
Private Information Retrieval
with Sublinear Online Time

Henry Corrigan-Gibbs1,2,3 and Dmitry Kogan1

1 Stanford University, Stanford, CA, USA
2 EFPL, Lausanne, Switzerland

3 MIT CSAIL, Cambridge, MA, USA
henrycg@csail.mit.edu, dkogan@cs.stanford.edu

March 28, 2022

Abstract. We present the first protocols for private information retrieval
that allow fast (sublinear-time) database lookups without increasing the
server-side storage requirements. To achieve these efficiency goals, our
protocols work in an offline/online model. In an offline phase, which takes
place before the client has decided which database bit it wants to read,
the client fetches a short string from the servers. In a subsequent online
phase, the client can privately retrieve its desired bit of the database
by making a second query to the servers. By pushing the bulk of the
server-side computation into the offline phase (which is independent of
the client’s query), our protocols allow the online phase to complete very
quickly—in time sublinear in the size of the database. Our protocols can
provide statistical security in the two-server setting and computational
security in the single-server setting. Finally, we prove that, in this model,
our protocols are optimal in terms of the trade-off they achieve between
communication and running time.

1 Introduction

A private information retrieval protocol [CGKS95,CGKS98] takes place between
a client, holding an index i ∈ [n], and a database server, holding a string
x = x1x2 · · ·xn ∈ {0, 1}n. The protocol allows the client to fetch its desired
bit xi ∈ {0, 1} from the database while hiding the client’s index i from the
server, and using total communication that is sublinear in the database size n. A
beautiful line of work, starting with that of Chor, Goldreich, Kushilevitz, and
Sudan [CGKS95], constructs private information retrieval (PIR) protocols with
extremely small communication complexity, either when the client can access
multiple non-colluding servers holding replicas of the database [Amb97,CG97,

This is the full version of a paper of the same title at Eurocrypt 2020.

ÿ

ó ó
x x

Ω(n) work

o(
n
)
bi
ts

o(n
)
bits

�

client

input i

i xi

Traditional PIR

Traditional PIR

ÿ

ó ó
xx

Ω(n) work

o(n
)
bits

o(n
)
bits o(

n
)
bi
ts

ÿ

�
i xi

client client

input i

ó ó
x x

o(n) work

o(n) storage

Offline Phase Online Phase

Offline/Online PIR

Fig. 1: A comparison of traditional two-server PIR (left) and offline/online PIR with
sublinear online time (right). The servers store replicas of a database x ∈ {0, 1}n.

BI01,BIKR02,Yek08,Efr12,DG16] or under computational assumptions [KO97,
CMS99,KO00,GR05,OS07].

PIR is a fundamental privacy-preserving primitive: it has applications to pri-
vate messaging [SCM05,AS16,ACLS18], certificate transparency [LG15], private
media browsing [GCM+16], online anonymity [MOT+11, KLDF16], privacy-
preserving ad targeting [Jue01], and more. In spite of the promise of PIR and
the great advances in PIR protocols, there have been essentially no large-scale
deployments of PIR technology to date. A primary reason is that while modern
PIR protocols have very small communication requirements—as small as polylog-
arithmic in the database size—the computational burden they put on the server
is still prohibitively expensive.

In particular, in all existing PIR schemes, the work at the servers grows
linearly with the database size. That is, the servers essentially take a linear scan
over the entire database to respond to each query. Beimel et al. [BIM04] proved
that this limitation is in fact inherent: even in the multi-server setting, every
secure PIR scheme on an n-bit database must incur Ω(n) total server-side work.
(If the servers probe fewer than n database bits on average in responding to a
client’s query, then it is likely that the client is reading one of the probed bits.)

This Ω(n) server-side cost is the major bottleneck for PIR schemes in theory,
since all other costs in today’s PIR protocols (communication, client time, etc.)
are sublinear, or even polylogarithmic, in the database size. This Ω(n) server-side
cost is also the major bottleneck for PIR schemes in practice, as evidenced by
the many heroic efforts to reduce the server-side computational cost in built PIR
systems [LG15,AS16,GCM+16,TDG16,ACLS18].

In Section 1.4, we survey the known approaches to reducing the server-side
computation in PIR-like schemes. All of these methods increase the storage
requirements at the servers and the methods based on standard assumptions
(i.e., not requiring obfuscation) increase the required server storage by potentially
large polynomial factors. These increased storage costs present new barriers to
deployment.

2

1.1 A new approach: Offline/online PIR with sublinear online time

In this paper, we propose a new approach for reducing the server-side computa-
tional burden of PIR. Our idea is to push the (necessary) linear-time server-side
computation into a query-independent offline phase, which allows a subsequent
online phase to complete in sublinear time. More precisely, we construct PIR
schemes in which the client and servers interact in two phases:
– In an offline phase, which takes place before the client has decided which bit

of the database it wants to retrieve, the client fetches a one-time-use “hint”
from the database servers.

– In a subsequent online phase, which takes place after the client has decided
which bit of the database it wants to retrieve, the client sends a query to the
database servers. Given the servers’ answers to this query, along with the
hint prefetched earlier, the client can recover its database bit of interest.

Prior work has developed PIR offline/online schemes [DIO01,BIM04,BLW17,
PPY18]. In this paper, we construct the first offline/online PIR schemes that
simultaneously:
1. run in online time sublinear in the database size, and
2. do not increase the storage requirements at the servers.

(See Section 1.4 and Table 2 for a comparison to prior work.) Furthermore,
our schemes are based on very simple assumptions—one-way functions in the
two-server setting and linearly homomorphic encryption in the single-server
setting—and are concretely efficient. The remaining performance bottleneck
of our schemes is that one of the servers must perform an amount of offline
computation in that is linear in the database size.

Our schemes advance the state of the art in PIR by enabling two new usage
models:

1. Do the heavy computation in advance. Our schemes shift the heavy
server-side computation out of the critical path of the client’s request. For
example, we envision deployments of our PIR schemes in which the client
and server execute the offline phase overnight, while the user is asleep and
when computation is relatively inexpensive. In the morning, when the user
wakes up and wants to, say, privately fetch an article from Wikipedia, she
can run the online phase to get her article in sublinear time.
The idea of moving expensive cryptographic work into an input-independent
offline phase has seen tremendous success in the setting of multiparty compu-
tation [BDOZ11,DPSZ12]. Our schemes achieve the same goal for PIR.

2. Process a series of queries in sublinear amortized total time. Often,
a user wants wants to make a series of adaptive queries to the same database
(e.g., as one does when jumping from one Wikipedia article to the next). In
this setting, our two-server PIR scheme allows the client to reuse a single hint,
fetched in the offline phase, to make arbitrarily many adaptive online queries
to the database. By reusing the hint, the amortized total server-side cost of
each query—including both the costs of the offline and online phases—falls to
sublinear in the database size. As far as we know, ours is the first PIR scheme

3

that achieves sublinear amortized total time for adaptive queries without
dramatically increasing the client or servers’ storage requirements.

1.2 Our results

We give the following results for offline/online private information retrieval with
sublinear online time:

Two-server PIR. We give a two server offline/online scheme with sublinear
online time. Specifically, for a database consisting of n bits, the offline phase
requires the client to interact with one server, which performs Õ(n) offline
computation. (The notation Õ(·) hides arbitrary polylogarithmic factors. In
this section, we also elide fixed polynomials in the security parameter.) In the
online phase, the client interacts with the second server, which answers the
client’s query in time Õ(

√
n). We give a scheme with statistical security that has

total communication Õ(
√
n). Assuming that one-way functions exist, the online

communication cost falls to O(log n).

Two-server PIR with sublinear amortized total time. We extend our
two-server scheme to allow the client to reuse a single offline-phase interaction
to make a series of polynomially many adaptive online-phase queries. With this
scheme, the online cost of each query is still Õ(

√
n), but after q online queries, the

average total computational cost—including the offline-phase computation—falls
to Õ(n/q +

√
n), or sublinear in the database size.

Single-server PIR. We show how to combine a linearly homomorphic encryp-
tion scheme and a standard single-server PIR scheme to obtain a single-server
offline/online PIR scheme with sublinear online time. The resulting scheme uses
Õ(n2/3) total communication and the server runs in online time Õ(n2/3). Fur-
thermore, neither the client nor the server performs any public-key cryptographic
operations in the online phase. Under the stronger assumption that fully homo-
morphic encryption exists, we obtain a single-server scheme with communication
and online time Õ(

√
n). One drawback is that, unlike its two-server counterpart,

our single-server scheme supports only a single online query after each offline
interaction, and thus we do not achieve sublinear amortized total time. The main
benefit of shifting the heavy server-side computation to the offline phase remains.

A lower bound. Finally, we prove a lower bound for offline/online PIR schemes
in which the servers store the database in unencoded form and keep no additional
state. Specifically, we show that any scheme of this form, that uses C bits of
communication in the offline phase, and that probes T bits of the database in the
online phase, must satisfy C · T ≥ Ω̃(n). This shows that in this model, as far as
communication and online server time are concerned, our two-server scheme and
the FHE-based single-server scheme are optimal, up to logarithmic factors.

1.3 Limitations

The primary drawback of our new PIR protocols is that they use more total
communication than standard PIR schemes do. Today’s PIR schemes (with

4

linear online server-side time) can achieve polylogarithmic communication in
the computational setting [CMS99,GR05, IP07,BGI16,DGI+19] and subpolyno-
mial communication (nO(

√
log logn/ logn)) in the two-server information-theoretic

setting [DG16]. In contrast, our schemes with sublinear online time have commu-
nication Ω̃λ(

√
n). While we show that it is possible to reduce the online-phase

communication in the computational setting, our lower bound (Theorem 23)
implies that any offline/online PIR scheme with online time Õ(

√
n)—such as

ours—must have Ω̃(
√
n) total communication. This limitation is therefore in-

herent to PIR schemes that have sublinear online server time and in which the
servers store the database in unmodified form.

In many settings, we expect that the
√
n communication cost will be acceptable.

Indeed, a number of built systems using PIR [GDL+14,GCM+16,AMBFK16,
ACLS18] already suffice with

√
n communication complexity, since server-side

computational cost is the limiting factor. If
√
n communication is still too high, we

show in Corollary 18 that it is possible to amortize the
√
n offline communication

cost of our two-server scheme over polynomially many online reads, each of
which requires only logarithmic communication. So, our results are still relevant
to communication-sensitive settings, when having low amortized complexity is
sufficient.

1.4 Related work

Beimel, Ishai, and Malkin [BIM04] proved that the servers in any secure PIR
scheme must collectively probe all n bits of the database (on average) to respond
to a client’s query. We survey the existing strategies for eliminating this key
performance bottleneck.

Store the database in encoded form. One ingenious way to circumvent the
Ω(n)-server-time lower bound is to have the servers store the database in encoded
form. Beimel et al. [BIM04] introduced the notion of PIR with preprocessing, in
which the servers perform a one-time preprocessing of the database x ∈ {0, 1}n
and store the database in encoded form E(x) ∈ {0, 1}N , where E is a public
encoding function and N � n. In the two-server setting, their PIR schemes with
preprocessing achieve n1/2+ε total communication and n1/2+ε server-side time,
for any ε > 0. The downside of this approach is that the server-side encoding can
be quite large. For example, to achieve n0.6 server-side time and communication
using their two-server scheme requires the server to store an encoded database
of size N = n3.2. Even for modest database sizes (e.g., n ≈ 220), the encoded
database would be much too large to materialize in practice (many petabytes).
While it would be fascinating to construct improved schemes for two-server PIR
with preprocessing—perhaps with encoding size N = 10n and online time and
communication n1/3—this goal appears far out of reach.

The schemes of Beimel et al. apply only to the multi-server setting. Two recent
works [BIPW17,CHR17] study doubly efficient PIR, which are in some sense
single-server PIR-with-preprocessing schemes. In the designated-client model of
doubly efficient PIR, the client encodes the database using a long-term secret

5

Table 2: A comparison of PIR schemes when cast into the offline/online model, on
database size n, in which each client makes q adaptive online queries, and in which m
clients execute the offline phase before the first client executes the online phase.
– The offline and online costs are per-query costs. Thus, if a scheme has a offline

phase of server cost n, which can be reused over q online queries, we write its
per-query offline cost as n/q. If a scheme has a one-time offline phase that can be
reused for an unbounded number of clients and queries (as in [BIM04,BIPW17]),
we view the scheme as having zero offline cost.

– The extra storage cost is the number of bits, in addition to the database, that client
and server must hold between the offline and online phases.

All columns omit poly(λ) factors, for security parameter λ, and also low-order polylog(n)
factors. Here, ε > 0 is an arbitrarily small constant and c refers to some constant in N.

Offline Online Extra storage

Time Comm. Time Comm.
Assumption Client Server Client Server Client Server

Two-server
[DG16] None 0 0 0 no(1) n no(1) 0 0
[BGI16] OWF 0 0 0 logn n logn 0 0
[BLW17]∗ LWE logn n logn logn n logn logn 0
[BIM04] None 0 0 0 n0.9 n0.9 n0.9 0 n1.27

n0.6 n0.6 n0.6 n3.2

n0.55 n0.55 n0.55 n37.7

[PR93] None n n n logn n n 0 0

[DIO01]† OWF 0 n 0 logn logn logn 0 mn

Thm. 11 None n1/2 n n1/2 n1/2 n1/2 n1/2 n1/2 0

Thm. 14 OWF n1/2 n n1/2 n1/2 n1/2 logn n1/2 0

Thm. 17 OWF n1/2

q n/q n1/2

q n1/2 n1/2 n1/2 n1/2 0

Single-server
[KO97] Lin. hom. enc. 0 0 0 nε n nε 0 0
[CMS99] φ-hiding 0 0 0 logc n n logc n 0 0
[Lip05] DCR 0 0 0 logc n n log2 n 0 0

[Lip09]‡ Lin. hom. enc. 0 n 0 logn n logn 0 n

[PPY18]‡ Any PIR n/q n/q n/q n n logc n n1/2 0
[BIPW17] OLDC n/q n/q n/q nε nε nε c mn
[CHR17] OLDC n/q n/q n/q nε nε nε c mn

[BIPW17]§ OLDC+VBB Obf. 0 0 0 nε nε nε 0 n

Thm. 20 Lin. hom. enc. n2/3 n n2/3 n2/3 n2/3 n1/3 n2/3 0

Thm. 22 FHE n1/2 n n1/2 n1/2 n1/2 n1/2 n1/2 0

Lower bound (For any 1 ≤ β ≤ n.)
[BIM04] – n/β – – – – – β

Thm. 23 – – n/β – β – – 0¶

∗ Based on constrained PRFs, which initially required multilinear maps, but later constructed from
standard assumptions [BKM17,CC17,BTVW17].
† A scheme combining ideas from [DIO01,BIM04,BGI16] can acheive these parameters [Ish19].
‡ Requires only a sublinear number of public-key operations.
§ Requires that a trustworthy party encodes the database using secret randomness.
¶ Our lower bound holds only for PIR schemes that store the database in its native form.

key (hidden from the server) and stores the encoded database on the server.
Under a new cryptographic assumption, the client can subsequently privately
query this encoded database many times, and the server can answer the query

6

in time sublinear in the database size. In the public-key analogue of doubly
efficient PIR, a server that stores a single database encoding enables multiple
mutually distrusting clients to query the database using a short public key. Boyle
et al. [BIPW17] construct a public-key doubly efficient PIR scheme with sublinear
query time, under a new cryptographic assumption and in a model with virtual
black-box obfuscation.

Hamlin et al. [HOWW18] introduce a notion of private anonymous data access
(“PANDA”) schemes, in which many clients can access an encoded database such
that (1) as in standard PIR schemes, the server does not learn which bits of
the database a client is reading and (2) the server can respond to a client’s
request in time sublinear—even polylogarithmic—in the database size. Unlike
in doubly efficient PIR schemes, the server in PANDA may store mutable state.
Hamlin et al. give an instantiation of a PANDA scheme from fully homomorphic
encryption [Gen09]. A limitation of the existing PANDA schemes is that they
require the server storage and time to grow with the number of malicious clients
interacting with the system. In our setting, in which the number of malicious
clients could be unbounded, the storage and online server time of a PANDA
scheme would also be unbounded.

The general framework of PIR with preprocessing is extremely promising,
since preprocessing schemes can plausibly allow both polylogarithmic total com-
munication and total work—which is impossible in the offline/online setting.
That said, these preprocessing schemes necessarily increase the storage costs at
the servers, by large polynomial factors in many cases. The single-server prepro-
cessing schemes additionally rely on relatively heavy cryptographic assumptions.
In contrast, in our schemes, the servers store the database x in unencoded form
and keep no additional state. The trade-off is that, in our schemes, the client and
servers must run the linear-server-time offline phase once per client (Section 4)
or once per query (Sections 3 and 5).

Use linear additional storage per query. Beimel, Ishai, and Malkin [BIM04,
Section 7.2], building on earlier work of Di Crescenzo, Ishai, and Ostrovsky [DIO98,
DIO01], give an alternative way to reduce the server-side online time in PIR. In
their model, the client submits a request to the servers in an offline phase. The
servers use this request to generate a one-time-use n-bit encoding of the n-bit
database, which the servers store. In a subsequent online phase, the client can
privately query the servers for a database bit and the servers use their precomputed
encoding to respond in sublinear online time. The total communication and online
server-side work in these schemes can be as low as polylog(n) [Ish19]. However,
the server-side storage costs can be large: for each client, the servers must store n
additional bits until that client makes its online query. If m clients concurrently
access the database, the storage requirements at the servers increase to mn bits.
(In contrast, the schemes in our work require no extra server-side storage.)

Use linear online time. Another line of work reduces the server-side com-
putational burden of PIR protocols by working in the offline/online model we
consider. To our knowledge, all prior protocols in the offline/online model require
linear online time at the servers.

7

Boneh, Lewi, and Wu [BLW17] show that “privately constrained PRFs” imply
a two-server online/offline scheme in which only one of the servers needs to
be active in the online phase. The scheme has polylogarithmic communication
complexity, yet the online server’s work is linear in the database size. Subsequent
work [BKM17, CC17, BTVW17] constructs such PRFs from standard lattice
assumptions.

Towards reducing the server’s computation time in PIR protocols, Patel,
Persiano, and Yeo [PPY18] introduce the notion of private stateful information
retrieval. They give single-server schemes in which, after an offline phase, the
client can privately retrieve a bit from the database while requiring the server to
only perform a number of online public-key operations sublinear in the database
size, along with a linear number of symmetric-key operations. The offline phase of
their protocol requires the client to download a linear number of bits in the offline
phase and the server must perform a linear number of total operations in the
online phase. Their schemes do allow amortizing the linear-communication offline
phase over multiple subsequent queries, although the online time is always linear.
In contrast, our protocols have total communication and online time sublinear in
the database size, even for a single query.

Demmler, Herzberg, and Schneider [DHS14] give a scheme which reduces the
computational burden of each server by means of sharding the database. The
combined work of all servers in their scheme is still linear.

Marginally sublinear online time. The original PIR paper [CGKS95] points
out that a three-party communication protocol of Pudlák and Rödl [PR93,
Theorem 3.5] yields a two-server PIR protocol. (See also the subsequent journal
version [PRS97].) In particular, on an n-bit database, that protocol has total
communication α(n) = O(n log logn

logn), or just slightly sublinear. Closer inspection
of this protocol reveals that one of the two servers can additionally be made
to run in sublinear time α(n), and thus this early scheme can be cast as an
offline/online PIR scheme with just slightly sublinear offline communication. As
far as we know, no prior work has drawn attention to this fact.

Lipmaa [Lip09] constructs a computational single-server PIR protocol with
preprocessing. In its offline phase, the server encodes the database as a branching
program with (n+ o(n))/ log n nodes, and stores the branching program, using
n+n/polylog(n) bits. In the online phase, the server homomorphically evaluates
the branching program, using a protocol of Ishai and Paskin [IP07], which requires
O(n/ log n) public key operations, or slightly sublinear in the database size.
(The homomorphic ciphertexts must be no shorter than the security parameter
λ = ω(log n), and so, strictly speaking, the number of bit operations in the online
phase is still linear. However, the running time is dominated by the public key
operations.)

The complexity of these two protocols is much larger than ours but we still
find it interesting to see such radically different ways to construct two-server PIR
with sublinear online time.

Amortize work. It is also possible to improve the computational efficiency of
PIR by having each PIR server jointly process a batch of queries. If a server

8

can process a batch of Q queries to an n-bit database at o(Qn) cost, processing
queries in a batch yields sublinear amortized time per query at the server. This
general strategy is fruitful both when the batched queries originate from the same
client [IKOS04,Hen16,ACLS18] and from different clients [BIM04,IKOS06,LG15].

Our multi-query scheme of Section 4 similarly allows the client to amortize
the server’s linear-time offline computation over many queries—as in batch PIR.
The difference is that our multi-query scheme allows the client to make its queries
adaptively (one at a time), while batch-PIR schemes require the client to make
all queries in a batch non-adaptively (all at once).

Relax the security property. One final approach to reducing the online
server time in PIR is to aim for a weaker security property than standard
cryptographic PIR schemes do. Toledo, Danezis, and Goldberg give PIR schemes
with a differential-privacy-style notion of security and show that when some
leakage of the client’s query to the server is allowed, the servers can run in
sublinear online time [TDG16].

