬁ) be the set of databases () such that the verifier accepts: i.e., @ such that for all j € [¢],
VOQ (1j,%x;,m;) = 1. Let Pe i 2,7 be the set of databases () such that the extractor succeeds: i.e., @ such that
forall j € [¢], w; := E(ij,%;, 7, Q) is such that (i, x;, w;) € R. Finally, let Py ¢ be the set of databases
@ where the verifier accepts but the extractor fails for some choice of (1, x, 7): i.e., ) such that there exists
(1,x, ) for which Vg)(]'l,x, ) = 1butw:= E(1,x,7, Q) is such that (1,x, w) ¢ R.
We lower bound the success probability of the extractor in the quantum setting in terms of these properties
as follows. The classical proof is analogous and so we will not give it explicitly.

p(1, %, aux) = 1
Pr AYj € [f],
(1, x5, w;) € R

(1, %, 7, aux; Q) + Sim*(P)
V] (S [a y Wy g(ﬁj,Xj,Wj;Q)

p(L, %, aux) = 1
NQ € Peizm N Py s

]17X77r)

> Pr [ (1, %, 7, aux; Q) « Sim*(P)

p(i, %, aux) = 1

NG € Pyigy | R TEQ) ¢ SP)

> Pr [ —Pr [Q € Pue ‘ (1, %, 7, aux; Q) « Sim*(P)

By [Zhal9, Lemma 5] (which connects the success probability of Sim* with a real execution), and since the
verifier makes O(qlog L) queries to the oracle, the first term on the last line is at least  — O(qlog L - 277).

By construction of V and &, Pv\g is exactly of the form described in Lemma 10.9 for the set {Pﬁ,x}ﬂ,x
where P; . is the set of databases such that there exists a proof 7 for which VX (i, x, 7) accepts but
Escs(1,x, m, D) fails to produce a valid witness. By [CMS19, Proposition 8.141, I(P; x|Peol, t) < Krbr +
O(t - 27). Hence by Lemma 10.9, I(Py ¢|Pcol, t) < figbr + O(t - 27*). Then by [CMS19, Lemma 5.13]
(their “lifting lemma”),

Pr [Q € Py ) (1, x,7;Q) < Sim*(ﬁ)] < 6% - Ky + O(t2 - 2_)‘) )
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‘We thus obtain

p(f,f&',aux) =1
Pr AV G e L],
(ij,%x;,w;) €ER

(i, %, 7, aux; Q) « Sim*(P) - ) 5 o
1 ; = — 6t * Ry r_O t° + loglL)-2 ,
V]G[ﬁ],\wj%g(nj,xj,wj;Q) K b (( qlog ) )

which completes the proof.

10.6 Adaptive zero knowledge

To achieve adaptive zero knowledge we need a minor but standard modification to Construction 10.3. In our
modified construction, the prover chooses a random seed o € {0, 1} that it prefixes to all queries to p,; it
then provides « in the proof. It is relatively straightforward to show that this preserves (adaptive) soundness
and knowledge soundness, both in the classical and quantum settings.

In the classical setting, it is easy to show that this modification achieves adaptive zero knowledge. The
simulator is identical to the non-adaptive simulator, except that it prefixes its simulated queries (and hence
the locations in y) with a random «. The probability that A ever queries a location with prefix « is at most
t/27*, and so the output of A is almost independent from oracle locations with prefix a.. Zero knowledge
then follows by the non-adaptive (statistical) zero knowledge guarantee.

In the quantum setting, the argument is more delicate; we only sketch it here. We rely on the strong
one-way-to-hiding lemma of [AHU19]. Using this lemma, one can show that for any fixed oracles f, g, the
output distribution of any ¢-query adversary A/ is O(t?/27*)-close to A/, where £, is a random function
drawn by choosing o € {0,1}* uniformly at random and setting f,(c|lq) = g(q), and f,(¢") = f(¢')
otherwise. This again shows that the output of .4 is almost independent of any programmed oracle location,
and so zero knowledge follows by the non-adaptive (statistical) zero knowledge guarantee.
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11 Recursive composition in the URS model

We describe how to transform any preprocessing SNARK in the URS model into a preprocessing PCD
scheme in the URS model. The transformation preserves post-quantum security.

This section is organized as follows. In Section 11.1 we define preprocessing SNARKSs in the URS
model. In Section 11.2 we define preprocessing PCD schemes in the URS model. In Section 11.3 we
state the properties of the transformation from SNARK to PCD. In sec:recursion-efficiency we describe the
construction and prove its efficiency properties. In Section 11.5 we prove the security properties.

In this section by “polynomial-size” we mean a (non-uniform) family of polynomial-size circuits.

11.1 Preprocessing non-interactive arguments (of knowledge) in the URS model

Informally, the definition of a preprocessing SNARK in the URS model is similar to the definition of a
preprocessing SNARK in the random oracle model (see Section 9) except that the random oracle is replaced
by a poly(\)-size uniform random string urs. The formal definition follows.

A tuple of algorithms ARG = (Z, P, V) is a preprocessing non-interactive argument (of knowledge) in
the uniform random string (URS) model for an indexed relation R if the following properties hold.

Completeness. For every adversary A,
urs < {0, 1}Poly(M)
(1,x,w) < A(urs)
(ipk, ivk) < Z(urs,1)
7 < P(urs, ipk,x, w)

(ﬁ’ X? W) g R
Pr \Y
V(urs,ivk,x,m) =1

The above formulation of completeness allows (1, x, w) to depend on the reference string urs.

Knowledge soundness. We say that ARG = (Z,P,V) has (adaptive) knowledge error « if for every
polynomial-size adversary P there exists a polynomial-size extractor £z such that for every predicate p,

o S I ek o
Gyxwy) eR | (B aw) & Ep(urs)
plurs, i, %,aux) = 1 urs < {0, 1}f°|Y(A)
> Pr AV g e, (1, %, 7, aux) < P(urs) | — k(X 0) . 8)

V(ivkj,xj,mj) =1 Vi, (ipkj,ivk;) < Z(urs,1i;)

Zero knowledge. We say that ARG = (Z, P, V) has (statistical) zero knowledge if there exists a probabilistic
polynomial-time simulator S such that for every polynomial-size honest adversary A,

urs < {0, 1}Polv(M)
(1,x,w) < A(urs)
(ipk, ivk) < Z(urs, 1)
7 < P(urs, ipk, x, w)

(urs, 7) + S(1*)
and (urs,i,x,7) | (&,x,w) < A(urs) ,
m <+ S(1,x,7)

(urs, 1, x, )

where here an adversary is honest if its output satisfies (1, x, w) € R with probability 1.

Remark 11.1 (post-quantum security). The above definitions consider security against classical polynomial-
size adversaries. We also consider security against quantum polynomial-size adversaries. The definitions for
this case are identical, except that P is a (non-uniform) family of polynomial-size quantum circuits (as is the
zero knowledge adversary A).
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11.2 Preprocessing PCD in the URS model

We have informally introduced PCD in Section 2.5. Formally, a triple of algorithms PCD = (I, P, V) is
a proof-carrying data scheme (PCD scheme) in the uniform random string (URS) model for a class of
compliance predicates F if the properties below hold.

Definition 11.2. A transcript T is a directed acyclic graph where each vertex w € V (T) is labeled by a
local data 2 and each edge e € E(T) is labeled by a message 2(©) # 1. The output of a transcript T,

loc
denoted o(T), is 2©) where e = (u,v) is the lexicographically-first edge such that v is a sink.

Definition 11.3. A vertex u € V(T) is -compliant for & € F if for all outgoing edges e = (u,v) € E(T):

e (base case) if u has no incoming edges, @(z(e), zl(:c), L,..., 1) accepts;
e (recursive case) if u has incoming edges e1, . . ., e, @(z(e), zl(:c), Zlen) ,z(em)) accepts.

