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1 Abstract
This work shows all necessary calculations to extend the “Practical Attribute Based Encryption:
Traitor Tracing, Revocation, and Large Universe” scheme of Liu and Wong with non-monotonic
access structures. We ensure that the blackbox traceability property is preserved.

2 Introduction
We selected Liu et al.’s “Augmented R-CP-ABE” scheme [1, 2] as the technical foundation for
a data encryption service. In the course of the requirements analysis it turned out that the
property of the non-monotonic access structures is needed, but is not provided by Liu’s original
scheme. This work uses the techniques introduced by Yamada et al. in [3] which build on top
of Ostrovsky et al. [4] to retrofit the property of the non-monotonic access structure, as it was
already outlined by Thatmann in [5].

The remainder is structured as follows: we start with an overview of terms and symbols in
Section 2.1. New required computations to archive the non-monotonic property and blackbox
traceability property are subject of Section 3 and 4. An evaluation is given in Section 5.

2.1 Overview of terms and symbols
The definitions, terms and symbols listed in Table 1 are intended to give the reader an easier
access to the mathematical description of the Attribute-based Encryption (ABE) scheme.

1



NP-ABE Sept 2019

Symbols: Description
A A = (A, ρ) is an LSSS matrix. A is an l × n matrix. ρ maps each row

Ak of A to an attrib. ρ(k) ∈ U = Zp

R R = ⊆ [m,m] is a revocation list.
U Attribute Universe, U ∈ Zp

S Attribute S ∈ Zp

PP Public Parameters, can be seen as equivalent to a public key
ωk ωk ∈ Zp is a set of reconstruction constants. k ∈ [l] with l being the

row index number of the LSSS matrix (see A description)
e e is an bilinear map
M ; ct M is a plaintext message. ct means ciphertext
Ti Ti is a variable and linked to the user-index matrix at row i. Ti is also

an indicator for the position of the plaintext in the ciphertext.
Dp DP is calculated from many mappings e and ensures that the

attributes S of a private key SK can solve the access structure A. DP

is part of the decryption. (D=Decryption and P=Policy)
Dl DI is calculated from many mapping e ensures that the hidden

user-index (i, j) and the revocation list R are taken into account
during decryption. (D=Decryption and I=Index)

χ⃗ χ⃗ is a vector. This vector is the core element of the traceability
function.

N total number of users in the ABE system
m2 m is the user-index matrix size. It depends of the given amound of

users N .
λ the security parameter, curve parameters

Table 1: terms and symbols

3 Extended computations for non-monotonic access structures
We decided to use the notation applied by Liu et al. in [2]. Next, we recapture the Practical
Attribute-based Encryption (PABE)’s Augmented R-CP-ABE construction and emphasize the
modifications required for achieving the non-monotonic and unbounded access structures prop-
erty. The blue colored parts indicate the new additional elements and computations required
to achieve the non-monotonic property. Black colored formulas indicate the original PABE
construction. Color highlighting is only used at the beginning of each method or at selected
locations.

3.1 Setup method
Setup (λ,N = m2) → (PP,MSK)

The Setup method uses the group generator G(λ) and gets further (e, p,G,GT ) as parameters.
e is a bilinear map and p the prime order of G and GT . G represents the source group and GT the
target group of the mapping. The attribute universe is U = Zp and λ is the security parameter.
N defines the total number of users in the system. From a technical point of view, a matrix must
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be created in which all users can be accommodated. As an example we choose 90 ≤ N ≤ 100
then m is set to 10 which leads to a 10× 10 matrix for the user index.