1.5 Technical overview

To illustrate our techniques, we start by presenting a simplified version of our
two-server offline/online PIR scheme with statistical security. The online phase of
this protocol runs in time o(n), and the protocol’s total communication is o(n).

A toy protocol. Two servers hold a replica of the database x ∈ {0, 1}n. The
two phases of the protocol proceed as follows:

Offline phase. This phase takes place before the client has decided which bit it
wants to read from the database.
– The client divides the database indices {1, . . . , n} at random into

√
n disjoint

sets (S1, . . . , S√n), each of size
√
n, and sends these sets to the first server.

(Sending these sets explicitly would take Ω(n log n) communication, which is
too much. We explain later how to reduce the communication in this step.)

– The first server receives the sets (S1, . . . , S√n) from the client. For each such
set Sj , it computes the parity of the database bits indexed by the set. That
is, for j ∈ {1, . . . ,

√
n}, the server computes the parity hj ←

∑
i∈Sj xi mod 2.

The server sends these parity bits (h1, . . . , h√n) to the client.
– The client stores the sets (S1, . . . , S√n) and the parity bits (h1, . . . , h√n).

Online phase. This phase begins once the client has decided on the index i ∈ [n]
of the bit it wants to read from the database.
– The client finds the set Sj that contains its desired index i. The client then

removes a single item i∗ from the set Sj , which it chooses as follows:
• With probability 1− (

√
n− 1)/n the client chooses i∗ ← i.

• With the remaining probability, the client chooses i∗ randomly from the
set of all other elements in Sj .

The client then sends the set S′ ← Sjr{i∗} to the second server.

9

– Upon receiving the set S′ from the client, the second server computes and
sends back to the client the parity of the database bits indexed by the set:
a ←

∑
i∈S′ xi mod 2. Computing the answer requires the second server to

probe at most |S′| = O(
√
n) bits of the database, which allows the server to

run in only Õ(
√
n) time.

– Finally, when the client receives the answer from the second server, it recovers
the value of the database bit xi∗ by computing xi∗ ← hj−a mod 2. Crucially,
since the client has chosen i∗ with a bias towards i, it recovers the value xi
of its bit of interest with high probability 1 − O(1/

√
n). (By iterating the

scheme λ times in parallel, the client can drive the failure probability down
to at most 2−λ.)

With a bit of work, it is possible to show that the set S′ that the client sends to
the second server is a uniformly random subset of [n] of size

√
n− 1. Thus, the

values that both servers see are distributed independently of the index i that the
client is trying to read.

The resulting scheme already achieves the main goal of interest: in the online
phase, the server can respond to the client’s query in time O(

√
n). However, the

toy scheme also has two major shortcomings:
1. The communication in the offline phase is super-linear : sending the sets

(S1, . . . , S√n) to the first server requires Ω(n log n) bits.
2. The scheme requires Θ(n log n) bits of client storage between the offline phase

and the online phase.
We can address both of these challenges at once by partially derandomizing

the client. In the revised scheme, in the offline phase, the client chooses a single
set S ⊆ [n] of size

√
n. The client also sends to the server

√
n random “shifts”

∆ = {δ1, δ2, . . . , δ√n} ∈ [n]. The client and server then use S and ∆ to construct
a collection of

√
n sets (S1, . . . , S√n) by setting, for every j ∈ {1, . . . ,

√
n},

Sj ← {i + δj | i ∈ S}. The client and the server then run the rest of the toy
protocol using this collection of sets. This modification increases the failure
probability, since there is now some chance that the client’s desired index i will
not be in any of the sets (S1, . . . , S√n). Even so, the client and servers can repeat
the protocol O(log n) times in parallel to drive down the failure probability.

This modifications reduces both the communication complexity of the offline
phase and the amount of client storage and time to Õ(

√
n). With some work, we

can also argue that this modification preserves security.

Improvements to the toy scheme.While the above patched two-server scheme
achieves all of our efficiency goals, it leaves a few things to be desired:

– Reducing online communication with puncturable pseudorandom sets. In the
protocol sketched above, the communication in the online phase is Θ(

√
n).

Under the assumptions that one-way functions exist, we can reduce the
online-phase communication to poly(λ, log n), for security parameter λ.
To do so, we introduce a new tool, which we call a puncturable pseudorandom
set (Section 2). Essentially, a puncturable pseudorandom set allows the client
in the toy scheme above to send the server a compressed representation of

10

the random set S, in the form of a short key k. Furthermore, the set key is
“puncturable,” in that for any i∗ ∈ S, the client can produce a punctured
set key ki∗ that is a compressed representation of Sr{i∗}. Crucially, the
punctured key ki∗ also hides the identity of the removed element i∗.
We construct a puncturable pseudorandom set from puncturable PRFs [BW13,
KPTZ13,BGI14,SW14] (Theorem 3), which have simple constructions from
pseudorandom generators. The keys in our construction have size O(λ log n)
for sets of size O(

√
n) over a universe of size n and security parameter λ.

Plugging this puncturable pseudorandom set construction into the toy scheme
above reduces the communication complexity of the online phase to the length
of a single punctured set key, plus the single bit answer, for O(λ log n) bits
total.

– Refreshing the client’s state. The client in the toy scheme can only use the
results of the (computationally expensive) offline phase to read a single bit
from the database. The following modification to the toy scheme allows the
client to “refresh” the bits it downloads in the offline phase, so that it can
reuse these bits for many online queries (Section 4).
After the client makes a query for index i ∈ [n] using set Sj , the client
discards that set from its state. Now the client must somehow “refresh” its
local state. Our observation is that the set Sj is a random size-

√
n subset of

[n], conditioned on i ∈ Sj . The client refreshes its state by asking the first
server for the parity of a random size-(

√
n − 1) subset S′ of [n]. Since the

client already knows the value of xi, it can compute and store the parity of
the database bits in the set S′ ∪ {i}. (Ensuring that this refreshing process
maintains security requires handling some technicalities.)
Although this construction requires the client to use independent random
sets (S1, . . . , S√n), using puncturable pseudorandom sets the client can send
to the offline server all of them using only Õ(

√
n) bits of communication.

– From two servers to one. Converting the two-server offline/online PIR scheme
to a single-server one is conceptually simple. Say that in the offline phase
of the two-server scheme, the client sends a query q to the first server and
receives an answer a. To convert it into a single-server scheme, we have the
client send an encryption E(q) of its offline query to the server, and we have
the server homomorphically compute and send back the encrypted answer
E(a). Since the server learns nothing about the offline query q, the online
phase can proceed exactly as in the two-server scheme.
With fully homomorphic encryption [Gen09], this transformation is straightfor-
ward and maintains the communication complexity of the original two-server
scheme. We show in Theorem 20 that it is possible to execute these steps
using the much lighter-weight tools of linearly homomorphic encryption and
single-server PIR, with slightly worse communication efficiency and online
time: Õ(n2/3) · poly(λ), for security parameter λ.

– Proving optimality. Finally, we prove a lower bound on the offline communica-
tion and online time using a classic lower bound of Yao [Yao90]. In particular,

11

we show (Lemma 50) that any offline/online PIR scheme with small offline
communication and online time, and in which the servers store the database
in unmodified form, implies a good solution to “Yao’s Box Problem.” We then
apply a preexisting time/space lower bound against algorithms for Yao’s Box
Problem to complete the lower bound (Theorem 23).

1.6 Notation

We use N to denote the set of positive integers. For an integer n ∈ N, [n] denotes
the set {1, 2, . . . , n} and 1n denotes the all-ones binary string of length n. For
n ∈ N and s ∈ [n], an s-subset of [n] is a subset of size exactly s, and

(
[n]
s

)
denotes

the set of all s-subsets of [n]. Logarithms are taken to the base 2. We ignore
integrality concerns and treat expressions like

√
n, log n, and m/n as integers.

The expression poly(·) refers to a fixed (unspecified) polynomial in its pa-
rameter. The notation Õ(·) hides arbitrary polylogarithmic factors, i.e., f(n) =
Õ(g(n)) if f(n) = O(g(n)) · poly(log n). The notation Oλ(·) hides arbitrary
polynomial factors in (the security parameter) λ, i.e., f(n, λ) = Oλ(g(n)) if
f(n, λ) = O(g(n)) · poly(λ).

For a finite set S, the notation x ←R S refers to choosing x independently
and uniformly at random from the set S. For a distribution D over a set S,
the notation x ←R D refers to choosing x ∈ S according to distribution D. For
p ∈ [0, 1], the notation b←R Bernoulli(p) refers to choosing the bit b to be ‘1’ with
probability p and ‘0’ with probability 1− p.

We use the RAM model of computation with the size of the word logarithmic
in the input length and linear in the security parameter. To avoid dependence
on the specifics of the computational model, we usually specify running times
up to polylogarithmic factors. Throughout this text, an efficient algorithm is a
probabilistic polynomial time algorithm. Furthermore, we allow all adversaries
to be non-uniform. (Though this is not fundamental, and, with appropriate
modifications in the security games, the results hold also in the uniform setting.)

We say that a pseudorandom generator (PRG) or pseudorandom permutation
(PRP) is ε-secure if no efficient adversary can distinguish the PRG or PRP from
random with advantage better than ε(λ), on security parameter λ.

2 Puncturable pseudorandom sets

In this section, we introduce a new cryptographic primitive called puncturable
pseudorandom sets and give few natural constructions. Puncturable pseudoran-
dom sets are a key component of our PIR schemes.

A puncturable pseudorandom set is very closely related to a puncturable
pseudorandom function (“puncturable PRF”) [BW13,KPTZ13, BGI14, SW14,
HKW15]. To explain the difference by analogy: a PRF key is a compressed
representation of a function f : [n] → [n], and a PRF key punctured at point
x∗ ∈ [n] allows its holder to evaluate f at every point in [n] except at the

12

punctured point x∗. The punctured key should reveal nothing about the value of
f(x∗) to its holder. (The formal standard definition appears in Appendix A.2.)

Analogously, the key for a puncturable pseudorandom set is a compressed
representation of a a pseudorandom set S ⊆ [n]. The set key punctured at element
x∗ ∈ S allows its holder to recover all elements of S except the punctured element
x∗. The punctured set key reveals nothing about x∗ to its holder, apart from
that fact that x∗ is not one of the remaining elements in S.

2.1 Definitions

Let s : N→ N be a function such that s(n) ≤ n. A puncturable pseudorandom
set with set size s consists of a key space K, a punctured-key space Kp, and a
triple of algorithms:
– Gen(1λ, n) → sk, a randomized algorithm that takes as input the security

parameter λ ∈ N, expressed in unary, and a universe size n ∈ N, expressed in
binary, and outputs a set key sk ∈ K,

– Punc(sk, i)→ skp, a deterministic algorithm that takes in a key sk ∈ K and
an element i ∈ [n], and outputs a punctured set key skp ∈ Kp, and

– Eval(sk)→ S, a deterministic algorithm that takes in a key sk ∈ K ∪ Kp and
outputs a description of a set S ⊆ [n], written as |S| strings of log n bits in
length each.

A puncturable pseudorandom set must satisfy the following notions of efficiency,
correctness and security.

Efficiency. For every security parameter λ ∈ N and universe size n ∈ N, the
routines Gen, Punc, and Eval run in time s(n) · poly(λ, log n), where s(n) is the
set size.

Correctness. For every λ, n ∈ N, if one samples sk← Gen(1λ, n) and computes
S ← Eval(sk), it holds, with probability 1 over the randomness of Gen, that
1. S ∈

(
[n]
s(n)

)
, where

(
[n]
s(n)

)
denotes the set of all size-s(n) subsets of [n], and

2. for all i ∈ S, Eval(Punc(sk, i)) = Sr{i}.
Security. Let Ψ be a puncturable pseudorandom set with set size s : N → N.
Let Wλ,n be the event that adversary A wins in Game 1 with respect to Ψ , with
security parameter λ and universe size n. Then we define A’s guessing advantage
as:

PSAdv[A, Ψ](λ, n) := Pr[Wλ,n]−
1

n− s(n) + 1
. (1)

A puncturable pseudorandom set Ψ is computationally secure if for every λ ∈ N,
every polynomially bounded n = n(λ), and every non-uniform polynomial-
time adversary A, we have that PSAdv[A, Ψ](λ, n) ≤ negl(λ). The puncturable
pseudorandom set is ε-secure if that advantage is smaller than ε(λ, n). We say
that Ψ is perfectly secure if for every λ, n ∈ N and for every (computationally
unbounded) adversary A, we have that PSAdv[A, Ψ](λ, n) = 0.

In Appendix B.1, we show that this security property implies that the output
of Eval on a random key is a pseudorandom set in

(
[n]
s(n)

)
.

13

Game 1 (Puncturable pseudorandom set security). For λ, n ∈ N, and a
puncturable pseudorandom set Ψ = (Gen,Punc,Eval), we define the following game,
played between a challenger and an adversary:
– The challenger executes the following steps:
• sk← Gen(1λ, n)
• S ← Eval(sk)
• x∗ ←R S
• skp ← Punc(sk, x∗)

and sends 1λ and skp to the adversary.
– The adversary outputs an integer x′ ∈ [n].

We say that the adversary “wins” if x∗ = x′.

2.2 Constructions

Fact 2 (Perfectly secure puncturable pseudorandom set with linear-
sized keys). For any function s : N → N with s(n) ≤ n, there is a perfectly
secure puncturable pseudorandom set with set size s. Moreover, for universe size
n, the set keys and punctured keys are both of length (s(n) +O(1)) log n bits.

Proof. The set key is the description of a set S ←R
(
[n]
s

)
—written as s numbers,

each of log n bits in length, along with a description of the universe size n. A
punctured key is just this set of elements with the punctured element removed.

Theorem 3 (puncturable pseudorandom set with short keys from punc-
turable PRFs). Suppose there exists an εF -secure puncturable PRF (as in
Appendix A.2) that, on security parameter λ and input-space size n, has keys of
length κ(λ, n) bits and punctured keys of length κp(λ, n) bits. Then, there exists
an ε-secure puncturable pseudorandom set with set size Θ(

√
n) that, on security

parameter λ and universe size n, has
– set keys of length κ(λ, n) +O(log n) bits and
– punctured keys of length κp(λ, n) +O(log n) bits, and
– ε(λ, n) = poly(λ, n) · (εF + 2−λ).

A puncturable pseudorandom set that proves the theorem appears in Construc-
tion 4. We prove security and correctness of the construction in Appendix B.2.

Remark 5. The Gen routine in Construction 4 fails with negligible probability,
and therefore, as presented, the construction has imperfect correctness. We can
achieve perfect correctness by having the Eval and Punc routines treat sk = ⊥ as
some fixed set (e.g., the set [s]). Our security analysis accounts for this.

Instantiating Theorem 3 with the puncturable PRF [BW13,KPTZ13,BGI14]
based on the tree-based PRF of Goldreich, Goldwasser, and Micali [GGM86] leads
to a very efficient puncturable pseudorandom set construction from pseudorandom
generators. In Appendix B.3, we prove the following:

Corollary 6. Assuming that pseudorandom generators (PRGs) exist, there exists
a secure puncturable pseudorandom set with set size Θ(

√
n).

14

Construction 4 (Puncturable pseudorandom set from puncturable PRF).
Given a puncturable PRF F = (PRFGen,PRFPunc,PRFEval), we construct a punc-
turable pseudorandom set ΨF = (Gen,Punc,Eval) with set size s(n) :=

√
n/2.

ΨF .Gen(1
λ, n)→ sk

– Repeat at most λ times:
• Sample k← PRFGen(1λ, n).
• Compute S ← {PRFEval(k, 1), PRFEval(k, 2), . . . , PRFEval(k, s(n))}.
• If |S| = s(n), halt and output sk← (n, k). output ⊥.

– After running λ iterations of the loop unsuccessfully, output ⊥.

ΨF .Punc(sk, i)→ skp

– Parse the secret key as a pair (n, k).
– Find the least integer ` such that PRFEval(k, `) = i.

If no such ` exists, output ⊥.
– Compute kp ← PRFPunc(k, `) and output skp ← (n, kp).

ΨF .Eval(sk)→ S

– Parse the secret key as a pair (n, k).
– Output the set S ← {PRFEval(k, 1), PRFEval(k, 2), . . . , PRFEval(k, s(n))}.
– (If k is punctured at some value, skip this value when computing S.)

In particular, for every εG-secure length-doubling PRG G, there exists an
ε-secure puncturable pseudorandom set ΨG with set size

√
n/2, that has, for every

security parameter λ ∈ N and universe size n,
– set keys of λ+O(log n) bits in length,
– punctured keys of O(λ log n) bits in length, and
– ε(λ, n) ≤ poly(λ, n) · (εG(λ) + 2−λ).

A puncturable pseudorandom set with fast membership testing from
PRPs. We say that a puncturable pseudorandom set Ψ on universe size n has
a fast membership test if there exists an algorithm InSet that takes as input
a set key sk and an element i ∈ [n], runs in time poly(λ, log n), and outputs
“1” if i ∈ Ψ.Eval(sk) and “0” otherwise. Crucially, the running time of the fast
membership test must grow only with log n, rather than linearly with the set size
s(n). The following is a construction of such a puncturable pseudorandom set.
The proof appears in Appendix B.4.

Theorem 7. Suppose there exists an εP -secure pseudorandom permutation that,
on security parameter λ and input-space size n, has keys of length κ(λ, n) bits.
Then, there exists an ε-secure puncturable pseudorandom set for any set size
s : N→ N that, on security parameter λ and universe size n, has
– set keys of length κ(λ, n) bits,
– punctured keys of length s ·O(log n) bits,
– ε ≤ poly(λ, n) · εP , and

15

– a fast membership test.

2.3 Shifting puncturable pseudorandom sets

When using puncturable pseudorandom sets in this paper, we will want to equip
them with two additional functionalities.
1. GenWith(1λ, n, i)→ sk is an algorithm that takes in n ∈ N and i ∈ [n], and

outputs a uniformly random puncturable pseudorandom set key sk for a
s(n)-subset of [n], subject to the constraint that i ∈ Eval(sk).

2. Shift(sk, δ)→ sk′ is an algorithm that takes in a set key sk ∈ K and an integer
δ ∈ [n], and outputs a set key sk′ such that Eval(sk′) = {i+ δ | i ∈ Eval(sk)}.
(The addition i+ δ is done modulo n, and we identify 0 ∈ Zn with n ∈ [n].)
In Appendix B.5, we show how to extend any puncturable pseudorandom set

to efficiently support both these functionalities by including a shift ∆ ∈ [n] with
every key and interpreting every element i in the base set as (i+∆) mod n in the
encompassing set. This transformation only increases the size of the puncturable
set keys by an additive O(log n) term. Therefore, we subsequently assume without
a loss of generality that every puncturable set is equipped with GenWith and
Shift.

3 Two-server PIR with sublinear online time

We now formally define two-server offline/online PIR and construct such schemes
that achieve sublinear online time and provide either statistical or computational
security.

3.1 Definition

Informally, a two-server offline/online PIR scheme is a protocol between a client,
an offline server, and an online server. Both servers have access to a database
x ∈ {0, 1}n. The PIR protocol proceeds in five steps:
1. First, the client uses the Setup algorithm to generate its own client key ck,

along with a hint request qh. The client sends the hint request qh to the
offline server. Crucially, the client can run the Setup algorithm before it has
decided which bit of the database it wants to read.

2. The offline server feeds the hint request qh and the database x ∈ {0, 1}n into
the Hint algorithm, which generates a hint h that the offline server returns
to the client.

3. Once the client has decided on the index i ∈ [n] of the bit it wants to read
from the database, it feeds its key ck and index i into the Query algorithm,
which produces a query q. The client sends this query to the online server.

4. The online server feeds the client’s query q into the Answer algorithm that
is further given access to the database. (The focus is on schemes in which
the Answer algorithm probes o(n) bits of the database and run in time o(n).)
The online server then returns the answer a to the client.

16

5. The client feeds the hint h and the answer a into algorithm Reconstruct,
which outputs the i-th bit of the database.
A secure offline/online PIR scheme should guarantee that neither server

independently learns anything (in either a statistical or computational sense)
about the client’s private index i.

Definition 8 (Offline/online PIR). An offline/online PIR scheme is a tuple
Π = (Setup,Hint,Query,Answer,Reconstruct) of five efficient algorithms:
– Setup(1λ, n) → (ck, qh), a randomized algorithm that takes in security pa-

rameter λ and database length n and outputs a client key ck and a hint
request qh.

– Hint(x, qh)→ h, a deterministic algorithm that takes in a database x ∈ {0, 1}n
and a hint request qh and outputs a hint h,

– Query(ck, i) → q, a randomized algorithm that takes in the client’s key ck
and an index i ∈ [n], and outputs a a query q,

– Answerx(q)→ a, a deterministic algorithm that takes as input a query q and
gets access to an oracle that:
• takes as input an index j ∈ [n], and
• returns the j-th bit of the database xj ∈ {0, 1},

outputs an answer string a, and
– Reconstruct(h, a)→ xi, a deterministic algorithm that takes as a hint h and

an answer a, and outputs a bit xi.

Furthermore, the scheme Π must satisfy the following properties:

Correctness. For every λ, n ∈ N, x ∈ {0, 1}n, and i ∈ [n], we require that

Pr

Reconstruct(h, a) = xi :

(ck, qh) ← Setup(1λ, n)
h ← Hint(x, qh)
q ← Query(ck, i)
a ← Answerx(q)

 = 1 , (2)

where the probability is taken over any randomness used by the algorithms.