We say that T is ®-compliant if all of its vertices are ®-compliant.

Completeness. For every adversary A,

(cb €F A (Vi,z = LV Vi, V(ivk, 2, m;) = 1) A urs {0, 1}PV0Y

Pr D(z, Zloc, 215 - -+ 5 Zm) accepts) (@, 2, 2loc, [Zuﬂz]ﬁﬂ « A(urs) -1
M (ipk, ivk) < I(urs, @)
V(in, 2, 7'[') =1 T < ]P)(kaa %5 Zloc) [zia 71‘1-]?;1)

Observe that this completeness condition is fairly strong: it requires that P produce a valid PCD proof for any
valid z, zjoc, [, Wi]z@p even if they were not honestly (or even efficiently) generated.

Knowledge soundness. We say that PCD = (I, P, V) has knowledge soundness () if there exists some
polynomial e such that for every polynomial-size adversary I, there exists an extractor Eg, of size at most

e(|P|) such that for every predicate p,

® c FAp(urs,®,0(T)) =1 | urs <« {0,1}PYM)

Pr AT is ®-compliant (®,T) < Ez(urs)
urs < {0, 1}Poly(M)
deF P o0)=1 T
> Pr € F Ap(urs, ©,0) (®,0,7) « P(urs) | —K(N) .

- AV(ivk =1
V(ivk; 0, ) (ipk, ivk) « I(urs, ®)

Zero knowledge. We say that PCD = (I, P, V) has (statistical) zero knowledge if there exists a probabilistic

polynomial-time simulator S such that for all honest adversaries A the distributions below are statistically

close:
urs + {0, l}poly()‘)

m (urs,7) « S
(urs, @, z, ) (®, 2, Zoc, Efé,kﬁiivsllz(ﬁgugg and {(urs, O z,m) | (D, 2, 2loc, [2i, W]y ) < Alurs) }
' ) T S(P,2,7)

m < P(ipk, @, 2, Zioc, [2i, |7 1)
Here, an adversary is honest if its output satisfies the implicant of the completeness condition with probability
1, namely: ® € F, ®(z, zjoc, 21, - - -, 2m) = 1, and either for all 7, z; = L, or for all 4, V(ivk, z;, m;) = 1.
Efficiency. The indexer I, prover P and verifier V run in polynomial time. A proof 7 has size poly(A, |®]);
in particular, it is not permitted to grow with each application of P. In general the indexer can be incorporated
into the prover and verifier; we consider it separately since this allows the verifier to potentially run in time
sublinear in |®|.

50



11.3 Theorem statement

The key parameter that determines the efficiency of the preprocessing PCD scheme is the size of the
preprocessing SNARK verifier as a circuit (or constraint system), as captured by the following definition.

Definition 11.4. Let ARG = (Z,P,V) be a preprocessing non-interactive argument in the URS model.
We denote by VNE) the circuit (or constraint system) corresponding to the computation of the SNARK
verifier V, for security parameter A\, when checking indices of size at most N and instances of size at most k.
Hence, for every urs € {0,1}P°YN) and index-instance pair (1,x) with |i| < N and |x| < k, index key pair
(ipk, ivk) € Z(urs, 1), and candidate proof w, we have VMNF) (urs, ivk, x, m) = V(urs, ivk, x, 7). We denote
by v(\, N, k) the size of the circuit VONF) and by |ivk(\, N)| the size of the index verification key ivk.

The depth of a compliance predicate ®: F(m+2){ _ [, denoted d(®), is the maximum depth of any
®-compliant transcript T. We prove the following theorem, which constructs a PCD system for constant-depth
compliance predicates from any sufficiently efficient preprocessing SNARK.

Theorem 11.5. There exists a polynomial-time transformation T such that if ARG = (Z, P, V) is an adaptive
preprocessing SNARK for Rrics in the URS model then PCD = (I, P, V) := T(ARG) is a preprocessing
PCD scheme in the URS model for constant-depth compliance predicates, provided

Je € (0,1) and a polynomial o s.t. v(\, N, [ivk(\, N)| +£) = O(N*™¢- a(\, £)) .

Moreover, if the size of the predicate ®: F"20 — Fis f = w((m - a(), £))Y€) then the PCD indexer,
PCD prover, and PCD verifier run in time that equal those of the SNARK indexer, SNARK prover, and SNARK
verifier on RICS indices 1 of size f + o(f) (and RICS instances x of size O(\) + ).

If ARG is adaptive zero knowledge, then PCD is adaptive zero knowledge.

If ARG is secure against quantum adversaries, then PCD is secure against quantum adversaries.

Remark 11.6. Our preprocessing zZkSNARK for R1CS, FRACTAL, achieves the following verifier size:
v\, N, Jivk(A, N)| +£) = O\ + M log?(N))

assuming a choice of cryptographic hash function that can be expressed via a constraint system of size O(\).
This means that we may take any € € (0, 1) and (), £) := A(A+ £). In particular, if the size of a compliance
predicate ® grows as (mA(\ + £))1+? for any § > 0, then the time bounds in Theorem 11.5 hold for us.

11.4 Construction and its efficiency

We describe how to construct the preprocessing PCD scheme, and then prove the efficiency properties stated
in Theorem 11.5. We defer proving the security properties to Section 11.5.

Construction 11.7 (from SNARK to PCD). Let ARG = (Z, P, V) be a preprocessing SNARK for R1CS.
We describe how to construct a preprocessing PCD scheme PCD = (I, P, V).
Given a compliance predicate ®: F(m+2)¢ _ F, the circuit that realizes the recursion is as follows.

AN [ D) (i
Rg;,qi\jurz (('Vk7 Zout)s (Zloc (21(,1)7 Wi(n))ie[m]))3
1) (m)

1. Check that the compliance predicate ®(zout, Ziocs Zip s - - - » %
2. If there exists ¢ such that (z(l) ﬂi(rf)) # 1:

in

check that, for every i € [m], the SNARK verifier VN (urs, vk, (ivk, zi(rf)), Wi(rf)) accepts.
3. If the above checks hold, output 0; otherwise, output 1.

) accepts.
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Next we describe the indexer I, prover P, and verifier V of the PCD scheme.

o I(urs, ®):

1. Compute N := N (A, |®|,m, ), where N is as defined in Lemma 11.8 below.

2. Construct the circuit R := jo‘qﬁv u':;’ KNI+

3. Compute the index key pair (ipk, ivk) <= Z(urs, R).
e P(urs,ipk, zout, Zloc, Zin, 7in): output the proof meut < P(urs, ipk, (ivk, zout), (Zloc, Zins 7?;,1)).
o V(urs,ivk, zout, Tout): accept if V(urs, ivk, (ivk, zout ), Tout ) accepts.

Proof of Theorem 11.5 (efficiency). Denote by f the size of ® as an R1CS instance. In Construction 11.7,
the explicit input consists of the index verification key ivk, whose size depends on [V and ), and a message z
whose size is £ (independent of V). The security parameter ) is also independent of N. The circuit on which
we wish to invoke V is of size

S\, fym, £, N) = So(f,m,€) +m-v(A\ N,|ivk(\, N)| 4+ ¢) forsome So(f,m,¢)=f+O(ml) .
We want to find a function N such that S(\, f,m, ¢, N(X, f,m,£)) < N(\, f,m,¢) and N is not too large.

Lemma 11.8. Suppose that for every security parameter X € N and message size ¢ € N the ratio of verifier
circuit size to index size v(\, N, [ivk(X, N')| + £) /N is monotone decreasing in N. Then there exists a size
Sfunction N (X, f, m,{) such that

VA fym, L €N SO\ f,m, 0, N\, f,m,€)) < N\, f,m,{) .
Moreover if for some € > 0 and some increasing function « it holds that, for all N, A, € sufficiently large,
VA, N, [ivk(A, N)| +£) < NPa(), )
then, for all \, £ sufficiently large,
N, f,m, 0) < O(f) + (2m - a(h 0)Ve .