The algorithm randomly chose

g, h, f, f1, ..., fm, G,H ∈ G; {ai, ri, zi ∈ Zp}i∈[m], {cj ∈ Zp}j∈[m]

and outputs the Master Secret Key (MSK) and the system’s Public Parameter (PP):

MSKn = MSK
⋃
{b ∈ Zp}

PPn = PP
⋃{

G′ = Hb
}

3.1.1 KeyGen method

Keygen (PP,MSK,S ⊆ Zp) → SK(i,j),S

The KeyGen method creates a secret key SK by using the Public Parameters PP , a set of
attributes S and the MSK a secret key SK. The

{
δ′i,j,x ∈ Zp

}
∀x∈S

should be chosen in a way
that δ′i,j,x1

+ · · ·+δ′i,j,xk
= σi,j with k = |S| applies. Hereby, every delta δ represents an attribute

and the + character expresses the group operator. In our case the scalar product. The KeyGen
method sets a counter c = 0 and calculates the corresponding index (i, j) with 1 ≤ i, j ≤ m and
(i− 1) ∗m+ j = c. By this all created Secret Keys (SKs) contain the index (i, j).

We use Yamada et al.’s approach to key generation, which involves the random generation
of a set of variables {δ′i,j,x}∀x∈S ∈ Zp. These variables have the following property:

∀x ∈ S : δ′i,j,1 + ...+ δ′i,j,x = σi,j (1)

The KeyGen method outputs the secret key as follows:
Choose

{
δ′i,j,x ∈ Zp

}
∀x∈S

such that δ′i,j,x1
+ · · ·+ δ′i,j,xk

= σi,j with k = |S|.

SKn = SK
⋃{

K̃i,j,x, K̃
′
i,j,x

}
∀x∈S

with K̃i,j,x = gbδ
′
i,j,x and K̃ ′

i,j,x =
(
Hbxhb

)δ′i,j,x .
The calculation of the private keys are identical to those of Liu and Wong.

Ki,j = gαigricj (ffj)
σi,j , K ′

i,j = gσi,j , K ′′
i,j = Z

σi,j

i ,

{Ki,j,j′ = f
σi,j

j }j′∈[m]\{j}

{Ki,j,x = gδi,j,x , K ′
i,j,x = (Hxh)δi,j,xG−σi,j}x∈S ,

The additional variables K̃i,j,x and K̃ ′
i,j,x are calculated as follows:

{K̃i,j,x = gbδ
′
i,j,x , K̃ ′

i,j,x = (G′xhb)δ
′
i,j,x}x∈S

Both variables K̃i,j,x and K̃ ′
i,j,x are now added (union) to the private key SK(i,j),S which looks

now like this:
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SK(i,j),S =
(
(i, j), S,Ki,j ,K

′
i,j ,K

′′
i,j , {Ki,j,j′}j′∈[m]\{j}, {Ki,j,x,K

′
i,j,x, K̃i,j,x, K̃

′
i,j,x}}x∈S

)

3.1.2 Encrypt method

Encrypt(PP,M,R,A = (A, ρ), (̄i, j̄)) → CTR,(A,ρ)

The encrypt method encrypts a plaintext message M with the help of the Public Parameter
PP under consideration of an attribute revocation list R. The access structure A must be defined
beforehand. This boolean formula secures the encrypted data in Ciphertext-policy Attribute-
based Encryption (CP-ABE) schemes. For all attributes x ∈ S it has to be checked whether x
is prime (negated) and then set Pk accordingly with ρ (k) = x:

Pk =

{
fAk·uGξk if ρ (k) = x

fAk·u (G′)ξk if ρ (k) = x′

The following calculations are carried out in the preparatory phase of the encryption. They
are identical to [2]:

κ, τ, s1, ..., sm, t1, ..., tm ∈ Zp,

vc, w1, ..., wm ∈ Z3
p,

ε1, ..., εl ∈ Zp,

u = (π, u2, ..., un) ∈ Zn
p ,

rx, ry, rz ∈ Zp.

With the three prime numbers rx, ry, and rz the vectors χ⃗1, χ⃗2, χ⃗3 can be calculated, which
are needed for the Blackbox Traceability functionality.