Security. For λ, n ∈ N, and i, j ∈ [n], define the distribution

Dλ,n,i :=

{
q :

(ck, qh) ← Setup(1λ, n)
q ← Query(ck, i)

}
, (3)

and for an adversary A, define the adversary’s advantage as

PIRadv[A, Π](λ, n) := max
i,j∈[n]

{
Pr
[
A(1λ, Dλ,n,i) = 1

]
− Pr

[
A(1λ, Dλ,n,j) = 1

]}
.

Scheme Π is computationally secure if for every polynomially bounded function
n(λ) and every efficient adversary A, the quantity PIRadv[A, Π](λ, n(λ)) is a
negligible function of λ. In particular, we say it is ε-secure if this advantage is at
most ε(λ, n). The scheme is statistically secure if the same holds true even for
computationally unbounded adversaries.

17

Remark 9 (Online running time). In Definition 8, the online server’s answer
algorithm Answer gets oracle access to the bits of the database x. We do so to
emphasize that, for all of the PIR schemes described in this paper, the online
server runs in time sublinear in the database size n, and can thus reply to the
client’s query after probing only o(n) bits of the database. In practice, the online
server could implement each oracle call using a lookup to the database in Õ(1)
time, in a reasonable model of computation (e.g., the RAM model).

Remark 10 (Information-theoretic PIR as offline/online PIR). It turns out that
any two-server PIR scheme with perfect information-theoretic security can be
cast as an offline/online PIR scheme. To see why: in a two-server perfectly secure
PIR, the distribution over query strings that the client sends to each server is
independent of the database bit that the client wants to read. (If not, the scheme
cannot possibly be perfectly secure.) Thus, the client can query one of the two
servers server before it knows which database bit it wants to read.

However, in all existing two-server perfectly secure PIR schemes, both servers
run in time Ω(n) on databases of size n. Therefore, viewing any standard two-
server PIR scheme as an offline/online scheme yields a two-server offline/online
PIR scheme in which the online running time is Ω(n). In contrast, we construct
offline/online PIR schemes in which the online server runs in time o(n).

3.2 New constructions

The following theorem, which we prove at the end of this subsection, captures
our main result on two-server offline/online PIR. It shows that it is possible to
simultaneously achieve sublinear total communication and sublinear online time:

Theorem 11 (Two-server statistically secure offline/online PIR). There
exists a statistically secure two-server offline/online PIR scheme, such that on
every n-bit database and every security parameter λ ∈ N:
– the offline phase uses O(λ

√
n log2 n) bits of communication,

– the offline server runs in time Õλ(n),
– the online phase uses O(λ

√
n log n) bits of communication,

– the online server runs in time Õλ(
√
n), and

– the client uses time and memory Õλ(
√
n).

Moreover, the security advantage of any adversary is at most poly(λ, n) · 2−λ.

Remark 12 (Concrete efficiency). For simplicity, we give the running times of
the routines in our schemes up to poly(λ, log n)-factors. It is possible to make
these hidden factors as small as O(λ log n).

Remark 13 (Trading communication for online time). By adjusting the parame-
ters of the construction, it is possible to generalize Theorem 11 to give a two-server
offline/online PIR scheme in which, for any function C : N→ N with C(n) ≤ n/2,
the offline phases uses C(n) bits of communication, and the online server runs in
time Õ(n/C(n)). This adjustment requires the client and preprocessing server
to have access to a sequence of common random bits, or, in the computational
setting, assuming the existence of pseudorandom generators.

18

In Appendix C.1 we discuss additional issues such as support of databases
with longer rows, further reducing the client’s online time via a connection to
the 3-SUM problem, and implications of Theorem 11 for random self-reductions.

The following theorem, which we prove at the end of this subsection, shows
that, if we settle for only computational—rather than statistical—security, we
can decrease the online communication cost of the PIR scheme of Theorem 11
from Oλ(

√
n log n) to Oλ(log n) without degrading any other efficiency metrics.

It also allows us to slightly decrease the offline communication cost.

Theorem 14 (Two-server computational offline/online PIR). Assuming
the existence of pseudorandom generators, there exists a two-server offline/online
PIR scheme Ψ that satisfies the efficiency criteria of Theorem 11, except that
– the communication cost of the offline phase decreases to O(λ

√
n log n),

– the communication cost of the online phase decreases to O(λ2 log n), and
– if the underlying PRG is εG-secure, the PIR scheme is ε-secure

for ε(λ, n) = poly(λ, n) · (εG(λ, n) + 2−λ).

The main building block we use to construct two-server PIR schemes with
low communication complexity and low online server time is puncturable pseudo-
random sets with small keys. We give the construction in the next subsection,
and prove the following lemma about the construction in Appendix C.2.

Lemma 15. Let s : N→ N be any function such that s(n) ≤ n/2. Let Ψ be an
εΨ -secure puncturable pseudorandom set with set size s, key size κ, and punctured
key size κp. Then there exists a two-server ε-secure offline/online PIR scheme
ΠΨ , such that on security parameter λ and every n-bit database, in the offline
phase:
– the client sends λκ+ (λn/s(n)) log2 n bits to the server,
– the offline server runs in time n · poly(λ, log n),
– the offline server’s answer is O((λn/s(n)) log n) bits in length.

In the online phase:
– the client sends λκp bits to the server,
– the online server runs in time s(n) · poly(λ, log n), and
– the online server’s answer consists of λ bits.

Furthermore,
– the client runs in time (s(n) + n/s(n)) · poly(λ, log n) and stores O(λκ +
(λn/s(n)) log2 n) bits between the offline and online phases, and

– the advantage ε(λ, n) ≤ poly(λ, n) ·
(
εΨ (λ, n) + 2−λ

)
.

Theorem 11 follows by instantiating Lemma 15 with the information-theoretic
puncturable pseudorandom set construction of Fact 2, which has keys and
puncturable keys of length at most (s+O(1)) log n, and by setting s =

√
n.

Theorem 14 follows by instantiating Lemma 15 with the puncturable pseudo-
random set of Corollary 6, which has keys of length O(λ) and punctured keys
of length O(λ log n), and setting s =

√
n. Additionally we reduce the offline

communication from O(λ
√
n log2 n) to O(λ

√
n log n) by replacing the random

shifts used in Construction 16 with pseudorandom ones, generated from one seed
of length λ.

19

Construction 16 (Two-server PIR with sublinear online time). The
construction is parametrized by set size s : N→ N and uses a puncturable pseudo-
random set Ψ = (Gen,Punc,Eval) with key space K, punctured-key space Kp, and
set size s, extended by routines (Shift,GenWith). The final scheme is obtained by
running λ instances of this scheme in parallel. Throughout, let m := (n/s(n)) logn.

Offline phase

Setup(1λ, n)→ ck, qh

sk← Gen(1λ, n)
sample δ1, . . . , δm ←R [n]
ck← (sk, δ1, . . . , δm)
output ck and qh ← sk

Hint(qh, x ∈ {0, 1}n)→ h ∈ {0, 1}m

parse qh as sk ∈ K and δ ∈ [n]m

for j = 1, . . . ,m do:
Sj ← Eval(Shift(sk, δj))
hj ←

∑
i∈Sj xi mod 2

output h← (h1, . . . , hm)

Online phase

Query(ck, i ∈ [n])→ q ∈Kp

parse ck as sk ∈ K and δ ∈ [n]m

sample a bit b←R Bernoulli(s−1
n

)
find a j ∈ [m] s.t. i− δj ∈ Eval(sk)
if such a j ∈ [m] exists:

skq ← Shift(sk, δj)

otherwise:
j ← ⊥
i′ ←R Eval(sk)
skq ← Shift(sk, i− i′)

if b = 0: ipunc ← i
else: ipunc ←R Eval(skq)r{i}
output q ← Punc(skq, ipunc)

Answerx(q ∈ Kp)→ a ∈ {0, 1}
S ← Eval(q)
return a←

∑
i∈S xi mod 2

Reconstruct(h ∈ {0, 1}m, a ∈ {0, 1})→ xi

let j and b be as in Query†

if j = ⊥ or b = 0 then output ⊥
output xi ← hj − a mod 2

† For simplicity, we avoid passing j and b explicitly from Query to Reconstruct.

3.3 Construction of PIR from puncturable pseudorandom sets

We first present an overview of the construction. The formal specification appears
in Construction 16, and the full analysis appears in Appendix C.

The PIR scheme makes use of a puncturable pseudorandom set Ψ = (Gen,Punc,
Eval) with set size s(n) extended by routines (Shift,GenWith). We denote s := s(n)
and assume without loss of generality that s ≥ log n, as otherwise, a scheme in
which the offline server sends the entire database to the client trivially satisfies
the lemma. We also define m := (n/s) log n. The PIR scheme operates in two
phases, in each of which the client interacts with one of the two servers:

Offline phase.
1. The client samples a random set key sk← Gen(1λ, n) for universe size n and

set of size s. It also samples m random shifts δ1, . . . , δm ∈ [n]. The client
sends the set key and the shifts to the offline server.

20

2. Upon receiving the set key sk and the random shifts δ1, . . . , δm from the
client, the offline server expands the set key to get the set S ← Eval(sk) ⊆ [n].
Each shift δj ∈ [n] defines a “shifted” set Sj ← {x+ δj mod n | x ∈ S} (when
adding elements in [n], we identify it with Zn).
For each shift δj , the offline server computes the parity of the bits pointed
by the shifted set Sj , i.e., sets hj :=

∑
i∈Sj xi mod 2. These bits constitute

the hint h = (h1, . . . , hm) ∈ {0, 1}m, which the server sends to the client.

Online phase. The client takes as input an index ipir ∈ [n] of the database it
wants to query. The client has its set key sk and the shifts vector δ from the
offline phase and the hint h ∈ {0, 1}m from the offline server.

1. The client expands the set key sk into the set S ← Eval(sk). It then searches
for a value j ∈ [m] such that ipir + δj ∈ S. (The client can execute this search
in O(m+ n) time using a hash table.)
– If such a shift δj exists, the client computes the corresponding shifted set

key skq ← Shift(sk, δj), so that ipir falls into the set Eval(skq).
– If such an index does not exist, the client samples an element i←R S and

computes the shifted set skq ← Shift(sk, ipir − i′).
Either way, we refer to the chosen set key as skq and it holds ipir ∈ Eval(skq).

2. The client samples a bit b←R Bernoulli((s−1)/n) and then chooses an element
ipunc at which to puncture its set key skq.
– If b = 0, the client punctures the key skq at the point: ipunc ← ipir.
– If b = 1, the client punctures the key skq at a random point: ipunc ←R

Eval(skq)r{ipir}.
The client sends the punctured key q ←R Punc(skq, ipunc) to the online server.
(In the proof, we show that this punctured key computationally hides the
index ipir of the bit that the client wants to fetch from the database.)

3. The online server computes the punctured set S∗ ← Eval(q) ⊆ [n] and views
this set as s − 1 pointers to bits in the database x ∈ {0, 1}n. The online
server computes the parity of these s − 1 bits: a ←

∑
i∈S∗ xi mod 2. The

online server then returns this parity to the client. Notice that the online
server only needs to probe s − 1 bits of the database and can run in time
s · poly(λ, log n).

4. If, in Step 2, the client’s random bit b = 0, the client can recover the bit at
position ipir in the database from the hint h and the answer a by computing
(h− a) mod 2 =

∑
i∈S xi −

∑
S∗ xi =

∑
i∈S xi −

∑
Sripir xi = xipir .

Note that the scheme fails if either ipunc 6= ipir or ipir /∈ ∪j∈[m]Sj . The
probability of the former is (s − 1)/n and, by setting m ≈ n log n/s, we can
drive down the probability of the latter to be approximately 1/n. By running
O(λ) instances of the scheme in parallel, using independent randomness for each
instance, we can drive the overall failure probability to be negligible in λ.

It is now possible to transform the PIR scheme into one with perfect correct-
ness, at the expense of a negligible security loss. To do so, if the client detects
an error (which happens with only a negligible probability), it simply reads its

21

desired bit from the database using a non-private lookup. (Achieving perfect
correctness and security is also possible, at the cost of having an offline phase
that runs in expected polynomial time.)

4 Two-server PIR with sublinear amortized time

One shortcoming of the PIR scheme of the previous section is that every execution
of its offline phase supports only one subsequent query. To perform each additional
query, the client and the server must rerun the offline phase. Therefore, although
the online query-processing time is sublinear, the overall cost of each query,
including that of the offline phase, remains linear.

We now extend the scheme of the previous section such that a single execu-
tion of the offline phase enables the client to subsequently query the database
polynomially many times, without ever having to rerun the offline phase. The
extended scheme is nearly as efficient as the basic, single-query scheme. The
only loss in efficiency is the online communication, which increases to Õ(n1/2).
We stress that the client can choose the retrieved indices adaptively, and so our
scheme does not rely on jointly processing a batch of queries.

Our security definition, given in Appendix D, accounts for an active (fully
malicious) adversary that controls either of the two servers, and can adaptively
choose the database indices that the client queries. Here, we give our main result:

Theorem 17 (Two-server multi-query offline/online PIR). Assuming the
existence of pseudorandom permutations, there exists a two-server multi-query
offline/online PIR scheme, such that on every n-bit database and every security
parameter λ ∈ N, in the offline phase:
– the offline server runs in time Õλ(n),
– the total communication is O(λ

√
n log n) bits,

and in the online phase:
– the online server runs in time Õλ(

√
n),

– the total communication is O(λ
√
n log n) bits, and

– if the underlying PRP is εP -secure, the PIR scheme is ε-secure for
ε(λ, n) ≤ poly(λ, n) · (εP (λ, n) + 2−λ).

Furthermore, the client uses offline time, storage, and online time Õλ(n1/2).

Construction 44 fully specifies the scheme that proves Theorem 17. The full
analysis appears in Appendix D, where we also prove the following corollary:

Corollary 18 (Reducing communication). Assuming the existence of pseu-
dorandom generators, there exists a scheme as in Theorem 17, albeit
– the client offline time increases to Õλ(n),
– the client storage and online time increases to Õλ(n5/6), and
– the total online communication decreases to O(λ2 log n).

Remark 19. As in Section 3, it is possible to achieve statistical security, by re-
placing the computationally secure puncturable pseudorandom set in the proof

22

of Theorem 17, with a perfectly secure one and applying a standard “balanc-
ing” technique [CGKS95, Section 4.3] to get a scheme with online work and
communication Õλ(n2/3).

4.1 Sketch of the construction

We sketch the construction here, but refer to Appendix D for the details.
Our starting point is the single-query scheme of Section 3. There, the hint

consists of a list of m =
√
n log n random sets S1, . . . , Sm ⊆ [n], each of size

roughly
√
n, represented by m puncturable pseudorandom set keys, along with

the parity of the database bits in each set. In the online phase, to read the
ith database bit, the client finds a set Sj ∈ {S1, . . . , Sm} such that i ∈ Sj and
with good probability sends to the right server the set S′ = Sjr{i}. Once the
client has used the set Sj to make a query, the client cannot use Sj again. If the
client used Sj to query for another index i′, the right server would, with good
probability, see Sjr{i} and Sjr{i′}. Taking the difference of these sets would
reveal the secret indices {i, i′} to the right server, breaking security.

The key to supporting multiple queries with only one execution of the offline
phase is to have the client “refresh” its hint every time it queries the database.
We refer to the two servers as “left” and “right”. The left server provides the hint
to the client in the offline phase, and later helps the client to refresh that hint
after each subsequent read operation. The right server answers the queries that
allow the client to reconstruct the database bits it is attempting to read (as in
our constructions of Section 3).

The online-phase interaction with the right server proceeds exactly as in the
single-query scheme: the client sends a punctured set to the right server and
recovers the bit xi. However, the client in the multi-query scheme must somehow
replace the set Sj (and the corresponding parity bit) with a fresh random set
Snew. To make this work, we must answer two questions: (i) How does the client
sample the set Snew? and (ii) How does the client fetch the corresponding parity
bit
∑
i∈Snew

xi mod 2?
First, for correctness and privacy to hold for future queries, the client must

sample the replacement set Snew in a way that preserves the joint distribution of
the sets S1, . . . , Sm. Notice that sampling a fresh random set Snew of the proper
size will not work, since it distorts the joint distribution of the sets. In particular,
replacing a set Sj that contains i with a fresh random set causes the expected
number of sets in S1, . . . , Sm containing i to decrease. What does work is to
have the client sample a fresh random set Snew subject to the constraint that it
contains the index i that the client just read. This is possible since, as described
in Section 2.3, punctured sets support biased sampling.

Second, the client needs to construct the correct parity bit hnew =
∑
i∈Snew

xi mod
2 for the new set Snew. The client obtains the new parity bit by (1) puncturing the
set Snew at element i and (2) querying the left server on the punctured set. The
left server then replies with the parity of the bits in the punctured set Snewr{i}.
At this point the client can recover the parity of the new set Snew by adding

23

the reply from the left server and the value xi, which it reconstructs, as in the
single-query case, using the reply from the right server.

The final complication is that, as in Section 5, in order for the punctured
set to look random, the client occasionally needs to send to the servers a set
punctured at the retrieved index i. In this case, the read operation fails. When
this happens, the client sends a punctured version of the new set Snew to both
servers, the client leaves its hint state unchanged, and the read operations fails.

As in Section 5, by running λ instances of the scheme in parallel we can drive
the overall failure probability to be negligible in λ. We can then trade the failure
probability for a negligible security loss and get a perfectly correct scheme.

5 Single-server PIR with sublinear online time

In this section, we introduce single-server offline/online PIR. The syntax and
correctness properties of a single-server offline/online PIR scheme, formally
defined in Definition 46 in Appendix E, are exactly as in Definition 8. The key
difference is that, in the single-server setting, the client interacts with the same
server in both the offline phase and the online phase. Still the server should learn
nothing about the database index the client wants to retrieve.

Unlike in the two-server setting, where we can achieve statistical security, in the
single-server setting, we must rely on computational assumptions [CGKS95]. Since
non-trivial single-server PIR implies oblivious transfer [DMO00], our assumptions
must imply public-key cryptography.

Our single-server schemes shift all of the expensive work of responding to the
client’s PIR query—the linear-time scan over the database and the public-key
operations—into the offline phase. The server can then respond to the client’s
query in the online phase much more quickly, with
– no public-key cryptographic operations and
– server time sublinear in the size of the database.
Our main construction (Theorem 20) achieves Õλ(n2/3) communication and

online time and Õλ(n) server computational time in the offline phase, using
linearly homomorphic encryption and standard single-server PIR. We also sketch
an asymptotically superior construction (Theorem 22) that achieves Õλ(n1/2)
communication and online time, at the cost of using fully homomorphic en-
cryption [Gen09]. Our lower bound of Section 6 proves the optimality of this
latter scheme, up to log factors, with respect to the trade-off between offline
communication and online time, given the restriction that the server must store
the database in unencoded from and use no extra storage.

A drawback of our single-server PIR schemes is that they have polynomial
communication Ω(n1/2), which is higher than the polylog(n) communication of
state-of-the-art standard single-server PIR schemes [CMS99]. That said, in some
applications, the benefits of sublinear online time and no public-key cryptography
in the online phase may outweigh the costs.

The main result of this section is:

24

Theorem 20 (Single-server offline/online PIR). Suppose there exist:
– a linearly homomorphic encryption scheme (Appendix A.3) with ciphertext
space G and

– single-server PIR with communication cost poly(λ, log n) and server compu-
tation time Õλ(n) (for every database size n and security parameter λ ∈ N).

Then, there exists a single-server offline/online PIR scheme, that makes black-box
use of the group G, such that for every security parameter λ ∈ N and n-bit
database, it uses
– in the offline phase: Õλ(n2/3) bits of communication and Õλ(n) operations
in G, and

– in the online phase: Õλ(n1/3) bits of communication, Õλ(n2/3) time, and no
operations in G.

Moreover, the client uses time and memory Õλ(n2/3).

We prove Theorem 20 in Section 5.1.

Remark 21 (A much simpler scheme). In Appendix E.2, we give a very simple—
and likely easy-to-implement—single-server offline/online scheme that requires
only linearly homomorphic encryption and has O(

√
n) total communication,

online time, and client storage. The scheme uses no public-key cryptographic
operations in the online phase, and its simplicity makes it potentially attractive
for practical applications. The downside is that its online phase requires a linear
number of bit operations (but no public-key operations).

Patel, Persiano, and Yeo [PPY18] give an offline/online scheme with linear
communication and linear online server time (but a sublinear number of online
public-key operations) while this simple scheme has sublinear communication
and no public-key operations in the online phase. In contrast, the client in their
scheme can use a single offline phase for many online operations, while our
single-server scheme requires an offline phase before each online query.

5.1 Proof of Theorem 20

We first construct a single-server PIR scheme with linear client upload in the
offline phase. We then trade upload for download to complete the proof.

An unbalanced scheme. The main idea is to have one server do the work of
both servers in the two-server offline/online PIR construction of Theorem 14. For
the construction to remain secure, the offline phase in the single-server scheme
must not leak to the server anything about the offline query of the underlying
two-server scheme. If we achieve this property, the client would be safe to run
both phases of the two-server construction with a single server:
– In the offline phase, the client obtains the hint without leaking anything

about it to the server.
– The online phase proceeds exactly as in the two-server scheme, except that

the client interacts with the same server in both phases.