Proof. Let Ny := Ny(A, m, £) be the smallest integer such that v(\, N, [ivk(A, N)| + £)/N < 1/(2m); this
exists because of the monotone decreasing condition. Let N (A, f, m, ¢) := max(No(\, m, £),2S0(f, m,£)).
Then for N := N (A, f,m,{) it holds that

S\, fym, €, N) = So(f,m,€) + mN -v(\, N, |livk(\, N)| +¢)/N < N/2+ N/2=N .

Clearly So(f,m,£) = O(f). Now suppose that v(\, N, |ivk(N)| + £) < (N'=¢a(), £)) for all sufficiently
large N, \,£. Let N'(\,m,£) := (2m - a(\, £))*/¢. Then for all m and sufficiently large \, ¢, for N/ :=
N'(A\,m, L),

v\, N Jivk(A, N+ 0) /N < a(\, ) - (2m - a(X\0) = 1/(2m) .

Hence Ny < N’ = (2m - a(\, £))V/e. O
The size of the circuit R](;\’Nl’j:s) for N := N (A, f,m, ) and k := |ivk(\, N)| + £ is at most

S\, fym, 6, N) = f+O0(ml) +m-v(\ N, |ivk(A\, N)| + £)
= f+ O(N'"“ma(),0))
= f+O(f" " m-a(\0) + (m-a(\0)V) .

In particular if f = w((m - (X, £))"/€) then this is f + o(f), and so the stated efficiency bounds hold. [J
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11.5 Security reduction

We establish the security properties in Theorem 11.5. We discuss knowledge soundness in Section 11.5.1,
post-quantum security in Section 11.5.2, and zero knowledge in Section 11.5.3.

11.5.1 Knowledge soundness

In the following, since the extracted transcript T will be a tree, we find it convenient to associate the label
(z(w¥) | 7 (u2)) of the unique outgoing edge of a node u with the node w itself, so we refer to this as (z(%), ().
It is straightforward to transform such a transcript into one that satisfies Definition 11.2.

Given a malicious prover P, we will define an extractor Ep that satisfies knowledge soundness. In the
process we construct a sequence of extractors Eq, ..., Eq for d := d(®) (the depth of ®); E; outputs a tree of
depth j + 1. Let Eq(urs) run (®, 0, 7) « P(urs) and output (®, Ty), where T is a single node labeled with
(o, 7). Let I7(j) denote the vertices of T at depth j; I7(0) := () and i1 (1) is the singleton containing the root.

Now we define the extractor E; inductively for each j € {1,...,d}. Suppose we have already constructed
E;_1. We construct a SNARK prover 75j as follows:

P; (urs)

1. Run (®,T;_1) < E;_1(urs); for each vertex v € It,_, (j), denote its label by (2(*), 7(*)).
2. Run the indexer (ipk, ivk) < Z(urs, Rg;)\évu]:s))

3

. Output

(ﬁa }ff’ 7_[:7 aux) = (R7 (ina Z(U))velijl(j)a (ﬂ-(v))vél-rjil(jﬁ ((1)7 Tj—l))

where R is the vector (Rg‘g\[ ulfz, .. R&Ag ulfs) ) of the appropriate length.

Next let 57%- be the extractor that corresponds to 75]-, via the knowledge soundness of the non-interactive
argument ARG. Finally the extractor [E; is defined as follows:

E;(urs):
1. Run the extractor (i, %, 7, aux, W) < Ep (urs) and parse the auxiliary output aux as (®, T').
2. If T is not a transcript of depth 7, abort.
3. Output (P, T;) where T; is the transcript constructed from T’ by doing the following for each
vertex v € l1/(j):
(v)

e obtain the local data 2|/ and input messages (z

e append zl( ¥) to the label of v, and if there exists any z( ) with z 75 L, attach m children to

v where the i-th child is labeled with (z (3) (l)).

|n7 |n

(@) (0

in ?>in )ze[m] from W(U)

The extractor Eg runs (®, Ty) < Eg4(urs) and outputs (®, 0,7, T4), where (o, ) labels the root node.

We now show that [£5 has polynomial size and that it outputs a transcript that is ®-compliant.
Size of the extractor. 7P; is a circuit of size |E;_1| + |Z| + O(27), so Ep, 1s acircuit of size e(|E;—1] +
|Z| + O(27)) Then |E;| < e(|E;_1| + |Z| + ¢ - 27) for some ¢ € N.

A solution to this recurrence (for e(n) > n) is |E;| < eW(|P| + j - |Z| + 2¢ - 27), where eV is the
function e iterated j times. Hence in particular if d(®) is a constant, £ is a circuit of polynomial size.
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Correctness of the extractor. Fix a predicate p. We show by induction that, for all j € {0,...,d}, the
transcript T; output by E; is ®-compliant up to depth j, that VK (ursivk, (ivk, 2(*)), (")) accepts for
allv € T, and that p(®,0) = 1 and ® € F with probability 1 — 25 - k(\, m7).
For j = 0 the statement is implied by V accepting, and p(®, 0) and ® € F holding, with probability .
Now suppose that (®,T,;_1) < E;_; is such that T;_; is ®-compliant up to depth j — 1, that
VANE) (urs, ivk, (ivk, 2")), 7(*)) accepts for all v € T;_1, and that p(®,0(T)) = 1 and ® € F, with
probability z — 2(j — 1) - (X, mI ). Let (L, (ivky, 2))y, (7)), (®, T'), W) Ep,-
Let p/(urs, 1, (ivky, 29)),, (&, T')) = 1if:
p(®,0(T')) =1and ® € F,
i¥) = RO for all v,
T’ is ®-compliant up to depth j — 1, and
for v € I1/(j), v is labeled with (), 7(*)) and ivk, = ivk where (ipk, |vk) < Z(urs, jo\évulfg)

By knowledge soundness, with probability 1 — 2j - k(\, m?), p (urs, i, (ivky, 2y)v, (2, T")) = 1 and for

every vertex v € I1/(j), (Rg‘év u’fz, (ivky, 2)), w(®)) € Rrics. Here we use the predicate and auxiliary

output in the knowledge soundness definition of ARG to ensure consistency between the values z(*) and T’,

and to ensure that T’ is ®-compliant.

Now since (R](;\;IJ,VI’J]:S), (ivky, 2), w®)) € RRrics, we obtain from w(®) either

e local data zl((fc) and input messages (zi(rf), Wf,f))l cim]

all i € [m)] the SNARK verifier VAR (urs, ivk, (ivk 2 )), wi(rf)) accepts; or

7 7In
e local data zl(v) such that ®(z(*) zl(v) 1,..., 1) accepts.
(v)

such that ®(z(¥) zl( c) , I(nl), .. ,zi(nm )) accepts and for

(@) )

In both cases we append 2. T )
and so v is P-compliant, and all of its descendants w have that V urs, ivk, (ivk, 2(®)), 7(®)) accepts.
In the latter case, v has no children and so is ®-compliant by the base case condition. Hence T; < E; is
®-compliant up to depth j.

Since d(®) < d it must be the case that all vertices v at depth d are in the base case. Hence by induction,
(®,T) < E = E, has ®-compliant T, p(®,0(T)) = 1 and ® € F with probability at least y — 2d - k(\, m?).

to the label of v. In the former case we label the children of v w1th (z
(A,NLk) (

11.5.2 Post-quantum security

In the quantum setting, P is taken to be a polynomial-size quantum circuit; hence also 75]-, 575],71Ej are
quantum circuits for all 7, as is the final extractor [E. Our definition of knowledge soundness is such that
this proof then generalizes immediately to show security against quantum adversaries. In particular, the
only difficulty arising from quantum adversaries is that they can generate their own randomness, whereas in
the classical case we can force an adversary to behave deterministically by fixing its randomness. This is
accounted for by the distributional requirement placed on the extractor of the argument system ARG.