χ⃗1 = (rx, 0, rz)

χ⃗2 = (0, ry, rz)

χ⃗3 = χ⃗1 × χ⃗2 = (−ryrz, −rxrz, rxry)

The user-index (i, j) can be used to calculate vi, the set of all finite linear combinations or
linear span.

∀i ∈ {1, ..., i} : vi ∈ Z3
p,

∀i ∈ {i+ 1, ...,m} : vi ∈ span{χ⃗1, χ⃗2}
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3.2 Ciphertext Construction
Given vi we can create a ciphertext. The construction is a two-step process because we have to
perform a row and a column calculation on the user-index matrix and a second calculation on
the LSSS matrix.

1. Calculation on user-index matrix
For the rows and columns calculations we have to consider all cases for i ≥ i and i < i.
For each row i with (1 ≤ i ≤ m) of the user-index matrix with size m we calculate Ri, R′

i,
Qi, Q′

i, Q′′
i , and Ti as follows:

• if i < i choose s̃i ∈ Zp randomly and calculate

Ri = gvi , R′
i = gκvi ,

Qi = gsi , Q′
i = (f

∏
j′∈Ri

f ′
j)

siZti
i f

π, Q′′
i = gti ,

Ti = E s̃i
i

• if i ≥ i calculate

Ri = Gsivi
i , R′

i = Gκsivi
i ,

Qi = gτsi(vi·vc), Q′
i = (f

∏
j′∈Ri

f ′
j)

τsi(vi·vc)Zti
i f

π, Q′′
i = gti ,

Ti = M · Eτsi(vi·vc)
i

For each column j of the user-index matrix (1 ≤ j ≤ m), calculate Cj and C ′
j as

follows:
• if j < j choose µj ∈ Zp randomly and calculate

Cj = Hτ(vc+µj χ⃗3) · gκωj ,

C ′
j = gωj

• if j ≥ j calculate:

Cj = Hτvc · gκωj ,

C ′
j = gωj

2. Calculation on the LSSS matrix

The introduction of the non-monotonic access rule has an effect on the calculations of
the LSSS matrix. There must be a case-by-case analysis. For each row k of the LSSS
matrix with size l (1 ≤ k ≤ l) we calculate: p(k) = x with fAk·uGϵk , which must be used
for all monotonic access rules and p(k) = x′ with fAk·uG′ϵk , which must be used for all
non-monotonic access rules.
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It follows:

(a)

Pk =

{
fAk·uGξk if ρ (k) = x

fAk·u (G′)ξk if ρ (k) = x′

(b)

P ′
k = (Hρ(k)h)−ϵk

(c)

P ′′
k = gϵk

The ciphertext now contains one more element: Pk

CTR,A=(A,ρ) =

(
R, (A, ρ), (Ri, R

′
i, Qi, Q

′
i, Q

′′
i , Ti)

m
i=1, (Cj , C

′
j)

m
j=1, (Pk, P

′
k, P

′′
k )

l
k=1

)
3.3 Decrypt method
The decryption method gets as arguments the PP, the ciphertext, the secret attribute key(s)
SK(i,j),S . If the attributes S can solve the access structure A = (A(l×n) (evaluation to true) the
decryption works. Otherwise ⊥ follows.

DecryptA(PP,CTR,(A=(A,p)), SKi,j , S) → Mor ⊥

To determine whether the attributes can solve the access structure, reconstruction constants
{ωk ∈ Zp}k∈[l] must be included in the calculation. These constants have the following property:∑

p(k)∈S

ωkAk = (1, 0, ..., 0) (2)

These constants can not be calculated if the set of attributes S does not satisfy the access policy
A. It is only possible to calculate the constants if the private key with its attributes can solve
the access structure. We use the following formula to reconstruct the plaintext, the message M,
just like Liu and Wong do (compare [2, p.21]).