25

Our starting point is the two-server offline/online PIR construction of Theo-
rem 14. There, the client sends to the offline server a set S ⊆ [n], represented as
a puncturable pseudorandom set key, and shift values (δ1, . . . , δm) ∈ [m], where
m =

√
n log n. For each shift δj , the server returns the parity of the database

bits in the set S, shifted by δj . That is, the client obtains (hδ1 , . . . , hδm) for
hδj ←

∑
i∈S xi+δj mod 2.

We modify the offline phase such that the client can retrieve the bits (hδ1 , . . . , hδm)
from the server without revealing to it neither the set S nor the shifts (δ1, . . . , δm).

– Client sends an encryption of its set S to the server. The client
generates encryption key k ← Gen(1λ) for the linearly homomorphic encryp-
tion scheme assumed in the theorem. The client then computes a vector
v ∈ {0, 1}n ⊆ Fn, where vi = 1 if and only if i ∈ S (i.e., v is the indicator vec-
tor of S embedded into Fn). The client encrypts v component by component
using the linearly homomorphic encryption scheme Enc to get a ciphertext
ctS = Enck(v) ∈ Gn. The client sends this ciphertext to the server.

– Server computes the parities for all possible shifts of S. Given the
ciphertext ctS , the server computes the component-wise encryption cth of
the vector h ∈ Fn where hj ←

∑
i∈S xi+j ∈ F for j ∈ [n].

We observe that the vector h ∈ Fn can be expressed as h = v · Circ(x),
where Circ(x) ∈ Fn×n is the circulant matrix defined by the vector x ∈ Fn.
A naïve method for computing this product would require Ω̃λ(n2) time
at the server. Instead, the server can compute the vector-matrix product
cth = ctS · Circ(x) using an FFT-like computation in only Õλ(n) time. (To
allow an FFT computation, the plaintext space of the linearly homomorphic
encryption scheme must be a field that has a primitive n-th root of unity.
We elide this technical restriction, since it is easy to satisfy in practice.)

– Client retrieves the encrypted parities using PIR. At this point, the
server holds a ciphertext vector cth ∈ Gn which consists of the encryptions of
the parities for all n possible shifts. The client holds shifts (δ1, . . . , δm) ∈ [n]
and wants to retrieve values hδ1 , . . . , hδm from the server, without revealing
which values it is fetching.
To this end, the client uses PIR to retrieve its desired components from the
server. A standard single-server PIR scheme with polylogarithmic communi-
cation and linear server time (as assumed in the statement of the theorem)
allows retrieving each of these components using poly(λ, log n) communica-
tion and Õλ(n) server work. Implemented in a straightforward way, retrieving
m components would increase the server work m-fold. However, the batch-
PIR technique of Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS04, Section
5] allows the server to respond to a batch of m queries with m · poly(λ, log n)
bits of communication and only Õλ(n) work overall.

– Client recovers the hint. Finally, the client decrypts the m ciphertexts
to recover the values hδ1 , . . . , hδm . Note that hδj =

∑
i∈S xi+δj ∈ F, and

whenever |F| > n the sum also holds over the integers. Thus reducing hδj
modulo 2 yields the jth bit of the hint.

26

Given the hint, the client can subsequently execute the exact same online
phase as in the two-party scheme. However, as the server has learned nothing
about the hint request, the client can run the online phase with the same server.

The correctness of the scheme follows immediately from the correctness of
the underlying single-server PIR and two-server offline/online PIR. We sketch
the security argument in Appendix E.

Efficiency. In the offline phase, the client uploads n ciphertexts, at a commu-
nication cost of Õλ(n) bits, and then performs m single-server PIR queries, at
cost m · poly(λ, log n) bits, for m =

√
n log n. So the total communication cost

is Õλ(n) bits. The offline server computation consists of computing the matrix-
vector product, at cost Õλ(n) using an FFT, and replying to the batch PIR query
using Õλ(n) work. The total offline work of the server is therefore Õλ(n). In the
online phase, the server does Õλ(

√
n) work, and the communication is Oλ(log n),

exactly as in the protocol of Theorem 14. The client’s running time and storage
are also as in Theorem 14.

Rebalancing the scheme. To complete the proof of Theorem 20, we now use a
standard “balancing” idea from the PIR literature [CGKS95, Section 4.3], that
allows us to trade client upload for client download.

The client and server partition the n-bit database into n1/3 buckets, each of
size n′ = n2/3 bits, and then run the above unbalanced scheme n1/3 times—once
using each buckets. The only change is that the client sends a single query to the
server (rather than one query per bucket) in both the offline and online phases. The
resulting scheme has total communication complexity Õλ(n′) + n1/3 · Õλ(

√
n′) =

Õλ(n
2/3) bits, and online work n1/3 · Õλ(

√
n′) = Õλ(n

2/3) for both the server
and the client.

Improving efficiency with higher-order homomorphisms.

If we use a homomorphic encryption scheme that supports degree-two [BGN05]
or higher-degree homomorphic computation, we can build offline/online PIR
schemes that provide even better communication efficiency. For example, given
a fully homomorphic encryption scheme [Gen09] (FHE), we can use the idea of
Theorem 20 with the two-server PIR scheme of Construction 16 to obtain:

Theorem 22 (Informal). Assume fully homomorphic encryption exists. Then,
for all security parameters λ ∈ N, there is a single-server offline/online PIR
scheme on n-bit databases that uses Õλ(

√
n) bits of communication and Õλ(

√
n)

server-side time in the online phase.

The observation is that, in the two-server setting (Construction 16), the client
only sends the server a PRG seed. By using FHE, the client in the single-server
setting could send the server an encryption of that seed, and the server could
homomorphically evaluate the offline server’s algorithm on the encrypted seed.
The online phase remains the same. In Appendix E.3, we discuss possible routes
towards obtaining a similarly efficient scheme under weaker assumptions.

27

6 Lower bound for PIR with sublinear online time

In this section, we prove that the offline/online PIR schemes we construct in
Section 3 achieve the optimal trade-off, up to log factors, between
– the number of bits C that the client downloads in the offline phase and
– the running time T of the server in the online phase.

Specifically, we show that any offline/online PIR scheme, in which the servers
store the database in its unmodified form and use no additional storage, and
that succeeds with constant probability on a database of size n, must have
(C + 1)(T + 1) = Ω̃(n).

The fact that we are able to obtain a polynomial lower bound on the commu-
nication complexity of offline/online PIR schemes may be somewhat surprising,
as it has been notoriously difficult to obtain communication lower bounds for
standard two-server PIR, in which the servers’ running time is unbounded. In
particular, in the information-theoretic setting, the best communication lower
bound for two-server PIR stands at C ≥ (5− o(1)) · log2 n bits. In contrast, for
two-server PIR schemes in which one of the servers is restricted to run in time
T ≤

√
n, we obtain a polynomial communication lower bound of C ≥ Ω̃(

√
n).

Our lower bound holds even against offline/online PIR schemes that provide
only computational security, as well as against single-server offline/online PIR
schemes. Our PIR schemes of Section 3 achieve this bound, up to logarithmic
factors, as does the single-server scheme of Theorem 22.

Theorem 23. Consider a computationally secure offline/online PIR scheme
such that, on security parameter λ ∈ N and database size n ∈ N,
– the client downloads C bits in the offline phase,
– the online server stores the database in its original form and probes T bits of
the database in the course of processing the client’s query, and

– the client recovers its desired bit with probability at least ε, over the choice of
its randomness.

Then, for polynomially bounded n = n(λ), it holds that

ε ≤ 1/2 + Õ
(
T/n+

√
C(T + 1)/n

)
+ negl(λ),

and in particular for ε ≥ 1/2 +Ω(1) and large enough λ it holds that

(C + 1) · (T + 1) ≥ Ω̃(n).

We prove Theorem 23 by showing that an offline/online PIR scheme implies a
solution for a computational task called “Yao’s Box Problem.” Using a preexisting
lower bound for the Box Problem immediately gives a communication-time lower
bound on offline/online PIR schemes. The details appear in Appendix F.

Remark 24. The lower bound of Theorem 23 does not preclude schemes that
achieve better communication and lower bound by virtue of having the servers
store some form of encoding of the database. We discuss schemes of this form [DIO01,
BIM04] in Section 1.4. In particular, constructing PIR schemes with preprocess-
ing [BIM04] that beat the above lower bound (in terms of their communication
and online time) seems like an interesting open problem.

28

7 Open questions

This work leaves open a number of questions:
– Is it possible to construct offline/online PIR schemes in which the client runs

in total time o(n), stores o(n) bits, and has online running time polylog(n)?
– Does Theorem 22 follow from an assumption weaker than FHE?
– Can we construct a multi-query scheme (Section 4) with only one server?
– In Appendix G, we show how to view our PIR construction via a new

abstraction that we call sparse distributed point functions (“sparse DPFs”),
inspired by the standard notion of DPFs [GI14]. Are there even simpler
constructions of sparse DPFs than the ones implied by our PIR schemes?

Acknowledgements. We gratefully acknowledge Dan Boneh for his advice
on technical questions and for supporting our work on this project from the
beginning. We thank Yuval Ishai for answering our questions about PIR, Sam
Kim and David Wu for feedback on early versions of this work, Helger Lipmaa for
kindly pointing us to related work, and Vinod Vaikuntanathan for pointing out
a typo in Appendix F. Finally, we would like to thank the anonymous Eurocrypt
reviewers for their many constructive comments. This work was supported by
CISPA, DARPA, NSF, ONR, and the Simons Foundation.

References

ACLS18. S. Angel, H. Chen, K. Laine, and S. T. V. Setty. PIR with compressed
queries and amortized query processing. S&P 2018.

AFK89. M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from an
oracle. J. Comput. Syst. Sci., 39(1):21–50, 1989.

Amb97. A. Ambainis. Upper bound on communication complexity of private
information retrieval. ICALP 1997.

AMBFK16. C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O. Killijian. XPIR:
Private information retrieval for everyone. PETS, 2016(2):155–174, 2016.

AS16. S. Angel and S. Setty. Unobservable communication over fully untrusted
infrastructure. SOSP 2016.

BDOZ11. R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. Semi-homomorphic
encryption and multiparty computation. EUROCRYPT 2011.

BGI14. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudo-
random functions. PKC 2014.

BGI15. E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. EUROCRYPT
2015.

BGI16. E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing: Improvements
and extensions. CCS 2016.

BGN05. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on
ciphertexts. TCC 2005.

BI01. A. Beimel and Y. Ishai. Information-theoretic private information retrieval:
A unified construction. ICALP 2001.

BIKR02. A. Beimel, Y. Ishai, E. Kushilevitz, and J. Raymond. Breaking the
O(n1/(2k−1)) barrier for information-theoretic private information retrieval.
FOCS 2002.

29

BIM04. A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers’ computation
in private information retrieval: PIR with preprocessing. J. Cryptol.,
17(2):125–151, 2004.

BIPW17. E. Boyle, Y. Ishai, R. Pass, and M. Wootters. Can we access a database
both locally and privately? TCC 2017.

BKM17. D. Boneh, S. Kim, and H. W. Montgomery. Private puncturable PRFs
from standard lattice assumptions. EUROCRYPT 2017.

BLW17. D. Boneh, K. Lewi, and D. J. Wu. Constraining pseudorandom functions
privately. PKC 2017.

BTVW17. Z. Brakerski, R. Tsabary, V. Vaikuntanathan, and H. Wee. Private con-
strained PRFs (and more) from LWE. TCC 2017.

BW13. D. Boneh and B. Waters. Constrained pseudorandom functions and their
applications. ASIACRYPT 2013.

CC17. R. Canetti and Y. Chen. Constraint-hiding constrained PRFs for NC1

from LWE. EUROCRYPT 2017.
CDGS18. S. Coretti, Y. Dodis, S. Guo, and J. P. Steinberger. Random oracles and

non-uniformity. EUROCRYPT 2018.
CG97. B. Chor and N. Gilboa. Computationally private information retrieval.

STOC 1997.
CGKS95. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information

retrieval. FOCS 1995.
CGKS98. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information

retrieval. J. ACM, 45(6):965–982, 1998.
CHR17. R. Canetti, J. Holmgren, and S. Richelson. Towards doubly efficient private

information retrieval. TCC 2017.
CMS99. C. Cachin, S. Micali, and M. Stadler. Computationally private information

retrieval with polylogarithmic communication. EUROCRYPT 1999.
DG16. Z. Dvir and S. Gopi. 2-server PIR with subpolynomial communication. J.

ACM, 63(4):39:1–39:15, 2016.
DGI+19. N. Döttling, S. Garg, Y. Ishai, G. Malavolta, T. Mour, and R. Ostrovsky.

Trapdoor hash functions and their applications. CRYPTO 2019.
DGK17. Y. Dodis, S. Guo, and J. Katz. Fixing cracks in the concrete: Random

oracles with auxiliary input, revisited. EUROCRYPT 2017.
DHS14. D. Demmler, A. Herzberg, and T. Schneider. RAID-PIR: practical multi-

server PIR. CCSW 2014.
DIO98. G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Universal service-providers

for database private information retrieval. PODC 1998.
DIO01. G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Universal service-providers

for private information retrieval. J. Cryptol., 14(1):37–74, 2001.
DJ01. I. Damgård and M. Jurik. A generalisation, a simplification and some

applications of Paillier’s probabilistic public-key system. PKC 2001.
DMO00. G. Di Crescenzo, T. Malkin, and R. Ostrovsky. Single database private

information retrieval implies oblivious transfer. EUROCRYPT 2000.
DPSZ12. I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Multiparty computation

from somewhat homomorphic encryption. CRYPTO 2012.
DTT10. A. De, L. Trevisan, and M. Tulsiani. Time space tradeoffs for attacks

against one-way functions and PRGs. CRYPTO 2010.
Efr12. K. Efremenko. 3-query locally decodable codes of subexponential length.

SIAM J. Comput., 41(6):1694–1703, 2012.

30

FF93. J. Feigenbaum and L. Fortnow. Random-self-reducibility of complete sets.
SIAM J. Comput, 22(5):994–1005, 1993.

FN00. A. Fiat and M. Naor. Rigorous time/space trade-offs for inverting functions.
SIAM J. Comput, 29(3):790–803, 2000.

GCM+16. T. Gupta, N. Crooks, W. Mulhern, S. Setty, L. Alvisi, and M. Walfish.
Scalable and private media consumption with Popcorn. NSDI 2016.

GDL+14. I. Goldberg, C. Devet, W. Lueks, A. Yang, P. Hendry, and R. Henry.
Percy++, version 1.0, 2014. http://percy.sourceforge.net/.

Gen09. C. Gentry. A fully homomorphic encryption scheme. Ph.D. thesis, Stanford
University, 2009.

GGH+19. A. Golovnev, S. Guo, T. Horel, S. Park, and V. Vaikuntanathan. 3SUM with
preprocessing: Algorithms, lower bounds and cryptographic applications,
2019. arXiv:1907.08355 [cs.DS].

GGM86. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

GI14. N. Gilboa and Y. Ishai. Distributed point functions and their applications.
EUROCRYPT 2014.

GKLP17. I. Goldstein, T. Kopelowitz, M. Lewenstein, and E. Porat. Conditional
lower bounds for space/time tradeoffs. WADS 2017.

GR05. C. Gentry and Z. Ramzan. Single-database private information retrieval
with constant communication rate. ICALP 2005.

GT00. R. Gennaro and L. Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. FOCS 2000.

Hel80. M. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Inf.
Theory, 26(4):401–406, 1980.

Hen16. R. Henry. Polynomial batch codes for efficient IT-PIR. PoPETs,
2016(4):202–218, 2016.

HKW15. S. Hohenberger, V. Koppula, and B. Waters. Adaptively secure puncturable
pseudorandom functions in the standard model. ASIACRYPT 2015.

HOWW18. A. Hamlin, R. Ostrovsky, M. Weiss, and D. Wichs. Private anonymous
data access. Cryptology ePrint Archive, Report 2018/363, 2018.

IKOS04. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Batch codes and
their applications. STOC 2004.

IKOS06. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography from
anonymity. FOCS 2006.

IP07. Y. Ishai and A. Paskin. Evaluating branching programs on encrypted data.
TCC 2007.

Ish19. Y. Ishai. Private communication, 2019.
Jue01. A. Juels. Targeted advertising. . . and privacy too. CT-RSA 2001.
KLDF16. A. Kwon, D. Lazar, S. Devadas, and B. Ford. Riffle: Efficient communication

system with strong anonymity. PoPETs, 2016(2):115–134, 2016.
KO97. E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,

computationally-private information retrieval. FOCS 1997.
KO00. E. Kushilevitz and R. Ostrovsky. One-way trapdoor permutations are

sufficient for non-trivial single-server private information retrieval. EURO-
CRYPT 2000.

KPTZ13. A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Dele-
gatable pseudorandom functions and applications. CCS 2013.

LG15. W. Lueks and I. Goldberg. Sublinear scaling for multi-client private
information retrieval. FC 2015.

31

http://percy.sourceforge.net/

Lip05. H. Lipmaa. An oblivious transfer protocol with log-squared communication.
ISC 2005.

Lip09. H. Lipmaa. First CPIR protocol with data-dependent computation. ICISC
2009.

MOT+11. P. Mittal, F. G. Olumofin, C. Troncoso, N. Borisov, and I. Goldberg.
PIR-Tor: Scalable anonymous communication using private information
retrieval. USENIX Security 2011.

OS07. R. Ostrovsky and W. E. Skeith. A survey of single-database private
information retrieval: Techniques and applications. PKC 2007.

OU98. T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure
as factoring. EUROCRYPT 1998.

Pai99. P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. EUROCRYPT 1999.

PPY18. S. Patel, G. Persiano, and K. Yeo. Private stateful information retrieval.
CCS 2018.

PR93. P. Pudlák and V. Rödl. Modified ranks of tensors and the size of circuits.
STOC 1993.

PRS97. P. Pudlák, V. Rödl, and J. Sgall. Boolean circuits, tensor ranks, and
communication complexity. SIAM J. Comput, 26(3):605–633, 1997.

SCM05. L. Sassaman, B. Cohen, and N. Mathewson. The Pynchon Gate: A secure
method of pseudonymous mail retrieval. WPES 2005.

SW14. A. Sahai and B. Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. STOC 2014.

TDG16. R. R. Toledo, G. Danezis, and I. Goldberg. Lower-cost ε-private information
retrieval. PoPETs, 2016(4):184–201, 2016.

Unr07. D. Unruh. Random oracles and auxiliary input. CRYPTO 2007.
Yao90. A. C.-C. Yao. Coherent functions and program checkers. STOC 1990.
Yek08. S. Yekhanin. Towards 3-query locally decodable codes of subexponential

length. J. ACM, 55(1):1:1–1:16, 2008.

32

A Standard definitions

A.1 Computationally indistinguishability

In our analysis of puncturable pseudorandom sets, we will need the following
standard facts about computationally indistinguishable ensembles.

Let D0 and D1 be two distributions defined over a set X. For an algorithm
A that takes in an element x ∈ X and outputs a bit, we define

DistAdv[A, D0, D1] = |Pr[A(x) = 1 : x←R D0]− Pr[A(x) = 1 : x←R D1]| .

Let D0 = {D0,λ}λ∈N and D1 = {D1,λ}λ∈N be two probability ensembles defined
over a common sequence of sets X = {Xλ}λ∈N. We say that the two ensembles D0

and D1 are computationally indistinguishable if for every probabilistic polynomial
time non-uniform algorithm A, that takes as input an element x ∈ X, the quantity
DistAdv[A, D0,λ, D1,λ](λ) is negligible in λ.

Informally, the following standard fact states that if an adversary A can
efficiently distinguish samples from some pair of distributions Di, Dj ∈ {D1, D2,
. . . , Dn}, then there exists an efficient non-uniform adversary B that, when
fed samples from a random distribution Di ←R {D1, . . . , Dn}, can guess i with
non-trivial probability.

Proposition 25. Let D1, D2, . . . , Dn be distributions over some set X, and let
A be an algorithm that takes as input an element x ∈ X and outputs a bit. Then,
there exists an algorithm B that takes as input x ∈ X, and outputs an integer
i ∈ [n] such that

Pr [B(x) = i : i←R [n] , x←R Di] =
1

n
+

2

n2
· max
i,j∈[n]

DistAdv[A, Di, Dj] .

Moreover, the running time of B is linear in log n and in the running time of A.

The implication in the other direction also holds:

Proposition 26. Let D1, D2, . . . , Dn be distributions over some set X, and let
A be an algorithm that takes as input x ∈ X, and outputs an integer i ∈ [n].
Then, there exist i, j ∈ [n] and an algorithm B, that takes as input an element
x ∈ X and outputs a bit, such that

Pr [A(x) = i : i←R [n] , x←R Di] =
1

n
+
n− 1

n
· DistAdv[B, Di, Dj] .

Moreover, the running time of B is linear in log n and in the running time of A.

For a pseudorandom generator G with stretch |G(x)| = `(|x|), an algorithm
A, and λ ∈ N, we define the distinguishing advantage

PRGAdv[A, G](λ) := DistAdv[A, G(Uλ), U`(λ)] ,

where, for n ∈ N, Un is the uniform distribution on n-bit strings.