11.5.3 Zero knowledge
The PCD simulator S operates as follows: define S(1*) := S(1*); then

S(P, z,7):
1. Compute (ipk, ivk) <— Z(urs, jo’\qﬁvu]fs)) (we assume that 7 includes urs).

2. Output 7 S(jo‘gﬁg, (ivk, z), 7).
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Zero knowledge then follows immediately from the (adaptive) zero knowledge guarantee of ARG, applied
to the honest adversary A" which runs the honest PCD adversary (®, z, zioc, [2i, mi]1"1) < A(urs) and
outputs (Rg‘gvfs), (ivk, 2), (%ioc, [2i, mi]i")) where (ipk, ivk) <= Z(urs, jo)‘gu]fs)) The same argument holds

in the quantum setting; in that case, A’ is an honest quantum adversary.
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12 Implementation of recursive composition

In Section 12.1 we describe our implementation work to realize our preprocessing zkSNARK (FRACTAL),
and in Section 12.2 we describe our implementation work to realize recursive composition.

12.1 The preprocessing ZKSNARK

Our starting point is 1ibiop [SCI19], a library that provides (a) an implementation of the BCS transfor-
mation, which compiles any public-coin IOP into a corresponding SNARG by using (instantiated) random
oracles; and (b) the non-holographic IOPs for R1CS underlying Aurora [BCRSVW19] and Ligero [AHIV17].
Our work to implement FRACTAL consists of (1) extending the BCS transformation to compile any
public-coin holographic 10P into a corresponding preprocessing SNARG (following Section 10); and
(2) implementing our efficient holographic IOP for R1CS (following Section 8). We discuss each in turn.

(1) From holography to preprocessing. Our transformation from Section 10 is a black-box extension of
the BCS transformation (see Construction 10.3), which made it possible to extend the current implementation
of the BCS transformation while re-using much of the existing infrastructure. We modified the generic IOP
infrastructure in 1ibiop to additionally support expressing holographic 10Ps, by providing an indexer
algorithm (in addition to the prover and verifier algorithms). We modified the transformation to determine if
the input IOP is holographic and, if so, to additionally produce an indexer for the argument system, which
uses a Merkle tree on the encoded index to produce an index proving key and index verification key. In
this case, the prover and verifier for the argument use these keys to produce/authenticate answers about the
encoded index, following our construction. Overall, our implementation simultaneously supports the old
transformation (from IOP to SNARG) and our new one (from holographic IOP to preprocessing SNARG).

(2) Holographic IOP for R1CS. Our holographic IOP is built from two components (see Theorem 8.2):
an RS-encoded holographic IOP and a low-degree test. For the latter, we reuse the generic low-degree testing
infrastructure in 1ibiop: the randomized reduction from testing multiple words to testing single words, and
the FRI low-degree test [BBHR18]. Our implementation work is about the former component.

Specifically we implement the RS-encoded holographic IOP summarized in Fig. 4 (or, more precisely, an
optimized and parametrized refinement of it), along with its indexer algorithm (not part of the figure). We
reuse the reduction from R1CS to lincheck from the Aurora protocol in 1ibiop (as our protocol shares
the same reduction). The new key component that we implement is a holographic multi-lincheck, which
simultaneously supports checking multiple linear relations that were holographically encoded. We believed
that this building block of the protocol is of independent interest for the design of holographic proofs.

In addition to enabling sublinear verification, the holographic setting also presents new opportunities for
improvements in the concrete efficiency of certain subroutines of the verifier, because we can use the indexer
to provide useful precomputed information to the verifier. We leverage such opportunities to precompute
various algebraic objects (such as vanishing polynomials), achieving noticeable efficiency improvements.

12.2 Designing the verifier’s constraint system

In order to recursively compose FRACTAL, we need to design a constraint system that expresses its verifier.
We describe a general method for designing constraint systems for the verifiers of SNARGs obtained by
combining an RS-encoded IOP and the FRI low-degree test (as in Theorem 8.2) and then transforming the
resulting IOP into a SNARG using Theorem 10.1 (henceforth referred to as the “BCS transformation”).
The verifier in such SNARGS splits naturally into an “algebraic” part arising from the underlying IOP
(hereafter the “IOP verifier”) and a “hash-based” part arising from the BCS transformation (described in
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Construction 10.2, hereafter the “BCS verifier”). We treat them separately: the BCS verifier is discussed in
Section 12.2.1 and the IOP verifier in Section 12.2.2.

12.2.1 The BCS verifier

The BCS verifier can be further broken down into two subcomponents. The first is a hashchain that ensures
that the IOP verifier’s randomness for each round is correctly derived from the Merkle roots (Steps 1 and 2 of
the BCS verifier in Construction 10.2). The second is the verification of the Merkle tree authentication paths
to ensure the validity of the query answers (Step 3 of the BCS verifier in Construction 10.2).

The hashchain. The hashchain computation of the BCS verifier is as follows: initialize o := ivk||x; then,
for each round i € {1,...,k}, derive the randomness p; := p(o;_1) and use the i-th root rt; in the argument
7 to compute o; := p(o;—_1]|rt;); finally, derive the post-interaction randomness py 1 := p(ok). We require a
constraint system S that, given assignments to the variables (ivk, x, rty, p1,. .., rtk, px), is satisfiable if and
only if these assignments are consistent with this hashchain computation.

We realize S via a sponge construction [BDPVO0S], where first ivk and x are absorbed into the state and
then, for each round ¢ € {1,...,k}, the randomness p; is squeezed from the state and the i-th root rt; is
absorbed into the state; the post-interaction randomness py+1 is then squeezed from the state. See Fig. 5 for a
diagram of this. The size of the constraint system S is

k
Sin([ivk] + |x[) + (Z Sin(Irti]) + Sout(lml)> + Sout(|Pwt1])

i=1

where S;,(n) denotes the number of constraints to absorb n field elements and S+ (n) denotes the number
of constraints to squeeze n field elements. Naturally, these numbers depend on the particular choice of state
transformation that is used to instantiate the sponge (see our evaluation in Section 13.2).

The above discussion omits some details. First, in some rounds the prover sends auxiliary information
beyond the Merkle root (e.g., the third message of the prover in Fig. 4 includes a field element that allegedly
equals an evaluation of the polynomial ¢), and this auxiliary information must be absorbed together with
the Merkle root. Second, Fig. 5 suggests that the rate of the sponge is large enough to absorb/squeeze any
round’s root/randomness with a single application of the state transformation, but this need not be the case,
especially if sizes vary across rounds (e.g., we expect |ivk| + |x| to be larger than |rt;|). Indeed, in our
implementation we pick the rate of the sponge in such a way as to minimize the overall number of constraints
for the hashchain, which means that some information may be absorbed/squeezed across multiple applications
of the state transformation.

ivK,x o rt
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Figure 5: We use a sponge construction to realize the hashchain in the BCS verifier.

Authentication paths. For every query made by the IOP verifier to the encoded index or to a proof oracle,
the BCS prover provides an authentication path for that query relative to the appropriate Merkle root. Recall
that the index verification key ivk contains the root rty of the Merkle tree on the encoded index I(1); and the
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argument 7 contains the roots rty, . . ., rty of the k Merkle trees that correspond to the k rounds of interaction.
For every i € {0,1,...,k}, we denote by ); the queries to the leaves of the i-th Merkle tree, by A; the
claimed query answers, and by W; the corresponding auxiliary information to validate them. Both A; and W
are provided in the argument 7 for all ¢ (including ¢ = 0). Overall, we require a constraint system S that,
given assignments to the variables (rt;, Q;, A;, Wi)lz‘(:o’ is satisfiable if and only if, forevery i € {0,1,... k},
the auxiliary information W; validates the claimed answers in A; with respect to the queries in Q);.