M =
TI

DP ·DI
(3)

As with Liu et al. Dp is the part of the equation that ensures that the attributes S of the
private key can solve the access structure A = (A, p) of the ciphertext. DI is responsible for
the fact that the excluded subsets of user indexes can no longer decrypt. Both Dp and DI are
results of many calculated pairings in the context of bilinear maps calculations. The variable TI

is connected to the user-index at row I. It also indicates the position at which the message M,
i.e. the plain text, is embedded in the ciphertext.

In order to get a holistic understanding of the decryption and to prove its correctness, we
next present the reconstruction of the plaintext M in detail.

All mathematical transformations for the calculation of DP and DI are presented in the
following, so that a better understanding is achieved and verification is ensured.
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3.4 Calculating Dp

The calculation of DP differs from the original Liu scheme, because the non-monotonic attributes
have been added. This can be seen in the new calculation of DPpart−1 , where we have to process
negated and non-negated attributes separately.

DP =
∏

p(k)∈S

(
e(K ′

i,j , Pk) DPpart-1

)ωk

The negated attributes x′ and normal attributes x must be considered. The calculation of
DPpart-1 therefore differs:

if p(k) = x′ ⇒ DPpart-1 =
∏

p(z)∈S

(
e(K̃i,j,p(z), P

′
k) e(K̃ ′

i,j,p(z), P
′′
k )

) 1
p(k)−p(z)

if p(k) = x ⇒ DPpart-1 = e(Ki,j,p(k), P
′
k) e(K ′

i,j,p(k), P
′′
k )

We must consider two cases when calculating DPpart-1 . We start with the first case, which always
occurs when a negated attribute P (k) = x′ is present.
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DPpart-1 =
∏

p(z)∈S

(
e(K̃i,j,p(z), P

′
k) e(K̃ ′

i,j,p(z), P
′′
k )

) 1
p(k)−p(z)

=
∏

p(z)∈S

(
e(g

bδ′
i,j,p(z) , (Hp(k)h)−εk) e((G′p(z)hb)

δ′
i,j,p(z) , gεk)

) 1
p(k)−p(z)

=
∏

p(z)∈S

(
e(g

bδ′
i,j,p(z) ,H−p(k)εk) e(gbδ

′
i,j,x , h−εk) e((Hbp(z)hb)

δ′
i,j,p(z) , gεk)

) 1
p(k)−p(z)

=
∏

p(z)∈S

(
e(g,H)

−p(k)εkbδ
′
i,j,p(z) e(g, h)−εkbδ

′
i,j,x e(H

bp(z)δ′
i,j,p(z) , gεk) e(h

bδ′
i,j,p(z) , gεk)

) 1
p(k)−p(z)

=
∏

p(z)∈S

(
e(g,H)

−p(k)εkbδ
′
i,j,p(z) e(g, h)−εkbδ

′
i,j,x e(H, g)

p(z)εkbδ
′
i,j,p(z) e(h, g)

εkbδ
′
i,j,p(z)

) 1
p(k)−p(z)

=
∏

p(z)∈S

(
e(g,H)

−p(k)εkbδ
′
i,j,p(z)

XXXXXXXXe(g, h)−εkbδ
′
i,j,x e(H, g)

p(z)εkbδ
′
i,j,p(z)

XXXXXXXXe(h, g)
εkbδ

′
i,j,p(z)

) 1
p(k)−p(z)

=
∏

p(z)∈S

(
e(g,H)

(−p(k)+p(z))εkbδ
′
i,j,p(z)

) 1
p(k)−p(z)

=
∏

p(z)∈S

(
e(g,H)

−εkbδ
′
i,j,p(z)

(p(k)−p(z))
) 1

p(k)−p(z)

=
∏

p(z)∈S

(
e(g,H)

−εkbδ
′
i,j,p(z)

) p(k)−p(z)
p(k)−p(z)

=
∏

p(z)∈S

e(g,H)
−εkbδ

′
i,j,p(z)