33

A.2 Puncturable pseudorandom functions

Informally, a puncturable PRF [BW13,KPTZ13,BGI14,SW14,HKW15] is a PRF
with an additional puncturing routine, that takes as input a PRF key k and an
input x∗ and outputs a “punctured” key kp. The original key k and punctured key
kp behave identically, except that (1) it is not possible to evaluate the PRF at
point x∗ using the punctured key kp and moreover (2) the punctured key “leaks
nothing” about the value of the PRF at the point x∗.

A puncturable pseudorandom function family is defined over a key space K
and a punctured-key space Kp, and is a triple of efficient algorithms (PRFGen,
PRFPunc,PRFEval):
– PRFGen(1λ, n)→ k, a randomized algorithm that takes as input a security

parameter λ ∈ N, expressed in unary, and an input-space size parameter
n ∈ N, expressed in binary, and outputs a key k ∈ K,

– PRFPunc(k, x∗)→ kp, a deterministic algorithm that takes as input a secret
key k ∈ K and an input x∗ ∈ [n], and outputs a punctured key kp ∈ Kp, and

– PRFEval(k, x) → y, a deterministic algorithm that takes as input a key
k ∈ K ∪ Kp and outputs a value y ∈ [n].

Furthermore, a puncturable PRF must satisfy the following two notions.

Correctness. Informally, if k is a key and kp is the key punctured at the
point x∗ ∈ [n], the functions PRFEval(k, ·) and PRFEval(kp, ·) should be equal
everywhere, except at the point x∗. Formally, for every λ, n ∈ N, every k ←
PRFGen(1λ, n), and every x, x∗ ∈ [n] such that x 6= x∗, it holds that

PRFEval(k, x) = PRFEval(PRFPunc(k, x∗), x).

Security. Informally, a secret key punctured at a point x∗ ∈ [n] should leak
nothing about the value of the PRF at the point x∗. Formally, for a security
parameter λ ∈ N, domain size n ∈ N, and an adversary A, let Wb,λ,n be the event
that A outputs “1” in Game 27 with bit b ∈ {0, 1}. We define the advantage of
adversary A at attacking a puncturable PRF F as

pPRFAdv[A,F](λ, n) := |Pr[Wλ,n,0]− Pr[Wλ,n,1]| .

We say that a puncturable PRF F is ε-secure if, for every λ ∈ N, every n ∈ N,
and every efficient adversary A, pPRFAdv[A,F](λ, n) ≤ ε(λ, n).

Remark 28. In general, punctured PRFs can have an exponentially large domain
and codomain. For our applications however, we use punctured PRFs whose
domain and codomain have size n ≤ poly(λ), on security parameter λ.

Remark 29. Standard definitions of puncturable PRFs allow the adversary to
puncture the PRF key at a set of points (i.e., PRFPunc takes a set S ⊆ [n] as
input). We give only the simpler definition, in which the adversary can puncture
the key at a single point, since it suffices for our applications.

34

Game 27 (Puncturable PRF indistinguishability). For a puncturable PRF
(PRFGen,PRFPunc,PRFEval), security parameter λ ∈ N, input-space size n ∈ N,
an adversary A, and a bit b ∈ {0, 1}, we define the following game:
– The adversary takes as input 1λ and n, and sends a point x∗ ∈ [n] to the

challenger.
– The challenger computes:

• k← PRFGen(1λ, n),
• kp ← PRFPunc(k, x∗),
• y0 ← PRFEval(k, x∗),
• y1 ←R [n],

and sends (kp, yb) to the adversary.
– The adversary outputs a value b′ ∈ {0, 1}.

The standard definition of puncturable PRFs requires that the value at the
punctured point be indistinguishable from random, even given the punctured key.
We need the following straightforward lemma, which says that the value of the
puncturable PRF at the punctured point is also unpredictable.

To this end, let Wλ,n be the probability that the adversary wins in Game 30,
with security parameter λ and input-space size n.

Game 30 (Puncturable PRF unpredictability). For a given puncturable
PRF (PRFGen,PRFPunc,PRFEval), security parameter λ ∈ N, input-space size
n ∈ N, and an adversary A, we define the following game:
– The adversary takes as input 1λ and n, and sends a point x∗ ∈ [n] to the

challenger.
– The challenger computes:

• k← PRFGen(1λ, n),
• kp ← PRFPunc(k, x∗),
• y∗ ← PRFEval(k, x∗),

and sends kp to the adversary.
– The adversary outputs a value y′ ∈ [n].

We say that the adversary “wins” if y′ = y∗.

We define the unpredictability advantage of an adversary A at attacking a
punctured PRF F as

pPRFAdvunp[A,F](λ, n) =
∣∣∣Wλ,n −

1

n

∣∣∣.
Lemma 31. For every algorithm A attacking a puncturable PRF F in the unpre-
dictability setting, there is an algorithm B attacking F in the indistinguishability

35

setting such that for all λ, n ∈ N,

pPRFAdvunp[A,F](λ, n) = pPRFAdv[B,F](λ, n).

Moreover, A and B have the same asymptotic running time.

Proof. We first construct the algorithm B and then argue for its correctness. The
algorithm B operates as follows:
– Run A to get the value x∗ and send this to the challenger.
– Receive the punctured secret key kp from the challenger, along with yb.
– Run A on the punctured secret key kp to get a value y′.

• If y′ = yb, output “1.”
• Otherwise, output “0.”

When running B in the indistinguishability game, the view of the underlying A
is exactly as in the unpredictability game. Recalling that y0 = y∗ and y1 ←R Y,
we get

pPRFAdv[B,F](λ, n) = |Pr[Wλ,n,0]− Pr[Wλ,n,1]|
= |Pr[y′ = y0]− Pr[y′ = y1]|
= |Pr[y′ = y∗]− Pr[y1 = y′ | y1 ←R [n]]|
=
∣∣Pr[A(kp) = y∗]− 1

n

∣∣
= pPRFAdvunp[A,F](λ, n) .

The standard PRF security requirement will also be useful. For an adversary
A and a PRF F , let PRFGen[A,F](λ, n) be the advantage of A in distinguishing
an oracle F(k, ·), for a key k ← PRFGen(1λ, n), from an oracle f(·), for a random
function f : [n]→ [n]. We say that a PRF is ε-secure if this advantage is at most
ε(λ, n) for every efficient adversary.

Puncturable PRF from the tree-based PRF. We will use the puncturable
PRF based on the classic tree-based PRF construction [GGM86] given by:

Theorem 32 ([BW13,KPTZ13, BGI14]). Let G be an εG-secure length-
doubling pseudorandom generator. Then, there exists an εF -secure puncturable
PRF F with εF (λ, n) ≤ O(log n) · εG(λ). Furthermore, F is an ε′F -secure (stan-
dard) PRF with ε′F (λ, n) ≤ poly(λ, log n) · εG(λ).

A.3 Linearly homomorphic encryption

Our single-server offline/online PIR constructions (Section 5) rely on a linearly
homomorphic encryption scheme [OU98,Pai99,DJ01]:

Definition 33 (Linearly homomorphic encryption over fields). Let (Gen,
Enc,Dec) be an encryption system with key space K, message space F (for some
finite field F) and ciphertext space {Gλ}λ∈N, where each Gλ is a finite group.

36

The scheme (Gen,Enc,Dec) is linearly homomorphic over field F if, for all
λ ∈ N, all keys k ← Gen(1λ), and all messages m0,m1 ∈ F, we have

Deck
(
Enck(m0) + Enck(m1)

)
= m0 +m1 ∈ F,

where the addition of ciphertexts is in the group Gλ.

B Additional material on puncturable pseudorandom sets
(Section 2)

B.1 Pseudorandomness of puncturable pseudorandom sets

The following proposition captures the property that puncturable pseudorandom
sets contain s pseudorandom elements from [n]:

Proposition 34 (Puncturable pseudorandom set security imples pseu-
dorandomness). Let Ψ = (Gen,Punc,Eval) be an ε-secure puncturable pseu-
dorandom set with set size s : N → N, and for every λ, n ∈ N, define the two
distributions:

Dλ,n,0 :=
{
Eval(Gen(1λ, n))

}
and Dλ,n,1 :=

{
S ←R

(
[n]

s(n)

)}
.

Then, for every efficient distinguishing adversary A and every λ, n ∈ N,

DistAdv[A, Dλ,n,0, Dλ,n,1] ≤ n · s(n) · ε(λ, n) .

Proof. Let A be an algorithm that gets as input a set S ∈
(
[n]
s

)
and outputs a

bit. (For brevity, we write s instead of s(n).) We prove that A’s distinguishing
advantage must be negligible.

To do so, we define a sequence of s+ 1 hybrid distributions H0, . . . ,Hs, each
over the set

(
[n]
s

)
. These distributions interpolate between a truly random set and

a set produced by the output of the puncturable pseudorandom set construction
on a random key. In particular, in the ith hybrid distribution, we construct a set
that consists of i elements from a pseudorandom set and n− i random elements.

Formally, for i = 0, 1, . . . , s, we define:

Hybrid Hi.
– S ← Eval(Gen(1λ, n))

– S0 ←R
(
S
i

)
– S1 ←R

(
[n]rS0

s− i

)
– Output S′ ← S0 ∪ S1.

We also define
εi := Pr [A(Hi) = 1] .

37

Note that H0 ≡ Dλ,n,1, and Hs ≡ Dλ,n,0. Therefore, there exists an index i ∈ [s]
such that:

εi − εi−1 ≥
1

s
· DistAdv[A, Dλ,n,0, Dλ,n,1] . (4)

Let Kp be the key space of the puncturable pseudorandom set Ψ , and consider
the following adversary B that attacks puncturable pseudorandom set Ψ as in
the puncturable pseudorandom set security game (Game 1):

Adversary B. Given a puncturable pseudorandom set key skp ∈ Kp as input:
– Sp ← Eval(skp)

– S0 ←R
(
Sp

i−1
)

– S1 ←R
(

[n]rS0

s− i+ 1

)
– S′ ← S0 ∪ S1

– b← A(S′)
– If b = 1: output x′ ←R S1rSp

– Else: output x′ ←R [n]rSp

Let x∗ ∈ [n] be the punctured element sampled by the challenger in Game 1.
The guessing advantage of B, as defined in Eq. (1), is then:

PSAdv[B, Ψ](λ, n(λ)) = Pr [x′ = x∗]− 1

n− s+ 1
(5)

= Pr [x′ = x∗ ∧ b = 0] + Pr [x′ = x∗ ∧ b = 1]− 1

n− s+ 1
.

We compute each of the first two terms separately. Observe that the set S′, which
B gives as input to A, is distributed as in hybrid Hi−1. Therefore,

Pr [x′ = x∗ ∧ b = 0] = Pr [x′ = x∗ | b = 0] · Pr[b = 0] =
1

n− s+ 1
· (1− εi−1) .

(6)
For the second term, observe that, if b = 1 and B wins in the unpredictability
game, the punctured element x∗ ∈ S1. Therefore:

Pr [x′ = x∗ ∧ b = 1]
=Pr [x′ = x∗ ∧ b = 1 ∧ x∗ ∈ S1]
=Pr [x′ = x∗ | b = 1 ∧ x∗ ∈ S1] · Pr[b = 1 | x∗ ∈ S1] · Pr[x∗ ∈ S1] .

Let S be the unpunctured set sampled by the challenger in Game 1. Conditioned
on x∗ ∈ S1, the set S′, that B constructs, contains i elements chosen at random
from S (namely the i − 1 elements of S0 and x∗) and s − i random elements.
Therefore, conditioned on x∗ ∈ S1, the set S′ is distributed as in hybrid Hi.
Subsequently

Pr[b = 1 | x∗ ∈ S1] = εi ,

and

Pr [x′ = x∗ ∧ b = 1] = εi · Pr
[
x′ = x∗

∣∣∣(b = 1) ∧ (x∗ ∈ S1)
]
· Pr[x∗ ∈ S1] .

38

We now use the law of total probability and condition on the size of the set
S1rSp. Since S1 is chosen at random such that |S1rSp| = p, the probability
that x∗ ∈ S1 is p/(n− s+ 1). Furthermore, when x∗ ∈ S1, and B chooses x′ at
random from S1rSp, then x′ = x∗ with probability 1/p. Overall,

Pr [x′ = x∗ ∧ b = 1]

= εi ·
s−i+1∑
p=1

(
Pr
[
x′ = x∗

∣∣∣ (b = 1) ∧ (x∗ ∈ S1) ∧ (|S1rSp| = p)
]

· Pr
[
x∗ ∈ S1

∣∣∣ |S1rSp| = p
])
· Pr

[
|S1rSp| = p

]
= εi ·

s−i+1∑
p=1

1

p
· p

n− s+ 1
· Pr

[
|S1rSp| = p

]
=

εi
n− s+ 1

. (7)

Plugging (6) and (7) into (5), and using (4), we obtain that

PSAdv[B, Ψ](λ, n) = εi − εi−1
n− s+ 1

≥ 1

s · (n− s+ 1)
· DistAdv[A, Dλ,n,0, Dλ,n,1](λ) .

B.2 Proof of Theorem 3

Let ΨF be the puncturable pseudorandom set construction instantiated with
puncturable PRF F . Recall that in Construction 4, we have set s(n) :=

√
n/2.

Efficiency. The routine ΨF .Gen runs its inner loop at most λ times. At
each iteration, the routine samples a puncturable PRF key and evaluates the
puncturable PRF s(n) times. Since the puncturable PRF is efficient, this inner
loop runs in time s(n) · poly(λ, log n), so the entire ΨF .Gen routine does as well.

The routine ΨF .Punc evaluates the puncturable PRF at s(n) points and then
runs the PRF puncturing routine. Together, these operations require at most
s(n) · poly(λ, log n) time.

The routine ΨF .Eval evaluates the puncturable PRF F at s(n) points. Each
such evaluation takes at most poly(λ, log n) time, for a total of s(n)·poly(λ, log n).
Correctness. The correctness of the puncturing routine follows by construction.
As mentioned in Remark 5, to achieve perfect correctness, we slightly modify
the construction to handle failures of the Gen routine. To this end, on inputs
sk = ⊥ and i ∈ [n], routine Punc outputs skp ← (⊥, i). Similarly, on input sk = ⊥,
routine Eval outputs the fixed set [s(n)], and on input skp = (⊥, i), routine Eval
outputs the fixed set [s(n)]r{i}. This guarantees perfect correctness.
Security. For brevity, let s := s(n). We prove that for any efficient puncturable
pseudorandom set adversaryA, there exist an efficient puncturable PRF adversary
B and an efficient PRF adversary BZ , such that:

PSAdv[A, ΨF](λ, n) ≤ 4 · pPRFAdvunp[B,F](λ, n) (8)
+O(λ) · PRFAdv[BZ ,F](λ, n, s) + 2−λ .

39

Security will then follow from Lemma 31.
Consider now an adversary B that attacks the puncturable PRF F as in

Game 30. For λ, n ∈ N, adversary B operates as follows:
– Send a random value x∗ ←R [s] to the challenger, where s is the set size for

the punctured set.
– Receive the punctured PRF key kp from the challenger.
– Compute the set

S∗ = {PRFEval(kp, x) | x ∈ [s], x 6= x∗}.

– If |S∗| < s− 1, output a random y′ ←R [n].
– Otherwise, sample a bit b←R Bernoulli((s− 1)/n):

• If b = 1, output a random y′ ←R S∗.
• If b = 0, run A, using (n, kp) as the punctured set key. When A outputs

a value y′ ∈ [n], outputs the same value.

Notation. Let k be the key of F chosen by the challenger in Game 30. We use
the following notation in the proof:
– y∗ ← PRFEval(k, x∗) is the true value of F on the punctured point.
– S∗ ← {PRFEval(k, x) : x ∈ [s], x 6= x∗}.
– We say that a key k is good if |{PRFEval(k, x) : x ∈ [s]}| = s.

Then, define the following three, mutually exclusive probability events:
– E1 is the event that |S∗| < (s− 1),
– E2 is the event that |S∗| = (s− 1) and y∗ ∈ S∗, and
– E3 is the event that the key k is good. (Notice that E3 ⇔ ¬E1 ∧ ¬E2.)

The key is often good. First, we argue that key k is often good (i.e., that event
E3 happens often). In particular, let pgood be the probability that |{PRFEval(k, x) :
x ∈ [s]}| = s. We argue there exists an efficient PRF adversary B⊥ such that

pgood ≥
1

2
− PRFAdv[B⊥,F](λ, n).

When F is a truly random function, a key is good when s truly random items
sampled with replacement from [n] are all distinct. The probability that two
independent samples from [n] are equal is 1/n. The probability that there is a
duplicate amongst s samples from [n] is at most s2/n (by the Union Bound). For
s =

√
n/2 this probability is at most 1/2. Since F is indistinguishable from a

random function, there exists a PRF adversary B⊥ such that

|pgood − 1/2| ≤ PRFAdv[B⊥,F](λ, n). (9)

The main claim. We now argue that when:
– E1 or E2 occurs, B’s guess is no worse than random and
– when E3 occurs, B’s guess is significantly better than random.

40

Claim. In particular, we claim that:

(a) Pr[y′ = y∗ | E1] = 1/n ,
(b) Pr[y′ = y∗ | E2] ≥ 1/n ,

and that there exists an efficient puncturable pseudorandom set adversary A such
that ε = PSAdv[A, ΨF](λ, n) and

(c) Pr[y′ = y∗ | E3] ≥
1

n
+
ε− (1− pgood)λ

2
.

Using the claim to prove security. We first show that the claim implies that
security holds. Then we prove the claim. Assuming the claim for now, by the law
of total probability, we have that:

Pr[y′ = y∗] =

3∑
t=1

Pr[y′ = y∗ | Et] · Pr[Et]

and using parts (a), (b), and (c) of the claim

≥
(
1

n

)
· Pr[E1] +

(
1

n

)
· Pr[E2] +

(
1

n
+
ε− (1− pgood)λ

2

)
· Pr[E3],

=

(
1

n

)
· (Pr[E1] + Pr[E2] + Pr[E3]) +

(
ε− (1− pgood)λ

2

)
· Pr[E3]

=
1

n
+

(
ε− (1− pgood)λ

2

)
· Pr[E3].

Now, let B⊥ be an algorithm as in Eq. (9). Then let ε′ = PRFAdv[B⊥,F](λ, n)
and and use the fact that Pr[E3] = pgood ≥ 1/2− ε′, as in to find:

Pr[y = y∗] ≥ 1

n
+
ε− (1/2 + ε′)λ

2
·
(
1

2
− ε′

)
.

Using the fact that (1/2 + ε′)λ ≤ 1/2 + λε′, we have that

pPRFAdvunp[B,F](λ, n) = Pr[y = y∗]− 1

n

≥
[
1

n
+
ε− 2−λ − λε′

2
·
(
1

2
− ε′

)]
− 1

n

≥ ε− 2−λ − λε′

2
·
(
1

2
− ε′

)
≥ ε

4
− 2−λ−2 − (λ+ 1)ε′

2
.

By rearranging, we complete the proof of security:

ε ≤ 4 · pPRFAdvunp[B,F](λ, n) + 2(λ+ 1) · PRFAdv[B⊥,F](λ, n) + 2−λ.

Proving the claim. Now our task is to prove parts (a)–(c) of the claim.

41

(a) When E1 occurs, adversary B outputs a random guess, and thus

Pr[y′ = y∗ | E1] =
1

n
.

(b) When E2 occurs, the probability of y′ = y∗ is at least that of adversary B
sampling b = 1 and correctly guessing y∗ from S∗. Therefore,

Pr[y′ = y∗ | E2] ≥
s− 1

n
· 1

s− 1
=

1

n
.

(c) Finally, when E3 occurs, the probability of y′ = y∗ is at least that of adversary
B sampling b = 0 and then getting the right answer from adversary A.
Therefore,

Pr[y′ = y∗ | E3] ≥
(
1− s− 1

n

)
· Pr

A(n, kp) = y∗

∣∣∣∣∣∣∣∣∣∣
k← PRFGen(1λ, n)

k is good
x∗ ←R [s]

kp ← PRFPunc(k, x∗)
y∗ ← PRFEval(k, x∗)

 .

LetW be the event that A wins in the puncturable pseudorandom set security
game (Game 1). Conditioned on the key k being good, the distributions
(n, k) for k← PRFGen(1λ, n) and (n, k) for k← ΨF .Gen(1

λ, n) are identical.
Therefore,

Pr[y′ = y∗ | E3] ≥
(
1− s− 1

n

)
· Pr[W | k is good]. (10)

Here, we are conditioning on the event that a key k sampled from ΨF .Gen(1
λ, n)

is good.
We know that

Pr[W] = Pr[W | k is good] · Pr[k is good] + Pr[W | k is not good] · Pr[k is not good],

or

Pr[W | k is good] ≥ Pr[W]− Pr[W | k is not good] · Pr[k is not good],
≥ Pr[W]− Pr[k is not good]. (11)

By the definition of the puncturable pseudorandom set security advantage,
we have

Pr[W] =
1

n− s+ 1
+ ε, (12)

and with Eqs. (10)-(12), we have:

Pr[y′ = y∗ | E3] ≥
(
1− s− 1

n

)
·
(

1

n− s+ 1
+ ε− Pr[k is not good])

)
.

42

Using the fact that s =
√
n/2 and thus n− s+ 1 ≥ n/2, we have

Pr[y′ = y∗ | E3] ≥ ·
(
1

n
+ ε/2− 1

2
· Pr[k is not good]

)
.