Below we describe the basic approach to designing the constraint system. Afterward we describe how to
significantly reduce the number of constraints via several optimizations.

The basic approach is to individually validate an authentication path for each query via a separate
constraint system. Namely, let rt be a root, 7 = Zizl jx25=1 a query location (in binary representation),
a a claimed answer, s a salt used for hiding, and (uk)zzl an authentication path. We require a constraint
system that, given assignments to the variables (rt, , a, s, (uy)¢_,), is satisfiable if and only if the check in
the following computation passes: (1) let vy be the hash of the salted answer al|s; (2) foreach k = d, ..., 1:
if the k-th bit of j is 0 then let v;,_1 be the hash of vy ||u, and if instead it is 1 then let v;_; be the hash of
ug||vg; (3) check that vy = rt. See Fig. 6 for a diagram of this constraint system.

If we denote by S, the number of constraints to hash two hashes into a single hash, by Scswap the
number of constraints for a “controlled swap” on two hashes, and by Sieaf(72) the number of constraints to
hash the answer and salt into a single hash, then the number of constraints for the above computation is

Sleaf(’a‘ + ‘SD +d- (Scswap + S2—>1) .

If we replicate the above strategy for each round 7 € {0, 1, ..., k} and each query in the query set Q);,
then the total number of constraints to validate all the query answers is:

k
Z ‘Q1| . (Sleaf(@i + Uz’) + dz’ . (Scswap + SQ—)l)) 5 (9)
1=0

where «; € N denotes the number of field elements to answer a query in round ¢, o; € N the number of field
elements in a salt in round 4, and d; € N the depth of the Merkle tree in round i. (Note that o is always 0
because no hiding is needed for the round that involves the encoded index; o; may also be 0 for ¢ > 0 in
some protocols because zero knowledge may not rely on any query bound to oracles in the ¢-th round.)

Jd
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Figure 6: Diagram of a constraint system for validating an authentication path.

We can do significantly better than Eq. (9) if we leverage the structure of query sets, as we now describe.
First, there are known optimizations that increase “leaf size” to reduce argument size [BBHRI19;
BCRSVW19] that we use to also reduce the number of constraints in our setting. We explain these below.

e Hash by column. In protocols derived from RS-encoded IOPs using Theorem 8.2, each round’s oracles are
over the same domain and the IOP verifier queries the same locations across those oracles. This includes
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the “0-th round oracles”, i.e., the oracles in the encoded index I(1). Hence, fori = 0,1, ..., k, the BCS
prover can hash the i-th round oracles column-wise: if £; € N is the number of oracles in the i-th round
then each leaf in the i-th Merkle tree contains a vector in %/ (the “column”) representing one symbol from
each of the ¢; oracles. Thus a single authentication path suffices to authenticate all the answers from a
query to the entire leaf. This not only reduces argument size (fewer authentication paths are included in
the argument) but also reduces the number of constraints (fewer authentication paths are validated).

e Hash by subset. The low-degree test that we use (see Section 12.2.2) yields queries that consider each
domain as partitioned into subsets of equal size and each query requests the values of all locations in a
subset, i.e., for each round ¢ there is a parameter m; € N for which queries to oracles in the i-th round are
always grouped in disjoint subsets of size m;. Hence the BCS prover can hash all of these locations as
part of the same leaf, which now is expanded from a vector in F% to a matrix in F”*% This reduces the
number of authentication paths, and also reduces the depth of the i-th Merkle tree by log, m; levels.

Second, there are optimizations that pertain only to the goal of reducing the number of constraints, as we
now exemplify. Since each oracle is queried at several locations, many authentication paths will overlap in
the top layers of the Merkle trees. For argument size, this leads to the optimization of path pruning where
the argument will contain the minimal collection of hashes that suffices to authenticate a set of queries.
This optimization (which we continue to use for argument size) does not significantly reduce the number of
constraints because validating the set of queries still involves re-computing the omitted hashes. Even worse,
since query locations are random, we cannot hard-code in the constraint system which hash computations are
repeated. We mitigate this problem via the following hybrid approach.

e Tree cap. By the pigeonhole principle, any set of authentication paths must overlap towards the top of
the tree. To take advantage of this, we modify the Merkle tree in each round ¢ by connecting the vertices
at layer t; (to be chosen later) directly to the root (and discarding the layers in between), so that the
root has degree 2'. We then compute the Merkle tree root using a “tree cap’ hash function taking in 2%
hashes. Letting Scap(n) denote the number of constraints for such a hash of n hashes, the total number of
constraints across all rounds for the first layer alone is Z;(:o Scap(2').

e Other layers. For the other layers, we treat the authentication paths as disjoint, and allocate a separate
constraint system to validate the segment of each such path. This amounts to invoking the basic strategy
described above, whose cost is summarized in Eq. (9), with the modification that the authentication path is
reduced from length d; to length d; — ¢;. Note that, in light of the above discussions on answer size, we
know that the answer in round ¢ is of size «; := m; - 4;.

The above hybrid approach yields a total number of constraints equal to

k
> Scap(2) + 1Qul - (Stear(mi - i+ 05) + (ds = i) - (Sesuap + S201) )
=0

The constants t; are chosen to minimize the above expression. In Section 13.2 we discuss the concrete
improvements of the hybrid approach over the simplistic approach.

Remark 12.1 (arity of the Merkle tree). There are algebraic hash functions for which using Merkle trees
with large arity significantly reduces the number of constraints required to check many authentication paths
[ACGKLRS19; GKRRS19]. This comes at the cost of a larger argument size, and our implementation
currently does not provide the option of such tradeoffs.
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Representing query locations. We have so far assumed that the inputs and outputs of hash functions are
field elements, as opposed to bits. This is because we instantiate all hash functions via algebraic constructions
that require fewer constraints to express (see Section 13.2) and also because certain aspects of the verifier
are simpler (e.g., the verifier’s randomness in the protocol is essentially uniformly random in ). That said,
for the query part, the verifier does not draw query locations from the whole field [F but, instead, from an
evaluation domain contained in IF, and we need to obtain a bit-representation of these locations to check
Merkle tree authentication paths. Recall also that queries are grouped into subset, and so the location will
refer to the subset in the evaluation domain rather than to a single element in the evaluation domain.

We thus perform a bit decomposition of the field elements output by the hash function, split the resulting
string into substrings of appropriate size, and regard each substring as a bit-representation of the queried subset.
In more detail, for eachround ¢ € {0, 1,...,k},let L; C F be the evaluation domain of round ¢ and recall that
queries in round ¢ are on subsets of size m;. This means that we can obtain |log, |F||/(logy | L;| — logy m;)

subsets in L; for each element in F output by the hash function. Therefore, if we need to sample q subsets in
log, | L;i|—logy m;
_ _ ] _ [logs [F] _
field elements the corresponding bit representations requires about q - (log, | L;| — logy m; + 2) constraints.

We stress that queries across rounds need not be independent. Indeed, for the IOP verifiers that we
consider (see Section 12.2.2), it will hold that each round receives the same number of queries (informally,
there exists q such that g = |Qo| = |Q1| = - - - = |Q«|) and all the queries are correlated in that the q subsets
for each round can all be derived from q samples of a certain length.

L;, the number of field elements that we need to allocate in py1 is [q- |. Obtaining from these

12.2.2 The IOP verifier

We describe the design of a constraint system that can express the verifier of any (holographic) IOP derived
from an RS-encoded (holographic) IOP and a low-degree test, according to the construction underlying
Theorem 8.2. Informally, the RS-encoded (holographic) IOP is an interactive reduction that leads to a set of
algebraic claims about the prover’s oracles (and possibly also about the encoded index); and the low-degree
test is an interactive protocol that is used to ensure that these algebraic claims hold.