= e(g,H)
−εkb(

∑
z∈x δ′

i,j,p(z)
) | with equation 1

= e(g,H)−εkbσi,j

After the calculation of DPpart−1 we can now continue with the calculation of DP .
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DP =
∏

p(k)∈S

(
e(K ′

i,j , Pk) DPpart-1

)ωk

=
∏

p(k)∈S

(
e(gσi,j , fAk·uG′εk) e(g,H)−εkbσi,j

)ωk

=
∏

p(k)∈S

(
e(gσi,j , fAk·u) e(gσi,j ,Hεkb) e(g,H)−εkbσi,j

)ωk

=
∏

p(k)∈S

(
e(gσi,j , fAk·u) e(g,H)εkbσi,j e(g,H)−εkbσi,j

)ωk

=
∏

p(k)∈S

(
e(gσi,j , fAk·u)

XXXXXXXe(g,H)εkbσi,j
hhhhhhhe(g,H)−εkbσi,j

)ωk

=
∏

p(k)∈S

(
e(gσi,j , fAk·u)

)ωk

= e(gσi,j , f)
∑

p(k)∈S ωk(Ak·u) | with equation 2
= e(gσi,j , f)π

If we have a normal, non-negated attribute (p(k) = x) , the calculation by Pk = fAk·u(G)εk

of DPpart-1 looks like this:

DPpart-1 = e
(
Ki,j,p(k), P

′
k

)
e
(
K ′

i,j,p(k), P
′′
k

)
= e

(
gδi,j,p(k) , (Hp(k)h)−εk

)
e
(
(Hp(k)h)δi,j,p(k)G−σi,j , gεk

)
= e

(
gδi,j,p(k) ,H−p(k)εk

)
e
(
gδi,j,p(k) , h−εk

)
e
(
(Hp(k)h)δi,j,p(k) , gεk

)
e
(
G−σi,j , gεk

)
= e

(
gδi,j,p(k) ,H−p(k)εk

)
e
(
gδi,j,p(k) , h−εk

)
e
(
Hp(k)δi,j,p(k) , gεk

)
e
(
hδi,j,p(k) , gεk

)
e
(
G−σi,j , gεk

)
= e

(
g,H

)−p(k)εkδi,j,p(k)
e
(
g, h

)−εkδi,j,p(k)
e
(
H, g

)p(k)εkδi,j,p(k)
e
(
h, g

)εkδi,j,p(k)
e
(
G, g

)εk−σi,j

=

XXXXXXXXXXX
e
(
g,H

)−p(k)εkδi,j,p(k) XXXXXXXXX
e
(
g, h

)−εkδi,j,p(k)
XXXXXXXXXX
e
(
H, g

)p(k)εkδi,j,p(k) XXXXXXXXe
(
h, g

)εkδi,j,p(k)
e
(
G, g

)εk−σi,j

= e(G, g)εk−σi,j
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This now leads to the following calculation of DP :

DP =
∏

p(k)∈S

(
e(K ′

i,j , Pk) DPpart-1

)ωk

=
∏

p(k)∈S

(
e(gσi,j , fAk·uGεk) e(G, g)εk−σi,j

)ωk

=
∏

p(k)∈S

(
e(gσi,j , fAk·u) e(gσi,j , Gεk) e(G, g)εk−σi,j

)ωk

=
∏

p(k)∈S

(
e(gσi,j , fAk·u) e(g,G)εkσi,j e(G, g)εk−σi,j

)ωk

=
∏

p(k)∈S

(
e(gσi,j , fAk·u)

hhhhhhe(g,G)εkσi,j
hhhhhhhe(G, g)εk−σi,j

)ωk

=
∏

p(k)∈S

(
e(gσi,j , fAk·u)

)ωk

= e(gσi,j , f)
∑

p(k)∈S ωk(Ak·u) | with equation 2
= e(gσi,j , f)π

By this case-by-case analysis we can distinguish between negated and non-negated attributes,
where the calculation of Dp will result in e(gσi,j , f)π. Because if this is not the case, the
reconstruction of the plaintext will always fail. Compare section 3.5.1.