By construction, the probability that a key k generated by ΨF .Gen is not
good, by Eq. (9), and the fact that ΨF .Gen samples λ independent random
puncturable PRF keys before failing, is at most (1− pgood)λ. Then

Pr[y′ = y∗ | E3] ≥
1

n
+
ε− (1− pgood)λ

2
.

This completes the proof of the claim.

B.3 Proof of Corollary 6

Let G be an εG-secure length-doubling PRG. By Theorem 32, there exists a
puncturable PRF FG, that is εFG -secure for

εFG(λ, n) ≤ O(log n) · εG(λ) .

Furthermore, FG is an ε′FG -secure (standard) PRF for

ε′FG(λ, n) ≤ poly(λ, log n) · εG(λ) .

By Theorem 3, there exists a puncturable pseudorandom set scheme ΨFG that is
ε-secure for

ε(λ, n) ≤ 4εFG(λ, n) +O(λ) · ε′FG(λ, n) + 2−λ

≤ poly(λ, n) · (εG(λ) + 2−λ) .

B.4 Proof sketch of Theorem 7

To obtain a puncturable pseudorandom set with a fast membership test, define
a puncturable pseudorandom set whose elements are the evaluations of a pseu-
dorandom permutation P (sk, ·) on the points {1, . . . , s}. That is, a set key is a
PRP key sk, and Ψ.Eval(sk) = {P (sk, i) | i ∈ [s]}. A punctured set key, on the
other hand, is a fully explicit representation of the punctured set itself, as a list
of s− 1 elements, Since a PRP is efficiently invertible given the key, it is easy to
test, given i and sk, whether i ∈ Ψ.Eval(sk). To do so, compute y ← P−1(sk, i)
and test whether y ∈ [s].

We construct the puncturable pseudorandom set as follows:
– ΨP .Gen(1

λ, n)→ sk. Sample a key sk for a pseudorandom permutation P (sk, ·)
on security parameter λ that maps [n] to [n].

– ΨP .Punc(sk, i)→ skp. Output skp ← ΨP .Eval(sk)r{i} as a list of s−1 integers
of log n bits each.

– ΨP .Eval(sk)→ S. Output {P (sk, i) | i ∈ [s]}.

43

– ΨP .InSet(sk, i). Compute y ← P−1(sk, i). If y ∈ [s], output “1.” Otherwise,
output “0.”

The correctness and efficiency properties follow immediately. Security follows
from PRP security: an adversary that can win the puncturable pseudorandom
set security game can guess the value of a PRP on an unqueried point and thus
break PRP security.

B.5 Shifting puncturable pseudorandom sets

We now show how to equip any puncturable set with the additional routines
GenWith and Shift, which we introduced in Section 2.3.

Given a puncturable pseudorandom set Ψ = (Gen,Punc,Eval), defined over
key spaces K and Kp, define a new puncturable pseudorandom set Ψ ′ = (Gen′,
Punc′,Eval′) extended by routines (GenWith,Shift), with key spaces K × N and
Kp × N, where
– Gen′(1λ, n) samples ∆←R [n] and outputs sk← (Ψ.Gen(1λ, n), ∆),
– Punc′((sk, ∆), i) outputs skp ← (Punc(sk, i−∆), ∆),
– Eval′((sk, ∆)) outputs S ← {i+∆ : i ∈ Eval(sk)},
– Shift((sk, ∆), j) outputs sk′ ← (sk, ∆+ j mod n), and
– GenWith(1λ, n, i) runs sk ← Gen′(1λ, n), chooses i′ ←R Eval(sk) and outputs

Shift(sk, i− i′).

By inspection, the extended construction satisfies the correction requirement.
Moreover, the following holds:

Proposition 35. Let Ψ be a puncturable pseudorandom set and Ψ ′ be the exten-
sion above. Then

1. Ψ ′ is a secure puncturable pseudorandom set.
2. For every λ, n ∈ N, the following two distributions are identical: i←R [n]

sk← GenWith(1λ, n, i)
output (i, sk)

 ≡

sk← Gen′(1λ, n)
S ← Eval′(sk)
i←R S
output (i, sk)

 .

Proof. For the first part, consider an adversary A that attacks Ψ ′ in Experiment 1.
Now let B be an adversary that attacks Ψ as follows. On input skp ∈ Kp from its
challenger, adversary B chooses ∆←R [n], sets sk′p ← (skp, ∆) and runs A on sk′p.
When A outputs its guess j ∈ [n], adversary B outputs i← j −∆. Adversary B
wins with exactly the same probability as A, which proves the first part of the
proposition.

For the second part,

 i←R [n]
sk← GenWith(1λ, n, i)
output (i, sk)

 ≡

i←R [n]
sk′ ← Gen′(1λ, n)
i′ ←R Eval′(sk′)
sk← Shift(sk′, i− i′)
output (i, sk)

(
by definition
of GenWith

)

44

≡

i←R [n]
sk0 ← Gen(1λ, n)
∆′ ←R [n]
i′ ←R Eval′((sk0, ∆

′))
sk← Shift((sk0, ∆

′), i− i′)
output (i, sk)

(
by definition
of Gen′

)

≡

i←R [n]
sk0 ← Gen(1λ, n)
∆′ ←R [n]
i′0 ←R Eval(sk0)
i′ ← i′0 +∆′

sk← Shift((sk0, ∆
′), i− i′)

output (i, sk)

(
by definition
of Eval′

)

≡

i←R [n]
sk0 ← Gen(1λ, n)
∆′ ←R [n]
i′0 ←R Eval(sk0)
i′ ← i′0 +∆′

∆← ∆′ + i− i′
output (i, (sk0, ∆))

(
by definition
of Shift

)

≡

i←R [n]
sk0 ← Gen(1λ, n)
i′0 ←R Eval(sk0)
∆← i− i′0
output (i, (sk0, ∆))

(
plugging i′ into ∆
cancels out ∆′

)

≡

sk0 ← Gen(1λ, n)
i′0 ←R Eval(sk0)
∆←R [n]
i←R ∆+ i′0
output (i, (sk0, ∆)

by swapping the

order of sampling
of ∆ and i

≡

 sk← Gen′(1λ, n)
i←R Eval′(sk)
output (i, sk)

 (by defintion of Gen′).

B.6 A key lemma

The next lemma will be used to prove the security of our PIR constructions. At
a very high level, the lemma shows that it is possible to sample a set key sk and
punctured set key skp in such a way that
– a chosen element i ∈ [n] is in the set Eval(sk), and
– the punctured set key skp completely hides the chosen point i.

Lemma 36. Let Ψ = (Gen,Punc,Eval) be a puncturable pseudorandom set ex-
tended by (Shift,GenWith), with set size s(n). For every λ, n ∈ N, and every

45

i ∈ [n], define the distribution

Dλ,n,i =

sk← GenWith(1λ, n, i)
S ← Eval(sk)
b←R Bernoulli((s(n)− 1)/n)
if b = 0 : ipunc ← i
if b = 1 : ipunc ←R Sr{i}
output skp ← Punc(sk, ipunc)

.

Then, for every polynomially bounded n = n(λ) and every i, j ∈ [n], it holds that

{Dλ,n,i}λ∈N ≈c {Dλ,n,j}λ∈N .

Specifically, for every efficient distinguishing adversary A, there exists a (non-
uniform) efficient puncturable pseudorandom set adversary B, such that for every
λ, n ∈ N

max
i,j∈[n]

DistAdv[A, Dλ,n,i, Dλ,n,j] ≤ n2 · PSAdv[B, Ψ](λ, n) .

Proof. Let Kp be the punctured-key space of Ψ , and let λ, n ∈ N. For brevity, we
use s to denote s(n), and Di to denote Di,λ,n for any i ∈ [n].

Consider a distinguishing adversary A as in the statement of the lemma. By
Proposition 25, there exists a non-uniform guessing adversary A′ that takes as
input a punctured set key skp ∈ Kp and outputs an integer from 1 to n such that

Pr
[
A′(skp) = i : i←R [n], skp ←R Di

]
≥ 1

n
+

2

n2
· max
i,j∈[n]

DistAdv[A, Di, Dj] . (13)

Moreover, the running time of A′ is linear in the running time of A.
Consider the following three experiments. In each experiment, we generate

a punctured key skp ∈ Kp and give it to the adversary A′. The adversary then
outputs a value iadv ∈ [n]. The adversary A′ wins if iadv = i where we choose
i ∈ [n] in the experiment. (The exact way in which we choose i differs between
the experiments.) For ` ∈ {0, 1, 2}, let W` be the probability that A′ wins in
Experiment `.

Experiment 0. The adversary’s view in this experiment is distributed exactly
as in distribution Di. In particular, we choose i←R [n], generates skp ∈ Kp as in
distribution Di and run the adversary on skp, who outputs an index iadv ∈ [n].

Experiment 1. We modify Experiment 0 as follows:
sk← Gen(1λ, n)
S ← Eval(sk)

i←R S
sample a bit b←R Bernoulli((s− 1)/n)
if b = 0 then ipunc ← i else ipunc ←R Sr{i}
output skp ← Punc(sk, ipunc)

By the third part of Proposition 35, the pairs (i, sk) in Experiments 0 and 1 are
identically distributed. Therefore W0 =W1.

46

Experiment 2. Note that ipunc is distributed uniformly over S and that our
random choice of ipunc in the experiment is independent of the adversary’s view.
We can therefore defer the random choice of the index i to after having run the
adversary. In this new experiment, we first sample skp ∈ Kp:

sk← Gen(1λ, n)
S ← Eval(sk)
ipunc ←R S

output skp ← Punc(sk, ipunc)

We then run the adversary on skp, who computes iadv ← A′(skp). At this point,
we execute the following steps in the experiment:

sample a bit b←R Bernoulli((s− 1)/n)
if b = 0 then set i← ipunc
if b = 1 then set i←R Sr{ipunc}

Since the joint distribution of (i, ipunc) in Experiments 1 and 2 is identical,
we have that

Pr[W1] = Pr[W2] =Pr[i=iadv] = p0 + p1,

where

p0 =Pr[b=0] · Pr[iadv=ipunc] = n−s+1
n · Pr[iadv=ipunc] ,

and

p1 =Pr[b=1] · Pr[iadv∈(Sr{ipunc})] · Pr[i=iadv | iadv∈(Sr{ipunc})]

=
s− 1

n
· Pr[iadv ∈ Eval(skp)] ·

1

s− 1

=
1

n
· Pr[iadv ∈ Eval(skp)] .

In the last part, we used the fact that Eval(skp) = Sr{ipunc}. Overall, we obtain

Pr[W2] =
n−s+1
n ·

(
Pr[iadv=ipunc] +

1
n−s+1 · Pr[iadv∈Eval(skp)]

)
. (14)

We now construct the adversary B that attacks the underlying puncturable
pseudorandom set in the puncturable pseudorandom set security experiment
(Experiment 1). On input skp ∈ Kp, adversary B proceeds as follows:

iadv ← A′(skp)
if iadv /∈ Eval(skp) then output iB ← iadv
else output iB ←R [n]rEval(skp)

Note that since A′ is a non-uniform algorithm, so is the constructed B.
Recall that in Experiment 1, we say that B wins if iB = ipunc, and let WB be

the probability of that. Let Z be the event that iadv ∈ Eval(skp). Then

Pr[WB] = Pr[iB = ipunc ∧ ¬Z] + Pr[iB = ipunc | Z] · Pr[Z].

47

Since iB is random in [n]rEval(skp) when iadv ∈ Eval(skp), we have that

Pr[iB = ipunc | Z] =
1

n− s− 1
.

Furthermore, since ipunc /∈ Eval(skp), the probability event iB = ipunc implies the
event ¬Z. Therefore,

Pr[WB] = Pr[iadv = ipunc] +
1

n− s− 1
· Pr[Z]

= Pr[iadv = ipunc] + Pr[iadv ∈ Eval(skp)] · 1
n−s+1

= Pr[W2] ·
n

n− s+ 1
(by Eq. (14)) .

Previously, we have shown that W0 =W1 =W2. Therefore

PSAdv[B, Ψ](λ, n) = Pr[WB]−
1

n− s+ 1

= Pr[W2] ·
n

n− s+ 1
− 1

n− s+ 1

≥ Pr[W0] ·
n

n− s+ 1
− 1

n− s+ 1

From Eq. (13), we get:

PSAdv[B, Ψ](λ, n) ≥
(

1
n + max

i,j∈[n]
DistAdv[A, Di, Dj] · 2

n2

)
· n
n−s+1 −

1
n−s+1

≥ max
i,j∈[n]

DistAdv[A, Di, Dj] · 2
n2 .

C Additional material on the two-server case (Section 3)

C.1 Discussion of two-server offline/online PIR

Remark 37 (Larger database rows). In practical applications, the database may
consist of a vector of n `-bit strings, for ` > 1. In this case, the client and server
can run the PIR protocol of Theorem 14 ` times in parallel to yield a PIR
scheme over this larger database. If ` grows with n (e.g., ` = n1/4), more efficient
techniques apply [CGKS95, Section 6].

Remark 38 (Offline/online PIR as a random self-reduction). We can view The-
orem 11 as a kind of nonuniform random-self reduction [AFK89, FF93]. In
particular, say that you are given oracle access to a function f : {0, 1}n → {0, 1}
and Õ(

√
n) bits of advice about f . Is it possible to compute f(x) using Õ(

√
n)

queries to f , such that the distribution of your queries is independent of x?
Theorem 11 implies that the answer to this question is “yes,” and our lower

bound (Theorem 23) shows that a better advice- and query-complexity trade-off
is essentially impossible.

48

Remark 39 (Reducing client online time). In the online phase of our computa-
tional two-server PIR construction, the client runs in Õ(

√
n) time. In particular,

the client has a fixed sets S,∆ ⊆ [n] of size Θ̃(
√
n) (chosen in the offline phase)

and and an index ipir ∈ [n] (chosen in the online phase) and the client must find
values s ∈ S and δ ∈ ∆ such that ipir = s+ δ mod n.

This is almost precisely the indexing 3-SUM problem [GKLP17]. The sim-
ple algorithm we sketched uses client time and storage Õλ(n1/2). Golovnev et
al. [GGH+19] point out that it is possible to solve 3-SUM indexing faster with
preprocessing using Fiat and Naor’s refinement [FN00] of Hellman tables [Hel80].

Applying this result to our setting: if the client performs Õλ(n) work in the
offline phase, and stores a data structure of size S > 0, it can complete the online
phase in time T = Õλ(n

2/S2). (The result of Golovnev et al. [GGH+19] actually
gives a slightly worse trade-off of T = Õ(n3/S3). Since our 3SUM-indexing
instances are chosen at random, we can get a slightly better trade-off by applying
the result of Fiat and Naor that applies to random functions.)

So, for example, if the client stores a data structure of size S = Õλ(n
7/8),

it can process online requests in time T = Õλ(n
1/4), after doing Ω̃λ(n) offline

work. It would be excellent to find a way to construct this data structure in
sublinear time o(n), since otherwise the linear-time client-side preprocessing cost
is burdensome.

C.2 Proof of Lemma 15

We prove that Construction 16 satisfies the requirements of Definition 8 with the
efficiency parameters given in Lemma 15.

Claim (Correctness). For every λ, n ∈ N, every database x ∈ {0, 1}n, and
every i ∈ [n], the client succeeds in retrieving the ith bit of the database with
probability 1.

Proof. We first analyze the failure probability of the PIR scheme as if the client
were using a perfectly secure puncturable pseudorandom set. Reading index
i ∈ [n] fails when j = ⊥ or when ipunc 6= i. The probability of the first failure
event is:

Pr[j = ⊥] = Pr
[
∧mj=1(i− δj /∈ Eval(sk))

]
= Pr [δj /∈ Eval(sk)]m (since δ1, . . . , δm are random)

=
(
1− s

n

)m
=
(
1− s

n

)n
s logn

≤ e− logn =
1

n
. (15)

The second failure event, ipunc 6= i, occurs when the client’s random bit b = 1 (in
the Query algorithm), the probability of which is (s− 1)/n. Therefore, each read
fails with probability at most (s − 1)/n + 1/n ≤ 1/2, where we have used the
assumption that s ≤ n/2.

Since the client can detect whenever a failure occurs, by running λ instances
of the scheme in parallel, using independent randomness for each instance, we

49

can drive the overall failure probability (when the puncturable pseudorandom
set is perfectly secure) to 2−λ. To avoid leaking partial information to the server,
the number of repetitions needs to be fixed and oblivious of any early success.

By Proposition 34, each of the λ puncturable pseudorandom sets Eval(sk) (one
at each instance) is computationally indistinguishable from a perfectly secure
puncturable pseudorandom set. Therefore, the failure probability of all λ instances
must be negligibly close to 2−λ.

To achieve perfect correctness, if the client detects an error (which happens
with only a negligible probability), it simply reads its desired bit from the database
using a non-private lookup. Now, the client always receives its desired bit, at the
cost of a negligible loss in security.

Claim (Server efficiency). The server’s offline-phase running time is n ·
poly(λ, log n) and the server’s online-phase running time is s(n) · poly(λ, log n).

Proof. The offline server’s work consists of computing m = (n/s(n)) log n sums of
the form

∑
i∈S xi+j where S ← Eval(sk) is a set of size s(n). Computing the set S

by evaluating the puncturable pseudorandom set takes time s(n) · poly(λ, log n),
and given S, each sum can be computed in time O(s(n) log n). This yields a total
offline server running time of n · poly(λ, log n).

The online server computes only one such sum, and therefore its running time
is s(n) · poly(λ, log n).

Claim (Client efficiency). The client runs in time Õ(s(n) + n/s(n)) · poly(λ)
and stores λ · |κ|+ (λn/s(n)) log2 n bits between the offline and online phases.

Proof. The client runs three routines:
– In the offline phase, the client generates a puncturable pseudorandom set key

for a set of size s(n). By the efficiency property of a puncturable PRF, this
operation runs in time s(n) · poly(λ, log n).

– In the query phase, the client must search for a value j ∈ [m] such that
i−δj ∈ Eval(sk). By the efficiency property of the puncturable pseudorandom
set, computing the set Eval(sk) takes at most s(n) · poly(λ, log n). Using any
data structure that supports fast lookups, the client can then find such a j,
if one exists, in time (s(n) +m(n)) · poly(λ, log n).

– The client reconstruction procedure requires a simple addition and therefore
satisfies the running time bound.

Having set m(n) := (n/s(n)) log n, the total running time of all three routines is
(s(n) + n/s(n)) · poly(λ, log n).

The client’s storage between the offline and online phases includes the key
sk ∈ K and the vectors δ ∈ [n]m and y ∈ {0, 1}m. Their total length, for
m := (n/s(n)) log n, is κ+O((n/s(n)) log2 n).

Running λ instances of the scheme in parallel increases the storage and
running time by a factor of λ.

Claim (Security). Assuming that the underlying puncturable pseudorandom
set is secure, the offline/online PIR scheme is secure. More specifically, for every

50

distinguishing adversary A attacking scheme ΠΨ , there exists an adversary B
attacking the underlying puncturable pseudorandom set Ψ such that for every
λ, n ∈ N, it holds that

PIRadv[A, Π](λ, n) ≤ poly(λ, n) ·
(
PSAdv[B, Ψ](λ, n) + 2−λ

)
.

Proof. Recall that our scheme consists of λ instances of the fundamental scheme
(for the purpose of amplifying its success probability), and when the client detects
an error in all the instances, it retrieves the bit of interest using a non-private
lookup.

If the puncturable pseudorandom set were perfectly secure, the failure proba-
bility of all λ instances would be at most 2−λ. By Proposition 34, each of the
λ puncturable pseudorandom sets Eval(sk) (one at each instance) is computa-
tionally indistinguishable from a perfectly secure puncturable pseudorandom set.
Therefore, by a standard hybrid argument, if the client fails with probability
ε(λ, n) when using puncturable pseudorandom set Ψ , then a single instance of the
client constitutes a distinguisher that has advantage at least (ε(λ, n)− 2−λ)/λ

and, by the above efficiency analysis, runs in time Õ(n). Thus, by Proposition 34,
there exists an efficient puncturable pseudorandom set adversary B1 such that

ε(λ, n) ≤ λns · PSAdv[B1, Ψ](λ, n) + 2−λ . (16)

Let A be an adversary attacking PIR scheme ΠΨ . By a standard hybrid
argument, there exists an adversary A′ attacking a single instance Π ′ of the
scheme such that

PIRadv[A, Π](λ, n) ≤ λ · PIRadv[A′, Π ′](λ, n) + ε(λ, n) . (17)

Let Di be the distribution of the client’s online query when reading index
i ∈ [n] in a single instance of our scheme. From the specification of the scheme
in Construction 16, Di is sampled as follows:

sk← Gen(1λ, n)
sample δ1, . . . , δm ←R [n]
sample a bit b←R Bernoulli(s−1

n
)

find a j ∈ [m] such that i− δj ∈ Eval(sk)
if such a j ∈ [m] exists:

skq ← Shift(sk, δj)

otherwise:
i′ ←R Eval(sk)
skq ← Shift(sk, i− i′)

if b = 0: ipunc ← i
else: ipunc ←R Eval(skq)r{i}
output q ← Punc(skq, ipunc)

We can rewrite this distribution as:

51

sk← Gen(1λ, n)
sample δ1, . . . , δm ←R [n]
sample a bit b←R Bernoulli(s−1

n
)

i′ ←R Eval(sk) ∩ {i− δ1, . . . , i− δm}
if no such i′ exists:
i′ ←R Eval(sk)

skq ← Shift(sk, i− i′)
if b = 0: ipunc ← i
else: ipunc ←R Eval(skq)r{i}
output q ← Punc(skq, ipunc)

Note that since the shifts δ1, . . . , δm are a random, an element chosen from
Eval(sk) ∩ {i − δ1, . . . , i − δm}, whenever that intersection is not empty, is a
uniformly random element in Eval(sk), and thus the distribution is identical to:

sk← Gen(1λ, n)
i′ ←R Eval(sk)
skq ← Shift(sk, i− i′)
sample a bit b←R Bernoulli((s− 1)/n)
if b = 0: ipunc ← i
else: ipunc ←R Eval(skq)r{i}
output q ← Punc(skq, ipunc)

By definition of GenWith, the last distribution is identical to the distribution
Dλ,n,i in the statement of Lemma 36. Therefore, there exists an efficient adversary
B2 such that

PIRadv[A′, Π ′](λ, n) ≤ n2 · PSAdv[B2, Ψ](λ, n) . (18)

By Eqs. (16) to (18),

PIRadv[A, Π ′] ≤ λ · n2 · PSAdv[B2, Ψ] + ε

≤ λ · n2 · PSAdv[B1, Ψ] + λns · PSAdv[B1, Ψ] + 2−λ .