Outline. Let (I, P, V) be a holographic IOP for an indexed relation R constructed via Theorem 8.2. Note
that ‘R need not be the R1CS indexed relation. Below we recall the two ingredients of the construction.

e A k™-round RS-encoded holographic IOP (I, Px, Vg, {d}, Jp,l, .. ,prkR}) over a domain L, with
maximum degree (d., de ), for the indexed relation R. In each of k™ rounds, the RS-hIOP verifier V
sends randomness and the RS-hIOP prover P sends an oracle; after the interaction, the RS-hIOP verifier
'V outputs a set of rational constraints (the algebraic claims, see Definition 4.1). We view the RS-hIOP
verifier Vg as a function that maps an instance x and randomness p” to a set of rational constrains C.

e A kM PT_round low-degree test (PLpr, Vipr) for the Reed—Solomon code RS[L, d.]. In each of k-PT
rounds, the LDT verifier VL pr sends randomness and the LDT prover Py pr sends an oracle; after the
interaction, the LDT verifier Vi pt makes q"PT queries, and then accepts or rejects. We can view the
LDT verifier Vpr as two algorithms: a query algorithm Vypr.Q such that (Qo, Q1,. .., Qior) =
Vipt.Q(p"PT) are the queries to the tested oracle and the k“PT prover oracles on randomness p"PT; and
a decision algorithm V1 pr.D such that Vi pr.D(Ag, A1, ..., Ayior, pPT) is the decision of the verifier
given answers to the queries and the same randomness.

We need to design a constraint system to express the computation of the holographic IOP verifier V, and so
we are faced with three sub-tasks: (1) design a constraint system for the RS-hIOP verifier V; (2) design a
constraint system for the LDT verifier Vi pr; (3) combine these two into a constraint system for V.
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We review features of the construction in Theorem 8.2 relevant for designing the constraint system.

e Randomness. The verifier V has k™ + kPT rounds of interaction where the first k® rounds are for V¢
and the remaining kLPT rounds are for Vi pr. This means that we can split the randomness p of V into
randomness p” for Vz and randomness p*PT for Vi pr.

e Domains. The oracles in the encoded index and in the first k™ rounds are all over the domain L, while
oracles in the other k“PT rounds are over domains determined by the LDT.

e Queries. The queries to the oracles in the encoded index and in the first k” rounds are all the same, i.e.,
they are specified by the query set Qg C L for the tested oracle determined by the LDT verifier.

e Tested oracle. The low-degree test is invoked on a “virtual oracle” f: L — IF defined as a random linear
combination of rational constraints output by the RS-hIOP verifier. Namely, if ((p, qx, di))}_, are the
rational constraints output by Vi (x; p), a1, . . ., ay, are the random coefficients, and fi,..., fo: L — F
are the oracles sent by the RS-hIOP prover across the k™ rounds, then f is defined as follows:

Va, fla) =Y oy - 22210 J@)

k=1 9k (0)

The low-degree test will read f at the query set (g, which means that all oracles f1, ..., f, will also be read
at (g, and their answers must be combined according to the rational constraints and random coefficients.

(1) RS-hIOP. First we note that the structure of the interactive phase of the RS-hIOP for R determines
what the hashchain described in Section 12.2.1 needs to squeeze and absorb for the first k™ rounds. In the
case of our RS-hIOP for R1CS this round information can be directly read off from Fig. 4.

We now turn to discussing the constraint system associated to V, which is tasked to evaluate the rational
constraints output by V at a set of locations ) C L (the queries for the oracle tested by the LDT).

Suppose that the number of oracles sent by the RS-hIOP prover across the k™ rounds is ¢, and suppose
that the number of rational constraints output by the RS-hIOP verifier is 7. We seek a constraint system
that, given as input an instance x, randomness p”, query set Q, answers from all oracles (84,;)aco,je(]
and claimed evaluations (Ya,k)acq,kefr]- is satisfiable if and only if, letting ((px, qx, d))j—, be the rational
constraints output by Vi (x; p%), it holds that

(CL, Ba,l’ v 75a,€)
ar(a) '

VacQ,Vke ], Yop =2

In all known RS-encoded protocols, including the RS-hIOP for R1CS in Fig. 4, the rational constraints
output by the RS-hIOP verifier depend on the instance x and randomness p™ in an algebraic way, in the
sense that we can view x and p™ as auxiliary variables of the arithmetic circuits (Pk)j—1- This means that
the cost to check all the equations above is

Q- (Z pr| + lak| + 1) ;
k=1

where |py| and |gx| denote the sizes of the arithmetic circuits for py and gx. (The additive 1 accounts for
checking the equality given variables that contain the outputs of the two arithmetic circuits.) Note that these
complexity measures are related to, but different from, the query evaluation time defined in Section 4.1: query
evaluation time is a uniform complexity measure, whereas circuit size is non-uniform.
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In our implementation we additionally reuse sub-computations across constraint systems and across
evaluation points to reduce the size of the constraint system. For example, if ¢ = ¢ for distinct k, k' then
we know that we only need to compute g (a) once; similarly if py, and py share sub-computations. One can
verify that there are several such opportunities for the RS-hIOP for R1CS in Fig. 4.

(2) Low-degree test. The low-degree test that we use in this paper is FRI [BBHR18], which is a logarithmic-
round logarithmic-query protocol. Below we describe a constraint system that represents the FRI verifier.

Let L be the domain of the oracle to be tested (i.e., the domain of the RS-hIOP). The size of L induces a
list of “localization parameters” (7, . . . , ot ) Which in turn induces a list of domains (L1, ..., Lyior) with
progressively smaller sizes, |L;| = |L;—1|/2" = |L|/2™* "+ with Ly := L. Each domain L; is obtained
from L;_; as the image of a 2":-to-1 map h; that maps cosets of size 2 in L;_ to single points in L;. Any
coset Uy of size 2 in the domain Lo = L determines k"PT — 1 cosets (U1, . .., Uppr_y) of respective sizes
(272, ... 2%"" contained in (L1, . .., Lywor_,) as follows: for each i € {1,...,kEPT — 1}, Uj; is the unique
coset of size 27+1 that contains the point h;(U;_1).

We separately address the interactive phase and the query phase.

e Interactive phase. Fori € {1,...,k"PT} in round i the FRI verifier sends a random field element «; and
the FRI prover replies with an oracle f;: L; — F if i < kMPT, or with a (non-oracle) message containing
the coefficients of a polynomial kam (X) if i = kP, If the degree to be tested is d then the degree of
freor (X) is dywor := d/2m+ 00T - Queries to domain L;_; are grouped in cosets of size 27, Hence
larger localization parameters lead to fewer rounds, at the expense of querying larger cosets. (Choosing
these parameters well is crucial to minimizing constraint complexity, as we discuss in Section 13.2.)

Since the FRI verifier is public-coin, its interactive phase does not yield any special constraints. However the
specifics of the interaction affect the hashchain described in Section 12.2.1, which is responsible to squeeze
verifier randomness and absorb prover messages. We deduce that, for each round 7 € {1,...,k"PT — 1}:
the hashchain is required to squeeze a single field element and then to absorb a single Merkle root, and the
depth of the corresponding Merkle tree is logy |L| — (171 + - -+ + 7;+1). In the last round (i = kPT), the
hashchain is required to squeeze a single field element and then to absorb dyipr + 1 field elements.

e Query phase. The FRI verifier repeats the following q times, for a number g that controls soundness error.

— Queries. The FRI verifier samples a random coset Uy of size 2™ in the domain Ly = L, and reads the
values of the oracle to be tested at Up. The coset Uy determines, for each i € {1,...,k*PT — 1}, a coset
U; of size 2"i+! in the domain L;, and the FRI verifier reads the values of the oracle f; in round 7 at U;.
Finally, the FRI verifier also reads all the djor + 1 coefficients of the polynomial sent in round k“PT.