3.5 Calculating DI

We divide the calculation of DI into two parts DIpart−1 and DIpart−2 to get a better overview.

DI = DIpart-1 ·DIpart-2

The two parts can be calculated as follows:

DIpart-1 =
e(Ki,j , Qi) · e(K ′′

i,j , Q
′′
i )

e(K ′
i,j , Q

′
i)

DIpart-2 =
e3(R

′
i, C

′
j)

e3(Ri, Cj)

We start with the consideration of part 1, where we first calculate Ki,j as follows:
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Ki,j = Ki,j · (
∏

j′∈R′
i\{j}

Ki,j,j′)

= gαigricj (ffj)
σi,j · (

∏
j′∈R′

i\{j}

f
σi,j

j′ )

= gαigricj · (f
∏
j′∈R′

i

fj′)
σi,j

With the calculated Ki,j we can calculate DIpart−1:

DIpart-1 =
e
(
Ki,j , Qi

)
· e
(
K ′′

i,j , Q
′′
i

)
e
(
K ′

i,j , Q
′
i

)
=

e
(
gαigricj · (f

∏
j′∈R′

i
fj′)

σi,j , gτsi(vi·vc)
)
· e
(
Z

σi,j

i , gti
)

e
(
gσi,j , (f

∏
j′∈R′

i
fj′)τsi(vi·vc)Z

ti
i f

π
)

=
e
(
gαigricj , gτsi(vi·vc)

)
· e
(
(f

∏
j′∈R′

i
fj′)

σi,j , gτsi(vi·vc)
)
· e
(
Z

σi,j

i , gti
)

e
(
gσi,j , (f

∏
j′∈R′

i
fj′)τsi(vi·vc)

)
· e
(
gσi,j , Zti

i f
π
)

=
e
(
gαigricj , gτsi(vi·vc)

)
·
hhhhhhhhhhhhhhh
e
(
(f

∏
j′∈R′

i
fj′)

σi,j , gτsi(vi·vc)
)
· e
(
Z

σi,j

i , gti
)

hhhhhhhhhhhhhhh
e
(
gσi,j , (f

∏
j′∈R′

i
fj′)

τsi(vi·vc)
)
· e
(
gσi,j , Zti

i

)
· e
(
gσi,j , fπ

)
=

e
(
gαigricj , gτsi(vi·vc)

)
·
XXXXXXe
(
Z

σi,j

i , gti
)

XXXXXXe
(
gσi,j , Zti

i

)
· e
(
gσi,j , fπ

)
=

e
(
gαigricj , gτsi(vi·vc)

)
e
(
gσi,j , fπ

)
Now we can turn to the calculation of “part-2”. This calculation depends on two indexes,

the user-index (i, j), which is used for encryption and the user-index (i, j), hidden in the private
key. Since the decryption process only works if

(
(i = i) ∧ (j ≥ j)

)
or (i > i) applies. This fact

leads to a case by case analysis where six cases must be considered individually.
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1st case: i < i ∧ j < j

DIpart-2 =
e3(R

′
i, C

′
j)

e3(Ri, Cj)

=
e3(g

κvi , gωj )

e3(gvi , gcjτ(vc+µjχ3) · gκωj )

=
e3(g, g)

κviωj

e3(g, g)vicjτ(vc+µjχ3)+viκωj

=
1

e3(g, g)vicjτ(vc+µjχ3)+viκωj−viκωj

=
1

e3(g, g)vicjτ(vc+µjχ3)

=
1

e(g, g)cjτ(vivc+viχ3µj)

Since we randomly select vi ∈ Zp and vi · χ3 ̸= 0, the calculation of DIpart-2 leads to an
additional exponent that destroys M . M cannot be reconstructed. Please compare section
3.5.1.