Overall, if we construct an adversary B, that runs each of B1 and B2 with
probability 1/2, we get that

PIRadv[A, Π](λ, n) ≤ 4λn2 · PSAdv[B, Ψ](λ, n) + 2−λ .

D Additional material on the multi-query case (Section 4)

D.1 Definitions

Definition 40. A multi-query offline/online PIR scheme is a tuple of four
polynomial-time algorithms:
– Setup(1λ, n)→ (ck, qh), a randomized algorithm that takes in security param-

eter λ and database length n and outputs client key ck and a hint request qh,
– Hint(x, qh)→ h, a deterministic algorithm that takes in a database x ∈ {0, 1}n

and a hint request qh and outputs a hint h,

52

– Query(ck, i)→ (ck′, qleft, qright), a randomized algorithm that takes as input
the client’s key ck and an index i ∈ [n], and outputs an updated client key
ck′ and two queries,

– Answerx(q)→ a, a deterministic algorithm that takes as input a query q, and
gets access to an oracle that:

• takes as input an index j ∈ [n], and
• returns the j-th bit of the database xj ∈ {0, 1},

outputs an answer string a, and
– Reconstruct(h, aleft, aright)→ (h′, xi), a deterministic algorithm that takes as

input the hint and the answers from the two servers and outputs an updated
hint h′ and a database bit xi.

A multi-query offline/online PIR scheme must satisfy the following notions
of correctness and security that generalize those given in Definition 8 for the
single-query case.

Correctness. We require that if the scheme is executed as prescribed, the client
recovers the correct values of the bits at the retrieved indices.

More formally, for a multi-query offline/online PIR scheme Π = (Setup,
Hint,Query,Answer,Reconstruct), we require that for every λ, n, T ∈ N, every
x ∈ {0, 1}n, and every i1, . . . , iT ∈ [n]T , the following game always outputs “1”:
– Compute (ck, qh)← Setup(1λ, n).
– Compute h← Hint(x, qh).
– For t = 1, . . . , T , compute:

(ck, qleft, qright)← Query(ck, it)
aleft ← Answerx(qleft)
aright ← Answerx(qright)

(h, x′it)← Reconstruct(h, aleft, aright)

– Output “1” if x′it = xit for every t ∈ [T] and “0” otherwise.

Security. Informally, we require that each server on its own “learns nothing”
about the indices read by the client, even if the server can adaptively choose
those indices.

Formally, for a multi-query offline/online PIR schemeΠ = (Setup,Hint,Query,
Answer,Reconstruct) and a stateful algorithm A, we define two games (Games 41
and 42), parametrized by security parameter λ, database size n ∈ N, number of
queries T ∈ N, and a bit b ∈ {0, 1}.

Let W left
λ,n,T,b be the event that the adversary outputs b′ = 1 in the left-server

game (Game 41), instantiated with parameters λ, n, T ∈ N and b ∈ {0, 1}. Let
W right
λ,n,T,b be the same event in the right-server game (Game 42). We define the

advantage of adversary A:

PIRadv[A, Π](λ, n, T) := max
σ∈{right,right}

∣∣Pr[Wσ
λ,n,T,0]− Pr[Wσ

λ,n,T,1]
∣∣ .

53

Game 41 (Left-server security).
– (ck, qh)← Setup(1λ, n)

– st← A(1λ, qh)
– For t = 1, . . . , T :

(st, i0, i1)← A(st)
(ck, qleft, qright)← Query(ck, ib)

st← A(st, qleft)

– b′ ← A(st)

Game 42 (Right-server security).
– (ck, qh)← Setup(1λ, n)

– st← A(1λ)
– For t = 1, . . . , T :

(st, i0, i1)← A(st)
(ck, qleft, qright)← Query(ck, ib)

st← A(st, qright)

– b′ ← A(st)

Fig. 3: Security games for multi-query private information retrieval.

We say that a multi-query offline/online PIR scheme Π is secure if for all efficient
stateful algorithms A, all polynomially bounded functions n(λ) and T (λ), and
all values of λ ∈ N, PIRadv[A, Π](λ, n(λ), T (λ)) is a negligible function of λ.

Remark 43 (Malicious security). The client’s queries depend neither on the hint
nor on any of the servers’ past answers. For this reason, the hint and the servers’
answers do not play a role in the security games we define. Thus, actively malicious
behavior by the servers, such as responding incorrectly to a client query, cannot
help them break the PIR security property.

Efficiency. We consider the following measures of efficiency. All of the following
are measured as a function of n and λ, and we use their worst case values over
the choice of the database x ∈ [n], read indices, and all randomness used by the
servers.
– The offline communication is |qh|+ |h| .
– The online communication is |qright|+ |qleft|+ |aleft|+ |aright|.
– The offline running time is the running time of the routine Hint.
– The online server running time is sum of the running times of Answer over

both qleft, qright.
– The client’s running time is the sum of the running times of Query and

Reconstruct.
All of the above should be polynomial in λ, and ideally all, except the offline
running time, should be sublinear in the size of the database.

D.2 Proof of Theorem 17

LetΠ = (Setup,Hint,Query,Answer,Reconstruct) be the multi-query offline/online
PIR scheme of Construction 44. The scheme is parametrized by a positive integer
s ≤ n/2, which we later set to s :=

√
n. The scheme uses a puncturable pseudo-

random set with a universe of size n, set size s, key space K, and punctured-key
space Kp. We also let m := (2n/s) log n.

54

As presented, the scheme fails with non-negligible probability (on failure,
the query algorithm outputs ⊥). We call this a single instance of our scheme.
The final scheme consists of running λ instances in parallel using independent
randomness. For each query, the client queries all instances in parallel, and obtain
the correct answer as long as at least one of the instances succeeds.

The following lemma will be useful in proving both correctness and security.
Informally, we show that in the multi-query PIR scheme, each query to the
right server completely hides from the right server both the retrieved index
and the client’s updated key. Moreover, the client’s updated key is distributed
identically to the initial client key. This guarantees that, as far as the right server
is concerned, the client goes back to a “clean state” after each query. This will
later be instrumental in proving security of the multi-query scheme.

Lemma 45. Let Π = (Setup,Hint,Query,Answer,Reconstruct) be the multi-query
offline/online PIR scheme of Construction 44 and suppose that the underlying
puncturable pseudorandom set Ψ is secure. Then, for every polynomially bounded
n = n(λ), every x ∈ {0, 1}n, and every i0, i1 ∈ [n],

 (ck, qh)← Setup(1λ, n)
(ck, qleft, qright)← Query(ck, i0)

output (qright, ck)

 ≈c

ck, qh ← Setup(1λ, n)
(ck, qleft, qright)← Query(ck, i1)

(ck, qh)← Setup(1λ, n)
output (qright, ck)

 .

Furthermore, if the puncturable pseudorandom set Ψ is εΨ -secure, then the
maximal advantage of any efficient adversary at distinguishing these distributions
is ε(λ, n) ≤ poly(n) · εΨ (λ, n).

Proof. Let Ψ = (Gen,Punc,Eval) be the underlying puncturable pseudorandom
set with set size s, key space K and punctured-key space Kp.

Let qright(i) be the distribution of the right-server query after reading a single
index i using the scheme Π. Furthermore, let ck(i) be the distribution of the
client key after reading index i. We thus need to show the following:
– the updated key ck(i0) is indistinguishable from m set keys sampled using

Gen(1λ, n) independently of each other and independently of qright, and
– the query qright(i0) is indistinguishable from qright(i1).

We start by writing the first distribution above explicitly.

Distribution 0. Generate qright ∈ Kp and ck ∈ Km as follows:
(sk1, . . . , skm)← (Gen(1λ, n), . . . ,Gen(1λ, n))
sknew ← GenWith(1λ, n, i0)
sample a bit b←R Bernoulli((s− 1)/n)
if i0 ∈ ∪mj=1Eval(skj) and b = 0 then:
let j ∈ [m] be such that ipir ∈ Eval(skj)
swap skj and sknew

S ← Eval(sknew)
if b = 0 then ipunc ← i0 else ipunc ←R Sr{i0}
output qright ← Punc(sknew, ipunc) and ck← (sk1, . . . , skm)

55

Construction 44 (Multi-query offline/online PIR). The construction is
parametrized by set size s : N → N and uses a puncturable pseudorandom set
Ψ = (Gen,Punc,Eval) with set size s, extended with routine GenWith. The following
is a single instance of the scheme. The final scheme is obtained by running λ
instances in parallel.
Throughout, we let m := (2n/s) logn.

Offline phase

Setup(1λ, n)→ (ck, qh)

for j = 1, . . . ,m do:
skj ← Gen(1λ, n)

ck← (sk1, . . . , skm)
output ck and qh ← ck

Hint(qh, x ∈ {0, 1}n)→ h ∈ {0, 1}m

parse qh as sk1 . . . , skm ∈ K
for j = 1, . . . ,m do:
Sj ← Eval(skj)
hj ←

∑
i∈Sj xi mod 2

output h← (h1, . . . , hm)

Online phase

Query(ck, i)→ (ck, qleft, qright)

sknew ← GenWith(1λ, n, i)
sample a bit b←R Bernoulli((s− 1)/n)
if i ∈ ∪mj=1Eval(skj) and b = 0 then:
let j ∈ [m] be such that i ∈ Eval(skj)
skright ← skj
update ck with skj ← sknew

else:
j ← ⊥
skright ← sknew

if b = 0 then ipunc ← i
else ipunc ←R Eval(sknew)r{i}
qleft ← Punc(sknew, ipunc)
qright ← Punc(skright, ipunc)
output ck, qleft, and qright

Reconstruct(h, aleft, aright)→ (h′, xi)

let j ∈ [m] be as in Query†

if j = ⊥ output ⊥
xi ← hj − aright mod 2
update hj ← aleft + xi mod 2
output the updated h and xi

Answerx(q)→ a

S ← Eval(q)
return a←

∑
i∈S xi mod 2

Client’s storage
key ck = (sk1, . . . , skm) ∈ Km
hint h ∈ {0, 1}m

†For simplicity, we avoid passing j explicitly from Query to Reconstruct.

56

By Construction 44, Distribution 0 is identical to the first distribution in the
statement of the lemma.

Distribution 1. We observe that if i0 ∈ skj in Distribution 0, then sknew
and skj are identically distributed. Both are also independent of skj′ for ev-
ery other j′ 6= j, and therefore the joint distributions of sk1, . . . , skm and
sk1, . . . , skj−1, sknew, skj+1, . . . , skm are identical. We can therefore remove the
swap between sknew and skj in the marked line above, without changing the
output distribution of the challenger.

(sk1, . . . , skm)← (Gen(1λ, n), . . . ,Gen(1λ, n))
sknew ← GenWith(1λ, n, i0)
sample a bit b←R Bernoulli((s− 1)/n)
S ← Eval(sknew)
if b = 0 then ipunc ← i0 else ipunc ←R Sr{i0}
output qright ← Punc(sknew, ipunc) and ck← (sk1, . . . , skm)

The resulting distribution is therefore (statistically) identical to Distribution 0.
From here, we obtain the first part of the lemma, namely that the updated set
key ck consists of m random set keys, which are independent of each other and
of qright.

Distribution 2. Generate qright ∈ Kp as follows:
sknew ← GenWith(1λ, n, i0)
sample a bit b←R Bernoulli((s− 1)/n)
S ← Eval(sknew)
if b = 0 then ipunc ← i0 else ipunc ←R Sr{i0}
output qright ← Punc(sknew, ipunc)

Since in Distribution 1, qright is independent from ck, the marginal distribution of
qright in Distribution 1 is identical to Distribution 2. By Lemma 36, in Distribution
2, the query qright(i0) is indistinguishable from qright(i1) for every i0, i1 ∈ [n].
Furthermore, Lemma 36 bounds the distinguishing advantage as well, and the
lemma follows.

Correctness. We first analyze the failure probability of a single instance of our
scheme. To this end, observe that reading a bit i ∈ [n] fails when i /∈ ∪mj=1Eval(skj)

or ipunc 6= i. Initially, the offline phase sets ck ← (Gen(1λ, n), . . . ,Gen(1λ, n)) ∈
Km. By Lemma 45, if, before a query, the client’s key contains m independent
random set keys generated by Gen, then so does it after the next query. There-
fore, by induction, the client’s key consists of m independent random set keys
throughout. If the puncturable pseudorandom set were perfectly secure, we would
have had:

Pr
[
∃ i /∈ ∪mj=1Eval(skj)

]
≤

n∑
i=1

Pr
[
i /∈ Eval(sk) : sk← Gen(1λ, n)

]m ≤ n(1− s
n)
m

For m = (2n/s) log n, we have seen in Eq. (15) that this is at most 1/n.

57

The second failure event, ipunc 6= i, occurs when c = 1, the probability of
which is (s− 1)/n.

Therefore, when using perfectly secure puncturable pseudorandom sets, each
read fails with probability at most s/n ≤ 1/2 for s ≤ n/2. When running λ
instances of our scheme in parallel, the probability that each single read fails
across all λ schemes is then 2−λ. Taking the union bound over all T reads results
in a failure probability of at most T/2λ.

Now let ε(λ, n, T) be the probability that the scheme, instantiated using a
puncturable pseudorandom set Ψ , fails to read, from a database of size n, any bit
in an adaptively-chosen sequence of T indices. Proposition 34 shows that each
of the mλT puncturable pseudorandom sets (m per instance per operation) is
computationally indistinguishable from a perfectly secure puncturable pseudo-
random set. Therefore, by a standard hybrid argument, there exists an adversary
A that attacks the puncturable pseudorandom set Ψ such that

ε(λ, n, T) ≤ λmT · PSAdv[A, Ψ](λ, n) + 2−λ . (19)

As in the proof of Lemma 15, it is now possible to trade the failure probability
for a negligible loss in security and get a scheme with perfect correctness.

Efficiency. The offline communication for a single instance consists of the server
sending r and h to the client. Their combined length is m log |K| + m bits.
When running λ instances in parallel, the cost increases λ-fold. However, as an
optimization, the left server can generate all λm set keys using a pseudorandom
generator, and send one λ-bit seed instead of the λ·m secret keys, which brings the
communication in the offline phase down to O(mλ) instead of O(mλ2). Setting
m = (2n/s) log n = 2

√
n log n, we get that the total communication in the offline

phase of our scheme is O(λ
√
n log n).

Using the puncturable pseudorandom set construction of Theorem 7 gives
online communication O(λ

√
n log n) bits and a running time at the server that

matches that of the single-query scheme of Theorem 14.
The client stores m = Õλ(n

1/2) puncturable pseudorandom set keys, each of
length λ bits, for total storage Õλ(n1/2).

The bulk of the client’s online work consists of finding a set key skj in the
list (sk1, . . . , skm) such that its desired index i ∈ Eval(skj). Since the puncturable
pseudorandom set of Theorem 7 supports fast membership lookups, for every
j ∈ [m], the client can test whether i ∈ Eval(skj) in time poly(λ, log n). Since
m = Õ(n1/2), this gives a total client online time of Õλ(n1/2).

Left-server security. We show that for every polynomially bounded database
length n(λ) and every (adaptively chosen) polynomially long sequence of read
indices, the queries to the left server are indistinguishable from random punctured
set keys.

From the specification of the query algorithm in Construction 44, the left-
server query is generated as follows:

58

sknew ← GenWith(1λ, n, i)
sample a bit b←R Bernoulli((s− 1)/n)
if b = 0 then ipunc ← i
else ipunc ←R Eval(sknew)r{i}
qleft ← Punc(sknew, ipunc)

Therefore, the queries to the left server are independent of the client’s key
and of any past queries. It is therefore sufficient to consider a single query in
isolation. By Lemma 36, for every i, j ∈ [n], the left query qleft(i) when reading
index i is indistinguishable from qleft(j) when reading index j, and the left-server
security follows.

Right-server security. We prove security by using Lemma 45 together with a
standard hybrid argument.

As in the single-query case, it is sufficient to show security for a single instance
of our scheme, though now we need to show security for a sequence of adaptive
queries. Let A be a stateful adversary that attacks, as in Game 42, a single
instance Π ′ of the PIR scheme. For λ, n, T ∈ N, consider then the following
sequence of T + 1 hybrid experiments:

Experiment t = 0, 1, . . . , T

(ck, qh)← Setup(1λ, n)
st← A(1λ, qh)
for τ = 1 to t:

(st, i0, i1)← A(st)
(ck, qleft, qright)← Query(ck, i0)
st← A(st, qright)

// Wipe client key
(ck, qh)← Setup(1λ, n)
for τ = t+ 1 to T :

(st, i0, i1)← A(st)
(ck, qleft, qright)← Query(ck, i1)
st← A(st, qright)

b′ ← A(st)

Experiment 0 corresponds to the case of b = 0 in Game 42. Furthermore,
Experiment T + 1 corresponds to the case b = 1 in Game 42. Consider now two
adjacent games in the sequence:
– In Experiment t, right query number t is obtained by running the PIR client

on index i0, and the client’s updated key carries over to the next query.
– In Experiment t+ 1, right query number t is obtained by running the PIR

client on index i1, and the client’s updated key for the next query is generated
from scratch.

– All other queries are identical between two neighboring experiments.
By Lemma 45, when n is a polynomially bounded function of λ, these neigh-
boring games are computationally indistinguishable. Furthermore, when T is

59

polynomially bounded, the first and the last hybrid are then indistinguishable as
well, and if the underlying puncturable pseudorandom set it εΨ -secure, we have
that

PIRadv[A, Π ′](λ, n) ≤ poly(λ, n) · εΨ (λ, n) .
Having established correctness, efficiency, and security, Theorem 17 follows.

D.3 Proof of Corollary 18

The corollary follows by:
1. instantiating Construction 44 with the puncturable pseudorandom set con-

struction based on puncturable PRFs (Theorem 3) to reduce the online
communication, and

2. using a preprocessed data structure to minimize the client’s storage and
online time.
Instantiating Construction 44 with the puncturable set construction of Theo-

rem 3, based on puncturable PRFs, immediately reduces the online communication
cost to O(λ2 log n), following a similar analysis to the one used in the single-query
case (Theorem 14).

The challenge is that the puncturable pseudorandom set construction based
on puncturable PRFs does not support a fast membership test. That is, given a
set key sk, the fastest way we know to test whether i ∈ Eval(sk) is to compute
S ← Eval(sk) explicitly, in time s(n) · poly(λ, log n), and check whether i ∈ S.

In the online phase, the client has an index i ∈ [n] and a list of set keys
(sk1, . . . , skm) in its storage. The client must find a set key skj in this list such
that i ∈ Eval(skj).

When using a puncturable pseudorandom set without a fast membership test,
the client can achieve storage and online time Õλ(n5/6) by using use a classic
data structure for time-space trade-offs [Hel80,FN00].

In particular, for each set key skj ∈ {sk1, . . . , skm}, the client defines the
function fj : [s(n)]→ [n], where

fj(`) = “the `th element of the set Eval(sk`)” ⊆ [n].

When using the PRF-based puncturable pseudorandom set construction,
computing the value of fj on an individual point does not require evaluating the
entire size-s set, and in particular we can compute individual values of fj in time
poly(λ, log n).

The client then builds a Hellman-table data structure for inverting each of the
functions f1, . . . , fm. (The inversion algorithms of Hellman and of Fiat and Naor
typically apply to length-preserving functions, but a straightforward application
of hashing gives the same complexity for random injective length-increasing
functions, as we have here.)

Each of these m tables takes time Õλ(s(n)) = Õλ(
√
n) to construct, with

s(n) = O(
√
n), for a total offline time of Õλ(m

√
n) = Õλ(n). The space required

for each table is s(n)2/3 bits, for a total space usage of m ·Õλ(s(n)2/3) = Õλ(n
5/6)

bits.

60

In the online phase, given a point i ∈ [n], if the client can find an j ∈ [m] and
` ∈ [s(n)] such that fj(`) = i, then the client knows that i ∈ Eval(skj). Thus, in
the online phase, the client uses its precomputed tables to try to find the inverse
of i under each of the functions f1, f2, . . . , fm. Each of these m searches takes
time Õλ(s(n)2/3), for a total time of Õλ(n5/6).