— Decision. For eachi € {0,1,...,kFPT — 1}, let p;(X) be the polynomial of degree less than 27i+1
that equals the interpolation of the values read for the -th coset U;. Let kam (X)) be the polynomial of
degree dy .ot sent by the prover in the last round (round i = kPT),

The FRI verifier performs the following k'PT consistency checks: for each i € {1,...,kFPT — 1},
check that p;_1(c;) = fi(h;(U;—1)); also check that pyror_; (qior) = kaDT (aLor).

The implication of the first item above to the constraint system is that the hashchain described in Sec-
tion 12.2.1 needs to squeeze enough field elements to determine q samples of starting cosets in the domain
Ly = L (with each sample indexed in binary as already discussed). Moreover, the constraint system needs
to check, for each starting coset Uy, that the remaining k“PT — 1 cosets U; are correctly chosen. For this,
since h; has degree 2", we need at most 2" constraints. Hence, the total constraint cost for checking q

. . LDT . . . . .
lists of cosets is q - 25:1 2", (In fact, we can avoid this cost altogether: by choosing an appropriate
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bit representation, we can obtain the bit decomposition of the index of coset U; by truncating the bit
decomposition of the index of coset U;_1, in which case no constraints are needed.)

The implication of the second item above to the constraint system is that the FRI verifier, for each of q
runs, needs to evaluate the interpolation of k“PT cosets at a single point and also evaluate the polynomial
contained in the last message at a single point. This number of constraints for this is

KLDT

d .
q- | Seval (W) + Z S|de(2771) )
=1

where Seyal(n) = n is the number of constraints to evaluate a polynomial of degree n (say, via a constraint
system that follows Horner’s method), and Sige(n) = 2n + O(logn) is the number of constraints to
evaluate at a single point the interpolation of a function defined over a size-n coset. We justify this latter
cost below, because the design of the constraint system for interpolation requires some care.

Coset interpolation. We require a constraint system that, given the identifier of a coset S in a domain L, a
function f: S — [, an evaluation point v € [, and a claimed evaluation v € F, is satisfiable if and only if
v=">,cqf(a)Lqs(7), where {Lq 5(X)}qes are the Lagrange polynomials for S.

We describe a constraint system of size 2|S| + O(log(|S])). Given the Lagrange coefficients, we can
compute the inner product of the function and the Lagrange coefficients with |.S| constraints. This leaves
|S| + O(log(]S])) constraints to compute the Lagrange coefficients, as we discuss below.

A simplistic approach would be to deduce the coefficients of each Lagrange polynomial {Lq 5(X)}4cs,
hardcode these coefficients in the constraint system, and then let the constraint system compute { L, 5(7) }acs
for the given evaluation point v € F. However, the choice of coset S is not known at “compile time” (when
constructing the constraint system) because the identifier of .S in the domain L is an input to the constraint
system. We now explain how to efficiently compute all the evaluations without “generically” deriving the
coefficients of each Lagrange polynomial (which would be much more expensive).

Observe that, at compile time, we know some information about S the base coset (i.e., subgroup) S* from
which the coset S is derived as a shift (S* need not be in L). Namely, in the additive case S = 5™+ for some
¢ € T, and in the multiplicative case S = £S5 for some £ € F. Thus the identifier of .S in L can be viewed as
encoding the shift £ that determines S from S*. This is useful because: (a) the vanishing polynomial of a
coset S is closely related to the vanishing polynomial of its base coset S*; and (b) each Lagrange polynomial

can be expressed via the vanishing polynomial vg(X) and its derivative v (X). Specifically, for every a € S,

L,s(X) = = 1(a) . U)Sg(_)i). This enables us to hardcode in the constraint system information about the base
S

coset S*, and task the constraint system with a cheap computation that depends on the shift &.
We describe this approach for the additive and multiplicative cases separately.

e Additive case. The derivative v';(X) is a constant cg« € F that only depends on the base coset S*.
Hence all the values {vg(a)}qses (and their inverses) are known at compile time, as they all equal cg-.
The polynomial vg(X) equals vg« (X — &), which has O(log(|S]|)) non-zero monomials. Hence, if we
hardcode the polynomial vg+ in the constraint system, we can compute vs(y) = vg«(y — &) € F, and also
vs(y)/cs» = vg=(y — &) /cs+ € F (common to all Lagrange coefficients) with O(log(]S|)) constraints.

Next, note that each element a € S can be written as a = a* + £ for a corresponding element a* € S™.
This means that {X — a},es = {X — a* — £} q+cs+, where the elements a* are hardcoded in the constraint
system and ¢ is an input to the constraint system. In particular, given vg«(y — £)/cs+ € F we can compute

(Las(7)}aes = {1 0=9  _ 1 — }ares+ with |S| additional constraints.

Cg* y—a*
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e Multiplicative case. The polynomial vg(X) is the polynomial X5I — ¢!, and its derivative v/g(X) is
the polynomial | S| X!~ recall that |S| = |S*| and so this quantity is known at compile time. Moreover,
each element a € S can be written as a = £a™ for a corresponding element a* € S*. Therefore we can
re-write each Lagrange polynomial as:

1 ws(X)
Las(X) = vy(a) "X —a
1 X181 — ¢ls|
S| X o
1 X181 — ¢lS]

T IS|(Ean)T T X (€a) T - 1
1 X181 — ¢lS]
~[S[EsT X (€)=

The above expression leads to the following strategy. The constraint system first uses the shift £ and evalua-

151 _gl5 .
gEsT and also one constraint to compute
IS|_¢ls|

¢~1. Then, the constraint system computes the values {Lq 5(7) }aes = {’Y\s\gsw . 7(&1*;71_1 }ares

tion point -y to compute, via O(log(|.S|)) constraints, the value

with | S| additional constraints.
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13 Evaluation

In Section 13.1 we evaluate our implementation of the preprocessing zkSNARK, and in Section 13.2 we
evaluate our implementation of recursive composition.

All reported measurements were run in single-threaded mode on a machine with an Intel Xeon 6136 CPU
at 3.0 GHz with 252 GB of RAM (no more than 32 GB of RAM were used in any experiment).

13.1 Performance of the preprocessing zZkSNARK

We report on the performance of FRACTAL, the preprocessing zkSNARK for R1CS that we have implemented
by extending 1ibiop as described in Section 12.1. We configure our implementation to achieve 128 bits of
security, for constraints expressed over a prime field of 181 bits. This field choice is illustrative, as the only
requirement on the field is that it should contain suitable subgroups for us to use.

In Fig. 7 we report the costs for several efficiency measures, and for each measure also indicate how
much of the cost is due to the probabilistic proof and how much is due to the cryptographic compiler. The
costs depend on the number of constraints 7 in the R1CS instance.'* and so we report how the costs change
as we vary n over the range {210,211 .. 220} Below, by native execution time we mean the time that it
takes to check that an assignment satisfies the constraint system, and by native witness size we mean the
number of bytes required to represent an assignment to the constraint system.

o [ndexer time. In the upper left, we plot the running time of the indexer, as absolute cost (top graph) and as
relative cost when compared to native execution time (bottom graph). Indexer times range from fractions
of a second to several minutes, and the plot confirms the quasilinear complexity of the indexer. Indexer
time is dominated by the cost of running the underlying HIOP indexer.

e Prover time. In the upper right, we plot the running time of the prover, as absolute cost (top graph) and as
relative cost when compared to native execution time (bottom graph). Prover times range from fractions of
a second to several minutes, and the plot confirms the quasilinear complexity of the prover. Prover time is
dominated by the cost of running the underlying HIOP prover.

o Argument size. In the lower left, we plot argument size, as absolute cost (top graph) and as relative cost
when compared to native witness size (bottom graph). Argument sizes range from 80 kB to 160 kB with
compression (argument size is smaller than native witness size) occurring for n > 4, 000, and the plot
confirms the polylogarithmic complexity of the argument. Argument size is dominated by the cryptographic
digests to authenticate query answers.

o Verifier time. In the lower right, we plot the running time of the verifier, as absolute cost (top graph) and as
relative cost when compared to native execution time (bottom graph). Verifier times are several milliseconds
and become faster than native execution for n > 65,000, and the plot confirms the polylogarithmic
complexity of the verifier. Verifier time is dominated by the cost of running the underlying HIOP verifier.