2nd case: i < i ∧ j ≥ j

DIpart-2 =
e3(R

′
i, C

′
j)

e3(Ri, Cj)

=
e3(g

κvi , gωj )

e3(gvi , gcjτvc · gκωj )

=
e3(g, g)

κviωj

e3(g, g)vicjτvc+viκωj

=
1

e3(g, g)vicjτvc+viκωj−viκωj

=
1

e(g, g)cjτvivc

Also here the reconstruction of M is made impossible, because one exponent is missing,
so that the exponents cannot cancel each other out. Please compare section 3.5.1.

12
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3rd case: i = i ∧ j < j

DIpart-2 =
e3(R

′
i, C

′
j)

e3(Ri, Cj)

=
e3(g

riκsivi , gωj )

e3(grisivi , gcjτ(vc+µjχ3) · gκωj )

=
e3(g, g)

riκsiviωj

e3(g, g)risivicjτ(vc+µjχ3)+risiviκωj

=
1

e3(g, g)risivicjτ(vc+µjχ3)+risiviκωj−risiviκωj

=
1

e3(g, g)risivicjτ(vc+µjχ3)

=
1

e(g, g)risicjτ(vivc+viχ3µj)

An unwanted additional exponent prevents the calculation here as well (see section 3.5.1).
M cannot be reconstructed.

4th case: i = i ∧ j ≥ j

DIpart-2 =
e3(R

′
i, C

′
j)

e3(Ri, Cj)

=
e3(g

riκsivi , gωj )

e3(grisivi , gcjτvc · gκωj )

=
e3(g, g)

riκsiviωj

e3(g, g)risivicjτvc+risiviκωj

=
1

e3(g, g)risivicjτvc+risiviκωj−risiviκωj

=
1

e(g, g)risicjτvivc

The first case in which the result can be easily shortened with other terms when recon-
structing M . The reconstruction of M succeeds (see section 3.5.1).

13
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5th case: i > i ∧ j < j

DIpart-2 =
e3(R

′
i, C

′
j)

e3(Ri, Cj)

=
e3(g

riκsivi , gωj )

e3(grisivi , gcjτ(vc+µjχ3) · gκωj )

=
e3(g, g)

riκsiviωj

e3(g, g)risivicjτ(vc+µjχ3)+risiviκωj

=
1

e3(g, g)risivicjτ(vc+µjχ3)+risiviκωj−risiviκωj

=
1

e3(g, g)risivicjτ(vc+µjχ3)

=
1

e3(g, g)risicjτ(vivc+viχ3µj)

=
1

e(g, g)risicjτvivc

During the reconstruction of M , terms are canceled out, whereby the reconstruction suc-
ceeds without errors (see section 3.5.1).

6th case: i > i ∧ j ≥ j

DIpart-2 =
e3(R

′
i, C

′
j)

e3(Ri, Cj)

=
e3(g

riκsivi , gωj )

e3(grisivi , gcjτvc · gκωj )

=
e3(g, g)

riκsiviωj

e3(g, g)risivicjτvc+risiviκωj

=
1

e3(g, g)risivicjτvc+risiviκωj−risiviκωj

=
1

e(g, g)risicjτvivc

As in case 5, an correct calculation of M can also be performed in case 6.

14
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Now we can merge ”part-1” and ”part-2” and determine DI :

DI = DIpart-1 ·DIpart-2

=
e
(
gαigricj , gτsi(vi·vc)

)
e
(
gσi,j , fπ

) · 1

e
(
g, g

)risicjτvivc

=
e
(
gαi , gτsi(vi·vc)

)
e
(
gricj , gτsi(vi·vc)

)
e
(
gσi,j , fπ

) · 1

e
(
g, g

)risicjτvivc

=
e
(
gαi , gτsi(vi·vc)

)
e
(
g, g

)risicjτ(vi·vc)

e
(
gσi,j , fπ

) · 1

e
(
g, g

)risicjτvivc

=
e
(
gαi , gτsi(vi·vc)

)XXXXXXXXX
e
(
g, g

)risicjτ(vi·vc)

e
(
gσi,j , fπ

) · 1
XXXXXXXX
e
(
g, g

)risicjτvivc

=
e
(
gαi , gτsi(vi·vc)

)
e
(
gσi,j , fπ

)
We just calculated DP and got e

(
gσi,j , fπ

)
. If we look at the result of DI we see that the

same term occurs in the denominator of DI and cancel each other out (see section 3.5.1).