The client can update this data structure (i.e., replace one key skj with a
fresh one ŝkj) in the time it takes to create a single Hellman table, which is only
Õλ(n

1/2).

E Additional material on the single-server case (Section 5)

E.1 Definitions

Definition 46 (Single-server offline/online PIR). A single-server offline/online
PIR scheme is an offline/online PIR scheme, as in Definition 8 that satisfies the
following additional security property:

Single-server security. For a security parameter λ ∈ N, database length n ∈ N,
and index i ∈ [n], define the distribution

Di,λ,n :=

{
(qh, q) :

(ck, qh)← Setup(1λ, n)
q ← Query(ck, i)

}
.

We say that an offline/online PIR scheme is single-server secure if, for every
polynomially bounded n = n(λ), and i, j ∈ [n], the ensembles {Dλ,n,i}λ∈N and
{Dλ,n,j}λ∈N are computationally indistinguishable.

Security analysis of the scheme in Theorem 20. The security follows
from the security of the underlying primitives (linearly homomorphic encryption,
single-server PIR, and two-server offline/online PIR). More formally, when a
client queries index i ∈ [n], the view View(i) of the server consists of:
– an encryption of the indicator vector of the set S,
– the query string for the batch PIR algorithm, retrieving indices (δ1, . . . , δm),

and
– the client’s online query for index i ∈ [n] using the two-server PIR scheme of

Theorem 14.
A hybrid argument shows that for any pair of indices i, j ∈ [n], views View(i) ≈c
View(j). The steps of the hybrid are:

1. swap the set S for an empty set, using the semantic security of the encryption
scheme,

2. swap the indices (δ1, . . . , δm) for a fixed string, using the security of the
single-server PIR scheme,

3. swap the online query for i for an online query for j, using the security of
the two-server scheme, and

4. swap the δs and encryption back, again using the single-server PIR security
and the security of the encryption scheme.

61

E.2 A simple single-server scheme

We sketch a simple variant of an offline/online single-server PIR scheme with
linear online time. This simple scheme can be obtained from Theorem 20, but we
construct it explicitly for ease of exposition.

We obtain this variant by transforming one of the two-server PIR schemes
from the original PIR paper [CGKS98] into a single-server offline/online PIR,
using linearly homomorphic encryption.

Let (Gen,Enc,Dec) be a linearly homomorphic encryption scheme over message
space F and ciphertext space G. (The security does not depend on the field F
being large—it could even be F2.)

The client and server represent the n-bit database as a bit-matrix X of
dimensions

√
n×
√
n.

– Offline phase.

• On security parameter λ ∈ N, the client samples a random vector v ←R F
√
n

and an encryption key k ← Gen(1λ), computes the component-wise
encryption ctv ← Enc(k, v) ∈ G

√
n of the vector v, and sends ctv to the

server.
• The server computes under encryption the vector-matrix product h =
vTX ∈ F

√
n, where X is the database. Here we use the linear homomor-

phism of the encryption scheme. That is, the server computes

cth = Enc(k, vT) ·X = Enc(k, vTX) = Enc(k, h) ∈ F
√
n

and returns cth to the client.
• The client computes h← Dec(k, cth) ∈ F

√
n, and stores (v, h) ∈ F

√
n ×

F
√
n as its hint.

– Online phase. In the online phase, the client has an index (i, j) ∈ [
√
n]2

and it wants to read the bit Xij from the database. For any i ∈ [
√
n], let

ei ∈ F
√
n be the vector of all zeros except with a “1” at coordinate i.

• The client computes v′ ← ei − v ∈ F
√
n and sends v′ unencrypted to the

server.
• The server computes the answer a← (v′)TX ∈ F

√
n and returns a to the

client.
• The client computes the ith row of the database X as:

Xi = h+ a = vTX + (v′)TX = vTX + (ei − v)TX = eiX ∈ F
√
n.

The client then can output Xiej = xij ∈ {0, 1} ⊆ F.
The total communication consists of 2

√
n ciphertexts in the offline phase and

2
√
n bits in the online phase. The offline computation requires n homomorphic

operations at the server, and the online phase requires O(n) bit operations at
the server.

More generally, this approach allows obtaining a single-server offline/online
PIR scheme from any information-theoretic two-server PIR schemes in which the
answer of one of the two servers is a linear function of the client’s query.

62

E.3 Discussion and extensions

Further reducing online communication. By combining the construction
of Theorem 20 with a standard single-server PIR scheme [KO97,CMS99,KO00,
GR05, OS07], we can reduce the online-phase communication at the cost of
requiring public-key cryptographic operations in the online phase. Still, the
number of public-key operations required in the online phase is sublinear in the
database size, so the online phase will still be aysmptotically (and probably also
concretely) faster than just using standard (online-only) single-server PIR.

To sketch the idea: In the online phase of the construction above, the server
sends the client n1/3 ciphertexts, but the clients only needs one of them. Instead,
the client can use standard single-server PIR to privately retrieve the single
ciphertext that it actually needs. (This is very much in the spirit of the original
single-server PIR paper of Kushilevitz and Ostrovsky [KO97].)

A square-root scheme without FHE? It would be excellent to construct
a single-server offline/online PIR scheme with the efficiency properties of this
FHE-based scheme, but under weaker assumptions (e.g., linearly homomorphic
encryption, single-server PIR, or assumptions on bilinear groups). The question
is interesting even if we allow the server to run in super-linear time in the offline
phase.

One possible direction would be to construct a PIR-for-parities scheme. In
a PIR for parities scheme, the server holds a string x ∈ {0, 1}n, and the client
holds a set S ⊆ [n] of size s. The client wants to learn the value

∑
i∈S xi mod 2

without leaking its set S to the server. Is it possible to construct a single-server
PIR-for-parities scheme in which the client uploads s · poly(λ, log n) bits to the
server and downloads poly(λ, log n) bits from the server? Plugging such a scheme
into the construction of Theorem 20 would give a single-server offline/online PIR
scheme that achieves the optimal Õλ(n1/2) offline communication and online
time.

Theorem 20 implicitly constructs such a PIR-for-parities scheme using linearly
homomorphic encryption that achieves Ω̃λ(n) upload and Õλ(1) download. Using
a result of Ishai and Paskin [IP07], we can get a scheme from simple assump-
tions [DGI+19] with s · poly(λ, log n) upload and download, but we know of no
way to achieve order s upload and order 1 download from simple assumptions.

F Proof of Theorem 23 (the lower bound)

To prove Theorem 23, we show that any offline/online PIR scheme implies an
algorithm for the following oracle problem, first studied by Yao [Yao90]. We first
sketch the problem informally, and then give a formal definition.

Informally, the Box Problem is a two-player game with two phases, with each
player playing in a different phase:
– Preprocessing phase. The first player is given access to an oracle O : [n]→
{0, 1}. She may make an unbounded number of queries to the oracle and
then may write down a C-bit advice string stO about the oracle.

63

– Online phase. The second player is given the precomputed string stO and
a point i ∈ [n]. She then may make at most T queries to the oracle, provided
that she does not query the oracle at the point i. At the end, she must output
a value y′ ∈ {0, 1}, such that y′ = O(i).

The players may coordinate a common strategy ahead of time.
We can formalize the task as follows:

Definition 47 (Yao’s Box Problem [Yao90]). We say that a pair of oracle
algorithms A = (A1,A2) ε-solves Yao’s Box Problem on parameter n using C bits
of advice and T queries if the pair of algorithms satisfies the following properties:
– A1 outputs an advice string of at most C bits,
– A2 makes at most T oracle queries,
– for all i ∈ [n],

Pr
A,O,i

[
AO2 (AO1 (), i) = O(i)

]
≥ 1/2 + ε ,

and
– AO2 (·, i) never queries its oracle on i.

Yao [Yao90] proved the following theorem for ε = 1/2, and the generalization
to the sub-constant error regime follows by either a compression argument [GT00,
DTT10,DGK17] or by presampling methods [Unr07,CDGS18].

Theorem 48 ([Yao90]). Any algorithm that ε-solves Yao’s Box Problem using
C bits of advice and T queries satisfies ε = Õ

(√
C(T + 1)/N

)
.

Before continuing to the proof of Theorem 23, we prove the following lemma
about secure PIR schemes, which we will need for the main proof.

Lemma 49. Let Π = (Setup,Hint,Query,Answer,Reconstruct) be an offline/online
PIR scheme. For security parameter λ ∈ N, database size n ∈ N, and query index
i ∈ [n], let the probability distribution Di be as in Eq. (3):

Di :=

{
q :

(ck, qh)← Setup(1λ, n)
q ← Query(ck, i)

}
.

Then for every λ, n ∈ N, and every x ∈ {0, 1}n:

Pr

[
Answerx(q)

probes the ith bit of x
:
i←R [n]
q ←R Di

]
< T/n+ negl(λ). (20)

Proof. Let A be an algorithm, that given an online query q, runs Answerx(q) and
outputs an index i ∈ [n] chosen uniformly at random from the set of database
indices that Answer probes. Then

Pr

[
A(q) = i :

i←R [n]
q ←R Di

]
≥ 1

T
· Pr

[
Answerx(q)

probes the ith bit of x
:
i←R [n]
q ←R Di

]
.

64

From the security of the PIR scheme and Proposition 26, we have that for
every efficient algorithm A, it holds

Pr

[
A(q) = i :

i←R [n]
q ←R Di

]
≤ 1

n
+ negl(λ),

and therefore

Pr

[
Answerx(q)

probes the ith bit of x
:
i←R [n]
q ←R Di

]
≤ T · Pr

[
A(q) = i :

i←R [n]
q ←R Di

]
≤ T

n
+ negl(λ) .

The crux of the proof of Theorem 23 is the following lemma, which implies
that a good offline/online PIR scheme implies a good solution to Yao’s Box
Problem:

Lemma 50. If there exists a PIR scheme such that, on security parameter λ ∈ N
and database size n ∈ N,
– the client downloads at most C bits in the offline phase,
– the server probes at most T bits of the database in the online phase, and
– the client obtains its desired bit of the database with probability at least

1/2 + εpir,
then there exists an algorithm that εbox-solves Yao’s Box Problem on parameter
n using C bits of advice with T queries, for εbox ≥ εpir − T/n− negl(λ).

Proof. We construct an algorithm (A1,A2) that solves Yao’s Box Problem with
the stated parameters. Let Π = (Setup,Hint,Query,Answer,Reconstruct) be an
offline/online PIR scheme. By Lemma 49 and an averaging argument, there exists
a choice of the PIR client’s random coins such that (20) holds when running the
client with that specific choice of random coins. Hardcode this set of random
coins into A1 and A2. (Algorithms for Yao’s box problem can run in unbounded
time, so even a uniform algorithm can find this good set of random coins via
brute-force search.)

– Preprocessing. The algorithm A1, given access to an oracle O : [n]→ {0, 1},
executes the following steps:

• Construct the string x← 〈O(1), · · · ,O(n)〉 ∈ {0, 1}n.
• Using the hardcoded set of random coins, run (ck, qh)← Setup(1λ, n).
• Then, run h← Hint(x, qh).
• Output h as the advice string stO.

– Online. The algorithm A2, given an index i ∈ [n] and access to an oracle
O : [n]→ {0, 1}, executes the following steps:

• Using the hardcoded set of random coins, run (ck, qh)← Setup(1λ, n).
• Compute q ← Query(ck, i).

65

• Run a← Answerx(q). Whenever the algorithm needs to read the jth bit
of x, compute this bit as xj ← O(j). If the algorithm every queries for
bit i, output “0.”

• Output Reconstruct(ck, h, a).

By construction, it holds that:
– algorithm A1 outputs an advice string of at most C bits, since Hint outputs

a string of at most C bits,
– algorithm A2 makes at most T queries, since the algorithm Answer probes at

most T bits of the database, and
– algorithm AO2 (·, i) never queries its oracle on point i.
By Lemma 49 and our choice of the algorithm’s random coins, we know that

the online algorithm halts early with probability at most T/n+ negl(λ) over the
random choice of i←R [n]. Conditioned on the algorithm not halting early, the PIR
correctness property implies that Pr[AO2 (AO1 (), i) = O(i)] ≥ 1/2 + εpir. Therefore,
algorithm (A1,A2) εbox-solves the Box Problem for εbox ≥ εpir−T/n−negl(λ).

The proof of the main Theorem now follows: by Lemma 50 there exists an
algorithm for Yao’s Box Problem achieving εbox ≥ εpir − T/n − negl(λ). Since
εbox ≤ Õ(

√
C(T + 1)/N) by Theorem 48, we get

εpir ≤ εbox +
T

N
+ negl(λ) ≤ Õ

(
T

N
+

√
C(T + 1)

N

)
+ negl(λ).

G An alternative abstraction: Sparse distributed point
functions

In this subsection, we show that it is possible to view our PIR schemes as
being constructed from a new tool we call sparse distributed point functions
(“sparse DPFs”), inspired by the standard notion of DPFs [GI14]. In the following
discussion, let ei ∈ Fn denote the vector of zeros in Fn with a “1” at index i.

Standard DPFs. Intuitively, a DPF gives a way to produce two compressed
additive shares of a vector ei ∈ Fn, for any i ∈ [n]. While an information-
theoretically secure sharing of ei must have shares of length Ω(n), a surprising
line of work [GI14,BGI15,BGI16] shows that under the minimal assumption that
one-way functions exist, it is possible to construct two computationally hiding
shares of ei that have size Oλ(log n). This construction immediately implies
two-server computational PIR schemes with total communication Oλ(log n).

A standard DPF defined over a finite field F consists of two algorithms
(Gen,Eval) where:
– Gen(1λ, n, i)→ (kleft, kright) takes as input a security parameter λ, a dimension
n ∈ N, and a value i ∈ [n], and outputs two keys kleft and kright.

– Eval(k)→ v ∈ Fn takes as input a key and outputs a vector v ∈ Fn.
A DPF satisfies two properties:

66

– Correctness. For all λ ∈ N, polynomially bounded n = n(λ), and i, j ∈ [n],

Pr[Eval(kleft) + Eval(kright) = ei : (kleft, kright)← Gen(1λ, n, i)] > 1− negl(λ).

– Security. There exists an efficient simulator Simright such that for all polyno-
mially bounded n = n(λ) on security parameter λ ∈ N, and all i ∈ [n],

{kright : (kleft, kright)← Gen(1λ, n, i)} ≈c {Simright(1
λ, n)},

and there exists an analogous simulator Simleft.

Ideal tools we cannot construct. For our application, we would like to
construct distributed point functions in which both of the vectors Eval(kleft) ∈ Fn
and Eval(kright) ∈ Fn (for keys kleft and kright) are sparse. This would immediately
give computational two-server PIR schemes in which the servers run in sublinear
time. Unfortunately, such a construction is impossible. (For one, it contradicts
the Ω(n) PIR server time lower bound of Beimel et al. [BIM04].)

Since that initial goal is too ambitious, we could ask for something more
limited—a DPF scheme in which
– it is possible to sample the left key before choosing the index i ∈ [n],
– the evaluation of the right key Eval(kright) ∈ Fn is sparse.

Such a DPF construction would immediately give rise to an offline/online PIR
scheme with communication complexity proportional to the size of the DPF keys.

Unfortunately, even if we impose only the first restriction (that it is possible
to sample left key before choosing the hidden index i ∈ [n]), the only known
construction of this primitive is from private constrained PRFs [BLW17], which
in turn require multilinear maps—a very heavy cryptographic assumption.

A useful relaxation: Sparse DPFs. Our idea is to construct a relaxation of
distributed point functions that:
(a) we can build from one-way functions (or even without assumptions) and that
(b) suffices for offline/online PIR schemes with sublinear online time.

Informally, the key-generation routine Gen for a sparse DPF takes as input
only the security parameter λ and dimension n (not the hidden index i) and
outputs a family of DPF keys Kleft = (k1, . . . , km). The guarantee of a sparse
DPF is that on dimension n, there exists an efficient routine Choose that takes
as input Kleft and any index i ∈ [n], and samples keys kj and kright such that, as
in a standard DPF:
– Eval(kj) + Eval(kright) = ei ∈ Fn and
– kright computationally hides the special index i,

but also such that:
– kj ∈ Kleft and
– Eval(kright) ∈ Fn is sparse.
It turns out that these properties together are enough to construct an of-

fline/online PIR scheme with sublinear online time, as long as the keys are short

67

enough and Eval(kright) ∈ Fn is a sufficiently sparse vector. To sketch how to
build an offline/online PIR scheme from a sparse DPF:
– In the offline phase, the client runs Kleft = (k1, . . . , km) ← Gen(1λ, n) and

sends Kleft to the left server. For each j ∈ [m], the left servers sends the hint
value hj ← 〈x,Eval(kj)〉 ∈ F to the client, where we view the database x as
a vector in Fn.

– In the online phase, the client runs (j, kright)← Choose(Kleft, i) and sends kright
to the right server. The right server computes the answer a← 〈x,Eval(kright)〉 ∈
F and returns the answer to the client. Notice that if Eval(kright) is non-zero
in o(n) coordinates, the right server can compute the answer in sublinear
time.
The client computes its desired database entry xi ∈ F as:

xi = hj + a

=
〈
x,Eval(kj)

〉
+
〈
x,Eval(kright)

〉
=
〈
x,Eval(kj) + Eval(kright)

〉
= 〈x, ei〉 ∈ F.

Formally, a sparse DPF is parameterized by a sparsity s : N→ N and a family
size m : N→ N, and is a three-tuple of algorithms (Gen,Choose,Eval) with the
following syntax:
– Gen(1λ, n)→ Kleft = (k1, . . . , km) takes as input a security parameter λ and

a dimension n ∈ N, and outputs a “left key,” which is a tuple of m = m(n)
keys.

– Choose(Kleft, i) → (j, kright) takes as input a left key and an index i ∈ [n],
and outputs a value j ∈ [m], and a right key kright.

– Eval(k) → v ∈ Fn takes as input a key and an index i ∈ [n] and outputs a
vector v ∈ Fn.
A sparse DPF satisfies three properties:

– Correctness. For all λ ∈ N, polynomially bounded n = n(λ), and i ∈ [n],

Pr

[
Eval ((Kleft)j) + Eval(kright) = ei :

Kleft ← Gen(1λ, n)
(j, kright) ← Choose(Kleft, i)

]
> 1− negl(λ).

– Security. There exists an efficient simulator Simright such that for all polyno-
mially bounded n = n(λ) on security parameter λ ∈ N, and all i ∈ [n],{

kright :
Kleft ← Gen(1λ, n)

(j, kright)← Choose(Kleft, i)

}
≈c {Simright(1

λ, n)}.

If these distributions are statistically close, we say that the sparse DPF has
statistical security.

– Sparsity. For all λ ∈ N, polynomially bounded n = n(λ), and i ∈ [n], Kleft ←
Gen(1λ, n) and (j, kright) ← Choose(Kleft, i), the vector Eval(kright) ∈ Fn has
at most s = s(n) non-zero coordinates.

68

We can view our two-server offline/online PIR schemes as implicitly construct-
ing a sparse DPFs.

Corollary 51 (Statistically secure sparse DPFs). There exists a statistcally
secure sparse DPF scheme in which, on security parameter λ and dimension n,
the key length, family size m(n), and sparsity s(n) are all Õλ(

√
n).

Corollary 52 (Computationally secure sparse DPFs). If one-way functions
exist, there exists a sparse DPF scheme as in Corollary 51 with the same efficiency
parameters, except that on security parameter λ and dimension n, the right key
size decreases to poly(λ, log n) bits.

69

	Private Information Retrieval with Sublinear Online Time
	1 Introduction
	1.1 A new approach: Offline/online PIR with sublinear online time
	1.2 Our results
	1.3 Limitations
	1.4 Related work
	Summary of results

	1.5 Technical overview
	1.6 Notation

	2 Puncturable pseudorandom sets
	2.1 Definitions
	2.2 Constructions
	2.3 Shifting puncturable pseudorandom sets

	3 Two-server PIR with sublinear online time
	3.1 Definition
	3.2 New constructions
	Construction 16

	3.3 Construction of PIR from puncturable pseudorandom sets

	4 Two-server PIR with sublinear amortized time
	4.1 Sketch of the construction

	5 Single-server PIR with sublinear online time
	5.1 Proof of Theorem 20

	6 Lower bound for PIR with sublinear online time
	7 Open questions
	Acknowledgements
	References
	A Standard definitions
	A.1 Computationally indistinguishability
	A.2 Puncturable pseudorandom functions
	A.3 Linearly homomorphic encryption

	B Additional material on puncturable pseudorandom sets (Section 2)
	B.1 Pseudorandomness of puncturable pseudorandom sets
	B.2 Proof of Theorem 3
	B.3 Proof of Corollary 6
	B.4 Proof sketch of Theorem 7
	B.5 Shifting puncturable pseudorandom sets
	B.6 A key lemma

	C Additional material on the two-server case (Section 3)
	C.1 Discussion of two-server offline/online PIR
	C.2 Proof of Lemma 15

	D Additional material on the multi-query case (Section 4)
	D.1 Definitions
	D.2 Proof of Theorem 17
	Construction 44

	D.3 Proof of Corollary 18

	E Additional material on the single-server case (Section 5)
	E.1 Definitions
	E.2 A simple single-server scheme
	E.3 Discussion and extensions

	F Proof of Theorem 23 (the lower bound)
	G An alternative abstraction: Sparse distributed point functions