“More precisely, the costs in general depend on (a) n, the number of constraints (i.e., number of rows in each matrix); (b) n’,
the number of variables (i.e., number of columns in each matrix); (c) m, the number of non-zero entries in a matrix; and (d) &, the
number of public inputs. The number of constraints n and the number of variables n’ are typically approximately equal, and indeed
in this paper we have assumed for simplicity that n = n’ (the matrices in Definition 3.2 are square); so we only keep track of n. The
number of non-zero entries m is typically within a small factor of n, and in our experiments m/n is approximately 1. Finally, the
number of public inputs k is at most n’, and in typical applications it is much smaller than n’, so we do not focus on it.
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Figure 7: Performance of FRACTAL.
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Finally, in Fig. 8, we compare FRACTAL with the state of the art in several types of zZkSNARKSs for R1CS:

(1) Aurora, a non-preprocessing zZkSNARK in the (quantum) random oracle model [BCRSVW19];
(2) Grothl6, a preprocessing zkSNARK with circuit-specific SRS [Grol6];
(3) Marlin, a preprocessing zkSNARK with universal SRS [CHMMVW20].

The first protocol is configured the same as our protocol (128 bits of security over a prime field of 181 bits),
and the implementation that we use is from 1ibiop [SCI19]. The second and third protocols require a
choice of pairing-friendly elliptic curve, which we take to be b1s12-381; the implementation of the second
protocol is from 1ibzexe [zexel9] and the implementation of the third protocol is from marlin [marl9].

While informative, the comparison should be considered qualitative, because the protocols expose R1CS
defined over different prime fields, which means that the same statement may require a different number of
constraints when expressed over one field versus another.
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Figure 8: Comparison across several zkSNARKSs for R1CS. The argument size for [Gro16] is 192 B and for
[CHMMV W20, Marlin] is 880 B; they are not plotted in the argument size graph because they are much smaller
than the argument sizes for the other protocols (which differ in that they are post-quantum and transparent). Note
that the setup algorithm for [Gro16] is plotted in the indexer graph because it also serves as an indexer.

13.2 Performance of recursive composition

We report on the performance of recursive composition based on FRACTAL. Recall from Section 11 that the
quantity governing the efficiency of recursion is the complexity of the verifier when expressed as an R1CS
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constraint system. For R1CS, the we measure complexity by the number of constraints and the fotal nonzero
coefficients (which are sometimes in contention); we refer to these quantities together as the verifier size.

If we were to directly translate the “native” verifier that we evaluate in the previous section into a
constraint system, it would be much too large to prove. The primary culprit for this is the choice of hash
function. In the previous section we chose a hash function with fast native execution; unfortunately, it is large
when represented as an R1CS constraint system. For recursive composition, we will choose a hash function
that has a much smaller R1CS representation. Since this hash function is much slower to execute natively,
this results in an increase in the proving time per constraint; however, this increase is modest compared to the
significant saving arising from the smaller constraint system.

In the remainder of this section we discuss our choice of hash function and how we set its parameters;
we then discuss an optimization that significantly improves the native execution time of the hash function
without increasing the constraint system size.

Choice of hash function. We instantiate the various hash functions required in Section 12.2.1 via different
parameterizations of Poseidon [GKRRS19]. This is a sponge hash function [BDPVO08], which means that
it maintains a state that is split into two parts: the rate part of the state, which is used to absorb inputs and
squeeze outputs; and the capacity part of the state, the size of which determines the security of the sponge.

We will set the Poseidon parameters for each hash function in order to jointly minimize the number of
constraints and the number of nonzero coefficients. We assume our field is such that |log(|F|)| > 2\, which
allows us to set the capacity to be one field element, and the hash output size as one field element. It remains
to choose the rate, and the Poseidon parameter «, which controls the degree of the S-Box permutations.

We set a = 17 for all of our hash functions. This is higher than typical instantiations of Poseidon. This
choice reduces the number of rounds of the hash function, which greatly reduces the number of non-zero
RICS coefficients in exchange for a modest increase in the number of R1CS constraints. We find empirically
that the number of non-zero R1CS coefficients per element of rate is minimized for o« = 17 when the rate
is 10. Correspondingly, we set the rate of each hash function to be the minimum of 10 and the number of
elements that must be absorbed/squeezed in a single execution of the hash function.

Prover execution time. The recursive prover’s running time is affected by the native execution time of
the hash function. The direct implementation of Poseidon as our hash function is too slow, causing a 100x
slowdown to the recursive prover. This is due to every round requiring the multiplication of a vector by a
random MDS matrix. To address this, we instead rely on MDS matrices with “light-weight circuits” [DR02;
DG18], i.e., MDS matrices with small entries (when viewed as integer matrices), for which matrix-vector
products can be computed without field multiplications. This leads to a 10x performance improvement in
hash execution time, which reduces the slowdown versus the “standalone” prover to 10x.

Verifier size. Recall from Definition 11.4 that V(*:¥) denotes an R1CS instance expressing the computation
of the SNARK verifier V, for security parameter A, when checking R1CS instances with at most N constraints
and an explicit input of size at most k. Our goal is to minimize the size of V*V:F) | For our evaluation we fix
the security parameter \ := 128 and the instance size k := 100, and measure how | VMV | varies with V.

Given our choice of hash function parameters, the number of non-zero R1CS coefficients is always within
a factor of two of the number of R1CS constraints. Hence for simplicity, below we report only the number
of R1CS constraints. This suffices for finding the “recursion threshold”, the smallest value N* for which
YANTE) has fewer than N* constraints (and hence the smallest N* that admits recursion).

In Section 12.2 we described our design of a generic verifier circuit, which left several parameters
unspecified (e.g., the number of commitments sent by the prover in a particular round, the number of field
elements sent by the verifier in a particular round, the specific rational constraints, and so on). In our
implementation we specialize this design to the verifier for FRACTAL to obtain a constraint system that
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expresses its correct execution. In Fig. 9 we plot the measured size of VAN K) against the number of
constraints [V it is checking. The graph shows that the recursion threshold is at most 2 million: for all
N greater than 2 million, |V()"N ’k)| < N. Since we are able to prove constraint systems of this size, this
demonstrates feasibility of recursion in our implementation. We are optimistic that further optimizations will
further reduce the size of the verifier, and hence also the recursion threshold.

= N I Hashchain
Il RSIOP I Merkle Tree
B DT
N ‘ 220 221 222 223
RS-IOP 2,948 3,036 3,124 3,212
LDT 58,586 42,658 36,190 37,598
i Hashchain 65,184 46,878 37,566 37,566
:: Merkle Tree 962,544 1,068,122 1,137,818 1,210,418
< - leaf hash 235,840 235,642 284,746 309,298
— M - 2-to-1 hash 663,830 760,624 781,216 829,264
- cap hash 62,874 71,856 71,856 71,856
Total 1,132,666 1,210,292 1,264,299 1,338,406
2]9 220 221 222 223
N

Figure 9: On the left we plot, in a linear-log scale, the number of constraints to express the FRACTAL verifier as
a function of the number of constraints it is checking (NV), using areas of different colors to denote contributions
from different constraint types. In the same graph we also plot the number of checked constraints (the function
N + N), which shows how the number of constraints for the verifier (which is polylog, ,(/N)) grows much
slower than N, giving a cross-over point. On the right, we provide several data points for different values of N.
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