3.5.1 Reconstructing M

We can reconstruct M as follows:

M ′ =
Ti

DP ·DI

=
M · Eτsi(vi·vc)

i

e(gσi,j , f)π ·
e

(
gαi ,gτsi(vi·vc)

)
e

(
gσi,j ,fπ

)
=

M · e(g, g)αiτsi(vi·vc)

XXXXXXe(gσi,j , f)π ·
e

(
gαi ,gτsi(vi·vc)

)
HHHHH
e

(
gσi,j ,fπ

)
=

M · e(g, g)αiτsi(vi·vc)

e(g, g)αiτsi(vi·vc)

=
M ·

hhhhhhhhe(g, g)αiτsi(vi·vc)
hhhhhhhhe(g, g)αiτsi(vi·vc)

= M

15
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M can only be reconstructed if the attributes in the key can solve the access structure that DP

takes care of. Non-monotonic attributes can be used as shown. Finally, DI can only be valid if
the user-index (i, j) of the private key is equal to or greater than the embedded user-index (i, j)
used for encryption.

4 Blackbox Tracing
The black box calculation is taken unchanged from [2]. It is based on DI and the exclusion of
user indexes. The decryption box D and the PP public parameters are needed to decrypt the
potentially non-monotonic access structures under the probability parameter ϵ. The result is a
set of user indexes marked as traitors.

5 Evaluation
The ABE scheme is compared with selected other ABE schemas regarding its functionalities
and component sizes. The result is shown in the Figures 2 and 3. Furthermore, the schema was
implemented in Java, so that its functionality was not only shown mathematically.

Table 2: Feature Comparison
Scheme Traceability Revocation Large Attribute Universe Non-Monotonic

[2013] Liu et al. [7] blackbox × × ×
[2014] Yamada et al. [3] × × ✓ ✓

[2014] Ning et al. [8] whitebox × ✓ ×
[2014] Deng et al. [9] blackbox × ✓ ×
[2016] Liu et al. [10] blackbox × × ×
[2016] Li et al. [11] blackbox direct × ×

[2016] Liu and Wong [1] blackbox direct ✓ ×
[2017] Li et al. [12] × × × ✓

this work blackbox direct ✓ ✓

Table 3: Component Size Comparison
Scheme Master Secret Key Public Key Cipher-Text Private Key

Liu et al. [7] 1 +
√
N 3 + 4

√
N + |U | 9

√
N + 2l 4 + |S|

Yamada et al. [3] 2 7 2 + 3l 2 + 4|S|
Ning et al. [8] 4 7 3 + 3l 4 + 2|S|
Deng et al. [9] 1 3 4 + 2l 2 + (|S| · |L|)
Liu et al. [10] 6 + 6

√
N + 4|U | 10 + 6

√
N + 4|U | 8

√
N + l 4 + |S|

Li et al. [11] 6 + 6
√
N + 4|U | 10 + 11

√
N + 4|U | 8

√
N + l 4 +

√
N + |S|

Liu and Wong [1] 3
√
N 5 + 5

√
N 8

√
N + 3l 3 +

√
N + 2|S|

Li et al. [12] 1 + 2|U | 2 + |U | 2 + |R| 2

this work 1 + 3
√
N 6 + 5

√
N 8

√
N + 3l 3 +

√
N + 4|S|

N= total number of users, |L|= Scheme specific value, denoting the length of a codeword
|U |= The number of all possible attributes in the attribute universe, l= Number of rows in LSSS matrix
|S|= Number of Attributes asigned to the privat key, |R| Valid path size of the Ordered Binary Decision Diagram
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